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Abstract

Robots have long been used for completing tasks that are too difficult, dangerous, or distant
to be accomplished by humans. In many cases, these robots are highly specialized platforms
- often expensive and capable of completing every task related to a mission’s objective. An
alternative approach is to use multiple platforms, each less capable in terms of number of
tasks and thus significantly less complex and less costly. With advancements in embed-
ded computing and wireless communications, multiple such platforms have been shown to
work together to accomplish mission objectives. In the extreme, collections of very simple
robots have demonstrated emergent behavior akin to that seen in nature (e.g., bee colonies)
motivating the moniker of ”swarm robotics” - a group of robots working collaboratively to
accomplish a task. The use of robotic swarms offers the potential to solve complex tasks
more efficiently than a single robot by introducing robustness and flexibility to the system.

This work investigates localization in heterogeneous and autonomous robotic swarms
to improve their ability to carry out exploratory missions in unknown terrain. Collabora-
tively, these robots can, for example, conduct sensing and mapping of an environment while
simultaneously evolving a communication network. For this application, among many oth-
ers, it is required to determine an accurate knowledge of the robot’s pose (i.e., position and
orientation). The act of determining the pose of the robot is known as localization. Some
low cost robots can provide location estimates using inertial measurements (i.e., odometry),
however this method alone is insufficient due to cumulative errors in sensing. Image track-
ing and wireless localization methods are implemented in this work to increase the accuracy
of localization estimates. These localization methods complement each other: image track-
ing yields higher accuracy than wireless, however a line-of-sight (LOS) with the target is
required; wireless localization can operate under LOS or non-LOS conditions, however has
issues in multipath conditions. Together, these methods can be used to improve localization
results under all sight conditions. The specific contributions of this work are: (1) a concept
of ’shared sensing’ in which extremely simple and inexpensive robots with unreliable local-
ization estimates are used in a heterogeneous swarm of robots in a way that increases the
accuracy of localization for the simple agents and simultaneously extends the sensing capa-
bilities of the more complex robots, (2) a description, evaluation, and discussion of various
means to estimate a robot’s pose, (3) a method for increasing reliability of RSSI measure-
ments for wireless ranging/localization systems by averaging RSSI measurements over both
time and space, (4) a process for developing an in-field model to be used for estimating the
location of a robot by leveraging the existing wireless communication system.
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Chapter 1

Introduction

1.1 Motivation

The use of unmanned spacecraft, such as mobile robots, has long been a key component

of NASA’s space exploration program. Of recent note are the successful 2004 Mars explo-

rations by the Spirit, Opportunity, and Curiosity (2012) rovers along with NASA’s involve-

ment with the upcoming European Space Agency’s (ESA) ExoMars Rover (expected 2018).

However, developing and launching such complex robotic platforms comes at a significant

cost. NASA’s Mars Exploration Rover Mission (MER) that operated the Spirit and Op-

portunity craft was an ~$1B venture, while the Mars Science Laboratory (MSL) program,

which resulted in Curiosity, cost twice that. Ensuring the robust and reliable operation of

these platforms and their instruments results in much of this cost. Still, these are single

objects prone to design errors or other failures (e.g., Mars Climate Orbiter, ne Surveyor).

An alternative approach for exploration is to use multiple platforms, each significantly

less complex and less costly. With advancements in embedded computing and wireless

communications, multiple such platforms have been shown to work together to accomplish

mission tasks [1]. In the extreme, collections of very simple robots (e.g., Bristlebots [2, 3]

and Kilobots [50]) have demonstrated emergent behavior akin to that seen in nature (e.g.,

1



1.1. MOTIVATION

bee colonies) motivating in the moniker of swarm robotics.

Additionally, a single robot can only sense its environment from a single viewpoint, even

when it is equipped with a large array of different sensing modalities, whereas a team of

robots can perceive its environment from multiple disparate viewpoints and exchange sensor

information [42]. Distributed sensing can result in increased coverage area or increased

resolution of said area. A clear example of this is surveillance and/or the monitoring of

an environment (i.e., region-of-interest). The usefulness of a sensor (e.g., camera) or array

of sensors each with individual operating constraints (e.g., resolution, field-of-view, etc.)

are often limited by their physical location; for example, a camera operating in a cluttered

environment is unable to provide a full description of the environment due to occlusions

from objects. Conversely, a multi-robot system equipped with the same sensors could offer

simultaneous coverage over a larger area due to their spacial distribution. There are many

other tasks for which the concept of distributed viewpoints may be advantageous. For

example, the researchers in [47] use a network of swarm robots equipped with gas sensors

to identify the source of an odor plume that converges more quickly to a solution than

that of a single robot. The spacial distribution between swarm robots in this example is

crucial to detecting the concentration of gas at various locations, thus enabling the swarm

to find the source of the plume. Note, in order to accomplish this task with a single robot

efficiently, it would require the robot to be very large such that sensors could be placed at

distances far apart. Platforms that can leverage swarm behavior are already in development

for space exploration (e.g., the intended small rovers on Asteroid Explorer Hayabusa 2 [4]

and a recent deployment from the International Space Station of a 28 CubeSat network,

Flock 1, by Planet Lab [5]).

In mobile robotics, a common requirement is to determine an accurate knowledge of the

robot’s pose. The robot’s pose is defined as the robot’s orientation and position [7]. The

orientation of the robot includes the physical state (e.g., the state of an extended actuator

2



1.2. LOCALIZATION METHODS

or arm) as well as the heading, or direction, the robot is traveling. The robot’s position

describes where the robot is in space, either relative to an object or defined by some set of

global coordinates (i.e. absolute). Determining the pose of the robot is often referenced as:

the localization problem in robotics [8].

Knowledge of the robots pose, either absolute and/or relative, is critical for distributed

robotic applications that require robots to share sensor information (e.g., exploration, map-

ping, surveillance, etc.). Without this knowledge, it becomes impossible to interpret the

sensor data geospatially and integrate with data obtained by other swarm members [45].

For example, NASA’s Magnestospheric Multiscale Mission (MMS) uses four identical space-

craft flying in a tetrahedral formation [37] to study the Earth’s magnetosphere. The relative

distance and formation between these satellites is required to correctly interpret the data

collected from the individual crafts.

1.2 Localization Methods

Robot localization is the act of determining the robot’s pose in a defined coordinate sys-

tem (e.g., x-y-z, roll-pitch-yaw, coordinates in a room). Techniques of localization include

odometry, inertial navigation, magnetic compasses, active beacons, global positioning sys-

tems (GPS), landmark navigation, and model matching; summarized by the researchers in

[27]. Localization of multi-robot systems can be roughly classified into two main categories:

absolute and relative positioning systems [34].

Absolute localization determines the robot’s position in a global coordinate framework,

where the world-frame is fixed and the robot’s pose can be defined through translations

and rotations in reference to the world’s origin. This technique offers robust solutions for

scenarios in which a priori knowledge (e.g., a map) of the environment is provided. Al-

ternatively, a relative positioning system may be used to define a robot’s pose in reference

to another robot, object, or its previous self. In this scenario, each robot views itself as

3



1.2. LOCALIZATION METHODS

the fixed reference frame and all measurements are relative to its own pose (either initial,

previous, or current). Relative positioning is often prone to both systematic errors (e.g.,

unequal wheel diameters, uncertainty about the effective wheel-base, limited encoder reso-

lution, etc.) and non-systematic errors (e.g., wheel slippage, irregularities in the floor, etc.).

Relative position measurements often use the method of dead reckoning. Dead reckoning

is the process of calculating the pose of a robot by using a previously determined position.

This is most simply accomplished by use of odometry, i.e., the integration of incremental

motion information over time. Most simply, physical odometry is often based on the as-

sumption that wheel revolutions can be translated into linear displacement relative to the

floor [55]. Absolute positioning addresses some of these errors, in that it is not susceptible

to error accumulation, however may still suffer from the effects of sensor resolution and

is often more computationally expensive and less energy efficient than relative positioning

systems. It should also be noted that one may simply derive a set of relative pose estimates

given a set of absolute estimates.

The practical usefulness of a localization system depends on the context in which it will

be used; different techniques must be considered in order to match the desired accuracy,

cost, and environmental conditions for each application. For instance, GPS is the accepted

standard for positioning on Earth. GPS requires a line of sight (LOS) communication with

satellites to calculate position. However, due to signal attenuation/blockage from large

objects in built or natural environments, GPS is not suitable for all applications. In this

work, the context is that GPS is not available, for example in dense cities with tall buildings,

indoors, underground, or on lunar or planetary surfaces.

