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ABSTRACT

Growing concerns over climate change is driving research aimed at determining ways
of retaining soil carbon (C) within managed northeastern forests. Earthworms are
exotic to the state of Vermont and the current extent of earthworm community pres-
ence in the state's forests, as well as the long term impact these communities will have
on soil C storage, is still unknown. Current research suggests that earthworms have
con�icting e�ects on the C cycle of soils, simultaneously enhancing mineralization
through soil mixing, while protecting C through the stabilization of microaggregate
(mA) structures. The mA soil fraction represents a pool of physically stable struc-
tures capable of maintaining occluded C for long periods of time. To date, studies
investigating earthworm e�ects on mA formation and occluded C have rarely been
done in undisturbed forest soils.

Earthworms were found in 10 of 18 forest sites utilized in a statewide Vermont
earthworm survey, and community presence correlated with thinner forest �oor depths.
For 8 sites, the impact of earthworm presence on the quantity of C within water stable
mA was investigated. Earthworm presence correlated with greater total C in the top
20 cm of mineral soil, highlighting the relocation of the forest �oor noted in all 18
sites. A small, but signi�cant, decrease was noted in the proportion of bulk soil mA,
however through C enrichment from the forest �oor, there was a signi�cant increase in
the pool of mA-associated C. A paired mesocosm study was also conducted, utilizing
the endogeic earthworm species Aporrectodea tuberculata, placed in an earthworm-
free, undisturbed forest soil. Findings from this study corroborated the correlations
noted in the �eld with small, though insigni�cant decreases in the proportion of bulk
soil mA. The larger macroaggregate fraction was increased by about 4 times un-
der earthworm in�uence. The C enrichment of mA structures occluded within the
macroaggregate fraction accounted for approximately 95% of the total increase in
mA-associated C, and 50% of the total C integrated into the mineral soil. It can be
assumed that the C preferentially occluded within the mA structures by earthworm
ingestion will experience longer mean residence time relative to bulk soil C.

We conclude that, for the forest soils investigated, earthworm communities de-
creased the proportion of mA slightly but that the pool of physically stabilized C
was increased through mA turnover. Forest soils usually experience low soil mixing
and therefore typically contain high proportions of mA, though the quantity of C
within these structures varies. Due to mA restructuring within the earthworm gut,
it is unlikely that earthworm community expansions will alter the proportion of mA
in forest soils, however the quantity of C present within these structures is likely to
increase. The individual site investigated in the controlled study was particularly low
in mineral soil C, and therefore the long-term presence of earthworms would likely
result in an increase to mineral C storage. However, this result may not be applicable
for forests with high levels of mineral soil C prior to earthworm invasion.
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CHAPTER 1

COMPREHENSIVE LITERATURE REVIEW

1.1 Introduction

Concern over the global impact of increased carbon dioxide (CO2) levels in the at-

mosphere has encouraged recent research aimed at enhancing understanding of the

carbon (C) cycle. An intimate relationship exists between the soil and the atmosphere,

with the soil acting as a potential bu�er for CO2. Most forests of the northeastern

United States were impacted by the last glaciation event, receding approximately

12,000 years ago, and therefore developed without in�uence from native earthworms.

Since the introduction of earthworms from Europe and Asia, various species have

slowly started to make their way into these ecosystems, altering soil morphology,

chemistry, and ecology. Forests are often actively managed, o�ering an opportunity

to implement best practice in order to dictate whether these soils will act as a sink or

source for CO2 in the future. Understanding the impact that earthworms will have

on the C dynamics of these soils is just one piece in this puzzle.

Earthworm presence in soil is currently believed to enhance C loss through an

stimulation of microbial respiration, and reduce C loss through the integration of C

within stabilized soil aggregates. The long term implications of this shift in C cycling

on the C balance of these ecocystems is still very unclear, though it is most certainly

in�uenced by the interactions of soil structure, microbial communities, C quality, and

earthworm species.
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1.2 Aggregation

A soil aggregate is a basic unit of soil structure, consisting of various organic materials

and mineral particles (sand, silt and clay) binding more powerfully to themselves than

to surrounding substances (Frey, 2005; Oades, 1993). Aggregates can be described

based on their structure (size, shape and constituting parts), stability (ability of

the structure to withstand disturbance) or resiliency (ability of structure to recover

after disturbance) (Kay, 1998). The three dimensional spatial environment formed

through aggregation is referred to as the soil matrix, and it dictates, and is dictated

by, the interactions of water, oxygen, organic matter and soil microbial communities

(Six, Bossuyt, Degryze, and Denef, 2004). This matrix is dynamic. Through the

construction and deconstruction of aggregates, soil organic matter (SOM) is occluded

or released, degraded anaerobically or aerobically and the residence time of its C

containing compounds determined.

Aggregates may be formed and stabilized abiotically or biotically, the in�uence

of these mechanisms varying with a soil's texture and organic matter inputs (Oades,

1993). Abiotic stabilization occurs on the micron scale, and therefore exerts more

in�uence in soils high in clay. Abiotic aggregation occurs through freeze/thaw and

wet/dry cycling. During these processes the tensile strength of water reorientates

clays, placing them in close proximity to one another where they may be cemented

together using inorganic, highly charged or cementing binding agents such as calcium

and oxyhydroxides (Six et al., 2004). Though methods to evaluate soil structure

rarely di�erentiate between biotic and abiotic factors (Jouquet, Zangerle, Rumpel,

Brunet, Bottinelli, and Tran Duc, 2009; Oades, 1993), in all soils except those very

high in clay, and low in organics, biotic processes are thought to have the primary

in�uence over a soil's structure and stability (Baldock, 2002).
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Di�erent biological binding agents act at di�erent scales in the process of aggre-

gation (Oades, 1984). A representation of these scales is found in the rhizosphere,

the area around a plant's root zone, where aggregates are stabilized directly and in-

directly, on both large and small scales (Baldock, 2002). Free mineral particles are

typically bound by small molecular binding agents such as humi�ed organic com-

pounds, metal complexes and cellular residues, into microaggregates (20-250 µm). In

the rhizosphere, roots supply these small binding agents directly through root ex-

udates, and indirectly through secondary metabolic products released by microbial

communities utilizing the root exudates as a food source (Baldock, 2002). These mi-

croaggregates and sand sized minerals, may be bound into macroaggregates (>250

µm) by the direct binding within root hairs, or the indirect binding within the root

associated fungal hyphae. This hierarchy of scale exists not just around root zones,

but rather ubiquitously throughout most soil types. The smaller binding agents are

ine�ective at binding macroaggregates over wider pores spaces, while root hairs and

fungal hyphae are often larger than the pore spaces formed within microaggregates

(Six et al., 2004).

1.2.1 Aggregate Hierarchy

In the above model of aggregation a hierarchy exists in both structure and stabil-

ity. Macroaggregates, which are larger and less stable, degrade into microaggregates,

which are smaller and very stable, along planes of weakness (Oades and Waters,

1991; Tisdall and Oades, 1982). On the smallest scale, individual clay particles are

bound together abiotically. This binding is based on the composition/concentration

of electrolytes and metal oxides, as well as the make up of the soil's cation exchange

complex (CEC) (Baldock, 2002). These soil qualities are relatively stable throughout

time and space and consequently the aggregation of individual clays is rather ho-

3



mogenous throughout the soil matrix (Baldock, 2002). At the next structural level,

clay complexes are further bound together biotically into microaggregates (<250 µm)

utilizing organic molecules such as microbially derived polysaccharides and proteins

(Oades and Waters, 1991). For larger microaggregates (20-250 µm) particulate or-

ganic matter (POM) is often found at the center of the structures. The biomolecules

released by microorganisms during decomposition bind to local mineral particles and

transient clays moving within the soil pore water, resulting in an encapsulation of the

organic matter (Oades and Waters, 1991; Waters and Oades, 1991). The binding and

stabilization of microaggregates into macroaggregates (>250 µm) is accomplished by

bridging with POM capable of spanning larger pore distances, or networks of �brous

fungal hyphae or small roots.

The hierarchy of size and constituting parts is mirrored with a hierarchy of struc-

tural stability. The binding strength of water to pores (Braunack, Hewitt, and Dexter,

1979), and the e�ectiveness of binding agents (Kay, 1998) are inversely proportional

to size within this aggregate hierarchy. Smaller aggregates have lower porosity, and

greater physical contact between particles (Currie, 1966), strengthening the physio-

chemical bonds. Larger binding agents such as root hairs and fungal hyphae are

known as �temporary� binding agents, and will decay readily, leaving structures vul-

nerable to disruption within shorter time frames (Tisdall and Oades, 1982). Smaller

binding agents consist of �transient� or �persistent� substances, which due to their

small size and association with the mineral fraction of soil, o�er durability and longer

residence time (Tisdall and Oades, 1982).

It was previously thought that the above hierarchy of aggregation formed sequen-

tially, microaggregates being formed �rst and then afterward being bound together to

form macroaggregates (Six et al., 2004; Tisdall and Oades, 1982). Oades (1984) was

�rst to suggest that the larger binding agents, POM, roots and fungal hyphae, that

4



hold the macroaggregates together could form the core for the formation of microag-

gregates as they decomposed. The formation of microaggregates within macroag-

gregates has since been widely supported (Angers, Recous, and Aita, 1997; Beare,

Hendrix, and Coleman, 1994; Jastrow, 1996; Six, Elliott, Paustian, and Doran, 1998),

and attributed, in part, to the anaerobic environment developed at the center of

macroaggregates (Elliott and Coleman, 1988; Tiedje, Sexstone, Parkin, and Revs-

bech, 1984). Mirroring the hierarchy of aggregation, there exists a hierarchy of poor

space and water retention governing microbial communities within the soil matrix.

Organic matter alone has very little in�uence over a soil's aggregation (Frey, 2005;

Lynch and Bragg, 1985; Tisdall, 1991), and it is through the actions of microbial

communities during decomposition that work in the stabilizing of soil structure.

1.2.2 Aggregation and Microbial Communities

E�ect of microorganisms on aggregation

When microbial communities are abundant and active, organic materials are contin-

ually being decomposed, and microbial communities turned over. Through decompo-

sition, organic materials, including microbial biomass, are utilized in the formation

of new cellular structures and metabolites, mineralized through hetertrophic respira-

tion, or otherwise chemically and physically altered (Baldock, 2002). Through the

enmeshment of soil particles by fungal hyphae, and cementation by various microbial

metabolites, the activity of microorganisms play an important roll in soil structural

stability.

Fungal communities work intimately in the creation and maintenance of a soil's

structure. Fungal hyphae physically alter the arrangement of mineral particles sim-

ilarly to how plant root growth separate or associate adjacent particles during the
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creation of macropores (Dorioz, Robert, and Chenu, 1993), however this e�ect is on

a much smaller scale. Fungal hyphae work in the formation and stability of macroag-

gregates, having little a�ect on microaggregates (Tisdall, 1991). Fungal mycelium en-

tangle mineral particles and cement them together through the production of polysac-

charides (Oades and Waters, 1991). Fungal communities can remain active even at

very low water potentials and are suited to live and grow within interpore space de-

void of liquid water (Shipton, 1986). This ability makes fungi mycelium growth an

ideal mechanism of enmeshing particles across relative distances and changing water

potentials.

Many types of fungi exist in soil, with varying degrees of e�ectiveness at creating

and maintaining soil structure. The stabilization of structure by fungi will typically

exist only as long as the hyphal network remains intact. While saprophytic fungi

die once all available substrates have been utilized, certain symbiotic species are

known to persist even after the death of their host plant (Tisdall, 1991). It has been

suggested that the fungi most e�ective at soil stabilization will produce an abundance

of sticky mucilage, be capable of binding particles by many mechanisms (i.e. several

mucilage types/charges and �lament sizes/lengths), exert enough force to reorient soil

particles, and persist for long periods of time (Tisdall, 1991). When fungal networks

die, the remains are classi�ed as particulate organic matter (POM) and these may

subsequently be colonized by bacterial communities to further stabilize soil structure

Bacteria, individually or as a community, exude solutions rich in polysacharrides

and proteins (Baldock, 2002), and these solutions allow bacterial cells to form inti-

mate associations with the mineral particles and organic matter around them (Dorioz

et al., 1993). As a soil dries, the amount of extracellular solution produced by most

bacterial cells is increased in order to protect the organism from desiccation. Bacterial

communities are closely associated with mineral surfaces and their exudates, as well
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as cell debris from dead and decomposing cells, are capable of entering into very small

pore spaces (<1 µm). Once inside these small pore spaces the bioavailibility of these

binding agents is extremely low, prolonging their in�uence on structural stabilization

(Dorioz et al., 1993).

Unlike fungal mycelium, bacterial derived exudate allows for soil structure to per-

sist long after the bacterial sources have decomposed (Foster, 1994), and hollowed

microaggregate structures can be observed as an example of this process (Foster,

1988). Bacterial communities alter the arrangement of �ne clay particles, bringing

them parallel to the cellular surface (Foster, 1988), however besides these very small

changes to structure on the micro scale, bacterial communities exhibit very little in-

�uence over the formation of soil structure, primarily impacting the stability of soil

structure. The mucilage and polysaccharide-rich exudate produced by bacteria only

impact the formation and stabilization of microaggregation (Oades, 1993; Tisdall,

1994), being too small to exert enough force in the stabilization of larger structures.

The force of these binding agents at this scale is much greater relative to the forces ex-

erted within macroaggregate structures, allowing these small structures to withstand

greater levels of physical disturbance (Kay, 1998).

Fungal and bacterial populations impact aggregation processes primarily through

their production of binding agents, and in the case of fungal hyphae the entanglement

of soil constituents. These micro�ora are at the bottom of the soil food chain and

other larger organisms, such as protozoa and nematodes, also exert indirect in�uences

on soil structure and stability (Coleman, Crossley, and Hendrix, 2004; Swift, Heal,

and Anderson, 1979). Larger soil fauna (>100 µm, micro and macro arthropods) may

alter nutrient cycling through predation on micro�ora as well as by a production of

fecal pellets, which when stabilized, represent biologically sourced aggregates. While

these larger organisms impact soil structure through burrowing and ingestion, it is
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through their interactions with the smaller micro�ora, through predation or in�uences

within the foodweb, that have an e�ect on soil structural stability (Baldock, 2002).

E�ect of aggregation on microorganisms

Up to 60% of total soil volume is comprised of pore space found in various shapes and

sizes. These pores may be interconnected or isolated from bulk soil, and �lled with ei-

ther air or water (Paul, 2014). This three dimensional environment in�uences nutrient

availability, water potential, oxygen di�usion, and predation, greatly a�ecting the or-

ganisms living within it. Estimates range from 104 to 106 distinct species represented

in each gram of soil (Curtis, Sloan, and Scannell, 2002), though most of these species

are unable to be cultured (Hill, Mitkowski, and Aldrich-Wolfe, 2000). The availability

and segregation of spatially and temporally diverse habitats is likely what gives rise

to this large biodiversity (Schmidt, Torn, Abiven, Dittmar, Guggenberger, Janssens,

Kleber, Kögel-Knabner, Lehmann, Manning, Nannipieri, Rasse, Weiner, and Trum-

bore, 2011). As highlighted in the previous section, the e�ect of this environment on

microbial communities feeds back to the the soil's structure and stability. Despite

this intimate relationship between microorganisms and the soil environment, much

more is known about how microorganisms impact a soil's aggregation than about how

the soil's aggregation and pore network impact the soil's microbial communities (Six

et al., 2004).

The soil pore network in�uences soil processes primarily through a restriction of

access and the interaction of water within the pore networks. Each aggregate, and

even individual pores, may be considered its own microcosm, with highly variable

environments and microbial community structures. Soil microorganisms range in size

from bacteria (0.2-1 µm), to micro and macroarthropods (>100 µm) (Swift et al.,

1979), with smaller organisms (bacteria and fungi) essentially restricted to existing
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pore networks. While fungal hyphae are capable of moving into and out of pores,

regardless of water content, bacteria and most other small soil fauna are restricted to

areas saturated with water (Hattori, 1994).

Bacterial presence is rarely found in pores <0.8 µm (Ranjard and Richaume,

2001) meaning that, depending on soil texture and other factors in�uencing pore size

distribution, about 25-50% of a soil's pore space is inaccessible to any soil organism.

More than 80% of bacterial biomass, across all soil types, is found associated with the

interior of pores 1-9 µm (Foster, 1988; Hassink and Bouwman, 1993). Pores of this

size exclude the access of larger predatory soil organisms, that would otherwise feed

on the occluded bacterial colonies (Foster, 1988; Six et al., 2004). Bacteria located in

pores < 30 µm are protected from nematode predation while bacteria in pores <5 µm

are also protected from predation by protozoa (van der Linden and Jeurissen, 1989).

This preferential colonization of various bacterial communities inside small pores

(Ranjard and Richaume, 2001) may be explained by predation, or through the in-

teractions of water within small pores. Water circulates freely in the pores between

microaggregates (>10 µm), while capillary forces retain water tightly in the inter-

nal micoraggregate pores (<10 µm). This ability to hold onto water, even during

bulk soil desiccation, provides a stable environment for bacterial communities that

may be sensitive to the �uctuating moisture content of larger pores (Ranjard and

Richaume, 2001). The restricted movement of water within micropores limits the

di�usion of oxygen and nutrients into and out of these poor spaces and so these en-

vironments quickly development and maintain an anaerobic environment preferential

to denitrifying bacteria (Lensi, Clays-Josserand, and Jocteur Monrozier, 1995). This

micropore-rich fraction of the soil accounts for 85% of total soil denitrifying activ-

ity (Lensi et al., 1995). The limited di�usion of nutrients also means that bacterial

communities tend to be patchy (Ranjard and Richaume, 2001).
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Soil aggregation is dynamic, and as soil goes through wet-dry and freeze-thaw

cycles, and as larger soil fauna such as earthworms and termites move through the

soil, aggregates are destroyed and reformed, and microbial communities are shifted

around within the soil matrix. This shifting may release or occlude communities

within aggregates, destroy fungal hyphal networks, or place communities in contact

with nutrient sources or predation. It is therefore not just soil structure that in�uences

these microbial communities, but also the rate and severity of structural turnover.

Through its in�uence on soil microbial communities, aggregate turnover also has a

direct and profound in�uence over the cycling of soil organic carbon (SOC) on small

and large scales.

1.3 Soil Carbon and Aggregate Turnover

1.3.1 Soils and the Carbon Cycle

Soils contain more carbon (C) (1,500 Gt organic, 950 Gt inorganic) than in all ter-

restrial biomass (560 Gt) and the atmosphere (720 Gt) combined (Birdsey, 1992),

making soil a key player in the attempt to o�set anthropogenic C emissions. An

intimate relationship exists between the soil and the atmosphere, with soil respira-

tion accounting for roughly 20% of total CO2 emissions (Rastogi, Singh, and Pathak,

2002), which is far greater than the emissions attributed to human activities. Soils

represent a large stock of potentially volatilizable C, and land management is widely

known to have huge impacts on a soil C stores (Lal, 2005). Deforestation and conver-

sion to agriculture has been shown to reduce SOC by 20-50% due to reduced C inputs,

increased decomposition, and decreased aggregation from frequent tillage (Post and

Kwon, 2000). As global attempts are made in reducing anthropogenic CO2 emis-

sions, e�orts are also needed to develop best management practices for the terrestrial
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ecosystems (Rastogi et al., 2002). Soils have the potential to act as a bu�er against

rising CO2 levels, and the role of a soil as a C sink or source is dependent on the

balance between soil respiration, photosynthesis, and the stabilization of C within

soils.

