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ABSTRACT 

 

 Compost can suppress soilborne plant pathogens that cause significant damage on 

globally important food crops. However, reports of plant pathogen suppression are 

inconsistent likely because there are no established standards for feedstock material, 

application rate, and maturity age upon application. Excellent results can be achieved in 

greenhouse trials, but field applications are much less reliable. Disease suppression 

occurs through the activity of biocontrol organisms (direct antagonism), and general 

microbial competition. Biocontrol species are hypothesized to colonize the pile during the 

curing phase, but single species may not be as important as microbial consortia. Substrate 

composition during maturation may give rise to a suppressive microbial community. 

More research is needed to understand the relationships between feedstock, maturity, and 

production process on compost microbial ecology. The thesis had two main objectives: 1) 

identify biological indicators in compost that could (a) characterize maturity, process, and 

feedstock, and (b) predict disease suppression against R. solani, and 2) identify bacterial 

and fungal community composition and/or structure that is associated with suppression of 

soilborne disease. 

 Rhizoctonia solani is a facultative saprophytic fungus and soilborne plant 

pathogen that attacks many globally important food crops and turfgrass. Prior research 

suggests that managing carbon quality and compost maturity will alter relative 

competition between biological control microbes and the R. solani pathogen. The 

pathogen is responsible for economic losses to organic vegetable production in Vermont 

and there are no available methods to manage the disease that meet organic certification. 

R. solani on radish was chosen as a model system given its global importance, 

competitiveness affected by carbon quality, and lack of disease management options for 

organic production. 

 Compost samples were most abundant in the bacterial phyla Proteobacteria and 

Bacteroidetes, and known biocontrol species were not detected in abundance. Compost 

samples did not differ significantly in fungal community composition, suggesting a 

dominance effect from the native soil fungal community. 

 Overall, anaerobic digestate and vermicompost were most suppressive against R. 

solani. Thermophilic composts were not very suppressive overall, though a specially 

made hardwood bark compost was comparable to the suppressiveness of vermicompost 

application. Ecoenzyme analysis was able to integrate information on environmental 

substrate composition, microbial nutrient acquisition, and microbial community 

metabolism, offering the best view of current ecological conditions in compost. 

Ecoenzyme analysis showed that the most suppressive composts, anaerobic digestate and 

vermicompost, were most nutrient limited. All compost samples were severely nitrogen 

(N) limited, and anaerobic digestate and vermicompost were severely limited in both N 

and phosphorus (P). The additional P limitation may support non-pathogenic species to 

outcompete R. solani. The key to disease suppression may lie in matching up the ecology 

of the plant pathogen with the ecology of biocontrol, which may be engineered in 

compost. 
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CHAPTER 1. LITERATURE REVIEW 

 

1.1 Soilborne Plant Disease and Compost 

 

Persistent soilborne plant diseases cause considerable economic losses, and are a major 

barrier to growing food more sustainably. At least 10% of global food production is lost 

to plant disease, contributing to the issue of global hunger, where at least 800 million 

people are insufficiently fed (Strange and Scott, 2005). Conventional growers depend on 

fungicides and pesticides to control plant disease. In many cases, residual persistence 

from fungicide application leads to nonpoint-source pollution and groundwater 

contamination, and has resulted in banning effective chemical biocides (Neumann et al., 

2002). Organic growers are further limited in their disease management opportunities: 

they are typically relegated to choosing resistant varietals, that may not exist, and crop 

rotation that cannot control facultative saprophytes or pathogens with extensive host 

ranges that includes common and abundant weeds (Baysal-Gurel et al., 2012). 

 

Plant diseases establish based on the plant disease pyramid (Figure 1) – diseases 

theoretically occur when there is a perfect storm of a virulent pathogen and a susceptible 

plant host together in an environment conducive to disease development (Schumann and 

D’Arcy, 2006). Under this model, the role of compost in disease suppression is to 

decrease the conduciveness of the environment, and to enhance the health and immunity 

of the plant host to reduce the severity of infection and mitigate an epidemic. 
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Figure 1. Plant disease pyramid (Schumann and D’Arcy, 2006). 

 

1.2. Rhizoctonia solani as a Model Disease System 

 

Vermont organic farmers expressed interest in examining suppression of a fungal 

pathogen, Rhizoctonia solani (teleomorph: Thanatephorus cucumeris), a facultative 

saprophyte with a wide host range including brassicas, lettuce, and potatoes. R. solani 

causes approximately $10,000 in damage to lettuce and potatoes on small organic farms 

in Vermont (personal communication), and is listed as one of most important pathogens 
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on crop plants that provide the primary sources of human nutrition (Strange and Scott, 

2005).  Successful and reliable suppression of R. solani has been demonstrated in 

greenhouse trials with composted hardwood bark, municipal waste, and vermicompost 

(Nelson and Hoitink, 1983; Van Assche and Uyttebroeck,1981; Mathout, 1987; Ersahin 

et al., 2009). Suppression of R. solani damping off has also been shown in field trials 

using composted sewage sludge (Lewis et al., 1992) and green manure (Fuchs 1995). 

However, little to no suppression of R. solani on field-grown potatoes occurred using 

hardwood and bark compost (Larkin and Tavantzis 2013), suggesting that the native soil 

microbial community may alter compost disease suppressiveness in the field. 

 

1.3. Biology and Chemistry of the Composting Process 

 

Composting is the controlled, aerobic decomposition of organic wastes into a stable end 

material that can be used in a variety of ways, such as a soil fertility amendment, a 

potting mix ingredient, for erosion control, and in disease suppression (Mehta et al., 

2014). Mediated by the resident microbial community, composting occurs through three 

distinct successional phases, determined primarily by temperature changes: a mesophilic 

phase (temperatures rising to ~45ºC), a thermophilic phase that kills weed seeds and 

pathogens (peaking at ~70ºC), and then a curing phase (cooling to ambient temperature) 

which can last several months (Tuomela et al., 2000). Feedstock materials can also be fed 

to the compost worm, Eisenia fetida, whose castings become vermicompost (Ersahin et 

al., 2009). In another vermicompost process, compost that has just passed its thermophilic 
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phase is fed to the compost worm, ensuring that the compost meets EPA standards for 

pathogen safety, known as Process to Further Reduce Pathogens (PFRP) (Pathogen 

Treatment Processes, 2015). The PFRP requires composts produced using the aerated 

static pile (ASP) method to maintain a temperature of 55ºC or higher for three days. 

Composts produced using the windrow method are required to maintain a temperature of 

55ºC or higher for 15 days or longer, during which time the pile is turned at least five 

times (Pathogen Treatment Processes, 2015). 

 

The main components of the raw starting material (organic matter) are lignocellulose, 

proteins, and lipids. Lignocellulose consists of cellulose, hemicellulose, and lignin, which 

are strongly bonded by non-covalent forces and covalent cross-linkages (Pérez et al., 

2002). During the early stage of composting, it is the soluble and easily degradable 

carbon sources (such as monosaccharides, starch, and lipids) that are consumed by micro-

organisms. Organic acids are formed from degradation of these compounds, decreasing 

the pH. Proteins are broken down next, releasing ammonium and increasing pH. Finally, 

the more resistant lignocellulose compounds are degraded and partially transformed into 

humus (Tuomela et al., 2000). 

 

In most composting environments, bacteria are about 100 times more abundant than fungi 

(Stofella and Kahn, p. 23). An estimated 80-90% of all the microbial activity in 

composting is attributed to bacteria (Golueke 1977, p. 9). Gram positive bacteria such as 

Bacillus spp. are dominant throughout the composting process (Klamer & Bååth, 1998; 
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Ryckeboer et al., 2003b). Bacillus spp. are the most dominant and abundant bacteria in 

compost. They produce a thick-walled endospore that is resistant to heat and chemical 

degradation. They can survive on a variety of food sources and tolerate both mesophilic 

and thermophilic temperatures. 

 

In the first few days of composting, levels of lactate are high, as are populations of Gram-

positive fermenting bacteria such as Lactobacillus, Leuconostoc, Pediococcus, and 

Staphylococcus (Peters et al., 2000; Ishii et al., 2000). Yeasts are also abundant during 

the initial mesophilic stage. Gram-negative bacteria including Pseudomonas, 

Arthrobacter, and Alicaligenes are present during this time. The predominant mesophilic 

fungus in the raw organic material is Geotrichum sp. (Nusbaumer et al., 1996). Fungal 

populations decrease as the temperature rises, with all thermophilic fungi undetected at 

64˚C (Tuomela et al., 2000). 

 

Maximum temperatures are associated with peak population sizes of total aerobic 

heterotrophs, and as heterotroph populations decrease, so does temperature (Tiquia et al., 

1996; Tiquia et al., 1997). Heterotrophic metabolic activities include cellular respiration, 

fermentation, and ecoenzyme activity. Increasing heterotroph populations releases 

increasing amounts of heat from their associated metabolic activities and ecoenzymatic 

breakdown of organic matter. 
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Actinobacteria co-dominate the thermophilic phase with other gram positive bacteria, 

particularly Bacillus spp (Ryckboer et al., 2003a; Ishii et al., 2000). Mesophilic 

organisms are inhibited during the thermophilic phase. Yeasts are not detected in the 

thermophilic phase, and re-appear in the cool-down and maturation phase when the 

temperature cools down to below 54˚C. The thermotolerant fungus Aspergillus fumigatus 

is abundant during the initial mesophilic stage and its spores can withstand temperatures 

above 60˚C. Aspergillus fumigatus specializes in degrading cellulose and hemicellulose 

(Tuomela et al., 2000; Stofella & Kahn, p. 25). 

 

White-rot fungi are most efficient at degrading lignin, but because most of them do not 

survive the thermophilic phase, they cannot play a significant role in lignin 

decomposition. However, Phanerochaete chrysosporium is a white-rot Basidiomycete 

that can grow well in elevated temperatures (Tuomela et al., 2000). Because fungal 

populations are low during the thermophilic phase (Klamer & Bååth, 1998), it is the 

Bacillus spp. and actinobacteria such as Streptomyces that degrade most of the 

lignocellulose substrates during the thermophilic phase (Ryckeboer et al., 2003b). 

In the cooling phase, mesophilic and thermotolerant organisms re-colonize the pile. Most 

of the substrate now consists of partially decomposed organic matter and humus. The 

dominant fungi after peak heating are Aspergillus sp.,Thermomyces lanuginosus, Mucor 

sp. (Tuomela et al., 2000). Bacillus, Psuedomonas, and Rhodococcus are abundant during 

the cooling phase (Ryckeboer, 2003). 
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During maturation, lignin, hemicellulose, and cellulose may be the main substrates for 

micro-organisms. At this point, less complex carbon sources have already been consumed 

and transformed into humus (Danon et al., 2008). Microbial diversity increases at this 

time. 

 

Humus is considered the end product of composting, as it is resistant to microbial 

degradation, and is the primary source of nutrients and conditioning when applied to soil. 

Humus binds to plant nutrients and sequesters heavy metals; it increases soil cation 

exchange capacity, retains moisture through microporosity, and accumulates in nature as 

soil organic matter, peats, coals, oils, and organic sediments. Humus is formed through 

the transformation of lignin decomposition products, quinones, proteins, and sugars 

(Stevenson 1994, p. 189). 

 

1.4. Effects of Compost Characteristics on Disease Suppression against R. solani 

 

Compost has been shown to suppress symptoms of plant disease, but reliable and 

efficient disease suppression has been difficult to replicate in the field (Hoitink and 

Boehm, 1999; Stone et al., 2001; Noble and Coventry, 2005; Noble 2011). The maturity 

age, feedstock materials, and application rate (% v/v) of compost all contribute to its 

potential and ability to suppress disease (Noble and Coventry, 2005).  
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1.4.1. Compost Maturity and Suppression against R. solani 

 

Compost maturity is typically measured by age, or curing time post-thermophilic phase, 

which typically lasts three to six months. For the purpose of this study, composting just 

past the thermophilic phase is considered immature compost, and curing for three to six 

months is considered mature compost. Immature composts are warmer than mature 

composts, as they have just finished the thermophilic phase and are just beginning to cool 

down to ambient temperature. Greenhouse trials show that mature compost provides 

significant suppression against R. solani, whereas immature compost is conducive to 

disease development (Tuitert et al., 1998; Kuter et al., 1988; Hoitink et al., 1996). 

Compost that had been cured for five months showed better suppression than compost 

that had been cured for three or seven months (Tuitert et al., 1998). Similarly, compost 

samples taken from the high-temperature center of the pile are conducive to R. solani 

infection, but samples taken from the low-temperature edge of the pile are suppressive 

(Chen et al., 1987; Chung and Hoitink, 1990). Immature composted hardwood bark and 

any compost that is heat-treated does not provide any disease suppression (Nelson and 

Hoitink, 1983; Hoitink et al., 1996). 

 

1.4.2. Compost Feedstocks and Suppression against R. solani 

 

R. solani has been suppressed in greenhouse trials using compost made from hardwood 

bark (Daft et al., 1979; Stephens et al., 1981; Nelson and Hoitink, 1982, 1983; Kuter et 
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al., 1983; Stephens and Stebbins, 1985), organic household waste (Tuitert et al., 1998), 

viticulture and enological factory residues (Pane et al., 2011), cow manure (Pane et al., 

2011; Gorodecki and Hadar, 1990), municipal waste (Van Assche and Uyttebroeck,1981; 

Mathout, 1987), and grape marc (Gorodecki and Hadar, 1990). However, grape marc 

compost also showed no suppression against R. solani (Santos et al., 2008). Municipal 

waste compost stored near piles of composted hardwood bark suppressed R. solani, while 

those that were not stored near composted hardwood bark were not suppressive (Kuter et 

al., 1988). These conflicting findings stress the importance of consistent feedstock 

chemistry and microbial community composition in R. solani suppression. 

 

1.4.3. Compost Application Rate and Suppression against R. solani 

 

Several studies report significant disease suppression against R. solani from compost 

amendment in greenhouse trials using application rates of 20% (v/v) or less in soil 

(Lumsden et al., 1983; Gorodecki and Hadar, 1990; Tuitert et al., 1998; Tuitert and 

Bollen 1996; Ryckeboer 2001; Diab et al., 2003; Daft et al., 1979; Kuter et al., 1988). 

These suppressive composts were made from a variety of materials such as cattle manure 

and grape marc (Gorodecki and Hadar, 1990), vegetable and fruit waste (Tuitert et al., 

1998; Tuitert and Bollen 1996; Ryckeboer, 2001), or hardwood bark (Nelson and 

Hoitink, 1983; Daft et al., 1979). Low compost application rates are less likely to cause 

negative effects such as phytotoxicity and high pH and electrical conductivity (Sullivan 

and Miller, 2001). 
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1.4.4. Compost Microbial Communities and Disease Suppression 

 

Compost microbial community composition differs across feedstock recipe, curing 

method, and maturity age (Neher et al., 2013). Assessment of bacterial communities in 

compost have shown clear successional transitions during compost curing. 

Proteobacteria are the most abundant phylum in all cases, and Bacteroidetes and 

Gammaproteobacteria were ubiquitous. Actinobacteria dominate the midcuring stage, 

and varying members of nitrifying bacteria and cellulose-degrading bacteria are found 

during the curing process (Danon et al., 2008). 

 

Succession of microbial communities during composting is directly related to the 

establishment of the phenomenon of disease suppression (Hadar and Papadopoulou, 

2012). At the start of the maturation phase, labile substrates have already been oxidized 

by the microbial community, and the remaining substrates consist of semihumified 

materials, lignins, recalcitrant microbial metabolites, and partly decomposed cellulosic 

substances. These substrates appear to favor the rise of a competitive microbial 

community. 

 

Hardwood bark was hypothesized to be more conducive to colonization of Trichoderma 

(teleomorph: Hypocrea) biocontrol species, allowing it to outcompete and/or antagonize 

fungal pathogens (Hoitink et al., 1996). Trichoderma is a prolific sporulator and is able to 
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use various mechanisms for biocontrol, such as antibiosis, parasitism, and competition. 

However, Trichoderma spp. are not detected in high-throughput sequencing analysis of 

mature hardwood bark compost (Neher et al., 2013), though its order Hypocreales 

Helotales was present. Additionally, high cellulose content colonizes abundant 

Trichoderma spp., but because it characterizes immature composts, creates an 

environment that is conducive to R. solani proliferation and infection (Hoitink and Fahy, 

1986). These conflicting results indicate that a high population of antagonist does not 

necessarily equate to suppression, and microbial consortia may be more responsible for 

biocontrol activity than single species (Hadar and Papadopoulou, 2012). Chung and 

Hoitink (1990) found that suppression against R. solani using Trichoderma hamatum-

inoculated compost was reduced in compost at 40-50ºC, and improved in compost at 

55ºC or hotter, but there was no significant difference in population densities of T. 

hamatum among compost at temperatures ranging from 40-60ºC and greater, indicating 

that growth and abundance of biocontrol species is not the only variable in disease 

suppression. 

 

Microbial succession that occurs during the production of compost offers an opportunity 

to engineer microbial communities with biological control activity to cosmopolitan and 

persistent soilborne plant pathogens. Successful biological control requires understanding 

the impacts that both carbon source and successional stage have on microbial community 

and ecological niche. However, most studies have treated all composts equally when 

considering biological control activity. 
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1.5. Biological Indicators of Disease Suppressive Compost 

 

1.5.1 Indicators of Compost Maturity 

 

One principal factor limiting widespread use of compost in disease suppression is 

variation in compost maturity. Compost maturity has traditionally been measured by pile 

temperature, age, and humification (humus is the end product of composting, and is 

measured through the amount of humic and fulvic acids). Parameters such as ecoenzyme 

activity (Castaldi et al., 2008), respiration (Hoitink et al., 1996), and C:N ratio (Goyal et 

al., 2005), are correlated most closely with maturity. Although respiration is affected by a 

number of parameters including temperature, humidity, and incubation conditions, it is 

still the most common of maturity tests (Gómez et al., 2006; Wichuk and McCartney, 

2010), and constitutes the main component of a popular commercial maturity test kit 

produced by Solvita. The Solvita Compost Maturity kit measures carbon dioxide and 

ammonia emissions (Woods End Laboratories, Maine), based on the premise that more 

stable composts release low amounts of carbon dioxide and ammonia. Maturity indicators 

are useful for making decisions about how, and for what purpose, the compost should 

best be applied. 
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1.5.2. Ecoenzyme Activity as Indicators of Microbial Community Metabolism 

 

Several terms have been used to describe extracellular enzymes secreted by soil 

microbes; this paper will use the term ecoenzyme to include all enzymes located outside 

of cell membranes, and to refer to the correlation between environmental enzyme activity 

and organic matter decomposition (Sinsabaugh and Shah, 2012). Ecoenzymes are the 

primary means by which soil organic matter is decomposed. Ecoenzyme activity is an 

indicator of microbial nutrient demand in relation to environmental nutrient availability 

(Sinsabaugh et al., 2008). Transcription of ecoenzyme expression is ultimately linked to 

environmental signals, such as substrate concentration, indicators of toxicity, or quorum 

sensing molecules (Sinsabaugh and Shah, 2012). 

 

Because enzymes that hydrolyze related groups of compounds, such as cellulose and 

hemicellulose, correlate with each other, a single indicator enzyme can be used as a 

representative of the combined activities of a suite of enzymes that degrade a particular 

substrate. For example, β-glucosidase (BG) can serve as an indicator enzyme for 

hydrolization of hemicellulose and cellulose, β-N-acetyl-glucosaminidase (NAG) for 

chitin, L-leucine aminopeptidase (LAP) for protein degradation and general microbial 

activity, and phosphatase (PP) for organic phosphorus (phosphoesters) and microbial 

turnover (Moorhead et al., 2013). These are some of the most studied ecoenzymes, and 

they catalyze the degradation of the largest environmental sources of organic carbon, 

nitrogen, and phosphorus. Humus is formed by the oxidative degradation of lignin, which 
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is catalyzed by phenol oxidases and peroxidases, requiring the use of molecular oxygen 

and peroxide, respectively, as electron acceptors (Sinsabaugh and Shah, 2012). 

 

The ratio of ecoenzymatic carbon (C) acquisition to ecoenzymatic nitrogen (N) and 

phosphorus (P) is represented in the following ratios of ecoenzyme activity (Sinsabaugh 

and Shah, 2012): 

 

EEAC/N = BG/(LAP+NAG) 

EEAC/P = BG/PP 

 

These ratios are correlated with the C:N and C:P ratios of labile organic matter in the 

environment. 

