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ABSTRACT

In this paper we extend the study of Heffter arrays and the biembedding of graphs on ori-
entable surfaces first discussed by Archdeacon in 2014. We begin with the definitions of
Heffter systems, Heffter arrays, and their relationship to orientable biembeddings through
current graphs. We then focus on two specific cases. We first prove the existence of em-
beddings for every Kgp+1 with every edge on a face of size 3 and a face of size n. We next
present partial results for biembedding Kig, 1 with every edge on a face of size 5 and a
face of size n. Finally, we address the more general question of ordering subsets of Z, \ {0}.
We conclude with some open conjectures and further explorations.
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CHAPTER 1

INTRODUCTION AND DEFINITIONS

Recently there has been much interest in biembeddings of complete graphs on surfaces.
In this thesis we continue this study; specifically we look at orientable embeddings of the
complete graph on 2mn + 1 vertices with each edge on both an m-cycle and an n-cycle. In
particular, we will concentrate on the cases where m = 3 and m = 5. Such an embedding
is called a biembedding. Note that such an embedding is necessarily 2-colorable with the
faces that are m-cycles receiving one color while those faces that are n-cycles receive the
other color. So each pair of vertices occur together in exactly one m-cycle and one n-cycle.
Hence this is a simultaneous embedding of an m-cycle system and an n-cycle system on
2mn + 1 vertices.

There has been extensive work done in the area of biembedding 3-cycle systems, or so
called Steiner triple systems. In 2004, both Bennet, Grannell, and Griggs [5] and Grannell
and Korzhik [10] published papers on nonorientable biembeddings of pairs of Steiner triple
systems. In [9] the eighty Steiner triple systems of order 15 were also proven to have
orientable biembeddings. In addition, Granell and Koorchik [11] gave methods to construct
orientable biembeddings of two cyclic Steiner triple systems from current assignments on
Mébius ladder graphs. Brown [7] constructed a class of biembeddings where one face is a

triangle and one face is a quadrilateral. A useful survey on biembeddings of Steiner triple



systems can be found in [15]. Most recently, Forbes, Griggs, Psomas, and Sirai [8] proved
the existence of biembeddings of pairs of Steiner triple systems in orientable pseudosurfaces
with one pinch point, and McCourt [13] gave nonorientable biembeddings for the complete
graph on n vertices with a Steiner triple system of order n and a Hamiltonian cycle for all
n =3 (mod 36) with n > 39. Example 1.1 shows a biembedding of the complete graph on

7 vertices using a pair of Steiner triple systems.

Example 1.1. Fach edge of K7 in Figure 1.1 is on one black face and one white face, each
a triangle. This is an example of biembedding K on the torus using a pair of Steiner triple

systems.

=1
=

7 T

Figure 1.1: Biembedding K on the torus with two Steiner triple systems.

Despite numerous results using Steiner triple systems to biembed complete graphs, this
thesis presents the first biembeddings of the complete graph on 6n 4+ 1 vertices using a
Steiner triple system and an n-cycle system. In other words, for n > 3 we use a special
array, called a Heffter array, to prove the existence of an orientable biembedding of Kgy,11
such that every edge is on both a 3-cycle and an n-cycle. We also use Heffter arrays to
explore biembedding the complete graph on 10n 4 1 vertices with each edge on both a
5-cycle and an n-cycle. Here we begin with the definition of Heffter systems and Heffter

arrays summarized from a recent paper by Archdeacon [1].



Let Z, be the cyclic group of odd order r» whose elements are denoted 0 and +i where
i=1,2,..., %1 A half-set L C Z, has % nonzero elements and contains exactly one of
{z,—z} for each such pair. A Heffter system D(r, k) is a partition of L into parts of size
k such that the sum of the elements in each part equals 0 modulo r. Two Heffter systems,
Dy = D(2mn + 1,n) and Dy = D(2mn + 1,m), on the same half-set, L, are orthogonal
if each part (of size n) in D; intersects each part (of size m) in Dy in a single element.
A Heffter array H(m,n) is an m x n array whose rows form a D(2mn + 1,n), call it Dy,
and whose columns form a D(2mn + 1,m), call it Dy. Furthermore, since each cell a; ;
contains the shared element in the i** part of D; and the j** part of Ds, these row and
column Heffter systems are orthogonal. So an H(m,n) is equivalent to a pair of orthogonal
Heffter systems. In Example 1.2 we give orthogonal Heffter systems D; = D(31,5) and
Dy = D(31,3) along with the resulting Heffter array H(3,5).

Example 1.2. A Heffter system Dy = D(31,5) and a Heffter system Dy = D(31,3):
Dy = {{6,7,-10,—-4,1},{~9,5,2, ~11,13}, {3, ~12,8, 15, ~14}},
Dy = {{6,-9,3},{7.5,—12},{—10,2,8}, {—4, —11,15}, {1, 13, —14}}.

The resulting Heffter array H(3,5):

Let A be a subset of Z, \ {0} with > ,c4a = 0 (mod m) such that no pair {z, -z}
appears in A. Let (ay,...,ax) be a cyclic ordering of the elements in A and let s; = Z§:1 a;
(mod m) be the i*" partial sum. The ordering is simple if s; # sj for i # j. A Heffter
system D(r, k) is simple if and only if each part has a simple ordering. Further, a Heffter
array H(m,n) is simple if and only if its row and column Heffter systems are simple. A

k-cycle system on r points is a collection of k-cycles with the property that any pair of



points appears in a unique k-cycle. The following proposition [1] describes the connection

between Heffter systems and k-cycle systems.

Proposition 1.3. [1] The existence of a simple Heffter system D(r, k) implies the existence
of a simple k-cycle system decomposition of the edges E(K,). Furthermore, the resulting

k-cycle system is cyclic.

Proof. Let {ay,...,ax} be a part of the D(r, k) and assume the ordering (ay, ..., a) is simple.
Form a walk (0, s1, s2, ..., i) in the complete graph K, with vertex set Z,. Develop this walk
modulo 7 and repeat the process for each part of D(r, k). Since each ordering is simple, the
k-walks contain no vertex twice and hence form simple k-cycles. Moreover, because each
pair {z, —x} has exactly one element in D(r, k), each difference appears only once, and
hence the simple k-cycles partition F(K,). Clearly this construction yields a cyclic k-cycle

system. O

Example 1.4. Let r =19, k = 3, and D(19,3) = {{8,2,9},{7,—3,—4},{1,5,—6}}. Note
that the orderings presented are indeed simple. Then let K19 have vertex set Zi9. We

partition the edges of K19 into 3-cycles by following the procedure presented in the above

Proof.

(0,8, 10) (0,74)  (0,1,6)
(1,9,11)  (1,8,5)  (1,2,7)
(2, 10, 12) (2,9, 6) (2,3.10)

(18,7,9)  (18,6,3) (18,0,5)

Let D1 = D(r, k1) and Dy = D(r, k2) be two orthogonal Heffter systems with orderings
w1 and wy respectively. The orderings are compatible if their composition wi o wy is a cyclic
permutation on the half-set. The importance of compatible orderings will be discussed in

the next chapter.



In Chapter 2 we relate Heffter arrays to biembeddings of complete graphs using current
graphs, establishing the motivation for the remainder of the paper. In Chapter 3 we use
Heffter arrays to prove the existence of orientable biembeddings of the complete graph on
6n+1 vertices with each edge on a 3-cycle and an n-cycle. Chapter 4 discusses partial results
on the existence of orientable biembeddings of the complete graph on 10n + 1 vertices. In
Chapter 5 we discuss a more general conjecture concerning the sequencing of subsets of

Zy \ {0}. Finally, we conclude with further study and open conjectures.



CHAPTER 2

RELATING HEFFTER ARRAYS AND BIEMBEDDINGS

In this chapter we describe the relationship between Heffter arrays and biembeddings of
graphs on orientable surfaces using current graphs, summarized from Archdeacon [1]. We
assume some basic knowledge of the reader pertaining to graphs, current graphs, and derived

embeddings. For more detailed information and explanations see [12].

2.1 ORIENTABLE EMBEDDINGS AND CURRENT GRAPHS

Consider a graph G and for every edge let e™ and e~ denote its two possible directions. Let
D(G) be the set of all directed edges, and define 7 as the function swapping e* and e~ for
every edge. Let D, denote the set of edges directed out of v. A local rotation p, is a cyclic
permutation of D,. Selecting a local rotation for each vertex collectively gives a rotation,
p, of D(G). Given a rotation on G we can use p o 7 to calculate the face boundaries of
a cellular embedding of G on an orientable surface. This process is called the face-tracing
algorithm. A rotation p such that p o 7 gives a single cycle is called a monofacial rotation;
such an embedding (with a single face) is called a monofacial embedding.

A current assignment on G with currents from Z, is a function x : D(G) — Z, such that

k(et) = —k(e”). A current assignment on a monofacial embedding of a graph is frequently



2.2. HEFFTER ARRAYS AND BIEMBEDDINGS

used to construct a rotation on a complete graph. We often require that (1) & is a bijection
between D(G) and Z, \ {0}, and (2) & satisfies Kirchoff’s Current Law (KCL), which states

that for every vertex v, .cp, #(e) =0 (mod r).

2.2 HEFFTER ARRAYS AND BIEMBEDDINGS

An (s,t) — biregular graph with biorder (m,n) is a bipartite graph with one part having
m vertices of degree s and the other part having n vertices of degree t. A biembedding of a
graph is one that is face 2-colorable. The following theorems from [1] lead us to the relation

between Heffter arrays and biembeddings of graphs on orientable surfaces.

Theorem 2.1. [1] Let G be an (s,t)-biregular graph of biorder (m,n). Suppose that G has
a rotation p giving a monofacial embedding and a bijective current assignment k : D(G) —
Zoms+1 satisfying KCL. Furthermore, assume each local rotation on G is simple with respect
to k. Then there exists an embedding of Koms+1 on an orientable surface such that each

edge lies on a simple s-cycle face and a simple t-cycle face.

Proof. We use the standard construction of a derived embedding from a current graph.
The vertex set of Kopsy1 consists of the elements of Zo,s+1. Let e1,ea, ..., eams denote the
directed edges traversed in the single face of the embedding of G. Define the local rotation
at vertex i € Zoms+1 as (k(e1)+1, k(e2)+i, ..., k(eams)+1). We use the face-tracing algorithm
to show that a vertex of degree d in G satisfying K C'L corresponds to 2ms + 1 faces of size
d in the embedding of Ky,s+1. Since the graph is (s, t)-biregular, each edge of Kop,s41 lies
on a face of size s and a face of size t. Moreover, since each local rotation is simple, then

the corresponding faces are simple cycles. O

For the remainder of the paper we will assume that ¢t = m and s = n, as we have
m x n Heffter arrays with m elements in each column and n elements in each row. It

is interesting to notice what orientable surface we are biembedding on. KEuler’s formula,



2.2. HEFFTER ARRAYS AND BIEMBEDDINGS

V- FE+ F = 2 — 2g, can be used to determine the genus of the surface. It is easy to
compute that for Kopni1, the number of vertices is V' = 2mn + 1, the number of edges
is B = ("), and the number of faces is F = (*"37)(1/m + 1/n). Substituting these

values into Euler’s formula we get the following proposition.

Proposition 2.2. For m,n > 3 and using the construction from Theorem 2.1, Kopnt+1 can

be biembedded on the orientable surface with genus

2mn + 1

g:1—1/2[2mn+1+< )

>(1/m+ 1/n—1)].

Example 2.3. Using Proposition 2.2 we can compute the genus of the surface on which we

biembed K31, where m =3 and n = 5:

g=1-1/2[31+ (321> (1/3+1/5—1)] =1 1/2(31 + 465(~7/15)) = 94

So K31 can be embedded on an orientable surface with genus 94 such that every edge is

on both a 3-cycle and a 5-cycle.
The following proposition relates Heffter arrays to current assignments.

Proposition 2.4. [1] A Heffter array H = H(m,n) is equivalent to a bjective current
assignment k on an (n,m)-bireqular graph G of biorder (m,n). Two compatible simple
orderings w, and w. are equivalent to a monofacial rotation p on G, where p is simple with

respect to K.

Proof. Let H(m,n) be such a Heffter array with compatible simple orderings w, and we.
Form a bipartite graph G whose vertex set consists of the rows of H in one part and and
the columns of H in the other. For each cell a; ; in H add an edge in G labeled with current

a; ; directed from the vertex corresponding to the ith row of H to the vertex corresponding



2.2. HEFFTER ARRAYS AND BIEMBEDDINGS

to the jth column of H. Since H has n entries per row and m per column, G is an (n,m)-
biregular graph of biorder (m,n). Furthermore, each row and column of H sums to 0 by
definition and thus G satisfies KCL. Finally, the entries of H form a half-set, L, and so G
has a bijective current assignment k.

Now define 7 : Zomn+1 \ {0} = Zamn+1 \ {0} such that 7(a) = —a. We use 7 along with

the compatible orderings w, and w. to define 7 : Zomn+1 \ {0} = Zomn+1 \ {0} by:

wr(a), acL,
(a) =
ToweoT(a), a¢ L.

Note that if a € L, (yoT)?(a) = wyow.(a). Since the orderings are compatible, (yo7)?(a)
acts cyclically on L. Also the odd powers of yoT act cyclically on —L and thus p = yor acts
cyclically on Zopn+1\ {0} and the embedding is monofacial. The reverse of the construction

above gives the equivalence. O

Example 2.5. Here we show the bipartite graph created using the process above for the
H(3,5) from Ezample 1.2. Note that the graph satisfies KCL and that all of the current

assignments are distinct.

Figure 2.1: Bipartite current graph for H(3,5).



2.2. HEFFTER ARRAYS AND BIEMBEDDINGS

Corollary 2.6. [1] Given a Heffter array H(m,n) with simple compatible orderings w,
on D(2mn + 1,n) and w. on D(2mn + 1,m), there exists an embedding of Kopmn+1 on an
orientable surface such that every edge is on a simple cycle face of size m and a simple cycle

face of size n.

Proof. Let H be such a Heffter array. Proposition 2.4 gives us a bijective current assignment
k on an (n, m)-biregular graph G of biorder (m,n) and a monofacial rotation p on G, where
p is simple with respect to k. We then apply Theorem 2.1 to embed Ka,,,41 on an orientable
surface with each edge lying on a simple cycle face of size m and a simple cycle face of size

n. O

It is our goal to find Heffter arrays which fulfill these conditions: namely, simple Heffter
arrays with compatible orderings. Chapters 3 and 4 discuss this project for 3 x n Heffter

arrays 5 X n Heffter arrays, respectively.

10



CHAPTER 3

3 X n HEFFTER ARRAYS

In this chapter we give constructions for 3 x n Heffter arrays; we divide them into cases
modulo eight. We then give row reorderings of each construction which yield simple Heffter
arrays. Finally, using these reorderings, we prove that there exists a biembedding of Kgy,11

using a Steiner triple system and an n-cycle system.

3.1 CONSTRUCTING 3 X n HEFFTER ARRAYS

The following theorem gives a construction of 3 x n Heffter arrays for all n > 3 with cases

for n modulo 8. Here we give only the constructions; details of the proof can be found in
[2].

Theorem 3.1. [2] There exists a 3 x n Heffter array for all n > 3.

Proof. We start with specific constructions for 3 x 3 and 3 x 4 Heffter arrays followed by

general constructions for n =0,1,...,7 (mod 8).