1.3.1.1 Soil Organic Matter

Baldock and Nelson (2000) summarized the various components of soil organic matter

(SOM) as follows, ranging from living to highly decomposed materials. The living

component of SOM includes plant roots, microbial biomass and soil fauna, as well as

various exudates and enzymes used during the decomposition of other SOM fractions.

This living SOM fraction represents the primary source of SOC inputs in the soil and,

as described above, is extremely dynamic in its in�uence on, and being in�uenced by,

the physical soil environment. The non-living component is often distinguished opera-

tionally by size and chemical properties. Particulate organic matter (POM) maintains

a recognizable cellular structure (dead roots, plant litter, faunal skeletons), and rep-

resents the earliest stage in decomposition. POM therefore exhibits a diverse range

of chemical properties and assumed residence time in the soil. Dissolved organic mat-

ter (DOM) is composed of various organic materials that remain in soil solution and

move within the soil pore water. Due to its mobility within the soil matrix, DOM can

often be the only source of nutrients for isolated biotic communities, and therefore

plays an important role in many soil processes despite its relatively small proportion

of the total SOM pool. Humus refers to insoluble organic materials that are no longer

recognizable from their source POM. This fraction may originate from the decompo-

sition and alteration of POM and cellular debris, or from the mucilage and exudate

of decomposer communities. This fraction consists of a mixture of unaltered (sugars,

proteins, lipids, etc.) and altered bio-molecules. Bio-molecules altered chemically or
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through enzyme activity are referred to as humic substances due to their inability to

be placed into any other discrete chemical category.

The above categories of SOMmay be further de�ned by the C stabilization they ex-

hibit in the soil matrix. De�nitions for these pools of C are typically operationally de-

�ned through the methods used to measure them. This practice of de�nition through

measurement has resulted in many di�erent models for organic matter turnover, with

varying degrees of functionality within the wide range of soil characteristics (Six, Co-

nant, Paul, and Paustian, 2002). New technology is continually being developed, and

the resolution of data collected on organic compounds and their ages (Riley, Maggi,

Kleber, Torn, Tang, Dwivedi, and Guerry, 2014), as well as the microbial communi-

ties utilizing them (You, Wang, Huang, Tang, Liu, and Sun, 2014), will undoubtedly

improve in the future, with new models and de�nitions developed also. In one of the

simpler current models of C stabilization, Six et al. (2002) de�ned the C pools as

unprotected, chemically protected, biochemically protected, and/or physically pro-

tected.

Unprotected C pool Any plant and animal residues not associated with the min-

eral portion of the soil constitutes an �unprotected� fraction according to Six et al.

(2002). Operationally, these pools would be identi�ed as free POM and the light

fraction (LF). POM is typically measured based on size. The LF is composed of non-

complexed decomposing plant and animal tissues and is separated from bulk soil based

on density (Evans, Fernandez, Rustad, and Norton, 2001). It is assumed that during

the humi�cation process, recalcitrant SOM (biochemical stabilization) becomes inti-

mately associated with mineral portions of the soil (chemical stabilization) (Barrios,

Buresh, and Sprent, 1996). Operationally, any fraction having a density less than

that of the mineral fraction, which is not occluded within microaggregation (physical
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stabilization), is assumed to be free LF, and more bio-available. Though some of

the LF is likely composed of biochemically stabilized materials not associated with

the mineral fraction, this fraction, as well as free POM, has been shown to be eas-

ily decomposable (Cambardella and Elliott, 1992) and therefore a good indicator of

the labile fraction of SOM (Janzen, Campbell, Brandt, Lafond, and Townley-Smith,

1992). This unprotected pool is comprised largely of plant derived SOM, however it

also contains signi�cant amounts of microbial debris, fungal hyphae, seeds and spores,

representing a diverse mix of chemical compounds (Oades, Vassallo, Waters, and Wil-

son, 1987). This fraction is especially sensitive to climate, land-use, and disturbance,

with its turnover governed by seasonally regenerated plant residues and the recycling

of biomass due to microbial decomposition and proliferation (Six et al., 2002). The un-

protected C pool is continuously cycled with other stabilized pools through aggregate

turnover, incorporation within microbial biomass, adsorption and desorption with the

mineral fraction, and transformation into biochemically recalcitrant compounds.

Biochemical stabilization Biochemical stabilization occurs when an organic com-

pound is inherently di�cult for most decomposer organisms to utilize as a substrate

(von Luetzow, Kögel-Knabner, Kogel-Knabner, Ekschmitt, Flessa, Guggenberger,

Matzner, and Marschner, 2007). The residue quality of fresh plant material may

indicate the presence of complex molecules (lignin, waxes, lipids etc.) that contain

bonds thermodynamically resistant to degradation (Kleber, 2010). Additionally, dur-

ing humi�cation organics may condense, limiting the access of degrading enzymes, or

they may become complexed with metals. These processes change the structure of

molecules into those of humic substances unrecognizable to most decomposer organ-

isms (Jenkinson and Rayner, 1977; Paustian, Parton, and Persson, 1992).

Labile compounds, such as proteins and simple carbohydrates, have an energeti-
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cally better payo� for the e�ort required to break the bonds, and it is assumed that,

if present, these labile compounds will be preferentially utilized, resulting in an ac-

cumulation of recalcitrant compounds with time (von Luetzow et al., 2007). Though

extremely old examples of biochemically stabilized compounds are often found (Bol,

Huang, Meridith, Eglinton, Harkness, and Ineson, 1996), supposedly easily degrad-

able metabolic compounds have also been found stabilized for millennia (Paustian

et al., 1992). Degradation of any organic compound is highly dependent on the

microbial communities present, as well as environmental factors such as pH and tem-

perature (Kleber, 2010). It is widely held that, within any naturally occurring soil,

the diversity of microoganisms and their enzymes contain the capacity to degrade any

substance no matter how complex (Dungait, Hopkins, Gregory, and Whitmore, 2012).

The situational dependence of biochemical recalcitrance has been shown empirically

through the rapid degradation of complex molecules such as lignin (Thevenot, Dignac,

and Rumpel, 2010), waxes (Wiesenberg, Schwarzbauer, Schmidt, and Schwark, 2004)

and humic substances (Stevenson, 1982), relative to labile compounds, when envi-

ronmental conditions are altered. While the molecular structure and chemical com-

plexity of organic molecules obviously has an e�ect over their decomposition, it is

generally accepted that this e�ect is only in�uential on short time scales (i.e. season-

ally) (Amelung, Brodowski, Sandhage-Hofmann, and Bol, 2008; Stockmann, Adams,

Crawford, Field, Henakaarchchi, Jenkins, Minasny, McBratney, Courcelles, Singh,

Wheeler, Abbott, Angers, Baldock, Bird, Brookes, Chenu, Jastrow, Lal, Lehmann,

O'Donnell, Parton, Whitehead, and Zimmermann, 2013) and that it is biological and

environmental conditions that exert primary control over a compound's long term

residence time in the soil (Schmidt et al., 2011; Stockmann et al., 2013).
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1.3.1.2 Physical Protection of Carbon

Chemical stabilization Chemical stabilization occurs when organic compounds,

either biochemically labile or complex (Sorenson, 1972), form intimate associations

with mineral particles through cation bridging, hydrogen bonding, or van der Waals

forces (Jastrow and Miller, 1997). When stabilized, the a�nity of organics to the

charged mineral surface exceeds that of enzymatic active sites, rendering the materials

unavailable to microbial degradation, even when in close spatial proximity (Dungait

et al., 2012).

Due to the charges present on the extensive surfaces represented by the silt and

clay fraction, �ne textured soils accumulate more C than sandy soils with similar

organic matter inputs (Hassink, 1997). Its association with texture means that this

fraction of stabilized C is highly dependent on the physical properties of the soil.

Total surface area, pH, CEC, clay and metal varieties, as well as the chemistry of the

organic matter inputs, all greatly impact the a�nity of organics in the formation of

these organo-mineral complexes (Plante and Conant, 2006). This form of stabilization

is generally accepted as the primary mechanism whereby C is stored for millennia

(Dungait et al., 2012), however due to its reliance on available surface area, there

exists a limit to the quantity of C that can accumulate within this fraction (Hassink,

1997; Stewart, Paustian, Conant, Plante, and Six, 2007).

Physical protection with microaggregates Occlusion of SOM within aggrega-

tion works with adsorption to silt and clay surfaces in the physical preservation of

SOM (Dungait et al., 2012). While adsorption makes substrates unavailable to organ-

isms, even when in close proximity, physical protection of SOM within pore spaces

restricts the proximity of substrates from the microbial communities which would oth-

erwise be able to use them (Kuka, Franko, and Rühlmann, 2007). This separation is

15



accomplished by the compartmentalization of microbial communities and substrates

in small pore spaces, or large pore spaces with narrow pore openings (pore exclusion)

(Killham, Amato, and Ladd, 1993). Additionally, the reduced di�usion of oxygen,

nutrients and enzymes within small pores limits microbial metabolism and prolifer-

ation (Sexstone, Revsbech, Parkin, and Tiedje, 1985). If all SOM is theoretically

degradable (see above), the constraints on microbial decomposition would be limited

by the co-occurance of water, substrate, microbe, and possibly oxygen (Kuka et al.,

2007).

There exists a reduced level of biotic activity at the center of aggregates (Sollins,

Homann, and Caldwell, 1996), and a substantial proportion of SOM is found within

aggregation rather than free within the soil matrix (Elliott and Coleman, 1988;

Golchin, Oades, Skjemstad, and Clarke, 1994). Occlusion within aggregates seems to

change the quality of SOM, occluded SOM having a higher carbon to nitrogen ratio

(Golchin et al., 1994), suggesting that nitrogen rich labile compounds may be prefer-

entially decomposed at the center of aggregation, leaving behind more recalcitrant C

compounds.

The physical protection of C from degradation varies with aggregate size. Macroag-

gregates (250-2000 µm) are not very stable and therefore occluded C is more likely

to be re-exposed to decomposer communities. Additionally, the pore spaces within

macroaggregates are large enough to allow for water and microbial movement as well

as oxygen and nutrient di�usion. Conversely microaggregates (53-250 µm) are ex-

tremely stable, protecting the occluded C from re-exposure. Microaggregate pores

are small enough to e�ectively limit the accessibility of microorganisms and hold

water with enough attraction to limit oxygen and nutrient di�usion (Frey, 2005).

The variation in C protection within di�erent aggregate sizes is supported in the

literature. When macroaggregates were crushed, the increase in mineralization ac-
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counted for only about 1-2% of the total C content of the structures (Beare et al.,

1994; Elliott, 1986), meaning the biochemical availability of occluded C was not that

much di�erent than if the C had not been occluded. Conversely, when free microag-

gregates were crushed they demonstrated three to four times the mineralization of

crushed macroaggregates of the same soil (Bossuyt, Six, and Hendrix, 2002). Using

13C abundance Jastrow, Miller, and Boutton (1996) found that C associated with free

microaggregates was biochemically more recalcitrant than that of macroaggregates,

and free microaggregates had an average turnover time of 412 years, while macroag-

gregate C turnover time was only 140 years. While research supports the theory that

macroaggregates exert minimal in�uence over SOM protection, macroaggregates are

crucial in the formation of microaggregates, and macroaggregate turnover is a major

contributor in governing long term C stabilization in soils (Six, Elliott, and Paustian,

2000; Six et al., 1998; Six, Schultz, Jastrow, and Merckx, 1999).

1.3.2 Aggregate Dynamics and Carbon Stabilization

Carbon sequestration is often discussed as the capture and long term storage of atmo-

spheric CO2 (Lal, 2008), however this de�nition can be misleading when discussing

sequestration in soils. Soil C containing compounds are not stable, but rather they

are a dynamic component in the decomposition cycle. C may be mineralized immedi-

ately through microbial metabolism, or be cycled through microbial biomass several

times before becoming mineralized (Dungait et al., 2012). The time between a C com-

pound entering a soil environment, and being mineralized back into the atmosphere,

is determined by the probability in time and space of being physically available to

an appropriate organism (Ekschmitt, Liu, Vetter, Fox, and Wolters, 2005). The goal

of soil C sequestration is therefore shifting the cycle of decomposition to one that

maintains more C for longer periods of time, not as an inde�nite storage mechanism,
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but rather as a down shifting the rate of a cycling system.

Physical protection of C within aggregation reduces the probability of that C

encountering an appropriate soil organism and is a viable way that the rate of C

mineralization may be slowed (Dungait et al., 2012; Ekschmitt et al., 2005; Lavelle,

1997; Lutzow, Kogel-Knabner, Ekschmitt, Matzner, Guggenberger, Marschner, and

Flessa, 2006). A paradox exists, however in that the preservation of a soil's struc-

ture, and therefore the preservation of the occluded C, depends on the continual

biological contributions of SOM decomposition by microorganisms (Baldock, 2002;

Dungait et al., 2012; Watts, Whalley, Brookes, Devonshire, and Whitmore, 2005).

The agents holding all biotically sourced aggregates together are subject to biotic

and abiotic degradation, and once all POM is fully degraded there is no longer a sub-

strate provided for microorganisms to utilize and the production of aggregating agents

is reduced, reducing structural stability (Baldock, 2002). The natural turnover of ag-

gregation is more rapid within large aggregate classes due to the temporary nature

of the binding agents (Tisdall, 1991). Microaggregation is very stable due to the in-

timate associations between clays and organic matter (Tisdall and Oades, 1982), and

its turnover is much slower than that of macroaggregation, aiding in the protection

of its occluded C.

The formation of microaggregates within macroaggregates has been widely demon-

strated (Angers et al., 1997; Beare et al., 1994; Golchin et al., 1994; Jastrow, 1996;

Oades, 1984), and based on this research Six et al. (1998) developed a model to ex-

plain the in�uence of disturbance, in this case agricultural tillage, on the stabilization

of C within microaggregates. In his model, frequent disturbance inhibits the forma-

tion of microaggregates within macroaggregtes. If time is not allowed for microbial

bio-products to be produced, and the organo-mineral associations to form, microag-

gregates will not stabilize and will o�er limited protection to the associated organic
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matter. While tillage has been demonstrated to negatively a�ect the accumulation of

microaggregate associated organic matter (Yoo and Wander, 2008), some mixing is

required in order to put organics into contact with mineral surfaces in the �rst place.

It is likely a combination of contact time and soil mixing that determines the rate of

microaggregate and organo-mineral complex formation (Yoo, Ji, Aufdenkampe, and

Klaminder, 2011).

To investigate the e�ect of tillage frequency on the incorporation of fresh POM

into microaggregate structures Plante and McGill (2002) conducted a lab study. They

found that simulated tillage did not have the hypothesized e�ect of increased soil res-

piration. It was hypothesized that the frequent exposure of substrate to microbial

communities would increase the net microbial activity. It was found that added POM

increased soil respiration shortly after addition, regardless of treatment, but by the

end of 8 weeks, total CO2 emissions were signi�cantly higher in the non-disturbed

treatments. Results suggested that the labile portion of added POM was rapidly de-

composed regardless of treatment, and that while no-till samples had higher aggrega-

tion at the beginning of the experiment, this e�ect declined steadily with time. Those

soils that underwent tillage had lower, but more dynamic aggregation, with aggre-

gates rapidly recovering after each tillage event. These results led Plante and McGill

(2002) to hypothesize that 3 thresholds of aggregate turnover likely exist dictating

whether organic matter is released or protected, and that di�erent tillage frequencies

likely impact old and new SOM di�erently. If a soil is already highly aggregated,

and the turnover of that aggregation is slow, than incoming organics will be rapidly

mineralized before aggregation can form to protect it. At this rate of turnover (R1),

any disturbance will likely result in the occlusion of fresh organic matter, reducing

the net mineralization from the soil. As the rate of turnover increases, a level will be

reached (R2) where fresh occluded SOM will be re-exposed before stable microaggre-
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gates and organo-mineral complexes can form, and at that point net mineralization

will begin to increase. A third threshold (R3) is proposed where old and previously

protected organic matter is exposed so frequently that aggregation no longer provides

any physical protection. The turnover rates for each of these thresholds will obviously

di�er among soil types, clay content, and quality and quantity of SOM inputs, as well

as the mechanism of turnover.

Most studies investigating aggregate turnover have looked at the impacts of various

agricultural tillage systems (Beare et al., 1994; Bossuyt et al., 2002; Paustian, Six,

and Elliott, 1999; Plante and McGill, 2002; Six et al., 2000). Much less study has been

done investigating the aggregate dynamics within temperate forests , ecosystems that

are widely considered important as potential sinks for atmospheric CO2 (Lal, 2005).

In forested systems aggregate turnover is naturally slower, limited to freeze/thaw

and wet/dry cycles, wind throw, and bioturbation (Currie, Yanai, Piatek, Prescott,

and Goodale, 2002). Many of the forests of the northeast currently lack the e�cient

soil mixing provided by various earthworm species. Forests not in�uenced by the

bioturbation of earthworms are likely to be considered native ecosystems and therefore

may reside near R1 on the threshold scale proposed by Plante and McGill (2002). It

is likely that earthworms will enter into these ecosystems in the future (Hale, Frelich,

Reich, and Pastor, 2005), increasing the aggregate turnover of the soils, and yet the

impact of their particular type of bioturbation on the C dynamics of forest soils is

still largely unknown.

1.4 Earthworms as Ecosystem Engineers

Oligochaeta contains approximately 8000 species from 800 genera (Edwards, 2004)

inhabiting both aquatic and terrestrial ecosystems and ranging in size from a few
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millimeters to several meters long. The occurrence and abundance of earthworms in

terrestrial soils is based on soil moisture, temperature, acidity and organic matter

content, as well as the presence of predation or the co-occurrence of other earthworm

species (Lee, 1985).

Earthworm populations can be subjectively judged as either bene�cial or detri-

mental, depending on where thay are located. Many earthworm species occupy more

than one ecological niche, and with extensive diversity in reproduction and feeding

preference among species, the speci�c e�ect of any one earthworm community may

be viewed as unique to that community in that environment. However, many com-

monalities exist between species, especially with those inhabiting similar ecological

roles, and so these roles are helpful in conceptualizing how earthworm presence may

in�uence soil properties.

Earthworms are placed into three distinct groups (Bouche, 1975), each inhabiting

a speci�c ecological role. Anecic species break down fresh litter from the surface,

pulling it into the soil surrounding their deep permanent burrows. Epigeic species live

and feed on the litter at the surface, rarely burrowing into the mineral soil. Endogeic

species live and burrow in the upper areas of the mineral soil, feeding on mineral-

associated organic matter. Many species may occupy more than one role, depending

on where they live and feed, altering their soil impact beyond the above mentioned

groupings. The di�erent classi�cation of earthworms, working as a community and

individually, drastically alter the chemical, physical, and microbial environments in

the soils they inhabit. Endogeic species can ingest 5 to 30 times their body weight of

mineral soil per day (Lavelle, Bignell, and Lepage, 1997). Depending on a population's

density the drilosphere, de�ned as any area in the soil directly e�ected by earthworm

manipulation, can encompass the majority of upper mineral soil volume (Brown,

Barois, and Lavelle, 2000).
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Earthworms have been termed �ecosystem engineers� due to this wide reaching

impact on soil structure and ecology (Doube and Brown, 1998). Earthworms have

long been revered in agriculture for the positive e�ect they have on soil health param-

eters. The reorganization of mineral and organic materials within their gut increases

soil porosity and subsequently soil water retention and aeration. They also increase

available soil nutrient concentrations by breaking down complex organic materials

into microbially accessible food sources, while distributing them throughout the soil

pro�le and making them more available for root uptake (Bohlen, Pelletier, Gro�man,

Fahey, and Fisk, 2004). Increased nutrient levels, aeration and water retention are

positive factors for plant growth, and desirable in agricultural settings.