 

Assessing ecoenzyme activity in compost captures the current state of microbial 

community metabolism, and serves as an indicator of which substrates and 

decomposition functions are most abundant. Ecoenzyme activity may be affected by the 

substrate composition of the original feedstock materials. Few studies have quantified 

ecoenzyme activity in compost (Neher et al., 2015), and none have been done to predict 

disease suppression. 
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1.5.3. Use of Nematodes as Indicators of Compost Maturity 

 

Nematodes are well known as indicators of soil quality and ecosystem health, but they 

are less well understood in composting (Steel et al., in press). They are favored as 

biological indicators because of their distribution among multiple trophic groups, 

occupation of central positions in the soil food web, and their ubiquitous presence in all 

soil types, climates, and environments (Bongers and Ferris, 1999; Neher 2001). They are 

responsive to disturbance, enrichment, and pollution, which makes them good candidates 

as indicators of compost maturity. 

 

Opportunistic nematodes typically occupy rapidly changing environments with an 

abundance of food – enrichment opportunists (cp-1) are gradually replaced by general 

opportunists (cp-2) (Bongers, 1999). Typically, a maturity index is computed from 

colonizer-persister (c-p) values. To avoid confusion with compost maturity, this paper 

will refer to the nematode maturity index as an ecological succession index (ESI). There 

appear to be clear shifts in nematode ecological successional index and F:B ratio during 

composting, so nematodes can potentially be used as an indicator of compost maturity. 

The ecological successional index increases from 0.81±59 during the thermophilic phase 

to 1.24±0.12 during cooling and finally to 1.34±0.34 during maturation (P ≤ 0.001) (Steel 

et al., 2010). 
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The maturity and stability of the compost ecosystem may play a role in its ability to 

outcompete or antagonize disease pathogens. Nematodes have never been assessed in 

compost to determine effects on disease suppression against R. solani. 

 

1.6. Conclusion 

 

As the movement for more sustainable food production grows, so does the need for 

alternative methods of managing soilborne plant pathogens on globally important food 

crops. Compost is a promising method of suppressing soilborne plant pathogens that 

complies with organic standards of food production, but its use in disease suppression is 

currently met with varying efficacy, depending on feedstock materials, production 

process, application rate, and maturity age at the time of application. The best methods 

for assessing compost maturity and stability are still unclear, though the most popular 

methods favor respiration and C:N ratio. Ecoenzyme activity and nematode community 

composition are potentially reliable indicators of compost maturity and stability. 

 

The microbial community composition and associated substrate composition are 

important to establishing disease suppression. More research is needed to determine the 

microbial metabolic profile that is best suited for disease suppression against a specific 

soilborne plant pathogen. This study aims to identify the indicators that most contribute 

to disease suppressive activity of compost against the soilborne fungal pathogen R. 

solani. 
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CHAPTER 2. EFFECTS OF MICROBIAL COMMUNITY COMPOSITION, 

COMPOST TYPE, AND FIELD APPLICATION RATE ON DISEASE 

INCIDENCE 

 

2.1. INTRODUCTION 

 

Compost has been shown to suppress soilborne plant diseases including the fungal 

pathogen Rhizoctonia solani (teleomorph: Thanatephorus cucumeris), a facultative 

saprophytic fungus with a wide host range including brassicas, lettuce, and potatoes 

(Hoitink et al., 1996). Several different types of compost have been shown to suppress R. 

solani in greenhouse trials, including composted hardwood bark and vermicompost, 

suggesting that managing carbon quality and compost maturity will alter relative 

competition between biocontrol microbes and the pathogen (Nelson and Hoitink, 1983; 

Ersahin et al., 2009). R. solani is responsible for economic losses to organic vegetable 

production in Vermont and there are no available methods to manage the disease that 

meet organic certification. It is also listed as one of most important pathogens on crop 

plants that provide the primary sources of human nutrition (Strange and Scott, 2005). 

Because of these reasons, R. solani on radish was chosen as the model pathogen for this 

study. 

 

Compost microbial community composition has been shown to differ across feedstock 

recipe, production process, and maturity age (Neher et al., 2013). High-throughput 
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genetic sequencing has enhanced the ability of researchers to identify prevalent microbial 

groups in soil and compost. Culture-dependent techniques of mirobiota identification are 

limited as not all soil organisms can be easily cultured in the laboratory. Genetic 

sequencing of the highly conserved 16S ribosomonal subunit in bacteria and archaea 

provides a more accurate picture of the taxonomic composition of soil and compost 

(Fierer et al., 2005). In fungi, it is the internal transcribed spacer (ITS) sequence that is 

used (Bates et al., 2013). Field applications of compost are typically measured in tons per 

acre.  

 

Objective 

This study aims to identify the effects of application rate and compost type (hardwood 

bark compost or vermicompost) on 1) disease incidence of R. solani on radish, and 2) 

bacterial and fungal community composition associated with disease suppression. 

 

2.2. METHODS 

 

2.2.1. Compost Selection 

 

Commercial products were chosen because they have met the temperature requirements 

set by the EPA, known as Process to Further Reduce Pathogens (PFRP). A thermophilic 

compost and vermicompost were chosen for comparison. The thermophilic compost was 

made by Highfields Center for Composting (Hardwick, VT) using the aerated static pile 
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(ASP) method, from a 5:5:3 ratio of manure/silage : hardwood bark : softwood shavings, 

resulting in a C:N ratio of 34:1 (Neher et al., 2013). The vermicompost was made by 

Worm Power (Avon, NY) from ASP-composted manure/silage. 

 

2.2.2. Model Pathogen System 

 

Local field isolates were collected from Vermont grown potatoes and radishes infected 

with R. solani; the infected pieces were excised, grown in water agar, and incubated at 

room temperature. Inoculum was grown in a sterile mix of 96g sandy soil, 4g corn meal, 

and 20ml water. The culture medium was autoclaved for one hour over three consecutive 

days to ensure that endospores of Bacillus spp. were killed. Plugs of R. solani on PDA 

were transferred to the culture medium, covered with foil, and let sit at room temperature 

for 2-3 weeks until the culture medium was overgrown with white fuzzy mycelium. At 

this point the inoculum was considered ready for infestation in soil. Pathogenicity tests 

were performed on radish seedling populations, detailed in the next section, 2.2.3. The 

most virulent isolates were kept in long-term storage on a minimal media of corn meal 

agar slants (at 5⁰C), and used to infest soils for greenhouse bioassays. 

 

Radish (Raphanus sativus), Ping Pong variety from Johnny’s Seeds, was chosen for its 

quick growth and ease of detecting R. solani infection at the root crown. Field soil was 

used in greenhouse bioassays to mimic field conditions while controlling for temperature 

and minimizing weather variability.  
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2.2.3. Greenhouse Bioassay 

 

Field soil was provided by the UVM Horticultural Research and Education Center 

(Adams and Windsor loamy sands); it was steam pasteurized at 70⁰C for four hours to 

destroy native pathogens, then re-inoculated with its endemic microbial community by 

adding 4L of 10m filtered soil extract, and sat for three weeks to allow the microbial 

community to re-establish itself. Half the soil was inoculated with mixed isolates of R. 

solani at a rate of one inoculum (approximately 100ml volume) per liter of soil, and was 

allowed one week to equilibrate with the soil before compost was applied. After compost 

application, another equilibration period of one week was given before 25 radish seeds 

were planted into each pot using a customized dibble-stick to ensure a distance of 2.54 

cm (1 inch) between each seed. Four replicate pots were ascribed to each treatment 

sample. Pots were grown in the greenhouse under natural day lengths, watered daily. 

Seedlings were harvested after two weeks, with roots in tact. Each seedling was assessed 

for disease incidence, standardized as a proportion of diseased seedlings to healthy 

seedlings. A treatment of infested soil with no compost applied was used as a control. 

 

Pathogenicity Test 

 

Each isolate of R. solani was tested for pathogenicity in four replicate pots. Prepared field 

soil was bulk infested with a particular isolate of R. solani and distributed amongst four 
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pots. Twenty-five radish seeds were planted per pot and watered daily in the greenhouse. 

Seedlings were harvested after two weeks and assessed for disease incidence. The most 

virulent isolates of R. solani expressing severe disease symptoms on at least 75% of 

seedlings were kept and used to inoculate soils for disease severity trials. 

 

Field Application Rate Assays 

 

Low and high field application rates of 2.75 and 27.5 metric tons per hectare (MT/ha) 

(one and 10 tons per acre) of vermicompost (VMO), and 27.5 and 55 MT/ha (10 and 20 

tons/acre) of hardwood bark compost (HM) were used for this greenhouse bioassay. 

These values were scaled down to a greenhouse pot size in four replicates. Controls of no 

compost in both infested and uninfested soil, and rice hulls in infested soil were used for 

comparison. Twenty-five radish seeds were planted per pot, and seedlings were harvested 

after two weeks of growth in the greenhouse to be assessed for disease incidence. The 

treatment soils were assayed for bacterial and fungal community composition using 16S 

and ITS high-throughput sequencing. 

 

16S and ITS High-Throughput Sequencing 

 

Genomic DNA was extracted using the MoBio PowerSoil™ kit (MoBio, Carlsbad, CA, 

USA) according to the manufacturer’s instructions with the following exceptions: 0.1 

gram of compost (instead of 0.25 g) was added to each tube of PowerBeads. Sample C1 
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was incubated at 65° C for 10 minutes and then secured and vortexed horizontally with 

beads for 2 minutes. PCR amplification of the 16S rRNA gene (for bacteria and archaea) 

or the internal transcribed spacer region (ITS1) of the nuclear ribosomal RNA gene (for 

fungi) followed the approach described in Lauber et al. (2009). Briefly, each sample was 

amplified in triplicate, and amplicons were composited together in equimolar 

concentrations prior to sequencing. PCR reactions contained 13 μL PCR-grade water, 10 

μL 5 Prime Hot Master Mix, 0.5 μL each of the forward and reverse primers (10 μM final 

concentration), and 1.0 μL genomic DNA (diluted 1:10 with PCR-grade water). 

Reactions were held at 94°C for 3 min to denature the DNA, with amplification 

proceeding for 35 cycles at 94 °C for 45 s, 50 °C for 60 s, and 72 °C for 90 s; a final 

extension of 10 min at 72 °C was added to ensure complete amplification. For the 

bacterial and archaeal analyses, the 200-bp PCR primers (515f/806r) targeted the V4 

region of the 16S rRNA gene (Fierer et al., 2012). For the fungal analyses, we used PCR 

primers (ITS1-F/ITS2) to amplify the ITS1 spacer (Caporaso et al., 2012). Both primer 

pairs contained 12-bp barcodes unique to each sample and the appropriate adapters to 

permit sequencing on the Illumina MiSeq platform (Fierer et al., 2012; Gardes and Bruns, 

1993). 

 

2.2.4. Statistical Analyses 

 

Analysis of variance (ANOVA) with three main effects (production process, maturity, 

and feedstock) was performed using the MIXED procedure in SAS 9.3, with Tukey post-
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hoc tests groupings generated by a SAS macro called PDMIX800, created by Arnold M. 

Saxton of the University of Tennessee, Knoxville. No other interactions were possible 

given their unavailability on the market. Bray-Curtis dissimilarity and PERMANOVA 

(permutational multivariate analysis of variance) were performed on 16S and ITS 

sequences to determine differences in microbial community composition among compost 

treatments, using Primer 6/PERMANOVA+. Principal coordinates analysis (PCO) was 

performed on Bray-Curtis results. Multiple Kruskal-Wallis tests using false discovery 

rate p-values were performed on 16S and ITS sequences to determine taxonomic 

differences between compost treatments, using R code provided by Jonathan Leff at the 

University of Colorado (Appendix D.1). 

 

2.3. RESULTS 

 

Disease incidence appeared lowest with high vermicompost application of 27.5 MT/ha 

(10 tons/acre), and all compost applications suppressed R. solani more than the control of 

no compost (Figure 2), though no significant differences were found with compost (P ≤ 

0.22) or application rate (P ≤ 0.7).  

 

Principal coordinates analysis of 16S sequences shows clustering of infested 

vermicompost samples and uninfested hardwood bark compost controls, and pure 

compost samples tend to have unique community composition from each as well as when 
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mixed with field soil samples (Figure 3). There is less evident clustering or consistency 

among fungal ITS sequences (Figure 4). 

 

Compost type and application rate had significant effects on 16S community composition 

(P ≤ 0.001), including significant interaction effects (P ≤ 0.001) (Table 1). However, no 

significant effects were observed on ITS fungal community composition for compost 

type, application, or their interaction (P ≤ 0.703, P ≤ 0.792, P ≤ 0.491) (Table 1), 

indicating highly variable fungal communities even within the same compost type. 

 

Just comparing relative abundances within each treatment sample, hardwood bark 

compost had greater median abundance of Proteobacteria, followed by Bacteroidetes, and 

smaller abundances of Verrucomicrobia, Firmicutes, Acidobacteria, Actinobacteria, 

Planctomycetes, and Gemmatimonadetes, and there was minimal presence of 

Armatimonadetes (Table 2). Similarly, vermicompost contained relatively abundant 

Proteobacteria, with Bacteroidetes as second most abundant, and a minimal presence of 

Armatimonadetes. The rice hulls treatment was highest in Proteobacteria, followed by 

Bacteroidetes, and there was somewhat greater abundance of Armatimonadetes. The no 

compost treatment was highest in Proteobacteria, followed by Bacteroidetes, and had the 

greatest abundance of Armatimonadetes compared to all other treatments (Table 2). The 

trends here indicate that Proteobacteria and Bacteroidetes are ubiquitous in both soil and 

compost. 
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There appears to be a trend of increasing abundance of Acidobacteria with increasing 

rates of compost application (Table 3), and hardwood bark compost was significantly 

more abundant in Acidobacteria (P ≤ 0.0238). Additionally, Acidobacteria were more 

abundant in uninfested treatments (P ≤ 0.073) (Table 4), indicating there is some 

relationship between Acidobacteria abundance and R. solani growth suppression. 

Acidobacteria is more abundant when R. solani is more suppressed. Acidobacteria are 

found in many soil types as well as freshwater habitats, hot springs, sewage sludge, and 

wastewater treatment plants (Quaiser et al., 2003). The application rate of 10 tons per 

acre yielded more abundant FBP (P ≤ 0.0387) (Table 3). Chloroflexi, Firmicutes, and 

Proteobacteria were all more abundant in infested treatments (P ≤ 0.066, P ≤ 0.075, P ≤ 

0.08) (Table 4). No differences were found in ITS fungal phyla for compost type, 

application rate, or pathogen presence. No interaction effects between compost type and 

application rate were found (Table 1). 
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Figure 2. Disease incidence of hardwood bark compost and vermicompost. + indicates 

soil infested with R. solani; - indicates uninfested soil. VMF = 

Vermicompost/Mature/Fresh; HM = Hardwood bark/Mature; NC = No Compost. VMF 

(Hi) = 27.5 MT/ha (10 tons/acre); VMF (Low) = 2.75 MT/ha (1 ton/acre); HM (Hi) = 55 

MT/ha (20 tons/acre); HM (Low) = 27.5 MT/ha (10 tons/acre) 

 

 

 

 

 

 
 

Figure 3. Principal coordinates analysis of 16S sequences, bacteria and archaea. 

V=Vermicompost, R=Rice Hulls Control, H=Hardwood Bark Compost, NC=No 

Compost. On the graph + indicates soil infested with R. solani, - indicates soil not 

infested with R. solani, and C indicates it is a pure compost sample. 
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Figure 4. Principal coordinates analysis of fungal ITS sequences. V=Vermicompost, 

R=Rice Hulls Control, H=Hardwood Bark Compost, NC=No Compost. On the graph + 

indicates soil infested with R. solani, - indicates soil not infested with R. solani, and C 

indicates it is a pure compost sample. 
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Table 1. PERMANOVA effects of compost and application rate on 16S and ITS 

sequencing microbial community composition. Pseudo-F and Monte Carlo (MC) P-value 

are shown. Both are permutational versions of the traditional F statistic and P-value. 

 16S Bacteria & Archaea ITS Fungi 

Pseudo-F P (MC) Pseudo-F P (MC) 

Compost 4.89 0.001 0.747 0.703 

Rate 9.5 0.001 0.695 0.792 

Compost*Rate 4.775 0.001 0.526 0.491 

 

Table 2. Multiple Kruskal-Wallis test of 16S bacterial phylum differences among 

compost types with false discovery rate P-values and median abundances (expressed as 

percentage of sequences) for each compost type. P ≤ 0.05 is highlighted in bold. NC = No 

Compost; HM = Hardwood Bark Compost/Mature; VMF = Vermicompost/Mature/Fresh; 

R = Rice Hulls 

Phylum P (FDR) NC HM VMF R 

Acidobacteria 0.0238 0.0138 0.0321 0.014 0.019 

Armatimonadetes 0.1545 0.0079 0.009 0.004 0.011 

Firmicutes 0.1514 0.029 0.02045 0.0394 0.0255 

Verrucomicrobia 0.2202 0.0319 0.035 0.027 0.0369 

Bacteroidetes 0.1791 0.2619 0.2819 0.3107 0.217 

Planctomycetes 0.3785 0.0281 0.028 0.0227 0.034 

Proteobacteria 0.518 0.5351 0.4746 0.4534 0.5422 

Actinobacteria 0.597 0.04 0.0325 0.0408 0.0422 

Gemmatimonadetes 0.589 0.0315 0.0264 0.035 0.031 

 

Table 3. Multiple Kruskal-Wallis test of 16S bacterial phylum differences among 

application rates with false discovery rate P-values and median abundances (expressed as 

percentage of sequences) for each application rate. P ≤ 0.05 is highlighted in bold. 

Application rates are listed in MT/ha with tons/acre in parentheses. 

Phylum P (FDR) 0 2.75 (1) 27.5 (10) 55 (20) 

FBP 0.0387 0.003 0.004 0.0111 0.003 

Acidobacteria 0.118 0.017 0.012 0.0214 0.0367 

Proteobacteria 0.432 0.511 0.529 0.4478 0.4854 

Bacteroidetes 0.342 0.271 0.273 0.2953 0.2622 

Planctomycetes 0.3113 0.028 0.022 0.0281 0.0298 

Fibrobacteres 0.3408 0.001 0 0.0105 0.0113 

Firmicutes 0.411 0.0266 0.0373 0.0334 0.0225 

Gemmatimonadetes 0.74 0.0301 0.035 0.0342 0.027 

Verrucomicrobia 0.676 0.0342 0.0269 0.0327 0.0375 

Actinobacteria 0.6303 0.0396 0.0366 0.041 0.036 
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Table 4. Multiple Kruskal-Wallis test of 16S bacterial phylum differences among 

treatments uninfested and infested with R. solani, with false discovery rate P-values and 

median abundances (expressed as percentage of sequences) for each treatment group. P ≤ 

0.08 is highlighted in bold.  

Phylum P (FDR) Infested Uninfested 

Chloroflexi 0.066 0.0024 0.011 

Gemmatimonadetes 0.086 0.0316 0.0207 

Acidobacteria 0.073 0.0203 0.0347 

Firmicutes 0.075 0.0299 0.017 

Proteobacteria 0.08 0.5019 0.4546 

Bacteroidetes 0.102 0.272 0.3166 

Actinobacteria 0.425 0.0399 0.0325 

Planctomycetes 0.566 0.0281 0.025 

Verrucomicrobia 1 0.0343 0.032 
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2.4. DISCUSSION 

 

This study is novel in its comparison of the effects of bacterial and fungal community 

composition on disease suppression against R. solani, as well as its examination of the 

bacterial and fungal community composition of compost after amendment to soil. 

Additionally, few studies have compared application rates of vermicompost and 

hardwood bark compost for suppression of R. solani. 

 

While compost type and application rate had significant effects on bacterial community 

composition, these effects did not translate to differences in disease incidence. The 

differences in bacterial community composition may not have been large enough to affect 

disease incidence, and it is also likely that the native soil microbial community dominated 

the compost microbial community, rendering any biocontrol activity ineffective. 

Additionally, the sample size may have been too small for the large amount of natural 

variation in microbial community analyses. 

 

Similar to the findings of Neher et al. (2013), Proteobacteria and Bacteroidetes were the 

most abundant bacterial phyla in compost. Hardwood bark compost also contained more 

Acidobacteria than other compost types made from manure/silage only or hay as the 

primary carbon component. The hardwood bark compost used in this study was the same 

as that used in the study by Neher et al. (2013), but it had continued to mature for another 

year. The change in bacterial community composition and reduced abundances of 
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Chloroflexi, Acidobacteria, and Actinobacteria reflect the additional year of maturation 

time and overall reduction in microbial activity and abundance. 

