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ABSTRACT 

 
The neural mechanisms that support learning and memory are still poorly 

understood. Much work has focused on changes in neurotransmitter receptor expression, 
while changes in voltage-gated ion channel expression have been largely unexplored, 
despite the fact that voltage-gated ion channels govern neuronal excitability. Here we 
used eyeblink conditioning (EBC) in rats, a model of learning and memory with a well-
understood neural circuit, to examine regulation of voltage-gated ion channels as a 
consequence of learning. EBC is a form of classical conditioning that involves pairings of 
a behaviorally neutral conditioned stimulus (CS) and an eyeblink eliciting unconditioned 
stimulus (US) over many trials to produce an eyeblink conditioned response (CR) to the 
CS in anticipation of the US. The acquisition and generation of the eyeblink CR is 
governed by plasticity at various sites in the cerebellum, both in the cerebellar cortex and 
the interpositus nucleus (IPN). Purkinje cells (PCs) are the primary neuron in the 
cerebellar cortex and these cells represent the sole output of the cerebellar cortex. PCs 
tonically inhibit the neurons of the IPN; the IPN is the start of the eyeblink pathway. In 
order for a CR to be generated, the inhibition of the IPN by PCs must be lifted. Basket 
cells (BCs) are small inhibitory interneurons that form synapses near the PC soma. These 
neurons are strategically located to strongly regulate PC output through inhibitory input 
near the axon hillock. BC axon terminals have the highest expression of Kv1.2, an alpha 
subunit of the Kv1 (Shaker) family of voltage-gated potassium channels, in the 
cerebellum. In addition, significant Kv1.2 expression is found on PC dendrites. Blocking 
Kv1.2 leads to increased GABAergic input to PCs and facilitates EBC. In the current 
work, we addressed the question of whether EBC itself regulates surface expression of 
Kv1.2 in cerebellar cortex. Rats received three days of either EBC, explicitly unpaired 
stimulus presentations, or no stimuli, and cerebellar tissue was harvested and analyzed 
via biotinylation/western blot (WB) and multiphoton microscopy (MP) techniques. In the 
first experiment, the Unpaired group showed significantly reduced surface Kv1.2 
expression at BC axon terminals as measured by MP, but no changes observed with the 
WB measure, which measures expression at both BC axon terminals and PC dendrites. 
The second experiment used the same procedures but examined cerebellar tissue 
following a shorter training procedure. We hypothesized that the Paired and Unpaired 
groups would show similar Kv1.2 surface expression earlier in training. The Unpaired 
group showed increased surface Kv1.2 compared to the other two groups in the WB 
measures, but no differences were observed in the MP measure. Paired group rats that did 
not exhibit CRs showed the same pattern as the Unpaired group. Overall, we observed 
training and location specific changes in surface Kv1.2 expression, suggesting that 
learning does appear to regulate voltage-gated ion channel expression in the mammalian 
brain. Increased surface Kv1.2 early in training before CR expression emerges may set 
the stage for other mechanisms to govern the expression of the learned response. 
Prolonged stimulus input that is unmodulated by expression of a learned response, such 
as in the Unpaired group in the first experiment, leads to long-term changes in surface 
Kv1.2 expression exclusively at BC axon terminals.  
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CHAPTER 1: COMPREHENSIVE LITERAURE REVIEW 

Section 1.1: What is Eyeblink Conditioning? 

Eyeblink conditioning (EBC) is a form of classical conditioning that is a powerful 

model for studying the underlying neural mechanisms of learning and memory. In EBC, 

an initially neutral conditioned stimulus (CS) is paired with an eyeblink-eliciting 

unconditioned stimulus (US). The CS is typically a tone or a light, while the US may be a 

mild periorbital shock or corneal air puff.  At the outset of conditioning, the US will elicit 

a reflexive eyeblink. As training progresses, however, the organism will learn to make an 

eyeblink conditioned response (CR) to the CS prior to the onset of the US. In delay EBC 

the CS and US overlap with the CS presentation occurring first and the US being 

presented at the end of the CS period; the two stimuli terminate at the same time. In 

extinction of EBC, the procedure is similar, but the US is omitted. 

Delay EBC is an effective paradigm for studying the neural mechanisms of 

learning and memory for several reasons. (1) The stimuli used for conditioning are 

simple; a tone, light, or tactile stimulus are used for the CS and an eyeblink reflex 

eliciting stimulus is used for the US such as a periorbital shock or corneal air puff; (2) the 

eyeblink CR is simple to measure and simple to quantify based on the timing with the 

CS. (3) Finally, the neural pathways responsible for encoding and expressing the eyeblink 

CR are very well known (McCormick and Thompson, 1984a, Thompson and Krupa, 

1994, Christian and Thompson, 2003, Ramnani, 2006, Thompson and Steinmetz, 2009). 

Since the neural pathways for EBC have been so well studied and much is known about 

acquisition of the eyeblink CR, EBC is a suitable paradigm to study the cellular and 

molecular underpinnings of learning and memory.  
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Section 1.2: Cerebellar Anatomy 

 There are several ways to understand the anatomy of the cerebellum. Grossly, 

there are several main areas: the medial portion is called the vermis, laterally from there 

are the lateral hemispheres, and ventral and lateral to the hemispheres are the flocculi and 

paraflocculi (Glickstein et al., 2011). The organization of the cerebellum was based on 

comparative anatomy research done by several researchers (Glickstein et al., 2011), but a 

popular system for understanding cortical anatomy was developed by Larsell (1952). This 

system identifies 10 major cortical divisions (lobules I-X) in the cerebellar cortex 

(Glickstein et al., 2011).  Within the cerebellum, there are two distinct regions: the 

cerebellar cortex and deep cerebellar nuclei.  

 The cortical anatomy is distinctive. There are three layers with specific cell types 

in each that comprise the layers. The outer most layer is the molecular layer. This layer is 

comprised of Purkinje cell (PC) dendrites, parallel fibers (PFs) from granule cells (GCs), 

and two types of inhibitory interneurons, stellate cells and basket cells (BCs), that form 

synapses with PCs. Below that layer is the PC layer comprised of the somas of PCs 

aligned across the cortical regions. Below that is the granule layer, which is comprised of 

GCs and PC axons. GCs send axons up towards the molecular layer where their axons 

bifurcate and form excitatory synapses with PCs. PC axons project down through the 

granule layer and form inhibitory synapses with the neurons within the deep cerebellar 

nuclei (DCN) (Thompson and Steinmetz, 2009), with the exception of PCs in the 

flocculus and paraflocculus that project to the vestibular nucleus. The primary nuclei 

within the DCN are the dentate (lateral) nucleus, the two interpositus nuclei (anterior and 

posterior), and fastigial nucleus (medial). Each nucleus receives cortical input from PCs 
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in specific regions of the cerebellar cortex (Glickstein et al., 2011). Figure 1 represents a 

simplified version of cerebellar anatomy as it pertains to EBC (also see below). 

 

Section 1.3: Eyeblink Stimulus Pathways 

EBC is dependent upon an intact ipsilateral cerebellum (McCormick et al., 

1982a). There is an extensive body of literature examining both the CS and US pathways 

to the cerebellum as well as research examining the role of the cerebellar cortex, DCN 

and non-cerebellar regions along the EBC pathways (McCormick et al., 1983, 

McCormick and Thompson, 1984a, b, McCormick et al., 1985, Mauk et al., 1986). For 

instance, tone evoked neural responses have been measured in several different areas 

associated with auditory processing including the superior colliculus, pontine nuclei 

(PN), periaqueductal gray, and other structures that correspond to brainstem regions 

important for EBC (McCormick et al., 1983). The CS and US are relayed through 

brainstem nuclei to the cerebellar cortex (McCormick et al., 1985, Mauk et al., 1986). 

The CS information is gathered in the auditory, visual, and somatosensory subcortical 

areas depending on the sensory modality and information is then projected to the PN in 

the brainstem (Glickstein et al., 1980, Brodal and Brodal, 1981, McCormick et al., 1983, 

Steinmetz et al., 1986, Steinmetz et al., 1987, Knowlton and Thompson, 1988, Freeman 

et al., 2005). From here, axons called mossy fibers (MFs) project directly to the cerebellar 

cortex, forming excitatory synapses with GCs in the granule layer (Brodal and Brodal, 

1981, Woodruff-Pak et al., 1988). Axon collaterals from the PN also project to the 

interpositus nucleus (IPN) (Brodal and Brodal, 1981, Voogd and Glickstein, 1998). GCs 

then project axons up to the molecular layer of the cerebellar cortex, where they bifurcate 
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and form excitatory synapses with PC dendrites and BCs (Mittmann et al., 2005, Sultan 

and Glickstein, 2007). The axons projected from the granule layer to the molecular layer 

of the cerebellar cortex are called PF. It was determined that ~175,000 synapses are 

formed on a single PC from a network of PFs (Napper and Harvey, 1988). Studies have 

confirmed that the PN and its projections form the CS pathway in the cerebellum. For 

example, Steinmetz and colleagues abolished tone-conditioned CRs by making lesions to 

the PN (Steinmetz et al., 1987). This study showed that the dorsolateral and lateral 

portions of the PN are both involved. The lesions encompassed both areas and led to the 

abolition of the learned responses, indicating the necessity of this region for EBC. While 

this site is necessary, it is not the site where learning occurs. This was demonstrated 

through stimulation of the PN in replace of the typical auditory tone as the CS (Steinmetz 

et al., 1986, Freeman et al., 2005). In fact, stimulation of the PN as the CS produces super 

conditioning, and in a model of abnormal development, stimulation of the PN allows the 

organism to overcome developmental deficits (Freeman et al., 2005).  

 The primary nucleus involved in relaying the US information to the cerebellum is 

the dorsal accessory olive (DAO) of the inferior olivary nucleus, referred to here as the 

inferior olive (IO). This nucleus receives somatosensory information from cranial nuclei 

including the motor trigeminal nucleus and relays (through the middle cerebellar 

peduncle) that information via climbing fibers (CFs) directly to PCs in the cerebellar 

cortex and collaterals to the IPN (Brodal and Brodal, 1981). It was shown that one CF 

will create ~26,000 synapses with individual PCs (Nieto-Bona et al., 1997, Ito, 2002). 

Lesions of the inferior olive prevent learning if made prior to conditioning and facilitate 

extinction when made after the CR is learned (McCormick et al., 1985). Research has 
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shown that electrical stimulation to this area can serve as a US (Mauk et al., 1986, 

Steinmetz et al., 1989).  

 

Section 1.4: Eyeblink Response Pathways 

There are two responses in EBC: the conditioned eyeblink response and the 

unconditioned, or reflexive eyeblink response. While the two responses observed in EBC 

paradigms share activation of the facial motor nucleus as the final common neural output, 

they are very different in appearance. The reflexive blink in response to the US is brief 

and only coincides with the US. The CR on the other hand is an anticipatory or learned 

response to the tone CS that is sensitive to the inter-stimulus interval (ISI; the interval 

from CS onset to US onset) (Kreider and Mauk, 2010). When conditioning commences, 

the CS exerts no control over the eyelid muscles. After repeated pairings of the two 

stimuli, the output of the cerebellar cortex is modified to make a CR temporally 

associated with the ISI, where shorter latency CRs will be made to shorter ISIs and longer 

latency CRs will reflect longer ISIs (Chen and Thompson, 1995, Medina et al., 2000, 

Svensson et al., 2010).  

The IPN of the DCN has been referred to as the start of the eyeblink CR pathway 

(Chapman et al., 1990). This is substantiated by the findings that stimulation of the IPN 

in naïve animals produces eyeblinks (Chapman et al., 1988) and lesions of the IPN 

abolish previously learned eyeblink CRs (McCormick and Thompson, 1984b). From the 

IPN, the CR information is relayed through the superior cerebellar peduncle to the red 

nucleus and from there to the abducens, facial nuclei, PN, red nucleus, and the IO 

(McCormick et al., 1983, Thompson and Steinmetz, 2009). The eyeblink CR and 
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reflexive eyeblink UR share some of the same brainstem nuclei for governing the 

responses (Thompson and Steinmetz, 2009). Despite shared reliance on the abducens 

(eyeball retraction and nictitating membrane response in rabbits) and facial (eyelid 

movement) nuclei, lesions to the abducens nucleus spare the eyeblink CR in rabbits while 

the nictitating membrane UR is abolished (Steinmetz et al., 1992). Similarly, lesions to 

the superior cerebellar peduncle or red nucleus abolish CRs, but URs remain intact 

(McCormick et al., 1982b). 

While the IPN is reported to be the start of the eyeblink CR pathway, modulation 

of cerebellar cortical output is necessary for the acquisition of the response (McCormick 

and Thompson, 1984b, Garcia and Mauk, 1998, Garcia et al., 1999). PCs in the cerebellar 

cortex provide the sole, inhibitory output of the cerebellar cortex and innervate the 

neurons of the IPN (Teune et al., 1998). The tonic inhibition of the IPN by PCs may be 

attributed to the recent finding that PCs contain an abundance of low threshold vesicles 

ready to be released (Kawaguchi and Sakaba, 2015). In another experiment, using 

infusions of GABAA receptor antagonist picrotoxin or reversible lesions with GABAA 

receptor agonist muscimol, researchers were able to dissect the role of the cerebellar 

cortex prior to and after acquisition of EBC (Garcia et al., 1999). Rabbits were trained to 

make a nictitating membrane CR (equivalent to eyeblink CR in rats) to a tone CS. Once 

learning was established, picrotoxin – a GABAA antagonist – was infused into the IPN 

prior to a test session. By infusing picrotoxin, GABA-mediated inhibition of the IPN was 

blocked and the rabbits continued to show CRs; the CRs however had a shorter latency to 

onset (Garcia and Mauk, 1998). In the same animals, muscimol – a GABAA agonist – 

was infused into the same region and resulted in the abolition of the CR (Garcia and 
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Mauk, 1998). Furthermore, infusions of muscimol into the IPN prior to acquisition 

prevented learning (Krupa et al., 1993). Rabbits continued to receive EBC training after 

the infusions were no longer inhibiting the IPN and appeared naïve to the stimuli, 

indicating the infusions of muscimol prior to training prevented learning (Krupa et al., 

1993). If, however, the infusions are made into the red nucleus – a downstream target of 

the IPN and an important nucleus in the expression of eyeblink CRs – expression of CRs 

was blocked but learning still occurred. This was shown by the immediate emergence of 

the learned CR expressed once the infusions were no longer inhibiting the response 

pathway (Krupa et al., 1993). Together, these data indicate that the IPN is involved in the 

acquisition and expression of CRs and that PC inhibition of the IPN is important for 

precise timing of the response. The necessity of the cerebellar cortex for acquisition of 

eyeblink CRs was demonstrated by others (Yeo and Hardiman, 1992, Freeman et al., 

1995, Gruart and Yeo, 1995, Garcia et al., 1999), showing that lesions to the cerebellar 

cortex prevents acquisition of eyeblink CRs, lending support for the idea that there are 

two primary areas of plasticity in the cerebellum and that cortical plasticity is necessary 

for acquisition of eyeblink CRs (Garcia et al., 1999). 

 

Section 1.5: Acquisition of Eyeblink Conditioned Responses 

The acquisition of an eyeblink CR is dependent upon modulation of PC output; in 

order for a CR to be made, PCs must be briefly inhibited, leading to disinhibition of the 

IPN (Garcia and Mauk, 1998, Garcia et al., 1999, Attwell et al., 2001). This was 

demonstrated by infusions of the α-Amino-3-hydroxy-5-methyl—4-isoxazoleproprionic 

(AMPA) /kainate receptor antagonist, 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) in 



8 8 

the cerebellar cortex prior to acquisition. Infusions of CNQX prevented learning from 

taking place such that when the infusion dissipated, the rabbits appeared behavioral naïve 

to the stimuli (Attwell et al., 2001). Since PCs provide the sole, inhibitory output of the 

cerebellar cortex through projections to the IPN (Harvey and Napper, 1991), mechanisms 

must be in place to alter the inhibition of PCs on the IPN. Researchers have postulated 

that there are two primary sites of plasticity that EBC is dependent upon (Mauk and 

Donegan, 1997). The first site of plasticity is in the cerebellar cortex, where PF (relaying 

the CS) and CF (relaying the US) input co-synapse with PC dendrites. The second site is 

hypothesized to be between MF projections and neurons of the IPN.  

 

Section 1.5.1: Mossy Fiber-to-Interpositus Nucleus Synapse 

The connection between MFs and the neurons of the IPN (MF-IPN) was 

hypothesized to be important for acquisition and expression of CRs (Mauk and Donegan, 

1997, Medina and Mauk, 1999). Research cited above points to the IPN as the start of the 

eyeblink CR pathway (McCormick and Thompson, 1984a, Freeman and Nicholson, 

1999). Furthermore, when the cerebellar cortex is disconnected from the IPN, an eyeblink 

CR can still be exhibited (McCormick and Thompson, 1984a), but it may take the form 

of a short latency CR to the tone (Ohyama et al., 2006). The MF-IPN connection seems 

to play an important role in acquisition and expression of CRs. For instance, physical or 

pharmacological ablation of the IPN prevents acquisition of CRs (Lavond and Steinmetz, 

1989, Chapman et al., 1990, Clark et al., 1992, Steinmetz et al., 1992) and can also 

abolish previously learned CRs (Chapman et al., 1990, Steinmetz et al., 1992). Gould and 

Steinmetz (1996) showed increased single-unit activity when examining firing rates of 
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IPN neurons later versus earlier in acquisition. Berthier and Moore (1990) showed 

increased activity in neurons in the IPN and dentate nucleus on trials in which a CR was 

exhibited. The responses of neurons in the DCN are not uniform, but the collective firing 

patterns in these regions seem to be related to the generation and expression of eyeblink 

CRs (Berthier and Moore, 1990). There is evidence of anatomical changes that 

correspond with the CR. For instance, rats that received paired (CS-US) training, 

compared to unpaired or no stimulus training, had more synapses in the IPN than the 

other two groups (Kleim et al., 2002). Not only does this show that there are anatomical 

changes that occurred during learning, but it supports the idea of increased synaptic 

connections through pre-cerebellar areas involved in the eyeblink pathway. A similar 

result was reported by De Zeeuw and colleagues, showing increased axonal sprouting and 

more varicosities on mossy fiber axons forming synapses with the neurons of the IPN 

(Boele et al., 2013). This effect was region specific and depended upon the type of 

training; no changes were reported in areas not associated with EBC and no increases 

were observed in untrained mice.  

A mechanism that may be accompanying changes at the MF-IPN synapse is 

intrinsic plasticity changes in the neurons of the IPN. Aizenman and Linden reported 

increased sensitivity of IPN neurons to MF inputs following strong depolarization 

(Aizenman and Linden, 2000). Increased calcium influx through N-methyl-D-aspartic 

acid (NMDA) receptor activation or direct depolarization produced persistent increases in 

intrinsic excitability (Aizenman and Linden, 2000). Although this experiment was done 

in the presence of picrotoxin to block GABAA receptors, the data point to a way MF 

input to the DCN can modulate the neurons to aid in acquisition of an eyeblink CR. Here, 
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rather than altering the expression of AMPA receptors, a hallmark of long-term plasticity 

changes, they reported increased excitability of the neurons as measured by a decrease in 

spike threshold and increased maximum firing rate (Aizenman and Linden, 2000). These 

experiments were done with the IPN in isolation from other synaptic input; however, 

these basic changes to the excitability of neurons may be an important underlying 

mechanism for EBC. 
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Figure 1. Brainstem and cerebellar neural pathways involved acquisition of eyeblink classical 
conditioning. (A) Briefly, Purkinje cells represent the sole, inhibitory output of the cerebellar cortex. 
IN doing so, they tonically inhibit the neurons of the interpositus nucleus (IPN). The stimulus 
information is projected through modality-specific brainstem nuclei and then to the cerebellar 
cortex. Axon collaterals are also projected to the neurons of the IPN. In order for an eyeblink 
conditioned response to be initiated by the neurons of the IPN, the tonic inhibition of PCs must be 
listed. The response is projected through various brainstem nuclei that control closure of the eyelid 
muscle.  (B) Example of a well-time eyeblink conditioned response. Responses are scored as CRs if 
the magnitude of the response exceeds the response threshold. CRs can be distinguished from 
unconditioned responses based on the timing and amplitude; eyeblink responses should occur 
temporally close to US onset but will precede that stimulation and the amplitude greater than the 
activity in between trials (from Fuchs et al., 2014).  
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Section 1.5.2: Parallel Fiber-to-Purkinje Cell Synapse 

Postsynaptic long-term depression (LTD) is hypothesized to occur at synapses 

formed by CS-carrying PFs and PC dendrites (PF-PC). During EBC when the CS is 

present, PFs increase the excitability of PC dendrites and at the end of the CS period 

when the US is presented, CF input strongly excites the PC dendrites (Berthier and 

Moore, 1986). The first demonstration of PF-PC LTD was shown by stimulation of both 

pathways that led to a decrease in the excitability response in PCs both briefly after the 

stimulation and for a prolonged period following multiple trials (Ito et al., 1982). 

Furthermore, they showed that neurons displayed reduced sensitivity to glutamate 

following similar stimulations, indicating the glutamate may mediate this PC response 

(Ito et al., 1982). Work from Eccles and colleagues demonstrated the effectiveness of CF 

activation of PC dendrites. When CFs become active, PCs display a complex spike that is 

indicative of calcium influx. Climbing fibers were shown to reduce excitatory post-

synaptic potentials (EPSPs) in the cerebellum following a tetanus of stimulation (Eccles 

et al., 1966). In another preparation, LTD was induced via stimulation of PF and CF in 

the rabbit paraflocculus (Kano and Kato, 1988). When stimulating CF and PF in 

isolation, there is a little effect on PC excitability; when they stimulated both pathways, 

an LTD-like effect that persisted for up to one hour was observed (Ito and Kano, 1982). 

The LTD effect was blocked in the presence of AMPA and NMDA receptor antagonists 

as well as when the CF pathway was blocked with lidocaine or tetrodotoxin (Kano and 

Kato, 1988). Other data suggest that an ISI of 250ms (Ekerot and Kano, 1989), similar to 

the ideal interval between CS onset and US onset for producing EBC, was ideal to 

produce LTD and that shorter ISIs, simultaneous stimulation, and backward pairings 
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were unable to achieve LTD, even after an extended number of pairings (Chen and 

Thompson, 1995). To study this in vivo, certain conditions must be mimicked to elucidate 

the underlying mechanisms. The presence or absence of GABA antagonists plays a large 

role; when GABA antagonists were present, the LTD-like response at PF-PC synapses 

was more profound than when GABA antagonists were absent (Alkon et al., 1993).  

Schreurs and Alkon (1993) showed that co-stimulation of PFs and climbing fibers 

without the presence of GABA antagonists led to LTD of the PF-PC synapse. When 

stimulation mimicked in vivo conditions where PF activation was paired with 

depolarization-induced calcium release (Kawaguchi et al., 2011), there was a profound 

and long-lasting EPSP depression at this synapse. 

