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ABSTRACT 
 

Light detection and ranging (LiDAR) data can provide detailed information about 
three-dimensional forest horizontal and vertical structure that is important to forest 
productivity and wildlife habitat.  Indeed, LiDAR data have been shown to provide 
accurate estimates to forest structural parameters and measures of higher trophic levels 
(e.g., avian abundance and diversity).  However, links between forest structure and tree 
function have not been evaluated using LiDAR.  This study was designed and scaled to 
assess the relationship of LiDAR to multiple aspects of forest structure and higher trophic 
levels (arthropod and bird populations), which included the ground-based collection of 
percent crown and understory closure, as well as arthropod and avian abundance and 
diversity data.  Additional plot-based measures were added to assess the relationship of 
LiDAR to forest health and productivity.  High-resolution discrete-return LiDAR data 
(flown summer of 2009) were acquired for the Hubbard Brook Experimental Forest 
(HBEF) in New Hampshire, USA.  LiDAR data were classified into four canopy 
structural categories: 1) high crown and high understory closure, 2) high crown and low 
understory closure, 3) low crown and high understory closure, and 4) low crown and low 
understory closure.  Nearby plots from each of the four LiDAR categories were grouped 
into “blocks” to assess the spatial consistency of data.  Ground-based measures of forest 
canopy structure, site, stand and individual tree measures were collected on nine 50 m-
plots from each LiDAR category (36 plots total), during summer of 2012.  Analysis of 
variance was used to assess the relationships between LiDAR and a suite of tree function 
measures.  Our results show the novel ability of LiDAR to assess forest health and 
productivity at the stand and individual tree level.  We found significant correspondence 
between LiDAR categories and our ground-based measures of tree function, including 
xylem increment growth, foliar nutrition, crown health, and stand mortality.  
Furthermore, we found consistent reductions in xylem increment growth, decreases in 
foliar nutrition and crown health, and increases in stand mortality related to high 
understory closure. This suggests that LiDAR measures can reflect competitive 
interactions, not just among overstory trees for light, but also interactions between 
overstory trees and understory vegetation for resources other than light (e.g., nutrients).  
High-resolution LiDAR data show promise in the assessment of forest health and 
productivity related to tree function. 
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CHAPTER 1. LITERATURE REVIEW 

 

1.1. Introduction to light detection and ranging (LiDAR) 

Light detection and ranging (LiDAR) is a remote sensing technique in which 

near-infrared laser pulses are emitted from a sensor on a fixed-wing aircraft.  Based on 

the timing and intensity of the return signal and in conjunction with an inertial navigation 

system (INS), as well as a GPS fixed to the aircraft and referenced to another ground 

GPS, location data about canopy/vegetation vertical structure (including canopy height 

and ground elevation) can be determined with great accuracy (Schmid et al. 2008).  

LiDAR has the ability to create three-dimensional elevation surfaces, as well as record 

return signal intensity and therefore, can be utilized as a spatial and spectral segmentation 

tool (Antonarakis et al. 2008). 

LiDAR instruments are able to produce greater than 150,000 laser pulses per 

second and record up to five return signals per pulse.  The resulting product is a densely 

spaced and highly accurate collection of georeferenced elevation points, called point 

clouds (Schmid et al. 2008).  Each point within a point cloud represents an individual 

return with a unique intensity value.  Point clouds can be converted to digital elevation 

models (DEM), digital surface models (DSM), and canopy height models/normalized 

digital surface models (CHM/nDSM) for further analysis (Wehr and Lohr 1999, Lim et 

al. 2003, Evans et al. 2009, Swatantran et al. 2012). 

LiDAR is classified into two types: discrete return and full waveform LiDAR.  

Both types record the timing and intensity of the return signal back to the sensor and the 

exact three-dimensional location of each point (X, Y, and Z coordinates).   Discrete 
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return LiDAR records only individual (discrete) signal returns, whereas full waveform 

LiDAR records the entire outgoing and return signal (Lefsky et al. 2002, Evans et al. 

2009).  Advantages of discrete return LiDAR are its ability to record multiple returns at 

smaller footprint sizes.  The circular sampling area created from the beam divergence 

from the LiDAR sensor is referred to as the footprint size (Lim et al. 2003).  Most 

discrete return LiDAR footprint sizes now range from 20 to 80 cm in size, which is useful 

in studies where information on individual plots or even individual trees is desired.  By 

contrast, full waveform LiDAR records the entire waveform over larger areas (large 

footprint sizes varying from 3 to 8 m and up to 70 m) (Lim et al. 2003, Evans et al. 2009).  

File sizes are much larger with waveform LiDAR due to the recording of the entire return 

signal and are therefore, more difficult to work with.  Also, although waveform LiDAR 

may capture the full vertical profile better than discrete return LiDAR (Lim et al. 2003), 

it does not map three-dimensional vertical structure as accurately as discrete return 

LiDAR due to its larger footprint sizes and lower resolution (Lefsky et al. 2002).  

Swatantran et al. (2012) found that, although waveform LiDAR was not as accurate in 

representing vertical structure, it was more accurate in estimating canopy top elevation 

than discrete return LiDAR.  Despite underestimating canopy top elevation, discrete 

return LiDAR was more accurate in estimations of ground elevation – so both types have 

utility Swatantran et al. (2012). 

Studies involving mapping and classification of vegetation structure have 

traditionally been limited in the extent of the area assessed due to the costly and time-

consuming nature of fieldwork.  In addition, more traditional remotely sensed data has 

had the limitation of providing little or no information about canopy/vegetation vertical 
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structure.  LiDAR is able to map vegetation structure three dimensionally, as well as 

record spectral intensity at landscape scales at relatively low costs compared to 

conventional remote sensing techniques (Lefsky et al. 2002, Schmid et al. 2008, Sherrill 

et al. 2008). 

Three dimensional spatial patterns of vegetation have been shown to be important 

in ecological studies, especially those pertaining to wildlife habitat (MacArthur and 

MacArthur 1961).  Until recently, conventional remote sensing has only been able to map 

forests in two dimensions (Lefsky et al. 2002).  Recently, forest and wildlife habitat 

studies have used LiDAR to assess basic structural attributes such as canopy height, 

canopy cover and vertical profiles from which indirect measures (e.g., biomass, timber 

volume, basal area, crown closure, leaf area index, species diversity, etc.) have been 

derived (Lefsky et al. 2002, Jensen et al. 2008, Næsset and Gobakken 2008, Hollaus et al. 

2009, Goetz et al. 2010, Swatantran et al. 2011). 

Due to its ability to accurately depict forest canopy height, and potentially forest 

canopy structure and complexity, LiDAR has quickly become an indispensable tool for 

estimating forest-based metrics.  Indices derived from LiDAR data have been 

demonstrated by many studies to be highly correlated with in situ measures of forest-

height variables, biomass, basal area, and forest age (Lefsky et al. 2002, Lefsky et al. 

2005, Hudak et al. 2006, Sherrill et al. 2008, Falkowski et al. 2009).  Descriptors derived 

from LiDAR are now commonly used in a variety of forest-based applications, including 

forest inventory analyses (Gatziolis 2009, 2012), carbon stock estimation (Stephens et al. 

2007, Asner 2009, Dubayah et al. 2010, Asner et al. 2012), and wildlife habitat modeling 

(Hyde et al. 2006, Goetz et al. 2010).  LiDAR data have also been correlated to estimates 
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of forest vertical structure such as Leaf Area Index (LAI) (Sherrill et al. 2008).  

Surprisingly, few studies have assessed high resolution LiDAR estimates of forest canopy 

structure in deciduous hardwood forests and applications to higher trophic levels and/or 

biodiversity. 

Coarse-scale resolution LiDAR data have been used to estimate forest canopy 

structure and complexity in deciduous hardwood forests and relate these to at least one 

important indicator of biodiversity: bird species richness (Goetz et al. 2007, Goetz et al. 

2010).  The use of high resolution LiDAR-derived data for habitat analyses and estimates 

of biodiversity have currently not been evaluated and might provide essential 

improvements to existing LiDAR-based models.  In addition, relating LiDAR data to 

crown features that are significant components of forest health and productivity (e.g., 

crown vigor and dieback, and mechanical damage) is uncommon but shows promise 

(Leckie et al. 2003, Solberg et al. 2006).  Lastly, the relationship between LiDAR 

estimates of forest structure and complexity, and arthropod abundance and diversity is 

nearly absent in the literature, despite being an important link between primary producers 

(i.e., trees) and secondary consumers (i.e., birds).  Arthropod abundance and diversity has 

been shown to be directly influenced by forest canopy structure (Halaj et al. 2000, 

Jeffries et al. 2006) and indirectly influenced by forest canopy gaps via light availability, 

soil/leaf litter moisture, and foliar nutrition (Shure and Phillips 1991, Goßner 2009).  As 

such, arthropod measures are important indicators of biodiversity that may potentially be 

assessed via LiDAR data. 
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1.2. Forest-based applications 

Basal area, stand density and biomass estimation 

The basic measurements made by LiDAR sensors are directly related to 

vegetation structure and function, and therefore, can be used in the estimation of many 

forest-based metrics (Lefsky et al. 2002).  During the last decade, accurate estimates of 

basal area, stand density, biomass, and timber volume have all been obtained from 

LiDAR data.  The direct retrieval of canopy height variables from LiDAR data has made 

this possible (Lim et al. 2003). 

For example, Hudak et al. (2006) found that LiDAR had better utility in 

predicting basal area than other multispectral and remotely sensed data.  They also noted 

that LiDAR canopy height and canopy cover variables were most useful in predicting 

basal area and tree density, respectively.   

In addition, biomass estimates have been made with both waveform and discrete 

return LiDAR laser systems to varying degrees of success and in combination with other 

remotely sensed data.  Using discrete return LiDAR, Næsset and Gobakken (2008) found 

that LiDAR metrics explained 88% of the variability of above ground estimates of 

biomass in boreal forests of Norway.  Swatantran et al. (2011) found similar results in 

estimation of biomass using waveform LiDAR in the Sierra Nevada, with the exception 

of their estimates being refined by the fusion of hyperspectral data with LiDAR data.  It 

is expected that with the attainment of higher spatial resolution LiDAR data, the 

accuracies of basal area, stand density, and biomass estimates (as well as other forest 

metrics) will only increase with time (Gatziolis and Andersen 2008). 
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Canopy/foliage density measures 

Leaf area Index (LAI) has been defined as the total one-sided area of leaf tissue 

per unit ground surface area (Bréda 2003).  Leaf area index is a key component of 

biogeochemical cycles in ecosystems by driving within- and below-canopy microclimate, 

determining and controlling canopy water interception, radiation extinction, and water 

and carbon gas exchange (Bréda 2003).  Accurate measures of LAI have typically been 

difficult to quantify due to large spatial and temporal variability (Bréda 2003, Richardson 

et al. 2009).  Conventional remote sensing techniques have partially solved the issues of 

spatial and temporal variability, but still show inaccuracies in high biomass ecosystems 

(Jensen et al. 2008).  LiDAR has shown great promise in the estimation of LAI, as well as 

other crown density measures (e.g., dieback and mechanical damage and defoliation), 

while accounting for the spatial and temporal variability and inaccuracies of ground 

based and conventional remotely sensed LAI estimations (Reutebuch et al. 2005, 

Richardson et al. 2009). 

LiDAR-based estimates of LAI have been obtained through various methods and 

models.  In the context of insect defoliation on Scots pine (Pinus sylvestris L.), Solberg et 

al. (2006) compared laser pulse penetration through the canopy with stand density based 

on position and height of individual trees to obtain actual and expected LAI.  Richardson 

et al. (2009) used a model-based approach (based on the Beer-Lambert Law – an 

equation relating the absorption of light to the properties of the material it is travelling 

through) to obtain LAI and found high correlations between LiDAR-based LAI estimates 

with LAI derived from hemispherical photography. 
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 Succession, forest gaps, and object-oriented classification 

Few studies have utilized LiDAR in evaluating forest gaps and subsequent forest 

succession.  The heterogeneity of forests has made the utilization of LiDAR for gap 

analysis particularly difficult in the northeastern part of the United States.  The few 

studies that have utilized LiDAR have taken place in the western United States in more 

homogeneous forests.  These studies have focused on object-oriented classification with 

the inclusion of other remotely sensed data and GIS layers to identify polygons of 

varying gap sizes/successional stages (St-Onge and Vepakomma 2004, Pascual et al. 

2008).  Object-oriented classification (as opposed to pixel-based classification) is not a 

new technique, however.  With increasing spatial resolution of remotely sensed data, 

object-oriented classification has become a more useful and powerful tool than the 

classification of pixels at coarser spatial scales (Blaschke 2010).  Even with object-

oriented classification, the majority of studies have focused on classifying land cover 

(forest and ground types), not forest gaps and successional stages (Antonarakis et al. 

2008). 

A recent study by Falkowski et al. (2009) is an example of LiDAR-based analysis 

of forest succession/gaps that does not use object-oriented classifiers.  In this study, six 

categories of forest successional stages were classified using LiDAR-derived metrics in 

conjunction with an algorithmic modeling procedure (Random Forest algorithm), which 

obtained overall accuracies of higher than 90%.  Random Forest algorithms have been 

show to be the most robust and flexible imputation methods in the simultaneous 

prediction of multiple response variables, while using predictor variables derived from 

LiDAR data (Hudak et al. 2008).  LiDAR data, used in conjunction with Random Forest 
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algorithms, have also been utilized in studies predicting basal area and tree density 

(Hudak et al. 2008), as well as the prevalence of bird species (Swatantran et al. 2012).  

 

1.3. Wildlife applications 

Three dimensional spatial patterns and vertical structure of vegetation have been 

shown to be important for bird habitat (MacArthur and MacArthur 1961), and therefore, 

LiDAR-based metrics that predict bird presence/absence are similar, if not the same, as 

those used for classification of forest successional stages.  A ground breaking study by 

MacArthur and MacArthur (1961) showed that the diversity of songbirds was positively 

associated with the vertical distribution of vegetation within forests.  The utilization of 

LiDAR in wildlife studies is contingent on its ability to assess this vertical distribution, as 

well as the horizontal distribution of vegetation (Goetz et al. 2007, Clawges et al. 2008, 

Goetz et al. 2010, Swatantran et al. 2012).   

Many LiDAR-based wildlife studies have focused on birds and have used LiDAR 

structural indices to predict species diversity (Clawges et al. 2008), species prevalence 

(Swatantran et al. 2012), and species richness (Goetz et al. 2007, Lesak et al. 2011).  

Breeding habitat of individual bird species has also been predicted using LiDAR-derived 

structural indices (Bradbury et al. 2005, Goetz et al. 2010).  In addition, important forest 

structural features such as snags (and other coarse woody debris) and large residual trees 

have been mapped with LiDAR, and used as indicators of habitat quality for certain 

species (Pesonen et al. 2008, Martinuzzi et al. 2009, García-Feced et al. 2011). 

The utilization of LiDAR to assess forest structure in relation to bird species and 

their habitat requirements is common in the literature.  However, LiDAR is also utilized 
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in other ecosystem assessments, including the examination of mammalian habitat.  For 

example, the Delmarva fox squirrel (Sciurus niger cinereus) in Delaware (Nelson et al. 

2005).  LiDAR has also been used to discriminate cluster zones of massive stony coral 

colonies on patch reefs of northern Florida, although this type of LiDAR differs from 

most of the above by being blue-green wavelength LiDAR (as opposed to near infrared) 

due to its application in or around water and not vegetation (Brock et al. 2006). 

Finally, LiDAR has been used to assess arthropod abundance and diversity; 

however, it is uncommon in the literature despite being an important link between forest 

structure and higher trophic levels.  For example, Müller and Brandl (2009) showed 

strong relationships between LiDAR variables of canopy height and forest beetle 

assemblages in the Bavarian Forest National Park in Germany.  Similarly, Vierling et al. 