The use of computer vision is commonly used for localization indoors [10]. The re-

searchers in [35] use a fixed and distributed multi-camera system to achieve an absolute

indoor positioning system for multiple robots. An overhead camera system has also been

shown to produce similar results [36]. Computer vision is often coupled with other sensors

4



1.3. CONTEXT OF RESEARCH

to increase accuracy in localization estimates. The researchers in [26] use a combination of

vision and odometry to better estimate the location of a mobile robot using an extended

Kalman filter. The researchers in [28] tested computer vision coupled with inertial mea-

surement devices as an alternative for GPS denied environments. While these computer

vision techniques may offer robust localization where GPS is not accessible, they require

line-of-sight (LOS) to the target. Thus, the work presented in this paper aims to explore a

suitable method for localization in both LOS and non-line-of-sight (NLOS) scenarios.

1.3 Context of Research

The research uses low-cost, commercial-off-the-shelf (COTS) components to build a het-

erogeneous robotic swarm capable of localization in GPS denied environments for both

LOS and NLOS scenarios. This work presents such a localization method by using inertial

measurements, computer vision, and wireless ranging.

This work leverages two tiers of robotic platforms, where one tier can control and manip-

ulate another tier for the purpose of environmental exploration and navigation. These two

tiers are referred to as high-level and low-level robots, indicating their degree of on-board

computational power and sensing capabilities. The first platform, the high-level robot, is

a four-wheeled rover (Figure 1.1) with sufficient energy and computation resources to en-

able computer vision for obstacle avoidance, target seeking, remote sensing, etc. and the

capability to command/control a fleet of less sophisticated robots. The second category of

platforms, the low-level robots, represent these lesser-capable robots of the swarm and are

only capable of rudimentary sensing, wireless communications, and imprecise movement due

to their compact form factor. These robots are shown with both spherical and cylindrical

bodies in Figure 1.1. Together, the robotic swarm is tasked with navigating an environment.

The localization techniques presented in this work are used to define a coordinate system

among the robots relative to one another for navigational purposes.
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1.4. THESIS CONTRIBUTIONS

Figure 1.1: The heterogeneous swarm of robots used in this research. High-level robot (top right)
and simple, commercialy available low-level robots (left and bottom)

1.4 Thesis Contributions

The contributions of this work are fourfold as described below.

1. This work introduces a concept of ’shared sensing’ in which extremely simple and

inexpensive robots with unreliable localization estimates are used in a heterogeneous

swarm of robots in a way that increases the accuracy of localization for the simple

agents and simultaneously extends the sensing capabilities of the more complex robots.

This method also enables the swarm to investigate hazardous and unknown terrain

by leveraging the mobility of a low cost, potentially expendable robot instead of

endangering a significantly more complex, and thus expensive robot.

2. This work outlines various means to estimate a robot’s pose. The accuracy of each

6



1.5. THESIS OUTLINE

method is evaluated. The work also addresses the benefits of using multiple sensors

simultaneously.

3. This work introduces a method for increasing reliability of RSSI measurements for

wireless ranging/localization systems by averaging RSSI measurements over both time

and space. This method addresses large fluctuations in RSSI measurements due to

the natural propagation of radio signals in multipath environments as well as the

non-ideal communication system performances that can be largely attributed to the

orientation of the robot.

4. The final contribution of this work is a process for developing an in-field model to

be used for estimating the location of a robot by leveraging the existing wireless

communication system. This process provides a way to calibrate a model to be used

in an environment where prior knowledge of the wireless channel performance is not

required.

1.5 Thesis Outline

This introduction is followed in Chapter 2 by a presentation on using a group (i.e., swarm)

of heterogeneous robots working collaboratively to achieve a common goal. The physical

hardware and software used for each type of robot as well as the role of each agent are then

detailed and described.

In Chapter 3, a method of localizing a robot using only inertial measurements is intro-

duced. This method is used on the low-level robotic platforms to test the accuracy of the

default localization method available to the low-level robot.

Localization using a vision sensor is discussed and explored in Chapter 4. We present

a method of localization using the vision sensor to locate and track a low-level robot(s)

as it moves about an environment. The high-level robot is used to relatively localize the

7
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low-level robots and other swarm members within the environment.

In Chapter 5, we present a wireless localization technique using Bluetooth. We discuss

the chosen model for determining distance from radio signal strength over a wireless channel

and present known limitations and new mitigation techniques. These techniques are imple-

mented in test, results are analyzed and discussed. Included in this chapter is an outline

for a multi-sensor localization process that combines the three aforementioned localization

techniques.

The thesis is concluded in Chapter 6, where we discuss and summarize the results from

the three different localization modalities presented in this work and outline future work

and suggestions to continue research in this area.
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Chapter 2

Swarm Robotics

2.1 Introduction to Swarms

In this chapter, the concept of using multi-robot systems or swarms is discussed. A robotic

swarm can be defined as a group of agents (i.e., robots) working collaboratively towards

accomplishing a common goal. As will be discussed shortly, a system comprised of mul-

tiple robotic platforms enables each agent to be significantly less complex and less costly.

The swarm is a distributed system that introduces robustness, flexibility, and scalability

into robotic missions. The swarm robotic system should be able to continue to operate,

although at a lower performance, despite failures in the individuals, or disturbances in

the environment [6] (e.g., natural disaster resulting in spatial separation of the individual

agents). This requirement ensures the team members are able to respond robustly and re-

liably to unexpected environmental changes and modifications in the robot team that may

occur due to mechanical failure, the learning of new skills, or the addition or removal of

robots from the team by human intervention [45]. Therefore, a robotic swarm should allow

for members to be added, modified, or replaced as requirements and tasks change over time.

Multi-agent systems offer considerable advantages in comparison to single unit systems.

Physically separate entities permit simultaneous sensing and actuation in spatially different
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locations [41], reconfigurability of the system, redundancy, and sometimes the ability to

achieve superlinear performance (i.e., the whole is greater than the sum of its parts) via di-

vision of labor [43, 44]. For example, multiple agents have been shown to work cooperatively

to manipulate or carrying large objects [46] and scale obstacles [48]. This tactic enables the

load to be distributed over several robots, enabling each robot to be much smaller, lighter,

and less expensive [45].

The robotic swarm in this work consists of heterogeneous agents. A heterogeneous

structure allows for individual specialization in completing a task or subset of tasks. Spe-

cialization is achieved by exploiting the nature of a specific robot type. Instead of equipping

every robot with every sensor and computation or communication capabilities, each robot

may instead be built for a particular aspect of the task such that they are more adept

to fulfill certain roles - such as transportation, resource extraction, energy harvesting and

storage, physical manipulation, material identification/testing, environmental sensing, high

resolution photography, extended communication, navigation planning, etc. The various

actuation and sensing capabilities that make up each robot type may be redundant or com-

plementary to other members; this allows the robots to work together in such a way that

the efficiency of the swarm is greater than if the different robot types worked independently

and in parallel without mutual cooperation [48]. For several tasks such as distributed search

[38], distributed coverage [39] (e.g., mine sweeping, floor cleaning, harvesting, lawn mow-

ing, etc.), and movement in formation [40], knowledge of one’s own location and/or that of

neighboring swarm members is required [41]. As discussed later in this work, the require-

ment to localize can be carried out by means of various sensing techniques which may be

custom tailored to fit the architecture of each robot.

The structure of the robotic swarm presented in this work leverages two tiers of robotic

platforms, where the first tier (i.e., high-level robots) is able to command/control a fleet

of less sophisticated robots which make up the second tier (i.e., low-level robots). By
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nature, these low-level agents are small, mobile robots with limited capabilities, and less

computational complex, allowing them to be equipped with smaller processors and motors

that in turn consume less power. The size and mobility of these robots enables them to

travel to places that the other robots cannot. Furthermore, the simplicity of their hardware

enables these robots to be potentially expendable. Simply stated, these low-level robots

act as a distributed sensor platform that are remotely controlled by a leader (i.e., the high-

level robot) who performs the high-level mission planning. By constructing a tiered (i.e.,

heterogeneous) system, the average size and cost per robot can be minimized, thus many

robots can be built and deployed in large numbers to achieve dense sensing coverage, and

fault tolerance [42] that would otherwise require many expensive and larger robots.

When a team of robots is composed of different platforms, carrying different types or res-

olutions of sensors and thus having different capabilities and accuracies for self-localization,

the quality of the localization estimates will vary significantly across the individual members

[36]. The collaboration (i.e., flow of information) among the swarm members establishes

a form of ’sensor sharing’ and can thus enable the swarm to overcome the limitations of

individual agents and improve the overall accuracy of localization within the swarm. This

increase in accuracy will allow the swarm to accomplish more difficult tasks that depend on

accurate localization, such as surveillance, mapping, and/or exploration.

A block diagram of the swarm is shown in Figure 2.1. The diagram shows that the

computationally difficult tasks, such as objective planning, collaborative decision making,

and object tracking are completed by the high-level robots. The low-level robots are simply

commanded and controlled by the high-level robots, as if an extension of a high-level robot.

