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Abstract(
" "
" Rhythmic"organization"of"auditory"information"is"used"differently"in"the"retention"of"

music"and"spoken"language."However,"similar"areas"of"the"prefrontal"cortex"(PFC)"have"

been"implicated"in"the"retention"of"unusual"rhythmic"patterns."This"study"investigated"the"

degree"of"PFC"activation"using"functional"nearJinfrared"spectroscopy"(fNIRS)"during"three"

rhythmic"pattern"manipulation"working"memory"tasks."In"addition"the"normalized"pairJ

wise"variability"index"(NPVI)"was"tested"as"a"measure"of"rhythmic"accuracy."Of"the"6"

participants"considered,"3"demonstrated"greater"activation"of"the"right"PFC"in"response"to"

the"Rhythmic"Motor"task,"a"manipulation"of"musical"rhythms."Similar"activation"was"

observed"for"the"Stress"Speech"task,"which"altered"stress"patterns"in"natural"speech."No"

changes"in"activation"were"observed"in"the"Rhythmic"Speech"task,"which"paired"speech"

with"metric"patterns."The"NPVI"values"did"not"reflect"task"performance."Refinement"is"

needed"to"determine"if"the"current"procedure"accurately"measures"rhythmic"working"

memory."

" "
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Introduction"

"

Rhythm(in(Musical(Contexts"

Rhythm refers to a set pattern of regular temporal information. This regularity of 

information exists in music and speech and serves different roles in our understanding of the 

mediums. There are both similarities and differences in the ways rhythmic patterns influence the 

processing and understanding of auditory information for speech and music. "

" It has been proposed that rhythm perception arises from regular oscillatory neuronal 

activity in groups of neurons (Large & Snyder, 2009). Physiological evidence from EEG studies 

indicates distinct activity spikes in time with rhythmic patterns, supporting this hypothesis 

(Jomori, Uemura, Nakagawa & Hoshiyama, 2011, Nozaradan, Peretz, Missal & Mouraux, 2011).  

Perception of rhythmic patterns is biased towards regularly alternating, or binary meters 

(Abecasis, Brochard, Granot & Drake, 2005), so much so that listeners will often perceive 

accents on alternating beats when no such accent exists in the stimuli (Potter, Fenwick, Abecasis 

& Brochard, 2009). The presence of a regularly structured alternating rhythmic pattern can help 

facilitate the detection of differences in other factors, such as the pitch or loudness (Brochard et 

al, 2003, Grube & Griffiths, 2009). This suggests rhythmic regularity plays an important role in 

the processing of musical information, perhaps being the default approach to musical 

information processing."

"

Rhythm(in(Linguistic(Contexts"

 Early discussions on the issue of rhythm in language divided languages in rhythmic 

groups based on the prevalence and order of accented, or stressed, syllables in each language 
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(Paimes-Bertrán, 1999). Languages such as English and German were dubbed “stress-timed” 

languages, as they contained regular alternating durations in their syllables. Languages such as 

French and Spanish were categorized as “syllable-timed” languages, as each syllable is roughly 

the same length. This rhythmic distinction between stress-timed and syllable-timed languages, 

however, does not appear to exist at the level of typical speech. Mathematical analyses of 

repetitive speech have found that stresses are created via alternating variations in loudness rather 

than in duration (Kochanski & Orhpanidou, 2008). Most evidence collected and metrics used in 

support of distinct stress categories has been confounded by inter-speaker and inter-material 

variation within languages (As reviewed by Arvaniti, 2009, Arvaniti, 2012). Finally the ability to 

distinguish between languages has been shown to be more dependent on durational cues rather 

than stress patterns (White, Mattys & Wiget, 2012). "

 While strict stress categories do not seem to exist, there is evidence to suggest that 

humans are capable of attending to varying levels of rhythmic complexity in stress-timed speech 

(Lidji, Palmer, Peretz & Morningstar, 2011). In addition when individuals were asked to 

repeatedly produce sentences in conjunction with a set meter, words with prominent stress 

become synchronized to clear metrical subdivisions (Cummings & Port, 1998). The presentation 

of words in a rhythmically consistent manner also reduces reaction time for the identification of 

specific speech sounds (Quené & Port, 2005). This suggests that there exists a basic sensitivity to 

regular stresses in speech, regardless of duration, intensity, or other more salient elements of 

speech."

"

Rhythmic Processing in the Brain"

 Preliminary fMRI investigations into the neural correlates of rhythmic processing 

identified distinct neural engagement in the retention and reproduction of metric and non-metric 
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rhythms (Sakai et al. 1999). Retaining and reproducing metric rhythms were shown to activate 

the left premotor and parietal cortex, and right cerebellum, while non-metric rhythms invoked 

activation of the right premotor, parietal and prefrontal corticies. Further studies demonstrated 

the activation of right hemispheric structures, including the right inferior frontal cortex (RIFG), 

during passive non-metric rhythm perception (Horváth et al, 2011). The involvement of the 

RIFG may be due to increased cognitive demands of processing non-metric rhythms. With 

regards to working memory the retention and use of rhythmic information has been shown to 

activate both cerebellar hemispheres, as well as the anterior insular and anterior cingulate 

cortices (Jerde et al, 2011). Working memory for both rhythmic and melodic information 

activated the left inferior frontal gyrus (LIFG), an area commonly implicated auditory working 

memory (Schneiders et al, 2012)."