(2011), found strong predictive power of LiDAR variables in assessing spider 

distributions, also in the Bavarian Forest National Park in Germany.  Arthropods are 

dependent on the form and associated function of forest systems, and therefore should be 

related to LiDAR variables.  Further assessments of individual species and arthropod 

assembleges may provide further insight into the utility of LiDAR. 

 

1.4. Data processing, software and deliverables of discrete return LiDAR 

LiDAR data is most widely packaged in the .LAS file format, which contains both 

three-dimensional spatial and spectral intensity information.  Once acquired, typical 

operations performed on LiDAR point cloud data include: visualization (which includes 

single point selection, measurements, primitive fitting, and generating cross sections), 

segmentation, classification, filtering, transformation (including rotations, cropping, 
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merging, and georeferencing), gridding, and mathematical operations (Fernandez et al. 

2007). 

There are many point cloud processing software packages available for the 

manipulation of LiDAR data, each of which has associated advantages and limitations.  

They include:  Quick Terrain Modeler, Terrasolid Suite, MARS, Innovmetric Polyworks, 

Fledermaus, Matlab, LViz, and Surfer to name a few.  Quick Terrain (QT) Modeler is the 

software package that will be used for this project.  Originally developed by John 

Hopkins University’s Applied Physics Lab, QT Modeler is capable of handling any 

LiDAR-generated dataset, as well as other three dimensional datasets such as those 

generated by Synthetic Aperture Radar (SAR).  QT modeler has proven to be one of the 

best visualization software packages for LiDAR point cloud data (Fernandez et al. 2007). 

As with other remotely sensed data (e.g., Landsat), LiDAR data are divided into 

five levels of processing (Evans et al. 2009).  The first level (level zero) is the raw sensor 

data.  It is of no interest to the vast majority of users, but should be archived for the 

development and testing of such things as GPS corrections.  Level one processing 

consists of corrections performed by the vendor, including:  geometric correction, sensor 

corrections, tiling, and converting to the appropriate data format (i.e., .LAS).  Level two 

processing consists of products derived from basic post-processing procedures, which 

include classifying ground returns, digital elevation models (DEM), digital surface 

models (DSM), intensity information, and point height information.  Level three 

processing derives products that are tailored for specific applications.  These products - 

such as canopy height, canopy density, and stratified canopy density - are based on 

transformations, ratios, and simple calculations.  Level four processing involves variables 
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from previous processing levels and is used for specific modeling applications such as 

stand density, basal area, and biomass estimates (Lim et al. 2003, Chen 2007, Schmid et 

al. 2008, Evans et al. 2009) 

 

1.5. Conclusions 

The literature described above illustrates LiDAR’s ability to quantify forest-based 

measures directly (e.g., canopy height) and indirectly (e.g., basal area, LAI, etc.) and 

therefore, its ability to answer broader ecological questions related to forest structure and 

function and related wildlife.  Previous research on LiDAR and forest structure has 

identified significant relationships between predicted LiDAR-based forest vertical 

structure and ground-based measures of forest vertical structure (Zimble et al. 2003, van 

Leeuwen and Nieuwenhuis 2010, Jones et al. 2011, Van Ewjik et al. 2011), as well as 

predicted LiDAR forest canopy gaps and ground-based assessments of forest canopy 

gaps (Koukoulas and Blackburn 2004, St-Onge and Vepakomma 2004, Gaulton and 

Malthus 2010, Van Ewjik et al. 2011).  In addition, previous research has identified 

significant relationships between LiDAR-based forest vertical structure and forest canopy 

gap variables with bird prevalence and habitat (Goetz et al. 2007, Goetz et al. 2010, 

Swatantran et al. 2012), as well as bird species richness (Goetz et al. 2007, Lesak et al. 

2011).  Despite these promising results, connections between LiDAR metrics of forest 

vertical structure and forest canopy gaps and trophic level interactions have not been 

fully evaluated.  The next chapter (and appendices) of this thesis describes a new study to 

further evaluate the potential utility of LiDAR data for identifying patterns of forest 

structure relevant to tree health and productivity and higher trophic levels. 
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CHAPTER 2. LIDAR REMOTE SENSING OF FOREST HEALTH & 

PRODUCTIVITY 

 

2.1. Abstract 

Light detection and ranging (LiDAR) data can provide detailed information about 

three-dimensional forest horizontal and vertical structure that is important to forest 

productivity and wildlife habitat.  Indeed, LiDAR data have been shown to provide 

accurate estimates to forest structural parameters and measures of higher trophic levels 

(e.g., avian abundance and diversity).  However, links between forest structure and tree 

function have not been evaluated using LiDAR.  This study was designed and scaled to 

assess the relationship of LiDAR to multiple aspects of forest structure and higher trophic 

levels (arthropod and bird populations).  Additional plot-based measures were added to 

assess the relationship of LiDAR to forest health and productivity.  High-resolution 

discrete-return LiDAR data (flown summer of 2009) were acquired for the Hubbard 

Brook Experimental Forest (HBEF) in New Hampshire, USA.  LiDAR data were 

classified into four canopy structural categories: 1) high crown and high understory 

closure, 2) high crown and low understory closure, 3) low crown and high understory 

closure, and 4) low crown and low understory closure.  Nearby plots from each of the 

four LiDAR categories were grouped into “blocks” to assess the spatial consistency of 

data.  Ground-based measures of forest canopy structure, site, stand and individual tree 

measures were collected on nine 50 m-plots from each LiDAR category (36 plots total), 

during summer of 2012.  Analysis of variance was used to assess the relationships 

between LiDAR and a suite of tree function measures.  Our results show the novel ability 
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of LiDAR to assess forest health and productivity at the stand and individual tree level.  

We found significant correspondence between LiDAR categories and our ground-based 

measures of tree function, including xylem increment growth, foliar nutrition, crown 

health, and stand mortality.  Furthermore, we found consistent reductions in xylem 

increment growth, decreases in foliar nutrition and crown health, and increases in stand 

mortality related to high understory closure. This suggests that LiDAR measures can 

reflect competitive interactions, not just among overstory trees for light, but also 

interactions between overstory trees and understory vegetation for resources other than 

light (e.g., nutrients).  High-resolution LiDAR data show promise in the assessment of 

forest health and productivity related to tree function. 

 

 

 

 

 

 

 

 

 

 

 

Keywords: northern hardwood forest, tree function, active remote sensing, forest canopy 
structure 
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2.2. Introduction 

Managers and biologists must develop cost-effective techniques to evaluate 

fundamental habitat features (e.g., forest three-dimensional structure and complexity, and 

forest canopy closure) that influence forest health and productivity, especially in the face 

of global climate change that may alter the structure and function of forest systems.  

Light detection and ranging (LiDAR) remote sensing, is a relatively new technique that 

may have value toward evaluating such features.  LiDAR is an active remote sensing 

technique in which near-infrared laser pulses are emitted from a sensor, conventionally 

mounted on a fixed-wing aircraft, and more recently onboard satellites (van Leeuwen and 

Nieuwenhuis 2010).  LiDAR technology in combination with an inertial navigation 

system (INS), an aircraft-mounted global positioning system (GPS), and referenced to a 

ground GPS, can be used to determine forest canopy/vegetation vertical structure (in 

addition to and in conjunction with ground elevation and canopy height) with great 

accuracy (Schmid et al. 2008).   

Studies involving the mapping and classification of vegetation structure have 

traditionally been limited in the areal extent assessed due to costly and time-consuming 

nature of fieldwork.  In addition, more traditional (i.e., passive) remotely sensed data 

provide little or no information about canopy/vegetation three-dimensional vertical 

structure (Lefsky et al. 2002, Koukoulas and Blackburn 2004).  LiDAR is able to map 

vegetation structure in three dimensions as well as record spectral intensity at landscape 

scales at relatively low costs compared to conventional remote sensing techniques 

(Lefsky et al. 2002, Schmid et al. 2008, Sherrill et al. 2008). 
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Three dimensional spatial patterns of vegetation (i.e., forest canopy vertical 

structure and canopy gaps) have been shown to be important in ecological studies, 

especially those pertaining to arthropod (Halaj et al. 2000, Jeffries et al. 2006) and avian 

(MacArthur and MacArthur 1961, Roth 1976, Robinson and Holmes 1982, 1984, 

DeGraaf et al. 1998, Whelan 2001, Smith et al. 2008) habitat.  Until recently, 

conventional remote sensing systems have only been able to map forests in two 

dimensions (Lefsky et al. 2002, Koukoulas and Blackburn 2004).  Now LiDAR is being 

employed in forest and wildlife habitat studies to assess basic structural attributes (e.g., 

canopy height, canopy cover, vertical profiles and gap size and structure) from which 

indirect measures (e.g., biomass, timber volume, basal area, crown closure, leaf area 

index, species diversity, etc.) have been derived (Lefsky et al. 2002, Koukoulas and 

Blackburn 2004, Jensen et al. 2008, Næsset and Gobakken 2008, Hollaus et al. 2009, 

Goetz et al. 2010, Swatantran et al. 2011). 

Several studies have used LiDAR to assess forest structural attributes, however, 

comparisons were made using coarse-resolution LiDAR (Hofton et al. 2002, Hudak et al. 

2002, Hyde et al. 2005).  In addition, few studies have provided assessments of the 

relationship between LiDAR and broad measures of forest stocking and higher trophic 

levels (Goetz et al. 2007, Goetz et al. 2010, Swatantran et al. 2012).  High-resolution 

LiDAR data may be a useful tool for making comparisons of forest canopy structure 

(vertical and horizontal) and canopy gaps to both biotic (e.g., abundance and diversity of 

arthropods and avifauna and tree/forest health and productivity) and abiotic (e.g., 

microsite soil moisture, temperature and humidity) factors.   
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Our research had two objectives:  1) to assess the accuracy of high-resolution 

discrete return LiDAR in quantifying forest structure, and 2) to determine the relationship 

of high-resolution LiDAR to higher trophic levels, in particular arthropod and avian 

abundance and diversity.  Our study was designed and scaled based on these objectives.  

In addition, plot-based measures were included to assess something quite novel - the 

relationship of LiDAR to tree health and productivity.  The analyses presented here focus 

on the relationship of LiDAR to forest health and productivity, with a particular emphasis 

on measures of tree function.  Just as LiDAR measures of tree structure have been shown 

to be relevant to dependent arthropod and avian populations, we hypothesize that LiDAR 

can quantify forest structural characteristics that are either the cause of tree health and 

productivity issues (e.g., slow growth due to overcrowding) or their consequence (e.g., 

elevated crown thinning or tree mortality).  The resulting analysis provides the first 

evaluation of high-resolution LiDAR data as an indicator of forest structure and the 

health and productivity of individual trees and forest plots. 

 

2.3. Materials and methods 

2.3.1. Study site description 

Research was conducted at the Hubbard Brook Experimental Forest (HBEF) in 

New Hampshire, USA (43°56′N, 71°45′W; Figure 1).  The HBEF is part of the Long 

Term Ecological Research Network (LTER) of research sites across North America, and 

is located in the White Mountain National Forest.  It is the longest continuous ecosystem 

study in the United States and consists of 3,160 Hectares of National Forest land 

(Schwarz et al. 2001, Swatantran et al. 2012).  The HBEF is an east-west oriented basin 
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with predominately north-facing and south-facing aspects.  Elevations at HBEF range 

from 222 to 1015 m.  HBEF is dominated by spruce-northern hardwood forests 

(composed primarily of sugar maple [Acer saccharum Marsh.], American beech [Fagus 

grandifolia Ehrh.], yellow birch [Betula alleghaniensis Britton], and red spruce [Picea 

rubens Sarg.]) in the lower elevations and spruce-fir-birch forests (red spruce, balsam fir 

[Abies balsamea L. Mill.], and paper birch [Betula papyrifera Marsh.]) at elevations 

above 750 m (Schwarz et al. 2003).  The HBEF is a structurally diverse forest with 

individual stands in widely different seral stages of successional development (Schwarz 

et al. 2001), making it an ideal location to study LiDAR’s utility in assessing tree 

function.  

 

2.3.2. LiDAR processing and field plot selection 

High-resolution discrete return LiDAR data (flown leaf-on, September 1, 2009) 

were acquired for HBEF.  These data were originally collected by the Canaan Valley 

Institute, West Virginia, for the University of Maryland, Department of Geography using 

an Optech ALTM 3100 flown at an altitude of approximately 1,065 meters above ground 

level.  This instrument emits up to 100,000 near-infrared laser pulses per second with at 

least one laser pulse per square meter and up to four vertical returns.  It has a positional 

accuracy within 15 cm in the vertical axis.  Collection parameters included a pulse rate 

frequency of 100 kHz, scan frequency of 30 Hz, and a scan angle of 18°. 

These data were received in raw (.LAS 1.0) format with no associated 

deliverables (i.e., were not processed into surface models).  Using Quick Terrain Modeler 

(Applied Imagery, Inc., Silver Spring, MD, USA) and ERDAS Imagine (Intergraph 
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Corporation, Inc., Madison, AL, USA), LiDAR data were processed into a normalized 

digital surface model (nDSM) to represent canopy height, a digital elevation model 

(DEM) to represent ground elevation, and a 0.5 – 10 m aboveground level (AGL) surface 

model to represent the presence or absence of vegetation within the canopy’s understory 

vertical plane (Figure 1).   

LiDAR-derived surface models were used in conjunction with pre-existing 

geospatial vector data (acquired from the HBEF data archives) to identify areas of 

deciduous and mixed deciduous forest types within an elevation threshold of roughly 400 

– 800 m.  A 200 m x 200 m grid was placed over the resultant area to represent potential 

4 ha sampling blocks.  This block size was chosen because it approximated the territory 

size of black-throated blue warblers (Setophaga caerulescens) (Holmes et al. 2005), as 

one component of the study was to relate LiDAR data to avian habitat.  Un-adjustable 

variations in LiDAR data involving the overlap of adjacent flight lines necessitated the 

conversion of raw LiDAR point clouds into surface models from which canopy and 

understory closure categories were created.  Through the use of eCognition (an object-

oriented segmentation software – Trimble Geospatial, Inc., Westminster, CO, USA), the 

LiDAR-derived surface models were processed to identify two understory closure 

categories (high understory closure > 55% and low understory closure ≤ 55% vegetation 

closure in the 0.5 – 10 meter AGL class) and two crown closure categories (high crown 

closure > 94% and low crown closure ≤ 94%).  Canopy and understory categories were 

operationally defined to create breakpoints that divided the forests assessed into two 

equal-sized groups per canopy strata.  Plots locations were selected based on the 

distribution and combinations of these categories within the potential sampling blocks.  
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This resulted in a total of four combinations of understory and crown closure categories: 

1) high crown closure and high understory closure, 2) high crown closure and low 

understory closure, 3) low crown closure and high understory closure, and 4) low crown 

closure and low understory closure (Figure 1).  Locations were selected for inclusion in 

the study using a “blocked” design, with each of the four LiDAR categories in relatively 

close proximity to each other to account for any spatial clustering of parameters that 

might affect response variables evaluated in this study. 

Using the distribution of understory and crown closure categories within the 

potential sampling blocks, nine replicates (i.e., blocks) of the four combined understory 

and crown closure categories were established throughout HBEF for a total of 36, 50 m 

fixed radius plots.  Following the protocol of the Forest Inventory and Analysis (FIA) 

program, each plot consisted of four, 7.32 m radius sub-plots, one located at plot center, 

and three located 36.6 m from plot center at azimuths 360°, 120°, and 240° (Bechtold and 

Scott 2005) (Figure 2).   

 

2.3.3. Field-based data collection 

Crown health and mortality 

On each subplot, an inventory following FIA protocols (Bechtold and Scott 2005) 

was conducted on all trees greater than 12.5 cm, with the following information recorded 

for each tally tree: species, diameter at breast height (DBH: 1.4 m), crown status (i.e., 

dominant, co-dominant, intermediate, suppressed, or dead), and canopy health.  On each 

FIA micro-plot, an inventory of all trees 2.5 to 12.5 cm DBH was obtained with the same 

measures as collected for subplots.  For plot-level inventories, canopy health was 
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assessed via crown vigor index and percent branch dieback, which were estimated 

according to the methods of the North America Maple Project (NAMP; Cooke et al. 