1.4.1 The Earthworm Invasion

The distribution of earthworm species throughout the globe is widespread, with earth-

worms found in almost any area inhabited by humans. Earthworm species are in

constant movement, and exotic species are continually moving into areas devoid of

earthworms or coming into contact with native earthworm populations (James and

Hendrix, 2004). Many earthworm species can demonstrate invasive qualities, such as

proli�c breeding behaviors, resistance to disturbance, or the ability to become dor-

mant in response in unfavorable conditions (Lee, 1985). However some species may

simply be inadvertently transported by human activities, placed into a new habit-

able environment where they do not proliferate. Without inadvertent long distance

transport due to human activities it is unlikely that the variety of earthworm species

colonizing such a large area would be seen (Parkinson, McLean, and Scheu, 2004).

Either scenario of establishment, population movement or human transport, has wide

reaching impacts on the ecosystems earthworms newly inhabit, and the extent of these

interactions is complex and still in need of investigation.
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Earthworm species inhabit many ecosystems and display a wide range of behav-

ioral, physiological, and morphological adaptations to changing environmental condi-

tions (Lee, 1985). Even in supposedly unsuitable environments such as deserts and

urban settings, earthworms may inhabit local micro-sites where favorable conditions

exist (Curry, 2004). During the last glaciation, ending approximately 10,000 years

ago, earthworms were eradicated from the current temperate areas of North America

(latitudes of 45-60º north). It has only been within the last 300 years, with the intro-

duction of the European and Asian earthworms, that these soils have been exposed

to earthworm in�uence (Frelich, Hale, Scheu, Holdsworth, Heneghan, Bohlen, and

Reich, 2006).

Earthworms have long been revered for the bene�cial e�ects they have on plant

growth, and therefore they are often a welcome site in gardens and other agricultural

settings. However, when put in forested ecosystems earthworms are often considered

invasive, and they are capable of having long lasting and wide reaching ecological

impacts. The movement of European and Asian species of earthworms into forests

from horticultural settings has been the subject of considerable study (Fahey, Yavitt,

Sherman, Maerz, Gro�man, Fisk, and Bohlen, 2013; Gro�man, Bohlen, Fisk, and

Fahey, 2004; Hale, Frelich, and Reich, 2005; Hopfensperger and Leighton, 2011; Sack-

ett, Smith, and Basiliko, 2013), with the understanding that earthworm presence will

have long term implications for forest health and soil C dynamics.

Colonization of forests has been shown to begin at roads, and other areas of

frequent travel, and progress into forests in a wavelike manner (Dymond, Scheu,

and Parkinson, 1997; Hale et al., 2005). Hale et al. (2005) described a dynamic

of earthworm invasion in the hardwood forests of Minnesota where epigeic and epi-

endogeic species were established �rst, integrating the forest �oor into the mineral

soils. This action allowed for the establishment of endogeic species, which live and feed
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on C enriched mineral soils. Hale et al. (2005) hypothesized that it was this presence

of endogeic species, in concert with anecic establishment, that made it di�cult for

the forest �oor to recover, and this represented the furthest stage of invasion. The

colonization of new habitats by earthworm movement is usually slow, moving at

about 10 meters per year (Marinissen and van den Bosch, 1992), though this rate is

dependent on the populations colonizing and the habitability of the new environment.

The population size of earthworms usually reaches maximum levels at the front of

invasion, numbers decreasing with the reduction of usable food sources and the co-

habitation of many species (Dymond et al., 1997; Hale et al., 2005)

1.4.2 Earthworms and Carbon in Northeastern Forests

1.4.2.1 Removal of the Forest Floor

As earthworms have migrated from agriculture systems into forests, or as forests

have re-established on soils with active earthworm populations, the same processes

which made earthworms bene�cial for agricultural settings have had negative impacts

on forested ecosystems. This negative impact has occurred primarily through the

manipulation of the forest �oor. Numerous studies have noted that over the course

of a few years the forest �oor is signi�cantly decreased, if not completely absent, in

newly earthworm invaded forests (Bohlen et al., 2004; Holdsworth, Frelich, and Reich,

2012).

The forest �oor is an accumulation of litter, in various stages of decay, located

above mineral soil horizons. Due to a lack of disturbance and mixing the forest �oor

represents a progression of decomposition consisting of relatively unaltered leaf litter

on top (Oi), fragmented and darkening litter (Oe) below, and amorphous humi�ed

substances (Oa) above mineral soil (Currie et al., 2002). When this organic matter
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accumulation is de�ned from the sub mineral horizons it is classi�ed as a mor soil, and

when the delineation between the organic accumulation and mineral soil is unclear, it

is classi�ed as a mull soil (Müller and Tuxen, 1878). The forest �oor is a fully func-

tional part of the forest ecosystem and plays a dynamic role in the regulation of soil

temperature, pH, water retention and in�ltration, nutrient management and C stor-

age. These functions are part of a complex ecological system which is strongly linked

to forest production, regeneration, and nutrient cycling through dynamic feedback

systems. Small changes in the forest �oor have the potential for large consequences

on the forest community (Currie et al., 2002).

The forest �oor acts as a necessary seed bed for many native herbaceous plants

and trees. Through earthworm bioturbation forest soils are shifted from a mor to

mull classi�cation and the environment is shifted from what is appropriate for native

forest species, to one favorable for plants adapted to germinating in bare mineral

soils. Earthworm invasion has been shown to change an understory diverse in native

herbaceous plants and tree seedlings into one dominated by grasses (Carex sp.) (Hale,

Frelich, and Reich, 2006) and invasive plants (Nuzzo, Maerz, and Blossey, 2009). It

has also been documented that some rare plant species have been eradicated from

forested areas as a direct result of earthworm integration of the forest �oor (Gundale,

2002). The shifting in understory has an a�ect on the entire above ground forest

ecosystem, likely impacting the future productivity of a forest.

The relocation of the C-rich forest �oor also has implications for a forests roll

as either a sink or source of atmospheric C. The role that the forest �oor plays

in the C cycle is associated with its ecological importance. Although mineral soil

accounts for the majority of C in forest soils, most of mineral soil C originates from

the forest �oor (Currie et al., 2002), moving downward in the soil pro�le by soil

mixing and DOC percolation. Other mineral C sources include microbial biomass
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and roots. The redistribution of this organic-rich layer into deeper mineral horizons

can have long term impacts on the total C storage of these soils. While most research

strongly favors the hypothesis that earthworm presence results in a net loss of C from

forest soil systems (Alban and Berry, 1994; Bohlen et al., 2004; Frelich et al., 2006;

Lyttle, Yoo, Hale, Aufdenkampe, and Sebestyen, 2011), there is con�icting research

that �nds the opposite when looking at di�erent depths (Wironen and Moore, 2006),

or di�erent time scales (Alban and Berry, 1994; Zhang, Hendrix, Dame, Burke, Wu,

Neher, Li, Shao, and Fu, 2013). This reduction in total soil C is accomplished through

a relocation, and enhanced decomposition of the forest �oor, however as C is moved

lower into the pro�le gathering an accurate summation of total C stores becomes

more di�cult. There is also a growing body of evidence that in many circumstances

earthworms may be capable of stabilizing C for long periods of time within their

burrow walls (Don, Steinberg, Schöning, Pritsch, Joschko, Gleixner, and Schulze,

2008) and castings (Bossuyt, Six, and Hendrix, 2004,0; Shan, Liu, Wang, Yan, Guo,

Li, and Ji, 2013; Zhang et al., 2013).

1.4.2.2 Earthworm Enhancement of Bacteria Dominated Respiration

How soil microorganisms are a�ected by passage through the earthworm gut is contro-

versial. There are many di�erent ways to measure microbial activity, many of which

may result in con�icting conclusions (Insam, 2001). Variations among species are

also often generalized for entire earthworm groupings (Butenschoen, Marhan, Langel,

and Scheu, 2009), which may not neccessarily be true. External variables such as soil

texture (Butenschoen et al., 2009), quality of food sources (Tiunov and Scheu, 2000),

and interactions between species may also drastically alter �ndings. Additionally, it

has been found consistently that the microbial community structure of freshly ex-

creted castings is di�erent than those that have been aged (Scheu, 1987; Tiunov and
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Scheu, 1999), meaning that time of analysis will impact the conclusions drawn from

passage through the earthworm gut.

Microbial biomass is believed to increase, especially in lower mineral horizons

(McLean, Migge-Kleian, and Parkinson, 2006), through the enhancement of organic

C chemical and physical availability (Li, Fisk, Fahey, and Bohlen, 2002). However, the

inconsistency of this e�ect suggests that it is likely dependent on other variables, such

as whether an earthworm species uses a microbial communities as a secondary food

source (Zhang, Li, Shen, Wang, and Sun, 2000). Despite inconsistent proof of their

impact on microbial communities, through their in�uence over substrate availability

and soil physical characteristics, earthworms are still believed to be a major indirect

contributor to greenhouse gas emissions from the soils they inhabit (Lubbers, van

Groenigen, Fonte, Six, Brussaard, and van Groenigen, 2013).

The earthworm gut as a microenvironment From a microbial perspective the

conditions within the earthworm gut are markedly di�erent than those of the ingested

soil (Drake and Horn, 2007). Ingested microorganisms would immediately encounter

an anoxic environment, rich in easily accessible organic molecules derived from both

locally ingested SOM, and mucous rich in polysaccharides and proteins secreted by

the earthworm to aid in the passage of materials (Drake and Horn, 2007). This

environment would theoretically favor anaerobic and facultative aerobic organisms,

and the ingested and egested soils would be expected to di�er in community structure

due to this transient environment. This e�ect is very di�cult to study, due to the

limited number of microbial species capable of being cultured (Hill et al., 2000),

however it appears that the primary di�erence in ingested and egested materials is

due to a quantitative enhancement of the ingested anaerobic communities relative

to aerobic communities, and not a reduction of aerobic communities (Karsten and
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Drake, 1995). Additionally, the di�erence an anaerobic communities appears to be

strictly quantitative, excreted community diversity being similar to that of bulk soil

(Ihssen, Horn, Matthies, Gossner, Schramm, and Drake, 2003), although it is still

likely that excreted soils are inoculated with gut-speci�c microbes (Shipitalo and

Bayon, 2004). In general it may be concluded that earthworm ingestion appears

to stimulate microbial communities in the soil (Drake and Horn, 2007), however the

speci�c changes appear to vary with earthworm species, substrate quality, soil texture,

and the co-occurance of other soil fauna.

Priming e�ect Due to the limited availability of substrates, most bacterial cells

in the soil are in a state of dormancy (Morita, 1993). De Nobili, Contin, Mondini, and

Brookes (2001) proposed the �trigger molecule hypothesis� a theory which explains

the survival of soil microorganisms physically separated from a usable substrate the

majority of the time. It is hypothesized that most microorganisms are capable of

maintaining a �metabolically alert� state when not in the proximity of a usable sub-

strate, or when that substrate would cost more energy to metabolize than it would

provide the organism (Stenstrom, Svensson, and Johansson, 2001). When low molecu-

lar weight molecules are detected, the organism can switch to a �metabolically active�

state which would allow them to access not only the low molecular weight substrates

but also the previously unattainable ones. This hypothesis would explain the well

understood �priming e�ect� (Kuzyakov, Friedel, and Stahr, 2000), which occurs when

small additions of organic matter result in an disproportionate response in respira-

tion (Blagodatskaya and Kuzyakov, 2008). Because of the combining of substrate

and microbial biomass, this priming e�ect has been attributed to passage through

the earthworm gut (Lavelle et al., 1997).

Through a disruption of hyphal networks, and the potential to preferentially utilize
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fungal cells as a substrate, many earthworm species are thought to reduce the ratio

of fungi to bacteria in soils (Dempsey, Fisk, and Fahey, 2011). This change in the

ratio of fungi to bacteria may alter C stabilization in soils indirectly by shifting

the degradation of organic compounds from a system dominated by fungi to one

dominated by bacteria. The degradation of lignin in soil it primarily fungal driven

(Thevenot et al., 2010), and bacteria are less e�cient than fungi at assimilating

C and therefore respire a higher ratio of CO2 than fungi (Adu and Oades, 1978).

Additionally, the chemistry of the microbial biomass would change C turnover, fungal

biomass being constructed of more complex biomolecules (chitin, melanin etc.), which

are not typically found in bacterial biomass (Jastrow, Amonette, and Bailey, 2006).

1.4.2.3 Earthworm Protection of C Through Aggregate Formation

Earthworms are the most studied of all soil fauna, especially in relation to soil ag-

gregation (Six et al., 2004). Shipitalo and Protz (1989) were the �rst to propose

a model for the formation of microaggregates by earthworms. As earthworms move

through the soil they ingest both organic material and mineral soil particles, which are

then mixed within the earthworm gut and excreted as castings. Di�erent earthworm

species expose ingested soils to a variety of pressures and gut transit times (Shipitalo

and Bayon, 2004). The pressures in the earthworm gut, together with additions of

large amounts of watery mucus (Barois, 1992), disrupt the cation bridges binding

the smallest and most stable of soil aggregates, mobilizing individual clay particles

(Marinissen, Nijhuis, and van Breemen, 1996). Clay particles are then brought into

intimate contact with new binding agents, which are rich within the earthworm gut,

forming the basis for new microaggregate structures once excreted (Shipitalo and

Protz, 1989). It can therefore be assumed that during passage through the gut of

most soil dwelling earthworm species, the majority of all soil structure is destroyed,
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left to reform upon excretion. Additionally, as earthworms move through the soil,

they exert pressure on their burrow walls (Edwards and Bohlen, 1996). This pressure

works with the addition of external mucus to orient clays along burrow walls, forming

stabilized structure (Don et al., 2008; Lee, 1985). Of the three ecological groups,

endogeic and anecic species are considered the most in�uential in soil aggregation

properties (Lavelle and Spain, 2001).

While most earthworm castings have a de�ned physical structure, the structure is

initially unstable (Barois, 1992; Marinissen et al., 1996; Shipitalo and Bayon, 2004).

Castings appear to typically stabilize with aging, however the level of stabilization

depends on all variables regarding soil and individual earthworm qualities, as well as

the methodology used to measure stabilization (Shipitalo and Bayon, 2004). Physical

stabilization of castings may occur because of the intimate association of clays within

the earthworm gut, however this stabilization happens relatively quickly, failing to

explain the increased stabilization noted over the long times frames of days to weeks

(Marinissen et al., 1996). The e�ectiveness of various biologically sourced binding

agents (microbially sourced polysaccharide, earthworm mucus, etc.) in cast stabi-

lization remains controversial and situationally based (Shipitalo and Bayon, 2004).

Many earthworms are known to secrete amorphous calcium carbonate (Edwards and

Bohlen, 1996), which is possibly a very e�ective binding agent (Zhang and Schrader,

1993). In addition to its e�ect on aggregation, this calcium carbonate excretion has

been suggested as an alternative way that some species are capable of immobilizing

large quantities of C within the soil system (Briones, Ostle, and Piearce, 2008).

A decline in microbial activity is usually detected in casts shortly after they are

excreted, relative to bulk soil. When investigating the aged castings of Lumbricus

terrestris, Tiunov and Scheu (2000) found that while basal respiration was 30-130%

higher than expected after excretion, by day 10 both respiration was signi�cantly
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less than expected. When investigating the casts of Aporrectodea calingnosa, Scheu

(1987) noted a signi�cant decline in microbial activity with time, however these values

never reached a level that was less than the bulk soil. These �ndings, among many

other con�icting studies (McLean et al., 2006), highlight that the e�ect earthworms

will have on microbial dynamics is situationally based, and will depend highly on the

method and time of measurements.

In recent years, many studies have been conducted supporting the theory of earth-

worm enhanced microaggregation in soils. (Bossuyt et al., 2004,0) found that earth-

worms increased large macroaggregates (> 2000 µm) by 3.6 times, increased microag-

gregates within macroaggregates by 4 times, and that 22% of the C within these oc-

cluded microaggregates was from newly added C sources. This supports earthworms

ability of rapidly incorporating new residues into physically protected microaggre-

gates. The majority of studies investigating earthworm in�uenced microaggregation

have been conducted within agricultural soils (Don et al., 2008; Pulleman, Six, Uyl,

Marinissen, and Jongmans, 2005), or have used homogenized soils (Bossuyt et al.,

2004), leaving a gap in the understanding of the e�ect of earthworms on the aggre-

gation within non-invaded forest soils.

Six, Callewart, Lenders, Morris, and Paul (2002) found that the protection of C

within microaggregates accounted for 20% of the increased C levels seen in forest

soils compared to similar agricultural systems. Microaggregates play a crucial role in

a forest's potential to sequester C, and it is a buildup of C witin these structures that

may be the key in mitigating anthropogenic C through forest management practices.

While it has been demonstrated that earthworm invasion into forests generally results

in a loss of C from the system in the short term (Lubbers et al., 2013), and that

earthworms are capable of creating a physically protected C source through increased

microaggregation (Bossuyt et al., 2005), the in�uence these soil animals have on the
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microstructure already present in forests has not yet been thouroughly investigated.

1.5 Conclusion

There exist a large number of publications that show con�icting �ndings as to the net

e�ect of earthworms in forests (Brown et al., 2000), and as highlighted in the above

summary the processes are complex and often feedback on one another. Organisms

and structural properties likely demonstrate opposing e�ects on SOM dynamics at

di�erent spatial or temporal scales. The net e�ect of earthworms on any one system

will likely involve a concurrent acceleration of decomposition and accumulation of

physically stabilized C fractions, the net loss or capture dependent on the myriad of

variables present in any given soil ecosystem. Microbial communities and their func-

tions are still very poorly understood with some researchers estimating that more

than 90% of the soil's microbial community is unable to be cultured with current

technology (Hill et al., 2000). Microbial aspects are therefore considered a �black

box� in the realm of SOM dynamics and turnover (Tiedje, Asuming-Brempong, Nus-

slein, Marsh, and Flynn, 1999), and likely the missing link in truly understanding

the relationships between earthworms and C turnover. In the meantime however,

microaggregate creation and turnover is a viable proxy for analyzing changes in the

C turnover dynamics under earthworm in�uences because of its known relationship

with soil microbial communities.

1.6 Research Objectives

Earthworms are likely to impact many of the forests in Vermont in the future, and yet

very little is known of the long term implications they will have on the C retention

of the forest soils. The bioturbation by earthworms is very di�erent than what would
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occur during conversion to agriculture, and therefore the net loss of C should not be

expected to be comparable. Very little is still known about how this particular type of

aggregate turnover will impact the quality and quantity of the microaggregate pools

already present in many forest soils. The objectives of this research were to

1. Conduct a statewide survey to increase our understanding of where earthworm

communities are currently located in the forests of Vermont and gather baseline

community data on the impacts they may be having.

2. Correlate earthworm community presence with the quantity and quality of mi-

croaggregates in the soil.

3. Conduct a controlled paired study investigating the e�ect of one earthworm

species on the quantity and quality of microaggregates in an undisturbed forest

soil.