The hallmark of long-term plasticity is the trafficking of surface-expressed 

AMPA receptors, and this is especially true in PF-PC synapses (Wang and Linden, 2000). 

Trafficking of AMPA receptors can be observed on both the pre- and post-synaptic sides 

of this synapse, and depending on the stimulus parameters, LTP or LTD can be observed 

(Coesmans et al., 2004, Gao et al., 2012). For the purpose of this review and project, I 

will focus on LTD on the post-synaptic side. Several researchers identified protein kinase 

C (PKC) as an effector of LTD induction (Crepel and Krupa, 1988, Linden and Connor, 

1991, Linden et al., 1991). LTD in PC dendrites results from a decrease in AMPA-

mediated current; AMPA-mediated current was maintained when PKC was inhibited 

(Crepel and Krupa, 1988, Linden and Connor, 1991), reduced when PKC was activated 

(Linden and Connor, 1991), and importantly, endocytosis via clathrin-dependent 

mechanisms was identified as the mediator for this effect (Wang and Linden, 2000). This 

finding was substantiated by results that showed that clathrin-mediated attenuation of 
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AMPA currents through activation of the insulin receptor pathway and induction of LTD 

occluded one another, lending support for clathrin-mediated endocytosis of AMPA 

receptors as mechanism for LTD in PCs (Wang and Linden, 2000). This research 

suggests that AMPA receptor endocytosis is necessary for the induction of LTD at PF-to-

PC synapses.  

The idea of PF-PC LTD being necessary for the acquisition of cerebellar 

dependent behaviors, such as eyeblink conditioning has been debated. One such paper 

examined three mechanisms previously implicated in the induction of LTD at this 

synapse (Schonewille et al., 2011). Here, the researchers employed: a PICK1 knockout 

mouse that acts as a necessary intermediary between PKC and internalization of AMPA; 

a GluR2Δ7 knock-in mouse, which interferes with GluR2’s interaction with PICK1 and 

GRIP1/2 through deletion of the last 7 amino acids important for the formation of the 

AMPAR C-terminal tail; and a GluR2K882A knock-in mouse, which prevents 

phosphorylation at S880 by PKC and internalization of AMPA receptors while leaving 

other second messenger pathways intact (Schonewille et al., 2011). Contrary to very 

specific eliminations targeting AMPA receptor internalization, a presumed integral part 

of LTD at this synapse, the researchers did not observe any related deficits in learning 

across three different cerebellar-dependent tasks despite deficits in LTD induction (Xia et 

al., 2000).  

An important signaling molecule for the induction of LTD is calcium (Linden et 

al., 1991). Intracellular calcium concentrations are increased in PC dendrites through 

several external mechanisms, including activation of L-type voltage-gated calcium 

channels (VGCCs) (Liljelund et al., 2000), activation T-type and P/Q-type VGCCs after 
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dendritic depolarization (Womack et al., 2004, Womack and Khodakhah, 2004), and 

some permeability through AMPA receptors (Burnashev et al., 1992), as well as internal 

mechanisms such as inositol 1,4,5-triphosphate (IP3)-mediated calcium release (Ross et 

al., 2005) typically activated by Group I glutamatergic activation of metabotropic 

glutamate receptors (mGluRs) (Finch and Augustine, 1998, Takechi et al., 1998). The 

training signal that is provided by CFs is recorded as a complex spike (De Zeeuw et al., 

2011). Furthermore, CF evoked calcium currents reduce components of the complex 

spike waveform recorded in PCs (Weber et al., 2003), indicating that the CF input to PCs 

is important for the induction of LTD. Hansel and Linden (2000) reported that calcium 

from the CFs provides an important training signal to PC dendrites. Without this input, 

calcium concentrations within the dendrite may be sub-threshold to induce LTD 

expression mechanisms, such as AMPA receptor internalization (Coesmans et al., 2004).  

There are several other molecules involved in the intracellular cascade that can 

alter AMPA expression in PC dendrites (Ito, 2002, Hartmann and Konnerth, 2005). For 

instance, LTD and cerebellar learning were impaired in mice lacking a gene specific for 

cyclic guanosine monophosphate (cGMP)-dependent protein kinase I (cGKI) (Feil et al., 

2003). Cyclic GKI has been shown to be a modulator of LTD within the nitric oxide 

(NO) pathway of PCs (Feil et al., 2003). NO is released from PFs and has receptors on 

the post-synaptic side (Ito, 2002). Mice lacking this specific modulator were impaired in 

the induction of LTD as well as in the adaptation of the vestibular ocular reflex (VOR), 

another cerebellar-dependent learned behavior (Feil et al., 2003).  

Research suggests a role for mGluRs in LTD and acquisition of eyeblink CRs 

(Linden et al., 1991, Aiba et al., 1994, Miyata et al., 2001, Kishimoto et al., 2002, Ohtani 
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et al., 2014). Metabotropic GluRs are the post-synaptic glutamate target for both PFs and 

CFs (Tanaka et al., 2000); thus knocking out this receptor in the mouse model led to 

widespread deficiencies that were evident in ataxic movements, impaired LTD as 

measured by a distinct lack of decreased excitatory postsynaptic currents (ESPCs) 

recorded from PCs, and impaired EBC (Aiba et al., 1994). Furthermore, using an 

mGluR1 knock-in rescue mouse expressing these receptors in PCs, EBC can be restored 

(Kishimoto et al., 2002), leading to the conclusion that mGluR1 receptors are necessary 

for LTD and EBC. Ohtani et al. (2014) explored the role of mGluR1 by examining how 

the length of the C-terminal tail affects LTD. By both knocking out mGluR1 globally and 

rescuing the receptor with two different PC-specific knock-in mice, Ohtani et al. (2014) 

were able to further dissect the pathway involved in the induction of LTD through 

activation of mGluRs. The knock-in mice included a short or long variant of the C-

terminal domain, which mimic endogenous splice variants of the channel (e.g. mGluR1a 

and mGluR1b) (Ohtani et al., 2014). The functional length of the C-terminal corresponds 

to different signaling cascades within PCs, with the long variant mediating LTD and 

eyeblink conditioning through IP3-mediated calcium influx and the shorter domain 

governing transient receptor protein canonical (TRPC) channels (Ohtani et al., 2014). 

They showed that the longer variant rescued LTD induction mechanisms and cerebellar 

dependent eyeblink conditioning better than the short variant. Furthermore, activation of 

this channel increased calcium entry through IP3-mediated signaling (Ohtani et al., 2014).  

Similar results reported in the mGluR1 papers were shown with mGluR4 receptor 

knockout mice (Pekhletski et al., 1996), with the exception that this receptor is primarily 

targeted by only PFs. One target of mGluR activation is the phospholipase C system 
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(PLC) (Sugiyama et al., 1999, Hashimoto et al., 2001, Miyata et al., 2001). PLC activates 

IP3 (Ito, 2002) which, downstream, increases internal calcium concentration (Sarkisov 

and Wang, 2008, Finch et al., 2012). IP3 is first produced through activation of mGluRs 

that activates PLC (Doi et al., 2005). When CFs strongly depolarize PC dendrites, the IP3 

then causes a release of internal calcium stores, which coincides with influx of calcium 

from VGCCs (Doi et al., 2005). This detect of spike timing is consistent with timing 

necessary for induction of LTD in cerebellar learning. 

 

Section 1.6: Basket Cells in the Cerebellar Cortex 

Direct modulation of PC output by inhibitory interneurons in cerebellar cortex 

may be an important mechanism for acquisition of EBC and has been an understudied 

area related to cerebellar learning. BCs are small inhibitory interneurons that reside in the 

molecular layer of the cerebellar cortex.  BCs are innervated by PFs (Mittmann et al., 

2005) and BC axons project down to the PC layer and form “basket” like synapses on 

PCs around the PC soma known as pinceaux (PCX) (McNamara et al., 1993, Laube et al., 

1996, McNamara et al., 1996, Voogd and Glickstein, 1998). BC inhibition of PCs is 

exerted through the β2 GABAA subunit (He et al., 2015). 

BCs are also targets of retrograde transmission for secretin (Yung et al., 2001, Ng 

et al., 2002, Lee et al., 2005, Yung et al., 2006), glutamate (Glitsch and Marty, 1999, 

Satake et al., 2000, Duguid and Smart, 2004, Satake et al., 2006), and endocannabinoids 

(Kreitzer and Regehr, 2001a, b, 2002) released from depolarized PCs. Since BC axon 

terminals form inhibitory synapses on PCs near the axon hillock, they are strategically 

located to regulate PC output and thus, the output of the cerebellar cortex.  
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Section 1.7: Kv1.2 and Its Regulation 

Kv1.2, an α-subunit of the Shaker (Kv1) family of voltage-gated potassium 

channels, is a delayed rectifier channel that is selectively permeable to K+ ions (Stuhmer 

et al., 1988, Miller, 2000). Six transmembrane segments structurally form Kv1.2: The 

first four segments are responsible for pore forming and gating and the last two are 

responsible for the voltage-sensitive properties (Baumann et al., 1988, Pongs et al., 1988, 

Stuhmer et al., 1988). The electrophysiological properties of Kv1.2 are similar to an ID-

current sensitive to TEA (Brew and Forsythe, 1995). Kv1.2 serves as a delayed-rectifier 

channel with an outward rectifying A-type current, which opposes membrane excitability 

of the axon terminals of BCs (Southan and Robertson, 1998b). When this channel is 

blocked or the surface expression is reduced, a greater number of depolarizing events are 

observed (Nesti et al., 2004, Ebner-Bennatan et al., 2012). 

BC inhibition of PCs is in part regulated by Kv1 channels containing Kv1.2 

subunits. Channels containing this subunit are densely expressed on BC axon terminals 

(McNamara et al., 1993, Wang et al., 1993, Wang et al., 1994, Veh et al., 1995, Bekele-

Arcuri et al., 1996, McNamara et al., 1996, Koch et al., 1997, Southan and Robertson, 

1998a, b, 2000, Chung et al., 2001) and PC dendrites (Koch et al., 1997). In fact, a 

quantitative study using autoradiography reported that Kv1.2 on BC axon terminals 

represents ~50% of cerebellar Kv1.2, with the remaining expressed throughout the 

molecular layer (Koch et al., 1997). Interestingly, overlapping expression of Kv1.1 and 

Kv1.2 was shown in BC axon terminals, whereas in the molecular layer, in particular on 

PC dendrites, Kv1.1, Kv1.2, Kv1.3 and Kv1.6 were expressed (Koch et al., 1997).  In an 
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immunoprecipitation experiment, the most frequent combination of subunit expression 

was Kv1.1/Kv1.2 heterotetramers, with some of those containing other subunits (Wang et 

al., 1994, Veh et al., 1995, Koch et al., 1997). The pharmacological inhibition of Kv1.2 

on BCs in the cerebellum increases inhibitory postsynaptic currents (IPSCs) recorded 

from PCs (Southan and Robertson, 1998a, b, 2000). This result was indicative of 

neurotransmitter release from BCs because the effect was blocked by bicuculline, a 

competitive antagonist of the GABAA receptor (Southan and Robertson, 1998b). 

Furthermore, deletion of β2 GABAA subunit prevented inhibitory synaptic plasticity 

between BCs and PCs (He et al., 2015).  

The regulation of Kv1.2 is very important for its function (Nesti et al., 2004). 

Only surface expressed proteins show active current and suppression of surface channel 

suppresses its ionic current (Nesti et al., 2004). The regulatory pathways for Kv1.2 have 

been identified in in vitro cell systems and mammalian tissue (Huang et al., 1993, 

Cachero et al., 1998, Hattan et al., 2002, Nesti et al., 2004, Williams et al., 2007, Connors 

et al., 2008), and these pathways have been verified in cerebellar tissue (Williams et al., 

2012). Surface expression of Kv1.2 has been shown to be regulated by activation of the 

muscarinic-type acetylcholine receptor 1 (m1 mAchR) (Huang et al., 1993, Tsai et al., 

1999); these data identified a possible stimulus-induced mechanism for Kv1.2 expression.  

Activation of m1 mAchR led to the activation of PLC and direct tyrosine phosphorylation 

of Kv1.2 (Huang et al., 1993). Morielli and colleagues confirmed these findings and 

showed that endocytic trafficking of Kv1.2 by tyrosine kinases serve as a primary 

suppressor of Kv1.2 ionic current (Nesti et al., 2004). In addition to tyrosine 

phosphorylation regulating the ionic current of Kv1.2, Morielli and colleagues showed 
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that tyrosine phosphorylation plays a role in the interaction between cortactin, an actin 

binding molecule, and Kv1.2 (Hattan et al., 2002). Activation of m1 mAchRs reduces the 

interaction between cortactin and Kv1.2 and resulted in the reduction in the ionic current 

displayed by Kv1.2 (Hattan et al., 2002, Williams et al., 2007). In addition, Connors and 

colleagues teased apart the intracellular pathways leading to the regulation of Kv1.2, and 

found that cyclic adenosine monophosphate (cAMP) maintains homeostatic expression of 

Kv1.2. Increasing or decreasing cAMP leads to differential effects on Kv1.2 surface 

expression and ionic current; decreasing levels of cAMP increased surface expression of 

Kv1.2 through protein kinase A (PKA), while increasing cAMP levels also increased 

Kv1.2 surface expression, independent of PKA (Connors et al., 2008). The PKA-

independent pathway appears to involve adenylyl cyclase (AC); when AC is increased 

using forskolin, Kv1.2 surface expression was increased (Connors et al., 2008).  

 

Section 1.8: Kv1.2 Regulation by Secretin in the Cerebellar Cortex 

The regulation of surface Kv1.2 expression is influenced by secretin in cerebellar 

tissue (Williams et al., 2012). Secretin, a neuropeptide that is endogenously expressed in 

PCs in the cerebellar cortex (Yung et al., 2001), was first identified by Bayliss and 

Starling in the early part of the 20th century (Bayliss and Starling, 1902) as a hormone 

secreted in pancreas. Recently, it was been studied as a neuropeptide in the cerebellum 

(Ishihara et al., 1991, Chow, 1995, Yung et al., 2001, Koves et al., 2002, Ng et al., 2002, 

Nozaki et al., 2002, Chey and Chang, 2003, Koves et al., 2004, Tay et al., 2004, Lee et 

al., 2005, Siu et al., 2006, Yung et al., 2006, Yuan et al., 2011, Miller et al., 2012, Zhang 

and Chow, 2014, Zhang et al., 2014). Secretin is hypothesized to function as a retrograde 
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transmitter that is released from PCs. First, secretin and its receptor are expressed in the 

cerebellum (Yung et al., 2001). The secretin receptor is expressed on the PCs and 

interneurons within the lower regions of the molecular layer, such as BCs; secretin 

mRNA was only found in PCs (Yung et al., 2001, Koves et al., 2002, Koves et al., 2004). 

As measured by an in vivo enzyme immunoassay sampling for changes in secretin release 

in real-time, the parameters necessary for secretin release were measured (Lee et al., 

2005). Secretin release is dependent upon excitation and depolarization of PCs (Lee et al., 

2005). Furthermore, secretin release is dependent opening of calcium and sodium  

channels; blocking calcium channels with cadmium attenuated secretin release, whereas 

increasing the concentration of potassium increased secretin release (Lee et al., 2005). In 

the presence of higher potassium concentrations, tetrodotoxin and cadmium both 

attenuated increased secretin release, suggesting a role for voltage-dependent channels 

during strong membrane-depolarizing events (Lee et al., 2005). Secretin release from PCs 

was shown to be dependent upon L-type and P/Q-type VGCCs, as shown by the 

attenuated secretin release in the presence of nimodipine and Omega-agatoxin IVA, 

respectively (Lee et al., 2005). The parameters necessary for secretin release as shown in 

Lee et al. (2005) are similar to events in PCs during climbing fiber input (Ohtsuki et al., 

2009, Piochon et al., 2010, Kitamura and Hausser, 2011, Maiz et al., 2012) including 

calcium entry though VGCCs and NMDA receptors on PCs. Increased calcium entry 

leads to secretin release from PCs (Lee et al., 2005).   

Since the secretin receptor is expressed on both PCs and BCs, secretin can act on 

either target (Ng et al., 2002).  Secretin was shown to have an effect on PC excitability; 

application of secretin in vitro while recording from PCs resulted in an increase of 
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miniature IPSCs (mIPSCs) (Yung et al., 2001), a current that is indicative of increased 

GABAergic input to PCs (Yung et al., 2001). It is noteworthy that the application of 

secretin did not alter glutamatergic input from PFs to PCs (Yung et al., 2001). The 

modulation of GABAergic input to PCs was shown to be dependent upon proper 

signaling of the secretin receptor (Yung et al., 2001). 

The secretin receptor is a Gs-protein coupled receptor (Siu et al., 2006), where 

activation leads to increases in AC which leads to increases cAMP concentrations, very 

similar to the increases in cAMP necessary for trafficking of Kv1.2 (Siu et al., 2006, 

Connors et al., 2008, Williams et al., 2012). In fact, secretin-mediated increases in 

mIPSCs in PCs were attenuated by SQ22536, a specific inhibitor of AC (Yung et al., 

2001). Additionally, there may be a role for AMPA receptor-mediated enhancement of 

GABA release from BCs. Blockade of AMPA with CNQX in the presence of secretin 

reduced mIPSC frequency (Lee et al., 2005). Furthermore, in the presence of AMPA 

receptor agonists, there was an increase in mIPSC frequency, but not amplitude and this 

effect was blocked by two different AMPA receptor antagonists (Lee et al., 2005). 

The pathways activated by secretin and necessary for secretin’s effects on PCs 

appear similar to the regulatory pathway for Kv1.2 trafficking. If secretin were involved 

in the regulation of Kv1.2, this could account for some of the findings showing that 

secretin increases GABAergic input to PCs from BCs (Yung et al., 2001). Thus, the 

hypothesis linking secretin to Kv1.2 regulation was tested through examination of surface 

Kv1.2 expression following application of secretin and other activators and inhibitors 

along the pathway. Cerebellar sections treated with forskolin, an activator of AC, showed 

reduced Kv1.2 surface expression (Williams et al., 2012), mimicking the effects of 



23 23 

secretin. When sections were treated with secretin and SQ-22636 or KT-5720, inhibitors 

of AC and PKA respectively, there was no change in surface Kv1.2 expression (Williams 

et al., 2012). Furthermore, the finding that secretin is released from PCs was also tested 

by showing that blocking GABA-A receptors with Gabazine reduced surface expression 

of Kv1.2 (Williams et al., 2012); this may be through increasing membrane 

depolarization of PCs and increasing secretin release. The effect of decreased surface 

Kv1.2 expression by endocytosis was attenuated by blocking L-type and P/Q-type 

VGCCs with Nimopidine and Agatoxin IVA respectively (Lee et al., 2005, Williams et 

al., 2012). These data point to the idea that secretin is released from PCs (Yung et al., 

2001, Lee et al., 2005) and plays a role in the inhibition of PCs, through the regulation of 

surface Kv1.2 expression (Williams et al., 2012). These data also corroborate the internal 

signaling pathway highlighted by Connors et al. (2008). 

 

Section 1.9: Kv1.2 in Eyeblink Conditioning 

Based on previous research, the mechanisms for Kv1.2 regulation and trafficking 

are well-understood. Given that Kv1.2 is densely expression at the BC-PC pinceaus 

(Koch et al., 1997, Chung et al., 2001) and this synapse can exert strong effects on 

cerebellar cortical output, it was hypothesized that these mechanisms may serve a 

purpose during EBC. To test this hypothesis we performed intracerebellar cortical 

infusions designed to alter the function or expression of Kv1.2 and examined acquisition 

and extinction of EBC.  
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Section 1.9.1: Blockade of Kv1.2 and Eyeblink Conditioning 

In a first look into the role of Kv1.2 in vivo in mammalian EBC, we infused a 

specific blocker of Kv1.2 prior to acquisition of EBC. By blocking Kv1.2 in a localized 

region of the cerebellar cortex, we were able to extend the ex vivo results reported by 

Southan and Robertson (1998a; 1998b; 2000). Blocking Kv1.2 on BC axon terminals 

results in increased GABAergic input to PCs (Southan and Robertson, 1998a, b, 2000). 

Therefore, infusions of tityustoxin (TsTX) – a highly selective blocker of Kv1.2 channels 

(IC50 = 0.550 nM) with little affinity for Kv1.1 (Werkman et al., 1993, Hopkins, 1998) 

that shares a binding site and function with α-dendrotoxin (Southan and Robertson, 

1998a, b, 2000) – were hypothesized to facilitate the inhibition of PCs during EBC and 

produce faster learning than vehicle infusions. Rats received intracerebellar infusions of 

either tityustoxin-Kα (TsTX; 1µl; 1µg/µl) or vehicle immediately prior to the first six of 

seven days of acquisition of EBC. Rats that received TsTX prior to acquisition learned 

more quickly than the rats that received vehicle infusions over the same time period 

(Williams et al., 2012). These data suggest that Kv1.2 may play an important role in the 

acquisition of EBC. The blockade of Kv1.2 results in increased mIPSCs in cerebellar 

sections (Southan and Robertson, 1998a, b, 2000), an effect that may have been 

mimicked by infusing TsTX into the cerebellar cortex. By infusing TsTX into a specific 

region within the cerebellum known to be important for acquisition of EBC, we 

facilitated EBC, potentially by increasing the inhibition of PCs and disinhibiting the IPN. 

Disinhibition of the IPN is hypothesized to allow CS-carrying MFs to more strongly 

activate the neurons within the IPN and allow CRs to be expressed more quickly than in 
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the vehicle treated group. Important for these data, we determined that infusions of TsTX 

are limited to regions associated with EBC (Appendix VII). 

 

Section 1.9.2: Secretin and Eyeblink Conditioning 

 As discussed above, the mechanisms by which secretin exerts its effects on 

excitability of BCs and inhibitory input to PCs provide a potential mechanism for 

acquisition of EBC. That is, secretin released during a depolarizing event in PCs that 

evokes calcium transients leads to increased inhibitory drive in PCs. If CF input during 

EBC were able to cause the release of secretin as a retrograde transmitter, then 

manipulating this system may have effects on acquisition of EBC. The role of secretin in 

EBC was examined in a series of experiments. First, we showed that intracerebellar 

infusions of secretin (1µg/µl) on the first three of six days of EBC led to a significant 

increase in the rate of learning; rats that received infusions of secretin learned to make the 

CR faster than rats the received intracerebellar infusions of vehicle (Williams et al., 

2012). The opposite effect was observed when secretin (5-27), an antagonist of the 

secretin receptor, was infused into the cerebellar cortex prior to the first three of six days 

of EBC (Fuchs et al., 2014). By blocking the secretin receptor during acquisition, the 

increased inhibitory drive from BCs to PCs that would occur during EBC would be 

blocked, leading to slower acquisition rates in the rats that received intracerebellar 

infusions of secretin (5-27) versus vehicle controls (Fuchs et al., 2014). These behavioral 

data lend support for the idea that endogenous Kv1.2 regulatory mechanisms such as 

those involved in secretin modulate EBC.  
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Section 1.10: The Model 

All of the data discussed above lead to a model for acquisition of EBC that may 

involve the regulation of Kv1.2. Data supporting this model include the finding that 

Kv1.2 is densely expressed at the BC axon terminals where they form inhibitory synapses 

with PCs (Koch et al., 1997, Chung et al., 2001) and PC dendrites (Koch et al., 1997). 