11



3.1. CONSTRUCTING 3 x N HEFFTER ARRAYS

n = 3: The following is a 3 x 3 Heffter array:

-8 -2 -9
7T =3 -4
1 5 —6

n = 4: The following is a 3 x 4 Heffter array:

n =0 (mod 8),n > 8: In this case define m = 23. The first four columns are:

—12m—13 —10m—11  4m+6 4m + 3
A= 4m+4 —8m—T7 18m+17 18m+19

8m+9 18m 4+ 18 —22m — 23 —22m — 22

For each 0 < r < 2m define

8m+r+10) (-8m+2r—8) (M4m—r+14) (—4m+2r—1)
Ar=(=D"1 8m—2r4+5) (=16m—r—16) (—4m+2r—2) (—18m —r —20)
(=16m +7r—15) (24m —r+24) (=10m —r—12) (22m —r +21)

Add on the remaining n — 4 columns by concatenating the A, arrays for each value

of r between 0 and 2m. So the final array will be:

A Ay Ay - Agyl-

12



3.1. CONSTRUCTING 3 x N HEFFTER ARRAYS

n =1 (mod 8),n > 9: Here m = 52, The first five columns are:

8m 47, 10m + 12 16m 4+ 18 4m + 6 dm 4+ 3
A= 8m+10 8m+9 —12m—14 —22m —26 18m + 22
—16m —17 —18m —21 —4m—4  18m+20 —22m —25

For each 0 < r < 2m define
(=8m +2r —5), (=10m —r—13) (=24dm+r—27) (—4dm+2r—1)

A= (=1)"| 16m—r+16) (—4m+2r—2) (Bm—2r+8) (—18m —r —23)
(=8m —r—11) (14dm—r+15) (16m+r+19)  (22m —r + 24)

Add on the remaining n — 5 columns by concatenating the A, arrays for each value

of r between 0 and 2m.

n =2 (mod 8),n > 10: In this case m = Y. The first six columns are:

24m +30 16m+21 10m+ 13 8m + 8 dm +5 8m+9
A= 124m+29 —8m—11 —-10m—14 12m+16 16m + 20 12m + 17
2 —8m — 10 1 —20m —24 —-20m —25 —20m — 26

For each 0 < r < 2m define

(=8m+2r—-7) (10m+r+15) (-22m+r—27) (—8m+2r —06)
A= (=1)" | (16m — r + 19) (4m — 2r + 3) (4m —2r+4) (—=16m —r — 22)
(=8m —r—12) (—14dm+r—18) (18m+r+23) (24m —r+28)

Add on the remaining n — 6 columns by concatenating the A, arrays for each value

of r between 0 and 2m.

13



3.1. CONSTRUCTING 3 x N HEFFTER ARRAYS

n =3 (mod 8),n > 11: Define m = 21, The first seven columns are:

24m+33 8m+ 11 8m + 13 dm +6 1 —12m — 17 8m + 10
A= |24m+32 —-16m—23 —12m—18 10m+ 15 20m + 27 —8m —9 14m + 20
2 8m + 12 dm +5 —14m —21 —-20m —28 20m+26 —22m — 30

For each 0 < r < 2m define

(=16m +r —22) (24m —r+31) (4dm —2r+4)  (—4m+2r —3)
Ar=(D"1 8m—2r4+8) (=8m+2r—7) (=22m+7r—29) (—10m —r — 16)
8m+r+14) (=16m—r—24) (18m+r+25) (14m —r+19)

Add on the remaining n — 7 columns by concatenating the A, arrays for each value

of r between 0 and 2m.

n =4 (mod 8),n > 12: Let m = %12. The first eight columns are:

8m + 13 10m + 16 22m + 34 —4m — 5 dm +7 —22m — 35 —12m — 18 -1
A= im +6 8m + 11 —4m — 8 22m+33 —14m —22 4m+10 -2 —20m — 30/ -
—12m —-19 —18m —27 —-18m —26 —18m —28 10m + 15 18m + 25 12m + 20 20m + 31

For 0 < r < 2m define

(=16m+r—23) (=8m+2r—12) (14m —r+21) (4m — 2r + 3)
Ar=(D" Sm+r+14)  (=16m—r—24) (=10m —r—17) (18m +r +29)
(8m — 2r +9) (24m —r+36) (—4dm+2r—4) (—22m+r — 32)

Add on the remaining n — 8 columns by concatenating the A, arrays for each value

of r between 0 and 2m.

14



3.1. CONSTRUCTING 3 x N HEFFTER ARRAYS

n =5 (mod 8),n > 5 : Here m = 22, The first five columns are:

8m + 6 10m+7 —16m—10 —4m —4 dm + 1
A=1-16m—-9 8m+5 dm+2  —18m —11 18m +13

8dm+3 —-18m—-12 12m 48 22m+15 —-22m—14

For each 0 < r < 2m — 1 define

(=8m+2r—1) (~1ldm+r—8) (16m+r+11) (4m —2r — 1)
Ar=(=1)" | (16m —r+8) (4m — 2r) (8m — 2r +4) (18m +r + 14)
(=8m —r—T7) (10m+r+8) (—24m+r—15) (—22m+r —13)

Add on the remaining n — 5 columns by concatenating the A, arrays for each value

of r between 0 and 2m — 1.

n =6 (mod 8),n > 6: In this case, m = 2. The first six columns are:
24m +18 —16m — 13 -1 8m + 4 —4m — 3 —8m — 5
A= 2 8m+6 —10m—8 —20m—14 —16m—12 —12m —11

24m + 17 8m+ 7 10m +9 12m + 10 20m + 15 20m + 16

For each 0 <7 < 2m — 1 define

(=8m+2r—3) (—4m+2r—1) (—4dm+2r—2) (8m —2r+2)
Ar=(=1)" | (16m —r+11) (=10m—r—10) (22m—1r+16)  (16m +r+ 14)
(=8m —r—8) (1dm—r+11) (—18m —r—14) (—24m+r — 16)

Add on the remaining n — 6 columns by concatenating the A, arrays for each value

of r between 0 and 2m — 1.

15



3.2. REORDERING THE HEFFTER ARRAYS
n =7 (mod 8),n > 7: Now m = 2zL. The first seven columns are:

24m 421 16m + 15 4m + 3 —4m -4 -20m—-18 —-12m—-11 —-8m —6
A= 2 —8m -8 —12m —12 14m+14 1 20m+16 —14m —13| -

24m+20 —8m -7 8m +9 —10m —10 20m + 17 —8m — 5 22m + 19

For each 0 < r < 2m — 1 define

(—16m+r—14) (=8m+2r—3) (—-18m—r—16) (4m —2r+1)
Ar=(D"| 8mA4r+10) (=16m—7r—16) (22m —r+18)  (10m + 7+ 11)
(8m — 2r 4+ 4) (24m —r+19) (—4m+2r—2) (—ldm+r—12)

Add on the remaining n — 7 columns by concatenating the A, arrays for each value

of r between 0 and 2m — 1.

This concludes the constructions of the 3 x n arrays. To prove these are Heffter arrays,
simply check that each element of the half set occurs, and calculate each row and column
sum, verifying they are equivalent to 0 (mod 6n + 1). Details of this step can be found in

2]. 0

3.2 REORDERING THE HEFFTER ARRAYS

Suppose H = (h;;) is any Heffter array given by the constructions in Theorem 3.1. We
first note that each column in H is simple just using the standard ordering, which is sim-
ply a cycle ordering on each column, w. = (hi1, h21, hs1)(hi2, a2, h32) - .. (Rin, hon, han).
Thus we must only reorder the three rows so they have distinct partial sums, thereby
making H simple. In each of the following lemmas we present a single reordering that
makes the standard ordering, which is again simply a cycle ordering on each row, w, =

(h11, hi2, ..., hin)(ha1, hoo, ..., hop)(hs1, haa, . .., hsy,) simple. In finding a single reordering

16
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which works for all three rows in H, we are actually rearranging the order of the columns
without changing the elements which appear in the rows and columns. For notation, when
we say use the ordering {a1,as,...,a,} this means that in the resulting array H', column
a; of H will appear in column i of H'. In Example 3.2 we give H(3,8) (the original form),

the reordering for the rows, and H'(3,8) (the reordered form).

Example 3.2. The original 3 x 8 Heffter array:

-13 —-11 6 3 10 -8 14 -1
4 -7 17 19 5 =16 -2 =20
9 18 =23 —-22 -15 24 —12 21

Note that in row 1, s1 = s¢ = —13 = 36 (mod 49), and so w, is not simple. So we use

the reordering R = {1,2,6,8,5,3,4,7}. The reordered 3 x 8 Heffter array:

-13 -11 -8 -1 10 6 3 14
4 -7 =16 =20 5 17 19 -2
9 18 24 21 —-15 -—-23 -—-22 —-12

We list the partial sums for each row as their smallest positive equivalence modulo 49:
Row 1: {36,25,17, 16,26, 32, 35,0},
Row 2: {4,46,30,10,15,32,2,0},
and Row 3: {9,27,2,23,8,34,12,0}.

Now all the partial sums are distinct, and so w, is simple.

As the reader can see, the simultaneous reordering of the three rows results in a reorder-
ing of the columns with the elements in each row and column remaining the same. Again,
the cases are broken up modulo 8 and we will consider each individually. For every case we

will write the partial sums as their lowest positive equivalence modulo 6n + 1.
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Lemma 3.3. There exist simple H(3,3) and H(3,4).

Proof. First recall that the column Heffter system of the H(3,3) from Theorem 3.1 is
simple. Furthermore, the partial row sums (mod 19) are as follows: row 1: {11,9,0}, row
2: {7,4,0}, and row 3: {1,6,0}. Clearly each row has distinct partial sums, and therefore
the Heffter array is simple.

Similarly, we see that that H(3,4) from Theorem 3.1 is also simple. Here the partial sums
(mod 25) are as follows: row 1: {1,3,6,0}, row 2: {8,21,14,0}, and row 3: {16,1,5,0}.

Clearly each row has distinct partial sums and thus the Heffter array is simple. O

Now we consider each of the constructed equivalence classes modulo 8. Let H be the
H(3,n) constructed in Theorem 3.1 and let H' be the 3 x n Heffter array where the columns
of H have been reordered as given in each lemma. For the following lemmas we introduce

the notation [a,b] = {a,a+ 1,a+2,...,b} and [a,b]s = {a,a +2,a+4,...,b}.

Lemma 3.4. Supposen =0 (mod 8) andn > 8. Form = 0 the ordering {1,2,6,8,5,3,4,7}
yields a simple 3 x 8 Heffter array. For m > 1, the ordering
R=1{9,13,...,n—3,1,11,15,...,n — 1,2,10,14, ..,n — 2,6,8,12, 16, ...,n,5,3,7, 4}

yields a simple 3 x n Heffter array.

Proof. First we will directly prove the case for m = 0. The original and reordered construc-

tions of the 3 x 8 matrix can be seen in Figures 3.1 and 3.2

-13 =11 6 3 10 -8 14 -1
4 -7 17 19 5 =16 -2 =20
9 18 —-23 —22 —-15 24 —12 21

Figure 3.1: The original 3 x 8 Heffter array.

After reordering the original rows with the ordering {1,2,6,8,5,3,4,7}, the partial row
sums are as follows: row 1: {36,25,17,16,26,32,35,0}, row 2: {4,46,30,10,15,32,2,0},
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3.2. REORDERING THE HEFFTER ARRAYS

-13 -11 -8 -1 10 6 3 14
4 -7 =16 =20 5 17 19 =2
9 18 24 21 —-15 —-23 —-22 -—12

Figure 3.2: The reordered 3 x 8 Heffter array.

and row 3: {9,27,2,23,8,34,12,0}. Clearly the partial sums for each row are distinct, and
thus H' is simple.

Now suppose m > 1. Son = 8m + 8. For each 1 = 1,2,3 define P; as the set of partial
sums of row ¢. Now divide each P; into four subsets based on the columns of H: P is the
set of partial sums of row ¢ and columns {9, 13,...,n — 3} from H, P is the set of partial
sums of row ¢ and columns {1,11,15,..,n — 1} from H, P, 3 is the set of partial sums of row
i and columns {2,10,14,..,n — 2} from H, and P; 4 is the set of partial sums of row i and

columns {6, 8,12, 16, ...,n,5,3,7,4} from H. Then for : = 1 we have:

Py =[39m + 39,40m + 38] U [1, m],
Py =[36m + 36, 37m + 36] U [23m + 23, 24m + 22],
Py 5 =[26m + 25, 28m + 25]5 U [32m + 33,34m + 31]5, and

Py 4 =[16m + 16, 18m + 16], U [18m 4 17, 20m + 17], U {26m + 26, 30m. + 32, 0}.

First note that the elements of each P ; lie in the range 1 to 48m + 49 = 6n + 1, so we
need only worry about equality in Z (as opposed to Zg,+1). Also notice that each set of
partial sums covers two disjoint ranges of numbers (P; 4 contains four additional numbers).
For example, Py ; contains the range 39m + 39 to 40m + 38 and the range 1 to m. Within
these ranges the sets of partial sums either contain every number in the range, or every
other number in the range. Thus for each j the partial sums in P ; are distinct. Next note
that the only overlap of the ranges occurs with [26m +25, 28m +25] in P} 3 and 26m +26 in

Py 4. But Py 3 only contains only the odd numbers within the range, and 26m + 26 is even;
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thus they are distinct. Therefore the partial sums in row 1 are distinct. Now we consider

row 2:

Py 1 =[40m + 46, 42m + 44]5 U [46m + 49, 48m + 47,
Pao =[2m + 4,4m + 6]3 U [4m + 8,6m + 4]
Py3 =[12m + 14,13m + 13] U [43m + 46, 44m + 45]

P4 =[27m + 30,28m + 30] U [8m + 10, 9m + 10] U {16m + 15, 34m + 32, 30m + 30,0}.

Again, each set of partial sums P ; lies in the range 1 to 48m + 49 € Z and covers
two disjoint ranges of numbers (P» 4 contains four extra numbers). Within these ranges the
sets of partial sums either contain every number in the range, or every other number in the
range. Next note that these ranges do not overlap and thus the partial sums in row 2 are

distinct. Finally, consider when ¢ = 3:

Py =[1,m] U [15m + 15, 16m + 14]
P39 =[8m +9,9m + 9] U [19m + 22,20m + 21]
Py3 =[2m +4,3m + 3] U [25m + 27, 26m + 27]

P34 =[m +2,2m + 2] U [22m + 22, 23m + 23] U {6m + 8, 32m + 34,0}.

Note that each set of partial sums lies in the range 1 to 48m + 49 € Z and covers two
disjoint ranges of numbers (P34 contains three numbers in addition to this). This time,
within these ranges the sets of partial sums contain every number in the range. Also, these
ranges do not overlap and thus the partial sums in row 3 are distinct. Therefore, if we
reorder each row in H by R to get H’, then w, is simple for each row, concluding the

proof. O
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Lemma 3.5. Forn=1 (mod 8) and n > 9, the row ordering
R=1{812,16,...,n—1,3,7,11,15,....n — 2,5,6,10,14, ..,n — 3,1,9,13,17, ..., n, 2, 4}

yields a simple 3 x n Heffter array.

Proof. In this case n = 8m+9 and so we are working modulo 48m+55 = 6n+1. For each i =
1,2, 3 define P; as the set of partial sums of row i. Now divide each P; into four subsets based
on the columns of H: P is the set of partial sums of row i and columns {8, 12,16, ...,n—1}
from H, P, is the set of partial sums of row ¢ and columns {3,7,11,15,...,n — 2} from H,
P, 3 is the set of partial sums of row ¢ and columns {5, 6,10, 14, ..,n — 3} from H, and P, 4 is
the set of partial sums of row ¢ and columns {1,9,13,17,...,n,2,4} from H. Then for i = 1

Wwe see:

Py =[24m + 28,25m + 28] U [47m + 55, 48m + 54]
Py o =[41m + 46, 42m + 46] U [30m + 33, 31m + 33]
Py 5 =[32m + 36, 34m + 36], U [26m + 31, 28m + 31],

Py 4 =[34m + 38,36m + 38]2 U [32m + 37, 34m + 372 U {44m + 49, 0}.