1.6.1 Rational for Methods

Most soil C in surface soils is found within aggregates, and 20-40% of total SOM is

found inside microaggregates (Carter, 1996). Using 13C natural abundance, many

studies have demonstrated that the turnover time of C occluded in macroaggregates

(>250 µm) is substantially shorter than that which is occluded within microaggregates

(Angers et al., 1997; Carter, 1996; Six et al., 2002; von Luetzow et al., 2007). The

C stabilization in microaggregates is increased if the SOM demonstrates both phys-

ical protection and chemical recalcitrance, and if both stabilization mechanisms are

present SOM associated with microaggregates may have a residence times of several

thousand years (Carter, 1996).

The isolation and analysis of these structures represents a pool of C having an

assumed mean residence time (MRT) that is greater than that of the bulk soil (Lutzow
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et al., 2006). However, because the SOM present within these structures has formed,

and become stabilized, by simultaneously acting mechanisms (humi�cation, organo-

mineral complexion, physical protection) the quanti�cation of these structures can

not represent a functionally homogeneous fraction useful for modeling or predictions.

By analyzing the soil microaggregate pool, what is actually being investigated is the C

pool associated with micro-pore spaces that undergo more C-stabilizing biological and

physio-chemical processes than the bulk soil. Therefore the operational de�nition of

�microaggregate�, and the methods used to obtain these structures, has an inseparable

in�uence on how various resulting values are interpreted.

To fully gain insight into a soil's pool of micropores, the free microaggregates as

well as the occluded microaggregates must be investigated. Six et al. (2000) was the

�rst to suggest a method of analyzing not only the free microaggregate structures,

but also the microaggregates occluded within stable larger aggregate structures. This

is done by �rst separating the soil into its water stable constituents, the theory being

that if a structure is not capable of withstanding the disruption of rapid wetting than

it is unlikely to be to maintained within the soil under natural conditions. After

the free water stable microaggregates are obtained, the larger aggregate classes are

re-wet and gently shaken with beads to release the the occluded microaggregates.

These microaggregates are quickly collected in a series of sieves so as to avoid further

disruption. Though this method of analyzing occluded microaggregates my cause dis-

ruption that is greater than what would be noted in nature, the values obtained from

this method represent a minimum number of de�ned microaggregate structures found

in the soil at the time of analysis, and may still be bene�cial for comparison analy-

sis. During the above process only the microaggregates 53-250 µm are collected and

analyzed, though depending on soil properties there may be a signi�cant proportion

of clay bound into micro-structures <53 µm that also have an abundance of microp-
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ores. Electron microscopy has con�rmed that many of these structures are capable of

withstanding even the best attempts at full dissociation (Chenu and Plante, 2006),

and no consistent way of isolating and analyzing the C occluded within these clay mi-

crostructures exists (Chenu and Plante, 2006), depending heavily on clay minerology

and the presence of inorganic binding agents.

The proportion of soil microaggregates is determined strictly by the de�ned sieve

size used, and the disruptive forces placed on the aggregate structures. The size cuto�

between macro and microaggregates for many methods is 250 µm, and while consistent

between many studies this number is a relatively arbitrary cuto� when investigating

the distribution of pore sizes within a structure. The disruptive forces placed on

the structures is certainly highly variable between studies, with di�erent people and

equipment being used. The methods used are required to be highly calibrated between

individuals, in order to make comparisons valid within the study.
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CHAPTER 2

EARTHWORM PRESENCE IN VERMONT FORESTS: IMPACT ON

DISTRIBUTION OF SOIL CARBON WITHIN AGGREGATE FRACTIONS

2.1 Abstract

The impact of earthworm presence on the soil carbon (C) dynamics of previously unin-

habited northeastern forests is still largely unknown. Currently, earthworm presence

is understood to both enhance soil respiration, and create stable microaggregates,

processes assumed to have con�icting e�ects on long-term C storage. In addition to

a�ecting a forest's ability to sequester C in the long term, earthworm presence is also

known to have extensive impacts on a forest's native vegetation and regeneration. The

state of Vermont is 75% forested and with the full extent of earthworm communities

unknown the management of these forests in the context of increasing earthworm pop-

ulations is di�cult. The purpose of this study was to gather earthworm community

data on 18 previously established forest monitoring sites, in which only earthworm

absence or presence had previously been noted. For eight northern hardwood sites,

earthworm data was correlated with the quantity and quality of mineral soil microag-

gregates (53-250 µm), a pool of C assumed to be physically protected. For all sites,

earthworms had previously been noted, all ecological functional groups were found.

Single species were noted in 3 sites that did not have earthworm presence during ini-

tial plot establishment, suggesting new communities. Of the species found, Octalasion

cynaeum is new to the state of Vermont, having never been noted in previous studies.

Number of species, or species richness, was used as the metric for earthworm impact

in any one sampling location. Species richness showed a strong relationship with a

reduction in forest �oor depth. Species richness was negatively correlated with the to-
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tal proportion of soil dry mass composed of microaggregates. Sampling plots with no

earthworm species had approximately 5% less soil mass comprised of microaggregates

than those plots with the highest species richness (4-6 species) (P<0.001). Species

richness was positively correlated with the total C associated within microaggregates,

and plots with high species richness contained almost twice the quantity of C within

microaggregates than plots with no species noted (P<0.001). Earthworms correlated

with an increased proportion of macroaggregates (>250 µm) within forest soils, how-

ever the proportion of microaggregates within these macroaggregates was reduced.

The di�erences between plots with no earthworms and the plots with few earthworm

species (1-3) was rarely signi�cant for any variable measured. The shift from 1-3

species to 4-6 species was dominated by an increase in endogeic species, suggesting

that it is primarily this functional group a�ecting soil aggregation properties.

2.2 Introduction

Earthworms have been termed �ecosystem engineers� due to the signi�cant impact

they have on the morphology, nutrient cycling and microbial communities of the soils

they inhabit (Lavelle et al., 1997). Earthworms are exotic to previously glaciated

areas of North America, and prior to European settlement these soils were devoid

of earthworm communities (Gates, 1976). The movement of European and Asian

species of earthworms into forests from horticultural settings, has been the subject

of considerable study (Fahey et al., 2013; Gro�man et al., 2004; Hale et al., 2005;

Hopfensperger and Leighton, 2011; Sackett et al., 2013), with the understanding that

earthworm presence will have long term implications for forest health and soil carbon

(C) dynamics.

Soils contain more C (1,500 Gt) than in all terrestrial biomass (560 Gt) and the

37



atmosphere (720 Gt) combined (Birdsey, 1992), making them a key player in the

attempt to o�set anthropogenic C emissions. An intimate relationship exists between

the soil and the atmosphere, with soil respiration accounting for roughly 20% of total

CO2 emissions (Rastogi et al., 2002). Northern forests are important C sinks, however

sensitivity to environmental changes means earthworm bioturbation has the potential

to alter C cycling in these ecosystems (Bohlen and Scheu, 2004).

The state of Vermont is 75% forested, with many forested areas owned and man-

aged by individuals and families (Sinclair, 2013). The primary vectors of earthworm

invasion are likely disposed �shing bait, horticultural plant material, and the trans-

port of soils and �ll throughout the state (Hendrix and Bohlen, 2002), however the

full extent of current earthworm presence in Vermont forests is unknown, making

management di�cult. In a state where forestry represents a large portion of the

economy, and many of the states forests are actively managed, understanding where

earthworm species are, and the precise e�ects they are having on the forests, would

help in developing best practices for the future.

Earthworms are typically placed into three groups, each inhabiting a speci�c eco-

logical role and in�uencing C turnover di�erently (Bouche, 1975). Epigeic species live

and feed on the litter at the surface, anecic species traverse the litter and mineral soils,

pulling fresh litter into their deep, permanent burrows, and endogeic species live and

burrow in the upper areas of the mineral soil, feeding on mineral-associated organic

matter (Doube and Brown, 1998). Earthworm presence impacts forests negatively

through the same actions that make them bene�cial in agricultural settings. Di�er-

ent species, working individually or as a community, incorporate nutrient rich surface

organics (agricultural debris or the forest �oor depending on the setting) downward

in the soil pro�le, resulting in increased nutrient cycling, soil structure, and water

in�ltration, e�ects which are bene�cial for root growth and nutrient absorption. The

38



forest �oor, composed of litter in various stages of decay, performs many functions

within the forest ecosystem, acting as a necessary seed bed for native plants while

also regulating the soils moisture, temperature, and nutrient cycling (Currie et al.,

2002). The translocation and mixing of the C-rich forest �oor into the mineral soil

has implications for a forest's role as either a sink or source of atmospheric C.

Most studies investigating the in situ impact of earthworm invasion into native

northern forests have found a reduction of the forest �oor, however there have been

con�icting �ndings on the e�ect this has on total soil C storage. In a 14-year �eld

study, Alban and Berry (1994) reported that earthworms decreased total soil C by 600

kg per ha per year, however Zhang et al. (2013) notes that reduction was only seen

for the �rst 2 years, before C levels were maintained at a new equilibrium. Bohlen

et al. (2004) found that earthworm invasion decreased soil C storage by 28% in the

upper 12 cm of a sugar maple dominated forest in New York, while Wironen and

Moore (2006), investigating a similar forest type in Quebec Canada, had �ndings

that suggested earthworm presence increased total soil C to a depth of 30 cm. There

is little doubt that invading earthworms are increasing the mineralization of C in

the short term (Lubbers et al., 2013), however inconsistencies among �eld �ndings

highlight that there are secondary earthworm processes which have con�icting impacts

on C retention depending on situational spatial and temporal circumstances, as well

as the methods used during investigation.

There are likely many ways C is stabilized within soils, however the mechanisms

of stabilization, as well as methods of measurement, are still being debated. While

chemical properties will dictate, to some degree, how resistant soil C may be to

microbial attack (Bol et al., 1996; Lutzow et al., 2006), the currently held belief is

that it is the accessibility of C compounds to degradation, rather than a compound's

intrinsic chemical quality, which dictates its residence time within soils (Dungait et al.,
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2012; Kleber, 2010; Marschner, Brodowski, Dreves, Gleixner, Gude, Grootes, Hamer,

Heim, Jandl, Ji, Kaiser, Kalbitz, Kramer, Leinweber, Rethemeyer, Schä�er, Schmidt,

Schwark, and Wiesenberg, 2008). One frequently cited stabilization mechanism is the

physical segregation of bacterial communities, and their enzymes, from C occluded

within a soil microaggregates (mA, 250 µm-53 µm) (Adu and Oades, 1978; Dungait

et al., 2012; Elliott and Coleman, 1988; Sanchez-de Leon, Lugo-Perez, Wise, Jastrow,

and Gonzalez-Meler, 2014; Schmidt et al., 2011; Six et al., 2002; Stewart et al., 2007).

The majority of pore space located within microaggregates is limiting to bacterial

communities and their of enzymes (Lutzow et al., 2006). Due to the nature of their

binding agents and size, microaggregates are extremely stable, and therefore the pore

system, and its exclusion properties, are maintained for long periods of time (Oades,

1993). Presuming that microaggregate occluded C does, in fact, represent a pool

of stabilized C within the soil, the ability to operationally isolate these structures,

as outlined in Six et al. (2000), allows for one mechanism of C stabilization to be

analyzed.

During passage through the gut of soil dwelling earthworm species, existing mi-

croaggregates are destroyed by grinding within the gizzard and peristalsis through

the gut. Through these actions organic debris, polysaccharides and mineral parti-

cles come into intimate contact with each other, forming the nuclei for newly formed

microaggregates (Shipitalo and Protz, 1989). This process of microaggregation has

been observed in homogenized (Bossuyt et al., 2005; Sanchez-de Leon et al., 2014) and

undisturbed agricultural soils (Fonte, Kong, van Kessel, Hendrix, and Six, 2007; Pulle-

man et al., 2005), utilizing various earthworm species and methods of measurement.

It has been proposed through these studies that earthworm facilitated microaggrega-

tion, and the C enrichment of microaggregates, is a mechanism by which earthworms

may stabilize C in the long term, o�setting their a�ect on increased soil respiration.
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As earthworms move from cultivated soils into less disturbed, forest soils it is unclear

how the quality and quantity of soil microaggregates may change.

In 2008 and 2009, 18 forest reference plots were established throughout Vermont;

the initial purpose being to investigate the e�ects of forest harvesting on a soil's C

storage. During plot establishment it was noted that some sites contained earthworm

species, while others did not. It was speculated that, in addition to harvesting e�ects,

land-use history and earthworm presence likely play an important role in the C dy-

namics of these forest soils. In 2012 and 2013, the 18 reference plots were surveyed and

earthworm communities quanti�ed. Objectives were to determine if earthworm met-

rics correlated with forest �oor depth, mineral soil C, and microaggregate associated

C.

2.3 Methods

2.3.1 Site Characteristics

The 18 reference sites were established across the state of Vermont using protocol

modi�ed from the United States Department of Agriculture Forest Service Forest

Inventory Analysis (USDA FS FIA). These sites were funded through the Northern

States Research Cooperative (NSRC) and were originally established to investigate

the e�ects of timber harvesting on forest soil carbon (C) dynamics. Site establishment

was based on biophysical region and schedule of harvesting as well as forest and soil

types (Juillerat, 2011). For locations and site characteristics see Fig. 2.1 and Table

2.1.
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Figure 2.1: Map of Vermont sampling sites. �Harvested� sites are those which had recently

undergone forest harvesting prior to the earthworm survey, resulting in visual ground disturbance

and possible impacts on other metrics.

2.3.2 Survey Methods

Earthworm surveys were carried out in 9 sites (5 Northern Hardwood, 3 Enriched

Northern Hardwood, 1 Spruce-Fir) in 2012, and 9 sites (4 Northern Hardwood, 2

Enriched Northern Hardwood, 3 Spruce-Fir) in 2013. Six 50 x 50 cm survey pits were

added to the pre-existing FIA-type plots (Fig. 2.2). Pits were placed equal distance at

30o, 90o, 150o, 210o, 270 and 330o magnetic north, 32 m from plot center. Soil moisture

(volumetric), and temperature (oC) were read from the upper mineral immediately
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below the Oe horizon using a W.E.T. sensor (Delta T Devices, Cambridge, UK). Bulk

density cores were taken from areas immediately around the pits, 3 cores from 0-10

cm (including Oa, if present) and 3 cores from the 10-20 cm. Depths of litter (Oi,

Oe, Oa) were measured, and the complete Oi and Oe horizons collected separately

to be dried and weighed in the lab. Soil from 0-10 cm (including the Oa horizon),

followed by 10-20 cm, was removed and hand sorted for earthworms. Earthworms

were identi�ed and enumerated on site and than discarded. A representative sample

of undisturbed soil was collected from the pit's face at 10-20 cm, followed by 0-10 cm,

and transported in rigid containers back to the lab for aggregation and C analysis.

For these samples the Oa horizon was not included, the purpose of the study being

the investigation of mineral soil aggregation, and so samples represented a maximum

of 10 cm, and less if an Oa was present.
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Figure 2.2: Location of the earthworm survey plots within the previously established FIA mod-

eled plots. Placement of the survey was designed to avoid areas which were likely disturbed by

previous sampling.

2.3.3 Water Stable Aggregate Fractionation

From each sample collected in 2012 (9 sites x 6 plots/site x 2 depths/plot = 108

samples) a representative 50 g subsample was wet sieved in duplicate according to

the methods found in Six et al. (2002), modi�ed from Elliott (1986). Brie�y, 50 g

of air dried soil was submerged in reverse osmosis (RO) water on top of a 2000 µm
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sieve for 5 minutes to induce slaking. The sieve was moved in and out of the water,

in approximate 3cm circular motions, 50 times over the course of 2 minutes, and the

material that remained on the sieve was back washed into a clean container with RO

water. Any �oating organic matter greater than 2000 µm was not considered to be

soil, and was therefore decanted and discarded. What remained after decanting was

the large macroaggregate fraction (lgMA, >2000 µm), with coarse POM and coarse

sand. The particles that passed through the 2000 µm sieve were transferred over a

250 µm sieve and the 2 minutes (50 motions up and down) was repeated. What was

retained on the 250 µm sieve, the small macroaggregate fraction (smMA, 250-2000

µm), with POM and sand of the same size, was back washed into a clean container

with RO water. The particles that passed through the 250 µm sieve were transferred

over a 53 µm sieve and the process repeated. What was retained on the 53 µm

sieve, the free microaggregate fraction (fmA , 53-250 µm), with POM and sand of

the same size, was back washed into a clean container with RO water. The silt and

clay fraction (< 53 µm), was discarded. The lgMA, smMA, and mA fractions were

all back washed through co�ee �lters (modi�cation, Home 360 Hannaford Brand #2

cone �lters) which were then placed in 65ºC for 18-24 hours. Once dry, the fractions

were weighed and carefully brushed away from the co�ee �lters to be stored in plastic

bags until further processing.

2.3.4 Microaggregate Isolation

The below method for releasing the occluded microaggregates from the larger aggre-

gate fractions was conducted following the process outlined in Six et al. (2000) for

both the lgMA and smMA fractions.

From the above fractionation method duplicates, each macroaggregate fraction

was combined into 8 g samples. These samples were slaked in RO water on top of a
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250 µm sieve for 20 minutes. The submerged 250 µm sieve was then shaken vigorously

by hand with 50 stainless steel bearings (4mm diameter) while a continuous �ow of RO

water passed over the apparatus. This was done in order to wash the smaller material

through the sieve quickly, and avoid the further breakup of the microaggregates. After

4 minutes of shaking, the larger aggregates remaining on the sieve were gently prodded

with a soft rubber stopper. The prodding, combined with shaking and water �ow,

continued until all but coarse sand and POM (lgPOM, >250 µm or smPOM, 250-

2000 µm, dependent on starting fraction) had passed through the sieve. Material

which passed through the 250 µm sieve was collected on a 53 µm sieve and wet

sieved for 2 minutes (see Water Stable Aggregate Fractionation above), resulting in

the stable materials occluded within the large macroaggregates (mAlg, 250-53 µm) or

small macroaggregates (mAsm, 250-53 µm), depending on the starting material. The

material which passed through the 53 µm sieve was the lgMA and smMA occluded

silt and clay fraction (< 53 µm), and was discarded. All retained fractions were back

washed into clean containers and then �ltered through co�ee �lters before being dried

and weighed.

2.3.5 Density Fractionation and Dispersion

2.3.5.1 Density Fractionation

The light fraction (LF) is composed of non-complexed decomposing plant and animal

tissues, believed to be more labile, i.e. having a rapid turnover (Evans et al., 2001).

The density fractionation procedure assumes that, during the humi�cation process,

the more recalcitrant SOM becomes intimately associated with mineral portions of

the soil (Barrios et al., 1996). Therefore, any fraction having a density less than the

mineral fraction, which is not occluded within microaggregation, is assumed to be
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free LF, and more bio-available. In order to get a proper assessment of the amount

of protected C found within the microaggregates (fmA, mAsm, mAlg), this LF must

be removed prior to C analysis. The method for this process is outlined in Six et al.

(1998) which was modi�ed from Elliott and Cambardella (1991).