1996).  Crown vigor index employs a 1-5 scale, where (1) represents highly vigorous 

crowns with little or no major branch dieback and less than 10% branch or twig mortality, 

(2) light decline with branch or twig mortality present and between 10 – 25%, (3) 

moderate decline with 25 – 50% branch and twig mortality, (4) severe decline with > 

50% branch and twig mortality, and (5) dead.  Percent branch dieback was estimated 

using a 12-class system (for complete methods, see Cooke et al. 1996).  Assessments of 

crown vigor index and percent branch dieback were performed on each tree by two 

observers, positioned 180° from each other to account for any potential errors due to 

observer bias.  In addition, basal area (BA) per hectare was calculated on all trees, 

regardless of crown status, and for standing dead trees using the following formula: 

Subplot BA (m2/ha) = (Σ (((! * DBH/2)2)/10,000))/ 0.016833 

where !!is!3.14!and 0.016833 is the subplot area in hectares.  Measures of BA for living 

and dead trees were calculated at the plot-level for trees greater than 12.5 cm. 

 

Xylem increment growth 

Also at the plot level, five dominant and co-dominant sugar maple and five 

dominant and co-dominant yellow birch trees were selected for intensive tree-based 

measures (e.g., xylem increment growth and foliar nutrition assessments) and tagged with 

a unique identifier.  These species were selected as they are two of the three most 

abundant canopy species that make up the northern hardwood forest at HBEF – American 

beech being the third and not chosen due to the confounding influence beech bark disease 
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has had on its health and productivity (Halman et al. 2014).  Diameter at breast height 

(DBH: 1.4 m) was measured and visual assessments of canopy health were obtained for 

each tree.  Dominant and co-dominant sugar maple and yellow birch trees selected for 

intensive tree-based measures that also occurred on subplots were only counted once in 

subplot stand inventory summaries.   

Two xylem increment cores (180° from one another and perpendicular to the 

dominant slope) were collected for each of the selected dominant and co-dominant sugar 

maple and yellow birch trees, to determine tree age and assess annual growth.  Xylem 

increment cores were collected at DBH using a 5 mm increment borer.  The methods of 

Stokes and Smiley (1968) were used to mount, sand, and microscopically measure (using 

a Velmex sliding stage unit [Velmex Inc., Bloomfield, NY, USA] with MeasureJ2X 

software [VoorTech Consulting, Holderness, NH, USA]) annual xylem increments to 

0.001 mm resolution for each core collected.  Increment cores were crossdated visually 

using the method of Yamaguchi (1991) and corrected for locally absent and false rings 

using the program COFECHA (Holmes 1983).  In addition, dendrochronological 

statistics (i.e., series inter-correlation, average mean sensitivity, and autocorrelation; 

Appendix C, Table 16) were obtained from COFECHA on a plot basis and used to 

calculate the expressed population signal (EPS) based on the equation presented by 

Wigley et al. (1984).  The EPS is a measure of the common variance in a chronology and 

is dependent on sample size.  When EPS values fall below a predetermined value, 

typically 0.85, the chronology is a less reliable indicator of a stand wide signal (Speer 

2010).  Values for 2012 (i.e., the year of data collection) were below 0.85 for some of our 

plots, requiring the use of an EPS value of 0.80.  For our dataset (both sugar maple and 
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yellow birch), the latest date at which EPS values were at or above 0.80 was the year 

1950, resulting in each of our chronologies spanning from 1950 - 2012 (Appendix C, 

Table 16). 

 Mean annual increment (i.e., mean ring width) was calculated for each individual 

tree and converted to basal area increment (BAI – a standardized measure of growth 

relative to basal area) according to the methods of Cook and Kairiukstis (1990) and using 

the formula:    

BAIt = (R2t!–!R2t01)!

where!R!is!the!tree!radius!and!t!is!the!year!of!tree0ring!formation.!!In!addition!to!the!

creation!of!a!chronology!spanning!from!195002012,!BAI!measurements!were!

evaluated!for!both!sugar!maple!and!yellow!birch!in!relation!to!the!LiDAR!data!for!

multiple!time!periods:!!mean!BAI!for!2009!(the!year!that!LiDAR!data!were!

acquired),!mean!BAI!for!the!1970s!(i.e.,!197001979),!200002012,!and!the!change!in!

growth!(%!!!BAI)!from!the!1970s!to!200002012.!!Time!periods!prior!to!the!year!of!

LiDAR!acquisition!were!evaluated!to!assess!the!robustness!of!LiDAR’s!ability!to!

assess!BAI!growth.!!For!example,!the!1970s!were!an!important!turning!point!in!the!

trajectory!of!sugar!maple!BAI!growth!(Drohan!et!al.!2002,!Duchesne!et!al.!2002),!

and!was!characterized!by!peak!acidic!deposition!in!the!northeastern!United!States!

prior!to!amendments!to!the!United!States!Clean!Air!Act!(Driscoll!et!al.!2001).!!The!

time!period!200002012!was!assessed!to!evaluate!LiDAR’s!relationship!to!current!

BAI!growth,!post0amendments!to!the!Clean!Air!Act.!!LiDAR!assessments!of!overall!

growth!trajectories!for!both!species!were!evaluated!through!%!!!BAI!growth!from!

the!1970s!to!200002012.!!In!addition,!198801997!(10!years!before!the!1998!ice!
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storm!0!a!severe!ice!storm!that!damaged!tree!crowns!at!HBEF),!and!199902008!(10!

years!after!the!1998!ice!storm!and!pre0LiDAR!acquisition)!were!evaluated!to!assess!

the!potential!influence!of!a!natural!disturbance!on!LiDAR’s!ability!to!assess!BAI!

growth.!

!

Foliar)nutrition)

Foliar nutrition was assessed by collecting sunlit/upper canopy foliage using 

shotguns to obtain samples in early August, as is standard for foliar sample collections 

(Huggett et al. 2007, Comerford et al. 2013).  Samples were collected from each of the 

five dominant and co-dominant sugar maple and yellow birch trees, resulting in 360 foliar 

samples.  

Foliar samples were oven-dried at 55°C for two weeks and ground using a Wiley 

mill with a 2 mm mesh.  Ground foliage was then run through a series of nitric acid and 

hydrogen peroxide digestions according to the methods of Jones and Case (1990).  Cation 

concentrations – calcium (Ca), aluminum (Al), potassium (K), phosphorous (P), 

manganese (Mn), and magnesium (Mg) – were measured from the digested foliage using 

inductively coupled plasma atomic emission spectrometry (ICPAES) (Perkin-Elmer 

Optima DV 3000; Perkin-Elmer, Norwalk, CT, USA) and expressed as mg/kg.  Peach 

leaf standards from the National Institute of Standards and Technology (SRM 15547) and 

blanks were processed for analytical comparisons. 
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2.3.4. Statistical Analyses 

Plot means were calculated for all continuous response variables and outlier 

analyses – to look for any potentially spurious values – and tests for homogeneity of 

variance (i.e., Bartlett, Levene, etc.) were conducted for all plot-based data.  Analysis of 

variance (ANOVA) was used to test for differences between LiDAR categories among 

continuous response variables.  In addition to LiDAR categories, ANOVA models also 

included “block” as a source of variation to assess the spatial consistency of response 

variables.  ANOVA models originally included an interaction term (i.e., LiDAR category 

x block), however, this term was removed due to model failure and lost degrees of 

freedom (Montgomery 2008).  When significant differences among response variable 

means existed between LiDAR categories, specific differences were assessed using 

Tukey HSD tests.  All analyses were performed using the statistical package JMP (SAS 

Institute, Inc., Cary, NC), with results being considered significantly different if P ≤ 0.05, 

unless otherwise noted.  

Ground-based measures consisting of continuous values were statistically 

analyzed following the methods outlined above.  For categorical values (i.e., crown vigor 

index, and percent branch dieback), data were converted from categorical to continuous 

values through the calculation of plot means. 

Linear relationships among crown health, xylem increment growth, and foliar 

nutrition, regardless of LiDAR categories, were also assessed using the statistical 

package R (version 2.15.3; a programming environment for data analysis and graphics © 

2013).  Finally, differential growth trends for sugar maple and yellow birch, obtained 

from xylem increment growth (expressed as BAI), were assessed via slope analyses for 
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the years 1950 to 1980 and 1981 to 2012, regardless of LiDAR categories.  These time 

periods were chosen to capture pre- and post-sugar maple growth decline (Houston 1999, 

Drohan et al. 2002, Duchesne et al. 2002), and extend to yellow birch growth trends.  In 

addition, these time periods were also pre- and post-amendments to the Clean Air Act 

(Driscoll et al. 2001).  Slope values were obtained for each time period and statistically 

assessed between species using a student’s t-test.  Differential growth among individual 

years and between the two species was assessed using orthogonal contrasts of BAI 

growth means. 

 

2.4. Results 

Crown health and mortality 

Significant differences were seen among LiDAR categories for measures of 

crown vigor index and percent branch dieback.  Crown vigor index was significantly 

different between the high crown and high understory closure category and the high 

crown and low understory closure category (P ≤ 0.10), with an overall trend of LiDAR 

categories with high understory closure having a greater crown vigor index (higher crown 

vigor index values being indicative of trees in poorer condition) regardless of crown 

closure (Table 1).  Crown vigor index was obtained only on dominant and co-dominant 

trees with higher ratings indicative of trees in poorer health (Cooke et al. 1996).  In 

addition, percent branch dieback, also obtained only on dominant and co-dominant trees, 

was significantly different among LiDAR categories, with high crown and high 

understory closure and low crown and low understory closure categories exhibiting 
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significantly greater dieback than the high crown and low understory closure category 

(Table 1).  

Standing-dead basal area quantified at the subplot level, was significantly 

different (P ≤ 0.10) among the LiDAR categories.  Specifically, LiDAR plots with high 

crown and high understory closure exhibited greater standing-dead basal area than 

LiDAR plots with high crown and low understory closure (Table 1).  Although not 

significant among all LiDAR categories, the trend was for LiDAR plots with high 

understory closure to have greater standing-dead basal area, regardless of crown closure.   

 

Xylem increment growth 

Measures of BAI were found to be significantly different among LiDAR 

categories for sugar maple but not yellow birch trees (Table 2).  Sugar maple BAI for 

2009 was significantly lower in LiDAR plots with high crown and high understory 

closure as compared to LiDAR plots with low crown and low understory closure.  

Average sugar maple BAI growth for 2000 – 2012 was significantly lower (P ≤ 0.10) for 

trees in the high crown and high understory closure category compared to the high crown 

and low understory closure category.  In addition, an average measure of sugar maple 

BAI growth for the years 1999 – 2008 (pre-LiDAR acquisition and post-1998 ice storm 

disturbance), as well as for the years 1988 – 1997 (pre-1998 ice storm disturbance) were 

both significantly different among LiDAR categories.  LiDAR plots with high crown and 

high understory closure had lower pre- and post-1998 ice storm BAI growth than those 

with high crown and low understory closure (Table 2).   
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Pre- and post-disturbance measures were assessed to account for any confounding 

affects in BAI growth that might be due to the 1998 region-wide ice storm.  This ice 

storm negatively influenced forests throughout northern New York, New England, and 

southeastern Canada, with heavy ice loading resulting in broken branches and the 

collapse of trees (Jones and Mulherin 1998, Rhoads et al. 2002).  The forests of the 

HBEF were considerably damaged by the 1998 ice storm (Jones and Mulherin 1998) and 

significant crown loss resulted in reduced woody growth (Huggett et al. 2007, Halman et 

al. 2014).  BAI growth could differ among LiDAR categories pre- versus post-ice storm 

depending on localized levels of damage experienced in 1998.  Further, differential 

damage in 1998 could have altered crown and understory canopies and helped create the 

LiDAR categories that we later evaluated.  However, the similarity in LiDAR differences 

between BAI growth for pre- and post-disturbance indicates that the 1998 ice storm 

disturbance was not a confounding factor.  All other measures of BAI growth, for both 

sugar maple and yellow birch, were not significantly different among LiDAR categories. 

Linear relationships between percent crown dieback and all measures of sugar 

maple BAI (regardless of LiDAR) were statistically significant and negative (P ≤ 0.005, 

R2 values ranging from 0.33 – 0.48), except for the 1970s.  In contrast, no significant 

relationships were found for linear assessments of percent crown dieback and measures 

of yellow birch BAI, except for the 1970s, which was statistically significant and 

negative (P ≤ 0.10, R2 = 0.09; Table 3).  Similar results were found between crown vigor 

index and BAI for sugar maple and yellow birch (data not shown).   
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Foliar nutrition 

Measures of foliar cations were only significantly different among LiDAR 

categories for yellow birch.  Furthermore, only Ca and the molar ratio of Ca:Al were 

significant (Table 4); LiDAR categories with high crown and low understory closure 

exhibited significantly greater foliar Ca than LiDAR categories with high crown and high 

understory closure and low crown and low understory closure.  Additionally, yellow 

birch in the high crown and low understory closure plots had significantly (P ≤ 0.10) 

higher Ca:Al molar ratios than yellow birch in high crown and high understory closure 

plots.  Although not significant for all categories, the general trend was for LiDAR 

categories with low understory to exhibit greater yellow birch foliar Ca and greater Ca:Al 

molar ratios.  

Relationships between foliar nutrition and changes in BAI over time (1970s – 

2000-2012) and foliar nutrition and percent crown dieback for sugar maple and yellow 

birch were also assessed regardless of their relationship to LiDAR.  Relationships 

between foliar nutrition and sugar maple BAI from the 1970s to 2000-2012 were 

significant and negative for Mn and significant and positive for the molar ratios Ca:Mn 

and Mg:Mn (P ≤ 0.05, R2 values ranging from 0.14 – 0.21).  Measures of yellow birch 

foliar Ca, Mg, Ca:Mn, Mg:Mn were all significant and negatively associated with 

changes in yellow birch BAI from the 1970s to 2000-2012 (P ≤ 0.05, r2 values ranging 

from 0.12 – 0.30).  Additionally, linear relationships between percent branch dieback and 

measures of sugar maple foliar Mg, Ca:Mn, and Mg:Mn were significant, and negative 

and measures of sugar maple foliar Mn were significant and positive (P ≤ 0.05, R2 values 

ranging from 0.11 – 0.29). 
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2.5. Discussion 

LiDAR assessments of forest stand relationships 

We found significant differences among LiDAR crown and understory closure 

categories and measures of crown health: crown vigor index and percent branch dieback 

(Table 1).  For both of these measures, differences were seen between high crown and 

high understory and high crown and low understory closure groups, with greater vigor 

and less branch dieback on plots with low understory closure.  The remaining LiDAR 

crown and understory closure categories (i.e., low crown and high understory and low 

crown and low understory closure) were intermediate to and not significantly different 

from the other categories for crown vigor.  However, the low crown and low understory 

closure category was significantly different from the high crown and low understory 

closure category for percent branch dieback. 

Similar results were found for measures of subplot standing dead basal area.  

LiDAR plots with high crown and low understory closure had significantly greater 

standing dead basal area than LiDAR plots with high crown and low understory closure. 

Measures of stand (standing dead basal area, crown vigor index, and percent 

dieback) health and productivity that were significantly different among LiDAR 

categories might partially be explained by competition among overstory and understory 

vegetation for resources other than light availability (e.g., nutrients and water).  Our 

results showed that higher understory closure, as assessed by LiDAR, was associated 

with greater standing dead basal area, higher crown vigor index (i.e., poorer tree health), 

and greater percent dieback (Table 1).  Competition between canopy and understory 

vegetation can have a meaningful influence on plant systems (Goff and West 1975, 
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Woods 1984), although mostly in relation to forest composition and population structure.  