Functional data about the role of Kv1.2 in PC inhibition show that blocking this channel 

increases inhibition of PCs (Southan and Robertson, 1998a, b, 2000). This inhibitory 

drive from BCs to PCs is integral for the model because PCs represent the sole, inhibitory 

output of the cerebellar cortex, and is very important for EBC (Garcia and Mauk, 1998, 

Garcia et al., 1999). The target of PC output related to EBC is the IPN of the deep 

cerebellar nuclei (Thompson and Steinmetz, 2009). By modulating PC output, potentially 

by increasing the inhibition of PCs, we may observe increased learning rates during 

acquisition of EBC. The regulatory pathways for Kv1.2 overlap with the intracellular 

cascade initiated by secretin’s activation of its receptor (Yung et al., 2001, Lee et al., 

2005, Williams et al., 2012). That is, activation of the secretin receptor leads to AC 

mediated increases in cAMP which in turn increases PKA and results in phosphorylation 

of membrane proteins (Lee et al., 2005, Siu et al., 2006). This pathway shares important 

similarities to the regulation of Kv1.2, involving AC and cAMP (Connors et al., 2008). 

Functional evidence of the connection was shown when secretin applied to cerebellar 

sections increased mIPSCs in PCs (Yung et al., 2001). Importantly, the pathways worked 

out by the Chow lab were corroborated when looking at changes in Kv1.2 expression in 

cerebellar sections (Williams et al., 2012), showing that secretin facilitated Kv1.2 

endocytosis and that blocking AC, cAMP, PKA, or clathrin prevented this change. 



27 27 

Finally, the function of Kv1.2 is dependent upon it being expressed on the surface (Nesti 

et al., 2004). 

The data discussed above point to a model in which PCs, strongly depolarized by 

US projections in the cerebellar cortex during EBC, release secretin. Secretin, released 

from PCs acts as a retrograde messenger, decreases surface expression of Kv1.2 from BC 

axon terminals. Meanwhile, CS projections to the cerebellar cortex activate BCs and PCs 

via PFs. Those BCs with reduced surface Kv1.2 will provide greater inhibitory input to 

PCs. Thus, BCs with reduced surface expression of Kv1.2 will be in a position to more 

strongly inhibit the PCs with which they form synapses, PCs that also receive the US via 

CF input. Increased inhibition of PCs would be expected to disinhibit the IPN and allow 

acquisition and/or expression of eyeblink CRs. Thus, this mechanism could complement 

LTD at PF-to-PC synapses as a learning mechanism for EBC, by providing inhibition of 

PC spontaneous activity that would still be present even after PF-PC LTD (Hesslow et al. 

2013).  

Based on this model, it is hypothesized that rats that received EBC training will 

show reduced surface Kv1.2 expression compared to a group that receives explicitly 

unpaired CS and US presentations and a context control group that does not receive any 

stimuli during acquisition. It is hypothesized that Kv1.2 surface expression will be 

reduced using both a region-specific analysis examining the BC-PC synapse and a global 

measure of Kv1.2 surface expression that uses a validated biotinylation and western blot 

technique to quantify changes in Kv1.2 surface expression.  
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Section 1.11: Next Step 

Behavioral data presented thus far provide evidence for our model of cerebellar 

function and EBC. Blocking Kv1.2 via infusions of TsTX prior to acquisition facilitated 

EBC (Williams et al., 2012). Infusions of secretin in the cerebellar cortex prior to 

conditioning also facilitated EBC, potentially by stimulating an endogenous pathway 

involved in regulation of Kv1.2 with an exogenous application of secretin (Williams et 

al., 2012). When that endogenous pathway was blocked by infusion of secretin (5-27), a 

specific secretin receptor antagonist, acquisition of EBC was impaired (Fuchs et al., 

2014).  Given these findings, the next step is to determine if Kv1.2 is regulated during 

conditioning. In other words, do we observe changes in Kv1.2 surface expression as a 

result of undergoing EBC? 
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CHAPTER 2: MEASURING CHANGES IN Kv1.2 EXPRESSION FOLLOWING 

EYEBLINK CONDITIOING 

Introduction 

 Eyeblink conditioning (EBC) is a useful paradigm for studying the underlying 

neural mechanisms of learning and memory. In EBC, a behaviorally neutral conditioned 

stimulus (CS) is repeatedly paired with an eyelid-eliciting unconditioned stimulus (US). 

Initially, the CS, which is typically an auditory tone or light stimulus, exerts no control 

over eyeblink responses, but as conditioning progresses the organism will begin to make 

an eyeblink conditioned response (CR) to the CS. EBC involves a discrete brainstem-

cerebellar circuit that is hypothesized to include the inhibition of Purkinje cells (PCs) 

leading to the disinhibition of the interpositus nucleus (IPN) and initiating an eyeblink 

CR (McCormick et al., 1982a, McCormick et al., 1983, Mauk et al., 1986). PCs and the 

neurons in the IPN receive converging CS and US input through their respective 

brainstem pathways (Thompson and Steinmetz, 2009). There is debate over the types of 

plasticity that are critical in the circuit (Hesslow et al., 2013), though the importance of 

PC inhibition is generally accepted.  

One cerebellar synapse that is less well-studied in relation to EBC is the basket 

cell (BC)-to-PC synapse. An important aspect of this synapse for EBC research is that 

BCs form strong, inhibitory synapses with PCs near the axon hillock, suggesting this 

synapse plays an important role in the regulation of PC output (Southan and Robertson, 

1998a, b, 2000, Williams et al., 2012). We are also interested in this synapse because of 

the expression of Kv1.2 – an alpha subunit of the Shaker family of voltage-gated 

potassium channels – which is densely expressed on BC axon terminals (Koch et al., 
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1997, Chung et al., 2001). Kv1.2 is also, yet less densely, expressed on PC dendrites 

(Koch et al., 1997). The localized expression and regulation of Kv1.2 is important for its 

function (Nesti et al., 2004). Kv1.2 serves as a delayed rectifier channel, opposing 

membrane depolarization and shunting current as it travels down the axon (Cerda and 

Trimmer, 2010). Blockade of Kv1.2-containing channels resulted in increased 

GABAergic transmission from BCs to PCs (Southan and Robertson, 1998a, b, 2000), an 

effect similar to that observed when exogenous secretin is applied to cerebellar sections 

(Yung et al., 2001, Lee et al., 2005). Surface Kv1.2 expression in the cerebellar cortex is 

regulated by endogenous secretin (Williams et al., 2012) via an intracellular signaling 

cascade that includes adenylate cyclase (AC), cyclic adenosine monophosphate (cAMP), 

and protein kinase A (PKA) (Connors et al., 2008, Williams et al., 2012). 

The role of Kv1.2 in EBC has been previously studied by pharmacologically 

manipulating its function and expression. The first demonstration linking Kv1.2 to EBC 

was done by infusing a selective and potent inhibitor of Kv1.2, tityustoxin-Kα (TsTX) 

(Werkman et al., 1993), into the cerebellar cortex prior to EBC. The subjects that 

received intracerebellar infusions of TsTX prior to EBC showed enhanced conditioning 

compared to subjects that received vehicle infusions (Williams et al., 2012). By blocking 

Kv1.2 in a location within the cerebellar cortex previously shown to be important for 

delay EBC, we showed enhanced learning. By blocking Kv1.2 in the cerebellar cortex, 

we hypothesize that we increased the inhibition of PCs by BCs to produce faster learning. 

Additionally, infusions of secretin into the same area of cerebellar cortex prior to 

acquisition also resulted in enhanced EBC (Williams et al., 2012) and infusions of 

secretin-(5-27), a selective secretin receptor antagonist, impaired EBC (Fuchs et al., 
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2014). While these latter studies did not explicitly measure changes in Kv1.2 expression, 

the effects observed on learning rates are consistent with changes in Kv1.2 expression 

(Williams et al., 2012). The current experiment sought to measure changes in Kv1.2 

surface expression as a product of EBC. We hypothesized that subjects that received 

Paired EBC training, compared to Unpaired or No Stimulus training would show reduced 

surface Kv1.2 expression in the cerebellar cortex. The subjects were assigned to one of 

three groups: Paired Group, Unpaired Group, or No Stimulus Group, that pertained to 

their training procedure. The Paired group received EBC training while the Unpaired 

group was presented with the same stimuli but in an explicitly unpaired fashion. The No 

Stimulus group served as a context control and did not receive any stimuli during 

training. Cerebellar sections were analyzed via multiphoton microscopy and 

biotinylation/western blot methods to measure BC terminal-specific and global changes 

in Kv1.2, respectively.  

 

Material and Methods 

Eyeblink Conditioning 

Subjects 

Male Wistar rats were purchased from Charles River (Quebec, Canada) and 

housed in pairs upon arrival with access to food and water ad libitum. Rats were single 

housed after surgery. The colony room was maintained on a 12 hour light-dark cycle 

(lights on at 7:00 AM and off at 7:00 PM). Rats weighed 200-300g prior to surgery. All 

behavioral testing took place during the light phase of the cycle and all procedures were 
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approved by the Institutional Animal Care and Use Committee at the University of 

Vermont. 

 

Surgery 

Surgeries took place 4-6 days after arrival. Surgeries were performed under 

aseptic conditions. Rats were anesthetized with 3% isoflurane in oxygen. A midline scalp 

incision was made. Once the wound had been cleaned and the skull was dried, four skull 

screw holes were drilled and skull screws were placed as anchors for the head stage. The 

eyeblink portion of the surgeries consisted of implantation of several electrodes. First, a 

bipolar stimulating electrode (Plastics One, Roanoke, VA) was positioned subdermally 

immediately dorsocaudal to the left eye. Two electromyogram (EMG) wires for recording 

activity of the orbicularis oculi muscle were each constructed of a 75-µm Teflon coated 

stainless steel wire soldered at one end to a gold pin fitted into a plastic threaded pedestal 

connector (Plastics One). The other end of each wire was passed subdermally to penetrate 

the skin of the upper eyelid of the left eye and a small amount of insulation was removed 

so that the bare electrodes made contact with the orbicularis oculi muscle. A ground wire 

was wrapped around two skull screws at one end and the other end was also soldered to a 

gold pin fitted into the pedestal connector. Once the ground wire, bipolar and EMG 

electrodes were implanted, all were cemented to the skull with dental cement. The wound 

was numbed with a local injection of 0.15 ml bupivacaine, spread out over 3-4 points 

around the wound. The wound was salved with antibiotic ointment (Povidone). At the 

end of the surgery, rats received subcutaneous injections of Lactated Ringers (1ml) for 

hydration and ~0.3ml (5mg/ml) Rimadyl (Carprofen) for post-operative analgesia. A 
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second injection of the same concentration was given ~24-hours after surgery. Rats were 

post-operatively checked daily for 4-5 days after surgery. Rats were given 5-6 days to 

recover prior to eyeblink conditioning. 

Apparatus 

Eyeblink conditioning took place in one of four identical testing boxes (30.5 x 

24.1 x 29.2 cm; Med-Associates, St. Albans, VT), each with a grid floor. The top of each 

box was altered so that a 25-channel tether/commutator could be mounted to it. Each 

testing box was kept within a separate electrically-shielded, sound attenuating chamber 

(45/7 x 91.4 x 50.8 cm; BRS-LVE, Laurel, MD). A fan in each sound-attenuating 

chamber provided background noise of approximately 60 dB sound pressure level. A 

speaker was mounted in each corner of the rear wall and a light (off during testing) was 

mounted in the center of the rear wall of each chamber. The sound-attenuating chambers 

were housed within a walk-in sound-proof room. 

Stimulus delivery was controlled by a computer running Spike2 software (CED, 

Cambridge, UK). A 2.8 kHz, 80 dB tone, delivered through the left speaker of the sound-

attenuating chamber, served as the conditioned stimulus (CS). The CS was 365-ms in 

duration. A 15-ms, 4.0 mA uniphasic periorbital stimulation, delivered from a constant 

current stimulator (model A365D; World Precision Instruments, Sarasota, FL), served as 

the unconditioned stimulus (US) during conditioning. Recording of the eyelid EMG 

activity was controlled by a computer interfaced with a Power 1401 high-speed data 

acquisition unit and running Spike2 software (CED, Cambridge, UK). Eyelid EMG 

signals were amplified (10k) and bandpass filtered (100-1000 Hz) prior to being passed 

to the Power 1401 and from there to the computer running Spike2. Sampling rate was 2 
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kHz for EMG activity. The Spike2 software was used to full-wave rectify, smooth (10ms 

time constant), and time shift (10ms, to compensate for smoothing) the amplified EMG 

signal to facilitate behavioral data analysis. 

Training Procedure 

 During the first two acquisition training sessions (Days 1 & 2), rats were placed 

into individual drawers on a rolling cart and transported from the colony room to the 

sound proof conditioning chambers. Rats were placed into the sound-attenuating 

conditioning chambers individually. The rats were connected to the tether first by the 

bipolar stimulating electrode and then by the EMG electrodes. During the final day of 

training (Day 3), rats were transported to the lab in the same fashion, but were placed into 

the conditioning boxes once at a time and the next rat was placed in the chambers once 

the rat before them finished 25% of the trials for that day. On Day 3, the starting times of 

each of the rats were staggered to allow time for perfusion and tissue harvest. Full 

sessions took 50-60 minutes and ¼ sessions took ~15 minutes. Throughout the 

experiment, group assignment and box assignment was counter-balanced so that all 

groups rotated through all of the boxes.  

Once all rats were connected to their electrode tethers, their signals were checked 

on the oscilloscope and once stable, the programs were started. The Paired training 

program consisted of 100 CS-US paired trials separated by an average of 30 seconds 

(range: 20-40 seconds). See the Behavior Analysis section for trial analysis. The 

Unpaired training program consisted of 100 CS-alone trials and 100-US alone trials. 

These trials were intermixed throughout the session and were ordered pseudo-randomly, 

such that the rat could not anticipate which trial type was coming next. On Day 3, the 
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Unpaired training program was shortened, but the order of the trials remained the same as 

the previous days. The order of the first 50 trials (25 CS-alone & 25 US-alone) was 

repeated four times for the full training program. The No Stimulus “training” program 

consisted of 100 no stimulus trials. During these trials, the same sampling parameters 

were used during the other two training programs, but no stimuli were delivered. These 

rats remained in the boxes for an equivalent amount of time as the other groups.  

Rats were transported back to their home cages once the program finished on 

Days 1 and 2. On Day 3, once a subject completed four one-quarter sessions, they were 

transported via another rolling cart to the room where the perfusion would take place.  

Behavior Analysis 

For the Paired and Unpaired groups, CS-US or CS-alone trials, respectively, were 

subdivided into three time periods: (1) a “baseline” period, 280-ms prior to CS onset; (2) 

a non-associative “startle” period, 0-80ms after CS onset; and (3) a “CR” period, 81-

350ms after CS onset. In order for a response to be scored as a CR, eyeblinks had to 

exceed the mean baseline activity for that trial by 0.5 arbitrary units during the CR 

period. Eyeblinks that met this threshold during the startle period were scored as startle 

responses and were analyzed separately. The primary behavioral dependent measure for 

all experiments was the percentage of trials with an eyeblink response during the “CR 

period” across all 100 CS-US Paired trials (Paired group), 100 CS-alone trials (Unpaired 

group; the 100 US-alone trials were not analyzed), or comparable “trial periods” for the 

No Stimulus group for each session.  

The percentage of CRs was the primary dependent measure. These data were 

analyzed using repeated measures ANOVAs comparing between groups across sessions. 
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As a confirmation, a one-way ANOVA was run comparing between the groups on the 

final day of acquisition. The criterion for a significant effect was an α-level of 0.05 or 

below. The other measures that were examined included CR onset latency, CR amplitude, 

and CR magnitude. The inclusion criteria for the Paired group was a minimum of 40% 

CRs during one of the four sessions on the last day.  

 

Western Blot and Multiphoton Microscopy  

Generation of Parasagittal Cerebellar Sections 

Immediately after the third session of training, rats were deeply anaesthetized 

using isoflurane. A transcardial perfusion was used to remove the blood and fix the brain. 

During the perfusion, ~100 ml of 1X PBS (Life Technologies) and ~100ml of 4% 

paraformaldehyde (Thermo Scientific) were flushed through the circulatory system. Prior 

to dissecting the cerebellum out, an incision was made bisecting the cerebellum from the 

cerebrum, another to bisect the cerebellum from the brainstem, and a final one to bisect 

the hemispheres of the cerebellum through the vermis. Only the left hemisphere 

(ipsilateral to the eye receiving the US) of the cerebellum was harvested for analysis. 

Cerebella were stored in cold PBS in 50ml conical tubes for about 60-90 minutes 

prior to sectioning. The tubes were kept either in the refrigerator or on ice prior to 

sectioning. The left hemisphere of the cerebellum was mounted onto the cutting stage of 

a vibratome using Krazy glue. The glue was allowed to dry for about 1 minute. The 

cutting stage was filled with ice-cold PBS. In order to section out the region around the 

base of the primary fissure where the eyeblink microzone is located (Steinmetz and 

Freeman, 2014), 1,200µm of tissue from the lateral portions of the hemisphere was first 
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removed. Once down to the appropriate medial-lateral depth, four 400µm sections were 

kept and placed into individual wells in a 24 well plate that remained in an ice bath.  

After the sectioning, half of the sections were used for multiphoton microscopy 

and the other half were analyzed using biotinylation and western blot methods. The 

sections were assigned to one of the two experiments in a way that ensured that each slice 

had an adjacent section in the other experiment. The first and third sections were assigned 

to the western blot analysis and the second and fourth sections were assigned to the 

multiphoton analysis. The biotinylation and western blot experiments were performed 

first while the multiphoton sections were stored at 4°C for about an hour prior to staining.  

Biotinylation 

Each section assigned to the biotinylation and Western blot (WB) method was 

transferred into its own well in a new 12-well plate containing 1ml of 1X PBS in each 

well. The well plate was kept in an ice bath unless otherwise noted. For oxidation, the 

PBS was replaced with 1ml of 1mM sodium meta-periodate (SMP) for 30 minutes at 

4°C. Sections were rinsed with ice-cold PBS and then incubated with 50mM 

alkoxyamine-biotin-PEG4 (Biotin) for two hours at room temperature. The biotin 

reaction was quenched with ice-cold 50mM TRIS in PBS. Sections were transferred into 

individual 1.5ml centrifuge tubes containing RIPA buffer plus 10% HALT protease 

inhibitor (Life Technologies). Sections were sonicated at 25% amplitude, twice for 2-4 

seconds. All centrifuge tubes were spun down at high speed for 20 minutes at 4°C. From 

the centrifuge tubes, 200µl was transferred to separate tubes marked as “Total” and the 

remaining ~800µl was transferred to new centrifuge tubes marked “Beads” containing 

40µl of rinsed (in RIPA buffer), Neutravidin beads (Beads; Sigma). The biotinylation 
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sample was incubated with the Beads for one hour at 4°C on a rotating centrifuge tube 

holder.  

After incubation with the Beads, the centrifuge tubes were spun down at 2,000 

RPM at 4°C for two minutes. The supernatant was transferred to tubes marked as the 

“Post” fraction. The Beads were rinsed with RIPA buffer three times for five minutes per 

rinse. Each rinse consisted of replacing the RIPA, allowing the centrifuge tubes to spin on 

the rocker, and spin down in centrifuge at the previously mentioned speed and time. 

Following the last rinse, the Beads were dried and using a vacuum pump with a 27G 

needle on the end. The beveled tip of the needle was kept on the side of the centrifuge 

tube and the RIPA buffer was vacuumed out, leaving dry beads on the bottom of the tube. 

Sample buffer (100mM DTT; 2.5X sample buffer) was added to each sample and 

centrifuge tubes were mixed. For the Post and Total fractions, 50µl of each was 

transferred to individual new centrifuge tubes and 50ul of sample buffer (200mM DTT 

plus 5X sample buffer) was added to each tube, bringing the final concentration to 

100mM DTT plus 2.5X sample buffer. All of the samples were incubated for 10 minutes 

at 55°C. After the incubation, centrifuge tubes were spun down at high speed for ~15 

seconds, mixed, and spun down again. All samples were kept at room temperature while 

gels were being prepped.  

Gel Preparation 

For this experiment, 10% polyacrylamide, 1mm, 15 lane gels were cast. The 

“Running Gel” layer consisted of 1.45ml ultra pure water, 1.25 Running gel buffer, 

1.65ml Acrylamide (National Diagnostics; Athens, GA), 0.65ml Bis-Acrylamide 

(National Diagnostics), 25µl of 10% ammonium persulfate (APS; Bio Rad; Hercules, 
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CA), 10µl TMED (Thermo Fisher), and running layer gels were poured to 4ml. 

Approximately 1ml of sec-butanol was placed on top of the gel while the gel polymerized 

for at least 20 minutes. The “Stacking Layer” consisted of 2.73ml ultra pure water, 

1.25ml Stacking gel buffer, 0.72ml Acrylamide, 0.29ml Bis-Acrylamide, 25µl of 10% 

APS, and 10µl TMED. The stacking layer was poured over the Running Layer. A 1mm, 

15-lane comb was inserted between the panes of glass holding the gel and air bubbles 

were replaced with extra Stacking Layer solution. The “Stacking Layer” was allowed to 

polymerize for at least 45 minutes. Once polymerized, gel lanes were stained with dye 

and rinsed. The protein ladder marker (4µl; Thermo Scientific) was loaded into one of the 

outside lanes. For each sample, 15µl of the supernatant was loaded into each lane. Gels 

were run for 90-95 minutes at 100V. Gels were then transferred to nitrocellulose 

membrane for one hour at 100V. After the transfer was complete, the blots were placed in 

3% bovine serum albumin (BSA; Sigma) for one hour in light-protected boxes. The blots 

were incubated overnight at 4°C in the following primary antibody concentrations: mouse 

monoclonal anti-Kv1.2 antibody (1:5000) and rabbit polyclonal anti-calbindin antibody 

(1:2000). Primary was rinsed off and blots were incubated for one hour in secondary 

antibodies: Goat anti-mouse-700 (GAM-700) secondary (1:2000) and goat anti-rabbit-

800 (GAR-800). Blots were rinsed again prior to imaging.  