Note that each P;; lies in the range 1 to 48m + 55 € Z and contains two ranges of
numbers (P 4 covers three more numbers). Within these ranges the sets of partial sums
either contain every number in the range, or every other number in the range. Next note
that the only ranges which overlap are in P; 3 and P; 4 from 32m + 36 to 34m + 37. But

Py 3 contains only the even numbers in this range while P; 4 contains the odd numbers.
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Therefore the partial sums in row 1 are distinct. Now consider row 2:

P271 :[2, Qm] U [6m + 8,8m + 8]
P55 =[38m + 47,40m + 47]5 U [40m + 49, 42m + 49,
P53 =[10m + 14, 11m + 14] U [25m + 30, 26m + 30]

Py =[14m + 17,15m + 17] U [33m + 40, 34m + 40] U {22m + 26, 0}.

Again, each set of partial sums lies in the range 1 to 48m + 55 € Z and covers two
ranges of numbers (P4 covers two additional numbers). Within these ranges the sets of
partial sums either contain every number in the range, or every other number in the range.
Also note that these ranges do not overlap and thus the partial sums in row 2 are distinct.

Finally, consider when ¢ = 3:

P31 =[47Tm + 54,48m + 54] U [16m + 19, 17m + 19]
Py =[13m + 15, 14m + 15] U [26m + 30, 27m -+ 30]
P33 =[43m + 49, 44m + 49] U [4m + 5, 5m + 5]

Py 4 =[27m + 32,28m + 32] U [L,m + 1] U {30m + 35,0}.

First note that every P3; lies in the range 1 to 48m + 55 € Z and covers two ranges
of numbers (Ps 4 contains two numbers in addition to this). Moreover, within these ranges
the sets of partial sums contain every number in the range. Finally, these ranges do not
overlap and thus the partial sums in row 3 are distinct. Therefore, if we reorder each row

in H by R, then w, is simple for each row, concluding the proof. O
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Lemma 3.6. For n =2 (mod 8) and n > 10, the ordering
R={10,14,...n,n — 3,0 —7,..,7,4,6,8,12, ....n — 2,5,9,13, ....n — 1,2,3,1}

yields a simple 3 x n Heffter array.

Proof. Note that here n = 8m+10 and we are working modulo 48m+61. For eachi =1,2,3
define P; as the set of partial sums of row ¢. Now divide each P; into four subsets based on
the columns of H: P;; is the set of partial sums of row ¢ and columns {10, 14, ...,n}, P; 2 is
the set of partial sums of row ¢ and columns {n —3,n —7,...,7,4}, P, 3 is the set of partial
sums of row ¢ and columns {6,8,12,...,n — 2}, and P, 4 is the set of partial sums of row ¢

and columns {5,9,13,....n — 1,2,3,1}. For i = 1 we have:

P11 =[40m + 55,42m + 55] U [46m + 61, 48m + 59]5
P1o =[36m + 48, 38m + 48]5 U [42m + 57, 44m + 55]5 U {44m + 56}
P13 =[3m +4,4m + 4] U [14m + 19, 15m + 19]

Py 4 =[18m + 24,19m + 24] U [45m + 58, 46m + 58] U {14m + 18, 24m + 31,0}.

First note that each set of partial sums lies in the range 1 to 48m + 61 € Z and contains
two disjoint ranges of numbers (P;4 contains three additional numbers). Within these
ranges the sets of partial sums either contain every number in the range, or every other
number in the range. Next note that these ranges do not overlap and therefore the partial

sums in row 1 are distinct. Now we consider row 2:

Py1 =[1,m] U [31m + 39, 32m + 39]
Py5 =[45m + 58,46m + 58] U [30m + 39, 31m + 38] U {10m + 13}
Py 5 =[22m + 30, 24m + 30]5 U [24m + 33, 26m + 33]

Py 4 =[40m + 53,42m + 53]2 U [42m + 57, 44m + 572 U {34m + 46, 24m + 32, 0}.
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Note that each I ; lies in the range 1 to 48m + 61 and covers two ranges of numbers
(P2 covers one additional number and P4 covers three other numbers). Within these
ranges the sets of partial sums either contains every number in the range, or every other
number in the range. Also note that these ranges do not overlap and thus the partial sums

in row 2 are distinct. Finally, consider i = 3:

P31 =[1,m] U [23m + 28, 24m + 28]
P35 =[13m + 16, 14m + 16] U [22m + 28, 23m + 27] U {42m + 53}
P35 =[8m + 9,9m + 9] U [21m + 27, 22m + 27]

Ps 4 =[Tm +7,8m + 7] U [36m + 45, 37Tm + 45] U {48m + 58, 48m + 59, 0}.

Here each set of partial sums, P3 ;, lies in the range 1 to 48m + 61 € Z and covers two
ranges of numbers (P35 contains one number and P34 contains three numbers in addition
to this). This time, within these ranges the partial sums cover every number in the range.
Note that these ranges do not overlap and thus the partial sums in row 3 are distinct.
Therefore, if we reorder each row of H by R, then H’ is simple and this concludes the

proof. O

Lemma 3.7. For n =3 (mod 8) and n > 11, the ordering
R=1{9,13,...,n—2,8,12,...,n — 3,1,11,15,...n,7,6,10, 14, ....n — 1,5,2, 3,4}

yields a simple 3 x n Heffter array.

Proof. Note in this case n = 8m + 11 and thus we are working modulo 48m + 67. Now
for each i = 1,2,3 define P; as the set of partial sums of row i. Now divide each P; into
four subsets based on the columns of H:F; ; is the set of partial sums of row 7 and columns
{9,13,...,n—2}, P, 5 is the set of partial sums of row 7 and columns {8,12,...,n—3}, P 3 as

the set of partial sums of row i and columns {1,11,15,..,n}, and P; 4 as the set of partial
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sums of row ¢ and columns {7,6,10,14, ....,n — 1,5,2,3,4}. Then for i = 1 we have:

Py1 =[1,m] U [23m + 31, 24m + 31]

Pro=[Tm+9,8m + 9] U [22m + 31, 23m + 30]

Py3 =[28m + 39, 30m + 39)5 U [30m + 42, 32m + 42]

Pry ={38m + 49} U [26m + 32, 28m + 32]5 U [28m + 38, 30m + 36]

U {28m + 36, 28m + 37, 36m + 48, 44m + 61, 0}.

First note that each Pp; lies in the range 1 to 48m + 67 € Z and covers two ranges
of numbers (P; 4 covers four additional numbers). Within these ranges the sets of partial
sums contains either every number in the range, or every other number in the range. Also,
these ranges do not overlap and therefore the partial sums in row 1 are distinct. Now we

consider when 7 = 2:

Py1 =[40m + 60, 42m + 60]3 U [46m + 67, 48m + 65]

Py =[42m + 62, 44m + 602 U [1,2m + 1],

Pys =[13m + 17, 14m + 17] U [24m + 33, 25m, + 33]

Py ={27m + 37} U [45m + 66, 46m + 66] U [18m + 28, 19m + 28]

U {18m + 26,2m + 3, 38m + 52, 0}.

Here each set of partial sums lies in the range 1 to 48m+67 € Z and contains two ranges
of numbers (P54 covers five more numbers). Within these ranges the sets of partial sums
either contain every number in the range, or every other number in the range. Furthermore,

these ranges do not overlap and thus the partial sums in row 2 are distinct. Finally, consider
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P; 1 =[1,m] U [31m + 43, 32m + 43|

Ps5 =[30m + 43, 31m + 42] U [39m + 57, 40m + 57]

P33 =[40m + 59,41m + 59] U [5m + 11, 6m + 11]

Psg ={31m + 48} U [2m + 7,3m + 7] U [21m + 32, 22m + 32]

U {2m + 4,10m + 16, 14m + 21, 0}.

Each P ; lies in the range 1 to 48m + 67 € Z and covers two ranges of numbers (P34
contains five additional numbers). Within these ranges the sets of partial sums contain
every number in the range. Now note that these ranges do not overlap and thus the partial
sums in row 3 are distinct. If we reorder every row in H by R, then w, is simple for each

row and H' is simple, concluding the proof. O

Lemma 3.8. Forn =4 (mod 8) and n > 12, the ordering
R=1{9,13,...,n—3,11,15,....,n — 1,4,10,14, ....n — 2,12, 16, ...,n,1,2,6,5,7,8, 3}

yields a simple 3 X n Heffter array.

Proof. In this case n = 8m + 12 and we are working modulo 48m + 73. Again for each
i =1,2,3 define P; as the set of partial sums of row ¢ and divide each P; into four subsets
based on the columns of H. Define P;; as the set of partial sums of row ¢ and columns
{9,13,...,n—3} from H, P, 5 as the set of partial sums of row ¢ and columns {11, 15, ...,n—1}
from H, P;3 as the set of partial sums of row ¢ and columns {4,10,14,...,n — 2} from H,

and P; 4 as the set of partial sums of row ¢ and columns {12, 16,...,n,1,2,6,5,7,8,3} from
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H. Then for i = 1:

Py =[32m + 50, 33m + 50] U [47m + 73, 48m + 72]
Py =[46m + 71, 47m + 71] U [33m + 51, 34m, + 50]
Py 5 =[34m + 54,36m + 54] U [40m + 66, 42m + 66
Py4 =[38m + 59, 40m + 57] U [36m + 56, 38m + 54]

U {38m + 57, 38m + 58, 46m + 70, 8m + 13,34m + 51, 26m + 40, 26m + 39, 0}

First note that each set of partial sums lies in the range 1 to 48m + 73 € Z and covers
two disjoint ranges of numbers (P 4 contain six more numbers in addition to this). Within
these ranges the sets partial sums either contain every number in the range, or every other
number in the range. Also note that these ranges do not overlap and therefore the partial

sums in row 1 are distinct. Now we consider row 2:

Pyy =[8m + 14,9m + 14] U [ATm + 73, 48m + 72]
Pyo =[9m + 15, 10m + 14] U [46m + 70, 47m, + 70]
Py 5 =[3m + 6, 4m + 6] U [20m + 30, 21m + 30]
Py =[2m + 6,3m + 5] U [21m + 35,22m + 35|

U {26m + 41, 34m + 52, 38m + 62, 24m + 40, 24m + 38, 4m + 8,0}.

Here each P, ; lies in the range 1 to 48m + 73 € Z and contains two ranges of numbers
(P4 contains seven additional numbers). Within these ranges the sets of partial sums

either cover every number in the range, or every other number in the range. These ranges

27



3.2. REORDERING THE HEFFTER ARRAYS

do not overlap and thus the partial sums in row 2 are distinct. Finally, consider when ¢ = 3:

P31 =[2,2m]p U [6m +9,8m + T2

Ps o =[2m +5,4m + 5]p U [4m +9,6m + T,

Ps5 =[9m + 13,10m + 13] U [34m + 50, 35m + 50]
Py4 =[8m + 13,9m + 12] U [35m + 54, 36m + 54]

U {24m + 35,6m + 8,24m + 33,34m + 48,46m + 38,18m + 26, 0}.

First note that each set of partial sums lies in the range 1 to 48m + 73 € Z and covers
two ranges of numbers (P34 contains seven extra numbers). This time, within these ranges
the partial sums cover either every number or every other number in the range. Next note
that these ranges do not overlap and thus the partial sums in row 3 are distinct. So if we

reorder each row in H by R, then w, is simple for each row and this concludes the proof. [

Lemma 3.9. For n =5 (mod 8), the row ordering
R=1{9,13,..,n,5,6,10,...n — 3,3,7,11, ...n — 2,1,8,12, ....n — 1,4, 2}

yields a simple 3 X n Heffter array.

Proof. Note in this case n = 8m + 5 and so we are working modulo 48m + 31. For each
i =1,2,3 define P, as the set of partial sums of row . Now divide each P; into four subsets
based on the columns of H: P is the set of partial sums of row ¢ and columns {9,13,...,n},
P; 5 is the set of partial sums of row ¢ and columns {5,6,10,...,n — 3}, P;3 is the set of
partial sums of row ¢ and columns {3,7,11,...,n — 2}, and P, 4 is the set of partial sums of

row i and columns {1,8,12,...,n — 1,4,2}. Then for i = 1 we have:
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Pi1=[2,2m]o U 2m + 1,4m — 1]
PLZ :[46m + 31,48m + 29]2 @) [4m +1,6m + 1]2
Py 3 =[35m + 22,36m + 22] U [22m + 14, 23m + 13]

Py 4 =[42m + 28,43m + 28] U [11m + 8,12m + 7] U {38m + 24,0}

Each set of partial sums, P j, lies in the range 1 to 48m + 31, so we need only be
concerned with equality in Z. Furthermore, each set of partial sums covers two ranges of
numbers (Pj 4 contains two numbers in addition to this). Within these ranges the sets of
partial sums either contain every number in the range, or every other number in the range.
Next note that these ranges do not overlap and therefore the partial sums in row 1 are

distinct. Now we consider row 2:

P51 =[4Tm + 31,48m + 30] U [18m + 14,19m + 13]
Py o =[17m + 13,18m + 13] U [32m + 22, 33m + 21]
Py 3 =[22m + 15,24m + 15]o U [24m + 17, 26m + 15]5

Py =[8m + 6,10m + 6] U [14m + 12, 16m + 10], U {40m + 26,0}.

Note for all j, P» ; lies in the range 1 to 48m + 31 € Z and contains two disjoint ranges
of numbers (P54 contains two additional numbers). Within these ranges the partial sums
either cover every number in the range, or every other number in the range. Also note
that these ranges do not overlap and thus the partial sums in row 2 are distinct. Finally,

consider 7 = 3:
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P31 =[47m + 31,48m + 30] U [26m + 18, 27m + 17]
Pso =[16m + 11,17m + 10] U [25m + 17, 26m + 17]
P33 =[2,m + 1] U [37m + 25, 38m + 25]

P54 =[21m + 13,22m + 12] U [44m + 28,45m + 28] U {18m + 12,0}.

Here we have that each set of partial sums lies in the range 1 to 48m + 31 € Z and
covers two ranges of numbers (Ps 4 also contains two other numbers). Within these ranges
the sets of partial sums contain every number in the range. Next note that these ranges
do not overlap and thus the partial sums in row 3 are distinct. Therefore if we reorder the

rows of H by the permutation R, then H' is simple, concluding the proof ]

Lemma 3.10. For n =6 (mod 8), the row ordering
R={10,14,..,7,2,9,13, ..,n — 1,4,7,11,...,n — 3,1,8,12, ...,n — 2,5,3,6}

yields a simple 3 x n Heffter array.

Proof. Here n = 8m + 6 and we are working modulo 48m + 37. For each ¢ = 1,2, 3 define
P; as the set of partial sums of row 7. Now divide each P; into four subsets based on the
columns of H: P;; is the set of partial sums of row ¢ and columns {10, 14, ...,n}, P; 2 is the
set of partial sums of row ¢ and columns {2,9,13,...,n — 1}, P; 3 is the set of partial sums
of row i and columns {4,7,11,...,n — 3}, and P; 4 is the set of partial sums of row i and

columns {1,8,12,...,n — 2,5,3,6}. For i = 1 we see:
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3.2. REORDERING THE HEFFTER ARRAYS

Pr1 =[2,2m]p U [6m +4,8m + 2],
Pry =[30m + 22, 32m + 20]3 U [32m + 24, 34m + 24]
Pr3 =[32m + 25, 34m + 23] U [38m + 28, 40m + 28]

P4 =[10m +8,12m + 6] U [12m + 9, 14m + 9] U {8m + 6,8m + 5, 0}.