Indeed, this concept of competitive interactions among overstory and understory 

vegetation is partially why managers use silvicultural practices such as thinning-from-

below (Barnes et al. 1997).  However, Marqus and Ernst (1991) showed that thinning-

from-below had little significance on overstory productivity, suggesting little competitive 

interactions for resources other than light – at least in the forest they assessed.  Despite 

this, our results suggest that higher densities of understory vegetation may have increased 

competition and contributed to the overall poorer health for overstory canopy trees.  

Further indication of this was evident in our measures of sugar maple BAI.  Significant 

differences in various measures of sugar maple BAI between LiDAR categories suggest 

that competition between understory and overstory vegetation may be partially 

responsible for lower mean growth (Table 2). 

 

LiDAR assessments of dendroecological trends in BAI 

LiDAR showed utility in differentiating xylem increment growth, particularly 

certain measures of BAI for sugar maple, but not for yellow birch.  The relative 

uniformity of BAI growth of yellow birch among LiDAR categories was not surprising 

because the dendrochronological record compiled for this study shows relatively 

consistent growth for this species over time (Figure 3).  However, yellow birch is a 

species that has experienced demographic shifts at the HBEF, with a seven percent 

decline in live biomass recently reported and attributed to greater mortality as compared 

to recruitment of this species (van Doorn et al. 2011).  Our plot basal area measurements 

are in agreement with those of van Doorn et al. (2011); yellow birch had the highest 
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mean percent basal area on sub-plots (trees > 12.5cm DBH) and the lowest percent basal 

area on micro-plots (trees 2.5 – 12.5cm DBH) regardless of LiDAR category (Table 6).  

Despite a lack of recruitment, BAI growth for living trees of this species has been more 

or less steady for the last 62 years (Figure 3). 

In contrast, sugar maple is a species with reports of decline in the northeastern 

United States since at least the 1980s, most notably attributable to acid deposition and 

cation leaching (Kolb and McCormick 1993, Houston 1999, Horsley et al. 2000, 

Schaberg et al. 2006, Huggett et al. 2007, Halman et al. 2014), although insect defoliation 

(Bauce and Allen 1991, Kolb and McCormick 1993, Houston 1999) and drought (Bernier 

et al. 1989, Allen et al. 1992) have also been cited as important contributing factors.  The 

dendrochronological record compiled for this study shows a significant decline in BAI 

growth for this species from the 1980s to the present, with relatively consistent, if not 

slightly increased growth prior to the 1980s (Figure 3).  Increases in live biomass of four 

percent were reported for this species by van Doorn et al. (2011) at the HBEF.  However, 

their results included estimates of mortality and recruitment, whereas our results 

consisted only of BAI growth for live dominant and co-dominant trees.   

Linear relationships of BAI growth regardless of LiDAR category for this study 

corroborate previous findings on long-term declines for sugar maple and steady growth 

for yellow birch.  We found greater percent branch dieback to be associated with lower 

sugar maple BAI growth for all time periods assessed, except for the 1970s.  In contrast, 

no relationships were found between percent branch dieback and yellow birch BAI for 

any of the time periods assessed, except for the 1970s, which was only significant at P ≤ 

0.10.  In the 1970s, sugar maple BAI increased temporarily before a sustained decline in 
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the 1980s at our site (Figure 3) and the region (Horsley et al. 2000).  Synchronous to the 

short improvement in sugar maple growth, yellow birch growth declined in the 1970s, 

possibly due to increased competition with sugar maple. 

Our dendrochronological record also suggests that some long-term stressor is 

responsible for the decline of sugar maple BAI observed over the last half-century 

(Figure 3).  Bauce and Allen (1991) studied sugar maple decline in upstate New York and 

concluded that competition predisposed sugar maple to the adverse effects of other 

stressors (e.g., base soil cation depletion, soil acidification, insect defoliation, drought, 

etc.). 

 

LiDAR assessments of foliar nutrition 

Foliar cation concentrations for sugar maple were generally in the range 

considered to be healthy, as published by Kolb and McCormick (1993) (Appendix C, 

Table 10).  Exceptions to this were Al and Mg; Al exhibited higher levels and Mg lower 

levels than those published by Kolb and McCormick (1993).  Al is considered to be a 

phytotoxic element to which sugar maple is particularly sensitive (Kolb and McCormick 

1993, Houston 1999, Horsley et al. 2000, Schaberg et al. 2006, Huggett et al. 2007, 

Halman et al. 2014).  In the absence of base cations (e.g., Ca, Mg, K), due to soil 

acidification and leaching, Al is mobilized and taken up by sugar maple (Schaberg et al. 

2006, Huggett et al. 2007, Comerford et al. 2013, Halman et al. 2014).  It was not 

surprising to observe high levels of Al and low levels of Mg at the HBEF as acidic 

deposition and base cation depletion have been documented throughout the HBEF for 

several decades (Likens et al. 1996, Driscoll et al. 2001).  Furthermore, Horsley et al. 
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(2000) found that levels of foliar Mg and Mn, in combination with insect defoliation, 

were the most important factors associated with sugar maple health in Pennsylvania 

forests.  Measures of foliar Mn collected for this study were all within the ranges reported 

for healthy sugar maple trees (Kolb and McCormick 1993).  In addition, Ca, which is a 

biologically essential element that influences forest structure and function, has declined 

in availability and is now at or below threshold levels at the HBEF (Likens et al. 1998, 

Juice et al. 2006).   

Measures of sugar maple foliar Ca concentrations corroborate this for our plots, 

with LiDAR categories with high crown and high understory closure having Ca levels 

slightly below healthy levels and all other categories being slightly above healthy levels 

(overlapping standard errors suggest that all categories are right around threshold levels 

of 5000 mg·kg-1; Table 3).  Furthermore, the molar ratios of Ca:Al for sugar maple (not 

significantly different among LiDAR categories) were well below those that are reported 

for vigorous trees (Table 3).  Long et al. (1997) suggested that anything less than a Ca:Al 

molar ratio of 110 was indicative of declining sugar maple.  Low Ca:Al may have 

predisposed sugar maple trees to declines in growth after 1980 as seen elsewhere 

(Horsley et al. 2000, Schaberg et al. 2006, Schaberg et al. 2010).  Regression analyses of 

sugar maple growth over time prior to and after 1980 (Figure 3) show patterns consistent 

with the possibility that changes in Ca:Al availability influenced growth.  Before 1980, 

sugar maple BAI showed a small but significant increase in growth over time (P = 

0.0352).  This growth increase coincided with measures of increased Ca availability as 

acid deposition mobilized soil stores at HBEF (Likens et al. 1996).  However, with 

ongoing acid inputs, soil Ca stores were depleted and Al was mobilized, leading to 
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reductions in Ca:Al (Likens et al. 1998).  Reductions in sugar maple growth after 1980 

occurred during this period of declining Ca:Al.  After 1988, it was not uncommon for 

yellow birch (a species thought to be less sensitive to acid deposition-induced cation 

imbalances) to experience greater growth than sympatric sugar maple (Figure 3).  This 

may provide another example on changing species dynamics associated with acid-

induced cation perturbations.  Elsewhere at HBEF, American beech (Fagus grandifolia 

Ehrh.) have increased in growth as sugar maple trees have declined due to changing 

Ca:Al status (Halman et al. 2014).  Increased American beech growth and changing 

species dynamics is reflected in this study, with American beech accounting for 63.1 

percent of micro-plot BA (Table 6). 

All other foliar cation concentrations for sugar maple were within ranges 

considered healthy (Kolb and McCormick 1993) (Appendix C, Table 10).  To our 

knowledge, there are no published ranges for healthy foliar cation concentrations for 

yellow birch.  Unlike sugar maple, there is little evidence to suggest that yellow birch is 

sensitive to soil acidification and base cation leaching.   

Our results of the relationship of LiDAR to foliar nutrition (for yellow birch) 

suggests that canopies with less competition in the understory have greater access to Ca, 

which can be limiting at HBEF.  This further supports the potential for LiDAR to assess 

competitive interactions between and among canopy trees with understory vegetation.  

Interestingly, no significant differences among LiDAR categories relative to Ca and the 

molar ratio of Ca:Al were found for sugar maple, despite the fact that this species is 

particularly sensitive to Ca and Al perturbations, especially at HBEF (Table 3; Schaberg 

et al. 2006, Huggett et al. 2007, Schaberg et al. 2010, Halman et al. 2014). 
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Horsley et al. (2000) concluded that in combination with insect defoliation, levels 

of foliar Mg and Mn were the most important factors associated with sugar maple health.  

Results from our linear assessments of foliar nutrition and sugar maple BAI are in 

agreement with Horsley et al. (2000), with Mn being particularly important (Table 5).  

However, results from our analysis of LiDAR and sugar maple foliar nutrition were not 

significant.  Overall, our LiDAR results may indicate that, in addition to competition with 

understory vegetation, greater crown closure and potentially fuller crowns translates to 

greater transpirational uptake capacity of foliar cations, though this possibility requires 

more specific testing.   

The results presented here illustrate the potential of using high-resolution LiDAR 

data to assess tree function and associated forest health and productivity.  LiDAR has 

been shown to be a useful tool in assessing basic measures of forest structure, such as 

canopy height, basal area, leaf area index (Hudak et al. 2002, Næsset 2007, Jensen et al. 

2008), as well as certain aspects of higher trophic levels (e.g., bird species richness and 

bird prevalence) that are dependent upon canopy structure (Goetz et al. 2007, Swatantran 

et al. 2012).  However, the ability of LiDAR to bridge the gaps between forest canopy 

structure, tree health and productivity measures had not been previously evaluated.  Our 

results show the novel ability of LiDAR data to remotely assess measures of tree 

function, in particular measures of crown health, tree mortality, xylem increment growth 

and foliar nutrition.  The consistency of LiDAR in defining attributes in forest canopy 

and understory structure reflective of tree functional traits is somewhat surprising 

considering two limitations inherent to the current study.  First, LiDAR categories were 

calculated for large areas (4 ha) deemed important to avian habitat.  LiDAR categories 
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based on broad spatial averages could have masked 50 m plot-based patterns in tree 

health and productivity due to a mismatch in scale.  Second, LiDAR continuous point 

cloud data had to be converted to categorical LiDAR classes, which undoubtedly 

simplified the informational content of estimated forest structure.  Despite these 

limitations, LiDAR estimates were associated with a range of stand- and tree-based 

measures of health and productivity.  The breadth and consistency of these relationships 

is likely testament to the strong predictive capacity of LiDAR-based measures of forest 

structure for elucidating associated patterns of tree and forest function. 
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Table 3. Linear relationships between percent crown dieback and basal area increment (BAI) for 
sugar maple (Acer saccharum) and yellow birch (Betula alleghaniensis) trees sampled during 
2012 at Hubbard Brook Experimental Forest, NH, USA. 
          
BAI response variable Estimate Standard 

error P-value R-squared 

     Sugar maple BAI: 
    2009 -1.3649 0.2870 < 0.0001 0.3995 

1970s N/A N/A NS N/A 
2000-2012 -0.2737 0.0489 < 0.0001 0.4799 
Δ BAI - 1970s - 2000-2012 -1.4156 0.3492 0.0003 0.3258 
Post Ice Storm: 1999-2008 -0.2796 0.0507 < 0.0001 0.4723 
Pre Ice Storm: 1988-1997 -0.2497 0.0594 0.0002 0.3424 

     Yellow birch BAI: 
    2009 N/A N/A NS N/A 

1970s -0.0887 0.0480 0.0737 0.0911 
2000-2012 N/A N/A NS N/A 
Δ BAI - 1970s - 2000-2012 N/A N/A NS N/A 
Post Ice Storm: 1999-2008 N/A N/A NS N/A 
Pre Ice Storm: 1988-1997 N/A N/A NS N/A 

 
 
 
  

        
     “NS” denotes not significant, “N/A” denotes not applicable due to no significance 
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Table 5. Linear relationships between Δ BAI (1970s – 2000-2012) and foliar nutrition, and percent 
branch dieback and foliar nutrition for sugar maple (Acer saccharum) and yellow birch (Betula 
alleghaniensis) trees sampled during 2012 at Hubbard Brook Experimental Forest, NH, USA 
 
Foliar nutrition  
predictor variable Estimate Standard 

error P-value R-squared 

Foliar nutrition & Δ BAI (1970s - 2000-2012) 
Sugar maple     
Ca N/A N/A NS N/A 
Al N/A N/A NS N/A 
Mg N/A N/A NS N/A 
Mn -0.0293 0.0099 0.0056 0.2049 
Ca:Al N/A N/A NS N/A 
Ca:Mn 347.8047 146.3510 0.0233 0.1425 
Mg:Mn 1101.7360 437.3051 0.0166 0.1573 
     

Yellow birch     
Ca -0.0103 0.0034 0.0049 0.2101 
Al N/A N/A NS N/A 
Mg -0.0573 0.0150 0.0006 0.2993 
Mn N/A N/A NS N/A 
Ca:Al N/A N/A NS N/A 
Ca:Mn -380.6834 173.4116 0.0351 0.1241 
Mg:Mn -764.7613 362.2354 0.0422 0.1159 

     Foliar nutrition & percent crown dieback 
Sugar maple     
Ca -0.0027 0.0014 0.0573 0.1023 
Al N/A N/A NS N/A 
Mg -0.0149 0.0072 0.0476 0.1105 
Mn 0.0134 0.0039 0.0014 0.2627 
Ca:Al -14.1240 4.9795 0.0076 0.1914 
Ca:Mn -201.5113 53.5372 0.0006 0.2941 
Mg:Mn -567.4133 165.6044 0.0016 0.2567 
     

Yellow birch     
Ca N/A N/A NS N/A 
Al N/A N/A NS N/A 
Mg -0.0152 0.0079 0.0633 0.0978 
Mn N/A N/A NS N/A 
Ca:Al N/A N/A NS N/A 
Ca:Mn N/A N/A NS N/A 
Mg:Mn N/A N/A NS N/A 
               

     “NS” denotes not significant, “N/A” denotes not applicable due to no significance 
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Table 6. Sub-plot and micro-plot basal area (m2/ha) by tree species at Hubbard Brook Experimental 
Forest, NH, USA. 

   
Sub-plot (trees > 12.5 cm)  Micro-plot (trees 2.5 - 12.5 cm) 

Species Total BA Percent  Species Total BA Percent 

       Betula alleghaniesis 428.9 35.5  Fagus grandifolia 64.8 63.1 
Acer saccharum 394.8 32.6  Acer saccharum 15 14.6 
Fagus grandifolia 203.5 16.8  Acer pensylvanicum 8.1 7.9 
Fraxinus americana 74.7 6.2  Picea rubens 7 6.8 
Acer rubrum 46.1 3.8  Tsuga Canadensis 5 4.8 
Picea rubens 36.3 3  Abies balsamea 2.5 2.4 
Abies balsamea 10 0.8  Acer spicatum 0.2 0.2 
Tsuga canadensis 5.7 0.5  Betula alleghaniesis 0.1 0.1 
Betula papyrifera 4.9 0.4  Acer rubrum 0 0 
Acer pensylvanicum 4.6 0.4  Betula papyrifera 0 0 
Unknown 0.3 0  Fraxinus americana 0 0 

! ! ! ! ! ! !Conifer 52 4.3  Conifer 14.5 11.6 
Deciduous 1157.9 95.7  Deciduous 88.3 88.4 

       Total BA 1209.8 100  Total BA 102.7 100 

! ! ! ! ! ! !
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Figure 1. Study site and plot selection: a) LiD

A
R

 crow
n and understory closure categories, b) canopy height (nD

SM
) and 0.5-10 m

 
A

G
L surface m

odels, and c) H
ubbard B

rook Experim
ental Forest, N

H
, U

SA
 – show

ing the 36 4 ha blocks.
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Figure 2. Diagram of the basic plot design, which was based on FIA protocols (Bechtold 2005).
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Figure 3. M
ean basal area increm

ent (B
A

I; ± SE) for sugar m
aple and yellow

 birch trees from
 1950 – 2012 at H

ubbard B
rook Experim

ental Forest, N
H

, U
SA

.  
Individual years that are significantly different betw

een species are indicated by an asterisk (based on an orthogonal contrast betw
een species w

ith P ≤ 0.05).  
Slope analyses indicate different linear grow

th trajectories for each species and its significance betw
een species for the years 1950 – 1980 and 1981 – 2012.
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APPENDIX A – Original Study-design 
 
 
Introduction 

 The study presented in Chapter 2 was originally designed and scaled to assess 

the relationship of LiDAR to multiple aspects of forest structure, forest stand and 

individual tree health and productivity, as well as to higher trophic levels (arthropod and 

bird populations).  The following appendix outlines the methods, results, discussion and 

conclusions from this original study design. 