The microaggregate fractions were oven dried at 70°C for 18-24 hours. After

cooling to room temperature in a desiccator, the samples were weighed and added to a

50-mL graduated conical centrifuge tube already �lled with 25 mL of 1.85 g/cm3 (+/-

0.01 g/cm3) sodium polytungstate (SPT). This mixture was then slowly inverted 10

times, bringing the sample into suspension without disruption of the microaggregate

structures, the goal being to remove only the LF outside of any microaggregate. The

material remaining on the cap and sides of the centrifuge tube was rinsed into the

suspension with an additional 10 mL SPT, and after 20 min at equilibrium the samples

were centrifuged at 2500 rpm for 60 min. The samples sat at room temperature for 18-

24 hours in order to allow materials to settle completely before the �oating material

(free LF), as well as most of the SPT, was aspirated onto a 10 µm nylon mesh,

rinsed thoroughly with RO water to remove any remaining SPT, and transferred to

a small aluminum pan. Samples were dried at 60°C for 18-24 hours, cooled to room

temperature in a desiccator, and weighed.
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Figure 2.3: Diagram representing processing steps and functional soil fractions obtained from

each. s+c: silt and clay fraction <53 µm, LF: organics (<1.85 g/cm3) between mA fractions, POM:

particulate organic matter within mA fractions.

2.3.5.2 Dispersion

The heavy fraction (HF) remaining on the bottom of the conical tube after aspiration

was rinsed twice with 50 mL of RO water in order to clean away any remaining

SPT. The sample was mixed with 35 mL of 0.5% hexametaphosphate and dispersed

by shaking on a reciprocal shaker for 18 hours. The dispersed HF was then passed

through a 53 µm sieve, rinsed with RO water, and wet sieved for 2 min. The material

remaining on the sieve was quanti�ed as the intra-microaggregate POM (fmAPOM,

mAlgPOM, mAsmPOM), and �ne sand. This fraction was transferred to a small

aluminum pan and dried 18-24 hrs at 60°C. The material passing through the sieve

(fmAs+c, mAlgs+c, mAsms+c) was discarded and the C values determined by mass

balance.

49



2.3.6 Carbon Analysis

Total carbon analysis was conducted at the University of Vermont on a Flash EA 1112

NC Analyzer (CE Elantech). The bulk soil was ground by hand to pass through a

250μm sieve, with coarse rocks and twigs >2000μm removed. All fractions were oven

dried to a constant weight at 60oC prior to analysis. Duplicate 20-80 mg of mineral

fractions were weighed into tin capsules. Analyzer calibration and quality control

(QC) soils were obtained from the North American Pro�ciency Testing program.

Any QC sample with greater than 10% error had samples immediately proceeding

and following it re-run, along with any samples in which duplication had greater than

10% error. A QC run was included at the end of all sample processing for which 10%

of all samples were randomly chosen and re-run.

2.3.7 Calculations and Statistical Analysis

2.3.7.1 Survey Analysis

Due to the �snapshot� nature of the above survey, metrics less a�ected by short term,

seasonal, in�uences were used. The number of individual specimens seen (Curry and

Schmidt, 2007), as well as the depth of the Oi horizon, would both be dependent

on the time of year. Species richness was used as the metric for earthworm presence

and was calculated simply by the number of species noted in one survey plot (6

plots per site). For forest �oor depth measurements, only the Oe/Oa horizon data

were included. The earthworm survey was intentionally conducted in the late spring

or early fall, when soils were cool and earthworm activity was at its highest. In

the spring, recent snow melt leaves behind a compacted Oi, while in the fall fresh

litter results in a deep, loose Oi. The Oe/Oa horizons are less impacted seasonally

and represent a more accurate indicator for long term earthworm e�ects. A linear
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regression was conducted in which the forest �oor depth and species richness for each

of a site's 6 plots was averaged, yielding a single value for each of the 18 sites.

2.3.7.2 Calculations

Due to our assessment of lgMA (>2000 µm), the non-soil fraction (coarse fragments

and free POM >2000 µm) was calculated and subtracted from the total soil starting

weight for all calculations. Sand has a low likelihood of being incorporated within

similar sized aggregation (Six et al., 2000) and therefore weights for all aggregate sizes

were corrected for sand content of the same size class. All silt and clay fractions were

discarded; values for these fractions were calculated by mass balance.

Due to time restrictions only the bulk soil and microaggregate fractions (fmA,

mAsm, mAlg) were analyzed for C (see above). The weight of the corresponding

LF obtained from the dispersion step (see section 2.3.5.2 above) was assumed to be

composed of 28% ± 2.3% C, an average calculated from over 100 LF samples run in

duplicate over the course of two other studies that followed the same procedure as

outlined above (unpublished data). This calculated LF C value was then subtracted

from the whole microaggregate C value in order to obtain the assumed protected C

value.

2.3.7.3 Statistical Methods

All statistical calculations were performed using JMP Pro 11.0 (SAS Institute Inc.,

2013). Categorical data analysis conducted with Tukey-Kramer HSD. Categorical

analysis was done analyzing di�erence in sites, as well as di�erences in individual

plots. Plot depths were averaged and then analyzed with the assumption that plots,

are independent of one another, the variation within sites often being more than

between sites. Plots were categorized as �none�, �1-3�, and �4-6�, based on the number
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of species noted in the plots, having 19, 18, and 11 plots in each category, respectively.

2.4 Results

2.4.1 Species Compositions

During initial site establishment (2008/2009) earthworms were noted at EML, HIN,

HIR, JER, MBR, STK, SKR, SMB, and WAT (Table 2.1). During the recent earth-

worm survey, species were con�rmed in all sites except SMB, and WAT, where no

earthworms were noted. Earthworms were newly noted at STE, SQU, and PCB. Re-

garding these three new sites, they each contained only one functional group, epigeic

at STE, and endogeic at both SQU and PCB. All other sites noted with earthworms,

contained species representative of all functional groups.
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Table 2.3: Earthworm species identi�ed and the speci�c sites in which they were found.

2.4.2 Forest Floor Depth and Other Forest Measurements

2.4.2.1 Moisture

There was a trend in the soil moisture content with earthworm presence within the

sites from 2012 (9 sites total); the plots without earthworms having almost half the

volumetric moisture content as those with 4-6 species (26.2±1.8% (None), 45.0±2.0%

(4-6) P<0.001, Table 2.6). This trend was not seen when analyzing all 18 sites (Table

2.2), the moisture content appearing to be random and primarily determined by site

rather than earthworm presence. This could be explained by the high variability of

54



T
a
b
le
2
.4
:
W
o
rm

s/
m

2
re
p
re
se
n
t
th
e
m
ea
n
o
f
th
e
6
p
lo
ts
.
A
n
ec
ic
sp
ec
ie
s
d
et
er
m
in
ed

b
y
v
is
u
a
l
id
en
ti
�
ca
ti
o
n
a
s
w
el
l
a
s
p
re
se
n
ce

o
f
m
id
d
en
s

(d
a
ta

n
o
t
sh
ow

n
).

*
D
is
tu
rb
a
n
ce

cl
a
ss
m
o
d
i�
ed

fr
o
m

ra
p
id

a
ss
es
sm

en
t
o
u
tl
in
ed

in
L
o
ss
,
H
u
e�
m
ei
er
,
a
n
d
H
a
le
(2
0
1
3
)
1
-n
o
ea
rt
h
w
o
rm

s
im

p
a
ct
.

2
-
O
i
in
ta
ct

w
it
h
O
e
a
n
d
O
a
h
o
ri
zo
n
s
in
ta
ct

o
r
p
re
se
n
t
in

p
a
tc
h
es
.
E
p
ig
ei
c
ea
rt
h
w
o
rm

s
fo
u
n
d
in

fo
re
st

�
o
o
r.

N
o
m
id
d
en
s.

3
-
O
i
in
ta
ct

w
it
h

O
e
a
n
d
O
a
p
re
se
n
t
in

p
a
tc
h
es
.
E
p
ig
ie
c
ea
rt
h
w
o
rm

s
fo
u
n
d
in

th
e
fo
re
st

�
o
o
r.

E
n
d
o
g
ie
c
sp
ec
ie
s
fo
u
n
d
in

th
e
m
in
er
a
l
so
il
,
th
o
u
g
h
so
il
h
o
ri
zo
n
s

a
re

in
ta
ct
.
N
o
m
id
d
en
s.

4
-
O
i
h
o
ri
zo
n
is
p
re
se
n
t
th
o
u
g
h
re
d
u
ce
d
.
O
e
h
o
ri
zo
n
s
es
se
n
ti
a
ll
y
g
o
n
e
w
it
h
n
o
�
n
e
ro
o
ts

o
r
fu
n
g
i
p
re
se
n
t.

S
m
a
ll

to
la
rg
e
ep
ig
ie
c,

ep
i-
en
d
o
g
ie
c,

a
n
d
en
d
o
g
ei
c
sp
ec
ie
s
p
re
se
n
t,
h
ow

ev
er

n
o
la
rg
e
su
rf
a
ce

ca
st
in
g
s
o
r
m
id
d
en
s
p
re
se
n
t.

5
-O

i
h
o
ri
zo
n
is
p
re
se
n
t,

th
o
u
g
h
re
d
u
ce
d
.
O
e
a
n
d
O
a
h
o
ri
zo
n
s
a
re

a
b
se
n
t
a
s
a
re

�
n
e
ro
o
ts

a
n
d
fu
n
g
i.

C
a
st
s
a
t
th
e
su
rf
a
ce

a
re

a
b
u
n
d
a
n
t
b
u
t
M
id
d
en
s
a
re

a
b
se
n
t
o
r

ra
re

(<
2
p
er

m
2
).

6
-
O
i
is
p
re
se
n
t
a
t
b
eg
in
n
in
g
o
f
g
ro
w
in
g
se
a
so
n
b
u
t
g
en
er
a
ll
y
d
im

in
is
h
ed

b
y
en
d
o
f
fa
ll
,
le
av
in
g
la
rg
e
p
a
tc
h
es

o
f
m
in
er
a
l

so
il
.
O
e
a
n
d
O
a
a
b
se
n
t
a
n
d
m
o
re

th
a
n
2
m
id
d
en
s
p
er

m
2
p
re
se
n
t.

55



Figure 2.4: Linear regression of average forest �oor (Oe/Oa) depth (cm) and average number of

earthworm species found (species richness). (P<0.001). Line of �t takes conifer sites into account

(r2=0.39), though the relationship is higher when they are removed (r2=0.67)

soil moisture content in sites without earthworms. Additionally, the most pronounced

di�erence is noted in the 4-6 category, and most of these plots are represented in the

8 sites analyzed for C, the sites sampled in 2012 not being an accurate representation

of the full 18 sites.

2.4.2.2 Forest Floor and Total Soil Carbon

There was a signi�cant relationship (r2=0.39, P<0.001) between species richness and

the depth of the forest �oor (Oe/Oa) when all 18 sites were analyzed. Notably,

when the conifer sites are removed the strength of this relationship almost doubles

56



Figure 2.5: Forest Floor (Oe/Oa) depth and total mineral soil C (0-20 cm depth) for increasing

earthworm presence. n=48 (8 sites, 6 plots/site) Number of plots in each species richness category

varied: 0 (n=19), 1 (n=5), 2 (n=3), 3 (n=8), 4 (n=5), 5 (n=5), 6 (n=3). Box plots represent

mean, minimum and maximum values for each species richness category. Earthworm species count

represents identi�ed adults as well as juveniles of di�erent functional groups. Line of �t represents

linear regression for all data and is signi�cant (P<0.001) for both forest �oor depth and gC/kg bulk

soil.
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(r2=0.67, P<0.001) (2.4). There were no correlations with earthworm presence and

soil moisture or bulk density in either depths (0-10 cm, 10-20 cm).

Of the 9 sites which underwent aggregate analysis, STS was the only conifer site.

The di�erences between this site and all others was enough to justify its removal from

analysis. This resulted in 8 hardwood sites analyzed for a total of 48 plots. Similar to

what was seen when analyzing the full 18 sites (see Figure 2.4 on page 56) there was

a strong relationship between earthworm presence and forest �oor depth within these

8 hardwood sites. When analyzed linearly by plot, the relationship is signi�cant (r2=

0.35, P<0.001, Figure 2.5). When analyzed categorically (Table 2.5), plots with no

earthworms (�none�) have substantially deeper forest �oors (Oe/Oa) than those with

4-6 species (2.8±0.4 cm (none), 0.1±0.1 cm (4-6) P<0.001), The variation for this

metric was high (Figure 2.6). The range of forest �oor measurements, even within a

single site without earthworms such as WAT, was broad (Table B.1).

The C analysis of these mineral soils demonstrated an increase in C with an

increase in the number of species noted, related to the reduction in the forest �oor.

When analyzed linearly by plot, the relationship of species richness with total soil C is

stronger than that noted with the forest �oor (r2= 0.41, P<0.001, Figure 2.5). When

analyzed categorically by site, WAT, where no earthworms are seen, is signi�cantly

di�erent than HIN, which has an average species richness of 5 species noted per plot

(P<0.001), however their is only a slight insigni�cant trend noted between all other

sites. When analyzed categorically by plot (Figure 2.6) the trend is more substantial.

Plots without earthworms (�none�) had almost half the C in the mineral soil as plots

with many earthworm species noted (�4-6�) (28.4±3.3 gC/kgbulksoil (none), 54.4±5.3

gC/kgbulksoil(4-6) P<0.001), however the middle plots, with 1-3 species noted, were

not signi�cantly di�erent from either of the other categories (40.4±3.4 gC/kgbulksoil

(1-3)).
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2.4.3 Microaggregates and the Physically Protected C Pool

Four di�erent microaggregate (53-250 µm) pools were analyzed; fmA (free, non-

associated microaggregates), mAlg (microaggregates occluded within large macroag-

greages, lgMA, >2000 µm), mAsm (microaggregates occluded within small macroag-

gregates, smMA, 250-2000 µm), and the total mA (the sum of fmA, mAlg, and mAsm

pools).

2.4.3.1 Shifts in Physical Distribution of Microaggregates

Plots with many earthworm species (4-6) had almost triple the proportion of soil com-

posed of lgMA (0.15±0.02 kgfraction/kgbulksoil (none), 0.39±0.04 kgfraction/kgbulksoil (4-

6), P<0.001). The fmA fraction was 0.09±0.02 kgfraction/kgbulksoil less in plots with

no earthworms (0.11±0.01 kgfraction/kgbulksoil (none), 0.02±0.01 kgfraction/kgbulksoil

(4-6), P<0.001), while the mAlg fraction was 0.06±0.02 kgfraction/kgbulksoil greater

(0.03±0.01 kgfraction/kgbulksoil (none), 0.09±0.01 kgfraction/kgbulksoil (4-6), P<0.001).

This slight disparity, along with a small but insigni�cant decrease in the mAsm frac-

tion, resulted in a 20% decrease in the total mA in the plots under heavy earthworm

in�uence (0.24±0.01 kgfraction/kgbulksoil (none), 0.19±0.01 kgfraction/kgbulksoil (4-6),

P<0.001). The proportion of macroaggregates (lgMA and smMA) composed of mi-

croaggregates (mAlg and mAsm, respectively) was also investigated. Though there

was a decrease in the microaggregate proportion of both macroaggregate pools with

higher earthworm in�uence, these di�erences were not signi�cant for either lgMA or

smMA (Table 2.5)
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2.4.3.2 Microaggregate Associated C pool

Plots under heavy earthworm in�uence had signi�cantly more C associated with

the total microaggregate pool (15.3±1.6 gCmicroaggregation/kgbulksoil (none), 29.4±2.4

gCmicroaggregation/kgbulksoil(4-6), P<0.001). This increase corresponds with the in-

crease in total soil C (28.4±3.3 gC/kgbulksoil (none, n=19), 54.4±5.3 gC/kgbulksoil(4-6,

n=13) P<0.001), and no di�erence is noted in the proportion of total soil C composed

of microaggregate associated C (54% for both �none� and �4-6�, see Figure 2.7).

An increase to the pool of microaggregate associated C could occur by either a

change in the total proportion of soil composed of microaggregates (see above) or

through an alteration of the C content within the microaggregates. For the fmA

fraction, there was a noted decrease in the physical pool of 80%, corresponding

with the 54% decrease in the C associated with this pool (4.8±0.4 gCfmA/kgbulksoil

(none), 2.2±0.03 gCfmA/kgbulksoil (4-6), P<0.001), leaving a gap of approximately

30% which is likely due to C enrichment. The mAsm pool had a slight, though in-

signi�cant decrease in its proportion of soil mass, yet there was an average of 4.9±2.3

gCmAsm/kgbulksoil more found in plots under heavy earthworm in�uence (6.9±0.8

gCmAsm/kgbulksoil(none), 11.8±1.5 gCmAsm/kgbulksoil(4-6), P<0.001), likely due en-

tirely to a C enrichment of this fraction. The heavily earthworm in�uenced plots had

signi�cantly more C associated with the mAlg fraction than those plots with no earth-

worms, a di�erence of 425% (3.6±0.8 gCmAlg/kgbulksoil(none), 15.3±1.9 gCmAlg/kgbulksoil,

P<0.001) This increase is greater than the 300% increase noted in the physical pro-

portion of mAlg (see above). Had there been no enrichment of C, this 300% increase

in physical mAlg structures could account for approximately 10.6 gCmAlg/kgbulksoil,

leaving approximately 4.7 gCmAlg/kgbulksoil, or 31% of the total mAlg associated C

pool attributed solely to the C enrichment of the fraction. The sum of the hypothe-
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sized C enrichment in mAsm and mAlg fractions is approximately 9.6 gC/kgbulksoil,

accounting for almost 70% of the total C di�erence between plots without earthworms

and those under heavy earthworm in�uence.

Figure 2.7: Comparison of microaggregate proportion by dry mass, microaggregate associated

C (gC/kgbulksoil - assumed protected fraction) and the soil's total C (gC/kgbulksoil) for 8 hardwood

sites with varying earthworm species richness. All data are averages of the 6 plots surveyed per site

with the error bars representing SE. Average species richness is represented by the number of species

seen at each plot, averaged for the entire site. Di�erent letters represent statistically (P<0.05)

signi�cant di�erences between sites for the three metrics represented (Tukey-Kramer HSD).
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2.5 Discussion

2.5.1 Current Worm Distribution in Vermont

Earthworm communities were found in the majority of sites noted in the 2008 and

2009 site establishment. However, there were two sites, WAT and SMB in which

worms were noted during site establishment (see Table 2.1) but were not found during

the surveys done in 2012 (WAT) and 2013 (SMB) (Table 2.4). There are several

possible explanations for this. Due to earthworm presence not being the primary

focus of the work done during plot establishment, it is possible that these species

were misidenti�ed, being instead some other soil organism. In unpublished data

used in Juillerat (2011) it is noted that only one specimen was found at each of

these sites. These earthworms were described as being �found at [the] bottom of Oa

[horizon], about 2 cm long� for WAT, and �found in [litter] bag the next day, partially

decomposed� for SMB. The descriptions of these two specimens indicate that they

would likely have been epigeic species. If present in few numbers, this group of small

species, known to hide within leaf litter, may have been missed during the earthworm

survey described above.

Conversely, earthworms found at STE, SQU, and PCB, were not noted in 2008/2009.

As stated earlier, because earthworm presence/absence was not the primary goal of

site establishment, it can not be said for certain whether these species were present in

2008/2009, or if they represent newly established communities. Site STE contained

2 presumed juvenile epigeic species, both in the same sampling location, noted to

be a very short distance from a recently establish harvesting skid trail. Site PCB

contained just 1 juvenile endogeic species, found in a depressed, C enriched wet area,

likely to be a seasonal river bed. Site SQU contained specimens of endogeic species

A. tuberculata, as well as a few large endogeic juveniles. Earthworms were found at
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2 physically separated locations in SQU, one site having a very high moisture and

C content (see Table B.1 below), with the other site located down slope from the

previous.