The low-level robots may be shared among multiple high-level agents in order to increase

sensing capabilities. The rudimentary sensing and positional awareness of the low-level

robots are relayed back to the high-level agents to be assessed and improved. Any high

level agent may subscribe to information from any low-level agent, this information is in
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turn used to determine an improved estimate of location for the low-level agent. This

estimate allows the swarm to localize all of its members, including the initially inaccurate

low-level agents. This information is used by the high-level agents to aid the swarm as it

steps through through the various stages of the mission objective until completion.

Figure 2.1: Functional overview of the robotic swarm

2.2 High-Level Robots

For this research, the first platform is a four-wheeled rover (Figure 2.2) with sufficient energy

and computation resources to enable computer vision for obstacle avoidance, target seeking,

remote sensing, etc. and the capability to command/control a fleet of less sophisticated

robots which make up the swarm.

2.2.1 Hardware

The hardware on-board the high level robots features a customized mobile processing unit

(MPU) from Logic Supply Inc. The processor is a 64-bit Intel Core i5 operating at 3.2 GHz
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Figure 2.2: The high-level robot in this swarm

and is supported by 8GB of RAM.

As outlined in Figure 2.3, the high level robot caries a suite of sensors that collect data

about the environment. The primary vision sensor is a Microsoft Kinect which provides the

robot with RGB-Depth images. The robot is also outfitted with a Logitech USB Webcam

for secondary video input. These vision sensors are controlled and managed directly by

the MPU. The high level robot is also equipped with a power monitor that measures the

amount of energy consumed as well as an array of ultrasound range sensors, an IMU,

and a temperature sensor. These sensors are controlled by an Arduino microcontroller

and data collected is forwarded to the MPU for processing. The MPU passes any motor

control commands to the Arduino which controls all hardware-level drivers. The hardware

level drivers include a L293D motor controller for driving the robot forward/revers, and

a PCA9685 PWM driver which drives the pan-tilt mechanisms and steering servos. The
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robot is powered from a single 6S LiPo battery pack and all voltage regulation is performed

by the battery monitor.

Figure 2.3: Hardware overview of the high-level robot.

2.2.2 Software

The software for high-level robots is built on Ubuntu 14.04 running the Indigo Igloo distri-

bution of Robot Operating System (ROS) [54]. ROS is used for handling all sensory inputs

and output; the ROS packages are written in Python and C++. The ROS node graph of

the high-level robot is shown in Figure 2.4.

The ROS launch file for the high-level robot initiates the robot at start-up. The OpenNI
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Figure 2.4: ROS node graph depicting all running nodes.

node uses Freenect drivers to interface with the Microsoft Kinect; the point clouds generated

by this node are used for 3D object recognition described in Section 4.3. The sphero_Control

node handles all Bluetooth communication to interface with the low-level Sphero robots.

The USB webcam node publishes raw and compressed images from the webcam at 30 Hz.

The teleop_joystick node is used to translate joystick messages into motor controls for

remote operation. The rosserial_python node bridges the ROS platform to the Arduino

microcontroller using UART serial communication. The Arduino is running a rosserial

node at 100 Hz that polls the IMU, power monitor, ultrasound array, and temperature

sensors and publishes the values to the ROS Master. This node also subscribes to all motor

commands and outputs these values to the desired motor.
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2.3 Low-Level Robots

The low-level robots are commercially available Sphero Ollie (Figure 2.5-left) and Sphero

2.0 (Figure 2.5-right). The Sphero robots are unmodified COTS units and equipped with an

internal inertial measurement unit (IMU), Bluetooth communication module, and internal

batteries with supportive circuitry for inductive charging. The Sphero 2.0 robot features a

compact spherical form factor with native Bluetooth 2.0 communications. The Sphero Ollie

has a similarly compact form-factor but features a differential drive system and Bluetooth

4.0. The Sphero robots’ compact packaging allows the device to navigate complex terrains,

survive high falls, and access tight locations that the wheeled high-level robot cannot;

however, this pacakging also leads to non-uniform communications performance as will be

detailed in Chapter 5.

Figure 2.5: The low level robots. Left: Sphero Ollie, Right: Sphero 2.0

The low-level robots are controlled using a custom developed Android application that

utilizes the official Sphero SDK to facilitate communication with the robot and couples the

low-level robot to the ROS Master running on the high-level robot. The SDK allows for

basic input command functions such as setting the robot’s heading, velocity, and color. The

control of the color may be used to communicate the state of the robot, as well as distinguish
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it from otherwise identical robots. These commands are published by the ROS Master on

the high-level robot, thus essentially rendering the low-level robot as a remote appendage of

the high-level robot. The low-level robot in turn provides rudimentary localization estimates

using an inertial navigation system; these estimates are published to the ROS Master for

processing. An overview of the hardware enclosed in the low-level robots are shown in

Figure 2.6.

Figure 2.6: Hardware overview of the low-level robot

The inside of the low-level robot is shown in Figure 2.7. The main processor on the

low-level robot is a small unmarked microcontroller. The robot features an RGB LED that

is mounted vertically to illuminate portions of the chassis that are visible from the outside.

The Bluetooth module is used for communication and has a large plate antenna mounted

vertically on the left side of the robot. The microcontroller interprets data received by the

Bluetooth module and drives the LED and motors accordingly. The IMU collects inertial
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Figure 2.7: Hardware enclosed inside the low-level robot

measurements and and passes this data to the microcontroller to be used as feedback in the

motor control loop and can also be sent over the Bluetooth connection.

2.4 Conclusions

For multi-robot systems, as pointed out by the researchers in [49], a valid approach to solve

the problem of localizing N robots would be to localize each robot independently. However,

if the robots are able to detect each other, there is opportunity to increase the accuracy,

resolution, or efficiency of the system. For example, if all robots only have rudimentary sens-

ing capabilities, then the introduction of a robot with high-resolution localization sensors

could vastly improve the resolution or accuracy of positional estimates by sharing informa-

tion between the agents. Conversely, if all robots have high precision sensors they may be

producing redundant, excessive, or even competing positional estimates (i.e., two individual

estimates are contradictory to each other); the same or similar results could alternatively be

achieved using fewer sensors, thus decreasing the computational requirements and energy
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efficiency of the system. The localization techniques presented in this research draw on

the assumption that the high-level robots employ sufficient localization techniques to self-

localize within the environment, i.e., their estimated pose is interpreted as truth. Therefore,

the focus of the localization techniques in this work is to estimate the relative pose of the

low-level robots within the environment. The techniques used to localize these robots are

discussed in the chapters to follow.
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Chapter 3

Inertial Odometry

3.1 Overview

In this chapter, we examine the use of inertial odometry to determine a robot’s location.

Inertial odometry of a vehicle may be obtained by use of the Inertial Navigation System

(INS). An INS is a system comprised of a processor inertial measurement unit (IMU). The

INS integrates the measurements obtained by the IMU and performs dead-reckoning to

determine the location and orientation of the system. In this work, each robot would be

equipped with an INS/IMU pair that includes both a gyroscope and an accelerometer. A

gyroscope provides angular rate, while accelerometers measure the linear accelerations, thus

the INS is capable of determining the robot’s orientation and velocity.

Inertial rate sensor (i.e., gyroscope) data must be integrated to yield position data.

Accelerometer data must be integrated twice to yield position. Thus even very small errors

in the information provided by inertial sensors can cause an unbounded growth of the error

in integrated measurements [52]. Additionally, compounded errors in orientation will cause

large lateral position errors, which increase proportionally with the distance traveled by the

robot [27].

Another problem is that accelerations under typical operating conditions can be very
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small, on the order of 0.01 g; yet, fluctuations of this magnitude already occur if the sensor

tilts relative to a perfectly horizontal position by only 0.5° [51]. This scenario is likely to

occur, for example, when a robot travels over uneven terrain. These effects can be mitigated

by routinely resetting the orientation and location of the robot to a known pose. This can be

achieved by physically moving the robot back to the origin, which does not fit the purpose

of this research, or alternately, by determining its true pose using some other means of

localization (e.g., computer vision, GPS, etc.).

Figure 3.1: Robot setup for inertial navigation system experiment.

3.2 Test and Analysis Methods

The low-level robots used in this work has software that includes an INS that reports the

robot’s estimated position and controls the robot to maintain a desired heading angle. To

demonstrate this capability, a test was developed to control the Sphero Ollie robot based

on the positional estimates provided by the embedded INS. The robot was commanded

to drive at a fixed velocity of 300 cm/s with a zero heading for an operator commanded

duration of time. After the robt came to a stop, the ground-truth position and the output
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of the INS system were recorded. This process was then repeated to obtain a total of ten

position estimates and measurements. The positions were converted to distance from the

origin and compared to the ground truth measurements. The setup of this experiment is

shown in Figure 3.1.

3.3 Results and Discussion

The estimated distance traveled (provided by the INS), measured ground truth distance,

and absolute positional error determined from the test are shown plotted in Figure 3.2.