 

Similarly, in a mature thermophilic compost made from a mixture of sewage sludge and 

yard waste, aerated by biweekly windrow turning, Gammaproteobacteria, Proteobacteria, 

and Actinobacteria were reported to be the most abundant bacterial phyla (Danon et al., 

2008). In this case, Bacteroidetes was dominant during the initial phases of composting, 

but the population was reduced during maturation. However, in a thermophilic compost 

made from organic wastes and yard trimmings that matured for over a year, only 

Actinobacteria and Firmicutes were reported to be most abundant (Fracchia et al., 2006). 

Firmicutes was barely detected by Danon et al. (2008), and was present but not abundant 

in this study as well as the composts used in Neher et al. (2013). 

 

These studies all used 16S rRNA PCR amplification and sequencing to determine 

bacterial community composition in compost, making it possible to compare the results 

from different studies using different compost samples. Using other methods such as 

culture isolation or phospholipid fatty acid analysis (PLFA) would vary the results, and 

comparison would be more accurately focused on methods comparison rather than 

comparison of community composition. 

 

Vermicompost has been reported to be most abundant in Bacteroidetes followed by 

Gammaproteobacteria, and somewhat abundant in Verrucomicrobia and Chloroflexi 
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(Neher et al., 2013), and in another study vermicompost was dominated by Chloroflexi, 

Acidobacteria, Bacteroidetes, and Gemmatimonadetes (Fracchia et al., 2006). In this 

study, vermicompost was most abundant in Proteobacteria and Bacteroidetes. 

Gemmatimonadetes and Verrucomicrobia were present but not abundant. 

 

Similar phyla continue to show up in high-throughput sequencing studies of mature 

compost microbial communities, though their relative abundances and dominance vary, 

indicating a potentially strong influence from compost feedstock, production process, and 

maturity age at the time of analysis. Compost used in the study by Fracchia et al. (2006) 

had matured for at least one year and up to 12 years, which reflects the reduced 

abundance of bacterial phyla detected. 

 

In contrast to the findings of Neher et al. (2013), our results show vermicompost had 

levels of abundance of Bacteroidetes and Verrucomicrobia similar to hardwood bark 

compost. Overall bacterial taxonomic composition differed by compost type, application 

rate, and their interaction, but differences in individual taxa were not found.  

 

Because no significant differences were found in the fungal taxonomic composition of 

vermicompost and hardwood bark compost, they may have similar diversity and 

abundance of fungi. Diverse and abundant fungal populations may be important to the 

suppression of R. solani. Additionally, the soil fungal community may be dominating the 

compost community, thus the fungal communities become less distinguishable. 
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Certain biocontrol species such as Bacillus spp., Enterobacter spp., Flavobacterium 

balustinum, Pseudomonas spp., Streptomyces spp., Penicillium spp., Trichoderma spp., 

and Gliocladium virens have been identified in compost-amended substrates (Chung and 

Hoitink, 1990; Hadar and Gorodecki, 1991; Hardy and Sivasithamparm, 1991; Hoitink 

and Fahy, 1986; Nelson et al., 1983; Phae et al., 1990). Abundances of these biocontrol 

organisms was minimal in all treatments, and Trichoderma and Gliocladium were not 

detected at all. In Neher et al. (2013) Trichoderma spp. were also not detected. 

Trichoderma spp. are the predominant parasites recovered using cultural isolation 

methods from composts made from lignocellulosic wastes (Kuter et al., 1983; Nelson et 

al., 1983), and are known to be effective against Rhizoctonia damping-off, especially 

when added as an isolated microbial inoculant (Kwok et al., 1987). High-throughput 

genetic sequencing is a more accurate method, compared to cultural isolation, of 

determining microbial community composition in soil and compost. Culture-dependent 

techniques are limited by and biased towards the organisms that favor laboratory media, 

whereas sequencing amplifies the genes that are already present in the soil, minimizing 

these limitations and biases. 

 

Because the composts used in this study and in Neher et al. (2013) were suppressive, 

abundance of specific biocontrol species may not necessarily determine significance, 

lending support to the idea that microbial consortia are more important in disease 

suppression than specific species of biocontrol organisms. 
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This study utilizes state of the art high-throughput sequencing to determine bacterial and 

fungal community composition in compost and soil, offering a culture-independent view 

of the compost microbial life. Taxonomic abundance is interesting to compare among 

compost samples made from different feedstocks and processes, and the differences are 

most prominent in different production processes. However, abundance of specific 

biocontrol species may not be the most significant factor in disease suppression. Certain 

taxonomic groups such as Acidobacteria increase with increasing rates of compost 

application, but this is not true for all other taxonomic groups. Ecological attributes of 

many of these taxa are not well known at this time. This study contributes to another 

view of compost microbial community composition via high-throughput genetic 

sequencing, and relates it to disease suppression against the model pathogen R. solani. 

While a handful of studies have looked at microbial community composition during the 

composting process using high-throughput genetic sequencing of 16S rRNA (Danon et 

al., 2008, Fracchia et al., 2006; Neher et al., 2013), none have related these changes and 

differences to disease suppression. 

 

This study could be strengthened with the use of a disease severity assessment, as the two 

compost types may express significantly different degrees of disease severity, which 

would not be shown when recording the more general assessment of disease incidence. 

Using an application rate in terms of % v/v may also strengthen the comparison between 

the two different types of compost. 
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CHAPTER 3. INDICATORS OF DISEASE SUPPRESSION IN COMPOST 

 

3.1. INTRODUCTION 

 

Compost has been shown to suppress soilborne plant diseases including the fungal 

pathogen Rhizoctonia solani (teleomorph: Thanatephorus cucumeris), a facultative 

saprophyte with a wide host range including brassicas, lettuce, and potatoes (Hoitink et 

al., 1996). However, compost is a heterogeneous material with varying efficiency in 

disease suppression, depending on feedstock chemistry, production process, and maturity 

upon application (Noble and Coventry, 2005). Several different types of compost have 

been shown to suppress R. solani in greenhouse trials, including composted hardwood 

bark and vermicompost, suggesting that managing carbon quality and compost maturity 

will alter relative competition between biocontrol microbes and the pathogen (Nelson and 

Hoitink, 1983; Ersahin et al., 2009). R. solani is responsible for economic losses to 

organic vegetable production in Vermont and there are no available methods to manage 

the disease that meet organic certification. It is also listed as one of most important 

pathogens on crop plants that provide the primary sources of human nutrition (Strange 

and Scott, 2005). Because of these reasons, R. solani on radish was chosen as the model 

pathogen for this study. 

 

Successful and reliable suppression of R. solani has been shown in greenhouse trials with 

vermicompost (Ersahin et al., 2009), and thermophilic composts made from hardwood 
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bark (Nelson and Hoitink, 1983), organic household waste (Tuitert et al., 1998), 

viticulture and enological factory residues (Pane et al., 2010), cow manure (Pane et al., 

2010; Gorodecki and Hadar, 1990), municipal waste (Van Assche and Uyttebroeck,1981; 

Mathout, 1987), and grape marc (Gorodecki and Hadar, 1990). However, grape marc 

compost also showed conduciveness towards R. solani (Santos et al., 2008), showing the 

inconsistency of compost use in disease suppression. Municipal waste compost stored 

near piles of composted hardwood bark suppressed R. solani, while those that were not 

stored near composted hardwood bark were not suppressive (Kuter et al., 1988). These 

conflicting findings stress the importance of consistent feedstock chemistry and microbial 

community composition in R. solani suppression. 

 

Disease suppression occurs through mechanisms of general competition for nutrients and 

resources and specific antagonism through toxicity (microbial production and release of 

antibiotics, antifungals that target pathogenic organisms), parasitism, and predation. The 

use of more recalcitrant carbon sources, such as lignocellulosic woody materials, in 

composting is hypothesized to favor the colonization of biocontrol organisms during 

maturation (Hoitink et al., 1996), supporting the view that it is the substrate composition 

during maturation that gives rise to a suppressive microbial community (Hadar and 

Papadopoulou, 2012). Maturity age is an indicator of substrate composition and microbial 

community. Greenhouse trials show that mature compost provides significant suppression 

against R. solani, whereas immature compost is conducive to disease development 

(Tuitert et al., 1998; Kuter et al., 1988; Hoitink et al., 1996). Compost that had been 
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cured for five months showed better suppression than compost that had been cured for 

three or seven months (Tuitert et al., 1998). Similarly, compost samples taken from the 

high-temperature center of the pile are conducive to R. solani infection, but samples 

taken from the low-temperature edge of the pile are suppressive (Chen et al., 1987; 

Chung and Hoitink, 1990). Immature composted hardwood bark and any compost that is 

heat-treated does not provide any disease suppression (Nelson and Hoitink, 1983; Hoitink 

et al., 1996), which suggests that suppression is largely due to microbial activity. 

 

Compost maturity has traditionally been measured by pile temperature, age, and 

humification (humus is the end product of composting, and is measured through the 

amount of humic and fulvic acids). Parameters such as ecoenzyme activity (Castaldi et 

al., 2008), respiration (Hoitink et al., 1996), and C:N ratio (Goyal et al., 2005), are 

correlated most closely with maturity. Respiration rate is the basis for the industry 

standard maturity test produced by Solvita, Woods End Laboratories, which measures 

CO2 and NH3 evolution and computes a maturity index based on the combined evolution 

rates. It remains the most popular method of maturity assessment among commercial 

compost producers. However, because respiration rate is influenced by a number of 

parameters including temperature, humidity, and incubation conditions (Gómez et al., 

2006; Wichuk and McCartney, 2010), it may not be the most accurate method in 

determining ecological maturity and stability, and may not support prediction of disease 

suppressive qualities in compost. 
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Ecoenzyme activity is an indicator of microbial nutrient demand in relation to 

environmental nutrient availability (Sinsabaugh et al., 2008). Because enzymes that 

hydrolyze related groups of compounds, such as cellulose and hemicellulose, correlate 

with each other, a single indicator enzyme can be used as a representative of the 

combined activities of a suite of enzymes that degrade a particular substrate. For 

example, β-glucosidase (BG) can serve as an indicator enzyme for hydrolization of 

hemicellulose and cellulose, β-N-acetyl-glucosaminidase (NAG) for chitin and 

peptidoglycan, L-leucine aminopeptidase (LAP) for proteins and general microbial 

activity, and phosphatase (PP) for organic phosphorus and microbial turnover (Moorhead 

et al., 2013). 

 

Assessing ecoenzyme activity in compost captures the current state of microbial 

community metabolism, and serves as an indicator of which substrates and 

decomposition functions are most abundant, or which nutrients are most limited. 

Ecoenzyme activity may be affected by the substrate composition of the original 

feedstock materials. An abundance of labile carbon substrates such as cellulose can be 

more conducive to disease establishment than the use of more recalcitrant carbon 

substrates such as lignin (Hoitink et al., 1996). 

 

The ecological stability of compost is important in disease suppression. Nematode 

quantification and identification is commonly used to assess ecosystem health, stability, 

and successional maturity in soils, though it has not commonly been used in compost. 
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Nematodes are favorable as biological indicators for a number of reasons (Bongers and 

Ferris, 1999; Neher 2001). As they are one or two steps higher on the food chain, they 

occupy multiple trophic groups and as such they can serve as integrators of physical, 

biological, and chemical properties within the soil ecosystem. Their occupation in 

multiple trophic groups and key positions in the soil food web allow them to be 

responsive to disturbance, enrichment, and pollution. Their generation time is longer 

(days to years) than metabolically active microbes (hours to days), making them more 

stable temporally, and buffered against ephemeral nutrient flushes (Neher 2001). Finally, 

they can be identified inexpensively and easily without the need for dissection. Recently, 

the nematode maturity index (MI) and fungivore to bacterivore (F:B) ratio showed 

potential to serve as an indicator of compost maturity and stability (Steel et al., 2010). 

Thus, nematode MI and F:B may be relevant in disease suppression as well. To avoid 

confusion with compost maturity, the MI will be referred to as a ecological successional 

index (ESI) in this paper. 

 

The overarching aim of this project was to identify biological indicators that could be 

used to assess whether a particular type of compost is capable of suppressing the 

soilborne plant disease R. solani, as a model pathogen system of significant importance to 

the global food supply. Since compost is a heterogeneous material, and all compost is 

made differently, the indicators would serve to not only assess the microbial community 

composition and function, but also to determine how well they can characterize 

ecological properties of compost based on its feedstock materials, production process, 
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and age. The framework of this research study was designed for potential future 

applications to other soilborne plant pathogens and compost types. 

 

Objective 

A suite of biological indicators was chosen for this study to determine their 1) ability to 

represent compost feedstock, process, and age, and 2) ability to predict disease severity 

(DS) on R. solani in several different types of compost. Additionally, the study aims to 

assess the ability of a Rhizoctonia plate assay to predict disease suppressiveness in 

greenhouse bioassays. The biological indicators include microbial biomass carbon, CO2 

respiration, pH, electrical conductivity (EC), C:N ratio, a Rhizoctonia plate competition 

assay, ecoenzyme activity, nematode ecological successional index (ESI), and nematode 

F:B ratio. 
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3.2. METHODS 

 

3.2.1. Compost Sample Selection 

 

Criteria for Selection of Composts 

 

Composts from a variety of different commercial facilities were chosen based on maturity 

and pile type. Pile types included standard windrows aerated by a bucket loader or 

excavator, static piles aerated by a positive pressure automated fan system, and 

vermicompost. Vermicomposts were produced by feeding the compost worm, Eisenia 

fetida, material that had been composted past the thermophilic phase, having already met 

PFRP. Compost samples came from Green Mountain Compost, Vermont Compost, Grow 

Compost, Vermont Natural Ag Products, and Highfields Center for Composting. Two 

vermicompost samples and two vermicompost liquid extracts came from Worm Power in 

Avon, NY. 
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Profile of Compost Facilities and Compost Samples 

Table 5. Profile of each compost facility. Compost samples were obtained from six commercial facilities, one anaerobic 

digester, and one farmer’s field.  

Facility Location Process General Description 

Highfields Center 

for Composting 

Hardwick, VT ASP/Windrow & 

ASP/Vermicompost 

Highfields Center for Composting makes compost from local 

agricultural wastes including dariy and horse manure, apple, brewery, 

and coffee processing waste, food scraps, wood chips, straw, hay, 

sawdust, yard waste, etc. They compost in an aerated static pile for 

90 days before moving to windrow piles for finishing the 

thermophilic phase and curing. They also have a small vermicompost 

digester where they feed material that has composted and met PFRP 

to the compost worms. 

Green Mountain 

Compost 

Williston, VT ASP/Windrow Green Mountain Compost is run by the Chittenden County Solid 

Waste District, collecting food scraps, yard waste, and agricultural 

waste from residents and businesses within Chittenden County. They 

also incorporate dairy manure/silage, straw, wood chips, and charcoal 

into their compost piles. 

Vermont Compost Montpelier, VT Windrow Vermont Compost receives food scraps and local agricultural wastes 

including manure, sawdust, wood chips, hay, etc. They incorporate 

chickens into their process. Fresh materials are blended into a new 

pile. Chickens dig into the fresh pile for food scraps, insects, and 

other food, leaving behind their manure, and contributing to the 

aeration process through their scratching, digging, and pecking. 

Grow Compost Moretown, VT Windrow Grow Compost receives food scraps and local agricultural waste 

including brewery processing, spoiled dairy, coffee chaff, manure, 

hay, sawdust, wood chips, etc. They use an excavator to turn 

windrow piles and their process takes 12 months to produce finished 

compost for sale. 

Vermont Natural Ag 

Products 

Middlebury, VT Windrow Vermont Natural Ag Products receives in dairy manure/silage and 

sawdust only, and composts using a turned windrow system. 

Worm Power Avon, NY ASP/Vermicompost  Worm Power pioneered a vermicompost digester system (adopted by 

Highfields Center for Composting) where material that has been 
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composted and met PRFP is fed to the compost worms. They partner 

with a dairy farm in Avon, NY, which uses a nutritionally consistent 

feed to its animals every day. A sawdust bedding is used. Manure and 

bedding are composted in aerated static piles before being fed to 

compost worms. 

Riverside Organic 

Farm 

Hardwick, VT Windrow Riverside Farm produces its own compost on-farm using poultry 

manure and softwood cedar shavings. 

Green Mountain 

Power 

Burlington, VT Anaerobic 

Digestate 

Manure/silage is fed into an anaerobic digester. The resulting liquid 

is separated from the solids and applied as fertilizer onto farmers’ 

fields. The solids are dehydrated and used in our disease severity 

trials. 

 

Table 6. Key to compost sample abbreviations. All samples that were assayed in the disease severity greenhouse trials were 

abbreviated and identified based on process and maturity. 

Abbreviation Description 

- soil that is not infested with R. solani 

+ soil that is infested with R. solani 

TI Thermophilic (mixed feedstocks) Immature 

MI Manure/silage Immature 

TM Thermophilic (mixed feedstocks) Mature 

MM Manure/silage Mature 

HM Hardwood bark Mature 

AD Anaerobic Digestate 

TMF Thermophilic Mature Farmer’s Compost 

VMO Vermicompost Mature 1 Year Old 

VMF Vermicompost Mature Fresh 

VEO Vermicompost Liquid Extract 1 Year Old 

VEF Vermicompost Liquid Extract Fresh 

NC No Compost (control) 

R Rice Hulls (control) 
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Table 7. Compost feedstocks 

          Feedstock 

 

Compost 

Manure/

Silage 

Food 

Waste 

Sawdust Yard 

Waste 

Poultry 

Manure 

Hardwood Softwood 

TI1 x x x x x  x 

TI2 x x x x    

TI3 x x x x    

TI4 x x x x    

MI x  x     

TM1 x x x x x  x 

TM2 x x x x    

TM3 x x x x    

TM4 x x x x    

TM5 x x x x    

MM x  x     

HM x     x x 

AD x  x     

TMF    x x  x 

VMO x  x     

VMF1 x x x x    

VMF2 x  x     

VEO x  x     

VEF x  x     
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3.2.2. Disease Severity Bioassays 

 

Rhizoctonia Plate Competition Bioassay 

 

A half gram of compost was added to 50ml sterile water and shaken overnight (adapted 

from Alfano et al., 2011). The next day, 1.5g agar was added to 50ml deionized water 

and autoclaved for 30 minutes. It was cooled to 55⁰C, mixed in with the compost water 

extract, swirled gently to mix, and poured into plates. The next day, plugs of R. solani 

growing on potato-dextrose agar were transferred onto the compost water extract plates, 

and pure water agar plates were used as a control. They were incubated for 24 hours at 

room temperature. The mycelium radius was then measured to the nearest 1 mm under 

the microscope. Three of the longest radii were recorded, and the mean was used as a 

representative measure to compare suppressive potential among different compost 

samples. Five replicates of each compost sample were assessed in this way. All 

measurements were standardized against the control of mean mycelium radial growth on 

water agar. 

 

Greenhouse Bioassay 

 

Greenhouse bioassays are set up as described in Chapter 2, Section 2.2.3. Each seedling 

was examined under a stereoscope and rated for disease severity according to the scale 

described in Table 8. Control treatments included an uninfested soil with no compost 
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applied, infested soil with no compost applied, infested soil with rice hulls as an inert 

treatment, uninfested soil with hardwood bark compost, and uninfested soil with 

vermicompost. Treatments were done in quadruplicate. Based on the application rate 

assay (described below), thermophilic composts were applied at 10% (v/v) and 

vermicompost samples were applied at 1.25% (v/v). 

 

Disease severity was rated on scale of 1-5. A percentage disease severity was ascribed 

each rating, based on the Horsfall-Barratt (H-B) scale. The H-B scale is based on two 

assumptions: 1) there is a logarithmic relationship between the reflected light from 

disease and the estimated area of disease; and 2) the human eye perceives diseased area 

below 50% and healthy area above 50% (Horsfall and Cowling, 1978b). The second 

assumption explains why the severity intervals decrease above 50% in the H-B scale. A 

midpoint was taken from the center of the percentage range, to be used as an estimate of 

plant disease severity in each rating category (Madden et al., 2007): 

 

Table 8. Disease severity scale 

Rating Description Midpoint % 

0 0% infection; healthy plant 0 

1 1-10% infection; light symptoms of disease – lesions are 

small, light, and rare 

5.5 

2 11-69% infection; moderate symptoms of disease – lesions 

are dark, large, common. There may be root constriction and 

stunted growth. 

40 

3 70-94% infection; severe symptoms of disease – lesions are 

black, covering large areas of the root and stem, roots are 

highly constricted, and growth is severely stunted 

82 

4 95-100% infection; death soon after germination – a small 97.5 
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seedling germinated but was so infected that it did not grow 

further 

5 100% infection; no germination of seed 100 

 

 

The mean disease severity was computed from the midpoint percentages: 

 

[(number of plants in rating category)*(midpoint % of rating category)] 

(25 seeds/pot)*100% disease 

 

Each sample was then standardized against the negative control treatment of no compost 

in uninfested soil, as percent change in disease severity from the negative control. 