Hale et al. (2005) described a dynamic of earthworm invasion in the hardwood

forests of Minnesota where epigeic and epi-endogeic species invaded �rst, integrating

the forest �oor into the mineral horizons. This action directly facilitating the estab-

lishment of endogeic species, which live and feed on the newly C enriched mineral

soils. If the three sites above (STE, SQU, PCB) do, in fact, represent newly establish

populations, only one (STE) would appear to be following that invasion trend, with

PCB, and SQU having �rst established endogeic species. Of these two sites, it may be

speculated that SQU will maintain the endogeic populations found during the survey,

due to the high numbers noted, as well as the presence of both adults and juveniles.

The same may not be said about PCB. With only one specimen noted it remains

unclear if this worm presence is an anomaly, or indicative of a well established pop-

ulation. The patchiness of earthworm populations (Curry, 2004; Lee, 1985) makes

surveys such as the one we conducted limited in conclusions we can draw about the

presence of current populations.

For the sites that had earthworms noted during both initial site establishment

(2008/2009) and the above survey (2012/2013) (EML, HIN, HIR, JER, MBR, SKR,

STK), community composition and densities were diverse and varied (Table 2.4).

Most of these sites, which have been under earthworm in�uence for a minimum of

3 years, contained all functional groups, except EML and JER which did not have

anecic species (identi�ed by presence of middens) noted. The time, vector, and order

of earthworm invasion is not known for these sites, and it will take follow-up surveys

to draw any conclusions on the dynamics of these populations.
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2.5.2 Impact of Earthworm Diversity on the Forest Floor

Hale et al. (2005) suggested that earthworm invasions may have a succession pattern,

species composition changing with time since invasion. It is possible that the presence

of one ecological group created an environment allowing the invasion of another group,

creating an invasion �front�. Her research showed that recovery of forest �oor is more

di�cult in the later stages of invasion, when many species are working together. Not

all earthworm species impact forest soils equally, for instance the epi-endogeic species

Lumbricus rubellus has been shown to increase the rate of forest �oor removal to a

greater extent than species of other ecological groups (Fahey et al., 2013; Hale et al.,

2005), however as the diversity of species increases, and various ecological groupings

begin acting in concert, the impact of invasion intensi�es (Frelich et al., 2006).

Our data support the above notion that as the number of earthworm species

increases (what we termed �species richness�), so does the impact on the forest �oor

(Bohlen and Scheu, 2004; Frelich et al., 2006; Hale et al., 2005; Loss et al., 2013).

Though our sites are highly variable there was a signi�cant correlation (r2= 0.39,

P<0.001) with number of species and depth of the forest �oor (Figure 2.4). The

greatest pull in this correlation comes from either those plots with 3 or more species

and no forest �oor, or conifer sites. The deepest forest �oors were all found in

conifer sites, whose litter chemistry is known to slow down decomposition and increase

residence time (Currie et al., 2002). While the acidity of coniferous forests is thought

to be inhospitable for most earthworm populations (Curry, 2004), earthworms are

known to be found in these ecosystems on occasion. However in our study this was

not the case. The impact of the translocation and mixing of the forest �oor into lower

mineral horizons is discussed further below in the aggregate and C analysis of the 9

sites surveyed in 2012
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2.5.3 Aggregate and C Analysis

Despite high variation within our data sets, earthworm e�ects on aggregation and C

were still apparent. The lgMA fraction was substantially higher in plots under high

earthworm in�uence (4-6), supporting the many studies that found aged earthworm

castings are stable, and form the basis for macroaggregates in earthworm-invaded

soils (Bossuyt et al., 2005; Sanchez-de Leon et al., 2014; Shipitalo and Protz, 1989).

Increased lgMA resulted in a high proportion of the soil composed of mAlg, how-

ever the earthworm e�ect on total microaggregates was negligible among sites, and

statistically negative when individual plots were investigated categorically. Carbon

enrichment (see 2.4.3.2 on page 60) supports the notion that earthworms are rework-

ing the soil's microaggregates even in the fractions whose proportions were unaltered..

An example of this is noted in the smMA and mAsm fractions. Though a negligible

physical change was noted in the mAsm fraction, there was a signi�cant increase in

the C associated with this fraction. The in�uence of earthworms on this fraction

would have been missed had only physical properties of aggregate distribution been

investigated.

Many microaggregate and soil C properties had no signi�cant di�erences, and

occasionally not even noticeable trends, between the plots with no earthworms and

those which had a species richness of 1-3. The only measurement where the 1-3

richness catagory had an e�ect was in the forest �oor. If there was ever more than 1

species, the plots within this richness category would contain the species Lumbricus

rubellus (see Appendix Table (B.1)). This species, an epi-endogeic species, is known

to impact the forest �oor to a greater degree than other worm species (Hale et al.,

2005) due feeding on the litter of the surface while living and burrowing in the mineral

soil. This action rapidly relocates the forest �oor downward into the mineral soil an
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action which is supported in our data. The plots with no worms had a much thicker

forest �oor that either those with 1-3 species, or those with 4-6 species. However,

for both physical soil aggregation, and the enrichment of these fractions with C,

signi�cant di�erences only occur in the plots of highest species richness, the presence

of Lumbricus rubellus apparently not having the same impact on a soil's aggregation

as it does on the depletion of the forest �oor. The highest richness category (4-6) is

predominately associated with the additions of various endogeic species (see Appendix

Table B.1). This supports the idea that endogeic species are the ecological grouping

most responsible for soil aggregation processes, and hence the incorporation of organic

matter into stable microaggregate structures (Lavelle and Spain, 2001).

It is not surprising that microaggregates were not increased under higher earth-

worm in�uence. Forest soils are known to contain high levels of microaggregation, low

disturbance frequency allowing for microaggregate formation within macroaggregates

(Elliott and Coleman, 1988; Oades, 1984; Six et al., 2000; Tisdall and Oades, 1982)

Six et al. (2002) found that 20% of the di�erence in soil organic carbon (SOC) stocks

between agricultural and a�orested ecosystems could be explained by di�erences in

the microaggregate fraction, suggesting that these structures may be one of the driv-

ing mechanisms of long term C storage in forest soils. It is possible the proportion

of microaggregates found in most forest soils is at a maximum, this level determined

by site speci�c soil properties. Assuming that the microaggregates present in a soil

are destroyed during passage through the earthworm gut (Shipitalo and Protz, 1989),

which may not be equally true for all earthworm species in all soil types, it of interest

that microaggregate proportions were not found to be substantially lower. Earth-

worms have been shown to increase microaggregates in agricultural soils, however

this is likely due to the fact that frequent tillage does not allow for microaggregate

formation naturally (Beare et al., 1994; Fonte, Winsome, and Six, 2009; Plante and
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McGill, 2002; Six et al., 2000), making the levels seen prior to earthworm in�uence

lower than the physical capability of the soil.

The C occluded within microaggregates is not protected inde�nitely. The binding

agents maintaining soil structure are not inert and are therefore subject to decompo-

sition(Frey, 2005). As the structural stability of those aggregates becomes compro-

mised, occluded C may become available for microbial degradation (Baldock, 2002).

Theoretically, for every system there exists an ideal rate of aggregate turnover which

would allow for organic matter occlusion and protection, while still limiting the re-

exposure of previously occluded C (Plante and McGill, 2002). The physical stability

of microaggregation means that they will not turnover readily and may require a force

such as earthworm ingestion to reform. Due to the high levels of aggregation, and low

levels of turnover present in many forests, it may be aggregate turnover, rather than

aggregate creation, that will enhance C stabilization in forests showing the potential

for C sequestration. Earthworm invasion with its preferential occlusion of C within

microaggregation, may potentially be able to accomplish that.

2.6 Conclusions

The history of earthworms at these investigate sites is unknown, and with many of the

sites having an agricultural land-use history (see Table 2.1) it is likely that some of

these forests developed under the in�uence of earthworm communities. In this situa-

tion the term �invasion� does not apply, being now the steady state of the ecosystem.

We conclude that while earthworm community presence had little to no e�ect on

a forest soil microaggregates, through a turnover of microaggregates, earthworms,

particularly endogeic species, appeared to have an e�ect on the pool of physically

stabilized C. These �ndings highlight the fact that forest soils typically contain high
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microaggregate levels, and due to various inherent soil properties earthworms may

not increase microaggregate proportions to the same extent as noted in agricultural

soils. Though our studies did not utilize mass balance to account for C lost due

to mineralization, the proportion of C mixed into the mineral soil that was prefer-

entially occluded in microaggregation was signi�cant, and it is likely this pool will

demonstrate increased residence time relative to bulk soil C.
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CHAPTER 3

INFLUENCE OF APORRECTODEA TUBERCULATA ON THE CARBON,

NITROGEN, AND AGGREGATION PROPERTIES OF A LOAM FOREST

SOIL � A MESOCOSM STUDY

3.1 Abstract

The impact of earthworm presence on the soil carbon (C) dynamics of previously

uninhabited northeastern forests is still largely unknown. Currently, earthworm pres-

ence is understood to both enhance soil respiration, and create stable microaggre-

gates, processes assumed to have con�icting e�ects on long-term C storage. To

date, studies investigating earthworm created microaggregates, and the occluded

C, have rarely been done in undisturbed forest soils. A paired mesocosm study

(n=5) was conducted investigating the impact of the endogeic earthworm species

Aporrectodea tuberculata on the physical proportion of microaggregates, and the

associated mineral soil C, of a minimally disturbed forest soil. Pairs analyzed af-

ter 4 weeks of incubation, had no signi�cant aggregation e�ects. At 4 months,

paired cores with earthworms (WW) showed a 67% increase in large macroaggre-

gates (>2000 µm, lgMA), as a proportion of total soil dry weight, compared to

cores without earthworms (NW) (0.110±0.017 kgfraction/kgbulksoil(NW), 0.183± 0.012

kgfraction/kgbulksoil(WW), p=0.026), and a 10% decrease in small macroaggregates

(250-2000 µm, smMA) (0.439±0.034 kgfraction/kgbulksoil (NW), 0.395±0.010 kgfraction/kgbulksoil

(WW), p=0.024). While distribution was seen to shift in various microaggregate

pools (free and occluded within macroaggregates), net microaggregates in the soil,

as a proportion of total soil dry weight, was unaltered. After 4 months, the mineral

soil of WW cores had an average of 60% more C than the NW cores (16.23±0.55
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gC/kgbulksoil (NW), 26.01±1.98 gC/kgbulksoil (WW) p=.005) due to the relocation of

the forest �oor. The C associated with the microaggregate fractions increased an

average of 56% (9.14±0.33 gCfraction/kgbulksoil(NW), 14.57±0.68 gCfraction/kgbulksoil

(WW), p=0.006). Of this, 95% was found in the microaggregates occluded within the

lgMA fraction, which was almost almost 4 times greater in the WW cores (1.71±0.28

gCfraction/kgbulksoil (NW), 6.62±0.32 gCfraction/kgbulksoil (WW), P<0.001). This in-

vestigation found that over 50% of the increase in total mineral soil C (9.79±gC/kgbulksoil,

WW-NW) was accounted for from C associated within the physically protected mi-

croaggregate fractions (5.16±0.23 gCfraction/kgbulksoil, WW-NW), indicating that,

though this species of earthworm did not alter the proportion of microaggregates

in these soils, they occluded a substantial proportion of C within those physical frac-

tions. In this particular forest soil, the actions of Aporrectodea tuberculata increased

the physically protected C pool through microaggregate restructuring and C enrich-

ment, and not through an increase in the soil's proportion of microaggregates.

3.2 Introduction

Concern over the global impact of increased carbon dioxide (CO2) levels in the at-

mosphere has encouraged recent research aimed at enhancing our understanding of

the carbon (C) cycle. More C resides in soil (1,500 Gt) than in all terrestrial biomass

(560 Gt) and the atmosphere (720 Gt) combined (Birdsey, 1992), and an intimate

relationship exists between the soil and the atmosphere, soil respiration accounting

for roughly 20% of total CO2 emissions (Rastogi et al., 2002). Approximately 12,000

years ago the last glaciation event covered most of the northeastern United States,

eliminating the soils and associated fauna. The forests of this area therefore devel-

oped without in�uence from native earthworms, due in part to the slow northward
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expansion of southern species and their inability to adapt to the cold winters of the

north (Bohlen and Scheu, 2004). Since the introduction of earthworms from Europe

and Asia via ship ballast and imported horticultural products (Gates, 1976) , vari-

ous species have slowly moved from agricultural settings, where they are welcome, to

forests, where their impact is less understood and typically undesirable (Hale et al.,

2005). This movement of earthworms into forests is expected to increase in the com-

ing decades, yet it is still unclear how earthworm presence in these ecosystems will

impact soil stabilization of C. Forests of the northeast are often actively managed,

o�ering an opportunity to in�uence their role as a sink or source for CO2 in the future.

Furthering our understanding of the impact earthworms will have in these ecosystems

may aid those management decisions.

Earthworms are typically placed into three groups, each inhabiting a speci�c eco-

logical role and in�uencing soil aggregation and C turnover di�erently (Doube and

Brown, 1998). Epigeic species live and feed on the litter at the surface, rarely burrow-

ing into the mineral soil. These species have little or no e�ect on a soil's aggregation,

though may play an important role in C turnover. Anecic species feed on fresh litter

from the surface, pulling it into the soil surrounding their deep, permanent burrows.

This extensive burrowing system contributes to the stabilization of aggregation, as

well as the downward transport of fresh litter within there castings. Endogeic species

live and burrow in the upper areas of the mineral soil, feeding on mineral-associated

organic matter. Endogeic species are considered to be the primary group of earth-

worms in�uencing soil aggregation and the stabilization of C (Lavelle and Spain,

2001). These di�erent types of earthworms, working as a community and individu-

ally, are referred to as �ecosystem engineers�, and are capable of drastically altering

the chemical, physical, and microbial soil environment (Lavelle et al., 1997).

Most studies investigating the in situ impact of earthworm invasion into native
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northern forests have found a reduction of the forest �oor (Alban and Berry, 1994;

Bohlen et al., 2004; Lyttle et al., 2011) as it becomes integrated by earthworm inges-

tion and egestion into lower mineral horizons. At any given time, it is hypothesized

that the majority of bacteria in the soil are in a metabolically inactive, though alert,

state due to low nutrient availability (Coleman, 2001). Earthworm ingestion homog-

enizes soil, bringing bacterial communities into close contact with their food source,

which results in increased soil nutrient cycling (Bohlen and Scheu, 2004; Gro�man

et al., 2004). Studies have found that microbial communities within the castings

of earthworms are greatly altered relative to bulk soil (Brown et al., 2000). Earth-

worm ingestion disrupts fungal mycorrhizal relationships (Dempsey et al., 2011) and

appears to enhance populations of bacteria capable of surviving through the anoxic

environment of the earthworm gut (Drake and Horn, 2007).

There is little doubt that, through the above processes, invading earthworms are

increasing the mineralization of C in the short term (Lubbers et al., 2013). However

earthworms have many secondary e�ects which profoundly alter soil function, and the

impacts of these on long term C storage capacity is still unclear. In a prominent 14-

year �eld study, Alban and Berry (1994) reported that earthworms decreased total soil

C by 600 kg per ha per year, however Zhang et al. (2013) noted that this reduction was

only seen for the �rst 2 years, before C levels were maintained at a new equilibrium.

Bohlen et al. (2004) found that earthworm invasion decreased soil C storage by 28% in

the upper 12 cm of a sugar maple dominated forest in New York, while Wironen and

Moore (2006) had �ndings from a similar forest type in Quebec, Canada suggesting

that earthworm presence increased total soil C to a depth of 30 cm. According

to a meta-analysis (237 observations from 57 publications) synthesizing the e�ect

of earthworm presence on soil organic carbon (SOC) and greenhouse gas emissions

(CO2 and NO2 ), Lubbers et al. (2013) found that earthworm presence increased
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CO2 emissions by 33%. However, as the length of these studies increased, the CO2

emissions were seen to decrease, indicating that the initially high CO2 emissions may

be followed by a period of C stabilization; a temporal component often not considered

in these studies. Additionally, it would be expected that such an increase in CO2

emissions would lead to a decrease in soil organic carbon (SOC), yet this was not

seen to be the case (Lubbers et al., 2013).

There are likely many ways C is stabilized within soils, however the mechanisms of

stabilization, as well as methods of measurement, are still being debated. The pool of

stabilized C is small in relation to total mineral soil C pool, and is therefore di�cult

to determine chemically (Zhang et al., 2013). One frequently cited stabilization mech-

anism is the physical segregation of bacterial communities, and their enzymes, from

C occluded within microaggregates (mA, 250-53 µm) (Adu and Oades, 1978; Dungait

et al., 2012; Elliott and Coleman, 1988; Sanchez-de Leon et al., 2014; Schmidt et al.,

2011; Six et al., 2002; Stewart et al., 2007). Six et al. (2002) found that 20% of

the di�erence in SOC stocks between agricultural and a�orested ecosystems could be

explained by di�erences in the microaggregate fraction, suggesting that these struc-

tures may be one of the driving mechanisms of long term C storage in forest soils.

Presuming that mA-occluded C does, in fact, represent a pool of stabilized C within

the soil, the ability to operationally isolate these structures, as outlined in Six et al.

(2000), allows for one mechanism of C stabilization to be accurately analyzed.

Shipitalo and Protz (1989) demonstrated that during passage through the gut of

anecic species Lumbricus terrestris, existing mA structures are destroyed by peristal-

sis, and organic debris and clay particles become coated in polysaccharides, providing

the nuclei for newly formed mA. This process of mA structure formation has been ob-

served in both homogenized (Bossuyt et al., 2005; Sanchez-de Leon et al., 2014) and

undisturbed agricultural soils (Pulleman et al., 2005), utilizing various earthworm
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species and methods of measurement. It has been proposed through these studies

that earthworm enhancement of stable aggregation is a mechanism by which they

may stabilize C in the long term, mitigating their e�ect on increased soil respiration.

There is, however, a lack of information on how earthworms will alter the aggregation

and C qualities in undisturbed, earthworm-free, forest soils. In a recent study, Fahey

et al. (2013) tracked the fate of 13C in plots of a sugar maple forest with varying

degrees of earthworm in�uence, and found that earthworms were directing much of

the fresh 13C into water stable aggregation, though no data were available on the

quantity and quality of that aggregation prior to earthworm invasion.

In a paired mesocosm study we investigated the impact of one common endogeic

earthworm species, Aporrectodea tuberculata, on the quantity and quality of microag-

gregates in undisturbed soil cores from an earthworm-free, northern hardwood forest.

We hypothesized that earthworm presence would 1.) increase the proportion of large

macroaggregates (>2000 µm, lgMA) as a proportion of total soil dry mass, 2.) enrich

the lgMA fraction with microaggregates, increasing occluded microaggregates (mAlg)

as a proportion of lgMA fraction dry weight, 3.) increase total microaggregate (oc-

cluded and free) as a proportion of total soil dry mass 4.) increase total C within the

mineral fraction through the earthworm mediated relocation of the Oa horizon, 5.)

increase the pool of microaggregate protected C through increasing both the quantity

of microaggregates, and the C contained within the microaggregate fraction.