Note that the error between estimated and actual distance traveled increases as distance

increases, representing the drift, or ever-increasing difference between the estimated and

actual positions of the system.

Figure 3.2: Distance traveled (blue), estimated distance traveled provided bt the INS (green), and
absolute estimation error (red)
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It should be noted that these results were obtained in an ideal environment (i.e., a

smooth, flat surface), representing potentially the best-case scenario for inertial localization.

For the applications of interest (e.g., environmental exploration) the terrain is expected to

be uneven, with grade and to have a loose surface. The worst case percent error of the data

collected was 52% at 138.0 cm and the average percent error over all results was 33%.

3.4 Conclusions

In this chapter we introduced the concept of using an inertial navigation system to provide

positional estimates of a robot. Although the instantaneous rate information (i.e., raw data)

provided by the sensors are consistently accurate over long periods of time, the small errors

accumulated during integration grows indefinitely. One can infer that an inertial navigation

system operating in a non-ideal environment (i.e. rough, sloped terrain) would yield even

larger errors in position as time progresses. Therefore, this method of localization, alone, is

not sufficient means of estimating the pose of a robot. One way of overcoming this problem

is to periodically reset inertial odometry estimates with other absolute sensing mechanisms

and so eliminate this accumulated error [52]. The next chapters will introduce localization

methods that can be used in parallel to an INS to provide better accuracy.
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Chapter 4

Vision Based Localization

4.1 Overview

This chapter discusses methods for localizing the low-level robots in an environment using a

computer vision system comprised of a single RGBD sensor. An RGBD sensors is a sensor

capable of providing in realtime, a color image (red, green, and blue, i.e., RGB channels) of

the scene, as well as an image in which each pixel value corresponds to the distance to the

object, i.e., depth image (D channel) [56]. The advent of low cost RGBD consumer devices,

such as the Microsoft Kinect or Asus Xtion devices, have enabled a significant growth in the

use of RGBD sensors for object detection and pose estimation. The localization strategy

presented in this work leverages the high-level robot’s RGBD sensor, a Microsoft Kinect.

The following sections discuss the methodologies of object recognition in both RGB (i.e.,

2-dimensional) and RGBD (i.e., 3-dimensional) scenarios.

4.2 2D Object Recognition

Object recognition is achieved by comparing the input image (i.e., scene), to a database of

training samples (i.e., models). In the scenario presented in this work, the pose of robot has
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an impact on the ability to recognize the robot in the scene. Therefore, multiple orientations

must be included in the database in order to ensure the robot is able to be detected. The

process of 2D object recognition is outlined in Figure 4.1.

Figure 4.1: 2D Object recognition overview. Object keypoints/features are extracted from the input
source, these features are described using a descriptor and then compared to features in the object
database during the matching process.

Before the object recognition process begins, an object database must be constructed

using images containing the object at multiple orientations and distances. Next, areas

of interest (i.e., keypoints or features) are computed for each image in the database, this

process is known as Keypoint Extraction or Feature Detection. Features are often classified

into four main types: edges, corners, blobs, and ridges. Once features are detected, their

position, orientation, and/or scale are described using a descriptor. Descriptors work by

encoding information about the surrounding pixels (i.e., neighborhood) of a keypoint, to be

used later for comparison and matching. Many different feature detection algorithms exist;

some include a descriptor operator, while others must have descriptors computed externally.

Some commonly employed keypoint detectors/descriptors are outlined below:
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Scale Invariant Feature Transform (SIFT)

SIFT is one example of a keypoint detector that includes a descriptor. SIFT can robustly

identify objects even among clutter and under partial occlusion, because the SIFT feature

descriptor is invariant to uniform scaling, orientation, and partially invariant to affine dis-

tortion and illumination changes [62]. However, SIFT is computationally expensive and is

often not suitable for real-time applications.

Speeded Up Robust Features (SURF)

SURF is based on the same principles and steps as SIFT but each step is slightly different.

For instance, SIFT recursively calculates the difference of Gaussians (i.e., a feature en-

hancement algorithm used to increase visibility of edges) on rescaled images whereas SURF

uses square-shaped filters on the integral image (i.e., summed area table) to approximate

Gaussian smoothing. These small functional differences allows SURF to be a common al-

ternative to SIFT due to its ability to perform several times faster, however comes at the

cost of poorer keypoint description approximations [61].

Features from Accelerated Segment Test (FAST)

FAST is an extremely computational efficient corner detector. The detector works by eval-

uating the brightness (i.e., intensity) of pixels in a 16 pixel circle; A corner is detected if a

set of contiguous pixels in the circle are all brighter than the intensity of candidate pixel or

all darker than the intensity of candidate pixel. The speed and efficiency of of the algorithm

is what makes FAST the method of choice for finding keypoints in real-time systems that

match visual features [59]. FAST does not include a built-in descriptor.
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Binary Robust Independent Elementary Features (BRIEF)

BRIEF is a feature descriptor that uses simple binary tests between pixels in a smoothed

image patch [60]. Its performance is similar to SIFT in many respects, including robustness

to lighting, blur, and perspective distortion. However, it is very sensitive to in-plane rotation

[59].

Oriented FAST and Rotated BRIEF (ORB)

ORB is an extension and combination of FAST and BRIEF that adds a fast and accurate

orientation component to FAST and method of computing oriented BRIEF features. ORB

is found to outperform SIFT/SURF in nearest-neighbor matching over large databases of

images, however does not adequately address scale invariance.

ORB is the keypoint detection and description method chosen in this research due to its

computational performance and accuracy. Once the keypoints and descriptors are computed

for all objects in the database, the model is considered complete and it is now possible to

compare an input scene to the model.

To localize the low-level robot in the scene using 2D object recognition, features and

their descriptions are continuously calculated on the current color image obtained from

the RGBD sensor. The feature descriptions in the scene are compared to those stored in

the object database by calculating the Euclidean distance, sum of square differences, or by

using nearest-neighbor matching algorithms; this process is known as matching. If a match

is found between the model and the scene, the orientation of the robot is computed by

calculating the rotational transform between the closest matching image from the database

and the current scene image. To complete the full pose of the robot, the matching pixels

from the color-image are converted to their corresponding pixels to the depth-image, this

reveals the positional vector of the robot.

However, while 2D object detection uses only the color image to sufficiently detect an
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object in a scene, a method that includes the addition of depth information during object

detection can increase recognition rates and accuracies in orientation [57]. To accomplish

this feat, a specific 3D image type is used, called a point cloud.

4.3 3D Object Recognition using Point Clouds

In the 3D scenario, scenes and models are represented as arrays of three-dimensional points

each consisting of color and position data (i.e., R,G,B and x-y-z values). These arrays of

RGBXYZ points are called point clouds. Point Cloud Library (PCL) offers the tools required

to manipulate, measure, and compare point cloud data. Acccording to the researchers who

developed PCL, PCL presents an advanced and extensive approach to the subject of 3D

perception, and it’s meant to provide support for all the common 3D building blocks that

applications need [63]. The library contains state-of the art algorithms for: filtering, feature

estimation, surface reconstruction, registration, model fitting and segmentation [63].

As shown in Figure 4.2, when objects have visually similar colors and textures but are

different sizes, it may be difficult to correctly identify the object using only the color image.

Additionally, even the same object may appear to be completely different when viewed

under various lighting conditions, as shown in In Figure 4.2 (a) .In Figure 4.2 (b) the two

visually similar objects are perfectly scaled in a way that could cause a computer vision

system looking for features in RGB space to identify both objects as the same object at

different distances. The addition of depth information can be used to increase reliability,

however, also increases computational complexity and time required to achieve successful

object recognition.

The same concepts of 2D recognition hold true for object recognition in 3D; a similar

process involving training, feature detection, description, and matching takes place in order

to detect the object using three dimensions. This process is the same as outlined in Figure

4.1 except the input is now a point cloud.
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Figure 4.2: Examples where the sole use of an RGB image is unsuccessful in detection: (a) a target
object is under different lighting conditions; (b) two objects have almost the same shapes and textures
but their sizes are different [57].

4.3.1 Training

Just as required for object recognition in 2D, a database of 3D models is required to de-

termine if the target object is present in the scene. There exist two methods for creating a

3D model for recognition: ray-tracing and frame-stitching. These processes are outlined in

Figure 4.3 and detailed below.

Figure 4.3: Two methods for creating a point cloud representation of the model. Ray-tracing (top)
uses a 3D CAD model to generate the model, whereas frame-stitching (bottom) uses the 3D sensor
to reconstruct a digital projection (i.e., model) of the physical object. Both methods can be used to
add models to the database of recognizable objects.
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The ray-tracing method creates a point cloud from a computer generated (i.e., CAD)

3D model. This method generates a sphere or icosahedron that is tesselated (i.e., divided

in polygonal regions) that surrounds the virtual object. Then, a ray is cast from each of the

vertices pointing to the origin. Finally, a point is generated at the location of intersection

for each ray; this creates a 3D point cloud from points that lie on the surface of the object

model.

