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Abstract 
A complex nonlinear relationship exists between indicative soil parameters (liquid limit, plastic limit, clay 
fraction, sand fraction, and normal stress loading) and drained secant residual friction angle (ør’). 
Academic literature provides various empirical models for the prediction of ør’, though their predictions 
generally suffer from insufficient representation of the nonlinear relationship between parameters. In 
this study, an artificial neural network was developed for the prediction of ør’. Artificial neural networks 
are computational learning algorithms that derive their structure and learning procedures from 
phenomena observed in biological nervous systems. Their complex, interconnected structures allow for 
successful mapping of nonlinear relationships between parameters. This motivated the development 
and application of a network known as a backpropagation neural network (BPNN) as an alternative 
predictive model for ør’.  

The BPNN was trained to successfully map the relationship between indicative soil parameters and ør’ 
using a variety of soil datasets provided from academic literature and other sources.  The BPNN’s 
performance was evaluated using a normalized root mean square error (RMSE) term. It was posited that 
the BPNN predictions could be improved by training individual networks on soil data subdivided by clay 
fraction ranges. Analysis showed that the division of data into subsets significantly reduced the BPNN’s 
predictive performance by limiting the amount of data available for individual network training.  

Where other predictive models generally neglect sand fraction as a predictive parameter for ør’, this 
study attempted to evaluate its predictive value. Comparison between a BPNN that included sand 
fraction and one that did not proved inconclusive as the results from multiple RMSE analyses between 
the two models were not statistically different. 

Correlation-based equations for the prediction of ør’ in Stark and Hussain (2013) are based on the 
subdivision of soil data by clay fraction ranges. A comparison of the BPNN predictive model to other 
empirical models was performed in order to evaluate the viability of a BPNN as an alternative to current 
predictive models. The BPNN outperformed a traditional, multivariate least-squares linear regression 
model as well as correlation-based equations from Stark and Hussain (2013). The normalized root mean 
square error for Stark and Hussain equation-based predictions of ør’ was 0.2270 in comparison to 0.1278 
for the BPNN. Where Stark and Hussain’s equations performed well on the particular dataset used to 
create these empirical equations, it failed to accurately predict ør’ for other data sets provided in the 
literature. The BPNN model was more robust in its ability to predict ør’ over a variety of datasets in this 
study and suggests that the BPNN may provide a viable alternative to other predictive models for ør’.  
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1. Introduction  
Engineers are often faced with complex problems involving the mapping of two or more parameters 
that are nonlinear. A nonlinear relationship is a relationship between two or more parameters that 
cannot be satisfied through the rules of superposition. This occurs across a wide variety of disciplines, 
including chemical engineering, electrical engineering, process engineering, and flight control (Hoskins 
and Himmelblau 1988; Park, El-Sharkawi et al. 1991; Willis, Di Massimo et al. 1991; Kim and Calise 1997).  

Where traditional modeling techniques fail to map nonlinear data relationships, Artificial Neural 
Networks (ANNs) have experienced success across disciplines (Chang-Chi and Sheng-Huoo 2007; Azami, 
Mosavi et al. 2013; Bevilacqua 2013; Tamilselvan and Wang 2013; Torabi, Shirazi et al. 2013). The 
Artificial Neural Network (ANN) structure is inspired by the complex parallel structure of the human 
nervous system. Biological neural networks function by processing numerous input signals through a 
complex network of neurons in order to generate some useful output. 

1.1 Predicting Secant Residual Friction Angle: A Nonlinear Problem 
In geotechnical engineering, the prediction of drained secant residual friction angle (ør’) for cohesive 
soils has been identified as a nonlinear problem (Stark and Eid 1994). This parameter is useful in slope 
stability analyses for clayey soils as it is indicative of the soil’s residual shear strength. While a drained 
torsional ring-shear test allows geotechnical engineers to test directly for ør’, the test is costly both in 
time and money. Thus, geotechnical engineers have sought alternative methods to predict ør’ and 
numerous correlations and mathematical models have been developed. Chief among these are a set of 
correlation-based equations that have been discussed most recently in a publication by Stark and 
Hussain (2013). A portion of this study examines these equations, and brings into question the 
robustness of this predictive model. This study provides an alternative predictive method for secant 
residual friction angle using a nontraditional modeling technique called an artificial neural network. 

1.2 General ANN Structure & Training 
Artificial Neural Networks (ANNs) attempt to mimic the physical structure of biological neural networks 
by creating a linked network of nodes, analogous to biological neurons in our nervous system. A 
generalized schematic of a singular biological neuron is compared to an artificial neuron in Figure 1 (a) & 
(b) respectively. Each input node represents a neuron, characterized by real or binary number values, 
defining its state of activity. These input states are multiplied by their respective weights in an attempt 
to link them with subsequent nodes. The magnitude of these weights, initiated as random numbers 
between -1 and 1, are used to define the relevance of the input neuron’s state to the linked neurons. 
This neuron’s state is determined by some mathematical accumulation of all the weighted states of the 
neurons connected to it, and then passed through what is known as a transfer (or activation) function. 
The state of this singular node is then passed to all connected nodes in the network (e.g. Figure 1 (b)) 
and the process continues for each node in the network. 