Imaging Western Blots 

All gels were imaged on an Odyssey Infrared Imager (LI-COR, Lincoln, NE, 

USA). All blots were scanned with a focal distance of 0.0mm and channel intensities 

remained at 5.0 for both channels across weeks. Images of the blots were analyzed using 

the same LI-COR software. Rectangular regions of interest (ROI) were drawn around the 
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Kv1.2 and calbindin expressed in each lane. Numbers were recorded and copied to 

Microsoft Excel ®. To determine the ratio of surface to total Kv1.2, background was 

measured outside of the ROI areas on the blot and subtracted from the measured number 

per lane per condition. For the ratio of surface Kv1.2-to-total Kv1.2, surface values were 

divided by Total values. The data are presented by using the raw ratios as well as by 

normalizing the data to the No Stimulus group. A rectangular region of interest (ROI) 

was drawn around the Kv1.2 band on the surface and total/post blots. Raw ratios 

consisted of surface expression divided by respective total Kv1.2 lanes. The 

normalization procedure consisted of dividing the surface-to-total ratios for each subject 

by the average of the surface-to-total ratios for the No Stimulus group. The baseline or 

No Stimulus group expression was equal to zero, and the Paired and Unpaired groups 

either increased or decreased from that value (Fig. 2B). Data are compiled in Graph Pad 

Prism 6 (Graph Pad Software, La Jolla, CA, USA) and group values are presented using 

the mean ±SEM.   

 

Multiphoton Microscopy 

After the generation of parasagittal cerebellar sections, half of the sections (see 

assignment above) were analyzed using multiphoton microscopy.  

TsTX-ATTO-594 Stain  

Slices were kept in individual wells on a 12 well plate in 1X PBS. Sections were 

incubated in the fluorescently conjugated TsTX, from the scorpion Tityus serrulatus, 

ATTO-TsTX-594 (4nm; Alomone, Israel) overnight at 4°C. TsTX has a high affinity for 

Kv1.2 containing channels (IC50 = 0.550 nM) with little affinity for Kv1.1 (Hopkins, 
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1998). Sections remained in TsTX-ATTO-594 for 18-20 hours. Sections were then rinsed 

with ice-cold PBS, post-fixed for one hour at room temperature with 4% 

paraformaldehyde (Thermo Scientific), rinsed again, and stored at 4°C for ~18 hours 

prior to imaging.  

Multiphoton Microscopy 

All images were acquired on an LSM 7 microscope system (Zeiss). Multiphoton 

excitation was generated by a Coherent Chameleon Vision II Titanium Sapphire pulsed 

IR laser with dispersion compensation (Coherent Inc.; Santa Clara, CA). The stage was a 

motorized Prior Z-deck which was fully integrated into the Zeiss Zen software. The 

objective was a 20X Plan Apo 1.0 NA DIC VIS-IR water immersion lens. The System 

frame was a Zeiss Axio Examiner specifically optimized for multiphoton microscopy. All 

images were taken using the same acquisition parameters to allow us to measure changes 

in Kv1.2 surface expression from slice to slice and to allow us to compare between weeks 

and conditions. ATTO (Ex: 601 Em: 627) was excited using laser power at 3% tuned to 

820nm and the detector gain was maintained at 1000 (Range: 300-1100). 

Regions of interested were identified first by illuminating the base of the primary 

fissure in each section using the light projected through the condenser. The lens was 

dropped into the PBS and focused until a layer of PCs were visible through the eyepiece. 

The microscope was then shielded from light and control was converted to the computer. 

The “Z-stack” and “Tile Scan” functions were used in combination to acquire an image 

that covered a wide area (~ the bottom half of 1 lobule) while also acquiring three-

dimensional images of the pinceaux (PCX) region on the Z-axis. A small region, 

approximately the size of one of the tiles of the scan was used to set the upper and lower 
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limits of the Z-stack range. The lower limit was usually when the PCX disappeared from 

view because the laser power could not penetrate all the way through the tissue. The 

upper limit of the Z-stack was set by the top of the tissue. The true top of the tissue was 

not used because the background fluorescence saturated the frame, but just below that 

level was set as the upper limit. The Tile Scan range was set with the Z-stack function 

off. To set the Tile Scan range, the center of the Z-stack range was used and single layer 

scans over a wide area were used to restrict the area to be scanned. Once the area was 

selected, the zoom was increased to 1.5 and the Tile Scan was increased by one frame on 

the X- and TsTX-axis. The extra zoom increased the resolution of the images by focusing 

in on that region. The Z-stack function was turned back on and both features were used to 

acquire the image. While taking the images, the microscope would cycle from the base to 

the top of the Z-stack and then move to the next tile. Tiles were acquired from left to 

right and the microscope cycled back to the left when finished with a row. Only one 

image was acquired from each section; the image was focused on the base of the primary 

fissure in the cerebellar cortex. Images were restricted to ~50-100 Z-sections thick and 

the tile scan range was set so it did not leave the base of the primary fissure area. Images 

were saved as “.lsm” files and were saved under an anonymous name, indicative of their 

spot in the 12-well plate.  

Image Analysis 

Images were opened and analyzed in Image J (NIH). Images were converted to 

32-bit images. The background fluorescence was subtracted from each section using a 

“rolling ball” technique. The rolling ball width was set to 50 pixels and was applied to 

each Z-section. Next, a Z-projection was used to get the maximum intensity of all of the 
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sections. Depending on the shape of the lobule being imaged, either all of the Z-sections 

were included in the maximum projection or a subset of them. When a subset or more 

were used, it was noted and efforts were made to avoid analyzing certain pinceaus more 

than once. If subsets of the Z-sections were used, an individual Maximum and Sum 

projection were used for each range of Z-sections (Fig.2). The threshold was then 

adjusted so that most of the PCX were visible, but the rest of the tissue was saturated out. 

The threshold was then set so that only intensities above a certain value (varied between 

images) were visible. Then, using a mask feature, individual PCX were isolated. This 

mask was used to pick out objects later in the analysis procedure. Another Z-project was 

taken using the sum of the Z-sections in the image. A ratio of the summed image to the 

maximum image referencing the masked image was used to select PCXs from the 

summed image and data were taken from objects with the range of 50-500 pixels. Of 

those objects, data were taken on the area, number of pixels, integrated intensity, mean, 

and standard deviation. Data were compiled in Microsoft Excel ® and graphed in Prism6 

(Graph Pad, La Jolla, CA, USA). 

 

Kv1.2 Surface Expression Data Analysis 

Data analysis for both the multiphoton microscopy (MP) and biotinylation and 

western blot (WB) measures of surface Kv1.2 expression used a one-way ANOVA 

between the groups. Independent samples t-tests were used for planned comparisons 

between the Paired and Unpaired groups, Unpaired and No Stimulus groups, and the 

Paired and No Stimulus groups. The criterion for a significant effect was p < 0.05. 
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Figure 2. Black and white image of maximum projection of cerebellar section taken on LSM 7 
multiphoton microscope system. Brighter punctate staining throughout cortex represents surface 
Kv1.2 tagged with ATTO-TsTX-594 on basket cell axon terminals. Image created by taking a 
maximum projection of a Z-stack, compressing the pixels by the maximum value. The maximum 
projections used to create a mask to identify pinceaus from a sum projection of the same Z-
projection.  
 

Results 

Eyeblink Conditioning Behavioral Analysis 

The goal of this experiment was to determine if we could observe changes in 

Kv1.2 surface expression following EBC. Kv1.2 surface expression was measured 

following three days of Paired CS-US training (n = 20), Unpaired CS-alone and US-alone 

training (n = 20), or no stimulus training (n = 21). The numbers of subjects in each group 

was determined based on their signals during training. Some of the subjects were 

removed from one or both of the post-mortem analyses; those subject numbers are noted 

in their respective sections. Based on previous research we hypothesized that the Paired 

group would show a reduction in surface Kv1.2 expression at the BC-to-PC synapse 

measured by multiphoton microscopy (MP) and across the entire section measured by 

biotinylation and western blot (WB) analysis.  
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The three-day acquisition (Acq) procedure produced a high level of eyeblink CRs 

in the Paired group only (Fig. 3). Since the third and final day of acquisition consisted of 

four blocks of ¼ the length of a normal training session (with short breaks in between 

blocks), the behavioral data were analyzed several ways. First, a 3(Group: Paired, 

Unpaired, No Stimulus) by 3(Session: Acq1, Acq2, Acq3) repeated measures analysis of 

variance (ANOVA) was used to analyze the acquisition data. In this analysis, the mean of 

the four blocks of trials was used to represent the third day. Additionally, the four blocks 

of trials were analyzed separately, to determine if the subjects in the Paired group had 

plateaued in their performance. The first 3(Group: Paired, Unpaired, No Stimulus) by 

3(Session: Acq1, Acq2, Acq3) repeated measures ANOVA revealed a significant main 

effect of session, F(2,116) = 87.55, p < 0.001, a significant main effect of group, F(2,58) 

= 276.86, p < 0.001, and a significant group by session interaction, F(4,116) = 76.20, p < 

0.001, showing that there were significant differences between the groups and only the 

Paired group showed a significant increase in the percentage of CRs (Fig. 3). A separate 

3(Group) by 4(session: Acq3_1, Acq3_2, Acq3_3, & Acq3_4) repeated measures 

ANOVA was conducted on just the four blocks of trials for the third day of acquisition. 

This analysis revealed a significant main effect of group, F(2,58) = 302.73, p < 0.001, but 

no other significant effects, indicating that the groups were significantly different from 

one another, but their performances had plateaued (Fig. 3). Overall, Figure 3 shows a 

robust learning curve for the paired group that is consistent with learning rates observed 

with a shorter delay interstimulus interval (ISI) procedure from our lab (Fuchs et al., 

2014) and others (Steinmetz and Freeman, 2010, 2011). The “responses” made by the 

Unpaired and No Stimulus groups during the sampling times do not represent CRs for 
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several reasons: (1) There is no positive contingency between the CS and the US for the 

Unpaired group and (2) the number of responses recorded remains very low and 

consistent across all of the training sessions.  

Immediately following the last day of acquisition training, rats were anesthetized, 

perfused with paraformaldehyde, and cerebellum ipsilateral to the eyelid that was 

stimulated and recorded from was harvested. In general, four 400µm parasagittal sections 

were taken from each rat and two sections were assigned to each of the analyses. If there 

was a problem with the sectioning or with another step in the protocol, some rats (MP: 

Paired = 2, Unpaired =3, No Stimulus = 3; WB: Paired = 1, No Stimulus = 1) only had 

one section representing them in the data. The missing sections were not systematic, but 

sporadic; for example, a rat could have two sections for MP and only one for WB.  If a 

subject had two sections, then an average of the two was taken to represent that subject. 

Examples of reasons why no data were collected from certain sections include poor 

section quality, an inability to locate the base of the primary fissure, poor fixation, or the 

section being damaged under the lens of the microscope.  
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Figure 3. Acquisition data plotted by session for Paired group (green circles), Unpaired group (blue 
squares), and No Stimulus group (red triangles). Each session consisted of 100 CS-US trials (Paired 
group), 100 CS-alone and 100 US-alone trials, intermixed (Unpaired group), or 100 “trials” without 
any stimuli (No Stimulus group). The Paired group showed a significantly greater percentage of 
trials with a CR than either of the other two groups (p < 0.001). Inset: Sessions 1 and 2 displayed as 
25-trial blocks for the Paired group.  

 

Outlier Analysis for Both Measures 

Prior to data analysis for both the MP and WB measures, the data were tested for 

outliers within the groups and measures. First, data were plotted on boxplots to determine 

if a standard deviation analysis would isolate any outliers. This analysis did reveal any 

outliers within either measure or any of the groups (Appendix II). The second method 
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was the Outlier Labeling Rule (OLR), developed by Tukey and colleagues (Hoaglin et 

al., 1986, Hoaglin and Iglewicz, 1987). This outlier analysis method relies on the 

distributions and quartile percentage limits of the data to mathematically determine if 

there are outliers. Consistent with the boxplot analysis, the OLR did not reveal any 

outliers in either of the measures or within the groups. The factor used in this analysis 

was shown to be conservative by identifying only extreme outliers that fall outside of the 

normal distribution by several standard deviations (Appendix II).  

The two techniques that were used in this experiment provided complementary 

data about what is happening to Kv1.2 surface expression at the two main expression 

sites within the cerebellar cortex: BC axon terminals and PC dendrites. It should be 

mentioned that the WB blot technique not only represents surface Kv1.2 expressed on PC 

dendrites, but also measures surface Kv1.2 expressed on BC axon terminals. Two 

between-group comparisons were planned prior to data acquisition: Paired vs. Unpaired 

and Paired vs. No Stimulus, to be tested by using independent samples t-tests. For 

consistency with data analytical techniques within this field, both measures were first 

analyzed by using a one-way ANOVA.  

 

Multiphoton Microscopy - Kv1.2 Surface Expression on Basket Cell Terminals 

Kv1.2 is expressed in two distinct sites in the cerebellar cortex, BC axon 

terminals and PC dendrites (Koch et al., 1997). Kv1.2 is densely expressed on the surface 

of BC axon terminals where they form inhibitory synapses near the axon initial segment 

of PCs (Fig. 2). This synapse is strategically located to strongly regulate PC output, 

inhibition that is important for acquisition of EBC. It was hypothesized that three days of 
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paired CS-US presentations resulting in robust learning during EBC would produce a 

reduction in Kv1.2 surface expression on BC axon terminals. This was measured by 

taking three dimensional images on a multiphoton microscope of cerebellar sections 

probed with a fluorescently conjugated version of tityustoxin (ATTO-TsTX-594), a 

highly selective blocker of Kv1.2 (Werkman et al., 1993, Hopkins, 1998), to measure 

changes in Kv1.2 surface expression between groups of rats that received Paired CS-US 

training (n = 20), explicitly Unpaired CS-alone and US-alone training (n = 20), or 

equivalent exposure to only the training context (No Stimulus; n = 21). A one-way 

ANOVA yielded a significant main effect of group F(2,58) = 4.15, p = 0.021. Figure 4B 

shows that the Unpaired group had significantly less surface Kv1.2 expression at BC 

axon terminals than the Paired group and the No Stimulus group. These effects were 

corroborated by independent samples t-tests, t(38) = 2.18, p = 0.036 and t(39) = -2.94, p 

< 0.006, respectively. No differences were observed between the Paired and No Stimulus 

group (p = 0.34). These data show us that the Unpaired group showed the reduced Kv1.2 

surface expression compared to the other groups.  
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Figure 4. Region-specific analysis of Kv1.2 surface expression on BC axon terminals in the cerebellar 
cortex near the base of the primary fissure ipsilateral to the conditioning (Paired group), stimulated 
(Unpaired), or simply electrode-implanted (No Stimulus) eyelid.  Raw microscopy data (A) and Mean 
±SEM (B). Each subject represented by one number (A) comprised of the fluorescent intensity of 
PCXs in both cerebellar sections. Significant differences observed between the Unpaired and Paired 
groups (p = 0.04) and Unpaired and No Stimulus groups (p = 0.006). No differences observed between 
Paired and No Stimulus groups (p = 0.34). (* denotes p  < 0.05; ** denotes p < 0.01) 
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Biotinylation and Western Blot Analysis – Surface Kv1.2 at Basket Cell Terminals and 

Purkinje Cell Dendrites 

The other site of Kv1.2 expression in the cerebellar cortex is on PC dendrites in 

the molecular layer. Here, when Kv1.2 is expressed on the surface, it works to shunt 

excitation coming down the dendritic arbors thereby reducing PC excitability 

(Khavandgar et al., 2005). We hypothesized that Kv1.2 expression would be reduced in 

the Paired group compared to the other two groups. While the MP focused on Kv1.2 

expressed at the BC axon terminal, it would not be feasible to perform this analysis for 

the PC dendrites for several reasons: (1) The resolution that we are able to obtain with the 

MP technique was suitable for the strong and localized expression of surface Kv1.2 found 

on BC axon terminals because of their distinct structure and location (Fig. 2). It would be 

difficult to accurately identify Kv1.2 expressed on PC dendrites and identify individual 

dendrites for analysis since Kv1.2 is less densely expressed on these structures. (2) If we 

were able to identify individual dendrites, the resolution would have been too poor given 

the amount of data in the image. Therefore, a biotinylation and western blot technique 

was used to complement the MP data by providing a measure of Kv1.2 surface 

expression that included the expression on PC dendrites in addition to expression on BC 

axon terminals. To do this with fixed tissue, we modified the procedure used in Williams 

et al. (2012) to create a new binding site for the biotin to bind to on external proteins 

(Appendix I).  

The WB data were analyzed first by using a one-way ANOVA to compare the 

raw WB scores for the Paired (n = 20), Unpaired (n = 20), and No Stimulus (n = 19) 

groups. The raw (Fig. 5A) and normalized data (Fig. 5B) yielded the same statistical 
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values, therefore the raw data were used for analysis and both sets of data are shown in 

Figure 5B. This analysis yielded no significant differences between the groups (p = 0.62). 

Even though the ANOVA did not yield a significant effect of group, we used the same 

planned comparisons as for the MP data by using independent samples t-tests to compare 

the Paired and Unpaired groups and the Paired and No Stimulus groups. Neither of these 

t-tests revealed significant differences between these pairs of groups (p = 0.32; p = 0.34, 

respectively). These data suggest that were no differences between the groups on this 

measure of surface Kv1.2 expression in the cerebellar cortex.  
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Figure 5. Kv1.2 surface expression measured at both PC dendrites and BC axon terminals. (A) Data 
displayed as raw Kv1.2 surface expression for Paired group (green circles), Unpaired group (blue 
squares), and No Stimulus group (red triangles). Each data point represents an individual subject. 
(B) Mean ± SEM normalized to the No Stimulus group. The numbers shown above the group 
assignments represent the number of subjects in each group. No significant differences were 
observed between the groups.  
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Discussion 

When looking at Kv1.2 surface expression on just BC axon terminals, we 

observed a significant decrease in Kv1.2 surface expression (Fig. 4) in the Unpaired 

group compared to the other two groups. The lack of effect in the WB measure suggests 

the possibility of an increase in Kv1.2 surface expression in PC dendrites in the Unpaired 

group (Fig. 5). These findings were in contrast to what we hypothesized, given what we 

have previously shown linking Kv1.2 to EBC. First, infusions of tityustoxin (TsTX) 

facilitated acquisition to EBC when infused into an area close to where we are measuring 

Kv1.2 in this experiment (Williams et al., 2012), thereby linking Kv1.2 to acquisition of 

EBC. These were relatively large infusions (1µl), likely hitting more than just the area we 

sampled surface Kv1.2 here. Furthermore, 1µl infusions of the neuropeptide secretin or a 

secretin receptor antagonist, 5-27 secretin, facilitated or impaired acquisition, 

respectively, when infused into a similar cortical location (Williams et al., 2012, Fuchs et 

al., 2014). Infusions of secretin should facilitate the endocytosis of Kv1.2 in the 

cerebellar cortex leading to enhanced EBC, while 5-27 secretin should prevent secretin-

induced Kv1.2 endocytosis, keeping the channel at the surface and attenuating BC 

inhibition of PCs (Williams et al., 2012). Based on these findings from the infusion 

studies, we expected to observe reduced surface Kv1.2 expression in the Paired group, 

not the Unpaired group, following three days of training. What these data indicate is that 

there may be a time course for the regulation of Kv1.2 during EBC.   
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Based on the findings that secretin is endogenous to the cerebellum and released 

from PCs (Yung et al., 2001, Ng et al., 2002, Lee et al., 2005, Yung et al., 2006), we 

theorized that US stimulation of PCs via climbing fiber (CF) projections from the inferior 

olive (IO) is in part responsible for secretin release during EBC. Research has suggested 

that when a CR is generated by the interpositus nucleus (IPN), projections from the IPN 

not only lead to an eyeblink CR but also increase GABAergic input to the IO (Sears and 

Steinmetz, 1991, Hesslow and Ivarsson, 1996, Kim et al., 1998, Medina et al., 2002). 

Serving as a negative feedback loop, CR generation subsequently inhibits IO activity and 

limits the activation of PCs by US input as EBC progresses. This mechanism would be 

active in the Paired group in the current experiment, since they are the only group to 

exhibit CRs. Thus, it is possible that as the Paired group learned to make CRs, each CR is 

inhibiting the IO and the climbing fiber (CF) input to PCs from the US is being reduced. 

Since the Paired group learned to ~75% CRs on Day 3 (Fig. 3), learning is established 

and the IO would be inhibited during the US by the IPN (Fig. 1). This would mean that 

this group is receiving less US stimulation later in acquisition and thus, less secretin 

release from PCs in the cerebellar cortex. The Unpaired group, however, does not learn to 

make a CR to the CS. Since this group received the exact same stimulation but did not 

display any CRs, the inhibition of the IO should be minimal and each US that is 

presented should fully activate the PCs and lead to the release of secretin. If secretin 

release as a result of US activation of PCs is unaffected in the Unpaired group, this may 

explain why this group showed reduced surface Kv1.2 expression after three days of 

training compared to the Paired group.  
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The finding that the Paired group did not differ from the No Stimulus group is 

more difficult to explain from these data. We hypothesize that there is a reduction in the 

Paired group at the beginning of training, which disappears as training continues. At the 

start of training when very few CRs are exhibited, the inhibition of the IO by the IPN 

should be minimal, allowing CFs to stimulate the PCs during the US, causing a release of 

secretin. Secretin stimulates the endocytosis of Kv1.2 from BC axon terminals. Based on 

these data, we hypothesize that Kv1.2 is returning to the surface in the Paired group once 

CRs are regularly generated, implicating a reduction in Kv1.2 surface expression in initial 

learning but not in expression of CRs. In contrast, the Unpaired group remains in an 

“initial learning state” in terms of Kv1.2 surface expression at BC axon terminals. An 

experiment to test this hypothesis is to measure Kv1.2 surface expression using the same 

methods as above, but at an earlier time point of training. We hypothesize that Kv1.2 

surface expression would be reduced at BC axon terminals earlier in training in both the 

Paired and Unpaired groups compared to the No Stimulus group.  

The inhibition of the IO hypothesis may explain the finding that Kv1.2 surface 

expression is reduced at BC axon terminals in the Unpaired group. We must, however, 

consider the fact that Kv1.2 is also expressed on PC dendrites. The second highest 

expression of these channels is in the molecular layer of the cerebellar cortex on PC 

dendrites (Koch et al., 1997). While the majority of surface Kv1.2 is expressed on BC 

axon terminals near PC somas, the amount of Kv1.2 expressed in the molecular layer, on 

PC dendrites, is not trivial. Since we observed a trend for an increase in Kv1.2 surface 

expression in the Unpaired group as measured by WB, this suggests a possibility that 

EBC produces an increase in surface Kv1.2 expression at PC dendrites, and that this 
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effect is somewhat larger than the decrease observed in surface Kv1.2 expression at BC 

axon terminals. Kv1.2 in PC dendrites helps to oppose depolarization by preventing 

spontaneous calcium spikes from occurring (Khavandgar et al., 2005). Since stimuli in 

the Unpaired group are being presented in isolation and randomly throughout the 

sessions, then increasing expression of Kv1.2 in this region may help to maintain PC 

excitability or prevent hyperexcitability. The divergent effect of Kv1.2 surface expression 

within these two regions may have prevented us from observing a significant difference 

in the Unpaired group in the WB analysis.  
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CHAPTER 3: MEASURING CHANGES IN Kv1.2 EXPRESSION AFTER BRIEF 

TRAINING IN EYEBLINK CONDITIONING 

Introduction 

The regulation of voltage-gated ion channels has been studied in relation to what 

role this process plays in maintaining membrane excitability (Khavandgar et al., 2005). 