The benefit of this technique is that, assuming the CAD model was correct, the point

cloud model should perfectly represent the object we are seeking to detect. However, this can

be non-ideal in some cases where the input scene contains high levels of noise (i.e., random

points in the coud that do not correctly correspond to pints on the model). The researchers

in [69] classify this noise produced by the Kinect sensor as having both axial and lateral

noise distributions as a function of distance and angle from the sensor to observed surface.

As a result, the point cloud produced by the RGBD sensor contains a non-perfect projection

of the object, thus matching a non-deal object to an ideal model can be challenging.

Conversely, frame-stitching (i.e., reconstruction) is a method that generates a point

cloud of an object by using the same sensor that will be used for detection, therefore

there is a comparable amount of noise already built-in to the model. This process works by

capturing multiple snapshots at various orientations based on a known rotational transform.

This can be achieved by placing the object that is to be recognized on checker-pattern

atop a lazy susan, as shown in Figure 4.4. The checker pattern is used by the camera

to subtract the background from the object, as well as compute the rotational transform

between snapshots. Once the object has been rotated a full 360 degrees, the point cloud

snapshots are concatenated together by using the rotational transform and matched features

of successive orientations to create a full point cloud projection of the object.

Unlike ray-tracing, this model is not ideal. This too can have a non advantageous effect

if the noise is too great, it is possible that the noise will cause errors during reconstruction,
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Figure 4.4: Setup to perform frame stitching for point cloud reconstruction

resulting in a significantly distorted model of the object. Figure 4.5 depicts an example of

a point cloud generated using this method.

Figure 4.5: Point cloud model generation using frame stitching for reconstruction
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4.3.2 Feature Detection and Description

Similar to object detection in 2D, an object must be described using 3D features. There

again exist many different types of 3D features, each with their own specific strengths and

weaknesses. As with all heuristic based searching (e.g., locating or matching 3D features),

there are big differences in terms of recognition performance, size and time requirements

for each available descriptor. The researchers in [58] perform a full comparison of avail-

able 3D features and their descriptors available in PCL. Their study concluded that the

SHOTCOLOR descriptor presents a good balance between recognition performance and

time complexity The Signature of Histograms of Orientations (SHOT) works by describing

topological (i.e., surface) traits by taking points within a spherical support structure. The

3D descriptor used for the research presented in this paper is SHOT, chosen for its invari-

ance to rotation and translation, as well as its robustness to noise (e.g., low quality image

sensors, image down sampling) and clutter (i.e., occlusions and many objects in proximity).

4.4 Test Methodology

An experiment was devised to detect the position of the low-level robot in two dimensional

space by using the RGB (i.e., color) image obtained by the Kinect and determine the 3D

position of the robot by using the corresponding depth data. First, information about

the low-level robot was input to the object database by manually obtaining multiple RGB

photos of the low-level robot at 0.5m distance increments and 30 degree increments in

orientation. Each image was cropped such that the robot took up the majority of the

frame. Keypoint detection and feature description was performed on each image using

the ORB feature detector/descriptor pair; the resulting datapoints were used to create

the object database of recognizable objects. The low-level robot’s model was then placed

in front of the high-level robot and the object detection sequence described in Figure 4.1
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was performed. When the low-level robot was detected in the RGB image, the estimated

distance between the robots was obtained by recording the pixel intensity value of the depth

image for the corresponding pixel in the RGB image (i.e., the center of the bounding box

that encloses the recognized object). Next, multiple low-level objects were placed in front

of the high-level robot at different orientations to evaluate the ability to detect multiple

robots at different orientations.

Next, an experiment to explore object recognition with 3D point clouds was designed

to test the ability of the robot to detect objects using the high-level robot’s Kinect sensor.

Again, the low-level robot was input into the object database using both techniques de-

scribed in Figure 4.3. The keypoint detection method used in this experiment was uniform

sampling (i.e., filtering the point cloud into uniformly spaced 3D points), and the descriptor

used to describe each keypoint was SHOT. The low-level robot was then placed in front

of the high-level robot and the object detection sequence described in Figure 4.1 was run

on the input cloud using the same keypoint detection and descriptors as used to create the

database.

4.5 Results and Discussion

The two experiments outlined in the previous section were performed to detect the low-level

Sphero Ollie robot shown in Figure 2.5. Results from the object recognition experiment

using the 2D (i.e., RGB) detection method are describe in Section 4.5.1. Results of 3D

object detection are detailed in Section 4.5.2.

4.5.1 2D Object Recognition

The 2D object recognition experiment was able to successfully identify the low-level robot

using the RGB image obtained by the high-level robot. Figure 4.6 shows a bounding box
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drawn around the identified object. Note the box is skewed to represent the rotational

transform corresponding to the orientation of the low-level robot.

Figure 4.6: 2D object recognition on low-level robot with bounding box drawn at object’s center.
Features detected in the scene are marked by circles.

The 2D object recognition system was also able to simultaneous detection multiple

low-level robots at different orientations. Figure 4.7 shows both low-level robots with ther

corresponding bounding boxes. As the robot(s) are recognized in the RGB image, the depth

value is found by calculating the intensity of the depth image for the corresponding pixels.

Figure 4.8 shows the depth image side-by-side to the RGB image to depict the dualities in

the images. The depth image value that corresponds to the location of the low-level robot

was compared to the actual distance measured and plotted in Figure 4.9.

The absolute error between the estimated distance (i.e., depth image value) and actual

measured distance is less than 10 cm for all positions where object identification was suc-

cessful. Note that object detection was not successful for all positions, thus an estimated

distance is not obtainable for this datapoint. The inability to detect the low-level robot

may be, in part, due to the non-scale invariant nature of ORB. This means that in order

to efficiently detect the object at multiple distances, similar distances need to be reflected
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Figure 4.7: 2D object recognition on multiple low-level robots at different orientations, simultaneously
(right). An excerpt of the object database is shown on the left.

Figure 4.8: The Kinect RGB (left) and Depth (right) channels.

in the object database. Therefore, a simply method to improve recognition rates would be

to simply append datasets to the database at set increments of distance (e.g., every 0.2

meters). However, it may not be ideal to increase the size of the recognition database,

as more calculations will need to be performed at each time step, ultimately increasing

the required time to complete the detection algorithm. Another viable method to increase

recognition rate is to fuse this data with the odometry information based on previously
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Figure 4.9: Measured distance of robot in hallway (blue), distance estimate using RGBD values
(green) from Microsoft Kinect and 2D object detection, and absolute error (red). Locations where
the robot was unable to be detected are shown by a star.

identified distances. Furthermore, an object tracking system could be designed such that

when a successful image detection is recorded, the known dynamics of the low-level robot

can be used to guide the vision system to maintain an esitamted representation of where

the robot is.

When the 2D image detection system succeeded, the high-level robot is able to process

the estimated pose of the low-level robot and insert this pose into the robot’s virtual rep-

resentation of the world around it. This pose estimate is used to locate the object in the

environment as shown in Figure 4.10

The relative pose of the low-level robot is shown by the long arrow pointed towards the

high-level robot model. The red, yellow, and blue (partially hidden) axial arrows represent

the orientation of the low-level robot, thus fully describing the pose of the low-level robot

in relation to the high-level robot.
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Figure 4.10: 3D Pose estimate of low-level robot relative to high-level robot.

4.5.2 3D Object Recognition

For the three dimmensional point cloud experiment, complete processing of the scene took

over 20 seconds to complete on the high-level robot’s processing unit. The scene under test

is shown in Figure 4.11. The keypoints chosen by uniform sampling are represented by bold

spheres, recall that descriptors were calculated for each of these points. Note that many

of the descriptors were calculated on points that do not lie upon the object (i.e., low-level

robot). These descriptors consumed processing time, thus future attempts should focus on

removing as much of the background as possible before computing descriptors on the scene.

Figure 4.11: 3D Point cloud of experiment scene; Uniformly sampled kepyoints shown as large blue
spheres.
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Note that the low-level robot was unable to be identified in the scene using the chosen

3D points and descriptors. To debug the failed results, the algorithm was tested against

sample dataset that included a point cloud scene and model. Recognition was successful

when using the sample dataset and the model was correctly identified in the scene with the

correct pose. For this reason, it is believed that the failure to identify the object in the

scene could be due to the following reasons: 1) The construction methods (refer to Section

4.3.1) used in this work were performed incorrectly, which resulted in an inaccurate model

that was unable to be identified in the scene; and 2) The chosen feature detector/descriptor

pair was insufficient for the desired application. It is possible that the shape of the low-level

object was not sufficiently captured by the SHOT descriptor.