With the functionality of a single artificial neuron defined, a network can be established by generating a 
multitude of interconnected nodes tasked with manipulating input data to map to target outputs. While 
the entirety of the how and why is not fully understood, the functionality of biological neural networks 
can be considered to be governed by both the physical structure of the network and rules governing 
inter-neural relations. This knowledge is applied to artificial neural networks in the way that they are 
both physically and mathematically structured (Neyamadpour, Taib et al. 2009).  

Different ANN algorithms vary in both their structure, as well as the mathematical rules that govern 
neural interactions. Many tend to follow a parallel, networked architecture similar to that of Figure 2, 
which shows a two-layer network that receives data, stored in an input vector, at the input layer. The 
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links connecting the input layer neurons and the hidden layer neurons represent a weight matrix. These 
weights govern the transfer of data between the two layers.  

Finally, data are passed through the network layers and an output vector is computed. In many 
networks, a set of input data are used to train the ANN learning algorithm such that the error between 
the output vector and the known output is utilized to update the network’s weights. These networks are 
known as supervised ANNs. Through updating, this error decreases and the network better 
approximates the relationship between input and outputs. While this training strategy is very common, 
a diversity of these governing strategies has been developed in recent decades and have led to the 
emergence of a diverse number of ANN algorithms that span a wide variety of applications including 
medical and engineering applications (Specht 1991, Basma, Barakat et al. 2003, Baykan and Yilmaz 2010, 
Bevilacqua 2013, Cheng 2013, Liu, Tian et al. 2013, Tamilselvan and Wang 2013).  

1.2.1 Backpropagation Neural Networks 
A simple, supervised learning algorithm called a Backpropagation Neural Network (BPNN) has been 
proven to be successful in mapping nonlinear data relationships. This ability has allowed the BPNN and 
other ANNs to develop acclaim in data analysis across many disciplines including many facets of 
engineering (Basma, Barakat et al. 2003; Doris, Rizzo et al. 2008; Neyamadpour, Taib et al. 2009; Baykan 
and Yilmaz 2010; Ceryan, Okkan et al. 2013; Torabi, Shirazi et al. 2013).  

A literature review describing the types of ANNs used in geotechnical engineering is provided below in 
order to support the hypothesis that a BPNN could be successful in developing a predictive model that 
could outperform traditional statistical and empirical models. 

1.3 Goals and Objectives 
Following the success of BPNNs in other fields, it was posited that a BPNN may be successfully 
implemented to provide a predictive model for the nonlinear secant residual friction angle problem. 
Thus, it was the goal of this thesis to develop a BPNN for the prediction of ør’ and evaluate its predictive 
capability. In order to fully evaluate a BPNN’s ability to predict ør’, goals for this thesis included the 
variation of input data parameterization in order to optimize BPNN predictions. Further, it was decided 
that the comparison of BPNN predictions for ør’ should be compared to other predictive models in order 
to fully evaluate the BPNN’s viability as a predictive method. 

2. Literature Review 
The classification of ANNs is dependent upon their learning algorithm, which is often characterized by 
the level of supervision experienced in this algorithm’s learning. In this case, supervision refers to 
outside influence involved in a learning process. Supervision, in the computational sense, involves a 
mathematical dialogue between an algorithm’s prediction of some output and the target output. 
Supervision allows the algorithm to minimize error in its predictions through an iterative training 
procedure, similar to a biological neural network’s development of muscle memory through repetitive 
training.  
 
The supervised learning procedure utilizes the error between predicted and known output values in 
order to correct the initially random network weights and more accurately predict outputs on the next 
iterative step. Weights created through successful iterative training can be saved and used to create 
output predictions for data that is unused in the training process. The generalized structure of the 
supervised ANN, shown in Figure 2, accurately describes the structure of a BPNN as well. For the 
application of predicting ør’, this structure would be augmented to fit predictive input parameters with a 
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singular output node for predicting ør’. Supervised learning requires a set of training data that comprise 
an input and corresponding target output data. 
  
Unsupervised learning considers only the input information in its learning process, instead of utilizing a 
comparison of the network’s prediction to a target output dataset. Using mathematical processes, 
usually clustering algorithms, the unsupervised algorithm recognizes patterns within the dataset, which 
it uses to extract key features and arrive at a conclusion from that data. The ability of unsupervised 
learning procedures to predict patterns make them ideal tools in handwriting analysis (Larochelle, 
Bengio et al. 2009), health diagnosis (Tamilselvan and Wang 2013), and other classification problems 
(Martinez, Bengio et al. 2013; Wang and Wang 2013).   

 
Different algorithms utilize different levels of supervision, allowing for the classification of a learning 
algorithm to be considered on a continuum. Some algorithms are considered to be between supervised 
and unsupervised; semi-supervised networks meld a level of supervision into what are otherwise 
considered unsupervised learning processes, or vice versa (Zhu).  
 