3.3 Methods

3.3.1 Site Characteristics

The Waterworks Property (WAT) is a 666 acre northern hardwood forest located in

the town of Bristol Vermont in the Champlain Valley. Forest composition is primar-
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ily Acer rubrem (red maple), Acer saccarum (sugar maple), and Fagus grandifolia

(American beech). The cores used in this study were excavated at 73°7'58.68"W

44°9'48.142"N, at an elevation of 237 meters with an average slope of 18 degrees on a

long west-facing hill-slope. The soils at this location are a coarse-loamy Marlow non-

spodic variant. Previous surveys (see Chapter 2) found a single worm in 2008 with no

indication of earthworm in�uence in a later survey. Approximately 500 m from the

retrieval location, at the bottom of the hill-slope, several common species, including

Apporectodea tuberculata, were observed. It could be assumed that, with time, these

soils will be invaded by earthworms. Previous aggregate and C analysis indicated

that the Waterworks soils are uniform with little variation in aggregate properties,

horizon, and C properties. This lack of earthworm in�uence, in combination with low

soil variability made this site an ideal candidate for the following paired study.

Hinesburg Town Forest (HIN) is a northern hardwood forest which was converted

from agriculture approximately 80 years ago. The soils are also Marlow non-spodic

variant and have been heavily in�uenced by the presence of earthworms (approxi-

mately 145 worms per m2). Apporectodea tuberculata adults and juveniles were re-

trieved from Hinesburg Town Forest (73°2'17.603"W 44°19'45.78"N) on July 11th,

2013. To acclimate specimens for the mesocosms, worms were placed in soil from the

Waterworks property at 15ºC for three weeks prior to incubation within the undis-

turbed soil cores.

3.3.2 Retrieval of Soil Cores

Segments of 30 cm standard-20 green PVC drain pipe were used for collection on

July 22nd 2013. A central location was chosen in the Waterworks property based

on homogeneity of vegetation, and slope of the surrounding area. Retrieval of the

cores from the �eld occurred in 6 randomly selected locations (A-F), determined by
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a random number chart for distance and direction from the center point (A) (Figure

3.1). At each of the 6 locations, 5 cores were hammered into the ground. Moisture

and temperature values were taken in mineral soil by W.E.T. sensor (Delta T Devices,

Cambridge, UK) (Table 3.1). The cores were carefully excavated, sealed, and carried

back to the lab. If a core was badly damaged during retrieval it was removed from

the study. The thick forest �oor at location B resulted in inadequate mineral soil

mass for aggregate analysis, and so all cores from this location were removed from

the study. Four cores were included from each of the remaining 5 locations (20 total).

Figure 3.1: Layout of core retrieval area. The center of the plot (Location A) was
chosen based on slope and homogeneity of surrounding area. All subsequent locations
determined by randomly assigned distance and angle from Location A. Filled circles
represent cores excluded from the study.

Table 3.1: Soil conditions of each retrieval location (A-F) on day of core removal
July 22nd 2013.
Retrieval location Moisture (%) Temp (0C) Depth of Forest Floor (cm)

A 15.3 17.7 7.5
C 10.9 18.4 5
D 12.4 19.2 9
E 14.7 18.8 6
F 14.8 20.1 6
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3.3.3 Experimental Design

Soil cores were brought back to the lab and the soil moisture was slowly increased

to approximate �eld capacity. Based on retrieval location, depth of mineral soil,

weight, and appearance, cores were paired together, resulting in 2 pairs for each

retrieval location, 1 pair for each opening time. On August 24th 2014, 1 juvenile

and 3 adult worms were placed in RO water, blotted with �lter paper, weighed,

and placed randomly in 1 core from each of the 10 pairs. Density of worms added

(approximately 2400/m2) was roughly 3.3 times the density found at HIN (725/m3)

with a total weight ranging from 4.85 - 6.05g. The experimental cores were placed

in 15ºC, surrounded by a series of non-experimental cores to account for possible

edge e�ects, and covered with black plastic to reduce light. Cores were kept at a

constant weight, with tap water being added every 3 - 7 days. On September 25th

2013 (4-weeks after inoculation) and January 8th 2014 (4-months after inoculation),

one pair of cores was randomly chosen from each retrieval location, deconstructed,

and analyzed.

3.3.4 Core Deconstruction

Prior to deconstruction, cores were allowed to dry for 3 days at 4 weeks and 12

days at 4 months. Cores were opened by cutting through PVC with a table saw.

Cores were then immediately taped back together, to be fully deconstructed no more

than 18 hrs later. Care was taken not to disturb the mineral soil, however loss and

PVC contamination was seen in the forest �oor, speci�cally the Oi horizon. During

deconstruction, cores were carefully re-opened and soil was moved away from the core

edge with a knife. When worms were noticed, they were immediately removed and

placed in reverse osmosis (RO) water. Depth of soil horizons were recorded before
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the litter layers (Oi, Oe/Oa) were removed, and placed into aluminum pans to dry.

The remaining soil was gently passed through an 8 mm sieve, weighed, and laid out

to dry for 48 hours after which small samples were removed for moisture analysis.

Coarse fragments and roots were separated, washed, and laid out to dry. Worms, if

present, were blotted with �lter paper and weighed. After 48 hrs, dry weights of the

empty core, Oi, Oe/Oa, coarse fragments, and roots were recorded.

3.3.5 Aggregate Analysis

A complete synopsis of the following procedures may be found in Figure 3.2 on

page 83.

3.3.5.1 Water Stable Aggregate Fractionation

Representative, 50 g samples were removed from the mineral soil of each core. Wet

sieving was done 4 or 3 times (4 Week and 4 Month time points, respectively) for

each core according to the methods found in Six et al. (2002), modi�ed from Elliott

(1986). This process was done at 8 weeks and 1 week of air drying for the 4 week

and 4 month incubations respectively. Brie�y, 50 g of air dried soil was submerged in

reverse osmosis (RO) water on top of a 2000 µm sieve for 5 minutes to induce slaking.

The sieve was moved in and out of the water, in approximate 3 cm circular motions,

50 times over the course of 2 minutes, and the material that remained on the sieve was

back washed into a clean container with RO water. Any �oating organic matter from

the 2000 µm was not considered to be soil, and was therefore decanted and discarded.

What remained after decanting was the large macroaggregate fraction (lgMA, >2000

µm). The particles which passed through the 2000 µm sieve were transferred over

a 250 µm sieve and the sieving procedure was repeated (50 motions up and down).

What was retained on the 250 µm sieve, the small macroaggregate fraction (smMA,
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250-2000 µm), was back washed into a clean container with RO water. The particles

which passed through the 250 µm sieve were transferred over a 53 µm sieve and the

process repeated. What was retained on the 53 µm sieve, the free microaggregate

fraction (fmA , 53-250 µm), was back washed into a clean container with RO water,

and the silt and clay fraction (< 53 µm), was discarded. The lgMA, smMA, and

mA fractions were all back washed through co�ee �lters (modi�cation, Home 360

Hannaford Brand #2 cone �lters) which were then placed in 65ºC for 18-24 hours.

Once dry, the fractions were weighed and carefully brushed away from the co�ee �lters

to be stored in plastic bags until further processing.

3.3.5.2 Microaggregate Isolation

The below method for releasing the occluded microaggregates from the larger aggre-

gate fractions was conducted following the process outlined in Six et al. (2000), for

both the lgMA and smMA fractions.

From the above fractionation method duplicates, each macroaggregate fraction

was combined into 8g samples. These samples were slaked in RO water on top of a

250 µm sieve for 20 minutes. The submerged 250 µm sieve was then shaken vigorously

by hand with 50 stainless steel bearings (4mm diameter) while a continuous �ow of RO

water passed over the apparatus. This was done in order to wash the smaller material

through the sieve quickly, and avoid the further breakup of the microaggregates. After

4 minutes of shaking, the larger aggregates remaining on the sieve were gently prodded

with a soft rubber stopper. The prodding, combined with shaking and water �ow,

continued until all but coarse sand and POM (lgPOM, >250 µm or smPOM, 250-

2000 µm, dependent on starting fraction) had passed through the sieve. Material

which passed through the 250 µm sieve was collected on a 53 µm sieve and wet sieved

for 2 minutes (see Water Stable Aggregate Fractionation above), resulting in the
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stable materials occluded within the large macroaggregates (mAlg, 250-53 µm) or

small macroaggregates (mAsm, 250-53 µm), depending on the starting material. The

material which passed through the 53 µm sieve was the silt and clay fraction (< 53

µm), and was discarded. All retained fractions were back washed into clean containers

and then through co�ee �lters before being dried and weighed.

3.3.5.3 Density Fractionation of Light Fraction (LF)

The light fraction (LF) is composed of non-complexed decomposing plant and animal

tissues, believed to be more labile, i.e. having a rapid turnover (Evans et al., 2001).

The density fractionation procedure assumes that, during the humi�cation process,

the more recalcitrant SOM becomes intimately associated with mineral portions of

the soil (Barrios et al., 1996). Therefore, any fraction having a density less than the

mineral fraction, which is not occluded within a microaggregate, is assumed to be

free LF, and more bio-available. In order to get a proper assessment of the amount

of protected carbon found within the microaggregates (fmA, mAsm, mAlg), the LF

must be removed prior to carbon analysis. The method for this process is outlined in

Six et al. (1998) which was modi�ed from Elliott and Cambardella (1991).

The microaggregate fractions were oven dried at 70°C for 18-24 hours. After

cooling to room temperature in a desiccator, the samples were weighed and added to a

50-mL graduated conical centrifuge tube already �lled with 25 mL of 1.85 g/cm3 (+/-

0.01 g/cm3) sodium polytungstate (SPT). This mixture was then slowly inverted 10

times, bringing the sample into suspension without disruption of the microaggregate

structure, the goal being to remove only the LF outside of any microaggregate. The

material remaining on the cap and sides of the centrifuge tube was rinsed into the

suspension with an additional 10 mL SPT, and after 20 min at equilibrium the samples

were centrifuged at 2500 rpm for 60 min. The samples sat at room temperature for 18-
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24 hours in order to allow materials to settle completely before the �oating material

(free LF), as well as most of the SPT, was aspirated onto a 10 µm nylon mesh,

rinsed thoroughly with RO water to remove any remaining SPT, and transferred to

a small aluminum pan. Samples were dried at 60°C for 18-24 hours, cooled to room

temperature in a desiccator, and weighed.

Figure 3.2: Diagram representing processing steps and functional soil fractions ob-
tained from each. s+c: silt and clay fraction <53 µm, LF: organics (<1.85 g/cm3)
between mA fractions, POM: particulate organic matter within mA fractions.

3.3.5.4 Dispersion

The heavy fraction (HF) remaining on the bottom of the conical tube after aspiration

was rinsed twice with 50 mL of RO water in order to clean away any remaining

SPT. The sample was mixed with 35 mL of 0.5% hexametaphosphate and dispersed

by shaking on a reciprocal shaker for 18 hours. The dispersed HF was then passed

through a 53 µm sieve, rinsed with RO water, and wet sieved for 2 min. The material
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remaining on the sieve was quanti�ed as the intra-microaggregate POM (fmAPOM,

mAlgPOM, mAsmPOM), and �ne sand. This fraction was transferred to a small

aluminum pan and dried 18-24 hrs at 60°C. The material passing through the sieve

(fmAs+c, mAlgs+c, mAsms+c) was discarded.

3.3.5.5 Calculations

Due to our assessment of lgMA (>2000 µm), the non-soil fraction (coarse fragments

and free POM >2000 µm) was calculated and subtracted from the total soil starting

weight for all calculations. Sand has a low likelihood of being incorporated within

similar sized aggregates (Six et al., 2000) and therefore weights for all aggregate sizes

were corrected for sand content of the same size class. All silt and clay fractions

were discarded, values for these fractions were calculated by mass balance. Due to

anticipated loss along processing steps, these values are likely an over-estimate of

actual values.

3.3.6 Lab and Statistical Analysis

3.3.6.1 Nutrient Analysis

Basic soil nutrient analysis was carried out on all cores following the procedures of

the University of Maine Soil Testing Service and the University of Vermont Agri-

cultural and Environmental Testing Laboratory. Soil samples were dried at 45°C,

crushed to pass a 2-mm sieve, and extracted with Modi�ed Morgan's solution (0.62

M NH4OH + 1.25 M CH3COOH; 4 g, 20 mL, shake 15 minutes). After �ltering

through Ahlstrom 642 paper, they were analyzed for o-phosphate (molybdate blue

procedure) and macro- and micronutrients (inductively coupled plasma spectroscopy,

ICP-OES Perkin Elmer Corp, Norwalk, CT, USA). Soil pH was determined in 0.01M
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CaCl2 2:1 v:v; water pH was estimated by adding 0.6 pH units to the salt value.

Organic matter was determined by loss on ignition at 375°C (Wolf and Beegle, 2011).

3.3.6.2 Carbon Analysis

Total carbon analysis was conducted at the University of Vermont on a Thermo

Scienti�c Flash EA 1112 NC Analyzer (CE Elantech). The bulk soil and the lgMA

fraction were ground by hand to pass through a 250 μm sieve, with coarse rocks

and twigs >2000μm removed. All fractions were oven dried to a constant weight at

60oC prior to analysis. Sub-samples of 20-80 mg from the mineral fractions, and 2-5

mg of the organic fractions were weighed into tin capsules in duplicate. Analyzer

calibration and quality control (QC) was conducted using soils obtained from the

North American Pro�ciency Testing program.

Any QC sample with greater than 10% error had samples immediately preceding

and following it re-run, along with any samples in which duplication had greater than

10% error. A QC run was included at the end of all sample processing for which 10%

of all samples were randomly chosen and re-run.

3.3.6.3 Statistical Analysis

All statistical calculations were performed using JMP 9.0 (SAS Institute Inc.). All

analysis was done based on the pairing outlined in the Experimental Design on

page 79.
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3.4 Results

3.4.1 Earthworm Survival and Core Measurements

All specimens survived and were seen to be active at the end of 4 weeks, though there

was a reduction in average fresh weight of approximately 4%. At the end of 4 months,

all worms were recovered, with approximately 30% found in diapause, as indicated by

specimens being curled into tight balls. All WW cores at 4 months had new juveniles

present, accounting for an average fresh weight of 0.48g per core. Even with this

added juvenile weight, average fresh weight was seen to decrease by approximately

32%. This reduction in fresh weight, as well as the noted diapause behavior, was

possibly due to the length of time cores were allowed to dry prior to deconstruction,

which was 12 days at 4 months as compared to 3 days at 4 weeks. Length of drying

was increased to ease disturbance during core opening.

3.4.2 Earthworm E�ect on Physical Proportion of Aggregates

At the end of 4 weeks of incubation no signi�cant di�erence in aggregate properties

were seen. After 4 months of incubation the main e�ect of earthworm activity was

an increase in the lgMA (>2000 µm) fraction (Fig. 3.3). Cores with earthworms had

67% more lgMA than paired cores without earthworms. Through this action, the

smMA (250-2000 µm) fraction was reduced by 10% (Table 3.3).

At 4 months little e�ect was seen on the proportion of total soil dry mass comprised

of the mA fractions (Fig. 3.4). Generally, the proportion of mAlg was numerically

higher, due primarily to the signi�cant increase in the lgMA fraction (Fig. 3.3), while

the mAsm and fmA proportions decreased, however these trends were not statistically

signi�cant, and resulted in no impact on the soil's total mA (Table 3.3).
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Figure 3.3: Mean di�erence in aggregate size proportion of soil dry mass in paired
cores after 4-months incubation. n=5, (*) represent statistically signi�cant values at
P<0.05, bars represent minimum and maximum di�erences from core pairs.

Fraction

Average Proportion of Difference in proportion

Total Soil Dry Weight of total soil dry weight

NW WW WW-NW

lgMA (>2000 µm) 0.110± 0.017 0.183± 0.012 (+) 0.072± 0.026 *

smMA (250-2000 µm) 0.439± 0.034 0.395± 0.010 (-) 0.044± 0.016 *

fmA (53-250 µm) 0.098± 0.022 0.087± 0.006 (-) 0.010± 0.011

mAlg (53-250 µm) 0.051± 0.012 0.081± 0.007 (+) 0.030± 0.016 �

mAsm (53-250 µm) 0.184± 0.006 0.165± 0.004 (-) 0.020± 0.009 *

Total mA
0.332± 0.007 0.333± 0.007 (+) 0.0004± 0.009

(fmA+mAlg+mAsm)

Table 3.3: Average di�erence between paired cores (WW - NW) as a proportion
of total soil dry weight with standard error. (*) represents statistical signi�cance at
P<0.05. (�) Borderline positive earthworm e�ect in mAlg fraction (p-value = 0.07)
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3.4.3 Earthworm E�ect on mA associated C

There were no signi�cant earthworm e�ects on the soil aggregate properties seen after

4 weeks of incubation. While it was apparant that the earthworms were active within

the soil, only a small proportion of the total mineral soil volume seemed to have been

ingested by the earthworms over the 4 weeks. Any e�ect the earthworms had within

the drilosphere were overshadowed by the bulk soil properties.

At 4 months the A horizon was enhanced through earthworm incorporation of the

Oa horizon (Table 3.2). The mineral portion of the WW cores contained, on average,

26.01 gC/kgbulksoil (±1.98 SE) while NW cores contained 16.22 gC/kgbulksoil (±0.55

SE), an earthworm e�ect on total mineral soil C of 60%. The protected pool of C,

de�ned as the within-mA POM and mA associated silt and clay (s+c), increased

by an average of 5.16 gC/kgbulksoil (±0.23 SE), or 55%. Of this increased protected

C pool, 95% was due to changes in the mAlgs+c and mAlgPOM fractions, which

increased 2.75 gCfraction/kgbulksoil (±0.27 SE), and 2.16 gCfraction/kgbulksoil (±0.31

SE), respectively. The mA protected pool explains 53% of the di�erence in total

mineral soil C between the cores, while the mA associated LF, an unprotected pool,

explains another 33%. The increase in the mA protected C pool was seen despite

there being no di�erence in the soil physical proportion of microaggregates (Fig. 3.4)

3.4.3.1 C of the within-mA associated silt and clay (s+c)

The protected C of the mA associated silt and clay was signi�cantly increased in

the mAlg fraction by almost 3 fold (1.42±0.23 gCfraction/kgbulksoil (NW), 4.17±0.15

gCfraction/kgbulksoil (WW), p=.0003). This increase, along with changes of the distri-

bution in the fmA and mAsm fractions (Fig. 3.5) resulted in an average increase of

3.01 gCfraction/kgbulksoil (±0.54 SE) for the total mA associated s+c, an increase of
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approximately 40%. This increase in the mA s+c fractions accounted for 60% of the

increase in total mA protected C. As a function of total mineral soil C this fraction

decreased from 48% (NW) to 41% (WW).

3.4.3.2 Within-mA associated POM (POM)

The protected C of the within-mA associated POM was signi�cantly increased in the

mAlg fraction by 9 fold (0.29±0.06 gC/kgbulksoil (NW), 2.46±0.30 gC/kgbulksoil (WW),

p=.001). This increase, along with �uctuations in the fmA and mAsm fractions (Fig.

3.5) resulted in an average increase of 2.14 gCfraction/kgbulksoil (±0.45 SE) for the

total protected mA associated POM, an increase of almost 80%. This increase in mA

protected POM accounts for 40% of the increase in total mA protected C, and as a

function of total mineral soil C this fraction increased from 10% (NW) to 15% (WW).