Little is known about what role the regulation of voltage-gated ion channels has in other 

processes such as learning and memory. Recently, we have shown that Kv1.2, a voltage-

gated potassium channel densely expressed at key sites in the cerebellar cortex, is 

regulated during Unpaired eyeblink conditioning (EBC) stimuli presentations (Chapter 

2). Compared to a group that received Paired presentations of the stimuli (which 

produced conditioning) and a No Stimulus control group, the group that received three 

days of Unpaired training showed significantly less surface Kv1.2 expression on basket 

cell (BC) axon terminals. Originally, we hypothesized that this effect would be present in 

the Paired training group, but these long-term changes may be attributed to the fact that 

the Paired group was exhibiting many CRs at the end of training while the Unpaired 

group was not.  

Kv1.2 is densely expressed on basket cell (BC) axon terminals and Purkinje cell 

(PC) dendrites in the cerebellar cortex (Koch et al., 1997, Chung et al., 2001). The 

localized surface expression and regulation of Kv1.2 is important for is function (Nesti et 

al., 2004). BCs form inhibitory synapses with PCs near the axon initial segment, situating 

this synapse in a position to strongly regulate PC output. PC output is the sole, inhibitory 

output of the cerebellar cortex; PCs tonically inhibit the interpositus nucleus (IPN). The 

IPN has been shown to be the start of the EBC CR pathway: stimulation of the IPN in 
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naïve animals results in eyeblinks (Chapman et al., 1988), lesions to the IPN prior to EBC 

prevent learning and lesions made to this region once EBC is established resulted in the 

abolition of CRs (McCormick and Thompson, 1984b). When a CR is generated by the 

IPN, the IPN inhibits brainstem nuclei responsible for relaying US information to the 

cerebellar cortex (McCormick et al., 1985). This projection may contribute to why we did 

not observe a reduction in surface Kv1.2 expression at BC axon terminals in the paired 

training group in the previous experiment. If CR generation in the Paired group is 

limiting the US stimulation during training once CRs have emerged, then secretin release 

from PCs (Lee et al., 2005) may be limited. Previously, we demonstrated that secretin 

facilitates the endocytosis of Kv1.2 in the cerebellar cortex and intra-cerebellar infusions 

of secretin enhances EBC (Williams et al., 2012). If the US is enhancing this release and 

US stimulation is reduced when CRs are expressed, then we would predict that Kv1.2 is 

returning to the BC axon terminal surface later in training, but may still be reduced 

earlier. The current experiment was designed to test the hypothesis that the Paired group 

and Unpaired group would show similar levels of Kv1.2 surface expression earlier in 

training, and both groups would differ from the No Stimulus group. Rats were trained in 

the same three groups as the previous experiment, but instead of the three days of trials, 

rats underwent 50 CS-US trials (Paired group), 50 CS-alone and 50 US-alone trials 

(Unpaired group), or 50 no stimulus “trials” (No Stimulus group) in one short training 

session. The goal was to provide enough stimulus exposure to affect Kv1.2 surface 

expression in the paired and unpaired groups, but not enough to produce robust CR 

expression in the paired group.  
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Material and Methods 

Eyeblink Conditioning 

Subjects 

Male Wistar rats were purchased from Charles River (Quebec, Canada) and 

housed in pairs upon arrival with access to food and water ad libitum. Rats were single 

housed after surgery. The colony room was maintained on a 12 hour light-dark cycle 

(lights on at 7:00 AM and off at 7:00 PM). Rats weighed 200-300g prior to surgery. All 

behavioral testing took place during the light phase of the cycle and all procedures were 

approved by the Institutional Animal Care and Use Committee at the University of 

Vermont. 

Surgery and Apparatus 

The same surgery and apparatus methods were employed in this experiment as the 

previous experiment. Refer to the Materials and Methods section of Experiment 1 

(Chapter 2) for details.  

Training Procedure 

 All training was completed in a single 30 minute session. Rats were placed into 

individual drawers on a rolling cart and transported from the colony room to the sound 

proof conditioning chambers. Rats were placed into the sound-attenuating conditioning 

boxes individually. The rats were connected to the tether first by the bipolar stimulating 

electrode and then by the EMG electrodes.  

Training was staggered such that each rat began training about 15 after the 

previous rat and ended training about 15 minutes before the next rat. The training 

program for the Paired group consisted of 25 CS-US trials with an average of 30 seconds 
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between trials (range: 20-40 seconds), 25 CS-alone and 25 US-alone for the Unpaired 

group, and 25 no stimuli trials for the No Stimulus group. These training programs were 

one quarter the length of a full daily session and lasted ~12-15 minutes each. Once each 

subject completed two iterations of the training program, they were disconnected from 

the conditioning chamber and transported in a separate wheeled cart to the room where 

the perfusion took place.  

Behavior Analysis 

For the Paired and Unpaired groups, CS-US or CS-alone trials, respectively, were 

subdivided into three time periods: (1) a “baseline” period, 280-ms prior to CS onset; (2) 

a non-associative “startle” period, 0-80ms after CS onset; and (3) a “CR” period, 81-

350ms after CS onset. In order for a response to be scored as a CR, eyeblinks had to 

exceed the mean baseline activity for that trial by 0.5 arbitrary units during the CR 

period. Eyeblinks that met this threshold during the startle period were scored as startle 

responses and were analyzed separately. The primary behavioral dependent measure for 

all experiments was the percentage of trials with an eyeblink response during the “CR 

period” across all CS-US Paired trials (Paired group), CS-alone trials (Unpaired group; 

the US-alone trials were not analyzed), or comparable “trial periods” for the No Stimulus 

group for each session. There was no inclusion criterion for this experiment for the Paired 

group since the goal was to capture Kv1.2 surface expression when CRs were beginning 

to emerge. Some subject learned and other did not. We did confirm that all of the rats 

included in the analysis had acceptable signals.  

For the percentage of CRs, the data were analyzed using repeated measures 

ANOVAs comparing the group groups across the two training blocks on Day 1. 
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Independent samples t-tests were used for planned comparisons between all of the groups 

for the WB and MP measures. The criterion for a significant effect was an α-level of 0.05 

or below. 

 

Western Blot and Multiphoton Microscopy  

The same methods for tissue analysis in both the biotinylation and western blot 

(WB) and multiphoton microscopy (MP) measures were the same as in the previous 

experiment. Refer to Materials and Methods section in the previous chapter (Experiment 

1) for detailed information.  

 

Kv1.2 Surface Expression Data Analysis 

 Data analysis for both the multiphoton microscopy (MP) and biotinylation and 

western blot (WB) measures of surface Kv1.2 expression used a one-way ANOVA 

between the groups. Independent samples t-tests were used for planned comparisons 

between the Paired and Unpaired groups, Unpaired and No Stimulus groups, and the 

Paired and No Stimulus groups. The criterion for a significant effect was p < 0.05.  

 

Results 

Eyeblink Conditioning Behavioral Analysis 

 In the previous experiment, we showed that presenting EBC stimuli in an 

Unpaired fashion over three days of training led to a reduction in surface Kv1.2 

expression on BC axon terminals, but no differences observed in the WB measure. The 

finding in the previous experiment was contrary to our original hypothesis stating that 
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paired training would lead to a reduction in surface Kv1.2 expression. This discrepancy 

may be attributed to the observation that, when a CR is generated in the IPN, output from 

the IPN inhibits the inferior olive (IO), the nucleus responsible for relaying US 

information to the cerebellar cortex (Sears and Steinmetz, 1991, Hesslow and Ivarsson, 

1996, Kim et al., 1998, Medina et al., 2002). In the previous experiment, the Paired 

training group showed robust learning over the three days of training while the Unpaired 

group did not learn and showed very little eyeblink activity to the tone. If the US input 

from the IO to the cerebellar cortex was uninhibited in the Unpaired group and inhibited 

in the Paired group, the amount of US stimulation reaching the cerebellar cortex may 

hold the key to understanding what is happening to Kv1.2 expression during EBC. 

The current experiment was designed to test what happens to Kv1.2 surface 

expression earlier in training, highlighting what happens before CR expression emerges. 

We hypothesized that the Paired group (n = 25) and the Unpaired group (n = 25) would 

show a reduction in Kv1.2 surface expression at BC axon terminals measured by MP. For 

the WB measure, we only hypothesized that the Paired and Unpaired groups would be 

different from the No Stimulus group (n = 22); it is difficult to hypothesize a specific 

direction since this measure samples Kv1.2 at both sites and those sites may be changing 

in opposite directions. The number of subjects in each of the groups was determined 

based on the number of subjects in each group that successfully completed EBC training. 

Reasons for exclusion included poor EMG signal or being unable to connect to the 

conditioning chambers.  

The shorter training procedure that was used in this experiment led to more 

variability in the number of learned eyeblink responses emitted by the Paired group. 
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Overall, the Paired group did show some learning and the rate of learning is similar to the 

previous experiment for the first 50 trials (Fig3, inset). To determine if there were 

differences between the groups, a 3(Group; Paired, Unpaired, No Stimulus) by 2(Block: 

Acq1_1, Acq1_2) repeated measures analysis of variance (ANOVA) yielded a not quite 

significant main effect of session F(1,69) = 3.56, p = 0.063, a significant main effect of 

group, F(2,69) = 29.73, p = 0.004, and a significant group by session interaction, F(2,69) 

= 14.51, p = 0.001, indicating that there was a change across the sessions, but this change 

was dependent upon the training program that was used. The Paired group showed some 

CRs in the second training block, but there was a lot of variability within this group (Fig. 

6). Within this group there were several rats (n = 7) that did not show any CR activity 

during the two training blocks and another subset that did show CRs during the training 

blocks (n = 18).  At the second time point, an independent samples t-test revealed a 

significant performance difference between these two subsets of the Paired group, t(27) = 

-2.60, p = 0.016. The observation of little to no CRs this early in training is not 

uncommon; if the procedure went on longer, it is likely that these rats would have 

exhibited CRs. Furthermore, inspection of EMG signals in the non-learning group did not 

indicate that there were technical problems contributing to the lack of eyeblink CRs.  

Outlier Analysis for Both Measures 

Prior to analyzing the data for both the WB and MP measures, the data were 

tested to determine if there were any outliers within the groups. Two methods were used 

and similar to the previous experiment; the outlier analysis was done by looking at the 

boxplots and using the “Outlier Labeling Rule” (OLR) (Hoaglin et al., 1986, Hoaglin and 

Iglewicz, 1987). The OLR identifies outliers based on the quartile percentages derived 
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from the distribution of the data and the boxplot analysis identified outliers by how many 

standard deviations that data point is from the mean. The boxplots and the OLR analysis 

can be found in the Appendix IV. For the WB data, one data point was identified by both 

methods as an outlier. As can be seen in the box plot (Fig. 15; Appendix IV), there is one 

subject that falls well outside of the error bar in the No Stimulus group. The OLR also 

identified this subject as an outlier (Table 4; Appendix IV). This data point was removed 

from the No Stimulus group for the WB analysis, but remained in the behavioral analysis 

and the MP analysis. Upon re-examination of the WB data using both outlier analyses, no 

other subjects were identified (Appendix IV). For the MP data, no subjects were 

identified at outliers within any of the groups (Appendix IV). 

 

 

Figure 6. Percentage of conditioned responses for the Paired (green circles), Unpaired (blue squares), 
and No Stimulus (red triangles) groups during the one-quarter length training blocks. Data points 
presented with mean ± SEM. All the groups start at the same point during the first session, but the 
Paired group exhibited significantly more CRs during the second session compared to the other two 
groups (p = 0.016). Overall, the number of CRs in the Paired group this early in training is on par 
with what we have previously observed. Contributing to the variability in the Paired group at the 
second time point, there were several rats (n = 7) that did not show any CRs in either block of trials.  
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Multiphoton Microscopy Analysis – Kv1.2 Surface Expression on Basket Cell Terminals 

Immediately following the last training session, subjects were anesthetized, 

perfused with paraformaldehyde to preserve what occurred during training thereby taking 

a snapshot of what is happening to Kv1.2 surface expression following a shorter training 

procedure, and the tissue was sectioned and assigned to either the MP or WB measure. 

The tissue that was assigned to the MP measure was stained with ATTO-TsTX-594 

overnight and then imaged on a multiphoton microscope. This analysis was used to 

examine changes in surface Kv1.2 expression exclusively on BC axon terminals. In the 

previous experiment (Chapter 2), we observed a significant reduction in surface Kv1.2 

expression at BC axon terminals in the Unpaired group compared to the other two 

groups. By looking at Kv1.2 surface expression earlier in training, we may be able to 

sample Kv1.2 surface expression at BC axon terminals prior to robust CR expression in 

the Paired group. Based on this, we hypothesized that the Paired (n = 24) and Unpaired (n 

= 22) groups would show reduced surface Kv1.2 expression earlier in training compared 

to the No Stimulus group (n = 22). A one-way ANOVA did not yield a significant 

difference between the groups in the MP analysis (p = 0.31) (Fig. 7B). Planned 

comparisons between all of the groups were conducted with independent samples t-tests. 

First, as hypothesized, there were no differences between the Paired and Unpaired groups 

(p = 0.26). There were also no differences between the Paired and No Stimulus groups (p 

= 0.78) or between the Unpaired and No Stimulus groups (p = 0.15). Overall, Kv1.2 

surface expression on BC axon terminals was similar across all three conditions in this 

experiment (Fig. 7B).  
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Figure 7. Multiphoton microscopy (MP) data. A) Raw MP data measuring surface Kv1.2 expression 
on BC axon terminals for each of the groups. Numbers under the plots denote the number of subjects 
in each group. B) Mean ± SEM for each group. Planned comparisons did not reveal any differences 
between any of the groups. C) Same data as in Fig. 2B, but the Paired group is split between subjects 
that did not show any CRs during the two training blocks (Low; light green stripes) and subjects that 
showed CRs during the two training blocks (High; dark green stripes). Post hoc comparisons did not 
reveal any differences between the groups.  
 

Next, the MP data were analyzed according to the Paired group performance split. 

First, an outlier analysis was run using both the box plot analysis and the Outlier Labeling 

Rule on the Paired Low and Paired High groups. Low responders (n = 7) were subjects 

that did not show any CRs during EBC training and high responders (n = 18) were 

subjects that showed at least one CR. No subjects were identified within either analysis 

(Appendix V). 
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The same comparisons were done in these analyses as in the WB analyses; 

therefore, independent samples t-tests were used, but did not revealed any differences 

between the groups for the following two comparisons: Paired Low (n = 6) versus No 

Stimulus (n = 22) groups (p = 0.39) and Paired High versus No Stimulus groups (p = 

0.97). Overall, these data indicate that there are no differences in Kv1.2 surface 

expression on BC axon terminals after a shorter training procedure between the groups as 

measured by MP (Fig. 7C). 

 

Biotinylation and Western Blot Analysis – Surface Kv1.2 at Basket Cell Terminals and 

Purkinje Cell Dendrites 

This measure was used to sample surface Kv1.2 expressed in both PC dendrites 

and BC axon terminals. In this experiment, we expected Kv1.2 surface expression to be 

similar between the Paired (n = 22) and Unpaired (n = 23) groups, but different from the 

No Stimulus group (n = 20). First, a one-way ANOVA was used to determine if there 

were any differences between the groups on the WB measure. This analysis did not yield 

any significant differences between the groups (p = 0.15). Independent samples t-tests 

were used to conduct planned comparisons between all of the groups, with an emphasis 

on the comparisons between the Paired and Unpaired groups and the Unpaired and No 

Stimulus groups. There were no differences between the Paired and Unpaired groups (p = 

0.66) and no differences between the Paired and No Stimulus groups (p = 0.2). An 

independent samples t-test revealed a significant difference between the Unpaired and No 

Stimulus group, t(41) = 2.01, p = 0.05 (Fig. 8B) The Unpaired group showed increased 

surface Kv1.2 expression compared to the No Stimulus group (Fig. 8). The hypothesis 
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that the Paired and Unpaired groups would show similar levels of Kv1.2 surface 

expression was confirmed, however, only the Unpaired group was significantly different 

from the No Stimulus group. 

In order to better understand the lack of a statistically significant difference 

between the Paired and No Stimulus groups on this measure, we split the Paired group 

based on EBC performance (Fig. 6). The split, as mentioned above, was between low and 

high responders. Low responders (n = 7) were subjects that did not show any CRs during 

EBC training and high responders (n = 18) were subjects that showed at least one CR. 

This distinction is important for this experiment since we are interested in what is 

happening to surface Kv1.2 expression prior to the emergence of CRs. The subjects that 

did not show any CRs were confirmed to have stable EMG signals; therefore we can 

reasonably conclude that, if given more time with the learning paradigm, they would 

have shown CRs (similar to all subjects in the previous experiment).  

After the Paired group split analyses, we again ran the outlier analyses on the WB 

data to treat them the same as in earlier analyses. The boxplot analysis and OLR both 

identified one of the subjects in the Paired Low group as an outlier (Appendix V). Please 

refer to Appendix for the paired group split comparison and figure.  

Due to the nature of the performance split in the Paired group and the fact that we 

cannot assign subjects to a non-learning Paired condition, independent samples t-tests 

were used for these analyses. Two comparisons were made: Paired Low (n = 7) vs. No 

Stimulus (n = 20) and Paired High (n = 15) vs. No Stimulus. An independent samples t-

test revealed a significant difference between the Paired Low group and No Stimulus 

group, t(25) = 2.70, p  = 0.012 (Fig. 8C). There was no difference between the Paired 
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High and No Stimulus groups (p = 0.50). These data suggest that the Paired Low group 

showed the same increase in Kv1.2 surface expression as the Unpaired group (Fig. 8C). 

 
 

 
Figure 8. Biotinylation and Western Blot (WB) data showing Kv1.2 surface expression in both BC 
axon terminals and PC dendrites. Data displayed for the Paired, Unpaired, and No Stimulus groups. 
A) Raw WB Surface-to-Total ratio for each subject. Numbers under the plots for each group denote 
the number of subjects in that group. B) WB data normalized to the No Stimulus group (Mean ± 
SEM). Planned comparisons between each of the groups revealed a significant difference between the 
Unpaired and No Stimulus groups (p = 0.04), but no other significant effects. C) Paired group is split 
between subjects that did not show any CRs during the two training blocks (Low; light green stripes) 
and subjects that showed CRs during the two training blocks (High; dark green stripes). Post hoc 
comparisons revealed a significant difference between Paired Low and No Stimulus groups (p = 
0.012). The significant difference between Unpaired and No Stimulus groups is depicted again. No 
difference was observed between Paired High and No Stimulus groups. (* denotes p <0.05) 
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Discussion 

The aim of this experiment was to measure surface Kv1.2 expression following a 

shorter EBC training program (50 trials on Day 1 vs. 100 trials/day for 3 days). We 

hypothesized that early in training the Paired and Unpaired groups would show similar 

surface Kv1.2 expression on both the MP and WB measures. Previously, we 

demonstrated reduced surface Kv1.2 expression on BC axon terminals in the Unpaired 

group, but not in the Paired group after three days of training. Based on this finding, we 

theorized that the inhibition of the IO by projections from the IPN in the Paired group as 

CRs are expressed could contribute to this finding (Sears and Steinmetz, 1991, Hesslow 

and Ivarsson, 1996, Kim et al., 1998, Medina et al., 2002). With a shorter training 

procedure and a potential lack of IPN-to-IO inhibition, we hypothesized that the Paired 

and Unpaired groups would show similar surface Kv1.2 expression to one another, since 

neither group would exhibit robust CR expression.  

In the current experiment, we did not observe any differences between the groups 

when looking at Kv1.2 surface expression on just BC axon terminals using MP (Fig. 7). 

In contrast, we observed greater Kv1.2 surface expression in cerebellar cortex in both the 

Unpaired group and in a subset of the Paired group (Paired Low) that did not exhibit any 

CRs compared to the No Stimulus group (Fig. 8). Since the WB measure samples Kv1.2 

at both BC axon terminals and PC dendrites and no differences were observed at BC 

axon terminals, by subtraction, the differences observed may be attributed to changes 

occurring only at PC dendrites. These data lend support to the idea that Kv1.2 surface 

expression at PC dendrites is regulated prior to CR expression in EBC. Increased surface 

expression at PC dendrites, which would reduce PC excitability, may be important for 
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acquisition of the eyeblink CR, while other cerebellar mechanisms may govern the 

expression or maintenance of the CR. On the other hand, the Paired High group showed a 

range of CRs during the two training blocks in this experiment (Fig. 6) and as a result, 

showed similar Kv1.2 surface expression as the No Stimulus group (Fig. 8C), similar to 

the previous experiment in which all rats in the Paired group exhibited CRs. The 

observation that there is no difference between the Paired High group and No Stimulus 

group may suggest that Kv1.2 surface expression on PC dendrites returns to baseline or 

No Stimulus levels once the eyeblink CR is acquired.  

When looking at Kv1.2 on just BC axon terminals using MP, we did not observe a 

difference between the Paired and Unpaired groups, as hypothesized (Fig. 7B), however 

these groups did not differ from the No Stimulus group either. Based on the finding in the 

previous experiment that the Unpaired group showed reduced Kv1.2 surface expression 

on BC axon terminals, we expected to see a reduction in surface Kv1.2 at BC axon 

terminals. It is possible that the changes observed in the previous experiment required 

more US stimulation to produce. In the current experiment, subjects in the Paired and 

Unpaired groups only experienced 50 US presentations across the two training blocks 

while the Paired and Unpaired group received 100 US presentations each day for three 

days before harvest. It may be the case that a reduction in surface Kv1.2 expression at BC 

axon terminals requires more US stimulation than 50 trials on one day of training, as well 

as a lack of CR-related US inhibition.  

Since the two experiments employed the same methods post-training and the only 

difference between them was the length of training, then when should we expect to 

observed a reduction in surface Kv1.2 expression at BC axon terminals? The answer may 
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lie in the period following the last trials on the first day and the start of training on the 

next day. In the first experiment, subjects returned to home cages following training until 

the next morning. Kv1.2 regulation may be taking place in that time in between training 

sessions, but neither experiment tested this. The key to changes in Kv1.2 surface 

expression on BC terminals may lie in the consolidation period between training sessions. 

A follow-up study could sample Kv1.2 surface expression a certain amount of time after 

training. Perhaps the within session changes are minimal, but Kv1.2 at BC axon terminals 

aids in the storage of eyeblink CR information.  