ANNs have experienced success in most major fields of scientific study including computer vision 
(Bevilacqua 2013; El-Baz and Tolba 2013; Fan, Ma et al. 2013), function approximation (Cheng 2013; 
Ghoreyshi, Jirasek et al. 2013; Mosleh 2013), time series approximation (Alessandri, Cervellera et al. 
2013; Liu, Tian et al. 2013; Wang, Yan et al. 2013), and classification problems (Azami, Mosavi et al. 
2013; Mishra, Dwivedi et al. 2013; Tamilselvan and Wang 2013). However, the focus of this research is 
centered on the usage of an ANN to predict the geotechnical parameter secant residual friction angle. 
Thus, the scope of this literature review remains within the field of geotechnical engineering. 

2.1 Artificial Neural Networks in Geotechnical Engineering 
Most geotechnical engineering applications of ANNs utilize a supervised learning strategy because it is 
useful in many applications where complex nonlinear relationships arise between input and target 
output parameters. By exposing the ANN to a series of measured input/output training patterns, 
geotechnical engineers are successful at accurately generalizing or predicting a solution for input with 
unknown outputs. The ability to generalize these nonlinear relationships is desirable in many 
geotechnical engineering scenarios when developing an accurate mathematical model is challenging, or 
understanding the physical relationship within a system is not yet possible.  

2.1.1 Backpropagation Neural Networks (BPNN) 
The most commonly used ANN in geotechnical engineering is the supervised Back-Propagation Neural 
Network, or BPNN. Its worldwide success in generalizing for problems with highly nonlinear solutions 
has established BPNNs as a powerful tool in problem solving for a wide area of geotechnical engineering 
applications. These algorithms have been successful in electrical resistivity imaging of soils 
(Neyamadpour, Taib et al. 2009), mineral identification (Baykan and Yilmaz 2010), prediction of 
unconfined compressive strength of carbonate rocks (Ceryan, Okkan et al. 2013), estimation of shearing 
resistance angle in uniform sands (Sezer 2013), landslide susceptibility analysis (Ramakrishnan, Singh et 
al. 2013), evaluating tunnel boring machine performance (Torabi, Shirazi et al. 2013), and prediction of 
ground subsidence due to mining (Yang and Xia 2013).  

The BPNN’s success in developing models that map nonlinear relationships between input and output 
parameters makes it a desirable alternative to generalized regression analysis when attempting to 
generate mathematical models for specific problem sets (Ceryan, Okkan et al. 2013; Sezer 2013; Torabi, 
Shirazi et al. 2013). In all cases, a BPNN was deemed more accurate in modeling a dataset when 
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compared against linear and nonlinear regression models. While different studies involving the 
comparison of a BPNN and regression model used a variety of statistical benchmarks to compare 
accuracies of artificial networks to regression models, these studies all use a common benchmark: the 
coefficient of determination (R2) to compare the two. Using the R2 measure, Table 1 describes the 
modeling accuracies of BPNNs compared to regression models.  

Unlike generalized regression analysis, BPNNs do not identify an explicit mathematical model to relate 
input data and outputs. Instead, the mathematics is internalized within the connections (i.e. weights) 
linking each neuron in the network. Instead, the user would pass input data the algorithm was not 
trained for to a trained BPNN, run it, and estimate output values as a result.  

The inability to extract an explicit mathematical relationship between input and output data has been 
viewed as a major weakness of the BPNN. While a network may be superior in its ability to model the 
relationship between input and output parameters, little information regarding the relationship 
between these parameters can be derived from the ANN’s mappings (Tu 1996). Regression analysis has 
the capability to provide R2 values and associated p values that describe each parameter’s predictive 
strength with respect to an output. This information can be very useful in many scenarios, especially 
where users are not interested in complete reliance upon a physics-based model to understand a 
complex relationship. 

While unable to provide the user with an explicit mathematical relationship between input and output 
parameters, BPNNs retain their desirability as an alternative to many function derivation techniques due 
to their ability to manage problems where input data experience nonlinear relationships (Ramakrishnan, 
Singh et al. 2013). These nonlinearities pose a significant problem for multiple linear regression analysis. 
The linear assumption becomes a noticeable source of error between target output and the output 
determined by this type of model (Table 1). The complex, layered architecture of a BPNN accounts for 
the network’s ability to process nonlinear relationships between parameters, creating a more accurate 
model of output data than a regression model could.  

Neyamadpour, Taib et al. (2009), trained a BPNN to solve the complex problem of inversion of 2D 
resistivity imaging data. Inversion of data generated through electrical resistive tomography is 
complicated by the fact that conventional inversion techniques are known to predict nonexistent 
structures, so a BPNN was implemented as an alternative method of inversion. A configuration of two 
hidden layers, sized 28 and 16 neurons, were used to generate a singular output. The BPNN was 
relatively successful in generalizing a conductive vertical column in the soil; it exhibited anomalous 
behavior unlike that observed in conventional inversion, bringing into question the validity of the 
BPNN’s generalization. It is suspected that the BPNN learning algorithm was an inappropriate alternative 
to traditional inversion due to the fact that the network was tested for various sizings and none seemed 
to remove anomalous inversion behavior. 