 

3.2.3. Biological Indicators & Compost Characteristics 

 

The biological indicators used in this study are summarized in Table 9, followed by a 

detailed protocol provided below. 

 

Table 9. Summary table of biological indicators & compost characteristics 

Category Assay  Function Units 

Microbial 

Function 

Chloroform Fumigation 

Extraction 

Microbial Biomass 

Carbon 

µg C/g dry weight 

compost 

Microbial 

Function 

Sodium Hydroxide 

Titration 

Microbial Activity 

via CO2 Respiration 

mg CO2/hr/g dry weight 

compost 

Microbial 

Function 

Extracellular Enzyme 

Analysis 

Decomposition 

Activity; Nutrient 

Availability 

nmol/h/g dry weight 

compost or µmol/h/g 

dry weight compost; 
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ratios of ecoenzymatic 

C:N:P acquisition 

Microbial 

Function 

R. solani Plate 

Bioassay 

Competition 

Against Pathogen 

millimeters (mm) 

Microbial 

Function, 

Ecosystem 

health 

Nematode 

Quantification & 

Identification 

Nematode 

Ecological 

Successional Index, 

N Mineralization 

count 

Microbial 

Community 

Composition 

16S & ITS Sequencing Prokaryotic & 

Fungal Community 

Composition 

abundance 

Chemical 

Properties  

CHN Analysis C:N Ratio ratio 

Chemical 

Properties 

pH and EC Salt Concentration EC measured in mS/cm 

 

 

Chloroform Fumigation Extraction 

 

The chloroform fumigation extraction was performed on 10g fresh weight of each 

compost sample in triplicate (Allison 2008). Non-fumigated samples were immediately 

extracted with 50ml 0.5M K2SO4 for 1 hr on a shaker. Fumigated samples were placed in 

a vacuum desiccator with a beaker containing 20 ml ethanol-free chloroform (Sigma-

Aldrich Co. St. Louis, MO). The desiccator was evacuated until the chloroform had 

boiled for 1 min. The desiccator was then sealed and incubated overnight in the dark. The 

next day, the beaker of chloroform was removed and the desiccator evacuated 10–12 

times to remove all traces of chloroform from the compost. The fumigated compost 

samples were extracted with 0.5M K2SO4 under the same conditions as the non-

fumigated samples. The C content of the K2SO4 extracts was measured on a Shimadzu 
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TOC-5000A soluble C analyzer. Dissolved organic carbon (DOC) of non-fumigated 

samples was subtracted from DOC of fumigated samples, and a kEC value of 2.64 was 

applied (Vance et al., 1987). 

 

Microbial Activity via CO2 Respiration 

 

CO2 respiration was measured using a sodium hydroxide incubation and titration, as 

adapted from Coleman et al. (2004: pp 301-303). An open plastic cup (100ml volume) 

filled with 10ml of 1M sodium hydroxide was set into a sealed jar of compost and 

incubated for 24-36 hours. After incubation, 10ml of 1M barium chloride was added to 

each cup to stop the reaction of CO2 and NaOH. A drop of thymolphthalein was added as 

a blue color indicator, and the solution was titrated with 1M hydrochloric acid until the 

color indicator turned clear. 

 

CO2 evolution was calculated using the following equation: 

 

CO2 – C (mg) = (B-X)ME, where B = HCl (ml) needed to titrate NaOH solution from the 

blank, X = HCl (ml) needed to titrate NaOH solution in the experimental jars, M = 1.0 

(HCl molarity), and E = equivalent weight (22 for CO2 and 6 for C). The data is 

expressed as milligrams of CO2 per hour per gram dry weight compost. 

 

Ecoenzyme Analysis 
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The following enzymes were assessed for their activity in compost: 

 

Table 10. Ecoenzymes assayed and their associated functions in soil microbiota 

Ecoenzyme 

Class 

Ecoenzyme Substrate Functional 

Indicator 

Abbreviation 

Hydrolase β-1,4-N-

acetylglucosaminidase 

(chitinase) 

MUB1-β-1,4-N-

acetylglucosamine 

Microbial cell 

wall turnover 

NAG 

β-glucosidase MUB-β-glucoside Cellulose 

degradation 

BG 

Oxidase peroxidase hydrogen peroxide Lignin 

degradation 

NETPEROX 

phenol oxidase L-DOPA2 Lignin 

degradation 

PHENOX 

Amino 

peptidase 

L-leucine 

aminopeptidase 

MC3-L-leucine 

aminopeptide 

General 

microbial 

activity; Protein 

degradation; N 

availability 

LAP 

Esterase phosphatase MUB-phosphate Microbial 

turnover; P 

availability 

PP 

1. MUB = 4-methylumbelliferone 

2. MC = methylcoumarin 

3. L-DOPA = 3,4-dihydroxyphenylalanine  

 

Six ecoenzymes were assayed for functional activity in compost treatments. The activities 

of hydrolase enzymes and phosphatase were quantified fluorometrically using a 

methylumbelliferone (MUB) linked substrate, L-leucine aminopeptidase was quantified 

fluorometrically using a methylcoumarin (MC) linked substrate, and the oxidase enzymes 

were quantified using a 3,4-dihydroxyphenylalanine (L-DOPA) linked substrate. Enzyme 

activities were quantified using the modified protocol of Saiya-Cork et al. (2002) with the 
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following modifications in methodology. Oxidative enzyme activity was quantified 

spectrophotometrically in clear polystyrene 96-well microplates. All other enzymes were 

quantified in all black polystyrene 96-well microplates. 

 

Hydrolase substrates, L-leucine aminopeptide, and phosphate were assayed in four 

concentrations: 20, 40, 80, 120 μM. Sample suspensions were prepared by adding a half 

gram of compost to 100ml of 50mM sodium bicarbonate buffer (pH 7) and homogenizing 

for 90 seconds with a Polytron (Brinkman PT 3100). Because enzyme activity is pH 

sensitive, the pH was adjusted to 7 to match the mean pH of compost samples. The 

microplates were designed to assay three samples per plate, with two columns of 8 wells 

each, for 16 replicates for each sample, along with controls (250 μl buffer alone, 200 μl 

buffer with 50 μl reference MUB/MC, and 200 μl buffer with 50 μl substrate). Each 

MUB/MC linked substrate was prepared as a 200μM solution in nanopure water and 

stored at 4⁰C. The reference standard MUB/MC was a 50μM solution. Substrates were 

prepared as 200μM solutions in nanopure water. Microplates are covered and incubated 

at 20⁰C for 2 hours. After incubation, they are quantified using a microplate fluorimeter 

(FLx800, Bio-Tek Instruments) with 360nm excitation and 460nm emission filters. 

 

Oxidative enzyme substrates consisted of 50mM L-DOPA for the phenol oxidase assay 

and 50mM L-DOPA with 0.3% hydrogen peroxide for the peroxidase assay. The plates 

were covered and incubated for 1.5 hours at 20⁰C. Absorbance was read on a microplate 
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spectrophotometer (Bio-Tek μQuant microplate reader) with a 520nm filter. All enzyme 

activities were calculated as nmol h-1 g-1 of dry compost. 

 

Nematode Quantification and Identification 

 

Mixed subsamples of compost were packed into a small mesh-screened PVC pipe 5cm in 

diameter, 4cm tall, for a total volume of 78.5ml, set atop a glass stem funnel into a large 

test tube in an automated mist chamber. The mister sprays water for one minute every 

five minutes, releasing 1.5L water per hour. Nematodes swim out into a continuous 

column of water and settle at the bottom of the tube by gravity. After 48 hours, the 

contents of the test tube are poured into a beaker. The top of the water column is 

siphoned off to just less than 100ml and transferred into a bottle. The bottle is 

homogenized prior to counting – 10ml of water is withdrawn using a pipette and 

transferred into a counting chamber. All nematodes are counted, representing 10% of the 

sample. 

 

After counting, 20ml of the top of the sample suspension is siphoned off and transferred 

into a Petri dish. The remaining sample is transferred to a 100ml bottle, allowed to settle 

(one hour per inch of water column), and then the top of the water is transferred into a 

15ml centrifuge tube. Glass microslides with a thin wax ring in the middle are prepared 

by dipping a heated copper ring into wax and onto the middle of the slide. The contents 

of the centrifuge tube are allowed to settle and 20-25 μl is pipetted into the wax ring of 
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each glass microslide preparation. Slides are created as necessary to achieve desired 

identification. A square cover slip is placed over the wax ring, held gently over a heating 

plate to melt the wax, and cooled to solidify the wax and create a partial seal with the 

cover slip. Clear nail polish is applied in a ring around the cover slip. 

 

Nematodes were identified and classified according to the following families and trophic 

groups (Table 11) (Bongers 1990; Bongers and Bongers, 1998): 

 

Table 11. Nematode families, c-p values, and trophic groups 

Family c-p Value Trophic Group 

Rhabditidae 1 bacterivore 

Tylenchidae 2 plant-parasitic 

Aphelenchidae 3 fungivore 

Prismatolaimidae 3 bacterivore 

Leptolaimidae 2 bacterivore 

Monhysteridae 1 bacterivore 

Plectidae 2 bacterivore 

Paraphelenchidae 2 fugnivore 

Seinuridae 2 predatory 

Meloidogyne 3 plant-parasitic 

Alirhabditidae 1 bacterivore 

Aphelenchidae 3 fungivore 

Pseudodiplogasteroididae 1 bacterivore 

Diplosapter 1 bacterivore 

Hypodontolaimidae 3 plant-parasitic 

Qudsianenatidae 4 fungivore 

Diplogasteridae 1 bacterivore 

Neodiplogasteridae 1 bacterivore 

Pseudogasteridae 1 bacterivore 
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The nematode Ecological Successional Index (ESI) is calculated as follows (Bongers 

1990): 

ESI= ∑ [(vifi ) / n] 

where vi equals the c-p value of the ith family, fi equals the frequency of the ith family in 

the sample, and n equals the total number of individual nematodes in a sample.  

 

The ratio of fungivorous to bacterivorous nematodes was calculated as follows (Yeates et 

al., 1993): 

F:B = fungivores/(fungivores + bacterivores) 

 

Physical Properties 

 

pH, electrical conductivity (EC), and C:N ratio were assessed for all compost samples. 

Ten grams of compost was extracted with 10ml 1M potassium chloride for pH 

assessment, using an Accument AB15 glass pH electrode filled with saturated potassium 

chloride. Ten grams of compost was mixed in with 10ml of deionized water for EC 

assessment, using an Orion conductivity meter. C:N ratio was measured by drying 

compost samples overnight at 90ºC, grinding into a fine powder, and then sent through a 

CHN analyzer. 

 

 

3.2.4. Statistical Analyses 
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All variables were assessed for normality using the UNIVARIATE procedure in SAS 9.3, 

and adjusted as necessary to best fit a normal distribution. Electrical conductivity and 

C:N ratio were the least normally distributed variables, and so were adjusted with a 

natural log transformation of ln(EC+1) and ln(C:N + 1). All statistically analyses were 

done with these transformed variables. 

 

Pearson’s correlation was used to determine independence between variables, performed 

in SAS using the CORR procedure. Multiple stepwise regression (forward selection) was 

performed in SAS using the REG procedure, with disease severity of all compost samples 

as the dependent variable, and, based on the Pearson’s correlation test (Table A3.2.), the 

independent variables used were microbial biomass carbon, respiration, plate 

competition, pH, electrical conductivity, C:N, nematode ecological successional index, 

and nematode F:B ratio. 

 

Analysis of covariance (ANCOVA) were performed using the MIXED procedure in SAS, 

with Tukey post-hoc tests groupings generated by a SAS macro called PDMIX800, 

created by Arnold M. Saxton of the University of Tennessee, Knoxville. Disease severity, 

microbial biomass carbon, respiration, plate competition, pH, electrical conductivity, and 

C:N ratio where analyzed as dependent variables in separate tests. Maturity, process, and 

feedstock were analyzed as the independent variables, with facility as a random effect.  
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Chi square analyses were performed to determine differences in nematode community 

composition, using JMP Pro 11. GraphPad Prism 6 was used for enzyme kinetics analysis 

and to generate all graphs. 
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3.3. RESULTS  

 

3.3.1. Biological Indicators and Compost Feedstock, Production Process, and 

Maturity Age 

 

 

Table 12. Key to compost sample abbreviations 

Abbreviation Description 

- soil that is not infested with R. solani 

+ soil that is infested with R. solani 

TI Thermophilic (mixed feedstocks) Immature 

MI Manure/silage Immature 

TM Thermophilic (mixed feedstocks) Mature 

MM Manure/silage Mature 

HM Hardwood bark Mature 

AD Anaerobic Digestate 

TMF Thermophilic Mature Farmer’s Compost 

VMO Vermicompost Mature 1 Year Old 

VMF Vermicompost Mature Fresh 

VEO Vermicompost Liquid Extract 1 Year Old 

VEF Vermicompost Liquid Extract Fresh 

NC No Compost (control) 

R Rice Hulls (control) 

 

The most suppressive compost sample was the vermicompost VMF1 (Table 12, Table 

C.1., Figure 5), followed by the vermicompost liquid extracts (VEO, VEF), anaerobic 

digestate (AD), and the hardwood bark compost (HM). A one-year-old vermicompost 

sample (VMO) and a mature manure/silage compost (MM) had little effect on disease 

suppression, comparable to the positive control of no compost with infested soil (NC+). 

Compost sample TM5 was the most conducive to disease, followed by TM4, TM1, TI2, 

TI1, and the thermophilic mature farmer’s compost TMF. Cluster analysis of disease 

severity shows that the effects of VMF1 application to infested soil is most similar to 

uninfested control treatments (Figure 6). These treatments are most different from all 
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other treatments, distinguished by uninfested vs. infested soils. Most of the thermophilic 

composts cluster together, and the most suppressive treatments (AD, HM, VEN, VEF) 

also cluster together. The vermicomposts do not cluster together at all. Cluster analysis of 

indicators show that compost samples cluster differently than they do when only 

comparing disease severity values (Figure 7). Not all of the indicators predict disease 

suppression. 

 

Vermicompost and anaerobic digestate were more suppressive than thermophilic 

(windrow and ASP) composts (P ≤ 0.0014), indicating that while they may use the same 

feedstock materials (manure/silage only), the different processes of decomposition 

produce materials with very different biological properties and effects than thermophilic 

composting alone. Mature composts were more suppressive than immature (P ≤ 0.041), 

confirming the need for a more stable microbial ecosystem in disease suppression. Both 

process and feedstock had significant effects on respiration (P ≤ 0.0001, P ≤ 0.0001), pH 

(P ≤ 0.011, P ≤ 0.0003), and C:N ratio (P ≤ 0.0014, P ≤ 0.0001). Respiration rate for 

vermicompost and anaerobic digestate were different than for thermophilic (windrow and 

ASP) composts (P ≤ 0.0001) (Table 14). Process, maturity, and feedstock all contributed 

to significant effects on electrical conductivity (P ≤ 0.001, P ≤ 0.012, P ≤ 0.0028).  

  

No linear relationships were found between disease severity and any of the indicators. 

Multiple stepwise regression showed disease severity was best predicted by five variables 

(R2=0.6861): 

DS=0.4787+(-0.3189)*(ESI)+(0.3796)*(plate)+(0.0092)*(PP)+(0.06435)*(BG)+(-0.1338)*(NAG) 
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Where DS = disease severity; ESI = nematode ecological successional index; plate = R. 

solani growth in vitro; PP = phosphatase activity (nmol/h/g dry compost); BG = β-

glucosidase (nmol/h/g dry compost); NAG = β-1,4-N-acetylglucosaminidase (nmol/h/g 

dry compost). 
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Figure 5. Disease severity of all compost samples. All samples are standardized against 

the positive control of no compost with infested soil (NC+). Negative disease severity 

values indicate more suppressive treatments; positive disease severity values indicate 

more conducive treatments. 
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Figure 6. Cluster analysis of disease severity of all treatments. 

Figure 7. Cluster analysis of indicators for all treatments except VEO, VEN, VMF2, 

TM3. Does not include Disease Severity values. Includes indicators Microbial 

Biomass Carbon, Respiration, Plate Competition, pH, EC, C:N, Nematode Maturity 

Index, and Nematode F:B Ratio 
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Figure 8. Disease severity of composts by A) process, B) maturity, C) facility, and D) 

feedstock. Key: TA=Thermophilic ASP; TW=Thermophilic Windrow; 

VC=Vermicompost, VE=Vermicompost Liquid Extract; AD=Anaerobic Digestate; 

M=Mature; I=Immature; H=Hardwood Bark, M=Manure, F=Food Waste, P=Poultry 

Manure, FP=Food Waste and Poultry Manure. 

C 

 

A 

 

B 

 

D 
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3.3.2. Relationship between Rhizoctonia Plate Assay and Greenhouse Bioassay 

 

The plate competition was most significantly effected by feedstock (P ≤ 0.0085, Figure 

9). Food waste and/or poultry manure compost generated more mycelial growth than 

manure/silage or hardwood bark compost (P ≤ 0.006) (Table 14). Microbial biomass 

carbon was the only indicator that contributed to differences in the Rhizoctonia plate 

competition (P ≤ 0.048) (Table 13). This contrasts the findings from the greenhouse 

bioassay showing no effects from feedstock differences. There is minimal linear 

relationship between R. solani growth in vitro and disease severity in the greenhouse (R2 

= 0.025) (Figure 10).   
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Figure 9. Effects of compost feedstock on R. solani growth inhibition in vitro. F = Food 

waste, P = Poultry manure, M = Manure/silage only, FP = Food waste and Poultry 

manure, H = Hardwood bark. 

  

 

Figure 10. Linear regression of R. solani growth suppression in vitro vs. disease severity 

in the greenhouse. Y=(-0.1664)*X – 0.09931; R2 =  0.025 
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Table 13.  Summary of analyses of covariance: Effects of facility as random effect, process, maturity, and feedstock on disease 

severity, microbial biomass carbon, respiration, pH, electrical conductivity, C:N ratio, and Rhizoctonia plate competition. F-

values and levels of significance are shown. P ≤ 0.05 are highlighted in bold. 
Dependent 

Variable 

Process Maturity Feedstock Covariables 

MBC Resp pH EC C:N Plate 

F P F P F P F P F P F P F P F P F P 

Disease Severity 8.82 0.0003 4.59 0.041 0.59 0.674 1.47 0.24 4.43 0.045 1.57 0.22 1.73 0.199 0.99 0.328 0.05 0.82 

Microbial 

Biomass Carbon 

1.14 0.349 0.08 0.783 0.35 0.843 - - 0 0.996 0.21 0.65 1.19 0.284 0.6 0.444 2.37 0.13

5 

Respiration 15.88 0.0001 0.45 0.509 6.84 0.0001 15.9 0.8 - - 8.99 0.0055 2.18 0.151 12.28 0.0015 0.3 0.59 

pH 4.42 0.011 2.87 0.1007 7.57 0.0003 0.32 0.57 5.32 0.029 - - 0.56 0.459 2.02 0.166 1.11 0.3 

ln(Electrical 

Conductivity+1) 

16.04 0.0001 7.18 0.012 5.21 0.0028 3.71 0.06 2.18 0.15 0.68 0.418 - - 1.79 0.1908 0.31 0.58 

ln(C:N Ratio) 6.7 0.0014 0.83 0.3694 8.23 0.0001 0.62 0.44 12.28 0.0015 2.56 0.12 1.79 0.19 - - 0.29 0.59 

Plate 
Competition 

2.1 0.1217 0.02 0.8993 4.19 0.0085 4.25 0.048 0.47 0.5004 0.91 0.3483 0.32 0.5787 0.28 0.6 - - 

 

Table 14. Means with standard error, letter superscripts indicate Tukey post-hoc differences at P ≤ 0.05. Feedstock Key: P = 

Poultry Manure, M = Manure/Silage Only, FP = Food Waste and Poultry Manure; H = Hardwood Bark; F = Food Waste 
Dependent 

Variable 

Process Maturity Feedstock 

ASP W V AD I M P M FP H F 

Disease Severity 0.0124 

(0.1585)a 

-0.0192 

(0.157)ab 

-0.1907 

(0.2443)b 

-0.2819 

(0.1025)b 

-0.0125 

(0.1399)a 

-0.0923 

(0.2046)b 

0.0848 

(0.0271)a 

-0.169 

(0.1565)a 

0.0994 

(0.0528)a 

-0.2605 

(0.0652)a 

-0.0275 

(0.2)a 

Microbial 
Biomass Carbon 

421.05 

(304.8)a 

366.14 

(219.25)a 

581.705 

(492.2)a 

299.493 

(308.99)a 

535.3221 

(306.4284)a 

334.893 

(247.319)a 

384.8 

(80.6376)a 

463.3955 

(317.7215)a 

335.174 

(74.342)a 

130.2533 

(137.4)a 

419.223 

(308.87)a 

Respiration 0.03 

(0.012)c 

0.0375 

(0.0323)b 

0.0217 

(0.0117)a 

0.14 

(0.02)ab 

0.0493 

(0.0337)a 

0.0352 

(0.0368)a 

0.03 

(0.01)ab 

0.0431 

(0.0562)ab 

0.0065 

(0.0138)a 

0.0033 

(0.0058)c 

0.037 

(0.0249)a 

pH 7.245 

(0.2524)a 

6.7954 

(0.78)b 

6.795 

(0.2461)b 

8.09 

(0.466)a 

7.3358 

(0.4041)a 

6.862 

(0.7178)a 

5.4467 

(0.08)d 

6.964 

(0.7363)cd 

7.577 

(0.0903)a 

6.72 

(0.446)ab 

7.144 

(0.4474)bc 

EC 3.462 

(1.3595)c 

3.7752 

(1.497)b 

12.235 

(4.258)a 

1.497 

(0.1955)c 

4.47 

(1.1002)a 

4.257 

(3.975)b 

3.3233 

(1.0162)abc 

5.8342 

(5.1522)a 

2.643 

(0.76)c 

2.1467 

(0.35)bc 

3.8859 

(1.57)b 

C:N 16.5726 

(1.967)ab 

18.8028 

(5.251)b 

11.5852 

(0.4045)c 

27.208 

(0.3453)a 

19.6216 

(6.005)a 

17.0338 

(4.477)a 

19.43 

(0.1073)bc 

16.756 

(6.58)d 

23.778 

(6.81)ab 

20.6357 

(3.3488)a 

16.3244 

(2.6437)cd 

Plate 

Competition 

-0.104 

(0.1384)b 

-0.307 

(0.1642)b 

-0.2833 

(0.175)ab 

-0.134 

(0.0445)a 

-0.2428 

(0.195)a 

-0.2178 

(0.1702)a 

-0.244 

(0.0439)ab 

-0.297 

(0.1213)b 

-0.3533 

(0.11)ab 

-0.514 

(0.0472)b 

-0.1154 

(0.1541)a 
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3.3.3. Ecoenzyme Analysis 

 

Overall, there is greater potential protein degradation (LAP) than cellulose degradation 

(BG) or chitin degradation (NAG) in all the compost samples (Figure 11A-C). Looking at 

EEAC/N (BG/(LAP+NAG)) vs. EEAC/P (BG/PP), samples above the 1:1 line are more N -

limited, while samples below the 1:1 line are more P-limited (Figure 12A). All of the 

compost samples are severely N-limited. Vermicompost and anaerobic digestate samples 

appear to be more limited in both P and N (Figure 12B). The ecoenzyme analysis 

indicates that most of the nitrogen has been hydrolyzed, and the recalcitrant carbon 

materials constitute the remaining substrates in mature compost samples. 