Overall, these data demonstrate that Kv1.2 surface expression regulation in the 

cerebellum occurs during mammalian learning and memory. Changes in Kv1.2 surface 

expression seemed to be dependent upon CR expression. The Unpaired and Paired Low 

groups, two groups that did not show any CRs during the two training blocks 

respectively, showed increased Kv1.2 surface expression on PC dendrites, while the 

Paired High group did not show this same increase. Kv1.2 surface expression in PC 

dendrites is important for maintenance of membrane excitability (Khavandgar et al., 

2005), and since there was increased expression measured in WB and no change between 

these two groups in Kv1.2 surface expression on BC axon terminals, the changes during 

early training may be limited to PC dendrites.  

When Kv1.2 is present at the cell surface, it acts as a delayed rectifier channel, 

shunting excitation as it travels down the process (e.g. dendrite or axon) (Brew and 

Forsythe, 1995, Ebner-Bennatan et al., 2012). Increased Kv1.2 on PC dendrites may be 

working to limit or reduce PC excitability (Khavandgar et al., 2005). In order for a CR to 

be generated, the inhibition of the IPN by PCs must be lifted. Therefore, increased Kv1.2 
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at PC dendrites may facilitate this disinhibition early in training. Since we saw changes in 

Kv1.2 surface expression in the Paired Low group compared to the No Stimulus group 

(Fig. 8C) and no difference between the Paired High Group and the No Stimulus group 

(Fig. 8C), it would suggest that there are other mechanisms that govern the maintenance 

of the CR, once the learned response is being expressed. 
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CHAPTER 4: GENERAL DISCUSSION 

 The topic of this thesis has been to study the regulation of surface Kv1.2 

expression in the cerebellar cortex following cerebellar dependent eyeblink conditioning 

(EBC). This is a novel endeavor, bridging two research areas. First, EBC serves as a good 

model for cerebellar behaviors and learning and memory. The neural pathways 

underlying the acquisition of eyeblink conditioned responses (CRs) are well known, and 

therefore provide us with known synaptic targets to study cellular mechanisms 

underlying learning and memory, such as regulation of voltage-sensitive ion channels. 

The regulation of voltage-gated channels by learning and memory is an understudied 

area, with most of the literature focusing on regulation of ligand-gated ion channels, such 

as AMPA. The second research area that was bridged by this project was the 

pharmacology or biochemical regulation of Kv1.2. By starting from a rich literature on 

the expression, regulation, and biophysical properties of Kv1.2 (Huang et al., 1993, Wang 

et al., 1993, Southan and Robertson, 1998a, b, Tsai et al., 1999, Southan and Robertson, 

2000, Chung et al., 2001, Hattan et al., 2002, Nesti et al., 2004, Williams et al., 2007, 

Connors et al., 2008, Williams et al., 2012), changes in expression that resulted from 

behavioral treatments would extend this knowledge base. What this project has yielded is 

the finding that Kv1.2 may be regulated by the stimuli that produce EBC and by the 

expression of the learned response, the eyeblink CR.  

When rats were given three days of training, we observed a robust reduction in 

surface Kv1.2 expression on basket cell (BC) axon terminals in the Unpaired group (Fig. 

4), a finding that was in contrast to our original hypothesis. We hypothesized that this 

effect would be evident in the Paired group, based on infusion studies that lend support 
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for the idea that blocked or endocytosed surface Kv1.2 expression leads to enhanced EBC 

(Williams et al., 2012, Fuchs et al., 2014). When we shortened the training period to-one 

quarter the length of a full session, we found that the regulation Kv1.2 surface expression 

in Purkinje cell (PC) dendrites seemed to be dependent upon CR expression. This was 

shown by an increase in surface Kv1.2 expression measured by biotinylation and western 

blot (WB), which samples Kv1.2 surface expression at both BC axon terminals and PC 

dendrites (Fig. 8) in the Unpaired (Fig. 8B) and Paired Low groups (Fig. 8C). We did not 

observe any group differences in the multiphoton microscopy (MP) measure looking at 

just BC axon terminals (Fig. 7). Therefore we concluded, based on subtraction between 

these two measures, that the findings in the WB measure (Fig. 8) were due to changes in 

Kv1.2 surface expression on just PC dendrites. The regulation of Kv1.2 at PC dendrites 

seemed to be a transient process, setting the stage for other cerebellar mechanisms to 

govern expression of the learned eyeblink CRs.  

It was intriguing to discover that the changes we predicted to be evident in the 

Paired actually appeared in the Unpaired group. The changes observed in the Unpaired 

group, however, provided a helpful piece of the story that contributes to our 

understanding of what is happening to Kv1.2 surface expression early and later in 

training. Kv1.2 surface expression appeared to be sensitive to US effectiveness in the 

cerebellar cortex as well as the expression of eyeblink CRs (Fig. 9). The transient effect 

observed in the second experiment between the Paired Low and Paired High groups when 

compared to the No Stimulus groups, suggests a transient role for the regulation of Kv1.2 

surface expression. Increased Kv1.2 surface expression may lead to acquisition of CRs, 

but other cerebellar mechanisms appear to govern the expression of the learned response.  
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The study of voltage-sensitive channels in the cerebellum usually pertains to 

membrane excitability of specific cell types or how the firing rate of certain neurons 

changes when these channels are present or absent (Womack et al., 2004, Womack and 

Khodakhah, 2004, Khavandgar et al., 2005, McKay et al., 2005, Kakizawa et al., 2007). 

Here, however, the changes we observed may be intrinsic changes on PCs during EBC. 

Related studies have shown that Kv1 channels regulate PC output and deficiencies in 

Kv1 channel expression in PCs led to disruptions in deep cerebellar nuclei (DCN) firing 

patterns (McKay et al., 2005). When Kv1 channels were intact in PCs, they were able to 

maintain PC excitability and in turn normal firing patterns were observed in the DCN, but 

when Kv1 channel expression was disrupted, firing patterns in the DCN were disrupted 

(McKay et al., 2005). Similarly, when Kv1.2 is blocked, an increase in dendritic calcium 

spikes and in turn somatic sodium spikes are observed in PCs (Khavandgar et al., 2005). 

This increase in spike frequency prevents the correct integration of inputs to PCs and 

Kv1.2 is needed to ensure proper encoding of stimuli (Khavandgar et al., 2005). Similar 

results have been shown on PC excitability for other potassium channels, such as small 

conductance calcium-active potassium (SK) channels (Hosy et al., 2011, Kaffashian et 

al., 2011). Furthermore, Kv channels also play a role in limiting membrane excitability in 

PC axon terminals (Kawaguchi and Sakaba, 2015).  

Regulation or disruption of channels here could have a large impact on cerebellar 

dependent behaviors by exerting more or less control over output from the DCN 

(Khavandgar et al., 2005, McKay et al., 2005, Kawaguchi and Sakaba, 2015). The data 

from the current experiments fit well within what has been previously shown. Since 

proper PC signaling is important for EBC (Steinmetz et al., 1992) and the regulation of 
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Kv1.2 is important for membrane excitability in PCs (Khavandgar et al., 2005) then 

changes in Kv1.2 surface expression during EBC may hold the key to understanding how 

stimuli are integrated during EBC. Increases in surface Kv1.2 expression may allow for 

faster or more faithful integration of stimuli inputs to the cerebellar cortex. Once the 

response is expressed in PCs and generated in the IPN, then Kv12 surface expression 

may return to baseline levels. The changes in Kv1.2 surface expression on PC dendrites 

in Chapter 3 support the idea that Kv1.2 regulation is linked to learning. We observed an 

increase in Kv1.2 expression in the Paired Low group, but no such increase in the Paired 

High group. Both of these groups were treated the same way during training; the only 

difference was the expression of CRs. Importantly, this group received the same amount 

of CS and US stimulation, but in an explicitly unpaired fashion. The result again was an 

increase in Kv1.2 surface expression.  

The result in the first experiment (Chapter 2), showing a decrease in surface 

Kv1.2 in BC axon terminals may be associated with reports on feed-forward inhibition 

(Mittmann et al., 2005). BCs are targeted by several mechanisms that may be 

contributing to the reduction in surface Kv1.2 expression. First, we theorized that 

reductions in Kv1.2 surface expression were exerted through secretin release from PCs 

during US stimulation (Yung et al., 2001, Lee et al., 2005, Yung et al., 2006). Secretin is 

linked to Kv1.2 endocytosis in the cerebellar cortex (Williams et al., 2012) and we 

hypothesize that this mechanism is involved in the results in this experiment. Secretin 

released from PCs following US stimulation, which in the Unpaired group is uninhibited 

since no CRs were generated by this group during training, leads to reductions in surface 

Kv1.2 expression. If US stimulation in the Unpaired group is increasing the release of 
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secretin from PCs and this increased release is not attenuated due to the lack of CRs 

expressed by the Unpaired group, then changes in Kv1.2 may be encoding the strength of 

the US in the cerebellar cortex. Along those same lines, the same reduction in surface 

Kv1.2 expression was not observed in the Paired group and we hypothesized that this was 

due to the fact that the subjects in this group showed robust learning. When CRs are 

generated by the IPN, inhibitory connections from the IPN to the IO are active and US 

stimulation through the IO is attenuated on subsequent trials (Sears and Steinmetz, 1991, 

Hesslow and Ivarsson, 1996, Kim et al., 1998, Medina et al., 2002).  

Regulation of Kv1.2 in these experiments and as discussed above may be related 

to both CS and US input to the cerebellum. The data, however, may support a stronger 

role for Kv1.2 regulation in US integration in the cerebellar cortex. This idea comes from 

the difference between the Paired Low and Paired High group, when comparing each of 

them to the No Stimulus group in the second experiment (Chapter 3). No changes in 

surface Kv1.2 expression were observed in the Paired High group, the subset of Paired 

group subject expressing eyeblink CRs, but we did see an increase in the Paired Low 

group. Given the connection between CR generation and US input to the cerebellar 

cortex, CR expression may hold the key to this relation. These findings may be 

understood in the context of the Rescorla-Wagner model, a learning based model that 

helps to account for US strength as the training signal and what can be learned from its 

relation to the CS (Rescorla and Wagner, 1972). This model would predict that the 

Unpaired group would not express CRs in either of the experiments because the CS does 

not provide any useful information about the US, as we observed. Said another way, 

nothing can be learned about the relationship between the CS and the US, therefore, the 
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strength of the US would remain high. In the Paired group however, the model would 

predict that the strength of the US would diminish as training progressed; as the Paired 

group begins to exhibit eyeblink CRs, the CS-US association is strong and less 

information is provided by each subsequent presentation of the US. This idea is supported 

by the finding that the IO is inhibited by neurons in the IPN when CRs are generated 

(Sears and Steinmetz, 1991, Hesslow and Ivarsson, 1996, Kim et al., 1998, Medina et al., 

2002). Even though the Unpaired group did not show any eyeblink CRs during training, 

the subjects may still have been “learning“ information about the stimuli. This learning 

could take the form of conditioned inhibition (CI), where the CS is associated as a safety 

signal indicating that the US will not be presented. Data suggest that the IPN is involved 

in CI (Nicholson and Freeman, 2002), but does not require GABA (Nolan et al., 2002). 

What is learned by the Unpaired group during training may be represented by changes in 

Kv1.2 surface expression. If changes in surface Kv1.2 expression during EBC training 

are setting the stage during acquisition for other cerebellar mechanisms to govern 

expression of the learned response, then changing the relation between the CS and US in 

the Unpaired group to where the CS does predict the onset of the US, we might expect 

CR expression to appear more quickly in the Unpaired group.  

This idea of changing the contingencies from a negative association to a positive 

association has been tested in other learning and memory paradigms (Rescorla and 

Wagner, 1972, Rizley and Rescorla, 1972, Rescorla, 1973, 1976, Rescorla and Furrow, 

1977). The prediction is that previous training with a negative (or unpaired) association 

slows learning when the contingency is changed (Rescorla, 1976, Claflin and Buffington, 

2006), but this has not been shown in EBC in adult rats. In a similar study, CS-US 
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associations in fear conditioning enhanced acquisition in EBC when using the same CS 

and an eyeblink eliciting US (Lindquist et al., 2010). If the regulation of Kv1.2 surface 

expression were encoding the US strength in the cerebellar cortex allowing changes to 

take place prior to the onset of CRs, we would predict that a change from unpaired CS-

alone and US-alone presentations to CS-US presentations would facilitate learning, rather 

than slow learning, but only after a significant number of US presentations. A future 

study is designed to test this idea. If the changes in surface Kv1.2 expression observed 

here are setting the stage for learning to take place, then we would hypothesize that 

Unpaired training would facilitate rather than impaired learning if the contingencies were 

changed to the CS did predict the onset of the US.  

Another mechanism that may be contributing and that shares similarities to the 

secretin-induced mechanisms is depolarization-induced suppression of inhibition (DSI) 

(Duguid and Smart, 2004). Here, the authors report enhanced inhibitory transmission to 

PCs following calcium influx that is dependent upon presynaptic NMDA receptor 

activation (Duguid and Smart, 2004). Glutamate, similar to secretin, may be acting as a 

retrograde messenger to facilitate inhibition of PCs. A recent paper from the same 

laboratory suggests that these inhibitory mechanisms are exerted through BC-to-PC 

synapses near the PC soma rather than the stellate cell-to-PC synapse that is distally 

located on PC dendrites (He et al., 2015). Endogenous cannabinoids (or 

endocannabinoids) have been implicated in DSI in both the cerebellum (Alger and Pitler, 

1995, Kreitzer and Regehr, 2001a, b, 2002, Diana and Marty, 2003) and hippocampus 

(Pitler and Alger, 1994, Alger and Pitler, 1995, Alger et al., 1996). Endocannabinoids are 

released from PCs following calcium influx and, like secretin, share presynaptic targets, 
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such as BCs (Egertova et al., 1998). Although these reports do not directly implicate 

Kv1.2 as the BC-specific mechanism, research from another lab determined that DSI 

does involve K+ currents (Diana and Marty, 2003).  

Other stimulus inputs to the cerebellum that could be affecting the expression of 

surface Kv1.2 could include feed-forward mechanisms. BCs are innervated by CS-

carrying parallel fibers (PFs) (Mittmann et al., 2005). Feed-forward inhibition through 

inhibitory interneurons in the cerebellar cortex may facilitate stimulus integration within 

EBC. This circuitry was shown to help integrate spike timing of PCs (Mittmann et al., 

2005, Mittmann and Hausser, 2007), which is important for PC output (Hong and 

Optican, 2008).  Furthermore, this inhibition may be region specific, with inhibition by 

BCs proximal to the PC soma outweighing inhibition by stellate cells (another cerebellar 

inhibitory interneuron) distally located from PC cell bodies (He et al., 2015).  

 

Model Revisited 

 Prior to these experiments, we predicted a simpler role for Kv1.2 surface 

expression in acquisition of eyeblink CRs. This was based on the finding that blocking 

Kv1.2 in the cerebellar cortex prior to EBC led to a profound increase in CRs compared 

to subjects that received vehicle infusions (Williams et al., 2012) and impairing the 

endocytosis mechanisms of Kv1.2 impaired learning (Fuchs et al., 2014). The data from 

the current experiments complement and expand this story. Both experiments suggest that 

Kv1.2 surface expression is involved in processing the CS and US information in the 

cerebellar cortex. The data from the current experiments lend support for Kv1.2 

regulation encoding the effectiveness of the US in the cortex.  
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To understand the role proposed for surface Kv1.2, we must consider what the 

current data (Chapters 2 and 3) and previous data (Williams et al., 2012, Fuchs et al., 

2014) are demonstrating. Our previous data suggested that blocking Kv1.2 in the 

cerebellar cortex facilitated EBC (Williams et al., 2012). By infusing TsTX, a selective 

and potent inhibitor of Kv1.2 (Werkman et al., 1993), our working model predicted that 

this led to an increase in BC GABAergic input to PCs. This increase in PC inhibition 

would lead to disinhibition of the IPN and allow the CS-carrying MFs to increase in 

synaptic strength with the neurons of the IPN, leading to the subjects exhibiting CRs 

more quickly. A common thread in the EBC literature is that disinhibition of the IPN is 

important for CR expression. By expediting that process, CS-US associations may form 

more rapidly and key sites governing expression of the response will undergo necessary 

changes, leading to faster learning. When those subjects began generating CRs, the IPN 

would be inhibiting the IO, limiting US strength in the cerebellar cortex. In the first 

experiment (Chapter 3), this may explain why surface Kv1.2 did not differ between the 

Paired and No Stimulus groups (Fig. 4).  

In the infusion study, however, Kv1.2 would remain blocked during training 

because infusions were made prior to the first six of seven days of EBC training. In the 

first experiment (Chapter 2), the Unpaired group showed reduced surface Kv1.2 

expression on BC axon terminals following three days of training. Kv1.2 expressed on 

the surface but blocked by TsTX may be functionally similar to the reduced surface 

expression exhibited by the Unpaired group in Chapter 2.  Prior to CR expression, there 

was an increased in Kv1.2 surface expression on PC dendrites. Both experiments reported 
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here (Chapters 2 and 3) suggest that the regulation of Kv1.2 is setting the stage for other 

mechanisms to govern expression of the CR.  

If Kv1.2 is aiding in the encoding of stimuli inputs to PCs Kv1.2 on PC dendrites 

may help to faithfully encode stimulus inputs. When Kv1.2 is blocked, there is an 

increase in dendritic spike frequency and somatic burst firing, but no change in baseline 

firing rates (Khavandgar et al., 2005), suggesting that Kv1.2 plays a role in input 

sensitivity, but not pace-making for PCs. With this understanding, an increase in Kv1.2 

surface expression early in training would facilitate the encoding of stimulus input to PCs 

by filtering spontaneous activity, which is important for EBC. Once the response is 

acquired, Kv1.2 returns to baseline expression (Fig. 8). The infusion data, however, 

suggest that blocking Kv1.2 in the cerebellar cortex facilitates EBC. These infusions 

presumably block Kv1.2 on BC axon terminals and PC dendrites. Since Khavangdar et al 

(2005) demonstrated that Kv1.2 does not contribute to the pace-making of PC firing and 

these experiments (Khavandgar et al., 2005) were conducted in the absence of fast 

glutamatergic (CNQX) and GABAergic (picrotoxin) presynaptic input, then blocking 

Kv1.2 on BC axon terminals should have a greater impact on the firing frequency of PCs, 

limiting this output in the presence of TsTX. Increased surface Kv1.2 would help to 

faithfully encode stimulus inputs in PCs by reducing dendritic and somatic excitability, 

based on the observation that blocking Kv1.2 containing channels increased spike 

frequency (Khavandgar et al., 2005). 

Surface Kv1.2 in the cerebellar cortex may be governed by US input to PCs and 

release of the neuropeptide secretin. The US is relayed through the IO in the brainstem 

and climbing fiber (CF) projections from the IO synapse with PC dendrites and neurons 
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of the IPN. Importantly, when a CR is generated by the IPN, inhibitory projections from 

the IPN to the IO limit US input to the cerebellar cortex on subsequent trials. Although 

there is no direct evidence supporting the idea that US input causes the release of secretin 

from PCs, other data examining the mechanisms that lead to secretin release support the 

idea that US stimulation is connected with secretin release. The other infusion experiment 

conducted with Williams et al. (2012) infused secretin into the cerebellar cortex prior to 

acquisition. When this was done, we again observed a facilitation of EBC. Since secretin 

is endogenously released from PCs and is connected with endocytosis of Kv1.2 from BC 

axon terminals and PC dendrites, infusions of secretin may have acted to jump-start the 

system. By exogenously increasing the intercellular concentration of secretin, the 

regulation of Kv1.2 surface expression was underway. If Kv1.2 were suppressed at the 

start of training, then as the results from Experiment 2 (Chapter 3) suggest, CRs would 

emerge more quickly. We hypothesize that the same mechanism is involved in the 

experiments above.  

 Figure 9 represents a synthesis of the data from the current experiments, 

suggesting what is happening to Kv1.2 surface expression in the Unpaired (Fig. 9A) and 

Paired (Fig. 9B) groups as well as what is going on in the PC dendrites (green circles) 

and BC axon terminals (maroon squares). In the first experiment, we showed a robust 

reduction in surface Kv1.2 expression at BC axon terminals in the Unpaired group (Fig. 

9A). If we consider this effect in relation to the US strength in the cerebellar cortex, then 

Kv1.2 is being suppressed because the inhibition of the IO by the IPN is weak, since the 

Unpaired group did not show any CRs. When the strength of the US is uninhibited, Kv1.2 

surface expression at BC axon terminals is reduced. This is not the case when the shorter 



91 91 

training procedure was used. When looking at Kv1.2 on BC axon terminals after a shorter 

training procedure, we did not observe a reduction in surface Kv1.2. Although the 

strength of the US through the IO should be the same in the Unpaired groups between the 

experiments, we did not observe a change if surface Kv1.2 expression in the second 

experiment. One possibility is that to observe changes at BC axon terminals prolonged 

US stimulation such that was done in the first experiment is required. Another possibility 

is that these changes require some post training or consolidation period.  

Focusing now on Kv1.2 expressed on PC dendrites, Figure 9 shows higher 

expression through both experiments in the Unpaired group (Fig. 9A). This effect is 

inferred from the combined results of WB and MP. There were no differences observed 

on the WB measure in the first experiment (Chapter 2). We hypothesize that for the 

Unpaired group this is due to the robust decrease in surface Kv1.2 surface expression on 

BC axon terminals combined with the lack of CRs. If Kv1.2 surface expression is 

changing in opposite directions at different sites and both of those sites are measured by 

the WB technique, then the lack of an effect in the WB measure may be attributed to an 

offsetting reduction at BC axon terminals. Therefore, we predict that the difference 

between Kv1.2 expressed on BC axon terminals and PC dendrites, as displayed in Figure 

8A, is the reason we did not observe a significant effect in the Unpaired group in the WB 

measure in the first experiment. 

Kv1.2 surface expression seems to be changing differently depending on the 

location measured and depending on CR expression in the Paired group. Considering first 

the Kv1.2 expressed on PC dendrites, we showed an increase in surface expression when 

subjects did not exhibit any CRs (Paired Low group) when compared to the No Stimulus 
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groups in the second experiment. When subjects in the Paired group did show some CRs 

(Chapter 3) or robust learning (Chapter 2), there was no difference observed on the WB 

measures between the Paired groups and No Stimulus groups (Figs. 5 and 8, 

respectively). Even when splitting the data based on performance in the first experiment, 

there did not seem to be a gradient for Kv1.2 surface expression in PC dendrites (data no 

shown). This “all or none” expression pattern for Kv1.2 surface expression suggests 

further that changes in Kv1.2 surface expression are dependent upon EBC and that these 

changes lead to acquisition of, but are not involved in the maintenance of eyeblink CRs. 