 

Methods 

Forest structural metrics – LiDAR “ground truthing” 

To quantify the ability of LiDAR to accurately represent forest canopy structure, 

ground-based forest canopy data were collected on each of the 36 plots.  Measures of 

understory and crown closure were collected at five meter intervals along three 50 m 

transects (located at azimuths 360°, 120°, and 240° from plot center and a total of 31 

points) on each plot.  To quantify crown and understory closure, a 4.0 m measuring staff 

was employed along each transect and interval, and a binary presence/absence of 

vegetation > 10 m and from 0.5 – 10 m in height was recorded.  Presence/absence data 

were converted to a continuous percentage value for both crown and understory closure 

per plot. 

 

Abiotic site metrics 

A soil moisture meter (Field Scout TDR 100, Spectrum Technologies, Inc., 

Aurora, IL, USA) was used to take an average of three readings at five meter intervals 
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along the three transects (mentioned above) within each of the 36 plots.  Air temperature 

(°C) and relative humidity (%) readings were obtained by placing HOBO data loggers 

(HOBO U23 Pro v2, Onset Computer Corporation, Inc., Bourne, MA, USA) 2.0 m above 

ground level and within 10.0 m of plot center.  Readings were taken every 15 minutes 

from June 18th to October 5th. 

Plot means for temperature and relative humidity measures were summarized 

(i.e., mean, median, minimum, and maximum) by month, by the quarter of the year with 

the greatest amount of sunshine (i.e., solar temperature/relative humidity – typically early 

May to early August, but here as June 18 to August 7 due to limitations in instrument 

availability), by the quarter of the year with the warmest temperatures (i.e., 

meteorological temperature/relative humidity – June 18th to September 18th), and by 

astronomical temperature/relative humidity (i.e., the summer solstice – June 20th, through 

the fall equinox – September 21st). 

 

Forest inventory metrics 

On each subplot, an inventory following FIA protocols (Bechtold and Scott 2005) 

was conducted on all trees greater than 12.5 cm, with the following information recorded 

for each tally tree: species, diameter at breast height (DBH: 1.4 m), crown status (i.e., 

dominant, co-dominant, intermediate, suppressed, or dead), and canopy health.  On each 

FIA micro-plot, an inventory of all trees 2.5 to 12.5 cm DBH was obtained with the same 

measures as collected for subplots.  For plot-level inventories, canopy health was 

assessed via crown vigor index and percent branch dieback, which were estimated 

according to the methods of the North America Maple Project – NAMP; Cooke et al. 
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(1996).  Crown vigor index employs a 1-5 scale, where (1) represents highly vigorous 

crowns with little or no major branch dieback and less than 10% branch or twig mortality, 

(2) light decline with branch or twig mortality present and between 10 – 25%, (3) 

moderate decline with 25 – 50% branch and twig mortality, (4) severe decline with > 

50% branch and twig mortality, and (5) dead.  Percent branch dieback was estimated 

using a 12-class system – for complete methods, see Cooke et al. (1996).  Assessments of 

crown vigor index and percent branch dieback were performed on each tree by two 

observers, 180° from each other to account for any potential errors due to observer bias.  

In addition, basal area (BA) per hectare was calculated on all trees, regardless of crown 

status, and for standing dead trees using the following formula: 

Subplot BA (m2/ha) = (Σ (((DBH/2)2)/10,000))/ 0.016833 

where !!is!3.14!and 0.016833 is the subplot area in hectares.  Measures of BA for living 

and dead trees were calculated at the plot-level for trees greater than 12.5 cm. 

 
 
Arthropod and avian-based metrics 

To quantify arthropod abundance and diversity, understory and mid-story branch 

clippings were obtained during mid to late June, 2012 according to the methods of 

Johnson (2000).  Two sugar maple and two yellow birch trees per plot were sampled 

from the five selected sugar maple and yellow birch trees (mentioned above) when 

possible.  Alternative trees were selected when a sufficient amount of lower foliage 

(maximum height of ~10 m) was not obtainable.  Pole pruners were used to collect 

branches due to the explosive impact that would have resulted from using a shotgun. 

Foliar samples collected from the arthropod branch clippings were generally from shaded 
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foliage due to the ~10 m maximum collection height obtainable using this method.  

Arthropod samples were counted and identified to order in the field (Johnson 2000) and  

branch clippings were saved and used for foliar cation analysis of mid-canopy foliage 

(mentioned above).  Foliar carbon (C) and nitrogen (N) were also assessed on mid-

canopy foliage; C and N concentrations of dried and ground foliage were analyzed using 

a CHN – CE440 elemental analyzer (Exeter Analytical, Inc., North Chelmsford, MA, 

USA). 

Avian abundance and diversity were quantified via 50 m fixed-radius bird point 

count surveys, that were conducted at plot center on all 36 plots and repeated four times 

during the height of the breeding season (late May through mid June).  To avoid observer 

bias, two observers visited each plot twice during the breeding season.  Standard ten-

minute point counts were divided into three 3-min 20-sec intervals to provide estimates 

of detection probability (Ralph et al. 1995).  Point count surveys began by 05:30, 

concluded by 10:30, and were only conducted on days with little or no rain or wind.  

Avian species presence/absence data were summarized into total and mean number of 

individuals, cumulative species richness (i.e., the total number of species detected across 

all four surveys), evenness (i.e., a measure of the relative abundance of each species 

within a community), Shannon-diversity index (H′; a diversity index that reflects both 

species richness and evenness of distribution among species present), and ecological 

species diversity (e H′; a transformation of the Shannon-diversity index that expresses 

diversity in terms of species) according to the methods of Nur et al. (1999).  To calculate 

Shannon diversity index, the following formula was used: 
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          i = S 

H′ = Σ  (pi)(lnp), i=1, 2,…S 
               i = 1 
 
where S is the species count, and pi is the proportion of S made up of the ith species. 

 

Results and discussion 

LiDAR ground truthing 

To our knowledge, there are no studies quantifying direct measures of forest 

structure to assess the accuracy of LiDAR.  There are, however, many studies using 

indirect measures (e.g., basal area, LAI, and above ground biomass) to essentially 

“ground truth” LiDAR.  One objective of our study was to assess the accuracy of LiDAR 

by comparing ground-based measures of forest structure (i.e., direct measures) to 

LiDAR-derived measures of forest structure.  Ground-based crown and understory 

closure were quantified in order to do so. 

No significant differences were found in ground-based percent crown closure 

among our LiDAR crown and understory closure categories.  Although not significant, 

LiDAR categories with low understory closure tended to have greater ground-based 

percent crown closure, suggesting that competition with understory vegetation for some 

resource other than light (e.g., nutrients and/or water) affected growth and therefore 

crown closure in the overstory at HBEF (Table 7).   By contrast ground-based percent 

understory closure did differ among LiDAR categories.  LiDAR categories with high 

understory closure had significantly higher ground-based percent understory closure than 

LiDAR categories with low understory closure (Table 7). 
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At lower elevations (i.e., below 800 m), the HBEF is predominately a closed 

canopy northern hardwood forest.  By the nature of selecting plots within 400 – 800 m in 

elevation, we reduced variation in crown closure by eliminating other forest types within 

the HBEF valley (e.g., higher elevation red spruce-balsam fir forests, and lower elevation 

mixed deciduous-coniferous forests).  In addition, large canopy openings (> 173 m2; 

30,000 pixels) were eliminated due to the potentially confounding influences of saturated 

soils, beaver ponds, the Hubbard Brook, roads, and other sources of larger canopy 

openings.  Small canopy gaps (< 20 m2; 400 pixels) were also eliminated as they were 

initially considered to be ecologically insignificant.  Consequently, our ground-based 

measures of crown closure may have been quantified at a finer resolution than our 

LiDAR categories, resulting in a potential inability of LiDAR to accurately quantify 

crown closure.  Moreover, because the scale at which the LiDAR categories were created 

(4 ha blocks) was much larger than those used for ground-based measures (50 m plots), 

LiDAR estimates likely included greater variations in crown characteristics than ground-

based metrics. 

To assess whether scale and/or the refinement of canopy openings consistently 

influenced the ability of LiDAR to accurately quantify forest crown and understory 

closure measures, LiDAR data were also reclassified three additional ways: 1) according 

to the 50 m radius scale of the ground based measures, 2) with no crown refinement, by 

including small canopy gaps that were originally deemed ecologically insignificant, and 

3) at the 50 m radius plot scale and with no crown refinement (Appendix C, Figure 4).  

Ground-based percent understory closure remained significant in each additional LiDAR 

classification, with significance improving (P ≤ 0.05) with the reclassification of the 
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LiDAR categories to the 50 m radius scale.  However, reclassification had no effect on 

ground-based percent crown closure (Appendix C, Table 14).  Interestingly, ground-

based percent crown closure differed significantly among block groups for all LiDAR 

classifications (two of the nine blocks where different than each other based on a Tukey 

HSD test), whereas ground-based percent understory closure did not differ among blocks.  

This suggests that ground-based crown closure was somewhat influenced by some 

moderate scale site factor(s) associated with “block” (e.g., windthrow, seeps, etc.). 

Almost all previous work looking at the relationship of LiDAR to various forest 

structural parameters has used LiDAR derived surface models for further analysis, 

whether to derive indirect structural-based indices from these models (Goetz et al. 2007, 

Goetz et al. 2010), or to use surface-based models directly by comparing them to ground-

based measures of forest structure (e.g., basal area, LAI, tree height, above ground 

biomass, etc.)(Riaño et al. 2004, Lefsky et al. 2005, Hudak et al. 2006, van Aardt et al. 

2006, Næsset 2007, Jensen et al. 2008, Næsset and Gobakken 2008). In addition, 

previous work using object-oriented classifiers (e.g., eCognition) has been done by first 

creating surface models from the raw LiDAR data, and then segmenting objects from the 

surface models in conjunction with other spatially explicit data (e.g., passive satellite 

imagery; (Brennan and Webster 2006, Antonarakis et al. 2008).  However, an ideal 

approach would be an object-oriented classification of the raw LiDAR point cloud to 

look at the density of points in the horizontal and vertical planes.  Unfortunately, and at 

least for this study, individual LiDAR points were not tagged with their flight line 

number.  Typically, LiDAR data are acquired with 50 % overlap of parallel flight lines 

and with individual points tagged with their flight line number (Evans et al. 2009).  This 



 

 

79 

was not the case for the LiDAR data acquired for this study, thus resulting in an 

arbitrarily high density of points where flight lines overlapped, which could not be 

processed for further analyses of point density.  Consequently, further analyses of HBEF 

LiDAR data consisted of the creation of surface models (i.e., nDSM and AGL; Figure 

2b).  This methodology simplifies the three-dimensionality of the LiDAR data into two 

dimensions, reducing some of the power of the LiDAR data, and potentially resulting in 

discrepancies between LiDAR-derived measures and ground-based measures of crown 

closure. 

Another possible explanation for why there were discrepancies between LiDAR-

derived and ground-based measures of crown closure might be the disparity between 

when the LiDAR data were acquired versus when ground-based data were collected.  The 

LiDAR data were acquired in September 2009, whereas the ground based data were 

collected throughout the summer of 2012.  It would be expected that crown closure 

would change over time more so than understory closure, particularly in the short term 

(e.g., < 5 years) and especially in a predominantly closed canopy forest.  Competition for 

resources, as well as small-scale disturbances (e.g., windthrow, ice storms, insect 

outbreaks, etc.) have been shown to change canopy dynamics while leaving understory 

vegetation relatively unaffected in the short term (Barnes et al. 1997).  Furthermore, 

shade tolerant understory vegetation might remain more or less constant while putting on 

relatively little annual growth and waiting for larger canopy gaps to open up (Barnes et 

al. 1997).  For example, American beech, which can reproduce asexually through root 

and stump sprouting and is highly shade tolerant (Barnes et al. 1997), is common 
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throughout the understory at the HBEF (Schwarz et al. 2001) and accounted for 63.1 

percent of the basal area of trees 2.5 – 12.5 cm DBH in this study (Table 6). 

 

Site factors 

 Percent volumetric soil moisture showed no significant differences among 

LiDAR categories.  There was a slight trend for LiDAR categories with high understory 

closure to have lower percent volumetric soil moisture (Appendix C, Table 7), which 

could hint at a greater utilization of groundwater on sites with high understory closure 

than sites with low understory closure and regardless of crown closure. 

Most measures of temperature and relative humidity also showed no significant 

differences among LiDAR categories (Appendix C, Table 8).  However, minimum solar 

temperature was significantly greater on LiDAR plots with high crown closure and low 

understory closure as compared to LiDAR plots with high crown and high understory.  

Although not significant among all LiDAR categories, the general trend was for LiDAR 

plots with low understory closure to have greater minimum solar temperatures regardless 

of crown closure (Appendix C, Table 7).  This potentially illustrates an insulating (shade-

induced cooling) effect of forest understory vegetation that LiDAR can assess, although 

detectable differences, both significant and non-significant, were < 1°C and might not be 

ecologically significant. 

Minimum solar relative humidity also showed significant differences among 

LiDAR categories, with low crown and high understory closure plots having greater 

minimum relative humidity than plots with high crown and high understory closure 

(Appendix C, Table 7).  This suggests that relative humidity is influenced by crown 
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closure more so than understory closure.  This trend is inconsistent among the other 

LiDAR categories, however, and therefore inconclusive.  For both temperature and 

relative humidity, HOBO data loggers, which were placed only at plot center, were 

probably not representative of the plot as a whole.  A greater number of data loggers 

placed randomly throughout plots would potentially help decipher the ability of LiDAR 

to better assess microsite factors such as temperature and relative humidity.  

Results presented here suggest that canopy cover, in particular understory closure, 

was associated with differences in microsite conditions (i.e., site factors: soil moisture, 

temperature, and relative humidity) that differ among LiDAR categories.  However, 

greater sampling resolution would be needed to distinguish the full nature and 

consistency of differences associated with LiDAR-based estimates.  Other confounding 

factors previously mentioned (i.e., scale, classification refinement, LiDAR acquisition vs. 

ground-based data collection, etc.), would also need to be considered when assessing the 

ability of LiDAR to quantify site factors. 

 

Forest inventory factors 

Basal area quantified at the micro-plot level (i.e., trees 2.5 – 12.5 cm DBH and 

represented by suppressed, intermediate, and co-dominant crown positions) was also 

significantly different among LiDAR categories, with high crown and high understory 

closure significantly different from all other LiDAR categories (data not shown).  

Furthermore, the trend was for LiDAR plots with high understory closure to exhibit 

greater micro-plot basal area regardless of crown closure.  No other measures of basal 

area were significantly different among LiDAR categories.  However, number of stems 
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per hectare (i.e., woody stems 2.5 – 12.5 cm DBH) also showed significant differences 

among LiDAR categories.  LiDAR plots with high crown and high understory closure 

were significantly different from those with high crown and low understory closure, as 

well as from plots with low crown and low understory closure, with the general trend 

being a greater number of stems per hectare on LiDAR plots with high understory closure 

as compared to plots with low understory closure.   In a sense, measures of micro-plot 

basal area and stems per hectare were measures of understory structure.  These measures 

further confirmed, in addition to the ground-truthing of LiDAR understory closure, the 

ability of LiDAR to accurately quantify understory closure.  Given the discrepancies 

observed between LiDAR and ground-based measures of crown closure, the poor 

correspondence between LiDAR categories and measures of basal area containing 

dominant and co-dominant trees (see Appendix C, Table 15), is not surprising.  