4.6 Conclusions

Object detection in two dimensions was fast and estimated pose was accurate when avail-

able. However, 2D object detection is prone to lighting effects that are often uncontrollable

for the given environment. These lighting effects can be mitigated by the addition of depth

information into the algorithm. For exmample, the researchers in [57] use a depth sensor

in addition to a RGB camera to improve object detection and pose estimations. Addition-

ally, they were able to achieve real-time results by parallelizing the intensive computations

required for 3D detection on a graphics processing unit (GPU). Therefore, although 2D

object recognition was able to produce successful matching results in real-time, the use of

3D object recognition should not be discounted.

As evident from the experiments discussed in this chapter, computer vision is not guar-

anteed to always be able to identify and localize the object, this is specifically true in

scenarios where line-of-sight with the object is not possible due to obstructions (e.g., dif-

ficult to navigate terrain). For such scenarios, it would be advantageous to implement a

localization strategy that functions in parallel and successfully in non-line-of-sight scenar-
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ios. In the following chapter, we will introduce such a method that uses the robot’s existing

wireless communication system as a means for localization.
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Chapter 5

Wireless Localization

5.1 Overview

This chapter presents a localization strategy that leverages the existing wireless (or radio

frequency - RF) signal used for communicating between swarm robots. The primary ad-

vantage of this system is the ability to estimate location without a direct line-of-sight of

the object. In addition, RF localization can be used in as long as the robots maintain a

communication link. RF localization techniques include ranging, or estimating the distance

or proximity to an object [22]; triangulation, which performs ranging from at least three

different access points to geometrically determine the position [9]; or fingerprinting, which

involves matching current signal strength measurements to a set of previously recorded

measurements over all possible positions (similar to determining a position by comparing to

a map) [22]. The work presented in this paper leverages the latest low-energy wireless com-

munication protocol, Bluetooth 4.0 (Low Energy) and propose a new signal measurement

strategy to account for practical hardware and channel constraints.
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5.2 Received Signal Strength Indicator

Localization based on RF signals is one of the most used approaches (alongside vision-based

systems) for indoor applications. Wireless localization techniques have focused on wireless

protocols such as WiFi [23, 31, 32] as well as Bluetooth [11, 12, 13, 14, 15]. A summary of

RF localization experiments sorted by wireless protocol are listed in Table 5.1.

Table 5.1: A Summary of RF Localization Experiments

Experiment Protocol Method Line-of-Sight Accuracy
[32] WiFi Fingerprinting NLOS 1.2 m

[23] WiFi Fingerprinting NLOS 2.57 m
(0.4 m w/ odometry)

[11] Bluetooth Multiple Neural
Networks NLOS 0.5 m

[12] Bluetooth Fingerprinting LOS 3 m
[15] Bluetooth Ranging LOS 2.08 m
[22] Bluetooth Ranging LOS <5 m
[18] Zigbee Ranging LOS,NLOS 1.8 to 3.5 m
[17] Theory only Triangulation Not specified Not available

Many RF localization techniques have been developed using a radio’s received signal

strength indicator (RSSI) [16, 17, 18]. Another signal measurement parameter used in

localization is the Link Quality Index, or LQI. In [18], the experimenters used both RSSI

and LQI to derive better location estimates. It is noted that LQI is correlated to RSSI and

signal to noise ratio (SNR), as well as bit error rate (BER). For most Bluetooth modules,

LQI is derived from the average BER seen at the receiver, and is constantly updated as

packets are received. However, the exact mapping from BER to LQI is device-specific [20].

The localization experiment in [18] used 802.15.4 Zigbee radios, where LQI is well defined

in the protocol’s specification. Unfortunately, the LQI value is not well defined in the

Bluetooth specification, thus it is not explored in this research.
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5.3 Bluetooth

Bluetooth is widely accepted as the primary short-distance wireless transfer protocol. Com-

munication range varies by chip manufacturer; most chips can achieve distances of 30 to

50 meters, but some advertise a range of over 100 meters [29]. The widespread adoption

of Bluetooth in commercial systems (e.g., phones, laptops, and cars) has resulted in the

availability of Bluetooth chips at low prices. Bluetooth’s low power consumption (typi-

cally between 1 and 10 mW) makes this technology more appealing to use than similar

technologies such as Wi-Fi (between 30 and 100 mW) [30].

The availability of RSSI has been included in the Bluetooth specification since Version

1.1 in 2002, however this value was often deemed ambiguous because of an open-loop power

control scheme. In 2009, Bluetooth 3.0 introduced an Enhanced Power Control (EPC)

requirement. EPC implements a closed loop power control scheme that dynamically adjusts

the transmitter power to maximize bandwidth and minimize power consumption.

For all Bluetooth 3.0 devices, the RSSI measurement compares the received signal power

with two threshold levels (determined by the chip manufacturer), which define the Golden

Receive Power Range (GRPR). Positive values of RSSI indicate that the signal strength was

above the upper threshold while negative values signifies the signal strength fell below the

lower limit. A value of zero represents the optimal condition, when the signal strength is

between the two thresholds [11]. The EPC scheme is used to position the RSSI within the

GRPR. In order to use the RSSI value for ranging purposes while implementing a dynamic

power control scheme, the transmitter power must be known. Consequentially, the only

time an RSSI measurement could be reliably interpreted was during device discovery scan -

as it was known that the device was then transmitting at maximum power. For this reason,

most devices did not provide access to RSSI readings during an active connection (i.e., when

EPC is enabled).
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The advent of Bluetooth 4.0 (also known as Bluetooth Smart) in 2010 introduced many

new improvements that merged three Bluetooth protocols: Classic (legacy support), high

speed (based on Wi-Fi), and Low Energy (LE or BLE). Among these improvements was the

implementation of the Proximity Profile (PXP) which provides an optional service called TX

Power Service. This service is used to normalize the client’s RSSI value by subtracting the

RSSI from the transmitter’s power level [24]. This enables BLE devices to report accurate

RSSI values during an active connection. These RSSI measurements can be used to obtain

an estimated distance of the device as it moves within the environment.

The use of Bluetooth for location-based services is increasing due to the recent intro-

duction (2010) of the revised Bluetooth Low Energy protocol. BLE devices consume signif-

icantly less power (between 1% to 50% the power of Bluetooth classic technology [29]) and

feature an Ultra-Low-Power (ULP) protocol that boasts operational energy use of merely

100 mAh per day - enabling the device to operate on a single coin cell battery for up to

four years [24]. The low power consumption makes this technology appealing for mobile

applications. For this reason, Bluetooth LE devices are commonly found in new consumer

electronics such as smartphones, tablets, and laptops.

In 2013, Apple introduced a location-based service called iBeacon that utilize Bluetooth

LE to estimate a user’s proxim,y to an iBeacon accessory [13]. While iBeacon was only

targeted towards iOS 7+ compatible devices, the company, Radius Networks, designed an

open source library to interact with iBeacon accessories across multiple platforms including

Linux and Android [14]. Original iBeacon devices have since been recreated using off the

shelf Bluetooth LE adapters and Linux machines or low cost microcontrollers such as Rasp-

berry Pi and Arduino. The Apple iBeacons, and similar devices, operate by broadcasting

a PXP profile that nearby devices can link to and estimate their distance from the beacon.

A single locating beacon may be used to determine if a target is within proximity to the

device, or multiple devices can be used to triangulate the user within an environment.
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5.4 Limitations

The accuracy of localization based on Bluetooth RSSI strongly depends on the techniques

used when taking RSSI measurements. In general, the accuracy of RF localization is limited

by many factors; precision is significantly reduced due to characteristics of or objects within

the environment, as well as the pose of the receiver.

Complex environments have many factors that contribute to variable attenuation of a

radio signal, i.e., signal fading. For example, indoor environments often contain reflective

materials that affect the propagation of radio frequency signals in non-trivial ways, causing

severe multipath effects that can produce dead-spots [18]. These effects may in addition

cause the power received to decay at a faster rate than in a free-space model [19]. Radio

waves also lose energy when they collide or pass through an object [22], which leads to an

effect known as scattering. Both multipath and scattering influence the RSSI value, thus

decreasing the accuracy and consistency of the measurement.

Fading effects may be also frequency selective, i.e., different frequency components expe-

rience uncorrelated fading [25]. In order to mitigate effects of frequency selective fading, the

Bluetooth specification has implemented an adaptive frequency hopping (AFH) technique

[29]. However, this may introduce uncertainty in an RSSI measurement due to the fact that

there is no indication as to what frequency is being used when an RSSI measurement is

being taken.

The relative orientation between the antennas of a sender and receiver has a direct

influence on the signal strength measured by the receiver [21]. The effect of orientation is

due to the non-uniform radiation pattern emitted from the antenna of the device. A non-

uniform radiation pattern implies that signal strength is a function of both distance and

angle between the signal source and receiver [22]. An experiment performed in [22] shows

that merging different antenna orientations, i.e., calculating the mean RSSI from from four
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different orientations at each distance, improves the accuracy of distance estimates. This is

a concept we leverage in our presented experiments (Section 5.6).