3.4.3.3 Between-mA associated light fraction (LF)

The total between-mA associated POM (POM occluded within macroaggregates that

is not occluded within microaggregates), quanti�ed by the light fraction (LF) ob-

tained from the mA, mAlg, and mAsm fractions prior to dispersion (Fig. 3.2),

was 3 fold greater in the WW cores (0.98±0.09 gCfraction/kgbulksoil (NW), 4.21±0.05

gCfraction/kgbulksoil (WW) p=.001). This di�erence was due primarily to the mAlg

LF (Fig. 3.6), which increased from 0.16±0.03 gCfraction/kgbulksoil to 3.07±0.45

gCfraction/kgbulksoil , an almost 20-fold increase accounting for 90% of the total LF C

di�erence. As a function of total mineral soil C, the total LF accounted for 16% of

the total mineral soil C in the WW cores and 6% in the NW.
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Figure 3.6: Paired core di�erences in the unprotected C pool, represented by the
between-microaggregate POM (LF). n=5, (*) represent statistically signi�cant values
at P<0.05, boxes represent the mean di�erence in values between paired cores, with
minimum and maximum di�erences represented by bars.

3.4.4 Nutrients

The mineral soil in WW cores showed an increase in organic matter (OM) of approx-

imately 50%, calcium (Ca) of approximately 75%, and sodium (Na) of approximately

15%.
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Measurement No Worm (NW) With Worm (WW) Paired Mean Difference

pH 4.96± 1.0 4.90± 0.09 (-)0.06± 0.12

OM % 2.82± 0.11 4.16± 0.32 (+)1.34± 0.34*

Na mg/kg 9.80± 0.80 11.40± 1.12 (+)1.60± 0.68*

Ca mg/kg 340.40± 58.99 593.0± 35.95 (+)252.60± 51.41*

K mg/kg 72.00± 6.23 103.00± 16.04 (+)31.00± 13.76

Mg mg/kg 36.60± 3.17 66.20± 8.75 (+)29.60± 10.84

Table 3.4: Nutrient extraction with Modi�ed Morgan's solution. Di�erences of
paired cores after 4 months of earthworm activity. Means represented with standard
error (SE) values. (*) indicates a statistically signi�cant di�erence of at P<0.05.

3.5 Discussion

3.5.1 Aggregation

At 4 months the presence of Apporectodea tuberculata signi�cantly increased the pro-

portion of lgMA, and showed in�uence over the proportion of other fractions. No

change was noted after 4 weeks. While many researchers have found that endogeic

earthworms enhance larger aggregation after as little as 3 weeks (Bossuyt et al., 2005;

Mummey, Rillig, and Six, 2006) these studies almost always utilize an earthworm

density much higher than what is found in nature, exaggerating the noted e�ects

(Sanchez-de Leon et al., 2014). In our paired study, the maximum earthworm density

used was 2940 worms/m3(Appendix 3.2), which is three times the highest density

seen in an extensive survey recently conducted in the state of Vermont (see Chapter

2). While higher than what is seen in Vermont forest soils, our densities were much

lower than what is found in other studies, possibly explaining why we did not see the

signi�cant e�ects expected at 4 weeks. An equal number of worms were placed in
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each experimental core (3 adult, 1 juvenile), however, the volume of soil was variable

between pairs, and the level of earthworm e�ect varied with this earthworm den-

sity. The pair of cores from sampling plot E contained the lowest earthworm density

(1820worms/m3Appendix on page 87) and also showed a minor decrease in lgMA, an

opposite e�ect as what was seen in all other pairs. This contrary e�ect, likely due

to low earthworm density and soil property variation, was not an outlier and was

therefore included in all statistical analysis, however its inverse e�ect in�uenced sev-

eral other fractions. Had the incubation time been longer, or the earthworm density

higher in the E pair, we speculate that the mean e�ects at 4 months would have been

much more pronounced.

Contrary to our hypothesis, earthworm presence did not increase the total pro-

portion of microaggregates in the soil, even after 4 months. In this particular soil

the impact on the total microaggregate pool was undetectable, though C data sug-

gest that much of the soil's microaggregates within the experimental cores originated

from earthworm ingestion. The microaggregate stablized C pool could not have in-

creased in the WW treatment without the breakdown and subsequent reformation of

microaggregates with a higher C content. The addition of organic binding agents, in

the form of earthworm mucus polysaccharides and microbial exudate, along with peri-

staltic pressure along the earthworm alimentary canal, has been shown to increase

the proportion of stable microaggregates (Bossuyt et al., 2005; McCarthy, Ilavsky,

Jastrow, Mayer, Perfect, and Zhuang, 2008; Pulleman et al., 2005; Sanchez-de Leon

et al., 2014). It is possible that the microaggregate levels present in these forest

soils were high enough that the net e�ect of earthworm ingestion and reformation of

microaggregates was slight.

While the net e�ect was zero, the microaggregate proportions shifted among frac-

tions. The fmA fraction would have become part of the mAlg or mAsm fractions as it
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became occluded within the macroaggregate fractions, however this e�ect was not sig-

ni�cant in the fmA fraction. The proportion of total soil composed of microaggregates

occluded within the smMA fraction (mAsm) was signi�cantly decreased (P<0.05) due

primarily to the signi�cant reduction in the soil's smMA fraction.

We believed that the proportion of total microaggregates would increase primarily

through an increase in the proportion of microaggregates occluded within macroag-

gregates. Earthworms have been shown to facilitate the creation of microaggregates

within macroaggregates in the �eld (Jongmans, Pulleman, and Marinissen, 2001;

Pulleman et al., 2005) as well as in the lab (Bossuyt et al., 2005; Mummey et al.,

2006) and microaggregates formed within macroaggregates are thought to be the pri-

mary mechanism by which microaggregates are increased in soils (Oades, 1984; Six

et al., 2000). We saw no e�ect of earthworms on the proportion of microaggregates

within macroaggregates, however, in general the lgMA fraction mass was composed

of 6% more microaggregate mass than the smMA fraction, regardless of earthworm

presence (0.347±0.015 kgmAlg/kglgMA, 0.285±0.005 kgmAsm/kgsmMA, n=40, p-value

<0.001). Perhaps if the study had been allowed to continue for a longer period of

time the increase in lgMA alone may have had in�uence on the proportion of mi-

croaggregates in the soil, even if these structures did not themselves have a higher

proportion of occluded microaggregates.

3.5.2 Protected C

Analysis was not done for the forest �oor horizons or C mineralization and so no

balance of total core C was calculated and the amount of C lost to mineralization is

unknown. Earthworms are known to relocate C downward into the mineral soil, and

the objective of the study was to determine where within the soil's already established

structure this species of earthworm would allocate the relocated C. We saw that
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53% of C mixed into the mineral soil by earthworms was directed into the stabilized

pools within microaggregation, while only 33% was found as unprotected POM. Of

this unprotected POM, 90% could be assumed to exhibit minor protection due to

its occlusion within the lgMA fraction. As this fraction continues to decompose it

will likely become nucleating sites for future microaggregate creation (Baldock, 2002;

Six et al., 2002,0). Only 14% of the di�erence in total mineral soil C between the

WW and NW cores was unaccounted for by the pools measured in this study. This

remaining pool contains the unprotected POM (250-2000 µm) occluded within the

lgMA and smMA fractions, which would have been included in the total mineral soil

C measurement, but was removed during the microaggregation isolation procedure

(see Figure 3.2 on page 83).

It may be assumed that the majority of relocated C in our experiment originated

from the Oa horizon of the forest �oor (Table 3.2 on page 87), and that prior to

relocation this fraction would have demonstrated a certain level of inherent chemical

recalcitrance (Currie et al., 2002). Humic substances, n-alkanes (waxes) and ligni-

�ed tissues, which are found concentrated within the Oa horizon, are placed into the

slow or passive pool according to most current C models (Jenkinson and Rayner,

1977; Paustian et al., 1992). In addition to these assumed recalcitrant compounds, a

proportion of the Oa horizon humus would be expected to consist of more labile com-

pounds, originating from microbial biomass and microbially modi�ed plant materials

(Zou, Ruan, Fu, Yang, and Sha, 2005). While chemical properties will dictate, to

some degree, how resistant SOC may be to microbial attack (Bol et al., 1996; Lutzow

et al., 2006), the currently held belief is that it is the accessibility of SOC to degrada-

tion, rather than its intrinsic chemical quality, which dictates residence time within

soils (Dungait et al., 2012; Kleber, 2010; Marschner et al., 2008) This suggests that,

with time, most compounds located in this horizon would have come into contact
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with a decomposer community able to utilize them.

Zhang et al. (2013) introduced the concept of a �sequestration quotient� in which

the simultaneous earthworm e�ect on mineralization and stabilization is balanced

and quanti�ed into a sequestered C pool, the suggestion being that earthworms of-

ten increase stabilization to a greater degree than they do mineralization, creating a

�C trap�. In measuring both C stabilization and C mineralization they found that

earthworms lowered the total soil C and increased mineralization after 23 days of in-

cubation, but by the end of the experiment (52 days) soils showed equivalent total soil

C, and a lower mineralization rate. While both control and earthworm manipulated

soils ended up equivalent in total soil C, the earthworm-worked soil had a much higher

proportion of its soil C in protected pools, highlighting that the casts of earthworms

are potentially physio-chemically di�erent than that of the bulk soil (Edwards, 2004).

With aging, castings may represent a C pool undergoing slower decomposition than

the surrounding soil (Lavelle et al., 1997; Martin, 1991).

Zhang et al. (2013) goes on to suggest that the impact earthworms have on the

balance of mineralization and stabilization will depend greatly on the SOC content of

the starting soil. In C limited systems the majority of organic materials encountered

by microbial communities is utilized, and mineralization may be the driving force,

while in C rich systems, only the most labile C will be utilized while the remaining

may remain stabilized. The mineral soils utilized in our study are C limited (see

below), and so while most of the ingested Oa horizon would likely be egested within

the casts (Curry and Schmidt, 2007; Edwards and Bohlen, 1996), it is likely that,

based on the sequestration quotient explained above, these soils would have shown

higher rates of mineralization than stabilization during the duration of our study.

The mineral soil from WAT used in this study inherently contains very low

amounts of SOC (approximately 16 gC/kgbulksoil), and with only 46 MgC/ha in its
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mineral soil is substantially lower than the United States northeastern forest min-

eral soil average of approximately 90 MgC/ha (Birdsey, 1992). For a related study

(see Chapter 2 of this document), WAT was included with 8 other Vermont forest

sites which underwent the aggregation analysis outlined above, and it was found that

WAT contained almost 60% more microaggregation than the average of the other sites

(0.261±0.015 kgmicroaggregation/kgbulksoil,(WAT), 0.169±0.004 kgmicroaggregation/kgbulksoil

(Remaining sites, n=8), P<0.001). In ecosystems where aggregate turnover is slow,

incoming organic materials may be degraded before becoming occluded and pro-

tected within aggregates (Plante and McGill, 2002; Six et al., 2004). Freeze thaw

cycles, wind throw, and bioturbation are the primary modes of soil mixing in tem-

perate hardwood forests, with mineral soil C originating primarily from dissolved or-

ganic carbon (DOC), decomposing root tissues, and microbial biomass (Currie et al.,

2002). Additionally, the primary tree species found at WAT (Red Maple, Sugar

Maple, and American Beech) are known to have a rapid litter turnover time, relative

to other prominent tree species (Moore, Trofymow, Taylor, Prescott, Camiré, Dusch-

ene, Fyles, Kozak, Kranabetter, Morrison, Siltanen, Smith, Titus, Visser, Wein, and

Zoltai, 1999), further limiting the possibility of C occlusion and protection. Limited

soil mixing, rapid litter turnover, and a high proportion of physically stable, C de�-

cient microaggregates may be a partial explanation for the low concentration of SOC

at the WAT site.

The C occluded within microaggregates is not protected inde�nitely. The binding

agents maintaining soil structure are not inert and are therefore subject to decom-

position (Frey, 2005) As the structural stability of aggregates becomes compromised,

occluded C may become available for microbial degradation (Baldock, 2002). The-

oretically, for every system there exists an ideal rate of aggregate turnover which

would allow for organic matter occlusion and protection, while still limiting the re-
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exposure of previously occluded C (Plante and McGill, 2002). Due to the high levels

of aggregates, and low levels of turnover present in many forests, it may be aggregate

turnover, rather than aggregate creation, that will enhance C stabilization in forests

showing the potential for C sequestration. Earthworm invasion with its preferential

occlusion of C within castings, may potentially be able to accomplish that. How-

ever, it is still unknown how the continuous ingestion of castings, which would occur

in highly invaded forests over long periods, will alter the C residence time within

microaggregates.

Earthworm communities have many secondary e�ects in forests which profoundly

alter soil function, moving far beyond the scope of this study. Through the removal

and relocation of the forest �oor, earthworm invasion has been shown to change an

understory diverse in herbaceous plants and tree seedlings into one dominated by

grasses (Carex sp.) (Hale et al., 2006) and other invasive plants (Nuzzo et al., 2009).

The forest �oor performs many functions within the forest ecosystem, acting as a

necessary seed bed for native plants while also regulating the soil's moisture, temper-

ature, and nutrient cycling (Currie et al., 2002). Through bioturbation, earthworms

remove the seed bed for native plants, shifting conditions to those which are favor-

able for plants adapted to germinating in bare mineral soils. This action impacts the

future productivity of the forest. The reduction in native tree seedlings, exacerbated

by selective browse pressure by deer (Hale et al., 2006), will eventually alter the tree

composition shifting primary production, canopy closure, soil temperature, and litter

quality. The ecology of the forest soil is dynamic. Various interactions and feedback

systems, present in di�erent spatial and temporal settings, results in the full impact

of any one earthworm community, in any one forest, on any one metric, being very

di�cult to predict.
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3.5.3 Conclusions

We found that Aporrectodea tuberculata signi�cantly increased total mineral soil C,

primarily through the relocation of the Oa horizon. The majority of this relocated C

was allocated into newly formed microaggregates, and was therefore considered pro-

tected with an increased residence time. We found an increase in the proportion of

macroaggregates with no change in the proportion of total microaggregates, though

C data suggested that much of the microaggregate fraction underwent earthworm

ingestion. We suggest that for soils similar to the one studied here, which are C

limited and have a high proportion of soil mass composed of stable aggregates, in-

creased aggregate turnover mediated by endogeic earthworms may increase the pool

of sequestered C in the long term, though initially a C loss is likely.
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APPENDIX A

METHODS

SPT recycling

Sodium polytungstate (SPT) is a non-toxic, non-reactive chemical capable of being

recycled multiple times for the above procedure. After every step of the process SPT

was collected and �ltered with co�ee �lters (Home 360 Hannaford Brand #2 cone

�lters). The resulting volume (approximately 20L) of dilute SPT was then placed

in a large polyethylene (Nalgene brand) plastic bin and evaporated at 70°C until

the appropriate density was reached (approximately 60 hrs). Proper density was

determined by weight in a 5mL volumetric �ask. The solution was re-�ltered prior

to the next usage. To remove any contaminating C that may have accumulated in

the solution the liquid was further cleaned by passing through a column containing

activated carbon (CITE), quartz wool, and sodium activated resin (CITE). This was

done according to the method outlined in Six et al. (1999). This step was very time

consuming, and resulted in too much loss, to justify doing after every set of samples,

and so was instead done after all samples from one sampling site had been completed

(2 procedures between column �ltration)
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Figure B.1: An interesting trend is seen when looking at Macroaggregates, Microaggregates and Total soil C.

These e�ects are signi�cant even when accounting for di�erences between plots.
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Table B.1: Breakdown of C data from samples collected at each plot with earthworm species found. Species

coding is as follows: Dendrobaena octaedra-1, Dendrobaena rubida-2, Aporrectodea turgida-3, Aporrectodea rosea-4,

Aporrectodea tuberculate-5, Aporrectodea trapazoides-6, Octolasion cyaneum-7, Octolasion tyrtaeum-8, Lumbricus

rubellus-9, Amynthas agrestis-10, Lumbricus terrestris-11.106



APPENDIX B

CHAPTER 2 ADDITIONAL GRAPHS AND TABLES

Table B.2: A breakdown of all physical data by plot. One plot represents the average of two depths (0-10cm

and 10-20cm)
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APPENDIX C

CHAPTER 3 ADDITIONAL GRAPHS AND TABLES
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Fraction

C (gfraction/kgbulksoil) C/N ratio

Mean ± SE Mean difference Mean ± SE

WW NW (WW-NW) WW NW

Total Soil * 26.01± 1.98 16.22± 0.55 (+) 9.79± 2.15 16.87± 0.75 16.13± 0.65

fmA s+c 1.79± 0.07 2.11± 0.32 (-) 0.32± 0.31 14.53± 0.63 14.28± 0.86

fmA POM * 0.35± 0.05 0.54± 0.12 (-) 0.19± 0.09 21.93± 2.69 22.08± 1.91

fmA LF 0.20± 0.01 0.22± 0.04 (-) 0.013± 0.04 26.0± 2.12 25.51± 2.07

fmA TP 2.14± 0.12 2.66± 0.42 (-) 0.52± 0.39 15.19± 0.59 15.27± 0.85

mAlg s+c * 4.17± 0.15 1.42± 0.23 (+) 2.75± 0.27 16.62± 0.93 16.54± 0.89

mAlg POM * 2.46± 0.30 0.29± 0.06 (+) 2.16± 0.31 17.61± 0.48 17.75± 1.39

mAlg LF * 3.07± 0.45 0.16± 0.03 (+) 2.92± 0.45 21.54± 0.42* 28.72± 1.85*

mAlg TP * 6.62± 0.32 1.71± 0.28 (+) 4.91± 0.45 16.99± 0.70 16.70± 0.97

mAsm s+c 4.76± 0.37 4.18± 0.22 (+) 0.58± 0.36 15.28± 0.62 14.54± 0.65

mAsm POM 1.04± 0.09 0.86± 0.09 (+) 0.19± 0.13 19.19± 0.80 17.77± 0.93

mAsm LF * 0.93± 0.06 0.61± 0.07 (+) 0.32± 0.07 26.56± 1.29 27.39± 1.22

mAsm TP 5.81± 0.46 5.04± 0.26 (+) 0.77± 0.48 15.8± 0.63 15.00± 0.70

Total s+c * 10.72± 0.42 7.71± 0.26 (+) 3.01± 0.54 15.65± 0.68 14.81± 0.69

Total POM * 3.85± 0.32 1.69± 0.17 (+) 2.14± 0.45 18.25± 0.48 18.53± 1.02

Total Protected * 14.57± 0.68 9.41± 0.33 (+) 5.16± 0.23 16.26± 0.60 15.35± 0.74

Total LF * 4.21± 0.50 0.98± 0.09 (+) 3.22± 0.45 22.61± 0.55 * 27.11± 1.21 *

Table C.1: Mean di�erence of earthworm e�ect on C (gfraction/kgbulksoil) in paired cores (n=5)

with standard error. Mean C/N ratio of fractions in cores with earthworms (WW n=5) and without

earthworms (NW n=5) with standard error. (*) represents statistically signi�cant di�erences at

P<0.05. fmA: microaggregation obtained from the fractionation procedure which is not occluded

within macroaggregation, mAlg : microaggregation occluded within the lgMA fraction, mAsm:

microaggregation occluded within the smMA fraction, s+c : protected silt and clay component of

microaggregation, POM : protected particulate organic matter occluded within microaggregation,

LF : unprotected organics found between microaggregation, Total Protected: sum of all protected

microaggregate fractions
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