Other mechanisms that are governing expression of the CR could be long-term plasticity 

changes in the connection between the CS-relaying neurons and the neurons of the IPN 

(Boele et al., 2013), Other PC related mechanisms shown to reduce PC excitability 

(Garcia and Mauk, 1998, Garcia et al., 1999, Attwell et al., 2001), or other retrograde 

messenger systems exerting effects on BCs to limit PC output (Kreitzer and Regehr, 

2001a, Kreitzer et al., 2002, Kreitzer and Regehr, 2002, Diana and Marty, 2003, Duguid 

and Smart, 2004, He et al., 2015) likely also plays a role.  

The last effect to consider for these experiments is the lack of changes in Kv1.2 

surface expression on BC axon terminals in the Paired group across both experiments. In 

both of the experiments, there was no difference reported between the Paired and No 

Stimulus groups measured by MP, and this is shown in Figure 9 as no change from 

baseline levels. This is not to say that Kv1.2 on BC axon terminals is not involved, but 

these data show that, when we sampled Kv1.2 surface expression at the two time points, 

there were no changes evident. One idea for why this was observed is that changes in 

Kv1.2 surface expression take more time than was allotted between the training sessions 
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and tissue harvest in both experiments. In the two experiments, rats were sacrificed and 

tissue was harvested immediately following EBC training, a time point that we predicted 

to be critical. It is possible, however, that changes in surface Kv1.2 expression on BC 

axon terminals may require longer post-training breaks. If other learning mechanisms 

such as consolidation are occurring at these sites, one might expect changes in Kv1.2 

surface expression to take place 12- or 24-hours after training. Sampling Kv1.2 after one 

day of training for all groups, but waiting a certain period of time to harvest the tissue 

may reveal a longer-term role for Kv1.2 expression, a role that goes beyond the short 

term encoding of US information.  

In summary, Kv1.2 surface expression appears to be regulated during EBC. This 

regulation is dependent upon the specific training procedure used and whether or not CRs 

are being expressed.  

 

	  

Figure 9.  Conceptual depiction of what is happening to Kv1.2 surface expression in the (A) Unpaired 
groups in both experiments and (B) Paired groups in both experiments. Note that data for PC 
dendrites (green circles) are an inference from the combined results of WB (which measured PC 
dendrites and BC axon terminals) and MP (which measured only BC terminals). The Kv1.2 surface 
expression data are conceptualized as a function of (A) US strength and (B) CR expression. 
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Significance 

 First and foremost, this project is one of the first demonstrations of voltage-gated 

ion channel regulation in mammalian learning and memory. To my knowledge, no 

studies have looked at changes in voltage-gated ion channels during or after eyeblink 

conditioning. Many studies demonstrate the regulation of AMPA receptors and how that 

contributes to learning and memory, but very few focus on the regulation of voltage-

sensitive channels. Secondly, these experiments suggest a novel mechanism for detecting 

US strength in the cerebellar cortex and that this detection is involved in acquisition of 

eyeblink responses. Finally, the results from these experiments are significant for the two 

areas of research that were bridged by this project. As mentioned in the introduction, 

EBC is a useful paradigm for studying the neurobiology of learning and memory. The 

learned response is easily distinguished from the reflexive response, the neural pathways 

involved in the acquisition and expression of the learned response are well known, and 

the stimuli used to produce learning are simple. The finding that voltage-gated potassium 

channels are regulated in EBC is a novel mechanism for the eyeblink conditioning 

literature. Furthermore, the current data provide a unique understanding of the types of 

stimuli that can regulate Kv1.2. Regulation of voltage-gated channels is a fundamental 

mechanism for maintaining the excitability of neurons. We hypothesized that this 

regulation would occur during EBC and now we have evidence supporting this idea.  

 

Limitations and Future Directions 

 While the results showing changes in Kv1.2 surface expression in the cerebellar 

cortex as a function of eyeblink CR expression may provide insight for a fundamental 
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mechanism is mammalian learning and memory, there are also some limitations to these 

experiments. The two techniques that were utilized provided a somewhat comprehensive 

understanding of what is happening to Kv1.2 surface expression following EBC training 

by sampling Kv1.2 at the two primary sites of expression: BC axon terminals and PC 

dendrites (Koch et al., 1997). The MP method provided a measure of localized Kv1.2 

surface expression at BC axon terminals within a specific region of the cerebellar cortex 

(Steinmetz and Freeman, 2014), while the WB method measured Kv1.2 surface 

expression at both sites, but also across the entire section. Although the WB measure 

allowed us to sample Kv1.2 surface expression at the two primary sites, one drawback to 

this method was that, in order to detect Kv1.2 on the blot, a lot of tissue was required. 

This led to sampling Kv1.2 surface expression in areas within the cortex that may not be 

involved in EBC. Sampling this extra areas makes detection possible may be introducing 

noise to the measure as well. Because of this, the changes observed in this measure may 

not solely be attributed to changes taking place around the base of the primary fissure.  

 Another consideration for these data pertaining to the region recently identified 

for EBC within the cerebellar cortex is the number of PCs actually involved to develop 

an eyeblink CR. The identification of the base of the primary fissure by Freeman and 

colleagues (2014) was a helpful guide for the sampling for this experiment, but we do not 

know how many PCs are necessary or how many are just sufficient. Considering the size 

of the lesion in the aforementioned paper, the number of neurons involved compared to 

the rest of the section is quite low, but the exact number would be difficult to determine. 

Depending on the level granularity within the cerebellar cortex for controlling muscle 

movement and the size and precision of the muscles involved, it is possible that very few 
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neurons within the network are involved and the reason Freeman and colleagues observed 

an effect is because those few neurons were included in the lesioned area. It is also 

possible that more neurons that were affected in that area are necessary, but a critical 

number of them were lesioned, leading the deficits in learning. The data reported in the 

current experiments provided little information to this point, but still indicate that the 

expression of Kv1.2 on certain cell types may still be involved on those critical neurons.  

 Another important consideration for the WB measure is the treatment of the 

tissues. This method was previously validated in live tissue (Williams et al., 2012). In 

order to extract only surface Kv1.2 from paraformaldehyde fixed slices, however, 

additional steps to create new binding sites on surface proteins and to pull down surface 

expressed channel were necessary. It is worth considering however, that these treatments 

can be harsh and may be limiting the amount of surface protein pulled down by the 

Neutravidin beads. This may not be a major drawback since all of the sections from each 

of the three groups were treated in the same manner and thus, these methodological 

drawbacks may be accounted for. We do not suspect that the sections were comprised in 

such a fashion, but only seek to recognize that is could be a possibility.  

 A third limitation is that there was only one method sampling Kv1.2 at PC 

dendrites. Although Kv1.2 expression levels are not as dense as has been observed on BC 

axon terminals, localized surface expression of Kv1.2 on PC dendrites has been measured 

by microscopy (Williams et al., 2012). Attempts were made with the multiphoton 

microscope to sample Kv1.2 surface expression in PC dendrites (data not shown), but it 

proved difficult. In our previous study, a different microscope system was used and 

thinner cerebellar sections were imaged (Williams et al., 2012). In the current 
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experiments, however, we were interested in sampling from a larger region than the 

aforementioned microscope would allow. We were also interested in obtaining data from 

the Z-plane. For these reasons, the multiphoton microscope suited our needs, but one 

drawback was the inability to reliably sample Kv1.2 surface expression on PC dendrites. 

A follow-up study might use other markers of PC dendrites to more easily identify these 

structures.  

By being able to more precisely sample Kv1.2 on PC dendrites, we may further 

our understanding of the current data. Since Kv1.2 on BC axon terminals was sampled in 

both measures, we were able to understand these data by normalizing the results between 

the measures. For instance, a lack of an effect in the MP and a significant change in the 

WB could indicate that changed in surface Kv1.2 expression might be limited to PC 

dendrites. An additional imaging step that allowed us to measure Kv1.2 surface 

expression on PC dendrites would make for a stronger argument when deducing these 

data.  

Another limitation, that relates more to the physiology of the channel, is what we 

can be extrapolated from these data. When discussing changes in ion channel expression, 

we are considering a physiological change. However, since both measures of Kv1.2 

surface expression were done on fixed cerebellar sections, inferring a profound 

physiological change may be overstating the data. The numerous papers that contributed 

to our hypotheses, in particular the electrophysiology papers, examined the biophysical 

properties of Kv1.2 in isolation, either through pharmacological blockade of particular 

channels or currents or by removing a portion of the cellular membrane and studying a 

few (possibly many) channels at a time. By removing most of the extraneous modulators 
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of Kv1.2 current, these articles show the refined version of the channels function. This 

refined function may not be the only one involved in cellular excitability. There are a 

plethora of other variables to consider. A short list may include changes in Kv-beta 

subunit expression, changes in the expression of other subunits such as Kv1.1, and 

importantly, what behaviors like EBC are doing to the channel. Some or all of these 

could be affecting the Kv1.2 surface expression in the cerebellar cortex during EBC, but 

by only measuring surface expression without physiology, we only have a smaller portion 

of the picture depicting the function of Kv1.2. To determine if there are physiological 

changes that are accompanying the changes in expression observed here, a follow-up 

study recording from PC dendrites and BC axon terminals may provide useful insight. By 

recording from PC dendrites using methods employed by Khavangdar et al. (2005) and/or 

recording from BC axon terminals like Southan and Robertson (1998a,b; 2000), the 

physiological changes inferred from these data may be observed.  

There is the possibility that these changes in Kv1.2 surface expression have 

nothing to do with the actual physiology of the cells where the expression patterns are 

changing. Previous reports have suggested that channels containing Kv1 subunits and 

others or clusters of these channels can remain silent despite synaptic input and changes 

to membrane excitability (Stocker et al., 1999). If for instance the changes in expression 

patters that were shown in the current experiments were only on these “silent” channels, 

then the changes within the cerebellum would not be significant, but only looking at 

expression. The aforementioned follow-up study could elucidate this idea. We would 

predict that even changes to these clusters of silent Kv1.2-containing channels is still 
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having some sort of physiological change, but our current methods are not able to 

measure what those changes might be.  

All together, the parsimonious understanding of these data, based on our previous 

findings and the findings from other labs, we suggest that changes in Kv1.2 surface 

expression in the cerebellum is linked to the acquisition, but not the expression of the 

learned response. Not to be disregarded is the idea that Kv1.2 containing channels do not 

have a single function, but a dynamic range of functions that depends on the needs of the 

cell, the input to that cell and surrounding cells, and the intra- and extracellular 

environment (i.e. messengers, signaling cascade molecules).  
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Appendix I: VALIDATION OF EXPERIMENTAL METHODS 

Section 1: Biotinylation of Kv1.2 in Fixed Versus Non-Fixed Tissue 

Introduction 

 The goal of these experiments was to measure surface Kv1.2 expression 

immediately following EBC. In order to do so and for best results, we decided that a 

perfusion with paraformaldehyde to halt all cellular activity would “freeze” the 

cerebellum in the state that is was in after the last training session. This, however, created 

a problem with the biotinylation technique used in Williams et al. (2012) because the 

Biotin used in those experiments utilizes the same binding site as paraformaldehyde. 

Thus, we need to determine if we could detect surface Kv1.2 using the same procedure 

but with a different Biotin that binds to different extracellular sites. We selected 

alkoxyamine-biotin-PEG4 (Biotin), which requires a new binding site to be created 

before it can bind to surface proteins. To create a new binding site, sections are incubated 

in sodium meta-periodate, which will create a new binding site that compliments the one 

necessary for Biotin. The experiment discussed below was designed to test these new 

methods with fixed versus non-fixed tissue to determine if we could use this new Biotin 

to quantify changes in Kv1.2 surface expression following EBC. 

Materials and Methods 

Tissue Harvest and Biotinylation 

 In this experiment, paraformaldehyde-fixed and non-fixed tissue was probed for 

surface expression of Kv1.2. For the live cerebellar sections, rats were anesthetized with 

isoflurane and perfused with ~100ml ice cold artificial cerebral spinal fluid (aCSF). The 

cerebellum was extracted, bisected down the vermis, and mounted with crazy glue to a 
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pre-chilled cutting plate. During the adhesion to the cutting plate, the cerebellum was 

dabbed with aCSF to keep the tissue from drying. Once adhered, the chamber was filled 

with ice-cold aCSF. Prior to cutting, meninges were carefully removed from the tissue so 

as not to interfere with sectioning. The whole mounting apparatus was moved to the 

vibratome and 12-400µm sections were obtained and allowed to recover in a recovery 

buffer for 1 hour before biotinylation treatments. After recovery, half of the sections were 

post-fixed with 2% paraformaldehyde for 15 minutes at room temperature. After the post 

fixation step, the well plate was returned to the ice bath and all sections were carefully 

rinsed three times for five minutes each with ice-cold Hanks Balanced Salt Solution 

(HBSS). After rinses, 1ml of 20mM sodium meta-periodate (SMP) replaced the HBSS, 

the sections were protected from light with foil, and placed on a rocker at 4°C for one 

hour for oxidation. All sections were rinsed again with HBSS three times for five minutes 

each. HBSS was replaced with 800µl of PBS and 200µl of 50mM alkoyamine-biotin-

PEG4 (Biotin) and sections were protected from light and rocked for two hours at room 

temperature. After two hours, Biotin was quenched with 50mM TRIS in HBSS. Sections 

were rinsed four times for five minutes each. Slices were then transferred gently with a 

fine tipped paintbrush to 1.5ml centrifuge tubes containing a lysis buffer (1ml RIPA + 

10µl HALT). Each tube and section was sonicated twice at 25% power for 2-4 seconds. 

The sonication tip was rinsed with water and dried in between each sonication. Sections 

and tubes were then spun down at high speed for 20 minutes at 4°C. After centrifuging 

the tubes, 200µl of the supernatant was transferred to different tubes marked as the 

“Total” input. The remaining ~800µl was transferred to tubes containing rinsed 

Neutravidin beads (Sigma) and marked as the “Surface” input. The Surface tubes were 
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rocked at 4°C for one hour. After, the tubes were centrifuged at 2,000RPM at 4°C for two 

minutes. The supernatant was transferred to different tubes marked as the “Post” fraction. 

The beads were then rinsed three times with HBSS. With each rinse, 1ml of HBSS was 

added to the tubes, the tubes were rocked at 4°C for approximately five minutes and 

centrifuged at 2,000RPM at 4°C for two minutes. After the last rinse, the supernatant was 

removed and the beads were dried using a 27G needle.  

 For the Total and Post fractions, 50µl of each were transferred into new centrifuge 

tubes. These were used at the loading fractions for the gel. To each tube, 50µl of 5X 

Sample buffer with 200mM DTT were added bringing the final concentration to 2.5X 

Sample Buffer with 100mM DTT. The same sample buffer was diluted to that final 

concentration and 50µl of the diluted buffer was added to the Beads samples. All tubes 

were flicked to mix the solutions. The tubes were then incubated at 55°C for 10 minutes. 

After the incubation, the tubes were centrifuged at high speed for 15 seconds, flicked to 

mix, and centrifuged at high speed again. The tubes were kept at room temperature until 

the gels were ready to be loaded.  

Gel Preparation and Imaging  

 Gels were cast and prepped according to the methods detailed in the General 

Method section. The specific methods for this experiment are detailed below, starting 

once the gels had polymerized and samples were prepped.  

 Once the gels were ready, 15µl of each sample was loaded into individual lanes 

using a fine tipped 200µl pipette tip. Gels were run at 100V for 90 minutes and checked 

periodically to make sure they were running straight. Gels were transferred to 

nitrocellulose membrane at 100V for 60 minutes at 4°C. Once the transfer was complete, 
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samples were blocked for one hour in 3% bovine serum albumin (BSA) at room 

temperature. The samples were rinsed three times for five minutes with 1X TRIS 

buffered saline with Tween (TBST) followed by an overnight incubation with 1:5000 

anti-Kv1.2 mouse mono-clonal antibody (K14/16; Neuromab) and 1:2000 rabbit 

polyclonal anti-glyceraldehyde-3-phosphate dehydrogenase (GAPDH) (ab9485; Abcam). 

Samples were rinsed again and incubated for one hour at room temperature with 1:5000 

Goat anti-mouse 700 antibody (GAM700) and 1:5000 Goat anti-rabbit 800 (GAR800). 

Samples were rinsed again and imaged.  

 Western blot analysis was done according to the methods detailed in the General 

Method section.  

Results and Discussion 

 In this experiment, live cerebellar sections were generated from a male rat, 

sectioned, and half were post-fixed with 2% paraformaldehyde. Following post-fix or not, 

slices were oxidized with 20mM SMP and surface Kv1.2 was probed with Biotin. The 

purpose of this experiment was to determine if we could in fact pull down surface Kv1.2 

onto Neutravidin beads in a fixed-tissue preparation. We have previously done similar 

studies with live cerebellar tissue (Williams et al., 2012). Figure 2 shows the qualitative 

results from the experiment. In the three lanes marked “Biotin + Fixed” we observed 

strong Kv1.2 signal, indicating that the new biotinylation method worked with fixed 

tissue. There was also strong signal in the non-fixed tissue that was probed with biotin in 

two of the three lanes used. In the third lane, highlighted in purple, we saw fainter signal. 

In the majority of the lanes that were not treated with biotin, we did not observe any 

surface Kv1.2 signal. In one of the lanes, marked in green, we saw strong signal. It is 
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possible that sample from one of the adjacent lanes spilled over into this lane. Other 

reasons for this unusual result could include contamination of this sample in one of the 

many previous steps.   

 

Figure 10. Western blot showing surface Kv1.2 expression following surface probe with 
alkoxyamine-biotin-PEG4. Conditions marked in white text at bottom of the blot. Orange boxes 
denotes Surface Kv1.2 Expression in the +Biotin conditions. Green boxes denote evidence of 
permeabilization. Purple boxes denote slight signal when using a smaller than normal section for 
analysis.  Strong Kv1.2 signal observed in 5 of 6 lanes probed with biotin. 
 

The results from this experiment indicate that it is feasible to extract surface 

Kv1.2 from live and fixed sections using the biotin marker described above. We observed 

strong signal in all three samples that were fixed and probed with biotin. A similar result 

was observed for the samples that were not fixed, but probed with biotin. Overall, it 

appears feasible to use this biotinylation method with fixed cerebellar sections, which 

was necessary for later experiments.  
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Section 2: Testing the Concentration of Sodium Meta-Periodate 

Introduction 

 After the initial experiment, we started observing problems with being able to pull 

down surface Kv1.2 in our samples. The signal on the western blots was very faint, an 

effect that can be seen in several of the lanes in Figure 1. While the signal here may 

appear strong, the ratios of Kv1.2 to the loading control are lower than we would expect. 

Upon further examination of the protocol developed for these experiments, we noticed 

the concentration of sodium meta-periodate (SMP) was higher than it should have been. 

Thus, this experiment was used to test varying concentrations of SMP in an attempt to 

find the appropriate concentration. Previously, samples were oxidized using 20mM SMP. 

In the current experiment, we tested four different concentrations: 0mM SMP, 1mM 

SMP, 10mM SMP, and 20mM SMP to not only test if the higher concentration was 

interfering with our samples, but find an ideal concentration to use for the rest of the 

experiments.  

 The second goal of this experiment was to determine whether or not we were 

observing permeabilization in the sections as a result of a step in this method. Several of 

the sections harvested for this experiment were assigned to a permeabilization condition. 

Besides this step, these sections were treated the same as the non-permeabilized sections. 

There are several potential problems if the sections in these experiments were being 

permeabilized: (1) If we do observe changes in Kv1.2 expression with permeabilization, 

then we would not be able to say that changes are just to Kv1.2 surface expression; (2) 

permeabilization may increase the noise and thus occlude us from observing changes in 
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Kv1.2 surface expression following EBC. Thus, the second goal of this experiment was 

to determine if permeabilization is problem that we may encounter with these methods. 

 

Materials and Methods 

Subjects, Perfusion, and Sectioning 

 One male Wistar rat was anesthetized with isoflurane. The transcardial perfusion 

began when the rat was no longer responsive to painful stimuli and its heart rate dropped 

to low levels. Approximately 100ml of PBS was perfused through the rat followed by 

~40ml of 4% paraformaldehyde. The cerebellar hemispheres were transported separately 

in PBS containing 4% paraformaldehyde. Eight 400µm parasagittal sections were kept, 

and four were assigned to the permeabilized condition and the other four were treated 

without being permeabilized.  

Biotinylation, Gel Preparation, and Imaging 

 Prior to oxidation, the permeabilized sections were treated with 10% triton mixed 

in PBS at room temperature for ~35 minutes. The non-permeabilized sections were kept 

in PBS at room temperature for the same time. After permeabilizing the sections, the well 

plate was put back on ice and all sections were rinsed with PBS two times for five 

minutes each. During the oxidation step, the 0mM SMP condition remained in PBS. For 

the other conditions, the PBS was replaced with 1ml of the assigned concentration of 

SMP, and all sections were protected from light, rocked, and incubated for 30 minutes at 

4°C. Prior to biotinylation, all sections were rinsed again with PBS for five minutes on 

ice. All sections were incubated with 50mM Biotin for two hours at room temperature. 
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After the Biotin step, all methods were the same as in the previous experiment and are 

detailed in the General Method section. 

 

Results and Discussion 

 In this experiment, we tested varying concentrations of SMP, including 0mM 

SMP, to see if the high concentration we were using in previous experiments was 

interfering with our ability to detect Kv1.2 surface expression in the western blot 

experiments. Half of the samples were permeabilized using a rinse with 10% Triton. In 

the non-permeabilized samples, the results showed that with increasing concentrations of 

SMP there was a reduction in the surface expression of Kv1.2 when looking at the ratio 

of Kv1.2 to Glyceraldehyde 3-phosphate dehydrogenase (GAPDH; Table 1). GAPDH 

was used as the loading control; it is an enzyme associated with later steps in glucose 

metabolism and is only expressed internally in the neurons. Using GAPDH as a loading 

control allowed us to determine if we were observing permeabilization in our samples. 

Interestingly, the highest expression of surface Kv1.2 was observed in the 0mM SMP 

condition. This is contrary to what would be expected because the SMP should be 

necessary to create a new binding site for this particular Biotin to bind to Kv1.2, since the 

normal binding site is already occupied by paraformaldehyde. Despite this, our 

hypothesis that higher concentrations of SMP were interfering with the expression of 

surface Kv1.2 was confirmed.  

A similar trend was observed for the permeabilized samples. The findings in these 

samples are not limited to just surface Kv1.2 because those sections were permeabilized 

by a rinse with Triton. However, the fact that there was still a similar trend in these 
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samples confirms the hypothesis that higher concentrations of SMP were interfering with 

our ability to observe changes in surface Kv1.2 expression (Table 1).  

 
One problem with these results was that the ratios for the Surface-to-Total 

comparisons for the non-permeabilized samples were contrary to what we would have 

expected. Here, it appeared that the 0mM SMP, 1mM SMP, and 20mM SMP were about 

equal while the 10mM SMP showed the greatest expression. One explanation for this 

could be contamination of the samples when being loaded into the gel, thus changing the 

amount of Kv1.2 present. Another explanation could be that, since this ratio relies on the 

Total expression of Kv1.2 in the samples, if those numbers were off or those samples 

were contaminated, then the ratios with the surface expression would be altered as well.  