 

Effects of Compost Process, Maturity, and Feedstock on Ecoenzyme Activity 

 

Compost process contributed to differences in PP, LAP, and NAG activity at 40M 

substrate concentration (P ≤ 0.0001 for all three), as well as differences in EEAC/N (P ≤ 

0.0396), EEAC/P (P ≤ 0.0019), and BG/OX (BG/total oxidative activity) (P ≤ 0.0001) 

(Table 15). Thermophilic composts (ASP and W) had different effects than anaerobic 

digestate (AD) and vermicompost (V) on EEAC/N (P ≤ 0.022), EEAC/P (P ≤ 0.0042), 

BG/OX (P ≤ 0.0001), PP (P ≤ 0.0001), BG (P ≤ 0.028), LAP (P ≤ 0.0001), NAG (P ≤ 

0.0045), though no significant differences were found with OX (total oxidative activity) 

(P ≤ 0.246). Overall, anaerobic digestate had the highest rates of ecoenzyme activity in 

all hydrolytic and oxidative enzymes except NAG (Table 16). Anaerobic digestate had 
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low EEAC/N similar to vermicompost, EEAC/P similar to ASP, and low BG/OX similar to 

W. It is less P-limited than vermicompost, but more P-limited than W; and it is slightly 

less N-limited than vermicompost, but much less C-limited than N-limited compared to 

ASP or W. AD had the highest rate of oxidative activity, but the ratio of BG/OX is low 

and similar to W. Overall, AD is abundant in native substrate, particularly cellulose, 

indicated by its high BG activity. 

 

Vermicompost process had the highest rate of NAG activity, lowest EEAC/P, and lowest 

EEAC/N, making it more C-limited than N-limited or P-limited compared to all other 

compost processes. Vermicompost had the lowest rate of oxidative activity compared to 

all other compost processes, which explains it having the highest ratio of BG/OX (Table 

16). Vermicompost appears to be more abundant in nitrogen and phosphorus than 

cellulosic carbon or lignin. 

 

In thermophilic composts, windrow process (W) contributed to higher activity levels in 

PP and BG (P ≤ 0.05) (Table 16), as well as higher EEAC/P ratios, compared to aerated 

static pile (ASP), indicating greater overall phosphorus turnover, but still more P-limited 

than ASP. W had the highest EEAC/P and EEAC/N ratios compared to all other processes, 

indicating that it is more P-limited and N-limited than all other processes. ASP had 

lowest activity rates for BG, LAP, NAG, and lowest ratio of BG/OX, indicating a low 

overall substrate concentration of carbon and nitrogen. 
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Compost maturity contributed to differences in LAP (P ≤ 0.0175) and EEAC/P (P ≤ 

0.0279), and feedstock had significant effects on PP (P ≤ 0.0001), BG (P ≤ 0.0009), 

EEAC/N (P ≤ 0.0213), EEAC/P (P ≤ 0.0042), and BG/OX (P ≤ 0.0079) (Table 15). Mature 

composts have higher LAP (P ≤ 0.05) and lower EEAC/P (P ≤ 0.05), indicating that they 

are generally less C-limited than immature composts. Composts made with manure/silage 

only, mixed food wastes and poultry manure, or mixed food wastes without poultry 

manure, are much higher in BG than composts made with poultry manure as the primary 

nitrogen source, or those made with hardwood bark as the primary carbon source (P ≤ 

0.05) (Table 16). 
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Figure 11. (A) LAP vs. BG; (B) LAP vs. NAG; (C) LAP+NAG vs. BG; (D) PP vs. BG. 

All hydrolase activities are expressed as nmol/h/g dry weight compost, from the 40M 

substrate concentration. LAP represents protein degradation, nitrogen and microbial 

turnover; BG represents cellulose degradation; NAG represents chitin degradation; PP 

represents phosphorus and microbial turnover; PHENOX and NETPEROX represent 

lignin degradation (Table 11). The 1:1 line is shown for reference in all graphs. TM = 

Thermophilic mixed feedstocks/Mature; TI = Thermophilic mixed feedstocks/Immature; 

MM = Manure/silage feedstock/Mature; MI = Manure/silage feedstock/Immature; TMF = 

Thermophilic mixed feedstocks/Mature/Farmer’s; HM = Hardwood bark 

feedstock/Mature; AD = Anaerobic Digestate; VMF = Vermicompost/Mature/Fresh; 

VMO = Vermicompost/Mature/One Year Old.  
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Figure 12. (A) EEAC/N (BG/(LAP+NAG)) vs. EEAC/P (BG/PP) (Sinsabaugh and Shah, 

2012); (B) BG/(PHENOX+NETPEROX) vs. EEAC/N. All hydrolase activities are 

expressed as nmol/h/g dry weight compost, from the 40M substrate concentration. LAP 

represents protein degradation, nitrogen and microbial turnover; BG represents cellulose 

degradation; NAG represents chitin degradation; PP represents phosphorus and microbial 

turnover; PHENOX and NETPEROX represent lignin degradation (Table 11). The 1:1 

line is shown for reference. 
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Table 15. Summary of analyses of covariance: Effects of facility as random effect, process, maturity, and feedstock on 

ecoenzyme activities, EEAC/N (BG/(LAP+NAG)), EEAC/P (BG/PP), and BG/OX, with microbial biomass carbon (MBC), 

respiration (Resp), pH, electrical conductivity (EC), C:N Ratio, and Rhizoctonia plate competition (Plate) as covariables. OX 

represents total oxidative activity (PHENOX+NETPEROX) and lignin degradation (enzyme abbreviations and general 

functions are explained in Table 11). F-values and levels of significance are shown. P ≤ 0.05 are highlighted in bold. Dpdt = 

Dependent 
Dpdt 

Variable 

Process Maturity Feedstock Covariables 

MBC Resp pH EC C:N Plate 

F P F P F P F P F P F P F P F P F P 

PP 18.98 <0.0001 0.17 0.688 8.91 0.0001 0.00 0.959 16.15 0.0004 2.21 0.1495 1.38 0.251 12.5 0.0016 11.6 0.002 

BG 2.79 0.0606 0.14 0.7144 6.54 0.0009 1.72 0.201 5.56 0.0261 3.06 0.092 0.22 0.6394 12.58 0.0015 6.26 0.019 

LAP 42.54 <0.0001 6.44 0.0175 2.45 0.0714 0.53 0.473 0.32 0.575 2.89 0.1009 0.00 0.9886 1.66 0.2088 2.9 0.1 

NAG 453.63 <0.0001 1.32 0.262 1.21 0.3302 0.00 0.99 4.39 0.0461 1.33 0.2588 0.39 0.5399 13.74 0.001 8.49 0.007 

OX 1.12 0.3613 0.98 0.3314 1.34 0.2843 0.82 0.37 1.49 0.234 16.6 0.0004 20.4 0.0001 3.03 0.094 2.5 0.126 

EEAC/N 6.13 0.0396 4.91 0.0775 7.99 0.0213 6.82 0.048 1.41 0.289 0.09 0.782 2.46 0.1776 1.21 0.321 2.93 0.15 

EEAC/P 25.41 0.0019 9.4 0.0279 16.86 0.0042 0.4 0.55 2.9 0.1492 31.9 0.0024 3.12 0.1378 0.1 0.7663 0.00 0.985 

BG/OX 590476 <0.0001 0.55 0.464 4.4 0.0079 0.11 0.741 1.57 0.2221 3.91 0.0591 0.16 0.6896 9.3 0.0053 3.52 0.072 

 

Table 16. Activity means with standard error, letter superscripts indicate Tukey post-hoc differences at P ≤ 0.05. Feedstock 

Key: P = Poultry Manure, M = Manure/Silage Only, FP = Food Waste and Poultry Manure; H = Hardwood Bark; F = Food 

Waste. PP, BG, LAP, NAG activities are expressed in nmol/h/g, OX represents total oxidative activity 

(PHENOX+NETPEROX), and is expressed in mol/h/g, except in BG/OX where both activities are calculated in nmol/h/g. 
Dependent 

Variable 

Process Maturity Feedstock 

ASP W V AD I M P M FP H F 

PP 8.2761 

(6.5757)c 

19.2928 

(20.54)b 

3.1772 

(3.065)bc 

138.548a 26.584 

(21.86)a 

19.1685 

(39.7049)a 

9.7866bc 40.0953 

(56.8498)ab 

22.1777 

(11.178)d 

4.9488cd 14.759 

(21.1881)a 

BG 0.7893 

(0.5683)b 

4.0357 

(3.99)a 

6.404 

(7.57)ab 

15.46a 4.711 

(4.436)a 

3.6588 

(5.478)a 

0.9065b 7.7815 

(6.786)a 

6.8853 

(5.2008)a 

0.6006b 2.03 

(2.685)a 

LAP 3.197 

(2.2734)b 

15.728 

(20.954)b 

5.81 

(6.543)b 

226.11a 20.6 

(24.4007)a 

25.8736 

(66.0645)b 

4.5433b 61.4456 

(94.4154)ab 

41.2115 

(31.478)a 

1.5599b 4.5586 

(4.1891)ab 

NAG 0.9901 

(0.9528)b 

3.1939 

(02.86)ab 

25.76 

(23.772)a 

18.485ab 4.1056 

(2.84)a 

7.0721 

(13.8068)a 

0.3446a 12.2824 

(15.0258)a 

4.0985 

(3.2185)a 

0.4115a 4.643 

(10.83)a 

OX 73.0599 

(26.573)a 

64.042 

(19.18)a 

30.4179 

(0.00)a 

91.7267a 70.007 

(18.6343)a 

65.7496 

(26.204)a 

79.09a 67.4583 

(22.3907)a 

63.562 

(6.8675)a 

23.1177a 72.659 

(24.0887)a 

EEAC/N 0.236 

(0.1101)a 

0.2408 

(0.106)a 

0.0539 

(0.00)ab 

0.0632b 0.2056 

(0.1298)a 

0.222 

(0.1097)a 

0.1855bc 0.1481 

(0.1418)a 

0.1554 

(0.005)ab 

0.3047a 0.2589 

(0.1079)cd 

EEAC/P 0.1112 

(0.0669)c 

0.258 

(0.1856)b 

0.024 

(0.028)bc 

0.1116a 0.1744 

(0.1157)a 

0.1729 

(0.1801)b 

0.0926c 0.1512 

(0.1092)b 

0.2581 

(0.1168)a 

0.1214bc 0.1833 

(0.2044)a 

BG/OX 0.000b 0.0001 

(0.0001)b 

1.6643 

(1.564)a 

0.0002b 0.0001 

(0.0001)a 

0.2881 

(0.8877)a 

0.0000c 0.3826 

(0.9303)ab 

0.0001 

(0.0001)a 

0.0000bc 0.1878 

(0.796)ab 
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3.3.4. Nematode Quantification & Identification 

 

Nematode community composition differs among compost samples (P ≤ 0.0001). Feedstock contributes to differences in ESI 

(P ≤ 0.0001), and maturity contributes to F:B ratio (P ≤ 0.005) (Table 17). Hardwood bark feedstock has much higher ESI than 

all other feedstocks (P ≤ 0.0001) (Table 18), which reflects its longer aging time. The covariables pH, C:N, and Rhizoctonia 

plate assay contribute to differences in ESI (P ≤ 0.0164, P ≤ 0.0002, P ≤ 0.0001), while microbial biomass C, respiration rate, 

pH, and C:N ratio contribute to differences in F:B (P ≤ 0.008, P ≤ 0.002, P ≤ 0.04, P ≤ 0.0032) (Table 17). 

 

Table 17. Analysis of covariance: Effects of facility as random effect, process, maturity, and feedstock on Ecological 

Successional Index (ESI) and F:B ratio with microbial biomass carbon (MBC), respiration (Resp), pH, electrical conductivity 

(EC), C:N ratio, and Rhizoctonia plate competition (Plate) as covariables. F-values are shown, P ≤ 0.05 are highlighted in bold. 
Dependent 

Variable 

Process Maturity Feedstock Covariables 

MBC Resp pH EC C:N Plate 

F P F P F P F P F P F P F P F P F P 

ESI 0.64 0.537 2.54 0.127 12.19 <0.0001 2.6 0.126 0.1 0.751 6.9 0.0164 0.34 0.565 20.52 0.0002 34.8 <0.0001 

F:B Ratio 1.67 0.213 10.01 0.005 2.22 0.1031 8.7 0.008 13.3 0.002 4.8 0.04 0.3 0.59 11.2 0.0032 2.93 0.1024 

 

Table 18. Means with standard error, letter superscripts indicate Tukey post-hoc differences at P ≤ 0.05. Feedstock Key: P = 

Poultry Manure, M = Manure/Silage Only, FP = Food Waste and Poultry Manure; H = Hardwood Bark; F = Food Waste 
Dependent 

Variable 

Process Maturity Feedstock 

ASP W V I M P M FP H F 

ESI 1.207 

(0.1886)a 

1.1798 

(0.3199)a 

1.0526 

(0.0815)a 

1.16 

(0.2204)a 

1.184 

(0.2885)a 

1.1 

(0.00)b 

1.0611 

(0.0955)b 

1.0068 

(0.00)b 

1.9091 

(0.00)a 

1.1413 

(0.1745)b 

F:B Ratio 0.0068 

(0.0085)a 

0.0033 

(0.0056)a 

0.00 

(0.00)a 

0.0051 

(0.0091)a 

0.0037 

(0.0053)b 

0.0149 

(0.00)a 

0.00 

(0.00)b 

0.00 

(0.00)ab 

0.00 

(0.00)ab 

0.0053 

(0.0073)ab 
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3.4. DISCUSSION 

 

The potential of compost to suppress R. solani has been demonstrated in many studies, 

with particular success in greenhouse media (Ersahin et al., 2009; Nelson and Hoitink, 

1983; Tuitert et al., 1998; Pane et al., 2010; Gorodecki and Hadar, 1990; Van Assche and 

Uyttebroeck,1981; Mathout, 1987), though less consistent success has been shown in 

field trials (Lewis et al., 1992; Fuchs 1995; Larkin and Tavantzis, 2013). The disease 

suppressive activity of compost has been associated with microbial activity (Hoitink and 

Fahy, 1986; Hoitink and Boehm, 1999; Noble and Coventry, 2005), utilizing both general 

(competition for nutrients and resources) and specific (toxicity, parasitism, predation, 

etc.) mechanisms. Many studies on disease suppression focus on inoculation with 

biocontrol organisms such as Trichoderma spp. (Trillas et al., 2006; Chung and Hoitink, 

1990; Postma et al., 2003), or only consider single biocontrol species as the primary 

mechanism of disease suppression. However, recent views have proposed that microbial 

consortia and ecological stoichiometry may be more responsible for suppressive 

phenomenon, rather than single biocontrol species. Substrate and nutrient composition 

correlating to specific states of compost maturity may be important to consider as they 

culture and give rise to suppressive microbial communities (Hadar and Papadopoulou, 

2012).  

 

Additionally, the ecology of the plant pathogen may be important in engineering and 

choosing which type of compost would be best suited for suppression. Plant pathogens 
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are spread across the r-K strategist continuum. Rhizoctonia is considered an opportunistic 

species that can attack young, predisposed plants, but is a poor competitor (Fisher et al., 

1999). Botrytis and Pythium are similar in this way, while other pathogens such as 

Penicillium spp. produce antibiotics that inhibit competitiors (Fisher et al., 1999). The 

key to consistent disease suppression may be in matching up the ecology of the plant 

pathogen with the ecology of the biocontrol mechanism, which may be engineered in 

compost. 

 

Among all of the indicators assessed, ecoenzymes seem to be the best potential indicator 

of disease suppressive compost, as they integrate information about environmental 

substrate composition, microbial nutrient acquisition, and microbial community 

metabolic function. Additionally, LAP activity has the potential to serve as an indicator 

of compost maturity. Nematode community analysis did not offer a clear indication of 

disease suppression, though nematode ESI has the potential to serve as an indicator of 

compost maturity. Production process had the strongest influence on disease suppressive 

potential, followed by maturity age. Most of the other indicators did not correlate well 

with disease suppression. 

 

3.4.1. Ecoenzyme Activity and Disease Suppression 

 

Ecoenzymes can be used for inferring microbial nutrient needs in relation to 

environmental supply. Transcription of ecoenzymes is ultimately linked to environmental 



 
 

76 
 

signals, such as indicators of toxicity or quorum-sensing molecules (Sinsabaugh and 

Shah, 2012). The most studied case of ecoenzymatic stoichiometry is the generally 

inverse relationship between phosphatase activity and environmental P availability 

(Reichardt et al., 1967; Berman 1970; Jones 1972; Speir and Ross, 1978; Wetzel 1981; 

Chróst and Overbeck, 1987). Changes in substrate availability affect resource allocation 

and multiple resource limitation, altering the functional organization of microbial 

communities, and ultimately, altering microbial metabolism (Allison et al., 2007). 

 

Thus, the original feedstocks used in composting may be important in engineering the 

substrate composition and nutrient supply of the compost ecosystem as it matures. 

However, since no differences in disease severity were found between different 

feedstocks, the production process may be more important in determining the substrate 

composition and microbial metabolism during maturation. Nutrient limitation may be 

important to compost-mediated disease suppression, as the most suppressive samples 

were severely limited in N and P. Because anaerobic digestate had very high rates of 

ecoenzyme activity, while vermicompost and hardwood bark compost were generally low 

(Table 17), rates of ecoenzymatic activity for single enzymes do not seem to be as 

important as the ratios of enzyme classes representing ratios of nutrient acquisition. 