Bakyan and Yilmaz (2010) utilized a BPNN in mineral identification using image analysis. By feeding the 
BPNN information on color, hue, saturation, and value, the network was shown to experience training 
accuracies as high as 81-98%. Though, it showed some weaknesses when distinguishing like-colored 
minerals such as muscovite, biotite, and chlorite.  

Ceryan, Okkan et al. (2013), successfully applied a BPNN to the prediction of the unconfined 
compressive strength of carbonate rock. Using only two input parameters (total porosity & P-wave 
velocity); the network was significantly more predictive than a multiple regression approach. Whereas 
Sezer (2013) used a BPNN to create a simple estimation model for the shearing resistance angle of 
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uniform sands alongside another type of neural algorithm known as an Adaptive Neuro-Fuzzy Inference 
System and a multiple regression model. Provided with size and shape characteristics for the sand 
grains, both neural network models prevailed over the regression model. A BPNN structure using one, 
10-node, hidden layer provided the most effective mapping of the relationship between sand 
characteristics and shearing resistance angle. 

Ramakrishnan, Singh et al. (2013), created a BPNN-based model for landslide susceptibility in the 
Tawaghat area of India. By combining GIS data; slope, lithology, aspect, land use, and known areas of 
fracture, with known landslide triggering parameters: rainfall, seismicity, anthropogenic interference 
areas were categorized into zones of high, moderate and low landslide susceptibility. Landslides that 
occurred after the development of the model showed that 80% of the landslides occurred in zones 
designated as high susceptibility areas. 

Torabi, Shorazi et al. (2013) used a BPNN to study the influence of geotechnical parameters on tunnel 
boring machine performance in a highway project. This study was successful in identifying that the main 
parameters related to boring machine downtime were not related to the rock, but instead the social 
aspects of the tunnel boring project. Though in this case, the rock material being tunneled through was 
described as ‘moderate-to-weak structural condition’, suggesting that the viability of a BPNN-driven 
study of geotechnical parameters for tunneling could increase with tougher rock.  

Yang and Xia (2013) implemented a BPNN to predict mining subsidence under thin bedrock and 
unconsolidated layers. Combining known bedrock and unconsolidated soil layer parameters with 
information regarding the rate, depth, size, and management of mining operations, they were  
successful in measuring the horizontal movement and subsidence of nearby layers. Using a genetic 
algorithm (GA), the authors optimized the learning parameters and structure of the network to utilize 
one hidden layer, comprised of 32 nodes. 

2.1.2 Recurrent Artificial Neural Networks: Time Sensitive BPNNs 
Certain complex problems are convoluted by a path dependency. This dependency, often manifesting 
itself as a temporal component, outlines a relationship between input and output that is recurrent. In 
the recurrent case, the output for a given time step are key in determining the output for the following 
time step. For instance, a soil’s level of swell at any given time step is heavily dependent upon the swell 
observed at a previous time step (Basma, Barakat et al. 2003). One common, path-dependent 
relationship experienced in geotechnical engineering involves the mechanical behavior of soils over 
time. This requires that a model of these behaviors be able to consider outputs from a previous time 
step as inputs for the following time step. While these problems experience nonlinearities for which a 
traditional BPNN may be well suited, they are not capable of considering this time dependency without 
adaptation of the network structure. The Recurrent Artificial Neural Network (RANN) is a BPNN adapted 
to include a recurrent, or time dependent component. The network considers certain predicted outputs 
(for time step t) as inputs for the following time step (time step t+1) as shown in Figure 3. The RANN 
creates a complex nonlinear mapping with consideration of a temporal, or path-dependent component. 

The way in which a soil swells, shrinks, and responds to loading is time dependent in nature. By 
recurrently considering the output variables deviatoric stress (q), soil suction (Ua-Uw), and volumetric 
strain (εv) as input variables for the following time step, the RANN successfully maps the time dependent 
nature of an unsaturated soil (Johari, Javadi et al. 2011). 

Basma, Barakat et al. (2003), developed a RANN for the purpose of creating a predictive model of swell 
in clay soil samples. This study was performed in comparison to a traditional BPNN and confirmed that 
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the prediction accuracy of a RANN is greater than BPNNs for time dependent processes. The authors 
went on to conclude that a RANN may be highly successful in mapping relationships for other time 
dependent geotechnical applications such as prediction of soil consolidation, pore pressure dissipation, 
and seepage.  

Zhu, Zaman, et al. (1998), used a RANN to predict soil properties for both fine-grained residual soil and 
coarse-grained dune sand. Their model proved successful in accurately characterizing these soils for 
various axial and volumetric strains, making the network robust in predicting hardening and softening 
behavior associated with loading-unloading-reloading conditions. This model was once again compared 
to and outperformed a traditional BPNN in the modeling of this time dependent problem.  