 

Table 1. Kv1.2 Expression ratios (to GAPDH) for sodium meta-periodate (SMP) experiment. Beads 
represent the surface expression of Kv1.2 for the non-permeabilized samples. In the permeabilized 
conditions, Beads represent all Kv1.2 that was tagged with Biotin and pulled onto the Neutravidin 
beads, not limited to just surface. Total represents all proteins and Post represents the samples taken 
after incubation with the Beads. Results show greater surface Kv1.2 expression with lower SMP 
concentrations. Overall, increasing SMP concentration limits Kv1.2 expression on  blots, especially in 
permeabilized samples.  
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Altogether, based on these findings, we selected the 1mM concentration as the 

concentration for subsequent experiments. SMP is an oxidative compound that is used in 

this preparation to create a new binding site on surface Kv1.2 for the Biotin to bind to. 

Despite the greater surface expression of Kv1.2 in the 0mM SMP conditions, other 

experiments have shown that SMP is necessary for measuring surface expression of 

Kv1.2 (data not shown).  

 

Section 3: Testing the Laser Scanning Microscope (LSM) 7 Multiphoton Microscope 

System to Detect Changes in Kv1.2 Surface Expression 

Introduction 

 The third preliminary experiment for this project was to determine if the Zeiss 

Laser Scanning Microscope 7 (LSM 7; Zeiss, Oberkochen, Germany) system was 

sensitive enough to detect changes in Kv1.2 surface expression in cerebellar sections 

following EBC. Multiphoton microscopy (MP) offers some strong advantages over other 

microscopy techniques, such as reduced background fluorescence through illumination 

limited to the focal plane, the ability to image thicker sectioned tissue, and the ability to 

optically dissect the tissue and measure Kv1.2 surface expression in reference to the Z-

plane. 

 To induce changes in surface Kv1.2 expression, we used treatment with forskolin. 

Forskolin activates adenylyl cyclase (AC) and was previously shown to reduce surface 

Kv1.2 expression in cerebellar sections (Williams et al., 2012). In order to measure 

changes in Kv1.2 surface expression, we incubated sections with a fluorescent conjugate 

of TsTX, TsTX-ATTO-594. This compound, prepared by Alomone Lab (Jerusalem, 
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Israel) features a biologically active version of TsTX with the ATTO-594 dye attached. 

The TsTX-ATTO-594 still displays the same high affinity for the binding site on Kv1.2 

channels and is therefore an excellent marker for this channel’s expression. Following the 

incubation with TsTX-ATTO-594, sections were rinsed, post-fixed with 

paraformaldehyde, and imaged. The efficacy of TsTX-ATTO-594 for binding to Kv1.2 in 

cerebellar sections was shown in Williams et al. (2012) to measure Kv1.2 surface 

expression on BC axon terminals in the cerebellar cortex. The data shown below indicate 

that the LSM7 multiphoton microscope system is sensitive enough to detect changes in 

surface Kv1.2 expression, we are able measure Kv1.2 surface expression in thicker tissue, 

and that the TsTX-ATTO-594 is an effective marker of Kv1.2 on BC axon terminals.  

Materials and Methods 

Subject, Perfusion, and Sectioning 

 The subject for this experiment was one male Sprague-Dawley rat ~28 days old. 

For tissue harvest, the rat was anesthetized using isoflurane. The perfusion began once 

the rat was no longer responsive to painful stimuli. Ice-cold aCSF was perfused through 

the rat at a constant pressure of 100mmHg. The brain was then rapidly extracted and 

placed into a dish containing oxygenated aCSF. Here the cerebellum was bisected from 

the rest of the brain and the cerebellar hemispheres were bisected through the vermis. The 

two hemispheres were then mounted to a pre-chilled cutting stage with crazy glue. The 

hemispheres were dabbed with aCSF while the glue dried. The chamber was then filled 

with oxygenated aCSF and the entire cutting apparatus was transported to the vibratome.  

The tissue was sectioned parasagittally at 400µm. Of the sections obtained, four were 

used for this experiment.  
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Drug Treatment and Tissue Preparation 

The sections were allowed to recover for one hour in a recovery buffer. They 

were then transferred to 35mm dishes. Vehicle (PBS) and forksolin (100µM; 

Calbiochem) treated sections were incubated for 15 minutes at room temperature. 

Forskolin was previously shown to significantly reduce surface Kv1.2 expression in 

cerebellar sections, as measured by biotinylation and western blot (Williams et al., 2012). 

The sections were then transferred to individual wells in a 12 well plate, placed on ice, 

and rinsed with ice-cold HBSS. Sections were fixed with 2% paraformaldehyde for 30 

minutes at room temperature. The sections were placed back on ice and rinsed prior to 

staining with TsTX-ATTO-594. The sections were incubated with TsTX-ATTO-594 

(4nM; Alomone, Jerusalem, Israel) over night at 4°C. Sections were left in TsTX-ATTO-

594 for ~18 hours, rinsed, post-fixed with 2% paraformaldehyde, and imaged.   

Imaging 

All imaging was done on the LSM7 system. Microscope settings remained the 

same throughout imaging all sections across experiments in order to make comparisons 

between sections, conditions, and experiments. The microscope settings were as follows: 

3% laser power set to 820nm, NDDR4 Gain: 1000 (Range 300-1100), Bit Depth: 16 bit, 

Resolution: 256x256, and Digital zoom: 1.5X. A more detailed explanation of imaging 

methods can be found in the General Methods section. 

Image Processing and Analysis 

Image processing was done in ImageJ (NIH). Images were converted to 32-bit 

images before analysis started. In order to isolate individual PCX from the images in 

three dimensions, images were converted so that ImageJ could isolate specific regions of 



131 131 

interest (ROIs). To do so, a Z-projection using the maximum pixel intensity was taken, 

collapsing the intensity information across all of the z-sections. For this image, the bit 

depth was set back down to 8-bit and the threshold was adjusted so that individual PCXs 

could be identified without altering their structure.  A mask was created by covering up 

all parts of the image that were not a part of the PCX layer. From the original, 32-bit 

image, another Z-projection was created using the sum of the pixel intensities. This 

image was used to extract the actual PCX data. Using an object analysis tool, 

measurements were redirected to the masked image of the maximum projection and, 

referencing this mask, data were taken from objects that ranged from 50-500 pixels.  Any 

objects fitting this dimensional range in the mask were measured in the sum projection. 

Data from each object were placed in a separate text file and copied to Microsoft Excel®. 

The data taken from each image included the object number, the area in pixels, the mean 

intensity value, the standard deviation of the intensity values, the minimum and the 

maximum pixel value, the perimeter of the object, the integrated density and the raw 

integrated density. The primary dependent measure for the imaging data was the mean 

intensity value for each PCX.  

Results and Discussion 

This experiment was designed to determine if we could observe changes in 

surface Kv1.2 expression using multiphoton microscopy. Using forskolin, which was 

previously shown to reduce surface Kv1.2 expression (Williams et al., 2012), we tested 

the LSM7 to determine if it was sensitive enough to detect and measure changes in Kv1.2 

expression. Sections were treated with either forskolin or vehicle for 15 minutes, post 

fixed with paraformaldehyde, stained with TsTX-ATTO-594 overnight, and post fixed 
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again prior to imaging. Of the four sections stained with TsTX-ATTO-594, one vehicle 

and one forskolin treated section provided usable data. Images were taken in the x-, 

TsTX-, and z-planes.  

 

Figure 11. Live cerebellar sections were treated with forskolin (100µm) or vehicle prior to fixation 
and TsTX-ATTO-594 incubation. Data points represent pinceaus extracted from Z-stack images for 
vehicle (black) and forskolin (red) treated sections. Reduced surface Kv1.2 expression in section 
treated with Forskolin, detected by multiphoton microscopy.  

 

 We predicted that forskolin, an activator of adenylyl cyclase in cerebellar cortex, 

would reduce surface Kv1.2, similar to findings reported in Williams et al. (2012) using 

biotinylation and western blot. We also wanted to determine if the multiphoton 

microscopy technique would be sensitive enough to detect changes in Kv1.2 surface 

expression in the PCX layer of the cerebellar cortex. Figure 10 shows reduced fluorescent 

intensity in the forskolin treated sections compared to the vehicle treated section. The 

data points in Figure 10 display the fluorescent intensity of individual PCX, but statistical 
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analyses were not done on these data because of the low number of subjects (n = 1) per 

group. Based on the exploratory nature of this experiment, it appeared that forskolin did 

reduce surface Kv1.2 expression and the multiphoton microscope is sensitive enough to 

detect these changes.  

 One problem with this experiment was the sample size. Without more sections 

and more data we could not determine the threshold for detecting changes in surface 

Kv1.2 expression. Given that this experiment was exploratory in nature and the main goal 

of the experiment was to determine if we could observe changes in TsTX-ATTO-594 

fluorescent intensity in cerebellar sections in response to forskolin, we were successful. 

Overall, the data confirmed our expectation that this microscopy system is viable for 

detecting changes in surface Kv1.2 expression. Furthermore, using the analysis procedure 

discussed above, we established a method for extracting data from 3-dimensional images 

without too much difficulty.  
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APPENDIX II: OUTLIER ANALYSIS FOR EXPERIMENT 1 (CHAPTER 2) 
 

 
Figure 12. Boxplot outlier analysis for western blot (WB) data for Experiment 1. No outliers 
identified within The Paired (green), Unpaired (blue), and No Stimulus (Red) groups.  
 

 
Figure 13. Boxplot outlier analysis for multiphoton microscopy (MP) data for Experiment 1. No 
outliers identified within the Paired (green), Unpaired (blue), or No Stimulus (red) groups.  
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Table 2. Outlier Labeling Rule (OLR) Analysis for Western Blot data in Experiment 1. The Lower 
and Upper limits for outlier threshold are based on the first (Q1) and third (Q3) quartile percentages 
based on the distribution of the data in each group. Subjects whose score fall outside of the lower or 
upper range were considered outliers. No outlier identified in any of the groups in the WB measure 
in experiment 1. 
 

Experiment 1 Western Blot 
Paired 

Q1 Median Q3 g Lower Upper 
0.03   0.131 2.2 -0.1922 0.3532 

  Q3-Q1= 0.101 
    g'= 0.2222 

            
Unpaired 

Q1 Median Q3 g Lower Upper 
0.04   0.12 2.2 -0.136 0.296 

  Q3-Q1= 0.08 
    g'= 0.176 

            
No Stimulus 

Q1 Median Q3 g Lower Upper 
0.035   0.099 2.2 -0.1058 0.2398 

  Q3-Q1= 0.064 
    g'= 0.1408 
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Table 3. Outlier Labeling Rule (OLR) Analysis for Multiphoton Microscopy data in Experiment 1. 
The Lower and Upper limits for outlier threshold are based on the first (Q1) and third (Q3) quartile 
percentages based on the distribution of the data in each group. Subjects whose score fall outside of 
the lower or upper range were considered outliers. 

Experiment 1 Multiphoton Microscopy 
Paired 

Q1 Median Q3 g Lower Upper 
124382.15   235037.83 2.2 -119060.346 478480.326 

  Q3-Q1= 110655.68 
    g'= 243442.496 

            
Unpaired 

Q1 Median Q3 g Lower Upper 
92618.6   184723.84 2.2 -110012.928 387355.368 

  Q3-Q1= 92105.24 
    g'= 202631.528 

            
No Stimulus 

Q1 Median Q3 g Lower Upper 
148929.73   249108.39 2.2 -71463.322 469501.442 

  Q3-Q1= 100178.66 
    g'= 220393.052 
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APPENDIX III: CR ONSET LATENCY AND ONSET LATENCY STANDARD 

DEVIATION FROM EXPERIMENT 1 (CHAPTER 2)  

 
Figure 14. Conditioned response (CR) onset latency for Paired (green circles) and Unpaired (blue 
squares) subjects (solid lines). The dotted lines represent the standard deviation of the CR onset 
latencies for each of the groups within each of the sessions. Responses scored as CRs for the Paired 
group remained consistent across the training sessions, while the timing of the  “responses” score for 
the Unpaired group fluctuate within and across sessions. The dotted lines show the variability within 
each session. The variability within each session for the Paired group remains consistently low and 
the Unpaired group shows some variability.  
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APPENDIX IV: OUTLIER ANALYSIS FOR EXPERIMENT 2 (CHAPTER 3) 
 

 
Figure 15. Boxplot outlier analysis for Experiment 2 Western Blot (WB) Data. One outlier (*47) 
identified in this analysis as an outlier in the No Stimulus group. Three other subjects (1/group; 
circles) fell outside of error bars but not considered statistical outliers. 
 

 
Figure 16. Boxplot Analysis for Multiphoton Microscopy (MP) data for Experiment 2. No outliers 
were identified in this analysis. Two subjects show Kv1.2 surface expression on BC axon terminals 
that falls outside of error bars for Paired (n=1) and No Stimulus (n=1) groups. These subjects were 
not considered statistical outliers.  
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Table 4. Outlier Labeling Rule (OLR) Analysis for Western Blot data for Experiment 2. The Lower 
and Upper limits for outlier threshold are based on the first (Q1) and third (Q3) quartile percentages 
based on the distribution of the data in each group. Subjects whose score fall outside of the lower or 
upper range were considered outliers. Subject 15-188 was identified as an outlier in this analysis in 
the No stimulus group. This subject was the same as was identified in the boxplot analysis (Fig. 14) 
and was subsequently removed from analyses.  

Experiment 2 – 50 Trials Western Blot 
Paired 

Q1 Median Q3 g Lower Upper 
0.051   0.101 2.2 -0.059 0.211 

  Q3-Q1= 0.05 
    g'= 0.11 

            
Unpaired 

Q1 Median Q3 g Lower Upper 
0.059   0.11 2.2 -0.0532 0.22 

  Q3-Q1= 0.051 
    g'= 0.1122 

            
No Stimulus 

Q1 Median Q3 g Lower Upper 
0.048   0.078 2.2 -0.018 0.14 

  Q3-Q1= 0.03 
15-188 = 0.221    g'= 0.066 
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Table 5. Outlier Labeling Rule (OLR) Analysis for Multiphoton Microscopy data in Experiment 2. 
The Lower and Upper limits for outlier threshold are based on the first (Q1) and third (Q3) quartile 
percentages based on the distribution of the data in each group. Subjects whose score fall outside of 
the lower or upper range were considered outliers. No subjects were identified as outliers.  

Experiment 2 – 50 Trials Multiphoton Microscopy 
Paired 

Q1 Median Q3 g Lower Upper 
142375.86   204021.55 2.2 6755.342 339642.07 

  
Q3-
Q1= 61645.69 

    g'= 135620.518 
            

Unpaired 
Q1 Median Q3 g Lower Upper 

105036   188955.3 2.2 -79586.46 373577.76 

  
Q3-
Q1= 83919.3 

    g'= 184622.46 
            

No Stimulus 
Q1 Median Q3 g Lower Upper 

102741.65   198134.38 2.2 -107122.356 407998.386 

  
Q3-
Q1= 95392.73 

    g'= 209864.006 
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Figure 17. Boxplot outlier analysis for the Western Blot data from Experiment 2. Follow up analysis 
to determine if there were any other outliers after the subject in the No Stimulus group was removed. 
No other subjects identified as a statistical outlier. 
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APPENDIX V: CHAPTER 3 (EXPERIMENT 2) PAIRED GROUP 

PERFORMANCE SPLIT OUTLIER ANALYSIS 

 

 
Figure 18. Boxplot outlier analysis for Paired split data from Experiment 2. Subjects that did not 
show any CRs during the training blocks were split into the Paired Low group and subjects that 
showed any CRs during the two training blocks split into the Paired High group. One outlier (*13) 
identified in the Paired Low group 
 
Table 6. Outlier Labeling Rule (OLR) for Western Blot data from Experiment 2 for the Paired High 
and Paired Low groups. The Lower and Upper limits for outlier threshold are based on the first (Q1) 
and third (Q3) quartile percentages based on the distribution of the data in each group. Subjects 
whose score fall outside of the lower or upper range were considered outliers. Subject 15-103 in the 
Paired Low group identified as an outlier, the same subject identified in the boxplot analysis (Fig. 
17). 

Experiment 2 – 50 Trials Western Blot 
Paired Low Group (0% CRs) 

Q1 Median Q3 g Lower Upper 
0.071   0.103 2.2 0.0006 0.1734 

  Q3-Q1= 0.032 
Outlier: 15103 = 0.200   g'= 0.0704 

            
Experiment 2 – 50 Trials Western Blot 

Paired High Group (any CRs) 
Q1 Median Q3 g Lower Upper 

0.04   0.099 2.2 -0.0898 0.2288 
  Q3-Q1= 0.059 

    g'= 0.1298 
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Figure 19. Boxplot outlier analysis for Paired Split groups for Multiphoton Microscopy data from 
Experiment 2. No subjects were identified as statistical outliers. Two subject in the Paired High 
group fall outside of the error bars but were not considered outliers. 
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Table 7. Outlier Labeling Rule (OLR) for Multiphoton Microscopy data between the Paired split. 
The Lower and Upper limits for outlier threshold are based on the first (Q1) and third (Q3) quartile 
percentages based on the distribution of the data in each group. Subjects whose score fall outside of 
the lower or upper range were considered outliers. No Subjects were identified at an outlier. 

Experiment 2 – 50 Trials Multiphoton Microscopy 
Paired Low Group (0% CRs) 

Q1 Median Q3 g Lower Upper 
113274.103   178750.178 2.2 -30773.262 322797.543 

  
Q3-
Q1= 65476.075 

    g'= 144047.365 
            

Experiment 2 – 50 Trials Multiphoton Microscopy 
Paired High Group (any CRs) 

Q1 Median Q3 g Lower Upper 
148141.99   203150.033 2.2 27124.2954 324167.7276 

  
Q3-
Q1= 55008.043 

    g'= 121017.6946 
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Figure 20. Boxplot outlier re-analysis for Paired High and Paired Low groups on Western Blot data 
following removal of one outlier. No other subjects identified as outliers. 
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APPENDIX VI: CHAPTER 3: BIOTINYLATION AND WESTERN BLOT DATA 

FOLLOWING OUTLIER ANALYSIS ON PAIRED HIGH AND PAIRED LOW 

GROUPS 

 

 
Figure 21. Biotinylation and Western Blot (WB) data showing Kv1.2 surface expression in both BC 
axon terminals and PC dendrites. Data displayed as mean ± SEM for the Paired Low (No CRs 
during training blocks; light green stripes), Paired High (Any CRs during training blocks; dark 
green stripes), Unpaired (blue), and No Stimulus groups (red). Data normalized to the No Stimulus 
group. These data exclude one subject from Paired Low group that was identified as an outlier. 
Planned comparisons between each of the groups revealed a significant difference between the 
Unpaired and No Stimulus groups (p = 0.04), but no other significant effects. Post hoc comparisons 
between the four groups in Fig. 21 revealed a marginally significant difference between Paired Low 
and No Stimulus groups (p = 0.07). No Differences observed between Paired High and Paired Low, 
and Paired High and No Stimulus. (* denotes p <0.05; �  denotes p = 0.07). 
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APPENDIX VII: MAPPING THE SPREAD OF TITYUSTOXIN INFUSIONS IN 

THE CEREBELLAR CORTEX 

 An important experiment when drawing conclusions from infusion studies is to 

determine how far each infusion is spreading within the targeted tissue. Here, we tested to 

how far infusions of tityustoxin-Kα (TsTX) were spreading within the cerebellar cortex. 

To do this, we infused 0.50 µl of a fluorescently conjugated version of TsTX (TsTX-

ATTO-594). Data from the laboratory that developed the peptide suggest that the 

fluorescently labeled TsTX is still an active peptide able to block Kv1.2 (Alomone; data 

not shown), but just has an ATTO-594 molecule attached. 

 Two male Wistar rats (Aged: 59-63 days) were implanted with a stainless steel 

guide cannula targeting the lobulus simplex in the cerebellar cortex (AP: 11.0mm, ML: 

3.0mm, DV: -3.2mm). The rats were allowed to recover for five days post surgery. For 

the infusion, a 30-gauge infusion cannula was paced through the guide cannula and 

extended 1mm past the end of the guide (Final infusion depth of DV: -3.3mm). 0.50µl of 

TsTX-ATTO-594 was infused (0.25µl/min) into the cerebellar cortex. Once the infusion 

finished, the infusate was allowed to spread away from the infusion cannula for two 

minutes prior to the infusion cannula being removed. Rats were returned to the colony 

room for 20 minutes prior to the perfusion. Subjects were deeply anesthetized with 

isoflurane and a cardiac perfusion was performed. First 100ml of PBS was circulated 

through followed by 100 ml of 4% paraformaldehyde.  

The whole cerebellum from each of the subjects was harvested. One of the 

cerebella was sectioned taking 400µm parasagittal sections of the left hemisphere and the 

other was sectioned taking 400µm coronal sections. For both cerebella, sections from the 
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entire cerebellum we kept to determine the outer limits of the spread of the infusion. 

Sections were kept in individual wells on a 12-well plate. 

Imaging was done on a LSM 7 multiphoton microscope (see Chapter 2 for 

specifics). Detection of the TsTX-ATTO-594 signal was the same as in the previous 

experiments (Chapters 2 and 3). For this experiment, transmitted images were collected 

simultaneously with multiphoton excitation and through DIC optics using a transmitted-

path PMT detector. Large tile scans were used to capture large portions of the cerebellar 

cortex, including the anterior lobe, lobulus simples, other lobules, and the deep cerebellar 

nuclei (Fig. 21). The different channels were merged in ImageJ (NIH) to create RGB 

images within both channels.  

The infusion data suggest that infusions of TsTX, as mapped by a fluorescent 

version of the same compound, are limited to regions associated with eyeblink 

conditioning (EBC). Two areas implicated in EBC are the anterior lobe and lobulus 

simplex (Green and Steinmetz, 2005, Steinmetz and Freeman, 2014). The area sampled in 

the experiments above (base of the primary fissure; Chapters 2 and 3) is proximal to both 

of those regions. As can be seen in Figure 21, the infusion of TsTX-ATTO-594 does not 

spread far from the infusion site. Individual basket cell axon terminals can be seen in red 

in the cerebellar cortex. The infusion does not spread far from the two regions mentioned 

above and remains distant from the deep cerebellar nuclei region. Overall, the spread of 

the infusion suggests that infusions of TsTX are not spreading to off target sites.  
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Figure 22. Parasagittal section of cerebellum following an infusion of ATTO-TsTX-594 into the 
lobulus simplex of the cerebellar cortex above the base of the primary fissure. The infusions (red) is 
limited to regions of the anterior lobe, lobulus simples, and remains above the deep cerebellar nuclei 
region.  
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