 Several recent studies (Jomori & Hoshiyama, 2009, Rothermich, Schmidt-Kassow & 

Kotz, 2012, Rothermich & Kotz, 2013, Bohn, Knaus, Wiese & Domas, 2012) have investigated 

the sensitivity to the rhythmic component of speech stresses. Bohn et al. (2012) demonstrated 

that disturbing a regularly alternating stress pattern by either placing prominent syllables next to 

or far apart from each other produced a distinct event related potential (ERP) pattern, known as 

mismatch negativity (MMN). Jomori & Hoshiyama (2009) observed an increase in negative 

ERPs when unexpected silences were inserted between syllables, distorting stress patterns in an 

unexpected manner. Two studies conducted by Rothermich & Kotz (2012, 2013) which used the 

same stress detection protocol, found distinct activation for unexpected stressed using both EEG 

and fMRI. EEG results demonstrated a MMN response for unexpected stresses and an earlier 

detection of semantic incongruities when stress patterns were regular. fMRI results linked the 

detection of unexpected stresses to both the left and right IFGs and superior temporal gyri 

(STGs). This evidence suggests that we are sensitive to expectations in relation to a regular 
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pattern of speech stress that facilitate processing, as violations of regular stress produce distinct 

neural responses. "

 Reliance on rhythmic stability in processing and memory encoding appears to be 

minimal, as studies that included rhythmic variation report that unexpected rhythms have little 

effect on comprehension (Rothermich et al, 2012, Rothermich & Kotz, 2013). The only instances 

when rhythmic consistency plays an essential role in language processing are when 

distinguishing information in nonsense languages (Cason & Schön, 2012) and interpreting 

sentences with lexically ambiguous words when the speech signal is compromised (Mattys, 

Brooks & Cook, 2009).  In both of these cases semantic information is either lost or 

compromised, suggesting linguistic content takes precedent to rhythmic variation in normal 

speech. At this time, however, no studies have investigated the specific neural correlates of 

rhythmic regularity with regards to a working memory task. An understanding of this 

relationship would further advance our knowledge of the specific nature of musical processing 

and memory."

 Evidence from neuroimaging studies suggests that a number of cortical areas are involved 

in aspects of both music and language processing. Increased activity in the rostral portion of the 

LIFG, corresponding to Brodmann’s area 47, has been demonstrated when listening to and 

producing polyrhythmic patterns (Vuust et al, 2006, Vuust et al, 2011). Polyrhythms are defined 

as rhythms where a conflicting meter is presented against a primary meter (e.g. 4/4 over 3/4). 

The activation of BA 47 was observed during the production of both the primary and conflicting 

meter against the opposite meter. Evidence from studies of linguistic processing show a similar 

pattern of complex information activating BA 47 (See Uddén & Bahlmann, 2012). In the context 

of linguistic information, as processing tasks progress from phonetic to syntactic to semantic 

processing, changes in cortical activation moved from the caudal end of the LIFG (BA 44) to BA 
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47. Taken together this evidence suggests a multimodal role of the LIFG as it is involved in both 

musical working memory tasks, as well as the processing of complex information in both 

musical and linguistic contexts with explicit memory use."

 Only recently have studies directly compared the involvement of rhythmic regularity in 

both music and language. The first theoretical framework for studying music and language 

comparatively in the brain came from Patel (2003), who proposed the shared syntactic 

integration resource hypothesis (SSIRH). This hypothesis suggested that basic temporal 

components of music and language may be processed in similar areas of the brain. Abrams et al. 

(2011) tested the SSIRH using fMRI by reorganizing musical and speech segments to remove 

distinct units of meaning and clear rhythms. Both reorganized musical and linguistic information 

resulted in activation of the IFG and STG, although fine spatial analysis demonstrated slight 

differences in the extent of overlap in processing locations. Ystad et al. (2007) specifically 

manipulated rhythmic structure in musical and linguistic information to produce single 

incongruities. Musical rhythmic incongruities produced more negative ERPs compared to the 

normal stimuli, while linguistic rhythmic incongruities were not significantly different. Overall 

this evidence suggest that the same areas of the brain, IFG and STG, are involved in the 

detection of rhythmic variation, but the response to variation in music is greater than it is in 

language."

 The presence of clear rhythmic structure in musical context can help facilitate the 

retention of information, while rhythmic consistency only plays a prominent role in language 

processing under specific circumstances. To this date no studies have directly compared the 

effect of musical and linguistic rhythmic variations on memory encoding. If the importance of 

rhythm is different between musical and linguistic domains then rhythmic variations should have 

distinct effects on working memory encoding between these mediums. In turn if rhythmic 
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structure has the same importance for both mediums then its effects on working memory should 

be similar. The primary goal of this study was to determine the difference in prefrontal cortex 

activation in response to the unique roles of rhythmic variation in musical and linguistic working 

memory contexts."