Habibagahi & Bamdad (2003), implemented a time dependent mechanical soil behavior model and 
concluded that it was capable of modeling various parameters as well as simulating collapse phenomena 
related to unsaturated soils. The authors had success in sequentially simulating the deviatoric stress, 
volumetric strain, and change in suction that occurs in triaxial tests. The results are promising in that the 
network provided good performance for the prediction of the results of triaxial tests and understanding 
specific collapse phenomena.  

Johari, Jadavi et al. (2011), implemented a RANN to predict the soil mechanics for unsaturated soils. 
They paired this approach with a genetic algorithm (GA) used to optimize the RANN learning parameters 
and architecture to provide the best mapping for this problem. This was compared to the RANN created 
by Habibagahi & Bamdad (2003) using the traditional trial and error paradigm common in optimizing 
many ANN structures. The GA optimized RANN prevailed in predictive accuracy for unsaturated soils, 
suggesting that ANN performances, while already acceptable in terms of predictive accuracy, can be 
better optimized through the use of genetic algorithms. 

2.1.3 Unsupervised Self-Organizing Maps (SOMs): A Minority in Geotechnical ANN 
Applications 
Use of unsupervised learning algorithms to classify data is rare in geotechnical engineering applications, 
though they have been used some. An ANN known as a Self-Organizing Map (SOM) is a nonparametric 
alternative to classical clustering statistical techniques. It classifies complex, multidimensional data into 
groups. This process, known as clustering, categorizes multidimensional datasets into distinct groupings 
and often displays them on a one or two-dimensional platform, useful for human interpretation (Figure 
4). The clusters that are created also provide the user with a level of dimensional analysis, allowing them 
to understand which parameters are most important in the clustering process (Figure 5). Here, the a 
clustering process has been described in terms of each separate parameter passed to the network (i.e. 
sand %, depth (cm), CaCO3 %) to better describe the relationship between the clusters that the SOM has 
generated, and the specific input parameters that generated the clusters. 

Ferentinou, Hasiotis et al. (2012), used a SOM to classify marine sands in the Zakynthos canyon in 
Greece. Five distinct clusters were identified (CL1-CL5 of Figure 4), allowing soil scientists to understand 
how to classify certain areas of the Zakynthos region and make inferences about the sediment’s 
interaction with the topology of the area. While it was difficult to predict trends in the vertical 
distribution of sediment, they were able to infer that the sediments observed in their sampling of the 
Zakynthos region were likely to occur laterally throughout the studied area. 
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3. Application: Prediction of Drained Secant Residual Friction Angle 

3.1 What is Secant Residual Friction Angle? 
The drained residual shear strength of cohesive soils is often needed for the determination of the 
susceptibility to landslides and other critical failures (Skempton 1985; Stark and Eid 1994). A cohesive 
soil’s typical shear stress versus displacement response is depicted in Figure 6. After reaching a critical 
condition, a clayey soil’s shear strength reaches a weaker residual condition. This residual condition 
occurs when originally jumbled clay platelet particles become aligned on a parallel plane, contributing to 
a plane of significantly reduced shear strength (Skempton 1985). This condition is considered to be a 
residual soil condition, in that once this plane has been produced, it will continue to exist as a plane of 
significantly reduced stability until it is subjected to a large enough loading to produce a failure. 
Therefore, it is important to quantify a clayey soil’s residual properties to perform a complete stability 
analysis. 

Figure 7 provides a generalized residual shear stress to normal stress envelope for a cohesive soil. Note 
that the envelope is typically nonlinear, making it very difficult to quantify a soil’s failure envelope using 
a singular parameter. Instead, a soil’s residual shear strength is matched to its corresponding normal 
stress loading. This relationship is commonly expressed as the secant of the shear stress divided by the 
normal stress and hence referred to as secant residual friction angle, or ør’. 

Typically, a drained torsional ring shear test is used to determine the ør’ of a remolded soil sample 
(Lupini, Skinner et al. 1981; Stark and Hussain 2013) for a given normal stress. The sample is subjected to 
a constant normal stress loading, while a constantly increasing shear stress is applied to the soil until a 
shear failure plane is developed.  A general schematic, which describes the mechanistic procedure used 
in torsional ring shear stress testing, is shown in Figure 8.  

In order to ensure that a reliable test is performed, the shear displacement is applied at relatively slow 
increments. With rates as slow as 0.02 mm/min, a test may take weeks to reach a residual condition. 
Not only is the drained torsional ring shear test a slow process, both the apparatus and testing are 
financially costly. These disadvantages have prompted many geotechnical engineers to seek alternative 
methods to the ring shear test. It has been determined that, especially for clay soils, there is a 
relationship between various common geotechnical soil parameters and ør’. These relationships have 
the potential to be exploited to indirectly predict ør’ without use of traditional torsional ring shear tests, 
saving both time and money for the interested party. 

3.2 Predictive Soil Parameters 
Previous studies have related drained residual friction angle (ør’) to a soil’s index properties (Skempton 
1985; Collotta, Cantoni et al. 1989; Stark and Eid 1994; Mesri and Shahien 2003; Wesley 2004; Tiwari 
and Marui 2005). A soil’s ør’ is known to be affected by its mineralogy, composition, and magnitude of 
effective normal stress applied during soil testing (Dewoolkar and Huzjak 2005). Thus, certain soil 
parameters that quantitatively describe one or more of these soil characteristics have been related to 
ør’. These predictive soil parameters are provided in Table 2. 