RF localization techniques that involve a user carrying a ranging device must also be

aware of signal attenuation due to power absorption from the user’s body. During a Blue-

tooth localization experiment using a fingerprinting technique, the researchers in [11] de-

signed a neural network (NN) algorithm to mitigate the effects of the power absorption

from the carrier’s body. In a similar RF localization experiment that used WiFi as the ra-

dio protocol, a combination of fingerprinting and an artificial neural network algorithm was

used on a robot carrier. The experimenters in [23] concluded it was possible to determine

the position (and sometimes orientation) of the robot from only the RSSI measurements by

comparing them to a prerecorded wireless fingerprint (i.e., map).

Thus multipath effects, antenna orientation, and blockage by a robot’s structure can

all potentially alter a RSSI measurement. Due to these factors, two robots at the same

distance from a source can measure vastly different RSSI values. It is this variability that

we strive to mitigate in the presented work.

5.5 Modeling the Wireless Channel

In order to make sense of the available RSSI data, it is important to first understand the

relationship between radio signal power and distance. This relationship is used to model

the wireless channel such that distance estimations can be extracted from RSSI data. The

following sections detail this relationship.

5.5.1 Log-Distance Pathloss Model

Under ideal propagation effects, the power received is proportional to the squared distance

between the transmitter and receiver. The equation used to relate power to distance using
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the Friis model is shown in Equation 5.1

RSSI = PTX +GTX +GRX + 20× log10

(
λ

4πR

)2
(5.1)

Where RSSI is the median radio signal strength indicator in dBm, PTX is the transmit

power in dBm, GTX is the gain of the transmitter antenna in dBi, GRX is the gain of the

receiver antenna in dBi, λ is the wavelength in meters, and R is the distance from the

receiver in meters.

This model is sufficient for a free-space environment, however, complex environments

have many factors that contribute to attenuation of a radio signal which may cause the

power received to decay at a different rate than in a free-space model.

5.5.2 Log-Normal Model

To better represent the effects of signal fading, we introduce the concept of a pathloss

coefficient. This coefficient is used to describe the rate at which the wireless signal decays

and brings about a new equation used to model a wireless channel, shown in Equation 5.2.

RSSI = −10× n log10(d) +A (5.2)

Where RSSI is the median radio signal strength indicator in dBm, n is the pathloss coeffi-

cient ( <2 to 4, where n = 2 is ideal for free-space environments), d is the relative distance

between the communicating nodes relative to 1 meter, and A is a reference received signal

strength in dBm at a distance of 1 meter. As there are many environmental factors that

contribute to the attenuation of the radio signal, the pathloss coefficient is often found

empirically by measuring the RSSI at various distances and calculating the rate at which

RSSI decreases relative to the distance from the transmitter.

However, this model does not account for non-trivial propagation of radio signals under
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multipath conditions or the effects of shadowing (i.e., blockage of signals due to objects).

5.5.3 Log-Normal Shadowing Model

To account for the multipath and scattering effects discussed in Section 5.4, a term that

represents a uniformly distributed random variable is appended to the Log-Normal pathloss

model to obtain the equation shown in Equation 5.3.

RSSI = −10× n log10(d) +A+Xσ (5.3)

Where Xσ is a normally distributed random variable (in dB) with zero mean, representing

the variable attenuation caused by a non-uniform environment.

The Log-Normal Shadowing (LNS) model is used in this work to estimate the distance

between robot swarm members. The model parameters, n, A, and Xσ are found during a

calibration phase, described in Section 5.7.

5.6 Mitigation of Undesired Effects

In the presented work, we leverage Bluetooth LE hardware to explore techniques to increase

the reliability of RSSI data even under the operational constraints discussed in Section 5.4.

Orientation effects can be caused by i) the antenna not having a uniform omni-directional

pattern, ii) the robot’s structure impedes the antenna radiation in some directions, or

iii) the local environment creates different multipath conditions based on orientation. All

three of these effects can be modeled as being random, thus to mitigate these effects we

introduce the concept of having the robot spin about the vertical axis while RSSI is collected.

By collecting RSSI data under this operational condition, the effects of orientation are

“averaged” out. For typical mobile systems, it is not practical to have users do this maneuver

and in wireless sensors networks, devices lack the mobility. However, robotic systems, by
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nature of their highly maneuverable designs, have this distinct attribute that we leverage

for improving RSSI data measurements.

5.7 Test and Analysis Methods

As discussed in the Section 5.4, the orientation of the target devices strongly influences

the measured RSSI. To illustrate this concept,the low-level robot is placed in an ideal

(i.e., anechoic) communication environment and RSSI data is collected at fixed rotational

intervals. The robot was placed in the anechoic chamber 0.75 meters away from a Android

Nexus 7 tablet used for collecting the RSSI data. To control the orientation of the robot,

the robot was mounted onto a stepper motor that was driven by a microcontroller. 400

RSSI samples were collected at 60 Hz for each orientation (16 steps/revolution). The motor

was automatically commanded to go to the next orientation only after the desired number

of samples were taken. The setup of this experiemnt is shown below in Figure 5.1.

Next, the low-level robot was moved to a non-ideal environment and placed at fixed

distances from the high-level bot. The low-level robot was commanded to spin about its

vertical axis and 600 RSSI samples were taken at 60 Hz while the robot spins at approxi-

mately 5 revolutions per second. The setup of this experiment are shown in Figure 5.2. The

median RSSI data is calculated and used to calibrate a LNS model of the wireless channel

(i.e., environment). This now calibrated model is used for calculating distance estimates.

Finally, the robot was placed at various distances from the source and the distance esti-

mates obtained from the now-calibrated wireless model were compared to the ground truth

location of the robot.
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Figure 5.1: The low-level robot setup in the anechoic chamber (Left). The mechanism for setting the
orientation of the low-level robot in the anechoic chamber (Right).

Figure 5.2: Robot setup for multipath (hallway) RSSI sampling experiment.

5.8 Results and Discussion

The two experiments outlined in the previous section were performed using the low-level

Sphero Ollie robot shown in Figure 2.5. The communication performance of the ideal
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environment at multiple orientations is discussed in Section 5.8.1. To test the accuracy of

RF-localization using RSSI measurements in non-ideal environments, the robot was moved

into a hallway (i.e., multipath environment). A LNS model was calibrated and tested for

accuracy, the results of this experiment are described in Section 5.8.2.

5.8.1 Anechoic Chamber Measurement

As the robot rotates about the vertical axis, the received radio strength greatly fluctuates.

The resulting RSSI samples in reference to the robot’s orientation are illustrated in Figure

5.3. The median RSSI value is indicated by a circle and the error bars represent the

range in the recorded RSSI data. Upon observing four complete revolutions of RSSI data, a

noticeably cyclical pattern is revealed. This pattern represents the non-ideal communication

performance of the robot at various orientations under idealized RF propagation conditions.

Figure 5.3: RSSI vs orientation of rotating robot in hallway environment.

The communication performance may be due to a non-ideal radiation pattern of the

robot’s antenna in combination with the robot’s physical structure. The orientation and
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configuration of the robot’s antenna is shown in Figure 5.4 (also refer to Section 2.3 and

Figure 2.7 for details of the robot’s internal hardware).

Figure 5.4: The antenna and supporting structure within the low-level robot

Note that the plot in Figure 5.3 is a function of the robot’s orientation and that there

is a significant amount of variation between measurements at a particular angle. For these

reasons it can be presented that we can obtain a more accurate RSSI measurement by

averaging the samples over of space (i.e., rotational orientation), and average over time

(i.e., median filter).

5.8.2 Hallway Measurement

In order to mitigate the effects of orientation, the robot is commanded to spin about the

vertical axis and a median filter is used to ’average’ the RSSI over the various orientations

the robot travels through during rotation.

The results of this experiment are shown in Figure 5.5. The RSSI values obtained during

this experiment are used to calibrate the LNS model of the environment. From this data
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Figure 5.5: RSSI data used to fit a LNS model

we are able to determine a best fit with a pathloss exponent, n = 1.266, a reference value,

A = 71.63 dBm, and Xσ = N (0, 1.28) dB. Note that a pathloss exponent of n = 2 is

not uncommon for indoor and hallway type environments; the researchers in [22] obtained

similar pathloss coefficients ranging between 1.4 and 1.55.

5.8.3 Multipath (Hallway) LNS Test

The previous experiment was then repeated, this time sampling RSSI measurements at

various distances to be included into a test dataset. This experimental dataset was then

tested against the LNS model calibrated from the previous experiment. The distances

and corresponding RSSI values are shown in Figure 5.6. The LNS model is then used to

estimate the distance between the robots and yields accuracies under 2.15 meters. The

greatest percent error of these measurements was 28% and the average percent error over

all results was 11.5%.
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Figure 5.6: The top plot shows the recorded RSSI data from the test dataset with the median RSSI
marked by a circle. The line represents the previously calibrated LNS model for this environment.
The bottom plot depicts the absolute error of distance estimate using RSSI values from calibrated
LNS model.