It has been known for some time that areas of the prefrontal cortex play an important role 

in working memory (As reviewed by Carpenter, Just & Reichle, 2000). In particular areas of the 

left PFC have been shown to activate in response to short term manipulations of information in 

comparison to information stored in long-term memory (Braver et al, 2001). This area in the  left 

PFC has been shown to activate in response to retention of auditory information in multiple 

contexts, including manipulations of both rhythm and melody (Jerde et al, 2011). It is likely then 

that is area of the PFC is not sensitive to the context of the information, but rather is activated 

during manipulations of multiple forms of information. As such it is likely that LPFC activation 

would be observed for both musical and linguistic working memory tasks."

"

Functional Near-Infrared Spectroscopy"

For this study we measured changes in prefrontal cortex activity using functional near-

infrared spectroscopy (fNIRS). fNIRS devices emit light into the brain and indirectly assess 

changes in neuronal activation based on the refraction pattern returned to the sensors. Because 

the refraction pattern of light shone on tissue will vary depending on the concentrations of 

oxygen bound to hemoglobin in the blood, the refraction pattern can be used to measure if 

certain areas of the brain are using more oxygen (as reviewed by Ferrari & Quaresima, 2012). 

fNIRS was first used to study changes in cortex activity in 1992, and it is a fairly new measure of 

neural activity compared to EEG and fMRI. fNIRS has been used extensively to study issues 

concerning speech production and perception (as reviewed by Dieler, Tupak & Fallgatter, 2012), 
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and has been shown to produce stable results over time for verbal working memory tasks 

(Schecklmann, Ehlis, Plichta & Fallgatter, 2008)."

 Several studies have been published using fNIRS devices to assess neural responses to 

music. These studies have often focused on emotional responses to music (Moghimi, Kushki, 

Guerguerian & Chau, 2012), some have assessed differences in passive and active listening 

(Remijin & Kojima, 2013), while some have simply determined that different overall activation 

patterns occur during arithmetic tasks versus musical imagery tasks (Power, Falk & Chau, 2010).  "

Alba & Okanoya (2008) used fNIRS to investigate neural activation for tonal working memory, 

observing activation of the LIFG and STG. While it has yet to be used to study rhythmic working 

memory, fNIRS will likely prove effective as it possesses good temporal resolution, being able to 

detect changes in hemoglobin concentration in intervals less than 10 seconds (Alba & Okanoya, 

2008)."

"

Present Study: Rhythmic Manipulation Tasks"

 In order to evaluate the relation of rhythmic variation to working memory (WM) in 

musical and linguistic contexts, we used one previously documented protocol and developed two 

novel tasks. Each task contained a simple and complex sub-condition to assess the influence of 

variation within mediums. The first task, dubbed the Rhythmic Motor task (RM), follows the 

metric interval protocol used by Sakai et al. (1999) to assess the possible influence of metrical 

rhythmic regularity on working memory. Since no previous research has investigated linguistic 

rhythmic variation against music in working memory contexts, we developed two novel tasks to 

directly compare aspects of the RM task to a linguistic context. The second task, dubbed the 

Rhythmic Speech task (RS), applies lexical information to the metric rhythms from RM to 

evaluate the influence of metric rhythms on linguistic WM. For this task the simple sentences 
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were spoken normally, while the complex sentences were spoken such that each syllable 

coincided with the timing of a rhythmic pattern determined in same manner as the RM simple 

stimuli. The third task, dubbed the Stressed Speech task (SS), altered the stress pattern of the 

sentences with no direct regard to metric rhythms but produced sentences with unnatural and 

unusual stress patterns. Both the simple and complex sentences were longer than those used in 

RS, but the complex sentences consisted of equally spaced syllables with syllables shortened in 

conjunction with the locations of beats from RM stimuli. "

 For the RM task we expect to see similar activation of the RIFG in response to non-

metric complex rhythmic stimuli. While no activation of the LIFG was observed by Sakai, fMRI 

evidence from Jerde et al. (2011) suggests LIFG activation for both metric and non-metric 

information may be observed. While retaining a sentence that follows a distinct metrical beat 

may be an unusual occurrence, the presence of clear semantic information in the RS condition 

will likely reduce activation of the left and right IFG in comparison to the rhythmic motor task. 

The unnatural variation present in the SS task will likely result in either equal or greater 

activation patterns compared to the rhythmic motor condition, as not only will supportive stress 

cues be missing but the distortions may also require more working memory resources."