3.2.1 Mineralogy: Atterberg Limits – LL & PL 
Atterberg limits are common geotechnical soil parameters that are indicative of a soil’s mineralogy and 
ability to endure stress loadings and thus, of direct concern to ør’ (Stark and Eid 1994; Wesley 2004; 
Stark, Choi et al. 2005). Atterberg limits are significant in geotechnical engineering as they provide 
information related to a soil’s behavior at critical water contents. These limits are important for soils 
that contain a significant clay mineralogical component because clay-water interactions heavily dictate 
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the mechanical properties of a soil (Moore 1991; Stark and Eid 1994). A soil that contains a significant 
clay mineralogical component experiences polar interactions between clay particles contributing to 
cohesion and plastic behavior between soil particles (Moore 1991). Such a soil is said to be cohesive.  

Originally, studies concerned with determining a relationship between ør’ and other soil parameters 
considered liquid limit (LL) without plastic limit (PL) (Stark and Eid 1994; Wesley 2004). More recently, 
studies have considered combining both basic Atterberg limit parameters using the lumped plasticity 
index (PI). Defined as the difference between LL and PL, PI has been correlated to ør’. (Tiwari and Marui 
2005; Stark and Hussain 2013). The predictive capacity of PI suggests that the consideration of PL as an 
input parameter provides some predictive capacity beyond what is supplied by LL alone. 

3.2.2 Composition: CF & SF 
Because the quantity and type of soil particles determine a soil’s strength characteristics, the 
composition of a cohesive soil also contributes to a soil’s ør’. As is apparent when considering Atterberg 
limits, clay composition has a strong effect on a soil’s mechanical properties. Where Atterberg limits 
may indirectly inform an analyst about the mineralogy and quantity of clay within a soil sample, the clay 
fraction (CF) quantifies the amount of clay material by mass. Expressed as a percentage, an increase in 
CF is known to cause a decrease in ør’ (Dewoolkar and Huzjak 2005). Equations developed between ør’ 
and other geotechnical parameters commonly implement CF as a predictive parameter within their 
models (Skempton 1985; Collotta, Cantoni et al. 1989; Stark and Hussain 2013). 

While not commonly used in studies that correlate ør’ and indicative soil parameters, sand fraction (SF) 
shows potential to be a predictive parameter. Unlike clay particles, sand particles exhibit no cohesive 
properties. In large enough proportion, these particles can exhibit stability characteristics dissimilar to 
those caused by clay particles (Nelson 2013). Because sand particles are expected to react differently to 
shear loadings than clays, it is hypothesized that a model that incorporates SF as an input parameter 
may experience added predictive capability.  

3.2.3 Magnitude of Normal Stress Loading:   
Applying a normal stress loading (σ’) to a soil sample is an integral part of the ring shear test that 
traditionally determines ør’. This is because a well-established relationship exists between shear stress 
(τ) parameters and σ’, where σ’ is the effective normal stress loading:  

1 

  (  ) 

Thus, a soil’s shear response, commonly characterized through ør’, is dependent upon σ’. As a result, 
some studies that establish relationships between ør’ and common geotechnical parameters include σ’ 
in their correlations and predictive models (Collotta, Cantoni et al. 1989; Mesri and Shahien 2003; 
Wesley 2004; Dewoolkar and Huzjak 2005; Tiwari and Marui 2005; Stark and Hussain 2013). 

3.3 Prediction of Secant Residual Friction Angle 
Given that a torsional ring shear test is both time and money intensive, alternative methods for 
determining ør’ have been explored for decades. The observed relationships between the soil 
parameters (Table 2) and ør’ provide grounds for developing predictive models for ør’. Over the past five 
decades, studies have developed correlations between ør’ and various input parameters seen in Table 2. 

While useful empirical equations that relate indicative soil parameters and ør’ have been created, a 
physics-based mathematical relationship has not been derived. Most studies consider a multitude of 
parameters in developing predictive models for ør’ (Collotta, Cantoni et al. 1989; Mesri and Shahien 
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2003; Wesley 2004; Tiwari and Marui 2005; Stark and Hussain 2013) and despite significant progress, 
the predictive ability of many of these models are suspect. A discussion of Stark and Hussain’s (2013) 
equation, one of the more widely accepted predictive models, is provided. Failure to fully understand 
the physics behind this mathematical relationship is due to the complex nonlinear relationship between 
ør’ and the soil parameters described in section 3.2.  

A brief glimpse into the complex nonlinear relationship between these parameters is outlined in Figure 
9. In this study, ør’ is a function of LL for varying ranges of CF and σ’ loadings. Where soils with CF 20% 
exhibit a strong linear relationship, soils with CF 50% exhibit nonlinear behavior across different normal 
stress loadings between the 60-120% LL range. While this may not seem like a very complex nonlinear 
relationship, it is important to note that this analysis and two-dimensional representation does not 
consider other predictive parameters such as PL and SF. The complexity increases with the addition of 
these other useful parameters. A multivariate least-squares regression analysis, described in 4.1.2, 
supports this, suggesting that a more mathematically complex model is necessary. 