 

Arthropod and avian factors 

In addition to foliar cation concentrations of sunlit/upper canopy foliage, we also 

analyzed the nutrition of foliage collected via branch clippings (i.e., mid-canopy foliage) 

for arthropod sampling.  We hypothesized that arthropod abundance would be related to 

foliar nutrition, which in turn would be related to forest health and productivity.  

Furthermore, forest structure influences forest health and productivity and therefore, 

LiDAR might potentially provide useful insights into mid-canopy foliar nutrition and 

arthropod abundance and diversity (i.e., the ability of LiDAR to assess trophic level 

interactions).  Previous studies have shown relationships between LiDAR and arthropod 

populations (Müller and Brandl 2009, Vierling et al. 2011); however, assessments of 
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whether foliar nutrition was the intermediate connection between forest health and 

productivity and arthropod abundance and diversity has not been evaluated within the 

context of LiDAR data.  

Measures of arthropod abundance, in particular and most notably, total arthropod 

mass and Lepidopteran mass (both larval and adult mass), were not significantly different 

among LiDAR categories (Apendix E, Table 11).  Canopy arthropod abundance and 

diversity have been shown to be influenced by levels of N, P, and K in plants (Polis 

1999).  In particular, plants with high concentrations of N and low concentrations of C-

based defenses have been shown to be a better food source for arthropod herbivores, with 

increases in plant N concentrations improving insect performance (White 1984).   N 

concentration is particularly important because developing arthropods in early instar 

stages are particularly sensitive to nutrient deficiencies (Herms and Mattson 1992, Polis 

1999).  Strengbom et al. (2005) found higher survival probability and larger adult body 

mass among Lepidopteran larvae that were reared on plants fertilized with N.  Other 

studies have reported similar results (White 1984, Stiling and Moon 2005).  The lack of 

significant differences for arthropod abundance among LiDAR categories presented here 

are not surprising because measures of mid-canopy foliar N, P, and K often associated 

with arthropod abundance were also not significantly different among LiDAR categories.  

In contrast, linear relationships comparing sugar maple mid-canopy foliar N and P to total 

arthropod mass and Lepidopteran larval mass were significant and positive, with N 

having a considerably greater effect size (i.e., beta values) than P (Appendix C, Table 

12).  Similarly, N also had a significant and positive linear relationship with total 

arthropod mass and Lepidopteran larval mass on mid-canopy yellow birch foliage, with a 
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similar effect size.  These findings are in agreement with previous findings on the 

association of N and P with arthropod abundance and performance. 

In addition to foliar nutrition and arthropod abundance, we also hypothesized that 

avian abundance and diversity would be related to LiDAR categories, either directly 

through relationships of forest structure and foraging and nesting behavior/niche 

partitioning or indirectly through relationships of forest health and productivity to foliar 

nutrition and arthropod abundance.  Trophic level interactions have been shown to occur 

among primary producers, primary consumers, and secondary consumers (e.g., trees, 

arthropod herbivores, and birds respectively) in many ecological systems (Holmes et al. 

1979, Marquis and Whelan 1994, Koricheva et al. 1998, Denno et al. 2002, Van Bael et 

al. 2003, Finke and Denno 2004, Strengbom et al. 2005).  Additionally, secondary 

consumers such as birds, have been shown to partition foraging and nesting space among 

congeners in both the horizontal and vertical planes (MacArthur 1958, MacArthur and 

MacArthur 1961, MacArthur and Horn 1969, Sherry 1979, Holmes and Robinson 1981, 

Robinson and Holmes 1982, 1984, Sherry and Holmes 1988, DeGraaf et al. 1998).  

Indeed, this was the basis for assessing avian abundance and diversity in relation to 

LiDAR.  However, none of the measures of avian abundance and diversity varied among 

the LiDAR categories (Appendix C, Table 11).  Furthermore, linear relationships 

between avian abundance and diversity with arthropod abundance were also not 

significant, regardless of LiDAR categories (data not shown).   

Previous studies examining the ability of LiDAR to assess bird prevalence, 

occurrence, diversity, and species richness have shown significant and positive 

relationships (Goetz et al. 2007, Clawges et al. 2008, Lesak et al. 2011, Swatantran et al. 
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2012).  One possible explanation for the lack of significant association here might be the 

scale at which bird surveys were conducted and recorded (50 m) relative to the scale at 

which LiDAR crown and understory closure categories were classified (4 ha).  However, 

reclassification of the LiDAR data to the 50 m plot scale showed no improvement in the 

relationship of our estimates of bird abundance and diversity to LiDAR-derived measures 

of forest crown and understory closure (Appendix C, Table 15).  Classification of forest 

vertical structure at more meaningful scales and shapes (e.g., bird territories; perhaps 

through the use of eCognition) might provide more accurate assessments of LiDAR-

derived metrics to avian abundance and diversity overall. 

 

Conclusions 

Despite finding significant results among LiDAR categories for some (mostly 

stand and tree-based) response variables, our results suggest that a simplified 

classification approach to using high-resolution LiDAR data may produce categorical 

data that is too coarse when assessing forest structure and especially higher trophic levels.  

In addition, the utility and accuracy of high-resolution LiDAR data can be affected by 

many important factors.  For example, in some circumstances disparity in scale was an 

important factor that helped explain the lack of statistical differentiation among response 

variables.  All ground-based data were collected at the 50 m radius plot scale, whereas 

LiDAR categories were classified at the 4 ha scale.  In addition, refinement of LiDAR 

categories to include all canopy gap sizes, also helped explain some variation among 

certain response variables.  However, reclassification of LiDAR categories according to 
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scale and refinement did not help elucidate all patterns seen in response variables among 

LiDAR categories (Appendix C, Tables 14 & 15).   

Additionally, although not assessed, disparities among LiDAR classification 

break points of crown and understory closure and ground-based measures of crown and 

understory closure, may also partially explain the low statistical power to differentiate 

among LiDAR categories for response variables, most notably ground-based crown and 

understory closure.  Based on the break points used for LiDAR crown (high > 94% and 

low ≤ 94%) and understory (high >55% and low ≤ 55%) closure categories in this study, 

it is not surprising that many response variables typically varied by LiDAR understory 

closure or an interaction between understory and crown closure and not crown closure 

alone.  The continuous values used to create LiDAR categories had greater variation 

among understory closure categories than among crown closure categories, and were 

more comparable to the variation seen in ground-based measures of understory closure 

(Appendix C, Table 13). 

Temporal scale was also a potential issue because the time of LiDAR acquisition 

(2009) and that of ground-based data collection (2012) had a three-year lag.  Recent 

research by Vierling et al. (2014) has explored this issue and concluded that a six year lag 

between field data collection and LiDAR acquisition had little effect on avian patterns in 

undisturbed coniferous forests of Idaho.  However, the authors did note that this was just 

one example in one ecosystem and that further research is needed on this issue.  HBEF 

has a complex history of disturbance, from selective logging in the late 18th century, to 

the broad-scale disturbance from the1938 hurricane (Bormann and Likens 1979), and 

more limited crown damage from the 1998 ice storm (Rhoads et al. 2002).  However, in 
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the time frame of our study, HBEF has been undisturbed.  The time lag between field 

data and LiDAR acquisition in our study might help explain the lack of relationships with 

LiDAR in some of our response variables, in particular the arthropod and avian data.  In 

contrast, other response variables more directly related to forest structure (i.e., crown 

closure, basal area) would be expected to be less influenced by a time lag, especially in a 

largely undisturbed forest such as HBEF. 

Lastly, simplified classification of raw LiDAR point clouds into surface models 

(i.e., DEM, nDSM, AGL, etc.) for further analysis may prove to be useful when assessing 

basic forest structural attributes (e.g., basal area, above ground biomass, canopy height, 

etc.).  However, these classifications may be too coarse when assessing higher trophic 

levels (e.g., arthropods and avifauna) and their connections to forest structure.  

Limitations with the LiDAR data acquired for this study necessitated the processing of 

the raw LiDAR data into surface models.  Further assessments of LiDAR to higher 

trophic levels should consider using the raw LiDAR point cloud to fully utilize the 

powerful three-dimensional nature of LiDAR. 

These factors should be considered when utilizing LiDAR in ecological research 

and for further management and conservation of forested ecosystems.  Despite these 

factors, LiDAR has been shown to be a powerful tool that is able to provide useful 

information about the three-dimensional structure of forest ecosystems and its complex 

relationship to higher trophic levels.  Although our research partially supports this, 

additional study is needed to fully evaluate the utility of high-resolution LiDAR data in 

assessing forest structure and higher trophic levels.
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ct. 

N
S 

19.55 ± 0.50 
19.62 ± 0.63 

19.45 ± 0.59 
20.27 ± 0.63 

M
ax. Solar 1 

N
S 

28.43 ± 0.18 
28.29 ± 0.23 

28.08 ± 0.33 
28.63 ± 0.33 

M
ax. M

eterological 2 
N

S 
28.43 ± 0.18 

28.29 ± 0.23 
28.08 ± 0.33 

28.63 ± 0.33 
M

ax. Astronom
ical 3 

N
S 

28.43 ± 0.18 
28.29 ± 0.23 

28.08 ± 0.33 
28.63 ± 0.33 

 
 

 
 

 
 

R
elative hum

idity (%
) 

M
ean June 

N
S 

82.77 ± 0.70 
83.20 ± 0.45 

82.64 ± 0.61 
83.46 ± 0.66 

M
ean July 

N
S 

81.82 ± 0.85 
82.29 ± 0.50 

81.75 ± 0.67 
82.13 ± 0.80 

M
ean August 

N
S 

87.28 ± 0.89 
88.01 ± 0.54 

87.39 ± 0.71 
87.55 ± 0.76 

M
ean Sept. 

N
S 

89.60 ± 0.70 
89.99 ± 0.52 

89.83 ± 0.67 
89.64 ± 0.63 

M
ean O

ct. 
N

S 
97.11 ± 0.45 

97.50 ± 0.26 
97.39 ± 0.24 

97.25 ± 0.31 
M

ean Solar 1 
N

S 
84.72 ± 0.76 

85.28 ± 0.42 
84.74 ± 0.59 

85.11 ± 0.68 
M

ean M
eterological 2 

N
S 

85.03 ± 0.81 
85.57 ± 0.47 

85.05 ± 0.64 
85.35 ± 0.73 

M
ean Astronom

ical 3 
N

S 
85.07 ± 0.83 

85.64 ± 0.49 
85.11 ± 0.65 

85.39 ± 0.73 
 

 
 

 
 

 
M

edian June 
N

S 
84.54 ± 1.34 

84.85 ± 0.74 
83.79 ± 0.74 

85.64 ± 1.07 
M

edian July 
N

S 
83.49 ± 1.35 

83.83 ± 0.74 
82.64 ± 0.86 

83.78 ± 1.29 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 A

PPN
E

D
IX

 D
. (C

ont.) 
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T
able 8. (C

ont.) 
 

 
 

 
 

 
 

 
 

 
 

 
 

LiD
A

R
 crow

n &
 understory closure category 

R
esponse variable 

Significance 
H

igh crow
n 

H
igh understory 

H
igh crow

n 
Low

 understory 
Low

 crow
n 

H
igh understory 

Low
 crow

n 
Low

 understory 
 

 
 

 
 

 
R

elative hum
idity (%

 - C
ont.) 

M
edian August 

N
S 

89.87 ± 1.31 
90.60 ± 0.73 

89.36 ± 0.91 
90.12 ± 1.11 

M
edian Sept. 

N
S 

93.05 ± 1.18 
93.36 ± 0.87 

92.57 ± 0.83 
93.05 ± 0.95 

M
edian O

ct. 
N

S 
99.66 ± 0.34 

99.97 ± 0.03 
100 ± < 0.01 

100 ± < 0.01 
M

edian Solar 1 
N

S 
87.83 ± 1.15 

88.31 ± 0.59 
87.25 ± 0.75 

88.21 ± 1.02 
M

edian M
eterological 2 

N
S 

87.71 ± 1.29 
88.21 ± 0.68 

87.22 ± 0.86 
88.08 ± 1.10 

M
edian Astronom

ical 3 
N

S 
87.83 ± 1.32 

88.40 ± 0.71 
87.36 ± 0.88 

88.22 ± 1.11 
 

 
 

 
 

 
M

in. June 
** 

40.08 ± 0.99
ab 

40.50 ± 0.84
ab 

42.30 ± 0.53
a 

39.58 ± 0.75
b 

M
in. July 

** 
39.05 ± 0.84

b 
41.04 ± 0.55

a 
40.87 ± 0.65

a 
39.91 ± 0.79

ab 
M

in. August 
* 

44.45 ± 0.84
ab 

46.07 ± 2.06
ab 

48.31 ± 1.65
a 

43.26 ± 1.20
b 

M
in. Sept. 

N
S 

51.43 ± 0.99 
50.63 ± 1.74 

51.45 ± 1.14 
47.94 ± 1.98 

M
in. O

ct. 
N

S 
67.79 ± 1.69 

68.90 ± 3.04 
68.44 ± 2.57 

65.36 ± 2.63 
M

in. Solar 1 
** 

38.44 ± 0.89
b 

39.75 ± 0.81
ab 

40.77 ± 0.64
a 

38.86 ± 0.72
ab 

M
in. M

eterological 2 
** 

38.44 ± 0.89
b 

39.63 ± 0.84
ab 

40.77 ± 0.64
a 

38.63 ± 0.81
b 

M
in. Astronom

ical 3 
** 

38.44 ± 0.89
b 

39.63 ± 0.84
ab 

40.77 ± 0.64
a 

38.63 ± 0.81
b 

 
 

 
 

 
 

 
 

 
 

 
 

M
eans (±SE) w

ith differing letters are statistically significantly different based on a Tukey H
SD

 test 
* Significant at P ≤ 0.10, ** Significant at P ≤ 0.05 
 

 
 

 
 

 
1 The quarter of the year w

ith the greatest am
ount of sunshine (~M

ay 7
th - A

ug. 7
th, 2012) 

2 The quarter of the year w
ith the w

arm
est tem

peratures (~June 18
th - Sept. 18

th, 2012) 
3 Sum

m
er solstice (June 20

th, 2012) through fall equinox (Sept. 21
st, 2012) 
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T
able 9. Sub-plot and m

icro-plot basal area (m
2/ha) and m

icro-plot stem
s/ha by tree species at H

ubbard B
rook Experim

ental Forest, N
H

, U
SA

 

Sub-plot (trees > 12.5 cm
) 

 
M

icro-plot (trees 2.5 - 12.5 cm
) 

!
M

icro-plot (≤ 12.5 cm
) 

Species 
Total 
B

A
 

Percent 
 

Species 
Total 
B

A
 

Percent 
!

Species 
Total 
Stem

s 
Stem

s/H
a 

 
 

 
 

 
 

 
!

 
 

 
Betula alleghaniensis 

428.9 
35.5 

 
Fagus grandifolia 

64.8 
63.1 

!
Fagus grandifolia 

123 
21964.3 

Acer saccharum
 

394.8 
32.6 

 
Acer saccharum

 
15 

14.6 
!