As such three primary hypotheses are proposed. We hypothesize that the complex sub-

conditions in the RM, RS and SS tasks will all result in activation of the right PFC in comparison 

the simple stimuli. Because of the difference in importance of rhythmic variation for musical and 

linguistic stimuli, we also hypothesize that the degree of right PFC activation will be smaller for 

the two linguistic tasks. Finally, we hypothesize that there will be greater activation of both the 

right and left lateral PFC for the SS task compared to the RS task, as the application of a metric 

rhythm to speech in RS stimuli will require fewer resources to process in comparison to the 

changes in stress pattern applied in the SS task."
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Materials and Methods"

Participants"

 Participants were recruited through announcements to college organizations, 

communication science and neuroscience classes, and by word of mouth. Nine participants (7 

female, 2 male) were recruited for this study. Of those nine, the first participant was excluded 

due to subsequent changes to stimuli placement in the protocol. Additionally two participants 

were excluded due to a lack of fluctuation in and oversaturation of fNIRS data, respectively. Of 

the six remaining participants, behavioral data from one participant only consists of the RM task, 

due to a malfunction in the audio recorder."

"

Stimuli Generation"

All audio stimuli were created using the Audacity audio editing software. Stimuli for the 

RM task were generated using the “Generate tone” and “Generate silence” tools, while all 

sentences for RS and SS stimuli were spoken by the primary investigator. Stimuli for the RM 

task were created following a modified version of the protocol used by Sakai et al (1999).  RM 

task stimuli consisted of seven tones at 440Hz lasting 30ms, separated by six gaps with a base 

gap interval of 235ms. Stimuli for the RM simple condition followed an interval ratio of 1:2:4, 

with two 235ms, two 470ms, and two 940ms gaps. Stimuli for the RM complex condition 

followed a 1:2.5:3.5 interval ratio, with two 235ms, two 587.5ms, and two 822.5ms gaps. Total 

length of each stimuli was 3500ms. The order of these gaps was rearranged to ten simple and ten 

complex rhythmic patterns, five of each which were used in each condition. Examples of simple 

and complex RM stimuli are displayed in figure 1."

 To match the seven tones and six gaps used in the RM task, sentences containing seven 

syllables were used in the RS task. Twenty seven-syllable sentences were created, ten of which 
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were selected for use in the five RS simple and five RS complex stimuli. RS simple stimuli were 

spoken such that the sentence lasted approximately 3.5 seconds to match the length of RMs 

stimuli. No other changes were made in stress or pronunciation from the speaker’s typical 

speech. For RS complex stimuli the sentences were spoken such that they matched a rhythmic 

pattern with a 1:2:4 interval ratio as used in the RM simple stimuli. To ensure the accuracy of the 

pattern the speaker listened to the rhythmic pattern on a set of headphones while recording the 

stimuli."

 For the SS stimuli sentences containing fifteen syllables were used. This was done to 

match the total number of interval units in each RM stimulus. Twenty fifteen-syllable long 

sentences were created and randomly assigned to either the SS simple or SS complex condition, 

five of each which were used in the procedure. Sentences in the SS simple condition were 

recorded in the speaker’s typical voice, with no changes in length or stress pattern. Sentences in 

the SS complex condition were spoken one syllable at a time with gaps in between each syllable. 

The sentences were then edited such that the gap in between each syllable was approximately 

identical. Stress patterns were created by using the “Change tempo” tool to shorten seven 

syllables. These seven syllables were chosen by following the interval patterns used in the RM 

stimuli. "

"

Stimuli Presentation"

 Stimuli were presented using PowerPoint software (Microsoft Corporation, Redmond 

Washington) . Transitions between slides were automated to occur following a set amount of 

time with a one second delay between slides. The tasks were presented starting with RM, 

followed by RS and finally SS. Each task followed the same structure; an instructional slide was 

presented to inform participants of how to perform the upcoming task, followed by a practice 
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stimulus. Participants were then presented with the five simple stimuli for the task, followed by a 

15 second relaxation cross, then the five complex stimuli, then another 15 relaxation cross. Each 

stimulus was played twice. Participants were then required to retain the stimulus for 10 seconds. 

Following a slide transition, participants then had seven seconds to repeat the previous stimulus. "

For the RM task participants were instructed to repeat the pattern either producing a 

clicking sound or the syllable “Da” depending on their preference. For the RS and SS tasks 

participants were instructed to pay attention to the tone and pacing of the stimulus and recreate it 

as accurately as possible. Each stimulus presentation / retention / reproduction cycle lasted 32 

seconds, while an entire task, including simple and complex stimuli as well as rests and 

instructions, lasted seven minutes 46 seconds. "

"

Procedure"

Participants were brought into a small office containing the fNIRS device and a computer 

displaying the stimulus presentation slideshow. Following informed consent participants filled 

out a short questionnaire collecting basic demographic information. For this study the fNIR100A 

(Biopac systems, inc., Goleta, CA) was used to collect hemodynamic data. The fNIR100A 

measures changes in the hemodynamic response using a headband containing 4 light sources and 

10 sensors, diving the forehead into 16 voxels. The headband covers the anterior portion of the 

PFC (BA 10, parts of BA 9) as well as the anterior portions of the left and right IFG (parts of BA 

11, 46, and 47). Figure 2 provides an image of the BIOPAC fNIR100, as well as of the location 

of Brodmann’s areas. The fNIRS headband was applied to the forehead and further secured using 

gauze. During establishment of the fNIRS baseline measures participants were instructed to 

relax. When the participant indicated readiness the stimulus presentation slideshow was started. 
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Performance on the tasks was measured using an audio recording device. From beginning to end 

the procedure lasted approximately 35 minutes."