3.3.1 Current Predictive Methods 
Currently, predictive methods for ør’ exist mainly in the form of empirical equations developed from soil 
datasets acquired from the field and some manufactured or altered in the laboratory setting. As 
discussed above, these relations are sometimes based on a single parameter. These are often incapable 
of generalizing across a wide range of soil types (Stark and Eid 1994; Wesley 2004). 

A commonly used multivariate model for the prediction of ør’ are equations that have been developed 
over the past 20 years and presented in a series of three publications. First posited in the Stark and Eid 
(1994) publication, these equations have been revisited both in Stark et al. (2005) and most recently 
Stark and Hussain (2013). These studies provide equations for the prediction of ør’ using LL and σ’ as 
input data across the three distinct CF ranges shown in Figure 9. As discussed in the results section 5.3.2, 
even these equations can be shown to be limited in their prediction of ør’ across a wide range of soil 
types. It may be argued that even this multidimensional consideration of input soil parameters fails to 
address the complex nonlinearity of the multidimensional relationship between input soil parameters 
and ør’. The shortcomings experienced by these predictive methods provide grounds for seeking an 
alternative method of prediction. The following section concerns the development of a BPNN for the 
prediction of ør’. 

4. Methodology 
Similar to a majority of the ANN geotechnical applications provided in the literature review, this study 
utilizes a BPNN to develop a predictive model for ør’. Prior to the development of this model, soil data 
were acquired; and the soil datasets used in this study were prepared and subjected to preliminary 
statistical analyses. These statistical analyses provided correlations between individual input parameters 
and ør’, to help inform the parameterization of the BPNN. In addition, a multivariate linear regression 
model was developed to provide an alternative model for comparison to the BPNN. Further, code was 
developed to use Stark and Hussain’s 2013 equations to predict ør’ for the data in this study, providing a 
second model to compare BPNN performance to. 
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4.1 Methods for Soil Data Acquisition 
Three major testing procedures were required for the acquisition of soil parameters considered in this 
study. These tests were not performed in this study, but were performed by the researchers who 
provided these data. ør’ angles were determined using a drained torsional ring shear test conducted at 
certain σ’ (Figure 8). The American Society for Testing and Materials (ASTM) provides standard methods 
for the torsional ring shear test in ASTM D6467 – 13. Often soil samples are remolded and pre-sheared 
to expedite the process of attaining a residual shear condition in the soil. Both LL and PL soil parameters 
can be determined by following ASTM standard method: ASTM D4318 – 10e1. Both CF and SF 
parameters are measured by performing a simple soil gradation analysis (ASTM D6913 – 04), which 
generally includes sieve and hydrometer analyses. 

4.2 Data Preparation 
In order to conduct this study, six viable soil datasets were acquired from various academic and 
commercial sources. These datasets come from various soil parameter studies, most related to 
developing models and correlations for the prediction of ør’. While this study enjoys the advantage of a 
large pool of data, the fact that these data come from various sources requires careful consideration and 
pre-processing.  

In terms of data quality, the datasets may be divided into two major categories: internally consistent 
and inconsistent. Internally consistent datasets use data for soil samples that have been tested using the 
same methodology, equipment, and ideally, personnel. By ensuring that soil parameters are determined 
in an internally consistent manner, one can be confident that, relative to the specific dataset, data are 
free from systematic experimental error and skew. In this way, the quality of internally consistent data is 
superior and preferred to its internally inconsistent counterpart. 

Though four of the six datasets considered are internally consistent, two internally inconsistent datasets 
were used in this study to increase the size and breadth of data used to train and test a BPNN. All of 
these datasets included LL, PL, CF, and σ’, though some lacked SF information. The total dataset was 
divided into two major subsets; those that include SF data and those that do not. Datasets used in this 
study are listed in Table 3 with their sources, abbreviated labels, and sample size provided. 

Despite the fact that both the Commercial and the Dewoolkar dataset are potentially internally 
inconsistent, they provide a significant amount of data to both the subset of data with and without SF. 
Despite the fact that the Stark and Eid (1994) dataset is an amalgamation of soil data from various 
sources, testing methods remained internally consistent. Further, this dataset is vital due to its use in 
developing the Stark and Hussain (2013) predictive equations for ør’. 
 
Each dataset was individually trained using a unique BPNN. Further, the two larger data subsets (D, H, S, 
TM03 and D, H, S, SE, TM03, TM05) were trained to the BPNN to compare the predictive capacity of SF. 
Some of these datasets were further subdivided due to their internal consistency as is discussed in the 
results. Prior to BPNN training, soil data was subjected to statistical analyses to inform BPNN 
parameterization. 