Viburnum
 lentago 

111 
19821.4 

Fagus grandifolia 
203.5 

16.8 
 

Acer pensylvanicum
 

8.1 
7.9 

 
Acer pensyvanicum

 
92 

16428.6 
Fraxinus am

ericana 
74.7 

6.2 
 

Picea rubens 
7 

6.8 
 

Acer saccharum
 

66 
11785.7 

Acer rubrum
 

46.1 
3.8 

 
Tsuga C

anadensis 
5 

4.8 
 

Picea rubens 
33 

5892.9 
Picea rubens 

36.3 
3 

 
Abies balsam

ea 
2.5 

2.4 
 

Acer spicatum
 

26 
4642.9 

Abies balsam
ea 

10 
0.8 

 
Acer spicatum

 
0.2 

0.2 
 

Betula alleghaniensis 
20 

3571.4 
Tsuga canadensis 

5.7 
0.5 

 
Betula alleghaniensis 

0.1 
0.1 

 
Acer rubrum

 
17 

3035.7 
Betula papyrifera 

4.9 
0.4 

 
Acer rubrum

 
0 

0 
 

Abies balsam
ea 

10 
1785.7 

Acer pensylvanicum
 

4.6 
0.4 

 
Betula papyrifera 

0 
0 

 
Fraxinus am

ericana 
10 

1785.7 
U

nknow
n 

0.3 
0 

 
Fraxinus am

ericana 
0 

0 
 

Sorbus am
ericana 

3 
535.7 

!
!

!
!

!
!

!
 

Tsuga C
anadensis 

3 
535.7 

 
 

 
 

 
 

 
 

Lonicera sp. 
2 

357.1 
C

onifer 
52 

4.3 
 

C
onifer 

14.5 
11.6 

 
C

ornus alternifolia 
1 

178.6 
D

eciduous 
1157.9 

95.7 
 

D
eciduous 

88.3 
88.4 

 
Q

uercus rubra 
1 

178.6 

 
 

 
 

 
 

 
 

 
 

 
Total B

A
 

1209.8 
100 

 
Total B

A
 

102.7 
100 

 
Total Stem

s 
519 

92678.6 

!
!

!
!

!
!

!
!

!
!

!
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T
able 10. M

ean (± SE) foliar cation concentrations of sunlit/upper canopy and m
id-canopy sugar m

aple and yellow
 birch foliage by LiD

A
R

 crow
n 

and understory closure category, collected during 2012 at H
ubbard B

rook Experim
ental Forest, N

H
, U

SA
.  Significant differences am

ong LiD
A

R
 

category m
eans are displayed in bold. 

 
 

 
 

 
LiD

A
R

 crow
n &

 understory closure category 

Species &
 

cation/m
olar ratio 

Significance 
H

igh crow
n 

H
igh understory 

H
igh crow

n 
Low

 understory 
Low

 crow
n 

H
igh understory 

Low
 crow

n 
Low

 understory 

 
 

 
 

 
 

Foliar cation concentration - sunlit/upper canopy (m
g·kg

-1) 
 

 
 

Sugar m
aple: 

 
 

 
 

 
C

a 
N

S 
4965.89 ± 565.79 

5534.03 ± 192.17 
5650.07 ± 626.43 

5214.28 ± 429.92 
Al 

N
S 

69.85 ± 10.95 
63.48 ± 9.13 

70.85 ± 11.66 
72.39 ± 10.33 

K
 

N
S 

7470.56 ± 366.76 
8152.25 ± 481.53 

8311.45 ± 452.42 
7911.42 ± 454.05 

P 
N

S 
1455.37 ± 175.26 

1546.09 ± 222.51 
1347.03 ± 136.33 

1598.29 ± 215.66 
M

g 
N

S 
976.82 ± 107.59 

1045.7 ± 50.46 
1035.3 ± 107.52 

972.79 ± 89.55 
M

n 
N

S 
1307.39 ± 192.33 

1020.60 ± 104.65 
1324.35 ± 169.05 

989.51 ± 108.72 
C

a:Al M
olar Ratio 

N
S 

55.71 ± 8.91 
70.41 ± 11.09 

70.14 ± 18.9 
55.91 ± 8.49 

C
a:M

n M
olar Ratio 

N
S 

6.17 ± 1.21 
8.19 ± 1.07 

6.83 ± 1.22 
7.66 ± 0.75 

M
g:M

n M
olar Ratio 

N
S 

1.97 ± 0.35 
2.64 ± 0.45 

2.08 ± 0.36 
2.36 ± 0.25 

 
 

 
 

 
 

Y
ellow

 birch: 
 

 
 

 
 

C
a 

** 
7966.97 ± 489.31

b 
10122.90 ± 667.88

a 
7969.18 ± 384.25

b 
8757.82 ± 472.02

ab 
Al 

N
S 

68.13 ± 8.32 
59.01 ± 9.34 

61.31 ± 9.24 
51.73 ± 6.93 

K
 

N
S 

9653.69 ± 748.75 
11814.4 ± 972.45 

11776.79 ± 714.89 
11289.71 ± 974.94 

P 
N

S 
1425.87 ± 108.95 

1479.61 ± 79.13 
1291.43 ± 80.48 

1729.22 ± 226.74 
M

g 
N

S 
2347.36 ± 140.4 

2479.96 ± 132.97 
2197.16 ± 88.13 

2323.18 ± 125.26 
M

n 
N

S 
1794.31 ± 259.1 

1727.24 ± 200.49 
1522.94 ± 251.59 

1322.55 ± 126.98 
C

a:Al M
olar Ratio 

* 
85.06 ± 8.35

b 
132.98 ± 16.67

a 
101.31 ± 13.83

ab 
130.84 ± 18.4

ab 
C

a:M
n M

olar Ratio 
N

S 
7.10 ± 1.02 

8.70 ± 0.98 
8.96 ± 1.51 

9.88 ± 1.19 
M

g:M
n M

olar Ratio 
N

S 
3.42 ± 0.49 

3.59 ± 0.50 
4.18 ± 0.81 

4.29 ± 0.48 
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T
able 10. (C

ont.) 
 

 
 

 
 

 
 

 
LiD

A
R

 crow
n &

 understory closure category 

C
ation/m

olar ratio 
Significance 

H
igh crow

n 
H

igh understory 
H

igh crow
n 

Low
 understory 

Low
 crow

n 
H

igh understory 
Low

 crow
n 

Low
 understory 

 
 

 
 

 
 

Foliar cation concentration - m
id-canopy (m

g·kg
-1) 

 
 

 
 

Sugar m
aple: 

 
 

 
 

 
C

a 
N

S 
6745.85 ± 863.16 

9075.61 ± 956.57 
6457.17 ± 1017.12 

6734.93 ± 866.16 
Al 

N
S 

29.44 ± 5.79 
34.77 ± 6.65 

32.64 ± 6.38 
29.07 ± 5.33 

K
 

N
S 

1302.36 ± 132.09 
1947.85 ± 321.95 

1236.20 ± 49.96 
1319.76 ± 173.28 

P 
N

S 
1284.30 ± 351.01 

1186.91 ± 261.22 
1526.68 ± 370.01 

866.56 ± 131.75 
M

g 
** 

1199.88 ± 56.48
ab 

1233.81 ± 61.89
a 

1106.6 ± 42.75
b 

1120.23 ± 56.42
ab 

M
n 

N
S 

11281.88 ± 2097.91 
13435.27 ± 2696.83 

7755.81 ± 392.7 
9959.02 ± 1689.64 

C
a:Al M

olar Ratio 
N

S 
331.46 ± 130.67 

280.33 ± 82.31 
213.33 ± 62.46 

216.1 ± 53.56 
C

a:M
n M

olar Ratio 
N

S 
12.58 ± 3.58 

36.76 ± 21.35 
8.03 ± 1.58 

14.78 ± 4.48 
M

g:M
n M

olar Ratio 
N

S 
4.18 ± 1.31 

16.44 ± 11 
2.83 ± 0.58 

4.67 ± 1.4 
 

 
 

 
 

 
Y

ellow
 birch: 

 
 

 
 

 
C

a 
N

S 
13370.39 ± 2708.15 

14288.63 ± 3033.39 
9677.17 ± 568.67 

10051.40 ± 881.92 
Al 

N
S 

33.53 ± 5.31 
36.76 ± 5.09 

35.06 ± 4.95 
36.99 ± 5.74 

K
 

N
S 

4058.83 ± 818.80 
3493.98 ± 656.53 

2673.96 ± 152.71 
2559.17 ± 239.52 

P 
N

S 
1528.99 ± 370.02 

1671.71 ± 304.80 
1962.49 ± 377.69 

1260.77 ± 150.37 
M

g 
N

S 
1396.42 ± 111.03 

1385.27 ± 79.10 
1251.45 ± 54.54 

1220.05 ± 70.07 
M

n 
N

S 
17365.71 ± 3175.19 

18199.24 ± 4228.39 
12189.46 ± 465.62 

13194.72 ± 1253.79 
C

a:Al M
olar Ratio 

N
S 

369.25 ± 99.81 
345.05 ± 114.83 

254.71 ± 64.85 
231.95 ± 44.53 

C
a:M

n M
olar Ratio 

N
S 

23.67 ± 10.16 
30.64 ± 20.08 

8.09 ± 1 
14.24 ± 4.04 

M
g:M

n M
olar Ratio 

N
S 

11.73 ± 5.1 
11.81 ± 7.38 

3.75 ± 0.56 
6.09 ± 1.87 

 
 

 
 

 
 

 
 

 
 

 
 

M
eans (±SE) w

ith differing letters are statistically significantly different based on a Tukey H
SD

 test 
* Significant at P ≤ 0.10, ** Significant at P ≤ 0.05, "N

S" denotes no significance 
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T
able 11. M

ean (± SE) arthropod and avian factors by LiD
A

R
 crow

n and understory closure category, collected during 2012 at H
ubbard B

rook 
Experim

ental Forest, N
H

, U
SA

. 
!

!!
!!

!!
!!

!!
!!

 
 

LiD
A

R
 crow

n &
 understory closure category 

R
esponse variable 

Significance 
H

igh crow
n 

H
igh understory 

H
igh crow

n 
Low

 understory 
Low

 crow
n 

H
igh understory 

Low
 crow

n 
Low

 understory 

 
 

 
 

 
 

A
rthropod m

easures 
 

 
 

 
 

Arthropod m
ass 

N
S 

5.94 ± 2.47 
12.13 ± 4.77 

7.89 ± 3.25 
3.08 ± 2.19 

Lepidopteran larvae m
ass 

N
S 

6.66 ± 2.51 
13.03 ± 4.79 

10.17 ± 3.24 
4.21 ± 2.21 

 
 

 
 

 
 

A
vian m

easures 
 

 
 

 
 

Shannon diversity index 
N

S 
1.96 ± 0.08 

1.90 ± 0.09 
1.87 ± 0.07 

2.00 ± 0.05 
Ecological species diversity 

N
S 

7.29 ± 0.62 
6.91 ± 0.56 

6.63 ± 0.53 
7.43 ± 0.32 

Evenness 
N

S 
0.87 ± 0.01 

0.90 ± 0.01 
0.89 ± <0.01 

0.89 ± 0.01 
Total # of individuals 

N
S 

34.67 ± 2.86 
30.33 ± 1.89 

31.89 ± 2.12 
32.22 ± 2.14 

M
ean # of individuals 

N
S 

8.67 ± 0.71 
7.58 ± 0.47 

7.97 ± 0.53 
8.06 ± 0.53 

C
um

ulative species richness 
N

S 
9.78 ± 0.81 

8.56 ± 0.73 
8.44 ± 0.77 

9.67 ± 0.53 
  

  
  

  
  

  
 

 
 

 
 

 
"N

S" denotes no significance  
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Table 12. Linear relationships between total arthropod mass, Lepidopteran adult mass, Lepidopteran larval 
mass and various measures of foliar nutrition for both upper and mid canopy sugar maple and yellow birch 
foliage, collected during 2012 at Hubbard Brook Experimental Forest, NH, USA.  Significance, beta values 
(!;"i.e.,"effect"size) and standard errors (SE) are reported.  Significant differences among LiDAR category 
means are displayed in bold.

 Upper/sunlit canopy  Mid-canopy 

 Significance ! SE  Significance ! SE 

        Sugar maple 
       Total arthropod mass 

N N/A N/A N/A 
 

** 22.2290 8.13400 
P NS 0.00190 0.00360 

 
* 0.02595 0.01121 

K NS 0.00079 0.00153 
 

NS 0.00013 0.00034 
C N/A N/A N/A 

 
NS 1.23700 1.22300 

Lepidopteran mass (adult) 
N N/A N/A N/A 

 
NS -0.22940 0.83540 

P NS -0.00024 0.00033 
 

NS -0.00132 0.00110 
K NS 0.00003 0.00001 

 
NS -0.00003 0.00003 

C N/A N/A N/A 
 

NS -0.16000 0.11220 
Lepidopteran mass (larvae) 

N N/A N/A N/A 
 

* 21.6470 8.15900 
P NS 0.00224 0.00359 

 
* 0.02733 0.01109 

K NS 0.00056 0.00153 
 

NS 0.00017 0.00034 
C N/A N/A N/A 

 
NS 1.37300 1.21600 

        Yellow birch 
       Total arthropod mass 

N N/A N/A N/A 
 

** 20.1900 6.97000 
P NS 0.00020 0.00470 

 
NS 0.01124 0.00791 

K NS 0.00081 0.00075 
 

NS 0.00015 0.00024 
C N/A N/A N/A 

 
NS 0.64520 1.21470 

Lepidopteran mass (adult) 
N N/A N/A N/A 

 
NS 0.66310 0.71560 

P NS -0.00002 0.00054 
 

NS -0.00065 0.00075 
K NS 0.00002 0.00007 

 
NS -0.00001 0.00002 

C N/A N/A N/A 
 

NS -0.14080 0.11100 
Lepidopteran mass (larvae) 

N N/A N/A N/A 
 

** 19.9610 6.97100 
P NS 0.00034 0.00469 

 
NS 0.01264 0.00783 

K NS 0.00075 0.00075 
 

NS 0.00017 0.00024 
C N/A N/A N/A 

 
NS 0.80820 1.20920 

                
        "NS" denotes not significant, "N/A" denotes not applicable due to no significance  
* P ≤ 0.05, ** P ≤ 0.01 
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Table 13. Comparisons between continuous values (minimum, maximum, and range) of ground-based and 
LiDAR-derived crown and understory closure at Hubbard Brook Experimental Forest, NH, USA.  

 

!! !! !! !! !! !!
! ! LiDAR!classifications!

! Ground3!
based!

4!ha!scale!
original!routine!

50m!scale!
original!routine!

4!ha!scale!&!
no!refinement!

50m!scale!&!
no!refinement!!!

! ! ! ! ! !Crown!closure!
! ! ! ! ! !
Min$ 57.67! 89.89! 87.02! 72.02! 82.56!
Max$ 96.67! 98.08! 99.71! 97.50! 98.57!
Range$ 39.00! 8.20! 12.69! 25.48! 16.01!

! ! ! ! ! !Understory!closure!
! ! ! ! ! !
Min$ 67.67! 43.00! 35.42! 43.00! 35.42!
Max$ 100.00! 78.15! 83.98! 78.15! 83.98!
Range$ 32.33! 35.15! 48.56! 35.15! 48.56!

!! !! !! !! !! !!
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Table 14. The influence of LiDAR re-classification (by scale and refinement) on the significance of 
response variables by LiDAR crown and understory closure category. 
   

  
LiDAR re-classification 

Response variable 4 ha original 
routine Scale No 

refinement 
Scale & no 
refinement 

     Ground truthing 
    % crown closure NS** No Δ** No Δ** No Δ** 

% understory closure S + S - S - S 
     Site measures 

    % volumetric soil moisture NS No Δ + S* + S** 

Min. Solar temp. (°C) S** NS** + S** - S** 

Min. Solar rel. humidity (%) S** NS** NS** NS** 
     Stand-based measures 

    Sub-plot basal area (m2/ha) 
    Standing dead NS No Δ No Δ + S 

     Micro-plot basal area (m2/ha) 
    All crown positions S NS NS NS 

Suppressed NS No Δ No Δ No Δ 
     Stem Counts 

    Stems/ha - 1-4.9" S NS - S NS 
     Decline 

    Crown vigor index NS** + S** No Δ* + S** 

% branch dieback S + S* NS + S* 
     Tree-based measures 

    Sugar maple BAI  (cm2) 
    2009 (year of LiDAR acquisition) S** NS** NS** NS** 

Post-ice storm/pre-LiDAR (1999-2008) S** NS** NS** NS** 

Pre-ice storm (1988-1997) S** NS** - S* NS* 

Yellow birch BAI  (cm2) 
    2009 (year of LiDAR acquisition) NS No Δ No Δ No Δ 

Post-ice storm (1999-2008) NS No Δ No Δ No Δ 

Pre-ice storm (1988-1997) NS No Δ No Δ No Δ 
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Table 14. (Cont.) 
          