"

Data Processing"

Behavioral data was extracted from audio recordings using PRAAT software (Boersma & 

Weenik, University of Amesterdam, version 5.3.85). Task performance was evaluated by 

measuring gaps in between tones / syllables depending on the task. Gaps were measured from the 

functional end of a sound to the beginning of the next. Because speech production does not 

always result in clearly defined spaces between sounds, a set of criteria was developed to define 

and identify functional sound length in PRAAT. For the RM task data the end of a sound was 

defined as either the peak intensity of the sound or as the beginning of vowel production, 

depending on whether the participant used clicking or “Da” sounds, respectively.  For RS and SS 

task data the length of a sound was designated as the vowel nucleus, which was measured from 

the begging of vowel production to the beginning of the fourth pulse. Figure 3 shows examples 

of the sound duration identification process. "

 The lengths of gaps in between sounds were then recorded in Excel. Accuracy in 

reproducing and understanding rhythmic patterns was assessed using the Normalized Pairwise 

Variability Index (NPVI). Developed by Grabe and Low (2002), the NPVI measures the 

relationship of durational variation in a set of sequential values. NPVI has been used to both 

study temporal patterns in linguistic (Grabe & Low, 2002) and musical (Patel & Daniele, 2003) 

contexts. The NPVI is calculated using the following formula:"

 "
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Whereby m is the total number of items and dk is the duration of the kth item. The mean, standard 

deviation, coefficient of variation (CoV; defined as standard deviation/mean), and NVPI value 

for each stimuli’s gaps were calculated using an online NPVI calculator 

(http://www.nsi.edu/~ani/npvi_calculator.html). "

In order to test the difference between participant performance and target productions, the 

mean and standard deviations of the target stimuli NPVI and CoV values were used to set the 

population values for comparison via one-sample t-test. The average NPVI and CoV values for 

each participant were compared against the population values using JMP (SAS Institute, Cary, 

NC). Because changes in NPVI have not yet been used as a measure of task accuracy, a measure 

of general success during the RM conditions was obtained as a reference point. General success 

was assessed by the principal investigator by listening to each stimuli reproduction and assigning 

a value of “Correct” or “Incorrect” to each reproduction. Incorrect reproductions were identified 

based on accuracy in the number of tone produces, or noticeable deviations from the expected 

gap length. This measure was not meant to severe as an absolute measure of accuracy, but to 

provide a metric to compare NPVI values against. Measures of general success were not 

obtained from the RS or SS conditions, as it was believed that the presence of accurate semantic 

information (i.e. correctly reproducing the words) could bias perception of rhythmic accuracy 

(i.e. not detecting incorrect rhythmic patterns). "

 fNIRS data were extracted to an excel spreadsheet using fNIRSoft (Biopac systems, inc, 

Goleta, CA). Average percent HbO change for baseline was taken from all stimuli in each 

condition. The 16 fNIR voxels were further averaged into four regions, corresponding to left 

lateral, left medial, right medial and right lateral PFC. The lateral left and lateral right groups 

contain the anterior portions of the LIFG and RIFG that are of interest in this study 
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Observational comparisons were made between simple and complex conditions of each task, as 

well as between RM, RS, and SS tasks overall."

"

Results"
"

Demographic Data"
"

 Table 1 lists demographic data collected from each participant. Participant age ranged 

from 19 to 22. All participants listed student as their primary occupation, although JM04 and 

JM05 also worked as tutors. Of those participants with musical training or performance skills, 

years of experience ranged between 4 and 19 years. Only one participant, JM08 had no previous 

musical training or experience. JM03, in addition to having the most years of musical 

experience, was a native speaker of Japanese. JM08 was fluent in both English and Polish. JM07 

was a native speaker of British English. This was noted, as personal correspondence with JM07 

following the protocol illustrated that, unbeknownst to the investigator, several words used in the 

RS and RM conditions were American English colloquialisms."

"

"
"
"
 
 
 

Behavioral Data: Task Performance"
"
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The general perception of task accuracy for the RM conditions is listed in table 2. In 

general accuracy was poor for both the simple and complex RM conditions. Participants 

correctly reproduced between one and three out of the five stimuli for each condition. One 

participant, JM06, did not correctly reproduce any of the complex stimuli. Several participants, 

including JM03, JM08, and JM09, had more correct reproductions in the complex RM condition 

compared to the simple. Stimuli number 2 and 5 from RM simple were only correctly reproduced 

once each, while stimulus 4 from RM complex was never correctly reproduced. This suggests 

that these particular stimuli may have been too unfamiliar or difficult to be correctly reproduced 

in this protocol. In summary these data demonstrate a low level of accuracy amongst participants 

in the RM conditions."