Additionally, because microbial metabolism depends on nutrient ratios to continue, the 

microbial community composition is more accurately inferred from ecoenzymatic 

nutrient acquisition ratios. 
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A nutrient limited environment will favor oligotrophs over copiotrophs, and can be 

indicative of a late-successional ecosystem with tighter nutrient cycles. Recently 

disturbed environments are expected to have higher nutrient availability in the soil, and 

possibly a soil microbial community of reduced diversity, which may favor biological 

invasions (van der Putten et al., 2007). Additionally, because competition for nutrients is 

one of the mechanisms important to compost-mediated disease suppression, a nutrient 

limited environment may support non-pathogenic species to outcompete pathogenic 

species. This may explain why a nutrient-limited compost is more successful in 

suppressing R. solani. 

 

Oxidative activity was expected to be significant in disease suppression, but no 

significant differences were found between process, maturity, or feedstock. These results 

contrast the findings of Van Beneden et al. (2010), which showed that incorporation of 

kraft lignin into soil reduced the viability of R. solani sclerotia. They hypothesized that 

abundance of lignin-degrading basidiomycetes might play an important role in control of 

R. solani sclerotia. Although statistical difference was not detected, anaerobic digestate 

had the highest rate of oxidative activity overall, compared to all other compost samples. 

By incorporating indicators of ecological stoichiometry and ecosystem health and 

stability, this study takes a novel approach in examining the nature of compost-mediated 

disease suppression against R. solani. Little work has been done on the ecological nature 

of compost-mediated disease suppression. The use of ecoenzyme and nematode 

community analyses allowed this study to further examine the relationship between 
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microbial consortia and ecological stoichiometry. 

 

3.4.2. Nematode Community Analysis 

 

As fungi have been suggested to be important in suppression against R. solani (Hoitink et 

al., 1996), fungivorous nematodes were expected to be abundant, but few were found in 

all compost samples. In contrast, Steel et al. (2010) detected abundant fungivorous 

nematodes in mature compost with F:B values of 11.90±8.15. Fungivorous nematodes 

Aphelenchus avenae and Aphelenchoides spp. have been found to be successful in 

suppressing Rhizoctonia damping off on cauliflower (Lagerlӧf et al., 2011). However, 

since few fungivorous nematodes were found in compost samples that were suppressive, 

they may not play a crucial role in suppression of R. solani. 

 

Nematode ESI for the compost samples in this study were in the range of that found by 

Steel et al. (2010), however ESI did not differ significantly between immature and mature 

compost samples in this study. 

 

3.4.3. Maturity, Production Process, and Feedstock 

 

Respiration rate is most commonly used in determining compost maturity (Gómez et al., 

2006; Wichuk and McCartney, 2010), but there were no correlations found between 

compost maturity and respiration rate in this study. However, respiration rate did 
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contribute to differences in ecoenzyme activity of phosphatase (PP) (P ≤ 0.0004), β-

glucosidase (BG) (P ≤ 0.0261), and β-1,4-N-acetylglucosaminidase (chitinase) (NAG) (P 

≤ 0.0461). Mature composts (composts that have aged for 3-6 months) are more 

suppressive than immature composts, confirming findings from previous research (Tuitert 

et al., 1998; Kuter et al., 1988; Hoitink et al., 1996). 

 

Compost maturity contributed to differences in LAP activity and EEAC/P. Mature 

composts have greater LAP activity and lower EEAC/P, indicating that they are less C-

limited than immature composts. LAP activity has potential to serve as an indicator of 

compost maturity. Greater LAP activity is an indication of increased microbial N 

acquisition from protein sources, rather than cell wall components such as chitin. 

Regardless of maturity, overall LAP activity is much greater than NAG activity. 

Microbial N acquisition is more focused on peptidase activity, rather than chitinase 

activity. Greater overall LAP activity than NAG activity is consistent with findings from 

Neher et al. (2015) in three different types of compost (manure/silage only, hay as 

primary C, and hardwood bark as primary C).  

 

Vermicompost and anaerobic digestate behave very differently from thermophilic 

composts – they are more suppressive and more limited in N and P than thermophilic 

composts. Anaerobic digestate (AD) had much greater ecoenzyme activity overall than 

any of the other composts, indicating an abundance of microbial metabolic activity and 

an abundant supply of nutrients. However, the microbial biomass carbon of AD was 
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generally lower than all other compost samples, and vermicompost (VC) had the highest 

concentration of microbial biomass carbon. AD had the highest rate of respiration, while 

VC had the lowest. 

 

This study showed inconsistent effects from feedstock chemistry, similar to previous 

research (Santos et al., 2008; Kuter et al., 1988). Feedstock had significant effects on the 

Rhizoctonia plate bioassay, but none on the greenhouse bioassay. This may be due to 

unique effects of the feedstock microbiota on R. solani growth in vitro, which are 

different in the native soil ecosystem. The hardwood bark feedstock was most 

suppressive in vitro. This may be due to a larger fungal community competing against or 

antagonizing R. solani, although no fungivorous nematodes were found in the hardwood 

bark compost. Feedstock may ultimately be less important than production process in 

compost-mediated disease suppression 

 

3.4.4. Indicators 

 

The primary indicators of significance to disease suppression are ecoenzymes, 

nematodes, and the Rhizoctonia plate competition bioassay. The Rhizoctonia plate 

competition bioassay can serve as a preliminary assessment of disease suppression, but is 

not strong or reliable enough as a standalone assay. Maturity and production process are 

most important to consider in disease suppression. Feedstock chemistry is less important, 

though hardwood bark compost seems to provide the best suppression among 
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thermophilic composts. 

 

Other indicators that looked solely at microbial activity or physical properties, without 

integrating information about ecosystem maturity and stability, did not exhibit potential 

to predict disease suppression in compost, confirming the view that both substrate 

composition and microbial community composition are important in compost-mediated 

disease suppression. 

 

In some ways, such as with feedstocks food waste, manure/silage, and hardwood bark, 

the R. solani assay in vitro reflected the results of disease severity in the greenhouse 

bioassay. However, it was not consistent with poultry manure or food waste mixed with 

poultry manure. There is more happening in the soil and compost ecosystem that could 

not be reflected in the laboratory assay. Microbial communities play a significant role, as 

does the presence of a plant. These results confirm the theory behind the plant disease 

triangle (Madden et al., 2007) – not only is the presence of a pathogen important in 

developing infection and pathology, but so is the presence of a conducive soil 

environment and susceptible plant host. Similar to the conclusions and recommendations 

of Alfano et al. (2011), the plate assay could be used as a quick preliminary assessment of 

disease suppression, but would need to be strengthened and confirmed by a greenhouse 

bioassay, and is not reliable as a standalone assay. 

 

Microbial biomass carbon, pH, EC, and C:N ratio did not have significant effects on 
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disease severity. Respiration rate was greater for anaerobic digestate and vermicompost, 

reflecting their greater suppressive ability compared to thermophilic composts. 

Additionally, respiration rate had significant effects on PP, BG, and NAG, which were 

the ecoenzymes that most contributed to disease severity in the multiple stepwise 

regression. However, while respiration was also the covariable that contributed to 

significant differences in disease severity (P ≤ 0.045), there was no significant linear 

correlation between respiration rate and disease severity (R2=0.005). Based on the 

relationships between respiration rate, production process, and ecoenzyme activity, it 

may have a different relationship with disease severity that is not linear in nature. This 

confirms the finding by Scheuerell et al. (2004) that respiration potential did not have a 

significant linear relationship with compost-mediated disease suppression of R. solani. 

 

Ecoenzyme activity and nematode community analyses may serve as potential indicators 

of compost maturity and disease suppression. Both integrate information about the 

ecological conditions of the compost environment. Nutrient ratios, metabolic activity, and 

presence of microorganisms based on metabolic function may be inferred from analyses 

of ecoenzymes and nematodes. Since suppressive ability depends on a specific ecological 

environment (Hadar and Papadopoulou, 2012), these parameters may be most pertinent in 

choosing a compost best suited for disease suppression. 
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3.4.5. Recommendations 

 

Overall, the recommended composts to manage R. solani would be vermicompost, 

anaerobic digestate, and hardwood bark compost. The combination of ecoenzyme 

activity, nematode MI, and Rhizoctonia plate bioassay would serve well to predict disease 

suppression against R. solani. The plate bioassay is effective as a preliminary screen, but 

would need to be followed up with a greenhouse bioassay to make reliable conclusions 

about disease severity. 

 

3.4.6. Future Applications 

 

This study created a framework that will allow further research to be done in similar 

fashion, to examine the characteristics of compost, and to identify indicators that can 

predict suppression of other soilborne plant pathogens. It was one of the first to explore 

ecoenzyme activity and analysis in compost, for the purpose of disease suppression. 

Future work can focus on the relationship between ecoenzyme activity and biocontrol, as 

well as the relationships between ecoenzyme activity, feedstock, and maturity. 
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APPENDIX A. EFFECTS OF APPLICATION RATE ON DISEASE SEVERITY 

IN HARDWOOD BARK COMPOST AND VERMICOMPOST 

 

A.1. Objective 

 

Because the compost microbial community is important in disease suppression, 

application of higher rates of compost may increase competition for nutrients and 

resources and antagonism against disease pathogens. The objective of this study was to 

assess the effects of increasing application rate of hardwood bark compost and 

vermicompost on disease suppression, measured as disease severity on radish seedlings, 

against R. solani. 

 

A.2. Methods 

 

Four concentrations (% v/v) of HM and VMO (Worm Power, Avon, NY) were assayed 

for the effects of application rate on suppressiveness against R. solani. Concentrations of 

5, 10, 15, and 25% were assayed for hardwood bark compost, while concentrations of 

0.25, 1.25, 2.5, and 5% were assayed for vermicompost in quadruplicate. These values 

were chosen based on the results from the field application rate assay detailed in Chapter 

2. The field application rate was converted to % v/v application rate, and a range of 

concentrations was developed around that. Infested soil and compost applications were 

prepared as described in the greenhouse bioassay in Chapter 2, Section 2.2.3. Twenty-



 
 

94 
 

five radish seeds were planted per pot and seedlings were harvested and assessed for 

disease severity after two weeks of growth in the greenhouse, as described in Chapter 3, 

Section 3.2.2. Chi square analysis was done in JMP Pro 11 to determine effects of 

application rate on disease severity. 

 

A.3. Results 

 

Varying application rates of hardwood bark compost on soil infested with R. solani had a 

significant effect on disease severity (P ≤ 0.0001). Application rates of 2.5% and 25% 

hardwood bark compost were conducive to disease, whereas application rates of 5% and 

10% were suppressive, compared with the positive control (Figure A1.1.). The 10% 

application rate was more suppressive than other rates, so this rate was used for all 

thermophilic compost samples in the greenhouse disease severity bioassay. 

 

Varying application rates of vermicompost on soil infested with R. solani also had a 

significant effect on disease severity (P ≤ 0.0018). Vermicompost application was 

conducive to disease at all rates except 1.25%, where it was comparable to the positive 

control (Figure A1.1.). This particular sample had aged for several months since its initial 

use in the preliminary field application rate assay (Figure 1), and most likely began to 

lose its disease suppressive capability. The 1.25% application rate was used for all 

vermicompost samples. 
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Figure A.1. Disease severity of hardwood bark compost and vermicompost application at 

four concentrations (v/v). Hardwood bark compost: 2.5%, 5%, 10%, 25%. 

Vermicompost: 0.25%, 1.25%, 2.5%, 5%. NC = No Compost Applied; + indicates soil 

infested with R. solani; - indicates uninfested soil 
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APPENDIX B: EFFECTS OF FILTRATION AND AUTOCLAVING ON 

RHIZOCTONIA SOLANI GROWTH ON COMPOST WATER EXTRACTS IN 

VITRO 

 

B.1. Objective 

 

Disease suppression occurs through general (competition for nutrients and resources) and 

specific (toxicity, parasitism, predation, etc.) activities of biocontrol antagonists. 

Microbiota viability is killed through autoclaving, and filtration removes large particles 

from compost media, which may harbor microbiota important to disease suppression. The 

objective of this study was to determine the effects of filtration and autoclaving on R. 

solani growth in vitro on compost water extract media. 

 

B.2. Methods 

 

Rhizoctonia solani was isolated and cultures were maintained as described in Chapter 3, 

Section 3.2.2. Five plates each of eight treatments were prepared as follows: 

vermicompost – autoclaved – filtered (VAF); vermicompost – autoclaved – unfiltered 

(VAU); vermicompost – raw – filtered (VRF); vermicompost – raw – unfiltered (VRU); 

hardwood bark compost – autoclaved – filtered (HAF); hardwood bark compost – 

autoclaved – unfiltered (HAU); hardwood bark compost – raw – filtered (HRF); 

hardwood bark compost – raw – unfiltered (HRU).  
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All treatments were shaken in deionized water overnight, as described in Chapter 3, 

Section 3.2.2. The next day, treatments destined for autoclaving were autoclaved along 

with eight flasks of water agar mixtures (1.5g agar in 50ml deionized water). After 

cooling to 55ºC, treatments destined for filtration were vacuum filtered through Whatman 

No.1 paper. Each treatment was mixed in with a flask of autoclaved water agar, swirled 

gently to mix, and poured into plates. The non-autoclaved (raw) and unfiltered compost 

water media was prepared as mentioned above. R. solani is transferred, incubated, and 

the mycelium growth is recorded for all treatment plates as described above, using pure 

water agar as a control treatment. 

 

B.3. Results 

 

Raw compost water extracts suppressed R. solani growth in vitro much more than 

autoclaved samples (P ≤ 0.0001). Filtration appears to reduce the suppression effect, 

though not significantly (P ≤ 0.1453). Filtration reduced the overall conducive effect of 

autoclaved vermicompost, and slightly enhanced the overall conducive effect of 

autoclaved hardwood bark compost (Figure 5). Filtration of raw treatments in both 

vermicompost and hardwood bark compost appears to reduce the suppressive effect. 

 

Autoclaving reverses the suppressive effect of raw treatments, and becomes conducive to 

R. solani growth in vitro (P ≤ 0.0001). Vermicompost suppresses R. solani growth in 
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vitro much more than hardwood bark compost (P ≤ 0.0003). An interaction effect was 

found between filtration and autoclaving (P ≤ 0.0016) and autoclaving and compost type 

(P ≤ 0.0022). Autoclaving treatments removed the effects of filtration, while treatments 

that were neither filtered nor autoclaved showed the greatest suppression of R. solani 

growth in vitro (P ≤ 0.05). 

 

Since filtration of the compost water extract reduces R. solani suppression, there is 

something in the larger, solid particles that is important to disease suppression. Larger 

microorganisms such as microarthropods and nematodes may dwell in these aggregates, 

and may play a significant role in disease suppression against R. solani. Additionally, 

substrates holding the aggregates together may be important. 
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Figure B.1. Effects of filtering and autoclaving on R. solani growth in vitro, as measured 

by % change in mycelial growth from control. V=vermicompost; H=hardwood bark 

compost; A=autoclaved; R=raw; F=filtered; U=unfiltered. 
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APPENDIX C: BIOLOGICAL INDICATORS DATA 

 

Table C.1. Means and standard deviations for all samples and measurements. Refer to Table 6 for Sample IDs. DS = Disease 

Severity (% change from positive control NC+, MBC = Microbial Biomass Carbon (µg C/g dry weight compost), Resp = 

Respiration Rate (mg CO2/hr/g dry weight compost), EC = Electrical Conductivity (mS/cm), ESI = Nematode Ecological 

Successional Index, F:B = Nematode F:B Ratio (F/(F+B)), Plate = Rhizoctonia Plate Assay (% change in mycelium radius 

(mm) from positive control water agar plate) 
Sample DS MBC Resp pH EC C:N ESI F:B Plate 

NC- 
-0.4974 

(± 0.25) 
- - - - - - - - 

NC+ 
-1.667E-08 

(± 0.101) 
- - - - - - - - 

R+ 
-0.1609 

(± 0.175) 
- - - - - - - - 

HM- 
-0.481 

(± 0.0586) 
- - - - - - - - 

VMF2- 
-0.46 

(± 0.1366) 
- - - - - - - - 

TI1+ 
0.0835 

(± 0.056) 

408.5 

(± 1.078) 

0.07724 

(± 0.003) 

7.55 

(± 0.087) 

3.177 

(± 0.634) 

28.5 

(± 6.978) 
0 0 

-0.412 

(± 0.097) 

TI2+ 
0.0804 

(± 0.1106) 

713.52 

(± 257.8) 

0.0907 

(± 0.004) 

7.74 

(± 0.181) 

4.375 

(± 0.431) 

20.157 

(± 1.189) 
1 0 

-0.322 

(± 0.1) 

TI3+ 
-0.047 

(± 0.13) 

244.25 

(± 27.41) 

0.04866 

(± 0.0045) 

7.51 

(± 0.099) 

4.287 

(± 0.65) 

18.0496 

(± 0.21) 
1.52 0 

0.082 

(± 0.033) 

TI4+ 
-0.022 

(± 0.1687) 

932.753 

(± 145.87) 

0.023 

(± 0.002) 

7.32 

(± 0.115) 

4.693 

(± 1.22) 

19.034 

(± 0.08) 
1.12 0.02 

-0.212 

(± 0.07) 

TM1+ 
0.115 

(± 0.052) 

286.29 

(± 45.73) 

0.05433 

(± 0.0045) 

7.6 

(± 0.105) 

2.11 

(± 0.433) 

19.047 

(± 0.295) 
1 0 

-0.28 

(± 0.094) 

TM2+ 
-0.103 

(± 0.199) 

286.65 

(± 324.02) 

0.01697 

(± 0.003) 

6.45 

(± 0.093) 

3.623 

(± 0.79) 

14.125 

(± 0.172) 
1.01 0.007 

-0.008 

(± 0.12) 

TM3+ 
-0.1578 

(± 0.144) 

276.89 

(± 77.42) 

0.0282 

(± 0.003) 

7.38 

(± 0.186) 

1.667 

(± 0.33) 

16.127 

(± 0.7335) 
- - 

0.014 

(± 0.084) 

TM4+ 
0.1482 

(± 0.0178) 

120.489 

(± 73.07) 

0.0174 

(± 0.007) 

6.91 

(± 0.223) 

3.963 

(± 1.2) 

13.795 

(± 0.269) 
1.12 0 

-0.212 

(± 0.037) 

TM5+ 
0.1408 

(± 0.0323) 

430.6838 

(± 99.38) 

0.0351 

(± 0.0067) 

7.11 

(± 0.072) 

2.7 

(± 0.07) 

15.86 

(± 1.198) 
1.065 0.007 

-0.192 

(± 0.023) 

TMF+ 
0.085 

(± 0.0271) 

384.806 

(± 90.234) 

0.02827 

(± 0.0075) 

5.44 

(± 0.081) 

3.32 

(± 1.016) 

19.43 

(± 0.107) 
1.1 0.015 

-0.244 

(± 0.044) 
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MI+ 
-0.157 

(± 0.0989) 

335.307 

(± 179.1) 

0.0075 

(± 0.0057) 

6.66 

(± 0.197) 

5.79 

(± 0.451) 

12.36 

(± 0.093) 
1 0 

-0.35 

(± 0.1) 

MM+ 
0.0029 

(± 0.0706) 

397.929 

(± 94.92) 

0.0216 

(0.0021) 

6.18 

(± 0.029) 

5.857 

(± 0.142) 

16.157 

(± 0.512) 
1.2 0 

-0.33 

(± 0.01) 

HM+ 
-0.2605 

(± 0.0652) 

130.2515 

(± 137.39) 

0.00376 

(± 0.002) 

6.72 

(± 0.446) 

2.147 

(± 0.352) 

20.636 

(± 3.35) 
1.9 0 

-0.514 

(± 0.047) 

AD+ 
-0.2819 

(± 0.1025) 

299.494 

(± 308.99) 

0.13776 

(± 0.018) 

8.09 

(± 0.466) 

1.497 

(± 0.1955) 

27.208 

(± 0.345) 
0 0 

-0.134 

(± 0.044) 

VMO+ 
0.00258 

(± 0.0804) 

1123.77 

(± 235.86) 

0.0152 

(± 0.0046) 

6.8 

(± 0.04) 

14.14 

(± 0.54) 

11.27 

(± 0.116) 
1 0 

-0.4 

(± 0.069) 

VMF1+ 
-0.4586 

(± 0.0424) 

176.676 

(± 72.845) 

0.03539 

(± 0.0057) 

6.533 

(± 0.02) 

7.06 

(± 1.06) 

11.935 

(± 0.162) 
1.16 0 

0.008 

(± 0.049) 

VMF2+ 
-0.1682 

(± 0.1512) 
- 

0.0187 

(± 0.005) 

6.99 

(± 0.14) 

16.26 

(± 0.96) 
- - - 

-0.314 

(± 0.084) 