First note that each Pj; lies in the range 1 to 48m + 37 € Z. Furthermore, each set
of partial sums contains two ranges of numbers (P; 4 contains three additional numbers).
Within these ranges the sets of partial sums contain every other number in the range. Next
note that the only ranges which overlap are P2 and P 3 from 32m + 24 to 34m + 24. But
Py 5 covers only the even numbers in this range while in P 3 the partial sums cover the odd

numbers. Therefore the partial sums in row 1 are distinct. Now consider when i = 2:

Py1 =[16m + 14, Tm + 13] U [47m + 37, 48m + 36]
Pso =[Tm + 6,8m + 6] U [28m + 23, 29m + 22]
Py =[36m + 29,37m + 29] U [3m + 4, 4m + 3]

Py =[26m + 22,27m + 21] U [37m + 31, 38m + 31] U {22m + 19, 12m + 11,0}.

First note that each set of partial sums lies in the range 1 to 48m + 37 € Z and covers
two disjoint ranges of numbers (P 4 covers three numbers in addition to this). Within these
ranges the partial sums cover every number in the range. Next note that these ranges do

not overlap and thus the partial sums in row 2 are distinct. Finally, we consider when ¢ = 3:
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3.2. REORDERING THE HEFFTER ARRAYS

Py =[24m + 21,25m + 20] U [ATm + 37, 48m + 36]
P39 =[36m + 31,37m + 30| U [Tm + 7,8m + 7]
Py5 =[20m + 17, 21m + 17] U [11m + 10, 12m + 9]

P34 =[10m +9,11m + 8] U [45m + 34,46m + 34] U {18m + 12,28m + 21,0}.

For j =1,2,3 and 4, P, ; lies in the range 1 to 48m + 37 € Z and covers two ranges of
numbers (P34 contains three numbers in addition to this). Within these ranges the sets of
partial sums contain every number in the range. Also note that these ranges do not overlap
and therefore the partial sums in row 3 are distinct. Thus by reordering each row of H by

R we have made w, simple for each row, concluding the proof ]

Lemma 3.11. For n =7 (mod 8), the row ordering
R={10,14,...,n — 1,2,8,12,....n — 3,6,11,15,...,n,3,9,13,....n — 2,1,4,5,7}

yields a simple 3 x n Heffter array.

Proof. Note in this case n = 8m + 7 and so we are working modulo 48m + 43. For each
i =1,2,3 define P; as the set of partial sums of row i. Now divide each P; into four subsets
based on the columns of H. Define P;; as the set of partial sums of row 7 and columns
{10,14,...,n—1} of H, P; 2 as the set of partial sums of row i and columns {2, 8,12, ...,n—3}
of H, P; 3 as the set of partial sums of row ¢ and columns {6,11,15,...,n} of H, and P, 4 as
the set of partial sums of row i and columns {3,9,13,....,.n —2,1,4,5,7} of H. For i = 1 we

see:
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3.2. REORDERING THE HEFFTER ARRAYS

Py =[1,m] U [20m + 28, 30m + 27]
P =[m+1,2m] U [16m + 15,17m + 15]
P173 :[6m + 7, 8m—|—]2 @] [4m +4,6m + 4]2

Py =2m+4,4m + 2]o U [8m + 7,10m + 7|2 U {32m + 28, 28m + 24,8m + 6,0}.

Each set of partial sums lies in the range 1 to 48m + 43, and each set of partial sums
covers two ranges of numbers (P; 4 covers four numbers in addition to this). Within these
ranges the sets of partial sums either contain every number in the range, or every other
number in the range. Next note that these ranges do not overlap and therefore the partial

sums in row 1 are distinct. Now we consider row 2:

Py1 =[1,m] U [21m + 19, 22m + 18]
P =[m+2,2m + 1] U [40m + 35, 41m + 35]
Py 3 =[11m + 8,12m + 8] U [22m + 19, 23m + 18]

Py4 =[4Tm + 39,48m + 39] U [30m + 24, 31m + 23] U {48m + 41, 14m + 12, 14m + 13,0}.

First note P ; lies in the range 1 to 48m + 43 € Z and covers two ranges of numbers
(Py,4 contains four additional numbers). Within these ranges the partial sums cover every
number in the range. Also, these ranges do not overlap and thus the partial sums in row 2

are distinct. Finally, consider ¢ = 3:
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3.3. BIEMBEDDING Kgn 1

P31 =[46m + 43,48m + 41]5 U [44m + 41, 46m + 395
P35 =[44m + 42, 46m + 405 U [38m + 36,40m + 36
P33 =[18m + 19,19m + 18] U [31m + 31, 32m + 31]

P4 =[14m + 17,15m + 16] U [39m + 40, 40m + 40] U {16m + 17, 6m + 7, 26m + 24, 0}.

Here each set of partial sums lies in the range 1 to 48m + 43 € Z and contains two
ranges of numbers (P34 also contains four other numbers). Within these ranges the sets of
partial sums contain either every or every other number in the range. Next note that the
only ranges which overlap are in P31 and P32 from 44m + 41 to 46m + 40. But in P3; the
partial sums are only the odd numbers in this range while in P3 o the partial sums are only
the even numbers. Thus the partial sums in row 3 are distinct. If we reorder the rows of H

by R, then H' is simple, concluding the proof O
We summarize the results of this section in the following theorem.

Theorem 3.12. There exists a simple Heffter array H(3,n) for all n > 3.

3.3 BIEMBEDDING K1

Now that we have established simple row and column orderings for each original construction
of a 3 x n Heffter array we are prepared to prove that each reordered 3 x n Heffter array
gives a biembedding of Kg,+1 such that every edge is on a face of size 3 and a face of size

n. Below is the specific application of Theorem 2.6 for 3 x n Heffter arrays.

34



3.3. BIEMBEDDING Kgn 1

Corollary 3.13. Given a Heffter array H = H(n,3) with compatible simple orderings w,
on the rows of H (D(6n + 1,n)) and w. on the columns of H (D(6n+1,3)), there exists a
biembedding of Kent1 such that every edge is on a simple cycle face of size n and a simple

cycle face of size 3.

Theorem 3.14. There exists a biembedding of Kgni1 such that every edge is on an n-cycle

and a 3-cycle forn > 3.

Proof. By Theorem 3.12, given any n € Z™, n > 3, there exists a 3 x n simple Heffter array,
call it H = (h;j). Let L be the half-set of elements in Zg, 1 contained in H. Recall that
the rows of H form a D(2mn+1,n) and the columns of H form a D(2mn+1,m). Then using
Corollary 3.13 it suffices to show that the orderings w, = (h11, hi2, ..., hin)(ha1, hoo, . .., hop)
(hs1,hs32,. .., hsy) and we = (h11, ho1, h31)(hi2, heo, ha2) ... (hin, hon, hs,) are compatible on
the row and column Heffter systems. We must consider two cases: n = 1,2 (mod 3) and
n =0 (mod 3).

First assume n = 1,2 (mod 3). In this case we do not change w, or w.. Given an
element h;;, we o wr(hij) = hj41,j+1 where the row subscript is modulo 3 and the column
subscript is modulo n. Since 1 and 2 are relatively prime with 3, the permutation created
by continuously applying w. o w, is of length 3n. Therefore, this is a cyclic permutation of
L and the orderings are compatible.

Now assume n = 0 (mod 3). In this case we leave w, as presented but change the
ordering w. to be (hi1, ha1, ha1)(hi2, hao, h32) . .. (h3e, hae, hic). Note that in changing only
the final cycle, the row and column Heffter systems associated with H remain simple. Then
given an element h;;, we have that w. o wy(hij) = hit1 41 for j < n and we o wy(hij) =
hi—1,+1 = hi—1,1 for j = n where the row position is modulo 3 and the column position is
modulo n. Starting with hq1 and continuously applying w. o w, we obtain the permutation
(h11,h22, ..., han, ho1, h3a, ..., hon, hs1, hi2,. .., hi,). This is a cyclic permutation of L, and

therefore the orderings are compatible. O
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CHAPTER 4

b X n HEFFTER ARRAYS

In this section we discuss partial results for the reordering of 5 x n Heffter arrays. As
before, we first establish the starting constructions for 5 x n Heffter arrays broken up into
cases modulo 8. We then show general reorderings of each construction which yield distinct
partial sums for the first three rows. Next we discuss why we were unable to find general
orderings for the last two rows, and finally we present specific reorderings for n < 100 (see

Appendix A).

4.1 CONSTRUCTING 5 X n HEFFTER ARRAYS

The construction for 5 x n Heffter arrays follows a similar pattern to the construction of
3 x n Heffter arrays. The following theorem gives a construction of a 5 x n Heffter array for

all n > 3 with cases for n =0,1,...,7 (mod 8). Details of the proof can again be found in
[2].

Theorem 4.1. [2] There exists a 5 x n Heffter array for n > 3.

Proof. We start with specific constructions for the 5 x 3, 5 x 4, 5 x 5, and 5 x 6 Heffter
arrays, followed by general constructions for n =0,1,...7 (mod 8). We consider each case

individually.
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4.1. CONSTRUCTING 5 x N HEFFTER ARRAYS

n = 3: The following is a 5 x 3 Heffter array:

| 6 —-15 9 ]
4 -1 -13
-10 12 =2
-3 8 -5

I -7 -4 11 |

n = 4: The following is a 5 x 4 Heffter array:

7 =16 —-10 19
-12 15 17 =20
—2 9 18 11

6 ) 3 14

1 -13 8 4

n = 5: The following is a 5 x 5 Heffter array:

4 11 =25 -24 -—-17

-10 18 —-23 —-20 -16
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4.1. CONSTRUCTING 5 x N HEFFTER ARRAYS

n = 6: The following is a 5 x 6 Heffter array:

1 -8 =7 15 26 =27
-2 20 -11 24 -25 —6
29 -19 17 -4 -10 -13
30 -9 -21 —-23 -5 28
3 16 22 —-12 14 18

n =0 (mod 8),n > 8: Define m = ”T_S and create eight set columns:

-8m -8 —8m—-13 —-24m—-35 24m+26 24m+40

[ 8m + 10 —4m—-5 —12m—15
8m + 11 —8m—12 24m+30 —-24m—31 —-24m—33 24m+36 24m+38 —24m —39
A= 1 24m + 28 —8m —9 22m + 25 -8m -7 —-10m—-14 —-16m—-21 —4m -3
-2 12m+16 —-24m—-29 —-14m—18 16m+ 19 —4m —4 —8m — 6 22m+24

—16m — 20 —24m —27 20m + 23 24m + 32 24m + 34 14m +17 —24m —37 —18m — 22

For each 0 < r < m — 1 define

—4r4+8m+5 4r —4m — 2 —4r +8m+4 4r —4m —1 4r —8m —3 —4r 4 4m 4r —8m — 2 —4r +4m—1
2r+8m+14  —2r—10m—15 2r+16m+22 —2r—18m—-23 —-2r—8m—-15 2r+10m+16 —2r—16m —23 2r+18m+ 24

Ar=1]2r—16m—18 —2r+14m+16 2r—24m —25 —2r+22m+23 —2r+16m+17 2r —14m —15 —2r+24m+24 2r —22m — 22

2r +24m +41  —2r —26m —41 2r+28m+41 —2r —30m —41 —2r—32m —41 2r+4+34m+41 —2r—36m —41 2r+38m +41

—2r —24m —42  2r +26m+42 —2r —28m —42 2r+30m + 42 2r+32m+42  —2r —34m —42 2r +36m+42 —2r —38m — 42

Add on the remaining n — 8 columns by concatenating the A, arrays for each value

of r between 0 and m — 1. So the resulting array is:

A Ay Ay - Apq] -
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4.1. CONSTRUCTING 5 x N HEFFTER ARRAYS

n =1 (mod 8),n > 9: Here m = “g2. The first nine columns are:

1 —8m—11 —-8m—10 24m+33 —-24m—-34 —4m -5 20m + 23
-2 —12m —14 —10m —13 —18m —20 24m+27 24m+37 24m+39

A= 3 —24m —28 18m+22 —-24m—-32 —-8m—-9 —18m—21
40m +45 24m+29 -24m—-30 —-4m-7 —-16m—-19 —-24m—-36 —8m—8

40m +44 20m+24  24m + 31 22m+26  24m+35  22m+25

For each 0 < r < m — 1 define

—4r4+8m +7

2r + 16m + 20

Ar=| 2r — 24m — 26
2r +24m + 44
—2r —24m — 45

4r —4m — 2
—2r —18m — 23
—2r 4+ 22m + 24
—2r — 26m — 44

2r + 26m + 45

—dr +4m +3

2r +10m + 14

2r — 14m — 16

2r 4+ 28m + 44
—2r —28m — 45

4r —8m — 4 4r —8m —5
—=2r—8m —13 —2r—16m — 21
—2r +16m + 16 —2r +24m + 25
—2r —30m — 44 —2r —32m — 44

2r 4 30m + 45 2r + 32m + 45

—4r +4m
2r + 18m + 24
2r —22m — 23

2r + 34m + 44

—24m — 40

—8m — 12

—-12m—-16 —-8m -6

24m + 41

—24m — 38 16m + 17

4r —4m —1
—2r —10m — 15
—2r 4 14m + 15
—2r — 36m — 44

Add on the remaining n — 9 columns by concatenating the A, arrays for

of r between 0 and m — 1.

n =2 (mod 8),n > 10: In this case m = =12, The first ten columns are:

1 —-8m—-12 —-8m—-11 —12m—16
-2 —12m —15 —14m —19 20m + 25
A= 3 24m + 32 2m+29 —24m —35

40m+49 —24m — 31
40m 450  20m + 26

24m + 34

—24m —33 —8m —10

For each 0 < r < m — 1 define

—4r 4+ 8m +6
2r+8m+ 14
Ar=| 2r —16m —19
2r +24m +49
—2r — 24m — 50

4r —8m -7
—2r — 16m — 23
—2r +24m + 29
—2r — 26m — 49

2r + 26m + 50

—4r+4m +2
2r +10m + 15
2r — 14m — 16

2r + 28m + 49

24m + 36

8

24m 438  24m+40  16m +20
20m+27  —14m —18 24m 442
—4m -7 —4m—6  —24m —41
—24m —37 18m+23 —-8m—13
—16m —21 -24m -39 —8m—8

4r —4m —3 4r —8m —4
—2r —18m —25 —2r—8m —15
—2r +22m+27 —2r+16m + 18
—2r —30m —49 —2r —32m —49

—2r —28m —50 27 +30m+50 27+ 32m + 50

24m + 43
—24m — 42
—4m — 4

—12m — 15

16m + 18

—4r 4+ 8m +2
2r +8m + 14
2r —16m — 15

2r 4+ 38m + 44

—2r—34m —45 2r+36m+45 —2r—38m —45
each value
—8m —9 —4m —4  —24m —47
—24m —43 —24m —45 24m +48
2dm+44 —-10m—-14 —4m -5
—16m — 22  24m + 46 22m + 28
24m + 30 14m +17 —18m —24
—4r+8m +5 4r —4m —4r+4m+1
2r+16m+24 —2r—10m—16 2r+ 18m + 26
2r —24m —28  —2r+14m+15 2r —22m — 26
2r +34m +49  —2r —36m —49  2r + 38m + 49
—2r —34m —50 2r +36m+50 —2r — 38m — 50
arrays for each value

Add on the remaining n — 10 columns by concatenating the A,

of r between 0 and m — 1.
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4.1. CONSTRUCTING 5 x N HEFFTER ARRAYS

n =3 (mod 8),n > 11: Now m = 21 and create eleven set columns:

—8m — 12 —4m—-5 —16m—26 —4m —6 16m + 24 22m+32  —24m —50 —10m —18 24m + 55

8m +13 —4m =7
10m+16 —12m—-19 —12m—-20 22m+33 —-8m—10 24m+45 —24m —46 —24m —48 —16m —27 24m +53 16m + 23
A= |-18m—28 16m+25 —24m —38 —24m —40 24m+35 —10m —17 24m+47 —18m—30 24m+34  ldm+21 —8m — 9
-2 —24m —36  20m+31 24m+41  24m+43 -24m—-44 -8m—-14 —4m -3 24m+51 —24m—52 —8m—15
1 24m+37  24m+39 —-18m—29 —-24m—42 14m+22 —8m—11 24m+49 —8m —8 —4m -4  —24m —54
For each 0 <7 < m — 1 define
—4r4+4m+1 4r —8m —6 —4r +4m+2 4r —8m -7 4r —4m+1 —4r +8m+4 4r —4m —4r+8m +5

2r+18m+31 —2r—-16m—-28 2r+10m+19 -2r—-8m—16 —2r—18m—32 2r+16m+29 —2r—10m—-20 2r+8m+17

Ar=|2r—22m—31 —2r+24m+33 2r—14m—20 —2r+16m+22 —2r+22m+30 2r—24m—32 —2r+1dm+19 2r—16m—21
2r +24m +56  —2r —26m — 56 2r +28m+56 —2r —30m —56 —2r —32m —56 2r+34m+56 —2r —36m —56 27+ 38m + 56

—2r —24m —57 2r+26m+57 —2r—28m —57 2r+30m+57  2r+32m+57 —2r—34m —57 2r+36m+57 —2r—38m —57

Add on the remaining n — 11 columns by concatenating the A, arrays for each value

of r between 0 and m — 1.

n =4 (mod 8),n > 12: Define m = ”_Tm and create twelve set columns:

8m + 14 —4m -7 —-8m—-13 —-8m—-12 —8m—-17 14m+24 —-24m—-49 -24m-51 —-8m -9 14m+23  24m+37  24m+60
8m +15 —8m—16 —12m —21 —14m —25 16m+27 —10m—19 24m+ 50 —4m -5  24m+54  24m+56 —24m —57 —24m —59
A=|-16m—28 12m+22 —24m—41 22m+36 —24m—45 24m+48 24m+38 24m+52 —24m—53 —24m—55 24m+58 —18m —32|-
1 —24m —39 24m+42 24m+44 —8m—11 —24m —47 —-16m—29 22m+35 —8m—18 —4m -4 —8m — 8 22m + 34
-2 24m +40  20m+33 —24m —43  24m +46 —4m—-6 —-8m—-10 —18m—-31 16m+26 —10m—20 —16m—30 —4m—3

For each 0 <r <m — 1 define

—4r4+8m+7 4r —4m —2 —4r +8m+6 4r —4m —1 4r —8m —5 —4r +4m 4r —8m —4 —4r+4m—1

2r+8m+19 —-2r—10m—-21 2r+16m+31 —2r—18m—-33 —-2r—8m—20 2r+10m+22 —2r—16m —32 2r+18m+ 34

Ar=|2r—16m—25 —2r+14m+22 2r—24m-36 —2r+22m+33 —2r+16m+24 2r—14dm—21 —2r+24m+35 2r—22m —32
2r +24m +61  —2r —26m —61 2r+28m+61 —2r —30m —61 —2r—32m —61 2r+4+34m+61 —2r —36m —61 27+ 38m + 61

—2r —24m —62  2r+26m+62 —2r —28m —62 2r+ 30m + 62 2r +32m+62  —2r —34m —62  2r+36m+62 —2r —38m — 62

Add on the remaining n — 12 columns by concatenating the A, arrays for each value

of r between 0 and m — 1.
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4.1.

n =5 (mod 8),n > 13:

n—13

In this case m = 3

CONSTRUCTING 5 x N HEFFTER ARRAYS

. The first thirteem columns are:

1 —8m—15 —-8m—-14 —4m-9 —8m-—13 —4m -7 20m + 33 16m+25 24m+55 24m+57 —18m—32 —10m —19 —24m —62
2 —12m-20 -10m—18 ~18m—29 —16m —27 —18m—30 —24m—-50 —24m—52 —4m—6 ~24m—56 22m+35 24m+61  24m +63
A= 3 20m+34  18m+31 —24m —44 24m+47  24m 49  —8m—12 —8m—16 —12m—21 —16m—28 —24m 58 14m+23 —8m -8
40m +65 —24m —40 —24m —42 24m + 45 24m+39 —24m—48 —-12m—22 —8m—10 —-24m—-54 —8m—11 24m + 59 —4m —5 16m + 24
40m+64  24dm+41  24m 443  22m+37 —24m—46 22m+36  24m +51 24m + 53 16m +26  24m+ 38 —4dm -4  —24m —-60 —8m —17
For each 0 < r < m — 1 define
—4r +8m +9 4r —4m — 2 —4r +4m+3 4r —8m — 6 4r —8m -7 —4r +4m 4r —4m — 1 —4r +8m +4
2r+16m+29 —2r—18m—33 2r+10m+20 —2r—8m—18 —2r—16m—30 2r+18m+34 —2r—10m—21 2r+8m+19
Ar=12r—24m—37 —2r+22m+34 2r—14m—22 -2r+16m+23 —2r+24m+36 2r—22m—33 —2r+14m+21 2r — 16m — 22
2r+24m+64  —2r—26m—64 2r+28m+64 —2r—30m—64 —2r—32m—64 2r+34m+64 —2r—36m—64 2r+38m+64
—2r —24m —65 2r +26m+65 —2r—28m—65 2r+30m+65 2r+32m+65 —2r—34m—65 2r+36m+65 —2r—38m —65
Add on the remaining n — 13 columns by concatenating the A, arrays for each value
of r between 0 and m — 1.
— n—14 .
n =6 (mod 8),n > 14: Here m = "%= and create fourteen set columns:
1 —8m—16 —8m—15 —8m-14 —4m-9 —4m-8 —8m—12 -8m—13 —4m—6 —4m-T7 —8m—10 —16m—31 24m+66 —24m— 67
-2 —12m —21 —14m —26 —12m —22 —16m—29 —14m—25 —8m—17 —16m —30 —24m —>57 24m +60 16m +27 —24m —63 —4m—4 24m + 68
A= 3 20m+36  22m+40  20m+35  20m+37 18m + 32 16m+28  24m+56 —10m—19 —24m—59 24m+62 —8m—11 —24m—65 —18m —34| .
40m 470  24m+44  —24m —45 —24m —47 —24m —49 —24m —51 —24m —53 24m+42  24m+58 —18m —33 —8m —18 24m +64 14m +23 —4m —5
40m+69 —24m —43 24m+46  24m+48  24m+50 24m+52  24m+54 —24m 55 1dm+24  22m+39 —24m—61 24m+41 —10m—20 22m+38
For each 0 <r <m — 1 define
—4r 4+ 8m +8 4r —8m —9 —4r +4m+2 4r —4m —3 4r —8m —6 —4r4+8m+7 4r —4m —4r +4m+1
2r+8m+19 —2r—16m—-32 2r+10m+21 —-2r—18m—-35 —2r—8m—20 2r+16m+33 —2r—10m—22 2r+18m+ 36
Ar=1|2r—16m—26 —2r+24m+40 2r—14m—22 —2r+22m+37 —2r+16m+25 2r—24m—39 —2r+1dm+21 2r —22m — 36
2r +24m +69  —2r —26m —69 2r+28m+69 —2r —30m —-69 —2r—32m—69 2r+34m+69 —2r—36m —69 27+ 38m + 69
—2r —24m—"70 2r+26m+70 —2r—-28m—-70 2r+30m+70 2r+32m+70 —2r—34m—-70 2r+36m+70 —2r—38m —"70
Add on the remaining n — 14 columns by concatenating the A, arrays for each value

of r between 0 and m — 1.
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4.2. REORDERING THE HEFFTER ARRAYS

n =7 (mod 8),n > 7: Define m = "7_7. The first seven columns are:

8m +9 —4m — 5 24m + 27 —4Am -3 -24m—-31 -24m —-32 24m+35

10m + 11 16m+17 —-24m —26 22m+22 —-24m—23 24m+33 —24m —34

A= |-18m—-19 —12m—13 —8m —38 24m + 29 8 +6 14dm+15 —8m —10
1 —24m —24 20m+21 —18m —20 16m+18 —10m—12 16m + 16
-2 24m 425 —12m — 14 —24m —28 24m + 30 —4m — 4 —8m —7

For each 0 < r < m — 1 define

—4r+4m+1 4r —8m — 4 —4r +4m+2 4r —8m —5 4r —4m+1 —4r +8m + 2 4r —4m —4r +8m +3
2r+18m+21 —2r—16m—-19 2r+10m+13 —-2r—-8m—11 -2r—-18m—22 2r4+16m+20 —2r—10m—14 2r+8m+ 12
Ar=|2r—22m—21 —2r+24m+22 2r—1dm—14 —2r+16m+15 —2r+22m+20 2r—24m—21 —2r+1dm+13 2r—16m— 14
2r+24m+36  —2r—26m —36 2r+28m+36 —2r—30m—36 —2r—32m—36 2r+34m+36 —2r—36m—36 2r+38m+36

—=2r —24m —37  2r+26m+37 —2r—28m—37 2r+30m+37 2r+32m+37 —2r—34m—-37 2r+36m+37 —2r—38m — 37

Add on the remaining n — 7 columns by concatenating the A, arrays for each value

of r between 0 and m — 1.

Clearly these are all 5 x n arrays. To prove they are Heffter arrays simply sum each row
and column, verifying each row and column sum is 0 (mod 10n + 1). Details of this step

can be found in [2] ]

4.2 REORDERING THE HEFFTER ARRAYS

Suppose H = (h;j) is any Heffter array given by the constructions in Theorem 4.1. We
first note that each column in H is a simple ordering just using the standard ordering
we = (h11, ha1, ha1, hat, hst)(hi2, hag, hsa, haz, hs2) - .. (Bin, hon, han, hap, hsy). Thus we must
only reorder the rows so they have distinct partial sums. To find general reorderings for any
m x n Heffter array we need to find a pattern. The obvious, and seemingly only, place to
look is in the columns developed by A,, which expand in a patterned way (the first set of

columns doesn’t expand at all). In the case of the 5 x n Heffter arrays, this means finding
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4.2. REORDERING THE HEFFTER ARRAYS

a way to interleave the columns of A,. Unfortunately, the first three rows follow the same
pattern, while the last two rows follow a different pattern. For this reason, we were unable
to find a single general reordering for all five rows. However, we were able to find general
reorderings for the first 3 rows in the same way we found reorderings for the 3 x n Heffter
arrays. For now we will only discuss the eight general cases as the four specific cases for
n = 3,4,5,6 will be discussed at the end of this chapter. We will not provide proofs for
these lemmas, as they follow the same outline as in the 3 x n cases. For the following

lemmas, let H be a 5 x n Heffter array with original construction from Theorem 4.1.

Lemma 4.2. For n =0 (mod 8),n > 8, the row ordering
R=1{9,13,...,.n—3,11,15,...,n — 1,7,10,14,...,n — 2,6,12,16, ...,n,4,8,2,5,1, 3}
yields a 5 x n Heffter array with distinct partial row sums in the first three rows and whose

columns form a simple D(10n + 1,5).

Lemma 4.3. For n =1 (mod 8),n > 9, the row ordering
R=1{10,14,....,n —3,12,16,....,n — 1,7,11,15,....,.n — 2,5,13,17,...,n,2,1,3,8,4,6,9}
yields a 5 x n Heffter array with distinct partial row sums in the first three rows and whose

columns form a simple D(10n + 1,5).

Lemma 4.4. For n =2 (mod 8),n > 10, the row ordering
R={11,15,....,.m — 3,13,17,...,n — 1,5,12,16,...,n — 2,14,18, ...,n, 2,1, 3,6,7,8,9,4,10}
yields a 5 x n Heffter array with distinct partial row sums in the first three rows and whose

columns form a simple D(10n + 1,5).

Lemma 4.5. For n =3 (mod 8),n > 11, the row ordering
R={12,16,....,n —3,14,18,...,n — 1,5,13,17,...,n — 2,15,19,...,n,2,1,8,6,3,9,11,7,10,4}
yields a b x n Heffter array with distinct partial row sums in the first three rows and whose

columns form a simple D(10n + 1,5).
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4.3. THE PROBLEM WITH THE LAST TWO ROWS

Lemma 4.6. Forn =4 (mod 8),n > 12, the row ordering
R={13,17,...n—3,15,19,...,n — 1,2,14,18,....,n — 2,5,16,20, ...,n, 12,7,3,6,10,1,4, 11,9, 8}
yields a 5 x n Heffter array with distinct partial row sums in the first three rows and whose

columns form a simple D(10n + 1,5).

Lemma 4.7. Forn =5 (mod 8),n > 13, the row ordering
R=1{14,18,...,n—3,16,20,...,n — 1,2,15,19, ....,n — 2,4,17,21, ...,n,3,1,7,6,9,5,8, 10, 13,12, 11}
yields a b x n Heffter array with distinct partial row sums in the first three rows and whose

columns form a simple D(10n + 1,5).

Lemma 4.8. Forn =6 (mod 8),n > 14, the row ordering
R=1{15,19,...,n—3,17,21,...,n — 1,2,16,20, ...,n — 2,18,22,....n,4,3,1,5,10,7,6,8,12,11,9, 13, 14}
yields a 5 x n Heffter array with distinct partial row sums in the first three rows and whose

columns form a simple D(10n + 1,5).

Lemma 4.9. For n =7 (mod 8),n > 7, the row ordering
R=1{8,12,..,n—3,10,14,...n —1,7,9,13,...,n — 2,11,15,...,m,3,4,2,6,1,5}
yields a 5 x n Heffter array with distinct partial row sums in the first three rows and whose

columns form a simple D(10n + 1,5).

4.3 THE PROBLEM WITH THE LAST TWO ROWS

It is valid to find individual, or separate, orderings for different columns, or rows, as long
as w, and w,. are compatible. As such, we attempted to find a separate general reorder-
ing for the last two rows in the 5 x n Heffter arrays. Unfortunately, we did not succeed
because of the way the last two rows are constructed. To illustrate the problem we had
with generalizing a reordering for the last two rows we will consider a specific case modulo
eight. Consider the case when n =7 (mod 8). As stated before, we need only consider the

concatenated columns (i.e. the last n —7 columns) to establish a pattern. In the case n =7
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4.4. SPECIFIC SOLUTIONS

(mod 8) we concatenate the following columns for values of r between r and m — 1 (note

here we only display rows 1, 4, and 5):

—4r+4m+1 4r —8m —4 —4r +4m + 2 4r —8m —5 4r —4m +1 —4r 4+ 8m +2 4r — 4m —4r4+8m+3

2r+24m+36 —2r—26m—36 2r+28m+36 —2r—30m—36 —2r—32m—36 2r+34m-+36 —2r—36m—36 2r+ 38m+ 36
—2r —24m —37 2r4+26m+37 —2r —28m —37 2r+30m+ 37 2r+32m+37 —2r—34m —-37 2r4+36m+37 —2r —38m —37

In all five rows as m grows larger, each concatenated column adds additional numbers
which are equally spaced from the previous number. For example, column 8 of row 1 expands
asfollowsfor 0 <r <m—1: m=0:{0},m=1:{b},m=2:{9,5},m =3:{13,9,5}, etc.
Column 8 of row 5 expands as follows for 0 <r <m—1: m=0:{0},m=1:{-61},m =
2:{-85,—87},m = 3:{-109,—111, —113}, etc. We cannot however place these columns
next to each other in the reordering since the partial sums would then move outside of the
modulus range, allowing for possibility of overlap (which indeed happens in certain cases).
To eliminate this problem we attempted to pair each column with one of similar absolute
value, but opposite sign. In the first three rows, this method worked perfectly as the partial
sums remain the same distance apart regardless of how large m is. However, in the last
two rows the partial sums grow further apart as m grows larger, creating eventual overlap
of the partial sums. We still maintain that it is possible to reorder every 5 x n matrix, but

are unsure as to whether a general solution is possible to find.