 
 LiDAR re-classification 

Response variable 4 ha original 
routine Scale No 

refinement 
Scale & no 
refinement 

     Foliar nutrition - sunlit/upper canopy (mg·kg-1) 

Sugar maple: 
    Ca NS** No Δ** No Δ** No Δ** 

Mn NS** + S** No Δ* No Δ* 
Ca:Al molar ratio NS** No Δ** No Δ** No Δ** 
Ca:Mn molar ratio NS** No Δ** + S** No Δ** 

Yellow birch: 
    Ca S** + S** - S** - S** 

Mn NS No Δ No Δ No Δ 
Ca:Al molar ratio S + S + S + S 
Ca:Mn molar ratio NS* No Δ* No Δ No Δ 

     Foliar nutrition - mid-canopy (mg·kg-1) 

Sugar maple: 
    Mg S + S NS NS 

Yellow birch: 
    Mg NS No Δ No Δ No Δ 

     Arthropod measures 
    Mean arthropd mass NS No Δ No Δ No Δ 

Mean Lep. larvae mass NS No Δ No Δ No Δ 
     Avian measures 

    Shannon diversity index NS No Δ No Δ No Δ 
Ecological species diversity NS No Δ No Δ No Δ 
Evenness NS No Δ No Δ No Δ 
Total # of individuals NS No Δ No Δ No Δ 
Mean # of individuals NS No Δ No Δ No Δ 

           

    "S" denotes a significant p-value (α=0.05, unless otherwise noted) 
"NS" denotes a p-value that is not significant (α=0.05, unless otherwise noted) 

"No Δ" = No change in significance from the 4 ha original routine classification 
"+" denotes an improved p-value, "-" denotes a worse p-value 

* Block significant at P ≤ 0.10, ** Block significant at P ≤ 0.05 
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Table 15. Non- significant response variables at the 4 ha original classification routine, and unchanged 
by scale and refinement. 
 

  LiDAR re-classification 

Response variable 
4 ha original 

Scale 
No Scale & no 

routine refinement refinement 

     Site measures 
    Temperature (°C) 
    Mean solar temp. NS** No Δ** No Δ** No Δ** 

Median solar temp. NS** No Δ** No Δ** No Δ** 
Max. solar temp. NS** No Δ** No Δ** No Δ** 

     Relative humidity (%) 
    Mean solar rel. humidity NS** No Δ** No Δ** No Δ** 

Median solar rel. humidity NS** No Δ** No Δ** No Δ** 

     Stand measures 
    Sub-plot basal area  (m2/ha)     

D, CD, I, S, Dead & Unclassified NS No Δ No Δ No Δ 
D, CD, I, & S NS No Δ No Δ No Δ 
D, CD, & I NS No Δ No Δ No Δ 
D & CD NS No Δ No Δ No Δ 
S & I NS** No Δ** No Δ** No Δ** 

     Stem counts     
Total stems/ha NS No Δ No Δ No Δ 
Viburnam alnifolium stems/ha NS* No Δ* No Δ** No Δ** 
Stems/Ha < 1" NS No Δ No Δ No Δ 

     Tree-based measures 
    Sugar maple BAI (cm2) 
    Δ BAI (%) - 1970's & 2000's NS** No Δ** No Δ** No Δ** 

Δ BAI (%) - 1970's & 2000-2012 NS** No Δ** No Δ** No Δ** 
BAI - Post LiDAR (2010-2012) NS** No Δ** No Δ** No Δ** 

BAI - 2008-2010 NS** No Δ** No Δ** No Δ** 

Yellow birch BAI (cm2) 
    Δ BAI (%) - 1970's & 2000's NS No Δ No Δ No Δ 

Δ BAI (%) - 1970's & 2000-2012 NS No Δ No Δ No Δ 
BAI - post-LiDAR (2010-2012) NS No Δ No Δ No Δ 
BAI - 2008-2010 NS No Δ No Δ No Δ 
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Table 15. (Cont.) 
 

  LiDAR re-classification 

Species & 
cation/molar ratio 

4 ha original 
Scale 

No Scale & no 
routine refinement refinement 

     
 

Foliar nutrition - sunlit/upper canopy (mg·kg-1) 
Sugar maple: 

    Al NS** No Δ** No Δ** No Δ** 
Mg NS** No Δ** No Δ** No Δ** 
P NS** No Δ** No Δ** No Δ** 
K NS** No Δ** No Δ* No Δ** 
Mg:Mn molar ratio NS** No Δ** No Δ** No Δ** 

Yellow birch: 
    Al NS* No Δ* No Δ* No Δ* 

Mg NS** No Δ No Δ** No Δ* 
P NS* No Δ** No Δ No Δ* 
K NS No Δ No Δ No Δ 
Mg:Mn molar ratio NS* No Δ* No Δ* No Δ* 

     
Foliar nutrition - mid-canopy (mg·kg-1) 

Sugar maple: 
    Ca NS* No Δ* No Δ* No Δ** 

Al NS** No Δ** No Δ** No Δ** 
Mn NS No Δ No Δ No Δ 
N NS No Δ No Δ No Δ 
P NS** No Δ** No Δ No Δ 
K NS No Δ No Δ No Δ 
C NS No Δ No Δ No Δ 
Ca:Al molar ratio NS** No Δ** No Δ** No Δ** 
Ca:Mn molar ratio NS No Δ No Δ No Δ 
Mg:Mn molar ratio NS No Δ No Δ No Δ 
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Table 15. (Cont.) 
 

  LiDAR re-classification 

Species & 
cation/molar ratio 

4 ha original 
Scale 

No Scale & no 
routine refinement refinement 

     
 

Foliar nutrition - mid-canopy (mg·kg-1) 
Yellow birch:     

Ca NS No Δ No Δ No Δ 
Al NS** No Δ** No Δ** No Δ** 
Mn NS No Δ No Δ No Δ 
N NS** No Δ* No Δ** No Δ** 
K NS No Δ No Δ No Δ 
P NS* No Δ* No Δ* No Δ 
C NS** No Δ** No Δ** No Δ** 
Ca:Al molar ratio NS No Δ No Δ* No Δ* 
Ca:Mn molar ratio NS No Δ No Δ No Δ 
Mg:Mn molar ratio NS No Δ No Δ No Δ 

          

 

"NS" denotes a p-value that is not significant, “No Δ" = No change in significance 

* Block significant at P ≤ 0.10, ** Block significant at P ≤ 0.05  

"D" = Dominant, "CD" = Co-dominant, "I" = Intermediate, & "S" = Suppressed  
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Figure 4. Hubbard Brook Experimental Forest, NH, USA – LiDAR classification schemes: a) 4 ha scale & 
original routine, b) 4 ha scale with no crown refinement, c) 50m scale & original routine, and d) 50m scale 
with no crown refinement. 
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Figure 5. M

ean basal area increm
ent (B

A
I; ± SE) for sugar m

aple trees by crow
n vigor index at H

ubbard B
rook Experim

ental Forest, N
H

, U
SA

.  
Individual years that are significantly different betw

een vigor categories are indicated by an asterisk (based on an orthogonal contrast betw
een 

categories w
ith P ≤ 0.05).  Slope analyses indicate different grow

th trajectories for each vigor category and its significance betw
een categories in the 

years 1950 – 1980 and 1981 – 2012. 
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Figure 6. M

ean basal area increm
ent (B

A
I; ± SE) for yellow

 birch trees by crow
n vigor index at H

ubbard B
rook Experim

ental Forest, N
H

, U
SA

.  
Individual years that are significantly different betw

een vigor categories are indicated by an asterisk (based on an orthogonal contrast betw
een 

categories w
ith P ≤ 0.05).  Slope analyses indicate different grow

th trajectories for each vigor category and its significance betw
een categories in the 

years 1950 – 1980 and 1981 – 2012.
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Table 16. Dendrochronological statistics for sugar maple (Acer saccharum) and yellow birch (Betula 
alleghaniensis) radial xylem increment measurements from 36 plots at Hubbard Brook Experimental 
Forest, NH, USA.  Years in parentheses indicate at which point EPS values were at or above 0.80; the 
threshold used in this study for our chronology to remain a reliable indicator of stand-level response 
(Speer 2010). 

 Sugar maple 

Plot Length of 
Chronology 

Series inter-
correlationa 

Avg. mean 
sensitivitya 

Auto- 
correlationa 

N 
trees 

EPSb 
(2012) EPSb (0.80) 

        96 1824-2012 0.478 0.221 0.698 10 0.9015 0.8207 (1923) 
97 1920-2012 0.545 0.299 0.723 10 0.9229 0.8273 (1925) 
110 1880-2012 0.546 0.257 0.801 9 0.9154 0.8279 (1922) 
135 1844-2012 0.620 0.291 0.789 10 0.9422 0.8304 (1916) 
143 1829-2012 0.510 0.228 0.770 9 0.9035 0.8063 (1923) 

 158 1921-2012 0.637 0.262 0.888 8 0.9335 0.8404 (1923) 
 169 1894-2012 0.461 0.277 0.786 8 0.8725 0.8105 (1925) 
 181 1917-2012 0.572 0.274 0.849 8 0.9145 0.8004 (1922) 
 202 1877-2012 0.607 0.292 0.832 8 0.9251 0.8225 (1888) 
 220 1912-2012 0.410 0.283 0.812 8 0.8475 0.8066 (1915) 
 221 1916-2012 0.425 0.254 0.871 7 0.8380 0.8160 (1950) 
 222 1913-2012 0.557 0.298 0.873 10 0.9263 0.8341 (1915) 
 223 1816-2012 0.455 0.292 0.837 9 0.8825 0.8067 (1900) 
 224 1793-2012 0.510 0.294 0.805 8 0.8928 0.8063 (1919) 
 241 1840-2012 0.523 0.337 0.838 10 0.9164 0.8143 (1913) 
 242 1866-2012 0.600 0.396 0.817 8 0.9231 0.8182 (1913) 
 258 1910-2012 0.497 0.239 0.701 10 0.9081 0.8317 (1913) 
 279 1834-2012 0.513 0.271 0.715 9 0.9046 0.8082 (1913) 
 281 1880-2012 0.496 0.261 0.808 8 0.8873 0.8311 (1913) 
 288 1940-2012 0.625 0.295 0.865 8 0.9302 0.8333 (1941) 
 292 1815-2012 0.443 0.268 0.836 10 0.8883 0.8267 (1941) 
 304 1916-2012 0.531 0.257 0.814 10 0.9188 0.8191 (1920) 
 310 1889-2012 0.558 0.343 0.760 9 0.9191 0.8347 (1918) 
 314 1915-2012 0.574 0.274 0.784 10 0.9309 0.8017 (1917) 
 316 1917-2012 0.629 0.270 0.844 8 0.9313 0.8357 (1920) 
 317 1892-2012 0.518 0.379 0.854 10 0.9149 0.8113 (1920) 
 318 1883-2012 0.543 0.314 0.786 10 0.9224 0.8262 (1911) 
 338 1897-2012 0.479 0.236 0.767 10 0.9019 0.8213 (1922) 
 343 1910-2012 0.601 0.282 0.770 8 0.9234 0.8188 (1917) 
 344 1903-2012 0.513 0.245 0.867 6 0.8634 0.8082 (1922) 
 365 1883-2012 0.522 0.280 0.790 8 0.8973 0.8137 (1913) 
 380 1914-2012 0.489 0.259 0.790 10 0.9054 0.8271 (1922) 
 381 1911-2012 0.617 0.263 0.809 8 0.9280 0.8286 (1914) 
 382 1915-2012 0.566 0.267 0.855 9 0.9215 0.8391 (1949) 

391 1913-2012 0.565 0.233 0.813 8 0.9122 0.8386 (1920) 
404 1910-2012 0.481 0.259 0.700 11 0.9107 0.8225 (1943) 
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Table 16. (Cont.) 
 Yellow Birch 

Plot Length of 
Chronology 

Series inter-
correlationa 

Avg. mean 
sensitivitya 

Auto- 
correlationa 

N 
trees 

EPSb 
(2012) EPSb (0.80) 

        96 1889-2012 0.403 0.269 0.806 10 0.8710 0.8020 (1900) 
97 1915-2012 0.481 0.241 0.809 9 0.8929 0.8225 (1933) 
110 1868-2012 0.584 0.310 0.778 10 0.9335 0.8081 (1893) 
135 1916-2012 0.764 0.332 0.775 8 0.9628 0.8662 (1917) 
143 1823-2012 0.459 0.305 0.717 10 0.8946 0.8092 (1897) 
158 1870-2012 0.607 0.317 0.836 10 0.9392 0.8225 (1882) 
169 1816-2012 0.522 0.272 0.815 10 0.9161 0.8137 (1890) 
181 1919-2012 0.469 0.279 0.802 10 0.8983 0.8154 (1925) 
202 1810-2012 0.478 0.314 0.865 8 0.8799 0.8207 (1918) 
220 1902-2012 0.428 0.341 0.732 10 0.8821 0.8178 (1917) 
221 1896-2012 0.491 0.292 0.835 9 0.8967 0.8283 (1913) 
222 1890-2012 0.500 0.279 0.784 10 0.9091 0.8000 (1921) 
223 1811-2012 0.532 0.372 0.769 10 0.9191 0.8197 (1914) 
224 1915-2012 0.505 0.318 0.768 12 0.9245 0.8032 (1917) 
241 1915-2012 0.374 0.313 0.810 8 0.8270 0.8070 (1936) 
242 1912-2012 0.627 0.340 0.695 10 0.9439 0.8345 (1915) 
258 1740-2012 0.499 0.295 0.769 9 0.8996 0.8328 (1919) 
279 1767-2012 0.405 0.292 0.809 8 0.8449 0.8033 (1923) 
281 1893-2012 0.661 0.356 0.737 8 0.9398 0.8540 (1908) 
288 1866-2012 0.567 0.284 0.848 7 0.9016 0.8397 (1876) 
292 1917-2012 0.480 0.304 0.754 10 0.9023 0.8219 (1942) 
304 1887-2012 0.633 0.298 0.738 10 0.9452 0.8380 (1916) 
310 1892-2012 0.484 0.318 0.708 10 0.9037 0.8243 (1915) 
314 1918-2012 0.553 0.310 0.803 10 0.9252 0.8319 (1920) 
316 1844-2012 0.596 0.365 0.798 10 0.9365 0.8157 (1916) 
317 1851-2012 0.463 0.295 0.772 10 0.8961 0.8117 (1942) 
318 1858-2012 0.384 0.331 0.725 8 0.8330 0.8136 (1918) 
338 1889-2012 0.524 0.266 0.725 10 0.9167 0.8149 (1893) 
343 1900-2012 0.394 0.312 0.789 10 0.8667 0.8199 (1927) 
344 1918-2012 0.562 0.305 0.786 8 0.9112 0.8369 (1923) 
365 1883-2012 0.505 0.281 0.775 10 0.9107 0.8032 (1913) 
380 1911-2012 0.539 0.272 0.696 9 0.9132 0.8238 (1918) 
381 1911-2012 0.479 0.277 0.789 9 0.8922 0.8213 (1919) 
382 1826-2012 0.464 0.272 0.686 8 0.8738 0.8123 (1913) 
391 1914-2012 0.460 0.291 0.777 6 0.8364 0.8099 (1941) 
404 1913-2012 0.488 0.248 0.629 8 0.8841 0.8266 (1944) 

        a From COFECHA output (Holmes 1983) 
b Expressed population signal (EPS) = (t * rbt)/( t * rbt + (1–rbt)) 
Where t is the number of trees in the series and rbt is the mean series inter-correlation 
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