VEO+ 
-0.2425 

(± 0.1583) 
- - - 

1.683 

(± 0.006) 
- - - - 

VEF+ 
-0.2892 

(± 0.107) 
- - - 

2.3 

(± 0.01) 
- - - - 
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Table C.2. Pearson Correlation Coefficients 

 

Pearson Correlation Coefficients 

Prob > |r| under H0: Rho=0 

Number of Observations 

  MBC resp pH lnEC lnCN plate eeaCN eeaCP bgox phos bg lap nag ox 

MBC 1 0.061 0.14816 0.48392 -0.04241 -0.2955 0.15949 -0.14191 -0.17771 0.10344 0.06782 -0.06815 -0.13747 -0.2315 

 0.694 0.3371 0.001 0.7846 0.0515 0.313 0.3581 0.2485 0.504 0.6618 0.6603 0.3735 0.1402 

44 44 44 43 44 44 42 44 44 44 44 44 44 42 

resp 0.061 1 0.63373 -0.40862 0.67003 0.10717 -0.20539 -0.1082 -0.11174 0.88314 0.63952 0.79811 0.18893 0.45534 

0.694  <.0001 0.0044 <.0001 0.4685 0.1811 0.4641 0.4496 <.0001 <.0001 <.0001 0.1984 0.0019 

44 48 48 47 46 48 44 48 48 48 48 48 48 44 

pH 0.14816 0.63373 1 -0.27338 0.43452 0.09802 -0.15798 -0.20707 -0.11842 0.52379 0.39484 0.46656 0.07181 0.26229 

0.3371 <.0001  0.063 0.0025 0.5075 0.3057 0.1579 0.4228 0.0001 0.0055 0.0008 0.6277 0.0854 

44 48 48 47 46 48 44 48 48 48 48 48 48 44 

lnEC 0.48392 -0.40862 -0.27338 1 -0.56516 -0.16231 -0.09645 -0.10831 0.49777 -0.33054 0.12355 -0.34915 0.41578 -0.33994 

0.001 0.0044 0.063  <.0001 0.2757 0.5384 0.4686 0.0004 0.0233 0.408 0.0162 0.0037 0.0257 

43 47 47 53 45 47 43 47 47 47 47 47 47 43 

lnCN -0.04241 0.67003 0.43452 -0.56516 1 -0.14511 0.042 -0.03621 -0.29517 0.61012 0.65217 0.56847 0.00063 0.19042 

0.7846 <.0001 0.0025 <.0001  0.3305 0.7841 0.809 0.044 <.0001 <.0001 <.0001 0.9966 0.2102 

44 46 46 45 47 47 45 47 47 47 47 47 47 45 

plate -0.2955 0.10717 0.09802 -0.16231 -0.14511 1 -0.11804 0.04012 0.06844 0.00096 -0.1904 0.03451 0.03744 0.55599 

0.0515 0.4685 0.5075 0.2757 0.3305  0.3269 0.7308 0.5569 0.9934 0.0995 0.7673 0.7482 <.0001 

44 48 48 47 47 76 71 76 76 76 76 76 76 71 

eeaC

N 

0.15949 -0.20539 -0.15798 -0.09645 0.042 -0.11804 1 0.06753 -0.34137 -0.15062 -0.09495 -0.41051 -0.15707 -0.08132 

0.313 0.1811 0.3057 0.5384 0.7841 0.3269  0.573 0.0033 0.2066 0.4276 0.0003 0.1876 0.4971 

42 44 44 43 45 71 72 72 72 72 72 72 72 72 

eeaC -0.14191 -0.1082 -0.20707 -0.10831 -0.03621 0.04012 0.06753 1 -0.28515 -0.08468 -0.00988 -0.00738 -0.24666 -0.19235 



 
 

 
 

 
1
0
3

 

P 0.3581 0.4641 0.1579 0.4686 0.809 0.7308 0.573  0.0119 0.464 0.932 0.9492 0.0306 0.1055 

44 48 48 47 47 76 72 77 77 77 77 77 77 72 

bgox -0.17771 -0.11174 -0.11842 0.49777 -0.29517 0.06844 -0.34137 -0.28515 1 -0.15946 0.30206 -0.11291 0.90947 -0.37759 

0.2485 0.4496 0.4228 0.0004 0.044 0.5569 0.0033 0.0119  0.166 0.0076 0.3282 <.0001 0.0011 

44 48 48 47 47 76 72 77 77 77 77 77 77 72 

phos 0.10344 0.88314 0.52379 -0.33054 0.61012 0.00096 -0.15062 -0.08468 -0.15946 1 0.70907 0.90841 0.24281 0.33289 

0.504 <.0001 0.0001 0.0233 <.0001 0.9934 0.2066 0.464 0.166  <.0001 <.0001 0.0334 0.0043 

44 48 48 47 47 76 72 77 77 77 77 77 77 72 

bg 0.06782 0.63952 0.39484 0.12355 0.65217 -0.1904 -0.09495 -0.00988 0.30206 0.70907 1 0.68755 0.64487 0.24239 

0.6618 <.0001 0.0055 0.408 <.0001 0.0995 0.4276 0.932 0.0076 <.0001  <.0001 <.0001 0.0402 

44 48 48 47 47 76 72 77 77 77 77 77 77 72 

lap -0.06815 0.79811 0.46656 -0.34915 0.56847 0.03451 -0.41051 -0.00738 -0.11291 0.90841 0.68755 1 0.26616 0.25322 

0.6603 <.0001 0.0008 0.0162 <.0001 0.7673 0.0003 0.9492 0.3282 <.0001 <.0001  0.0193 0.0319 

44 48 48 47 47 76 72 77 77 77 77 77 77 72 

nag -0.13747 0.18893 0.07181 0.41578 0.00063 0.03744 -0.15707 -0.24666 0.90947 0.24281 0.64487 0.26616 1 0.28155 

0.3735 0.1984 0.6277 0.0037 0.9966 0.7482 0.1876 0.0306 <.0001 0.0334 <.0001 0.0193  0.0166 

44 48 48 47 47 76 72 77 77 77 77 77 77 72 

ox -0.2315 0.45534 0.26229 -0.33994 0.19042 0.55599 -0.08132 -0.19235 -0.37759 0.33289 0.24239 0.25322 0.28155 1 

0.1402 0.0019 0.0854 0.0257 0.2102 <.0001 0.4971 0.1055 0.0011 0.0043 0.0402 0.0319 0.0166  

42 44 44 43 45 71 72 72 72 72 72 72 72 72 
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APPENDIX D: CUSTOM STATISTICS CODES 

 

D.1. R Code for Multiple Kruskal Wallis Tests on 16S and ITS Sequencing Results, 

Developed by Jonathan Leff, University of Colorado 

 

##############################################################################

### 

### R code to find the taxa driving differences between microbial communities ### 

### given a taxa summary table and mapping file from QIIME                    ### 

### -- Jon Leff -- December 5, 2012 --                                        ### 

##############################################################################

### 

 

# This code will: (1) Filter the taxa summary to remove taxa that do not meet 

# an abundance threshold in any factor level. This is based on median abundance. 

# (2) Calculate which taxa have differences in relative abundance among factor 

# levels. This is based on either Mann-Whitney tests or Kruskal-Wallis (both 

# non-parametric tests). Use Mann-Whitney for 2 factor levels and K-W for more 

# than 2. (3) Output results including adjusted (Bonferroni and FDR) p-values 

# and medians. 

 

#### Functions needed for analysis:      #### 
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#### Run all so that they will be usable #### 

#### Example usage is at bottom of file  #### 

 

# get metadata values for a specific variable in the same order as the samples 

# in the taxa table 

get_metadata = function(t_table,map_file,variable) 

map_file[match(names(t_table),row.names(map_file)),variable] 

 

# function to filter taxa 

filter_taxa = function(t_table,map_file,f_level,f_factor){ 

  # Check if the t_table only has one sample 

  if(class(t_table)=="numeric"){ 

    "skip" 

  } else { 

    factorMeta = get_metadata(t_table,map_file,f_factor) 

    rowsToKeep = c() 

    for(i in 1:nrow(t_table)){ 

      #   in the row, calculate medians for each factor level and keep if one is  

      #   greater than filter 

      medianAbunds <- NULL 

      medianAbunds <- aggregate(as.numeric(t(t_table[i,])),list(factorMeta),median) 

      if(max(medianAbunds$x) >= f_level){ 
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        rowsToKeeP ≤- c(rowsToKeep,i) 

      } 

    } 

    t_table[rowsToKeep,] 

  } 

} 

 

# run Wilcoxon Rank-Sum test (Mann-Whitney U test) and return p-value 

run_MW_test = function(dependent,factor){ 

  # check for only two factor levels 

  if(length(unique(factor))!=2) print('Mann-Whitney test requires exacly two factor levels.') 

  wilcox.test(formula=dependent~factor)$p.value 

} 

 

# run Kruskal-Wallis test 

run_KW_test = function(dependent,factor){ 

  kruskal.test(formula=dependent~factor)$p.value 

} 

 

# run statistical test (ANOVA or Kruskal-Wallis) on each taxon 

# in a provided taxa table 

run_test = function(t_table,map_file,fctr,type){ 



 
 

107 
 

 

  fctrMeta = as.factor(as.vector(get_metadata(t_table,map_file,fctr))) 

  pvals = c() 

  for(i in 1:nrow(t_table)){ 

    if(type=='MW') pvals = c(pvals,run_MW_test(as.vector(t(t_table[i,])),fctrMeta)) 

    else if(type=='KW') pvals = c(pvals,run_KW_test(as.vector(t(t_table[i,])),fctrMeta)) 

    else print('Invalid test type specified') 

    if(i==1){ 

      medianAbunds = aggregate(as.numeric(t(t_table[i,])),list(fctrMeta),median) 

    } else{ 

      medians = aggregate(as.numeric(t(t_table[i,])),list(fctrMeta),median)[,2] 

      medianAbunds = cbind(medianAbunds,medians) 

    } 

  } 

  # generate bonforroni corrected pvals 

  pvalsBon = pvals*length(pvals) 

  # generate FDR corrected pvals (taken from otu_category_significance.py) 

  # Ranks p-values low to high and multiplies each p-value by the number of 

  # comparisons divided by the rank. 

  pvalsFDR = pvals*(length(pvals)/rank(pvals,ties.method="average")) 

  # prep medians to be added 

  factorLevels = as.character(medianAbunds[,1]) 

  medianAbunds[,1] = NULL 
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  # make result df 

  result = as.data.frame(cbind(pvals,pvalsBon,pvalsFDR,t(medianAbunds))) 

  row.names(result) = row.names(t_table) 

  colnames(result) = c("pvals","pvalsBon","pvalsFDR",factorLevels) 

  result 

} 

 

# filter out blanks code (not currently used) 

# if(omitBlanks){ 

#   taxa_table <- taxa_table[,factorMeta!=""] 

#   factorMeta <- as.factor(as.character(factorMeta[factorMeta!=""])) 

# } 

 

# function to show contributions of specific taxa to variation among communities 

# using Mann-Whitney (2 factor levels) or Kruskal-Wallis (more than 2) tests 

# PARAMETERS: 

# ts_fp=taxa summary filepath 

# map_fp=mapping file filepath 

# out_fp=test results output filepath 

# factor=mapping file header (in quotation marks) of factor for which you are testing for 

differences 
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# filterLevel=number from 0 to 1--the minimum median relative abundance needed in at least 

one of the  

#             factor levels for a taxon to be retained in the analysis 

# testType=either 'MW' or 'KW' (i.e. Wilcoxon/Mann-Whitney U for 2 factor levels or Kruskal-

Wallis  

#          for more than two factor levels) 

differences_in_taxa = function(ts_fp,map_fp,out_fp,factor,filterLevel,testType){ 

  # import taxa summary and mapping file 

  ts = 

read.table(ts_fp,header=TRUE,sep="\t",row.names=1,comment.char="",check.names=FALSE) 

  map = 

read.table(map_fp,header=TRUE,sep="\t",row.names=1,comment.char="",check.names=FALSE

) 

  # match up data from both 

  samplesInBoth=intersect(row.names(map),names(ts)) 

  ts.use=ts[,match(samplesInBoth,names(ts))] 

  map.use=map[match(samplesInBoth,row.names(map)),] 

  # filter taxa summary table by abundance in any/either factor level 

  taxa.use.filt <- filter_taxa(ts.use,map.use,filterLevel,factor) 

  testResults <- run_test(taxa.use.filt,map.use,factor,testType) 

  # Sort by pvalues  

  testResults <- testResults[with(testResults,order(pvals)),] 
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  # output data 

  write.table(x=testResults,file=out_fp,sep="\t",row.names=TRUE,col.names=NA) 

} 

 

####################### 

#### Example usage #### 

####################### 

 

ts_fp=' ' 

map_fp=' ' 

out_fp=' ' 

factor=' ' 

filterLevel=0.01 # This is the minimum median relative abundance for taxa to be kept 

testType='KW' # Either 'MW' or 'KW' 

 

# This will produce results 

differences_in_taxa(ts_fp,map_fp,out_fp,factor,filterLevel,testType) 
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D.2. SAS Micro for Tukey Letter Groupings: PDMIX800, Developed by Arnold M. Saxton, 

University of Tennessee 

 

 

/******************************************************************** 

PDMIX800 08/08/2003  slice correction, handles groups with one mean; 

  03/26/2002  error in by processing; 

  10/18/2001  printing changed again, turned off log notes; 

  06/08/2001  bug in slice and printing modified; 

/************************************************************* 

*    Copyright (C) 2000  Arnold M. Saxton (asaxton@utk.edu)  * 

*      University of Tennessee, Knoxville TN 37996-4500      * 

*    This program is free software; you can redistribute it  *  

*    and/or modify it under the terms of the GNU General     * 

*    Public License as published by the Free Software        * 

*    Foundation; either version 2 of the License, or         * 

*    (at your option) any later version.  Basically all      * 

*    copies, modifications or derivative works must allow    *  

*    the user to freely use the software, to copy, modify    * 

*    and distribute, and must carry this same License for    * 

*    free use. Source code must be distributed, but          * 

*    distribution charges of any magnitude are permitted.    * 
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*                                                            * 

*    This program is distributed in the hope that it will    *  

*    be useful, but WITHOUT ANY WARRANTY; without even the   *  

*    implied warranty of MERCHANTABILITY or FITNESS FOR A    * 

*    PARTICULAR PURPOSE.  See the GNU General Public License *  

*    for more details.                                       * 

*    A copy of the GNU General Public License can be obtained* 

*    from Free Software Foundation, Inc., 59 Temple Place,   * 

*    Suite 330, Boston, MA  02111-1307  USA                  * 

*    or http://www.gnu.ai.mit.edu/copyleft/gpl.txt.          * 

**************************************************************/ 

 

**** PDMIX800, for SAS Version 8 ******; 

 

/* 

ORIGINAL REFERENCE: 

Saxton, A.M.  1998.  A macro for converting mean separation output to letter  

groupings in Proc Mixed.  In Proc. 23rd SAS Users Group Intl., SAS Institute,  

Cary, NC, pp1243-1246. 

 

PURPOSE: 

This macro takes two data sets from Proc MIXED (Version 8), created by the 
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 DIFFS option on the LSMEANS statement. If an ADJUST= option is used, 

the pdiffs from this are used, not the unadjusted defaults. 

The pdiffs are converted to groups, labeled by numbers, and this  

is merged onto the lsmeans data set. 

The numbers are converted to letters, and for cases where more than  

26 letters are needed, sections of letters are coded.  For example,  

3 means might have the letters A, (2)A, and (3)A.  These 3 means  

are all different, because although all have the letter A, each A  

belongs to a different section, identified by (#). 

CAUTIONS!!!!!!! 

 Depends on computer using ASCII characters, with 32=blank and capital 

 letters following this. 

 Requires temporary SAS datasets MSGRPZZ, LSDVALZZ, PDTEMPZZ, PDTEMPZZZ, 

PDTEMPMZZ, 

   so any existing SAS dataset with these names will be destroyed. 

 There may be an IML limit of 90 total characters in the group  

  letter labels, but space for 200 are hardcoded. 

 Since SAS/IML is used, this must be installed on the computer, along 

  with BASE and STAT. 

 

Parameters. 

 -First required parameter must name a dataset created by  
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  ODS OUTPUT DIFFS in proc mixed; 

 -Second required parameter must name a dataset created by  

  ODS OUTPUT LSMEANS in proc mixed; 

 -Optional parameters, given in any order, case insensitive. 

   SORT=YES  - printing of means is in order of least squares mean 

               value.  Any value other than YES leaves means in 

               the proc mixed sort order. 

   ALPHA=.05 - critical probability value for deciding if means 

               differ or not.  The default is .05, and values must 

               be between 0 and 1. 

   WORKSIZE=1 - number of Kb of memory for IML to use.  This should 

                only be needed in very extreme circumstances as IML 

                dynamically increases memory as needed. 

   TEST0=YES  -  this requests that 3 variables (df, t, p) be 

                included in the printing.  Any value other than NO 

                prints all variables produced by the lsmeans. 

   MIXFMT=NO -  this removes the formatting assigned by proc mixed, 

                which helps compress the page width of the output. 

                This also will result in the means and std. errors 

              being rounded, which usually is desirable.  Any value 

                besides NO retains the proc mixed formatting. 

   NUMLET=200 - This specifies maximum number of letters that will 
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                be permitted.  Many means may possibly require many 

                letters, but memory requirements get excessive.  The 

                default of 200 should fail only in unusual cases. If 

                failure occurs (error message in log), rerun with this 

                option set higher. 

    SLICE=variables  Effects containing all the slice variables will 

                be subdivided, and mean separation reporting done within 

                slice levels.  Note that all comparisons are made, just 

                reporting of comparisons across slice levels is suppressed. 

                This is useful to reduce the complexity of letter groupings. 

 

Example of use. 

  Assume the file pdmix800.sas, containing the macro code, 

  is on the a: drive.  Then the code below will run MIXED, and run 

  pdmix800 on the lsmeans.  MIXED is told not to print the means and 

  pdiffs, using the ODS exclude statement, as  

  pdmix800 does the printing in the more desirable format.   

  Also shown are two optional parameters.   