4.4 SPECIFIC SOLUTIONS

Although unable to find a general reordering for the 5 x n Heffter arrays, we found specific
reorderings for H(5,n) with 3 < n < 100. The reorderings were found using Mathematica
and are presented as cyclic permutations. The following example demonstrates how to use

the reorderings presented in Appendix A.
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4.4. SPECIFIC SOLUTIONS

Example 4.10. For n =5 the original construction of H(5,5) is:

1 ) 6 7 =19
2 8§ 12 15 14
3 9 -21 22 13
4 11 =25 -—-24 -17

-10 18 -23 -20 -16

Figure 4.1: The original 5 x 5 Heffter array

The reordering for n =5 in Appendix A is (3 4 5 2 1). So we reorder each row by the

permutation R = {3,4,5,2,1} to get the array:

6 7T =19 5 1
12 15 14 8 2
-21 22 -13 9 3
-25 —-24 -—-17 11 4

-23 =20 -16 18 -10

Figure 4.2: The reordered 5 x 5 Heffter array

One can easily check that the partial sums for each row are distinct.

The following theorem states the existence of these orderings and biembeddings of

Kion41-

Theorem 4.11. (a) There exists a simple 5 x n Heffter array for 3 < n < 100.

(b) There exists a biembedding of Kion+1 with every edge on a 5-cycle and an n-cycle.

Proof. Let H = (h;;) be the H(5,n) presented in 4.1 for 3 <n < 100.

(a) In Appendix A we present a simultaneous reordering for every row so that the rows
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4.4. SPECIFIC SOLUTIONS

(and columns) of H form simple Heffter systems. Therefore there exists a simple 5 x n
Heffter array for 3 < n < 100.

(b) Given the simple Heffter array H from above, let L be the half-set of elements in
Z1on+1 contained in H. Recall that the rows of H form a D(2mn+1,n) and the columns of
H form a D(2mn+1, m). Then using Corollary 2.6 it suffices to show that the orderings w, =
(h11, h12, ..., hin)(hot, hao, ... hop) ... (hs1, hsa, . .., hsy) and we = (R, hot, hat, hat, st ) (hi2, oo, haa, hag,
are compatible on the row and column Heffter systems. We must consider two cases:
n=1,2,3,4 (mod 5) and n =0 (mod 5).

First assume n = 1,2,3,4 (mod 5). In this case we do not change w, or w.. Given an
element h;j, we o wr(hij) = hit1,j41 where the row subscript is modulo 5 and the column
subscript is modulo n. Since 1,2,3, and 4 are relatively prime with 5, the permutation created
by continuously applying w, o w, is of length 5n. Therefore, this is a cyclic permutation of
L and the orderings are compatible.

Now assume n = 0 (mod 5). In this case we leave w, as presented but change w, so the
last cycle (hsp, han, h3n, hon, h1n). Note that in changing the w,, the row and column Heffter
systems associated with H remain simple. Then given an element h;j, weow,(hij) = hit1 j+1
for j < n and weowy(hij) = hi—1j4+1 = hi—1,1 for j = n where the row position is modulo 5
and the column position is modulo n. Similar to the 3 x n case, this is a cyclic permutation

of L, and therefore the orderings are compatible. ]
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CHAPTER 5

PARTIAL SUMS IN CYCLIC GROUPS

In this chapter we discuss a conjecture about the ordering of subsets of Z, \ {0}.

Conjecture 5.1. Let &7 C Z,,. There exists an ordering of the elements of </ such that

the partial sums are all distinct, i.e., for all1 < j <k, s; # s;.

Conjecture 5.1 was first discussed by Archdeacon, Dinitz, Mattern, and Stinson in [3].
Alspach was interested in a similar decomposition problem, but with paths of length &
instead of k-cycles. The following slightly different conjecture was made several years ago

by Alspach, see [6]:

Conjecture 5.2. (Alspach) Suppose A = {ai,...,ax} C Zy, \ {0} has the property that
Y acaa # 0. Then there exists an ordering of the elements of A such that the partial sums

are all distinct and nonzero.
In the following proposition, we show that Conjecture 5.2 implies Conjecture 5.1
Proposition 5.3. [3] Conjecture 5.2 implies Conjecture 5.1.

Proof. Assume that Conjecture 5.2 is true. Let A = {a1,..., a5} C Z,\{0}. If >",c4a #0,
then by Conjecture 2 there is an ordering of the elements of A such that the partial sums

are all distinct, proving Conjecture 1 in this case.
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So assume that » . 4 a = 0. It follows that /;:11 a; # 0. So by Conjecture 2 there is an
ordering (a},d,...,a}_;) of {a1,...,ax_1} where all of the partial sums are distinct and
nonzero. Now reinsert aj at the end of the ordering to get (af,a5,...,a},_;,ar). The only
new partial sum is s = 0 = > -, a and since all of the earlier partial sums are nonzero
(and distinct), we have that all the partial sums are now distinct. This proves Conjecture

5.1. O

These two conjectures are natural generalizations of sequenceable groups. A sequenceable
group is one which has an ordering of all the group elements such that all the partial sums
are distinct. It is well known that (Z,,+) is sequenceable if and only if it had a unique
element of order 2. More generally, the following list gives a summary of known sequenceable

groups. For references to the proofs of these results, see the survey by Ollis [14].

1. Abelian groups with a unique element of order 2.

2. Dihedral groups of order at least 10.

3. Non-abelian groups of order n where 10 < n < 32.

4. Some groups and direct product of groups of order pg where p and g are odd primes.

9. A5 and S5.

We note that if Conjecture 5.1 was proven for all n, there would be no need to find
reorderings for any Heffter arrays, as given an H(m,n) there would then exist a simple
D(2mn+1,n) and a simple D(2mn + 1,m). For the biembedding problem, one would still
need to prove the compatibility of the orderings on these simple Heffter systems. The proof
of Conjecture 5.1 for k < 6 is given in [3], in the following proof we give the details only for

k =6.
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Theorem 5.4. Conjecture 5.1 is true when k < 6.

Proof. See [3] for the cases where k < 5. For the remainder of this proof we let &/ =
{a1,a9,as3,a4,a5,a6}, and let s; be the partial sum of the first ¢ numbers in an arrangement
of @7. Let p be the number of pairs {z,—z} in «; so p = 0,1,2, or 3. First note that
s; # Si41 for any 1 < i < 5 since 0 € 7. Also note that if o7 is arranged such that for all 4,
a; # —a;41, then s; # s;10 for any 1 < ¢ < 4. Assuming this, we must only check the cases
$1 = 84,81 = S5,51 = S¢,S2 = S5, 52 = Sg, and 3 = Sg.

Assume p = 0, and let & = {u,v,w,x,y,z}. Arrange & as A = (u,v,w,x,y, 2),
renaming if necessary, so that si, so,s3, and s4 are distinct. In this case since there are
no occurrences of a pair {z, —z}, the only conditions that can fail are the following six
possibilities: (1) s; = s5 and s3 = sg, (2) s1 = s5 and s3 # sg, (3) s1 # s5 and s3 = s,
(4) s1 = sg, (5) s2 = s5, or (6) sa = sg. It is straightforward to show that in each of these
cases the other possibilities are mutually exclusive. We will look at each case individually.
For all cases, let s} and s/ denote the i*" partial sum after one (') or two (”) changes of

ordering, denoted A’ and A” respectively.

1. (s1 = s5 and s3 = sg): In this case we have v+w+z+y =0 = z+2+y. Now arrange
o as follows: A’ = (u,v,z,w,z,y). Here both s3 and s5; have changed. Clearly,
sy # sk as 8| = 81 = s5 # s§. Also, sh # st since sh, = st would imply = + w + z = 0;
however, since = + z +y = 0 this means w = y, a contradiction. Finally, s§ # sg since

/ /
85 # 83 = 86 = Sg.

2. (s1 = s5 and s3 # sg): In this case we have that v + w +  +y = 0. Now arrange &/
as follows: A" = (u,v,w,x, z,y). First note that only s5 has changed, and so we only
need to check conditions containing st. Clearly, s] # st since s) = s1 = s5 # s5. We
could however have s, = st. If this is the case, then v+ w+z+y=0=w+x + 2.
Then arrange o7 as follows: A” = (u,w,v,x,z2,y). Here only s, has changed from

the previous arrangement, so we need only check conditions containing sj. We see
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that s5 # st as sy # sh = s; = s5. We also see that sf # sg since if not, then we

get v+ x + z 4+ y = 0; however, since v + w + x + y = 0 we would have w = z, a

contradiction.

. (s1 # s5 and s3 = sg): In this case x + y + z = 0. Now arrange ./ as follows:

A" = (u,v,z,w,y, z). Here only s3 has changed, but sj # si as s§ # s3 = S = 4.

. (s1 = sp): Here we have that v + w + x + y + z = 0. Arrange & as follows: A’ =
(v,u, w, x,y, z). Note that only s; has changed, so we only need to check the conditions
containing s/, including s} = ). Clearly, s} # sg since | # s1 = sg = sz. However,

it is possible for s§ = s} or s§ = s, but note that these cases are mutually exclusive.

(a) (s1 = s¢ and s} = s): In this case we get v+w+x+y+2 =0=u+w+z. Then
arrange < as follows: A” = (v,u,w,y,z,z). Note that only s} has changed from

A’. Thus we only check s{ = s/|. But this is impossible since s| = s} = s}, # 5.

(b) (s1 =sp and s} = sf): In this case we get v+w+z+y+2=0=u+w+z+y.
Arrange 7 as follows: A” = (v,u,w,y,z,x). Here only s} and sf have changed
from the previous arrangement. We see that s{ # s/ since equality implies that
u~+w+y = 0 and since u +w + 2 +y = 0 we would have x = 0, a contradiction.
Also, s} # st since if not, then we have that u + w + y + z = 0; however, since
u+w+ x4y = 0, this implies z = z, which is impossible. Finally, s§ # st as
equality would imply that w4+ y + 2z = 0, but since v+ w+z +y+ 2 = 0 we

would have v = —x, which is a contradiction.

5. (s2 = s5): In this case we have w + = + y = 0. Now arrange < as follows: A’ =

(u,v,w,x,z,y). Note that only s5 has changed so we only need to check those cases
involving sf. Clearly sh # si as s = so = s5 # s;. However, it is possible for
sh = st. In this case we get w +x +y =0 =v+w+ z + z. Arrange &7 as follows:

A" = (u,v,w, z,y,x). Here only s} and sf have changed from A’. We see s| # )| as
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equality would imply that v +w+ z = 0 and since v + w + x + z = 0 this would imply
x = 0, which is impossible. Also, s{ # sf as s| = s| = s§ # s¢. Finally, s5 # st as

1 /!
89 = S9 = S5 # S5.

6. (s2 = sg): In this case w+x +y+ 2 = 0. Arrange & as follows: A’ = (u,w,v,z,y, 2).
Here only so has changed and thus we need only check the cases containing s,. We
see that s, # s as s, # so = sg = sg. It is possible for s}, = st. In this case we have
wH+z+y+2=0=v+z+y. Nowarrange & as follows: A” = (u,w,v,,z,y). Here
only sg has changed from A’. We see s/ # st as equality would imply w+v+2z+2 = 0;
however, since w + x + y + z = 0 this would mean v = y, a contradiction. Clearly,

sy # st as sy = sh = sg # s5. This completes the case for p = 0.

Next assume that p = 1. Let & = {x,—z,v,w,y, 2} and arrange </ as follows: A =
(z,v,—z,w,y,z). Since z is not adjacent to —z, the only conditions that can fail are the
following nine possibilities: (1) s; = s4 and sy = s¢ (2) s1 = s4 and s3 = sg, (3) s1 = 4,
S9 # ¢, and s3 # sg, (4) s1 # s4 and so = sg, (5) $1 # S4, S1 # S5, and s3 = sg, (6) s1 = 85
and s3 = sg, (7) s1 = s5 and s3 # sg, (8) s1 = sg, or (9) so = s5. It is straightforward to
show that all other combinations are not possible. We consider each case individually and

define s, and s as before.

1. (s1 = s4 and sy = sg): In this case we have z = v+ w = w + y + z. Arrange &/ as
follows: A" = (z,w,y,v,—x,z). Here s, s3, and s4 have changed. Clearly s} # s as
sh =81 = s4 # ) and sh # si as sh # sa = sg = s;. Also, sh # sk since equality
would imply that x = y + v and since z = v + w this implies that w = y, which is
impossible. Finally, s # si since if s = s, then x = v + 2, and since = v + w this

would mean w = z, a contradiction.

2. (s1 = s4 and s3 = sg): In this case = v+ w and w + y + z = 0. Then arrange &

as follows: A = (z,v,w,y, —z.z). Here only s3 and s4 have changed. Clearly s} # s/
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since s| = s1 = s4 # s and similarly s # s as s5 # s3 = s = sg.

. (s1 = s4 and s9 # s¢ and s3 # sg): In this case we get © = v+ w. We now arrange .o/
as follows: A’ = (z,v,w,y, —x, z). Here only s3 and s4 have changed, so we need only
check cases containing s5 and ). Clearly, s} # s} as | = s1 = s4 # ). However,
it is possible for s§ = si. In this case we have x = v + w = y + z. Now arrange &/
as follows: A” = (z,w,y,v,—x,z). Here s, and s§ have changed from the previous
arrangement. We see sy # st as equality would imply x = y + v; however, since
x = v + w this would mean w = y, which is impossible. Also, if s§ = sg, then we
would have x = y 4+ v + 2z and since = y + z this would imply v = 0, a contradiction.

1/ 1/ : 1/ /. /! I o N
Hence s5 # sg . Finally, s5 # sg since s3 # s3 = sg = s¢.

. (81 # s4 and sy = sg): In this case we have that © = w + y + z. Now arrange <
as A’ = (z,w,v, —z,y,z). Here only sy and s3 have changed. Clearly, sy # sj since
sh # s9 = sg = s. Also, s5 # si as equality would imply x = z + y; however, since
r = w+ y + z, this would mean w = 0, which is impossible. It is possible however
for s, = s;. In this case we get © = w+y + 2z = v+ y. Arrange &/ as follows:
A" = (z,w,v,—x,z,y). Here only si has changed. We see s| # s since if s = s,
then x = w+y+ 2 and since * = w+y+ 2z we get that y = v, a contradiction. Finally,

st # st since s = sh = st # sp.

. (81 # s4, 81 # S5, and s3 = sg): In this case we get w +y + z = 0. Arrange o
as follows: A" = (z,v,w, —x,y, z). Here only s3 has changed. Clearly, s5 # sj since

/ /
sS4 # 83 = 86 = 5.

. (81 = s5 and s3 = s¢): In this case we get © = v+w+y and w+y+2z = 0. We arrange
o as A’ = (z,v,w, —z, z,y). Here only s3 and s5 have changed. We see s} # s§ since
sh = s1 = s5 # s;. Similarly, sh # si as s # s3 = sg = si. Also, s5 # s§ as equality

would mean that x = w + 2. But since w + y + z = 0, we have that w 4+ z = —y.
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Together these imply that £ = —y, a contradiction.