 "
"

"
"
"

Behavioral(Data:(NPVI(and(CoV(
(

 Tables 3 and 4 demonstrate NPVI and CoV values, respectively, for each participant’s 

reproduction of each stimulus. Data from JM02 for all RS and SS conditions was not available 
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due to malfunction of the audio recorder. Data from JM03 for the SS complex condition was not 

considered due to incorrect recall of semantic information for all stimuli. "

Because the NPVI is determined by the relationship between neighboring items, NPVI 

values can vary when the same group of numbers is rearranged. This can be seen in the NPVI 

and CoV values for the RM conditions, where the CoV values are identical for each stimulus 

within a condition. Because CoV values for all RS and SS conditions were taken from gaps 

extracted from the original stimuli, they are subject to variations in speech production, and are 

thus not identical. "

 Although they have not been measured in a statistical manner, the NPVI and CoV for the 

complex SS condition trend towards lower values than all other conditions. This is likely due to 

the controlled process by which the complex SS stimuli were created, resulting in similarly long 

inter-syllable gaps."
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"
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"
"
"
"
"
"

Figures 4 and 5 show the average NPVI and CoV values, respectively, for each condition 

compared against the stimuli average for that condition. A statistically significant difference 

(p<0.05) from the stimuli average was considered an indication of poor overall task performance. 

Tables 5 and 6 summarize the results of figures 4 and 5, respectively."

 When compared to the general success measures the NPVI and CoV results do not appear 

to reflect general success. While no participants reproduced more than two stimuli correctly in 
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the simple RM condition, only one value, the CoV for JM08, was shown to be significantly 

different than the target stimuli. Participants JM08 and JM09 both reproduced three stimuli 

correctly during the complex RM, while JM06 incorrectly reproduce all stimuli. However, the 

NPVI values for JM08 and JM09 for RMc were significantly different than the average, while 

the NPVI for JM06 was not. Taken together this suggests that the observed changes in average 

NPVI and CoV for each participant compared to the target stimuli do not accurately reflect task 

performance."

 For the simple and complex RS conditions, JM03, JM08 and JM09 showed significantly 

different NPVI and CoV values from the target average. Because both values were significantly 

different it is possible the NPVI and CoV values may have accurately assessed poor task 

performance. However with no reference point on RS accuracy it is not possible to confirm this 

accuracy. Interestingly, the NPVI values averages for all participants in the complex SS 

condition were significantly different compared to the target stimuli. This suggests that NPVI 

was able to discern some difference between the target stimuli. The nature of this difference will 

be discussed later."

"

"
 "
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fNIRS(Data(
"

Figure 6 shows percent change in oxygenated hemoglobin (HbO) in each task compared 

to the baseline measure. For both the simple and complex RM conditions participants JM02, 

JM03 and JM07 showed greater increase in HbO in the lateral right PFC in comparison to the 

rest of the areas. Participants JM06, JM08 and JM09 showed greater increases in both left and 

right medial PFC, though the trend appears to be not as pronounced. No major differences in 

percent HbO change were observed between the simple and complex RM conditions. This 

suggests the simple and complex RM conditions, as they were presented in this protocol, may 

have been processed similarly."

With the exception of participant JM07 during the complex RS task condition, all 

participants showed a decrease in HbO compared to baseline. Participant JM02 exhibited a 

greater decrease in HbO for the lateral right PFC compared to the other three divisions for both 

simple and complex RS tasks. Participant JM03 showed a similar trend in lateral right HbO for 

simple RS, but not for complex RS. Participants JM07, JM08 and JM09 showed minimal change 

in HbO from baseline for both simple and complex RS conditions. In summary this data suggests 

that the area of the PFC measured via fNIRS was likely not involved in the processing of RS 

stimuli."
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For the simple SS condition four out of six participants showed either minimal change in 

HbO from baseline, or a slight decrease in HbO. Participant JM02 showed an increase in HbO 

for all four areas, with a greater increase exhibited in the lateral right PFC. In contrast for the 

complex SS conditions five participants demonstrated a trend towards greater change in HbO in 

the lateral right PFC. For participants JM02, JM03, JM08, this greater increase in HbO in the 

lateral right PFC was pronounced. This suggests a trend in the complex SS condition towards 

greater increases in HbO in the later right PFC, similar to what was seen in the simple and 

complex RM conditions."