 

proc mixed; 

 class block a b; 

 model y = a b a*b; 
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 random block; 

 lsmeans a b a*b/pdiff; 

 ods output diffs=ppp lsmeans=mmm; 

 ods listing exclude diffs lsmeans; 

run; 

%include 'a:pdmix800.sas'; 

%pdmix800(ppp,mmm,alpha=.01,sort=yes); 

 

*****************************************************************/ 

*************************************************************************; 

%macro pdmix800(pname,lname,sort=NO,alpha=.05,worksize=1,test0=NO, 

                mixfmt=YES,numlet=200,slice=);    

/************************************************************* 

*    Copyright (C) 2000  Arnold M. Saxton (asaxton@utk.edu)  * 

*      University of Tennessee, Knoxville TN 37996-4500      * 

*    This program is free software; you can redistribute it  *  

*    and/or modify it under the terms of the GNU General     * 

*    Public License as published by the Free Software        * 

*    Foundation; either version 2 of the License, or         * 

*    (at your option) any later version.  Basically all      * 

*    copies, modifications or derivative works must allow    *  

*    the user to freely use the software, to copy, modify    * 
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*    and distribute, and must carry this same License for    * 

*    free use. Source code must be distributed, but          * 

*    distribution charges of any magnitude are permitted.    * 

*                                                            * 

*    This program is distributed in the hope that it will    *  

*    be useful, but WITHOUT ANY WARRANTY; without even the   *  

*    implied warranty of MERCHANTABILITY or FITNESS FOR A    * 

*    PARTICULAR PURPOSE.  See the GNU General Public License *  

*    for more details.                                       * 

*    A copy of the GNU General Public License can be obtained* 

*    from Free Software Foundation, Inc., 59 Temple Place,   * 

*    Suite 330, Boston, MA  02111-1307  USA                  * 

*    or http://www.gnu.ai.mit.edu/copyleft/gpl.txt.          * 

**************************************************************/  

%let printdebug=0; **this does not turn on debug printing within IML; 

 

*** check arguments; 

%global bylistzz slicezz varlistzz;   **put out for possible use by backtrans;                

%let slicezz=&slice; 

%local dsid chk3 error1 error neweffectlength lastslicevar var adjust bylist 

       printdebug; 

  %let error=0; 
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  %if %length(&lname)=0 %then %let error=1; 

  %if  %sysfunc(exist(&lname)) %then %do; 

     %let dsid=%sysfunc(open(&lname,I)); 

    %let chk3=%sysfunc(varnum(&dsid,ESTIMATE)); 

    %if &chk3=0 %then %let error=2; 

    %let chk3=%sysfunc(varnum(&dsid,EFFECT)); 

    %if &chk3=0 %then %let error=2; 

    %let dsid=%sysfunc(close(&dsid)); 

  %end; 

  %else %let error=1; 

 

  %if &error>0 %then %do; 

   %if &error=1 %then %put WARNING: Dataset &lname does not exist.; 

   %if &error=2 %then %put WARNING: Dataset &lname was not made by proc mixed.; 

  %end; 

  %let error1=&error;   

 

  %let error=0; 

  %if %length(&pname)=0 %then %let error=1; 

  %if %sysfunc(exist(&pname)) %then %do; 

    %let dsid=%sysfunc(open(&pname,I)); 

    %let chk3=%sysfunc(varnum(&dsid,ESTIMATE)); 
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    %if &chk3=0 %then %let error=3; 

    %let chk3=%sysfunc(attrn(&dsid,nobs)); 

    %if &chk3=0 %then %let error=2; 

    %let dsid=%sysfunc(close(&dsid)); 

  %end; 

  %else %let error=1; 

 

  %if &error>0 %then %do; 

   %if &error=1 %then %put WARNING: Dataset &pname does not exist.; 

   %if &error=2 %then %put WARNING: There are no observations in dataset &pname.; 

   %if &error=3 %then %put WARNING: Dataset &pname was not made by proc mixed.; 

  %end; 

  %if (&error or &error1) %then %do; 

   %put NOTE: PDMIX800 terminated due to errors in input values.; 

   %goto skip; 

  %end; 

 

 %if &error %then %do; 

   %put PDMIX800 terminated due to errors in input values.; 

   %if &error=3 %then %put Alpha can only have values between 0 and 1.;  

   %if &error=4 %then %put ADJUST=Dunnett output not supported.; 

   %goto skip; 
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 %end; 

** save setting of notes option; 

%let notesval=notes; 

options nonotes; 

%put PDMIX800 08.08.2003 processing; 

 

****need list of variable names, either sliced or not; 

data _null_; 

 *** First get unique list of all names used in BY statements; 

 *** these come before the variable EFFECT, but include EFFECT in list; 

 dsid=open("&lname",'i'); 

 length namlist $ 512; 

 ii=1; 

 value=varname(dsid,ii); 

 do while (value ^= 'Effect') ; 

   if ii=1 then namlist=value; 

   else namlist=trim(namlist)||' '||value; 

   ii=ii+1; 

   value=varname(dsid,ii); 

 end; 

 call symput('bylistzz',compbl(namlist)); **list without effect; 

 if namlist='' then namlist=value; 
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 else namlist=trim(namlist)||' '||value; 

 namlist=trim(namlist); 

 call symput('bylist',namlist);   **list with effect; 

****************************************************; 

*** Now get list of all class variables (always between effect and estimate); 

 length list list1 list2 $ 3200;  

 start=varnum(dsid,"EFFECT") +1; 

 ii=1;jj=start; 

 slicein=upcase("&slice"); 

 do while(ii); 

  name=varname(dsid,jj); 

  name1=upcase(name); **case sensitive names are returned by varname; 

  type=vartype(dsid,jj); 

  if name1 ^= 'ESTIMATE' then do; 

    kk=indexw(slicein,name1); 

    if kk=0 then do; list=compress(list||'='||name); 

   if type='N' then  

    list2= trim(list2)||' left('||trim(name)||left(")= '_' and") ; 

   else list2= trim(list2)||' left('||trim(name)||left(")='' and") ; 

    end; 

    else do; 

      if type='N' then  
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         list1= trim(list1)||' left('||trim(name)||left(")='_' or") ; 

      else list1= trim(list1)||' left('||trim(name)||left(")='' or") ; 

 end; 

    jj=jj+1;  

  end; 

  else ii=0; 

 end; 

 list=substr(list,2); 

 jj=length(list1); if jj>2 then list1=substr(list1,1,jj-2); 

 list2=substr(list2,1,length(list2)-3); 

 call symput('slice1',trim(list1)); 

 call symput('varlist1',trim(list2)); 

 list=translate(list,' ','='); 

call symput ('varlistzz',trim(list)); 

run; 

%if &printdebug=1 %then %do; 

  %put bylist      &bylist; 

  %put bylistzz    &bylistzz; 

  %put varlistzz   &varlistzz; 

  %put varlist1    &varlist1; 

  %put slice1    &slice1; 

%end; 
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********** add variables to datasets ******************************; 

data pdtempzz; set &pname; by &bylist  notsorted; 

** if adjusted probs are not there, an LSD was used; 

 if ADJP=. then do; ADJP=PROBT; ADJUSTMENT='LSD    '; end; 

 length _mstech_ $ 30; 

 if ADJUSTMENT ='' then _mstech_=compress('LSD(P<'||"&alpha"||')'); 

  else do; 

    _mstech_=compress(ADJUSTMENT||'(P<'||"&alpha"||')' ); 

   if substr(ADJUSTMENT,1,7)='Dunnett' then call symput('error','4'); 

  end; 

 *** numerical value check only possible in data step; 

 if &alpha < 0.0 or &alpha > 1.0 then call symput('error','3'); 

run; 

data pdtempmzz; set &lname; by &bylist notsorted; 

  *** add bygroup variable to means dataset; 

  retain bygroup 0; 

  if first.effect then bygroup+1; 

 if first.EFFECT and last.EFFECT then  df0=1; 

 else df0=0; 

 dothiseffectzz=0; 

run; 
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***means and diffs data may have different effects, due to 0 df, 

   so copy bygroup over to diffs; 

data pdtempzzz; set pdtempmzz; by bygroup notsorted; 

 if first.bygroup; 

 keep &bylist bygroup effect; 

run; 

** use bylist for merging; 

proc sort data=pdtempzz; by &bylist ; 

proc sort data=pdtempzzz; by &bylist ; 

data pdtempzz; merge pdtempzz (in=have) pdtempzzz; by &bylist; 

 if have; 

run; 

***this sort is required to give IML data by slice; 

proc sort data=pdtempzz; by bygroup &slice; run; 

 

%if %length(&slice) ne 0 %then %do; 

*******************************************************************; 

*******************************************************************; 

*** sort, edit, relabel diff and mean data for the slice option ***; 

*** this works by redefining effects that are being sliced ***; 

*** Example:  In a 2*2 factorial, slicing the A*B interaction by A 

***  means only 2 comparisons are needed of the 4*3/2=6 possible. 
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***  These are A1B1-A1B2  and  A2B1-A2B2; 

 

%if %length(&varlistzz)=0 %then %put ERROR: No variables left after slicing.; 

%else %do; 

%let lastslicevar=%scan(&slice,-1); 

*** identify sliced effects; 

*** use pdtempzzz created above, with one record per effect; 

proc sort data=pdtempmzz; by bygroup ; 

data pdtempmzz ;   set pdtempmzz; 

  dothiseffectzz=0; 

  *****test if effect should be sliced; 

  if not(&slice1) then do; **no slice vars missing; 

 if not(&varlist1)  then dothiseffectzz=1; 

  end; 

run; 

 

*** now fix up diffs dataset; 

data pdtempzzz; set pdtempmzz; by  bygroup; 

 if first.bygroup; 

 keep dothiseffectzz bygroup; 

run; 

proc sort data=pdtempzz ; by  bygroup ; 
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data pdtempzz; merge pdtempzz (in=have) pdtempzzz;  

   by bygroup ; 

   if have; 

 ***Delete any pdiffs information that compares across slices; 

 ***compared factor levels must match on all slice variables; 

  discardzz=0; 

  if dothiseffectzz then do; 

   %let ii=1; 

   %let var=%scan(&slice,1); 

   %do %while(%length(&var) ne 0); 

       %let var2=_&var; 

       %if %length(&var2)>32 %then %let var2=%substr(&var2,1,32); 

       if &var ne &var2 then discardzz=1; 

     %let ii=%eval (&ii+1); 

     %let var=%scan(&slice,&ii); 

   %end; 

   if discardzz then delete; 

  end; 

 drop discardzz ; 

run; 

%end; 
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**** if means data set has single means (eg 0 df) 

     then sort these to the bottom so they do not 

     merge with the msgrp letter output; 

proc sort data=pdtempmzz; by &bylist &slice; 

data pdtempmzz; set pdtempmzz; by &bylist &slice ; 

 **slicing is being done, so may have slice groups with just one level; 

 if dothiseffectzz >0 and first.&lastslicevar and last.&lastslicevar then  df0=1; 

run; 

%end;  

***sort single means to bottom, and get data back to original bygroup order; 

proc sort data=pdtempmzz; by df0 bygroup ;    

 

%if &printdebug=1 %then %do;  

   proc print data=pdtempmzz; title3 'Means data set ready'; run;  

   proc print data=pdtempzz; title3 'Diffs data set ready for IML'; run;  

   title3 ; 

%end; 

 

 

**************************************************************; 

*** ready to process for differences within each effect ***; 

proc iml worksize=&worksize; reset nolog fw=7;  printdebug=0; 
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 alpha=&alpha; 

 use pdtempmzz;  **for reading later; 

 **** create mean separation output dataset with length 200; 

 temp=j(1,&numlet,'0'); msgroup=rowcatc(temp);  

 ADJUSTMENT='                              '; 

 create msgrpzz var{msgroup bygroup lsmrank ADJUSTMENT}; 

 

 **** create indexes of effect and by group locations; 

 *** For all useful variable names, read in levels; 

 test='a'; ii=1; 

 use pdtempzz; 

 varlist= "&bylistzz &slice &varlistzz"; 

 value='a'; ii=1; 

 do while (value ^= '') ; 

  value=scan(varlist,ii); 

  if value ^= '' then do; 

    *** the BY variables are not guaranteed to be character, 

    *** so convert them if necessary; 

     read all var value into hold; 

     if type(hold)='N' then level=level||char(hold); 

     else level=level||hold; 

     free hold; 
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  end; 

  ii=ii+1; 

 end; 

if printdebug=1 then print  varlist level; 

 if ncol(level)=0 then do; 

   file log; 

   put "NOTE: No variables found for use in &pname."; 

   dataerr=1; 

 end; 

 else dataerr=0; 

 if dataerr ^= 1 then do;  

   call change(level,'','-'); 

   level=rowcatc(level); 

   idx=1; 

   dim=nrow(level); 

if printdebug=1 then print dim level; 

 ***search down for number of comparisons in each section; 

 ***read number of rows involving first mean to get number of means, 

   then calculate number of comparisons;  

  byby=0; 

  do jj=1 to dim; 

    first=level[jj,1]; 
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    byby=byby+1; 

    **go to end of comparisons with mean 1; 

    kk=jj; flag=1; 

    do while(flag=1); 

      kk=kk+1; 

      if(kk > dim) then flag=0; 

      else if (level[kk,1] ^= first) then flag=0; 

    end; 

    num=kk-jj+1; 

    idx=idx || idx[1,byby] + num; 

    jj=jj-1+num*(num-1)/2;  ** skip to next section; 

   end; 

  free level; 

 end; 

if printdebug=1 then print idx byby; 

 ** BIG BB loop through rows of prob data 

 ** subsetting out block dealing with each effect; 

 pptr=1;  **points to where probs start for current means; 

 do bygroup = 1 to byby; 

 

  dim= idx[1,bygroup+1]-idx[1,bygroup]; 

  nn= dim*(dim-1)/2; 
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  **********************************************************; 

  **for sorting letters need descending order, and antiranks; 

  setin pdtempmzz; 

  range=idx[1,bygroup] : idx[1,bygroup+1]-1 ; 

  read point range var {ESTIMATE} into lsmcur; 

 

  **stupid rank function fails on missing values; 

  **so must temporarily make them non missing; 

  test=lsmcur[><,]-1.e-30; 

  locmiss=loc(lsmcur=.); kk=ncol(locmiss); 

  if kk>0 then lsmcur[locmiss,]=test; 

  lsmrnk=dim+1-rank(lsmcur); 

  if kk>0 then lsmcur[locmiss,]=.; 

  lsmarnk=lsmrnk; 

  lsmarnk[lsmrnk,]=(1:(dim))`; 

if printdebug=1 then print pptr nn; 

**********************************************************; 

**** get prob file data for these means.  

  _adjp_ contains the probs, no matter what adjust method; 

  setin pdtempzz; 

  range=pptr:pptr+nn-1; 
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  read point pptr var {_mstech_} into ADJUSTMENT; 

  read point range var {ADJP} into data; 

  pptr=pptr+nn; 

if printdebug=1 then print data; 

  *** put p values into matrix; 

  p = j(dim,dim,0); 

  kk=1; do ii=1 to dim-1; do jj=ii+1 to dim; 

    if data[kk,1]=. then  p[jj,ii]=1; 

    else  p[jj,ii] = data[kk,1]; 

    p[ii,jj]=p[jj,ii];  **fill in upper triangle for next sort; 

    kk=kk+1; 

 end;end; 

 

  *** sort matrix by lsm value, so high mean gets first letter; 

  temp=p; 

  p[,lsmrnk]=temp; 

  temp[lsmrnk,]=p; 

  p=temp; free temp; 

  if nn>&numlet then maxlet=&numlet; **memory use limit; 

  else maxlet=nn+1; 

  group = j(dim, maxlet, 0); 

  members=j(dim,1,0); 
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if printdebug=1 then print p dim data; 

  gcode=1; ngroup=1; 

  do ii=1 to dim; 

     kk=0; 

     flag=0; 

     do jj=ii+1 to dim;  * go down row, find group members ; 

        if p[jj,ii] > alpha then do;   * jj and ii are the same ; 

           * check jj against members ; 

           do mm=1 to kk ; 

              ll=members[mm,1]; 

              if jj>ll then test1=p[jj,ll]; 

              else    test1=p[ll,jj]; 

              if test1<0 then test1=-test1; 

              if(test1 < alpha) then goto jmp0; * need new group ; 

           end; 

           jmp0: 

           if mm=kk+1 then do; 

              do mm=ii+1 to dim; 

                 if mm=jj then mm=mm+1; *skip jj (on diagonal); 

                 if mm>dim then go to jmp2; 

                 if jj>mm then test1=p[jj,mm]; 

                 else    test1=p[mm,jj]; 
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                 if test1 > alpha && -p[mm,ii] > alpha then do; 

                 * previous grouped mean mm may belong in this group ; 

                 * so check if already in and current members; 

                 * dont conflict ; 

                    do ll=1 to kk; 

                       nn=members[ll,1]; 

                       if nn=mm then goto jmp1; 

                       if nn<mm then test1=p[mm,nn]; 

                       else      test1=p[nn,mm]; 

                       if(test1<0.0) then test1=-test1; 

                       if(test1<alpha) then goto jmp1; 

                    end; 

                    jmp1: if(ll=kk+1)then do; 

                       group[mm,ngroup]=gcode; 

                       kk=kk+1; members[ll,1]=mm; 

                    end; 

                 end; 

              end; 

       jmp2:  p[jj,ii]=-p[jj,ii];  * set so not put in next group ; 

              do mm=1 to kk; 

                 ll=members[mm,1]; 

                 * set so not used again ; 
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                 if ll<jj then do; 

                   if p[jj,ll]>0 then  p[jj,ll]=-p[jj,ll]; end; 

                 else do; 

                 if p[ll,jj]>0 then p[ll,jj]=-p[ll,jj]; end; 

              end; 

              group[jj,ngroup]=gcode; 

              kk=kk+1;  members[kk,1]=jj; 

           end; 

           else flag=1; 

        end; 

     end; 

     if(kk=0) then do;  * no members ; 

        do jj=1 to ngroup until (group[ii,jj] ^= 0) ; end; 

        * not in a group yet, so set flag ; 

        if(jj=ngroup+1) then   kk=kk+1; 

     end; 

     if(kk^=0) then do;   * need to set current mean ; 

        group[ii,ngroup]=gcode; 

        ngroup=ngroup+1; gcode=gcode+1; 

        if ngroup > &numlet then do; 

          ** number of letters needed exceeded maximum; 

          jj=dim; ii=dim; **stop loops this way to avoid warnings; 
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          bygroup=byby; dataerr=1; 

          call symput('error','1'); 

        end; 

     end; 

     if(flag^=0) then ii=ii-1; * need another group for this mean; 

  end; 

  if dataerr=0 then do; **skip below if error; 

  ngroup=ngroup-1; 

  group=group[,1:ngroup]; 

 

 ***** this section just takes the groups identified by numbers 

       above and converts numbers to letters.  This depends on 

       the ASCII character definitions, eg. 64 value below is what 

       gets capital letters; 

 

     *** write out letters; 

     kk=nrow(group); 

     do ii=1 to kk; 

       gc='';nsect=1; 

       do jj=1 to ngroup; 

         mm=group[ii,jj]; 

         if mm > 0 then do; ** blanks are 0, do not do them; 
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           sect=floor((mm-1)/26);  *** 26 letters in alphabet; 

           offset=mm-sect*26; 

           sect=sect+1; 

           if sect > nsect then do; 

              nsect=sect; 

              gc=gc||"("||char(sect)||")"; 

           end; 

           gc=gc||byte(64+offset); 

         end; 

       end; 

       lsmrank=lsmarnk[ii,1]; 

       msgroup=rowcatc(gc); 

       ** save letters, by group and sort info; 

       append var {msgroup bygroup lsmrank ADJUSTMENT}; 

     end; 

   end; **dataerr; 

 

end;  ** for the big bb loop over effect sections; 

quit; 

 

%if &error=1 %then %do; 

   %put ERROR: PDMIX800 terminated due to exceeding NUMLET limit.; 
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%end; 

 

**** put group letters back in original lsm order; 

**** they were sorted so largest mean gets letter A; 

proc sort data=msgrpzz; by bygroup lsmrank; 

%if &printdebug=1 %then %do; proc print data=msgrpzz; run; %end; 

 

 

**** merge letters with means and print ****; 

data msgrpzz; merge pdtempmzz msgrpzz;  

 label msgroup='Letter Group'; 

 if ESTIMATE=. then do; 

    **do not print for missing means; 

    msgroup=''; 

 end; 

 %if %upcase(&mixfmt)=NO %then %do; format _all_; %end; 

run; 

proc sort; by &bylistzz bygroup effect; run; 

 

*******************************************************************; 

**** before printing, add the lsdvalues; 
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proc means noprint data=pdtempzz; by &bylist &slice notsorted; 

 id df adjustment; 

 var STDERR ; 

 output out=lsdvalzz n=numcomp mean=meanse max=maxse min=minse; 

run; 

data lsdvalzz; set lsdvalzz; 

 if upcase(substr(adjustment,1,3))='LSD' then critt=tinv( (1-&alpha/2),DF); 

 if upcase(substr(adjustment,1,3))='BON' then critt=tinv( 1-&alpha/(2*numcomp), DF); 

 if upcase(adjustment)='SIDAK' then do; 

        prob=exp( log(1-&alpha/2) /numcomp ); 

        critt=tinv( prob  , DF); 

 end; 

 if upcase(adjustment)='SCHEFFE' then do; 

       numdf=-1+(sqrt(1+8*numcomp)+1)/2; 

       critt=sqrt(numdf*finv(1-&alpha,numdf,DF)); 

 end; 

 if upcase(substr(adjustment,1,5))='TUKEY' then do; 

       numdf=(sqrt(1+8*numcomp)+1)/2;  ** number of treatments; 

       critt=probmc('RANGE', . , 1-&alpha,DF,numdf); 

put critt; 

       critt=critt/sqrt(2);  **adjust for tukey needing sd of mean, not diff;       

 end; 
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 AvgSigDiff=meanse*critt; 

 MaxSigDiff=maxse*critt; 

 MinSigDiff=minse*critt; 

 keep &bylist &slice avgsigdiff maxsigdiff minsigdiff; 

 format minsigdiff maxsigdiff avgsigdiff best7. ; 

 put adjustment ' values for ' &bylist &slice ' are ' avgsigdiff ' (avg) ' minsigdiff ' (min) '  

maxsigdiff  ' (max).' ; 

run; 

 

******** print mean separation ************; 

proc sort data=msgrpzz; by &bylist  &slice; 

proc sort data=msgrpzz; by ADJUSTMENT bygroup EFFECT; 

%if %upcase(&sort)=YES %then %do; 

 proc sort data=msgrpzz; by ADJUSTMENT bygroup EFFECT descending ESTIMATE; 

%end; 

 %if %upcase(&test0)=NO  %then %do; 

  data msgrpzz; set msgrpzz; 

     drop tvalue probt df; 

  run; 

%end; 

data msgrpzz; set msgrpzz; 

 ** drop working variables before printing; 
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 drop df0 dothiseffectzz lsmrank; 

run; 

proc print data=msgrpzz label ;  

 by  effect adjustment bygroup notsorted; 

 label bygroup='  Set' 

       adjustment='  Method'; 

run; 

%skip: 

*** restore notes option; 

options &notesval; 

%mend; 
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