. (s1 = s5 and s3 # sg): In this case x = v + w + y. Arrange o as follows: A" =
(x,v, —z,w, z,y). Here only s5 has changed. Clearly, s # s§ since s} = s1 = s5 # sk.
It is possible however for s, = si. In this case we get x = v+ w +y = w + z. Now
arrange <7 as follows: A” = (z,v, z, —z,y,w). Here s4, ¢}, and sy have changed from
A’. We see s§ # s¢ as equality would imply x = y+w, but since © = w + z this would
mean z = y, which is a contradiction. Also, s{ # ] since if s{ = sfj, then z = v 4 z;
however, since x = w + z this would mean w = v, which is impossible. Furthermore,
s{ # st as equality would imply x = v + z + y and since z = v + w + y this would

imply that w = z, a contradiction. Finally, s§ # sf since s§ = sh = s # st.

. (s1 = sg): In this case we get * = v+ w + y + 2. Then arrange o/ as follows:
A" = (v,x,w,—x,y, z). Here only s; and s3 have changed. We see s| # s} since this
would imply w = 0, which is impossible. Also, s| # st as this means w = —y, a
contradiction. Clearly, s] # sj since 8| # s1 = sg = s;. Finally, s4 # sf; as equality
would imply x = y + 2z and since * = v + w + y + z this would mean v = —w, a

contradiction.

. (s2 = s5): In this case z = w+y. Arrange o as A’ = (z,v, —x,w, z,y). Here only s;
has changed. Clearly, s5, # sf as sy = so = s5 # s5. However, it is possible for s§ = sf.
In this case we get * = w+y = v+ w+ z. Now arrange .« as A” = (v, z,w, —x, 2,7).
Here only s} and s4 have changed. We see s # /| as equality would imply w = 0,
a contradiction. Clearly, s{ # sf since s| # s = si = s5. Also, if s = s{, then
w+ z+y = 0, but since x = w + y this would mean —x = 2z, which is impossible.
Hence s # s¢. Finally, s4 # s{ as equality would mean that x = z+y; however, since

x = w + y this would imply w = z, a contradiction. This completes the case p = 1.
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Now assume p = 2. Let & = {x,—z,y,—y,w,z} and arrange o as follows: A =
(z,y,—x,—y,w, z). Since neither x, —z nor y, —y are adjacent in o/, we need only check
those partial sums at least three apart. Clearly, s; # s4 since that implies z = 0, and
$1 # 85 since that yields £ = w. The only conditions which could fail are the following four
possibilities: (1) s; = sg, (2) s2 = s5, (3) s2 = sg, and (4) s3 = s¢. It is straightforward to
show that if any one of these conditions hold, then the other three do not hold. We look at

each individual case.

1. (s1 = sg): In this case we have that © = w+2z. We arrange o as A’ = (w, z,y, —x, z, —y).
Here every partial sum except sg has changed. Clearly, s] # s} since this would mean
y =0, s§ # st since this would mean y = —z, s} # s since this would mean z = 0,
and sh # sg since this would mean z = z. We also see s # st as equality would
imply # = y + z and since = w + z, this would mean y = w. Finally, we see s # sj
since if s§ = si, then z = 2 + y and since x = w + 2z this would imply y = —w, a

contradiction.

2. (sg = s5): In this case w = x+y. Then arrange & as follows: A’ = (z,y, —x, —y, 2, w).
Here only s5 has changed. We see s] # si as equality would mean that z = z, a

contradiction. Also, s # st since sh = s9 = S5 # 5.

3. (s2 = sg): In this case v = w+ z — y. Arrange o as A’ = (z,2,—y,w,y, —x). Here
S2, 83, 4, and s5 have all changed. We see s, # st as this would imply w = 0 and
sh # sg as this would imply x = w. Also, s} # s/ as equality would imply z—y+w = 0;
however, since = w+ z —y this would mean 2z = 0. Furthermore, s} # s as equality
would imply z = —w, a contradiction. It is however possible for s5 = sg. In this
case we get * = w+ 2z — y and ¢ = w + y, which implies z = 2y. Now arrange &/
as follows: A” = (z,w,y,z,—x,—y). Again, sh, ss, s, and s, have all changed from
the previous arrangement. We see s # st as equality would imply z = y + 2z and

since © = w + z — y this means w = 2y. But since z = 2y this implies w = z. Also,
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sh # sg since here equality would imply x = z and s5 # s{ since s§ # s5 = s5 = s¢.

Furthmore, s{ # s/ since if ]/ = sff, then this would imply that w + y + z = 0. But

since x = w + z — y we get that x = —2y; however, since z = 2y this would mean
x = —z. Finally, s{ # st since equality would imply x = w + y + z; however, since
r = w + z — y this means y = —y, a contradiction.

. (83 = sg): In this case we have y = w + z. We now arrange </ as follows: A’ =
(w,z,y,—x,z,—y). Here everything but s¢ has changed. Clearly, s§ # s} as this
would imply y = 0, s} # st since this would mean y = —z, and s} # si as this implies
z = 0. Also, s, # s as equality would imply = = z. Furthermore, s§ # sj as equality
means y = z —x and since y = w + z this would imply w = —x. It is possible however
for s, = si. In this case we get y = w+ z and = z + y. Now arrange & as follows:
A" = (z,y,w, —x, z,—y). Here s] and s, have changed from the arrangement A’. We
see s # slj as equality would imply # = y + w and since = z 4+ y this means z = w.
Also, sf # st since equality implies that x = y + w + z; however, since x = z + y
this implies w = 0, a contradiction. Furthermore, s} # s{ since equality would imply
x = w + z and since ¥y = w + z we have that x = y, which is impossible. Clearly,
st # st since s # sh = st = sp. Finally, s§ # s¢ since equality implies z +y = w + z;
however, since y = w + z, this would mean & = 0, which is a contradiction. This

completes the case for p = 2.

Finally, assume that p = 3. Let & = {z, —z,y, —y, 2, —z} and arrange &/ as follows:

A = (z,y,z,—x,—y,—z). Since no pair of additive inverses appears in adjacent positions,

we only need to check the partial sums that are least three apart. Clearly, s; # s5 since

this would imply = = z, s1 # sg as this would imply x = 0, and so # sg since this would

imply z = —y. The only conditions that can fail are the following three possibilities: (1)

s1 = 84, (2) s2 = s5, or (3) s3 = sg. It is straightforward to show these possibilities are

mutually exclusive. We consider each case individually.
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1. (s1 = s4): In this case we get * = y+ 2. Then arrange &7 as A’ = (z,y, 2, —y, —x, —2).

Here only s4 has changed and clearly s} # s/ since s} = s1 = s4 # ).

2. (s2 = s5): In this case we have that z = z + y. Now arrange & as follows: A’ =
(x,—y,z,y,—x,—z). Here sg,s3, and s4 have changed. We see s| # s/ since this
would imply z = 0. Also, s5 # st as s # s2 = s5 = s5 Furthermore, s, # si as this
would imply 2 = y. Finally, s5 # s as equality implies that © —y + z = 0. But since

z =z +y, then z = z — y, which implies that z = y, a contradiction.

3. (s3 = sg): In this case © +y + 2z = 0. Then arrange & as A’ = (v,y, —2, —x, 2z, —y).
Here s3, s4, and s5 have changed. Clearly, s # si as sh # s3 = sg = si. Also, s} # s}
as equality would imply = = y — z; however, since x + y + z = 0 this means y = —y, a
contradiction. Furthermore, s} # sf as equality would imply that = y and s # s

as equality here would imply « = 0. This completes the proof.
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CHAPTER 6

CONCLUSION

Prior to this thesis, some results have been proven regarding the biembedding of Steiner
triple systems on both orientable and non-orientable surfaces. Despite this, the question of
biembedding complete graphs on 6n + 1 vertices with every face on both a 3-cycle and an
n-cycle had never before been considered.

To address this question we first studied Heffter arrays and their relationship to current
graphs and biembeddings of complete graphs on orientable surfaces. We then used this
relationship to prove that for every n > 3 there exists a biembedding of Kg,11 using a
Steiner triple system and an n-cycle system.

We also extended the question to biembedding complete graphs on 10n+ 1 vertices with
every edge on a face of size 5 and a face of size n. Although unable to completely solve
this question, we gave general reorderings for the first three rows of every 5 x n Heffter
array and discussed the reasons why we were unable to find reorderings for the fourth and
fifth rows of these arrays. In Appendix A we list reorderings for 5 x n Heffter arrays which
lead to a biembedding of Kp,41 usuing a cyclic 5-cycle system and a cyclic n-cycle system
for all 3 < n < 100. Finally, in Chapter 5 we discussed a related conjecture generalizing
sequenceable groups.

To continue our study of Heffter arrays and the biembedding of complete graphs, we

58



hope for a new idea to find a general reordering of the last two rows in the 5 x n Heffter
arrays. We also hope to find a general reordering for all of the rows in the 5 x n Heffter
arrays in order to construct a simple H(5,n) for all n. We can also expand this project to
the next case of Heffter arrays, 7 x n, or to Heffter arrays with empty cells. To read more
about Heffter arrays with empty cells see [4]. In terms of sequencing subsets of Z,, \ {0},
it does not seem fruitful to extend the proof used in k£ < 6 to the case k = 7, although we

certainly believe we could. Despite this we still believe Conjecture 5.1 to be true.
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APPENDIX A

SPECIFIC SOLUTIONS FOR REORDERING 5 X n

HEFFTER ARRAYS

We provide the following cyclic permutations as reorderings for each of the 5 x n Heffter
arrays given in Theorem 4.1 for al 3 < n < 100. The resulting arrays are simple Heffter

arrays.
n=3: (321)

n=4: (2143)

n=>5 (34521)
n==6:(362415)

n="7 (1675243)

n=28: (83671245)

n=9: (429536781)
n=10: (29753411086)
n=11: (23549681710 11)
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n =12
n =13
n =14
n =15
n =16
n=17
n =18
n =19
n = 20
n =21
n = 22
n =23
n =24
n =25
n = 26
n =27
n = 28
n =29
n =30

:(258104131261197)

: (8691431311527 1210)

:(7134211105912141836)

: (4312214159138 11 7165 10)

: (16105131583 111462917124)
:(1521416124105113681317971)
:(10714689121543518116 13172 11)
:(245916141731912138156 11 18 10 17)
:(48119143620718131910122155161 17)
:(191224810161832017515121 13141197 6)
:(20173168106229141513121821192147511)
:(1516623221181331019717420122115189 14 2)
:(2116186231384101521520171912243 117922 14)
:(21126202324185191015217972516 11122 14 4 3 8 13)
:(2320143210591218151626 19721 13111172586 4 22 24)

: (138182322515199172616341220106 1 1124 1422521 7 27)

: (112614101762227282392112152811845 724132032516 19)
:(4261871513192111425329282422012172316859 27106 22 11)

:(292826167272012212322281317191824514132546 151110 309)
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n=231: (102116142819172132625692945182731182324330157 111220
22)

n=232: (9111314323142471682713251521232186 19225 1720 12 10 28 29
30 26)

n=233: (7113328631925294211216261327191415173 183024232215 20
8 2 32 10)

n=34: (17157222323463318295 14 16 13 19 12 9 25 24 10 4 8 28 27 21 26 31 30
232031 11)

n=35: (1029248152432183135316202119332327171165 28221213 14 30
713426259)

n=236: (139292318312436287121012522035115322627193331434176
15 16 30 8 4 21 22)

n =237 (107173633426271913143113423137293224152831309 1682125
20218226535 12)

n=38: (28152932423521301325231665 3227 1438837124 1120 34 10 22 26
1911836 733179 31)

n=239: (1521293137227106194233348269 1753330162528 1218 14 36 11
38 732122353924 20 13)

n=40: (237197391730405 16 27 8 3522 28 12 13 1 34 31 4 20 23 15 10 36 24 3 33
2521142918 381132269 6)

n=41: (18 15204 34 16 17 32 26 24 41 7 28 10 36 31 22 30 21 37 25 13 35 5 38 33 11 23
2012193927984014361 2)
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n=42: (2127405 11323741361 1824256398 10 14 12 26 3 20 22 4 28 38 19 35 31
21316 17 1530 7 42 23 29 33 34 9)

n=43: (910216 29 22 21 36 40 18 3224 12 1320 34 37 14 533 41 17 23 39 26 4 11 25
27193035128426 43387 31 15 38)

n =44: (20 30 31 36 29 21 12 28 1724 14 23 26 11 22 3734259 4 40 44 7 33 10 35 2 13
275393141386 15321942 16 8 43 18)

n=45: (29224584442 1735231329372833267435394 12241027186 20 41
23 14 34 40 13 21 31 38 36 16 15 19 25 11 30)

n =46: (423125364038 1334331519122839103229845376321241117354
921 41 44 18 14 27 43 46 16 26 22 7 20 23 5 30)

n=47: (44 42 1028 36 33 7 17 34 19 16 23 46 9 15 6 30 20 24 40 11 38 4 31 5 45 14 41
3922272526371352183213434729183212)

n =48: (43462524 8277122940366 102 1537 33269 23 353 31 20 42 21 34 47 45
38321418393028 11113441648 19 175 4 41 22)

n=49: (1629 11 3424 9 2 15 33 37 30 13 46 21 45 40 22 27 2544 2332475136 357
144848 12 10 18 6 31 26 17 3 20 49 38 41 42 43 19 39 28)

n =50: (3847 18 4831914452941 15242 1735365034 1325441541028 33323
12 43 24 26 49 37 1921 7 11 6 8 27 46 22 30 20 16 40 23 39)

n =51: (6 14 46 27 28 48 33 11 44 19 13 4 37 29 41 2 7 40 20 10 34 24 31 30 50 15 47 17
12 543 938 16 3 18 39 25 49 26 45 42 35 8 22 51 23 1 32 36 21)

n =152: (19393945 11 10 43 40 34 44 46 12 26 47 13 37 17 15 36 21 2329 5 7 28 18 35
14 22538274151 3132302282016 5249 24 48 4 16 50 33 42)
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n=>53: (235414024 16 41 36 28 22 52 53 15 12 47 6 38 19 32 39 37 20 26 25 3 14 21
1348 18 8 7527 9 42 17 45 44 43 46 30 31 49 34 10 29 50 11 23 51 33)

n =>54: (4374832396 19 31 23 10 1 25 36 30 41 42 49 33 1528 9 35 2 52 44 54 12 11
24 27 53 20 18 50 26 38 43 21 14 13 16 34 45 1740 7 46 8 5 47 29 51 3 22)

n = 55: (1530 2527 8 31 46 6 3 33 36 50 54 51 5 18 19 22 47 23 44 40 14 12 38 37 29 4
395310204249 2123224 734111455543 13 16 9 48 52 35 26 41 17 28)

n =56: (55 12 24 5 18 40 27 51 37 56 46 39 21 42 28 35 54 11 53 47 2 45 22 19 38 43 15
414932173344 114483631164 2550308 133296792634 522310 20)

n =257 (144948 37339 4543 54 1 19 32 11 18 28 15 23 31 40 52 34 35 7 44 22 12 42 25
55 10 33 2 8 4 53 21 20 47 9 50 30 36 24 27 5 16 26 51 56 46 13 17 29 38 41 57 6)

n =58: (541839241053 52 11 27 51 26 43 42 57 3728 384 519 1 56 50 16 29 31 40 21
457244 30 47 58 48 8 32 13 55 6 15 35 25 23 14 33 34 46 39 49 22 41 12 36 20 17)