5.8.4 In-Field Calibration

Note that the LNS model used to estimate the distance between the robots had to be

manually calibrated by measuring the distance of the robot at various distances; however,

this process may be automated by comparing the RSSI value to estimated distances obtained

by the localization methods mentioned previously in this work. An example of how this

system would function is shown in Figure 5.7.

The robot is commanded to move a small distance (e.g., 0.5 m) away from the robot. The

vision system attempts to locate the robot (Chapter 4). Note, in this scenario the processing

time of the vision system is a non-crucial parameter as high accuracy is preferred. If vision

acquisition is unattainable, inertial estimates (Chapter 3) can be used instead. The robot is

then commanded to spin about its vertical axis to mitigate the effects of orientation. Next,

the RSSI is measured over a duration of time (e.g. 90 seconds) and the data is added to the
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Figure 5.7: Process to calibrate LNS model using in-field calibration method.

LNS model. This process is then repeated at various distances to fully calibrate the LNS

model.

5.9 Conclusions

In this chapter we introduced the concept of wireless ranging using received radio signal

strength. The experiment depicted in Figure 5.3 supports the notion that RSSI is highly

dependant on orientation of the device. We then introduced a method for increasing the

reliability of wireless RSSI measurement by rotating the robot about the vertical axis and

applying a median filter. This method effectively ’averages’ out effects from orientation

as well as variations over time. The localization estimates produced using this method

offer greater accuracy than inertial estimates alone, and has a significantly larger maximum

operating range than the computer vision method described in Chapter 4. Finally, we

proposed a method to automatically calibrate the LNS model; this process can be used to

ensure an accurate wireless model is developed without the need for operator intervention

or prior information about the performance of the wireless channel.
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Chapter 6

Conclusion and Extensions to Work

In this work we have introduced the concept of using a swarm of heterogeneous robots to

achieve a goal. The heterogeneity of the group of robots is exploited to utilize extremely

low-cost, virtually expendable robots as a means to increase sensing and actuating capabil-

ities of the swarm in entirety. However, to make use of their sensory data their locations

must be estimated and therefore must implement a method of localization. This thesis

has discussed and presented three different modalities for localizing a robot within an en-

vironment: inertial, computer vision, and wireless ranging. The experiments performed

in Chapter 3 show that, alone, the low-level robots are unable to localize over extended

distances. However, if coupled to a robot with more sufficient sensing/localization capabili-

ties, the low-level robot is able to be more accurately localized within the environment. The

approach will enable high-level robot with sufficiently greater computational abilities and a

RGBD sensor to locate and track the low-level robots as they move about the environment.

This localization method is shown to achieve accuracy under 2 cm, however is not available

if the object is unrecognizable (e.g., occlusion, lighting conditions).

The RF-based localization method utilizes only the robots’ existing wireless communi-

cation system and is available in both LOS and NLOS scenarios. This method was shown

to achieve accuracy between zero and 2.5 meters, however requires a environment-specific
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calibrated model. This model can be developed in-field by utilizing the alternative localiza-

tion methods discussed in Chapters 3 and 4. Together, these localization methods can be

used to cover multiple scenarios and localize swarm members within the environment.

6.1 Significant Contributions of Work

The contributions of this work are fourfold as described below.

1. In Chapter 2, this work introduces a concept of ’shared sensing’ in which extremely

simple and inexpensive robots with unreliable localization estimates are used in a

heterogeneous swarm of robots in a way that increases the accuracy of localization

for the simple agents and simultaneously extends the sensing capabilities of the more

complex robots. This method also enables the swarm to investigate hazardous and

unknown terrain by leveraging the mobility of a low cost, potentially expendable robot

instead of endangering a significantly more complex, and thus expensive robot.

2. This work outlines various means to estimate a robot’s pose. A method composed of

an inertial navigation system is discussed in Chapter 3, localization using computer

vision is detailed in Chapter 4, and a localization technique using the robot’s existing

wireless communication system is described in Chapter 5. The accuracy of each

method is evaluated. The work also addresses the benefits of using multiple sensors

simultaneously.

3. This work introduces in Chapter 5 a method for increasing reliability of RSSI measure-

ments for wireless ranging/localization systems by averaging RSSI measurements over

both time and space. This method addresses large fluctuations in RSSI measurements

due to the natural propagation of radio signals in multipath environments as well as

the non-ideal communication system performances that can be largely attributed to

the orientation of the robot.
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4. The final contribution of this work is a process for developing an in-field model for

estimating the location of a robot by leveraging the existing wireless communication

system. This process, described in Chapter 5, provides a way to calibrate a model to

be used in an environment where prior knowledge of the wireless channel performance

is not required.

6.2 Future Work

This work has highlighted three methods for localizing a robot within an environment and

identified each method’s strengths and weaknesses; these modalities are shown to com-

plement each other and can be configured to work simultaneously. Moving forward, these

systems must be implemented in such a way that each modality is a combined into a system

that outputs a single positional estimate based on the perceived accuracy at any given time

during various scenarios. For example, the proposed system should be able to interpolate

where a robot is based on inertial and RSSI measurements when a visual detection is un-

available. Likewise, if a robot travels into an occluded area and experiences a large step in

inertial data, it would be encouraged to rely primarily on wireless ranging data until visual

detection is restored.

Multi-sensor fusion is in itself is a very large research topic; many efforts have been

focused on ways to increase reliability of estimates using multiple sensors. As mentioned

previously, a Kalman Filter is a common approach to fuse multiple sensory inputs together

[26, 28]. In order to achieve such a system, it is important to realize that these localization

techniques are operating in parallel and at different rates (i.e., data from each sensor is

provided with different time resolutions). Therefore, a multi-rate solution should be em-

ployed such that the maximum data rate of each sensor can be utilized. The researchers in

[64] describe a multi-rate system fusion technique and compare two different Kalman-based

algorithms: the Extended Kalman Filter (EKF) and Unscented Kalman Filter (UKF). The
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EKF and UKF are two widely used algorithms for sensor fusion due to their ability to

handle non-linear systems.

The researchers in [65] developed a framework based on an Iterative Extended Kalman

Filter (IEKF) for multi-sensor fusion that is able to process delayed, relative and absolute

measurements from a theoretically unlimited number of different sensors and sensor types.

Their system was successfully demonstrated on a micro aerial vehicle (MAV) where not all

sensors were available at any time.

The ROS system that is used as a backbone of the heterogeneous robotic swarm in

this research has a package that was designed to estimate the pose of a robot using an

EKF. This package, robot_pose_ekf [66], is a strong starting point for someone wishing

to continue research efforts in this area. The package provides a means to estimate the

3D pose of a robot, based on (partial) pose measurements coming from different sources.

The package was designed to combine measurements from wheel odometry, IMU sensor and

visual odometry, however it may be modified to operate with different sensors.

A more recent and further generalized ROS package that can be used to estimate a

robot’s location using multiple sensor inputs is robot_localization [67]. This package pro-

vides a collection of state estimation nodes, each of which is an implementation of a nonlinear

state estimator for robots moving in 3D space. The intended use of this software package

is outlined in Figure 6.1.

The robot robot_localization package is designed to handle input from multiple sensors,

including an IMU, a camera, GPS, 3D depth sensors (e.g., Microsoft Kinect) and wheel

odometry. The sensor inputs are fed into an estimator that provides a single 3D state

estimate.
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Figure 6.1: Functional overview of the robot_localization package for ROS [68].

6.3 Final Comments

Techniques of localization are not limited to the modalities described in this thesis; in

fact, there exist many alternative approaches to localizing objects or vehicles within an

environment (e.g., GPS, sonar echolocation, etc.). It is important to understand that chosen

localization methods should cater to the environment in which they are employed as well as

the budget and scope of the project. This research focused primarily on the use of low-cost

robotics systems, which is why a consumer RGBD device was chosen as the vision sensor.

However, better results may be achieved using more expensive, rotating 2D or 3D LIDAR

systems, as well as time-of-flight or stereo cameras. Additionally, for the context of this

research it is stated that GPS is unavailable; however it may be the case that GPS signal is

intermittent (e.g., dense cities, forests, or inside buildings), thus localization cannot depend

on GPS data however it may be used to increase reliability when available. Alternatively,

there may be a positioning system that offers global localization measurements and can

therefore be used in addition to or instead of the aforementioned methods to increase the

reliability and accuracy of positional estimates.
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The methodologies discussed in the paper are meant to explore the combinatorial effects

of multi-sensor systems. Most notably, multi-sensor systems do not require all sensors to

be present on a single body; sensors may be unevenly distributed, spatially or numerically,

and can be used to achieve increased accuracy of positional estimates.
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