"

Discussion"
  

fNIRS Results: Implications of Right Prefrontal Cortex Acitivty(

This study sought to investigate patterns of prefrontal cortex activation using fNIRS in 

response to manipulation of rhythmic patterns in musical and linguistic memory contexts. To test 

this activity three tasks were developed; Rhythmic Motor, which manipulated interval patterns in 

a purely musical setting, Rhythmic Speech, which required reproduction of sentences set to an 

interval-based rhythmic pattern, and Stressed Speech, which manipulated stress patterns in 

sentences by shortening inter-syllable spaces. Each task contained a simple and complex 

condition, where the simple condition contained more typical stimuli (i.e. binary intervals, non-

manipulated sentences) and the complex condition contained the manipulation of interest. It was 

hypothesized that the RIFG would show a greater increase in activation in the complex condition 

for all three tasks. The results of this study, however, only partially support this hypothesis, as 

only the SS conditions demonstrated a greater increase in right PFC activity during the complex 

condition.  "



24"
"

This first hypothesis was proposed was proposed because of previous research 

demonstrating RIFG activation in response to non-metric rhythms (Sakai et al, 1999), as well as 

several other memory-related processes. These include attending to the semantic category of 

words (MacLeod et al, 1998), recalling episodic memories, and retaining task-specific rules (Shi 

et al, 2010). Interestingly, this area of the right PFC has been shown to significantly decrease in 

activity during improvisational verse generation in comparison to recitation of a memorized 

verse, further implying a memory-specific role for this area (Liu et al, 2012). Taken together this 

information suggests the right PFC is involved in a number of general memory processes with a 

focus on manipulating verbal memories. "

Following this theoretical framework, the question becomes why did Sakai et al (1999) 

observe an increase in RIFG activation in response to non-metric compared to metric rhythms, 

despite extensive familiarization with each rhythm type? It is possible that retaining non-metric 

rhythmic patterns requires recruitment of a more general memory system, as these rhythms 

cannot be placed within a regular, binary oscillating pattern. Thus the right PFC is recruited 

while retaining a non-metric rhythmic pattern rather than the left premotor and parietal cortices."

 If this argument were correct, then we would expect to see increased activation of the 

RIFG during only the complex RM task, which followed the same non-metric rhythmic intervals 

as Sakai et al (1999). This trend towards RIFG activation, however, was observed in both the 

simple metric and complex non-metric RM stimuli. These results at first glance contradict the 

first hypotheses, as well as the argument that the right PFC is only recruited to process complex, 

non-metric rhythms. "

This contradiction assumes that the RM tasks would be accurately performed, so that any 

observed change in activation would reflect rhythmic processing only. The general performance 

data for both simple and complex RM tasks, however suggests this was not the case. In general 



25"
"

participants performed worse in the simple RM task than the complex, and overall participants 

did not accurately reproduce more than 3 stimuli in the complex condition. This suggests that the 

RM sub-conditions may not have been able to fully distinguish between simple and complex 

rhythms, as both were difficult to reproduce. Instead the current data more accurately reflect 

recruitment of the right PFC in response to the increased effort needed to retain information in a 

difficult memory task, rather than memory specifically for rhythm. "

 In comparison to the RM task data, the majority of participants showed either a decrease 

or minimal change in activity of the right PFC during both the simple and complex RS tasks. 

These results provide some support for the second hypothesis, that the RS and SS tasks would 

elicit lesser degrees of RIFG activation compared to the RM tasks. The hypothesis is only 

partially supported, however, as only two participants demonstrated greater decreases lateral 

right PFC activation. This data more likely reflects a lack of recruitment of the PFC in the RS 

task.  "

It was also suggested that the LIFG might play a role in processing during the RS task. 

Previous research has suggested an involvement of the LIFG, corresponding to Brodmann’s area 

47, in response to manipulations of rhythmic meter in speech (Rothermich & Katz, 2013). This 

area, however, is located in the posterior region of the LIFG, next to the anterior portion of the 

lateral fissure, placing it out of range of the fNIRS device used in this study. That is not to say 

this area was not activated by the RS task, but rather in was impossible to measure it. Future 

research involving manipulations such as the RS or SS task should employ fNIRS devices that 

can measure more posterior regions of the PFC."

The third hypothesis of this study predicted that the complex SS condition would show 

greater levels of activation in both the LIFG and RIFG compared to complex RS. This 

hypothesis supported in part, due to an increase in lateral right PFC activation during the 
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complex SS. In general, activation during the complex SS was greater in all areas than in 

complex RS, which showed mostly decreases in activation compared to baseline. This greater 

activation in the SS complex condition, however, showed no bias towards the left PFC, 

suggesting no specific recruitment of the observable areas of the LIFG. Interestingly, the 

increases in activation observed in the complex SS task appear to be similar to those seen in the 

simple and complex RM conditions. It is important to note that differences in participant NPVI 

values, which were considered as measure of task accuracy, were significantly different from the 

target mean for every participant in the complex SS condition. This suggests that overall 

understanding of the rhythmic manipulations in the complex SS condition may have been low, 

and that the SS task was difficult for participants to complete. Furthermore this similar right PFC 

activation and poor performance in both RM tasks as well as the complex SS condition suggest 

that the right PFC was activated in response to the difficulty of the task rather than as a 

component of rhythmic memory processing. 

 

NPVI:(Reliability(as(Accuracy(Measure?(

In order to evaluate the behavioral performance of participants in this study, the 

normalized pairwise variability index was used as measure of accuracy in reproducing stimuli. 