n =>59: (26 34 13 14 30 12 38 40 47 32 53 58 2 16 15 49 25 43 24 33 9 6 37 5 3 46 19 54
44 51 23 35 22 27 17 55 20 42 28 4 50 41 36 7 57 31 10 59 8 29 39 45 18 56 1 11 21
48 52)v

n = 60: (859319205621 26253 51 4522 17 42 32 4 34 43 12 35 28 57 48 40 19 10 33
36 24 53 11 15 41 7 37 1 5 55 44 46 30 50 27 14 39 38 29 54 16 2 47 58 60 52 18 23 6
13 49)

n =61: (5746 34 41 21 44 23 28 51 32 38 39 31 36 48 29 18 43 11 26 45 3 4 42 24 14 25
12 57 16 60 27 13 20 8 58 10 15 22 1 52 30 19 53 33 61 9 59 6 55 2 56 54 40 35 49 47
37 17 50)

n =62: (4281727893254 44 57 12 62 53 24 45 42 60 23 11 18 26 16 37 39 2234 20 7
30 36 4815947 2 38 13 3 58 40 49 43 10 21 41 61 5 15 14 6 31 29 52 33 55 50 46 51
56 19 25 35)
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n =63: (11 31 20 18 43 2549 455224 562 48 29 41 6 39 16 15 36 54 59 34 33 17 61 4 13
37 21 51 23 14 28 50 35 60 53 26 12 55 57 56 3 38 8 7 22 30 63 32 27 44 58 2 47 10
19 9 42 1 46 40)

n = 64: (432333945 36 57 26 55 52 19 16 24 59 17 1 38 12 58 50 5 11 18 46 37 30 25 28
61 47 56 8 2 21 40 42 31 64 43 14 63 41 49 48 54 27 51 6 15 44 62 34 35 7 53 23 13
20 39 10 22 29 60)

n = 65: (14 23 59 64 18 24 2 65 37 60 27 32 43 29 10 11 38 34 8 56 42 13 5540 79 50 6
44 4 48 30 52 46 62 36 5 28 33 45 17 31 58 47 15 3 25 57 53 41 35 51 16 21 19 22 20
63 39 1 49 54 61 12 26)

n =166: (3146 5565633641926214759 10509 37154546 53 16 18 22 41 26 5 34
54 44 39 13 7 57 32 66 21 64 24 58 48 43 12 52 60 61 38 31 56 23 8 40 33 11 51 35 17
42 20 49 30 29 27 28 25)

n = 67: (16 66 60 19 20 18 41 43 6 46 36 26 64 47 7 27 24 48 52 13 3 11 44 59 22 56 40 1
4 61 51 39 37 42 14 33 38 65 17 54 29 9 34 55 67 28 63 30 62 5 8 15 58 21 35 23 12
10 50 32 49 2 53 31 45 57 25)

n =68: (5493 5566 16 54 23 36 19 22 42 34 35 48 24 39 12 17 20 9 15 51 38 18 57 10 52
21 43 31 47 63 61 1 50 40 45 27 28 56 59 32 65 60 53 64 2 68 58 41 37 25 46 44 14 4
733132629306 867 11 62)

n =69: (549 65 3 27 63 13 37 35 69 55 42 46 34 32 67 52 14 60 28 54 17 19 152 38 41 4
31 61 68 50 6 23 53 48 36 16 30 9 39 1 62 25 7 56 45 24 43 10 57 40 20 12 33 51 22
11 47 66 59 58 18 44 26 29 8 21 64)

n ="70: (24 554 3 36 20 6 43 33 52 60 40 55 41 45 29 23 68 13 38 37 42 14 51 21 62 69 58
30 15 59 50 34 25 1 53 66 28 35 27 18 46 22 16 32 67 47 64 17 10 39 9 49 7 61 31 26
8 19 70 12 48 57 4 44 56 2 65 11 63)
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n ="71: (859 67 68 45 69 33 10 16 42 22 40 70 61 15 1 25 43 28 63 35 6 60 18 29 56 9 14
26 3 58 34 55 54 46 20 44 36 12 27 37 53 52 30 38 64 66 24 31 19 11 5239 71 32 7
62 41 23 57 50 21 17 48 4 51 65 13 47 49)

n ="72: (1366 10 3424 512 57 51 7 39 61 25 60 16 69 68 47 2 19 71 67 22 9 14 62 58 53
70 41 50 45 6 29 28 31 26 21 56 32 4 38 36 46 59 65 44 63 48 15 27 43 42 30 11 49 23
13554 18 55 64 52 40 72 3 20 8 17 33 37)

n="73: (1282351391117 50 20 10 5 47 48 52 49 59 35 65 9 21 37 61 8 6 70 22 36 33
16 31 30 68 44 45 41 73 29 67 13 34 3 62 40 26 42 63 2 18 71 24 25 55 4 12 27 69 56
15 53 14 66 58 19 32 64 60 38 54 7 46 72 43 57)

n ="74: (145337042 372558 16 5 66 28 47 41 22 72 20 35 31 71 46 11 23 73 61 55 51
153 27 19 34 67 64 10 65 60 14 53 52 43 36 24 30 40 69 56 26 9 68 39 18 48 12 38 17
6 1345774285929 76263 44 21 32 54 49 50)

n = "T75: (13 73 66 34 14 43 69 38 18 33 8 25 63 75 30 29 71 2 42 40 39 62 64 19 37 46 12 4
54 28 23 11 21 58 74 57 26 72 1 52 22 48 67 10 49 45 59 61 41 3 65 5 44 16 47 35 36
20 157 70 51 55 60 32 17 9 24 31 6 56 53 50 27 68)

n = 76: (23 74 10 66 58 67 55 69 14 32 31 49 2 46 27 36 53 47 73 29 33 4 65 48 34 18 42
26 713 22 56 28 550 15 21 52 16 25 57 20 61 71 76 30 17 24 19 72 68 43 6 54 37 70
11 7544 8 39 51 64 63 59 1 60 41 9 35 62 12 38 40 3 45)

n =77 (133475714267 6462453112765 263 7 46 60 59 65 6 23 32 50 11 4 53 70
14 15 33 27 68 9 71 55 73 34 56 38 22 44 61 69 74 48 54 26 16 43 20 41 77 49 40 18
58 30 66 17 29 36 37 39 35 24 8 51 28 19 10 25 72 21 52 75)

n="78: (2461811473722973702726426 7638177 1368 12 32 60 33 28 57 50 54
41 64 67 9 21 51 75 43 55 69 18 16 53 58 66 65 22 19 1 20 49 45 77 10 52 31 5 40 15
56 71 48 46 4 72 39 35 44 63 36 3 14 62 30 74 25 34 59 78 23)
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n="79: (36 1743 778 72 47 31 76 13 66 48 32 56 14 63 52 23 25 79 24 77 40 30 55 71 27
44 841560 73652696 18 59 16 9 75 61 70 22 54 19 49 29 67 3 45 10 20 46 34 51
3751685021 12 28 26 53 62 39 41 35 11 38 33 74 57 58 42 64)

n = 80: (12 1 54 36 50 65 22 21 71 32 23 67 57 56 35 73 79 64 28 31 15 58 77 3 20 43 53
61 42 19 10 74 48 55 38 49 18 45 72 5 51 13 7 52 39 46 17 33 78 59 25 9 14 6 76 47
69 62 30 34 44 80 4 11 66 2 16 41 24 27 26 60 37 68 70 63 8 29 40 75)

n = 81: (12 4543 60 69 50 3727 23 11 13 75202 33 52 73421824 17636 1 14 72 62 28
54 47 38 30 78 65 58 68 44 36 51 16 19 59 55 56 64 10 39 3 34 70 4 77 40 61 49 15 5
46 67 729 53 31 21 57 22 8 2526 71 81 80 35 76 74 66 32 41 9 48 79)

n = 82: (5561 80521967 32262341 52202716 1511 28 60 10 2 79 8 13 77 31 34 56
2240 24 43 51 66 70 48 30 17 50 75 76 42 18 69 6 29 14 82 4 45 59 57 81 58 3 62 35
5347136 74 64 71 12 25 33 68 73 38 54 7 78 49 63 44 39 65 19 46 72 37)

n = 83: (33 45 58 24 10 79 66 21 26 52 57 80 32 72 29 62 40 74 18 59 13 83 23 12 6 67 60
203418462243 68 31525437738230709 281525757 644849 53 61 71 50
42 14 56 69 44 55 36 11 19 63 17 3 38 65 47 77 76 78 35 51 16 27 4 39 41 81)

n=284: (3544786247 753236684538 7479 41 13 5439 2840 69 82 55 83 4 17 48
513922176 10 81 87270 16 42 25 37 65 49 45 27 31 15 21 52 43 23 64 34 24 32 60
12 33 50 26 66 14 61 68 11 58 73 29 59 19 75 80 67 71 30 46 18 63 56 57 20 77)

n =85: (4224719544379 78 528 11 66 58 56 76 10 53 8 50 37 31 20 12 35 13 23 45 3
338344 16 48 1724 46 71 85 7 57 9 65 68 18 30 39 51 42 69 29 38 82 26 52 74 73 81
70 34 40 77 2 75 49 61 21 63 32 41 6 55 60 27 72 67 59 36 64 62 25 84 15 14 1 80)

n = 86: (4730372395273 81805576 718343695848 1051 11 15197 86 8 67 54 32
27575829 8584 656 14 68 28 22 57 33 25 34 18 38 40 62 50 60 70 29 1 16 3 64 4
31777413 42 44 23 63 72 79 61 46 20 66 45 21 24 49 56 53 59 35 17 26 36 12 41 78)
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n = 87: (55304561 67 87 82396248 77 56 7376564 69 79534044 75446146 1511
2014 70 21 38 12 10 86 85 35 33 78 25 8 50 68 34 26 18 43 27 19 22 63 75 32 71 17 24
47 42 80 13 74 37 83 65 9 60 84 36 28 16 49 3 57 52 41 31 2 58 66 29 23 59 81 51 72)

n =88: (7612137 7559398780263731648 2852296663817 6533789278413
70 46 42 35 57 8 32 22 53 64 1 10 58 31 52 43 77 23 69 14 45 56 49 41 55 47 20 76 62
74 4 40 67 12 88 63 72 86 82 15 83 85 50 44 79 25 54 34 36 24 11 60 51 68 30 18 19
71 81)

n =89: (24 54 82 50 11 44 10 39 63 1 64 68 40 4 27 42 73 84 57 35 43 56 55 71 52 21 38
22 28 72 48 87 30 49 31 34 45 74 80 2 33 66 77 29 41 51 12 85 5 89 9 23 37 17 7 8 47
76 46 16 69 6 75 81 79 3 78 59 88 19 25 18 60 70 53 36 86 58 83 20 26 65 32 67 61 62
13 14 15)

n =90: (23 41 759 67 8235533226 71606 1557 11 8528 2 16 42 8849 69 48 5 12 21
19 17 20 63 30 75 65 50 36 37 90 72 10 47 46 3 38 87 44 22 25 77 34 56 76 83 81 33
27464 80 52 1 66 62 18 31 13 84 54 43 29 40 39 55 73 51 79 58 8 74 68 70 78 45 89
619 24 14 86)

n =91: (21 58284 28 77 80 61 45 22 50 34 7 65 72 17 29 71 90 89 47 64 62 48 66 42 19
16 113 51 67 31 20 23 52 79 60 44 55 12 74 6 70 91 78 36 2 15 27 30 33 32 73 49 54
39 24 63 58 14 56 40 81 59 76 11 35 9 26 43 18 38 10 87 25 68 57 8 88 41 69 85 4 37
346 53 75 83 86)

n =92: (9 3 8030 32 63 56 37 73 46 42 53 65 5 82 6 70 87 39 69 59 41 4 27 28 92 35 45
29 13 58 34 18 77 51 90 68 38 75 55 91 84 33 57 67 79 89 12 88 15 66 74 71 60 2 22
2336144081 7201318525212476 78726219 2686 8 11 61 47 44 10 48 50 64
54 52 83 16 17 43 49)

n=93: (1762 713790 19 10 84 8246129 78 70 59 1 73 26 75 81 72 38 13 85 20 23 43
452 89 15 77 69 42 92 12 53 6 3 68 33 50 48 21 30 36 27 80 25 83 49 93 40 22 31 52
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47 91 66 60 56 24 18 7 55 28 88 67 39 74 58 32 51 65 86 8 16 41 87 9 11 64 5 54 34
46 14 35 44 79 63 57 76)

n=94: (1537344353069 6620 2 12 45 84 43 74 36 49 88 63 89 3 44 41 78 33 93 14
51 81 64 60 40 8 28 71 29 50 82 6 11 53 38 32 65 75 31 25 46 13 10 73 26 15 9 61 55
56 39 85 23 58 19 80 94 18 86 16 91 72 22 76 62 24 92 83 42 21 27 48 52 87 57 17 70
59 67 77 68 7 47 54 79 90)

n =95: (11 8 18 1545 81 69 93 76 6 52 58 23 62 9 68 12 55 41 14 21 44 5 32 75 25 38 53
91 719 30 95 33 26 64 65 63 78 82 42 84 40 61 88 73 22 80 87 57 39 24 46 72 92 83
27 90 51 20 29 50 56 70 59 94 89 79 17 10 86 85 60 16 54 66 74 28 47 77 71 34 2 43
371313635449 31348 67)

n =96: (767 91 26 44 11 8 42 52 83 51 3 81 64 25 56 72 14 30 33 35 43 40 32 86 5 50 85
237361 76 75 63 58 92 55 68 41 89 65 71 9 34 2 38 13 79 87 19 96 46 59 10 74 57 78
28 66 49 53 45 54 12 16 15 21 80 6 84 93 95 27 37 31 4 60 69 77 47 20 62 90 94 36 17
48 24 1 39 18 82 29 70 22 88)

n=97: (18 23 48 11 67 32 544 3 28 69 94 12 21 77 96 29 85 1 81 89 47 34 60 7 58 14 20
4 50 36 70 65 66 56 41 10 30 82 71 15 31 17 43 37 26 49 86 95 38 9 75 92 19 79 62 72
51 42 55 87 63 91 40 8 27 73 35 84 54 24 45 61 93 68 22 13 76 64 57 2 33 46 80 16 53
97 74 39 52 78 6 90 83 25 59 88)

n =98: (14 12 53 50 83 87 93 18 30 46 81 9 82 65 4 42 24 7 5 44 36 47 56 72 94 68 15 31
16 89 21 29 11 71 23 26 97 91 35 57 98 74 69 77 78 63 88 2 32 86 1 59 25 51 52 79 58
339249 90 28 85 61 3 8 34 84 66 17 67 95 39 38 73 10 22 60 55 64 96 54 45 43 41 27
62 70 19 13 48 76 37 20 6 40 75 80)

n =99: (9557 18 21 56 16 76 5 29 34 50 90 54 89 3 32 22 77 10 66 17 84 12 53 27 62 68
55 40 35 71 6 67 42 61 63 37 74 91 36 78 15 80 43 85 19 28 94 51 30 79 70 48 87 64
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88 39 38 97 2 65 93 92 81 59 73 41 52 98 75 46 60 20 25 23 82 99 1 72 26 33 9 4 47
44 11 86 24 13 58 7 69 8 31 14 96 49 45 83)

n =100: (3067 853 7568 80 78 20 92 52 55 73 91 16 24 43 71 48 32 38 11 19 63 96 72
56 1549 97 46 28 66 34 14 83 87 25 1 77 13 18 40 54 57 76 29 33 31 99 93 41 50 53
104 294 22 26 39 70 45 35 17 62 21 51 60 84 47 81 88 95 79 12 36 86 61 44 67 37 98
100 58 74 23 90 9 82 65 42 89 8 64 27 59 5 69)
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