Early research using the NPVI demonstrated differences in NPVI values between stress-timed 

and syllable-timed languages (Grabe & Low, 2002), suggesting that the NPVI could be used as a 

measure of rhythmic variation in languages. Furthermore Patel and Danielle (2003) compared 

NPVI values for both British English and French speech to the NPVI values of rhythms from 

music motifs of English and French composers. Their results indicated not only greater NPVI 

values for English, a variable stress-timed language, compared to French, but also similar NPVI 

values between both English and French compared to their rhythmic motifs. Recent evidence, 
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however has called the validity of stress categorization in languages into question (Arvaniti, 

2009; White, Mattys, & Wiget, 2012). In addition the NPVI has been shown to fluctuate due to 

inter and intra speaker linguistic productions, suggesting the NPVI may not be reliable for 

detecting overall rhythmic trends in languages (Arvaniti, 2012). Similar unreliability has been 

documented with regards to reflecting the rhythmic complexity of short patterns from a wide 

range of musical styles (Toussant, 2011). "

These previous studies, however, have not used NPVI values to determine the accuracy 

of rhythmic productions, that is, they have not measured the NPVI values of a target rhythm 

against the NPVI value of an individual’s reproduction. While the NPVI may be sensitive to 

inter-speaker variation when speaking under normal conditions, this variation may be less 

pronounced when the goal of speech production is to replicate a specific speech pattern or 

rhythm. Furthermore when used as a measure of task accuracy NPVI need only be sensitive to 

substantial differences between the target stimuli and reproductions, thus unreliability in 

qualitative measures of rhythmic complexity may not affect this result."

It is impossible, given the limited current data, to declare conclusively that NPVI cannot 

be used as a useful measure for determining task accuracy across musical and linguistic rhythmic 

variations. In this study only five stimuli were presented in each condition. In addition, when 

selecting the order of interval patterns for stimuli, the subsequent NPVI values were not 

controlled, thus some conditions featured a wide range of NPVI values (e.g. 26.67 to 88 in RMs). 

It is possible that the significantly different reproductions in the complex SS condition were 

detected due to the smaller range of NPVI values between stimuli. As such creating rhythmic and 

speech stimuli with a smaller range of NPVI values could possibly make the NPVI more 

sensitive to differences due to inaccurate reproductions. To conclusively determine the validity 
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of NPVI as a measure of task accuracy, future research should include more stimuli and reduce 

the range of NPVI values."

"

Conclusion"

 This sought to identify the similarities and difference of prefrontal cortex activation in 

response to the retention of rhythmic variations in musical and linguistic contexts using fNIRS. 

However, given the small number of participants recruited and stimuli presented it was not 

possible to conclusively determine the nature of this activation. General trends indicated greater 

activation of the right PFC occurred in several participants for both RM conditions, as well as for 

the complex SS condition. While the right PFC has been associated with verbal memory and 

retention of complex rhythms, the poor performance on these tasks suggest this activation 

general effort to retain the information. In addition the NPVI, a measure of intra-rhytmic 

variability, did not reliably indicate task performance in this protocol. These tasks may be prove 

useful and accurate in future studies of rhythmic memory processing, however significant 

refinements should be made to the protocol to ensure accurate measurements."

"
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1.a 

1.b 

Figure 1, examples of simple and complex Rhythmic Motor stimuli. a) timeline of simple RM stimuli following a 2|1|4|4|1|2 
interval pattern. b) Timeline of a complex RM stimuli following a 1|3.5|2.5|1|3.5|2.5 interval pattern. Each stimuli was repeated 
twice following a four second delay. Images captured from Audacity. 



2.a 

2.b 

Figure 2, Visual references. a) BIOPAC fNIR100A device, including demonstration of proper headband application, as well as voxels and 
their corresponding locations on the prefrontal cortex. Image source: Ayaz et al. (2012). b) Diagram of Brodmann’s areas. Image source: 
http://www.umich.edu/~cogneuro/jpg/Brodmann.html.  



3.a 

3.b 

Figure 3, identifying sound duration in PRAAT. a) Sound length measured for clicking noise produced by JM02 during RMs stimuli 
#4. Sound length was defined from the beginning of the sound to peak intensity, indicated by the yellow line. b) Sound length 
measured for syllable produced by JM07 during RSs stimuli #3. Sound length was defined from the beginning of the vowel 
vocalization to the beginning of the fourth pulse. 
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4.e 

4.f 

Figure 4, one sample z-tests for average NPVI values for each condition. a) NPVI for RMs, b) RMc, c) RSs, d) RSc, e) SSs, f) SSc.   



5.a$

5.b$
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Figure 5, one sample t-tests for average CoV values for each condition. a) CoV for RMs, b) RMc, c) RSs, d) RSc, e) SSs, f) SSc.   

5.d 
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5.f 



Figure 6, Percent change in HbO levels compared to baseline. a) HbO change during RMs, b) RMc, c) RSs, d) RSc, e) SSs, f) SSc. Bars 
represent standard deviation for all condition stimuli. 
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