4.3 Multivariate Statistical Analysis of Soil Datasets 
Statistical analyses were performed on the soil datasets in question to acquire knowledge about various 
soil parameters’ ability to predict ør’, as well as develop a benchmark comparison between a BPNN and 
more common parametric statistical methods. To provide a robust dataset for statistical analysis, all 
available datasets were combined into one large dataset. This dataset includes Dewoolkar, Hayden, 
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Commercial, Stark & Eid, Tiwari 2003, and Tiwari 2005 datasets. All correlation and multiple regression 
statistical analyses were performed using JMP Pro 10 software.  

4.4 Development of a BPNN for Prediction of Secant Residual Friction Angle 
Preliminary statistical analysis of the soil data informed the development of a BPNN with the purpose of 
predicting ør’ using LL, PL, CF, SF and σ’. Noticeable correlations were identified between ør’ and each 
parameter. Two BPNNs with distinct input parameter scenarios were considered and generalized 
schematics for each network are provided in Figure 10.  In one network, a soil’s LL, PL, CF, SF, and σ’ 
were provided as input parameters (Figure 10 (a)). The other BPNN considered LL, PL, CF, and σ’ without 
the use of SF (Figure 10 (a)). Further, the use of these two networks allowed for the comparison of two 
predictive models in an attempt to determine whether SF is an effective or necessary parameter in the 
determination of ør’. 

4.4.1 BPNN Structure: Configuration & Sizing 
The generalized structure of the BPNNs used in this study (Figure 10) each consist of an input layer 
where input data parameters are passed to the network, a hidden layer where input information is 
processed and passed to a singular terminal node in the output layer. This node holds the network’s 
prediction of ør’ and the quality of this prediction is partially dependent on the network’s structure; 
defined by its configuration and sizing.  

In this context, configuration pertains to the number of layers within the network, while sizing pertains 
to the number of nodes in each of these layers. Both of these criteria determine the level of 
mathematical complexity in the predictive relationship developed by the BPNN. While the size and 
configuration of the input and output layers are determined by the application at hand, these criteria 
may vary for the hidden layer(s). BPNNs have the potential to utilize a configuration that contains 
multiple hidden layers to allow for higher levels of complexity. Similarly, the sizing of each of these 
layers may be varied. Generally, an increase in either configurations or sizing generates a network 
capable of developing relationships of higher mathematical complexity. 

A mathematical theorem of Irie and Miyake (1988) suggests a network configuration that incorporates 
two hidden layers (Figure 11), for large enough node sizings, has the capability to map any mathematical 
relationship between inputs and outputs. Despite this, the ability of a network with two hidden layers  
to outperform a single hidden layer network is suspect. Table 4 shows the performance summary for 
BPNNs of various size and configuration. Note that the minimum RMS error for a one layered network is 
not improved upon by adding a second hidden layer. Clearly, the variation of both of these parameters 
can make the optimization of network structure complicated and subjective.  

To avoid excessive complexity in the network structure optimization process, this study focuses on 
varying only network sizing, and utilizes one hidden layer in its configuration. The optimization process 
shown in the next section proves that this structure is sufficient to develop a BPNN of sufficient 
mathematical complexity for this problem. A backpropagation neural network’s input layer is comprised 
of an artificial neuron or node per input parameter considered in the neural network. The values for 
these input parameters are passed to the network’s input layer and sequentially passed through to the 
output layer to generate predictions. 

4.4.2 Data Pre-Processing 
BPNN network training occurs most efficiently when network calculations remain bounded between 0 
and 1. To ensure that network training occurs efficiently, input values that may originally occur along 
any continuous scale, are first normalized to values between 0 and 1 as shown in Equation 2, where  is 
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the parameter data value,  is the normalized data value, is the maximum data value, and  
is the minimum data value: 

2 

 
 

 
  

4.4.3 Training and Prediction 
For a given dataset, training occurs on a random subset of the data while the remainder is withheld for 
testing. This is done to ensure that the network is mapping to the general relationship between input 
data, rather than learning specific data values. If all data within a dataset were trained to a network, it 
would be possible for the network to map the mathematical relationship between the specific input and 
output data provided without learning underlying general relationship between parameters. By testing 
the network’s performance on a withheld data subset, one may ensure that a BPNN is generalizing by 
observing the model’s predictive performance for the data that was untrained to the network.  

In backpropagation training, initial network weights are randomly assigned values between -1 and 1. 
Input parameters are then multiplied through to subsequent network layers by their corresponding 
weight matrices. In order to ensure that the values remain between 0 and 1, the values calculated for 
the subsequent layer are passed through what is called a logistic squashing function. Seen 
mathematically in Equation 3 and visually in Figure 12, a logistic squashing function forces calculated 
node values to fit between 0 and 1. In a process called forward propagation, these operations are 
sequentially applied to input values through the network until operations terminate on the final layer. 
Equation 3 is as follows, where  is the nodal data, and   is the exponential function: 

3 

( )  
  

  

Values calculated at the final layer are said to be the network’s output predictions. Note that these 
values have been normalized between 0 and 1 and must be un-normalized to correctly represent the 
predictions made by the network. This is accomplished using a simple un-normalization function seen in 
Equation 4, where  is the parameter data value,  is the normalized data value, is the 
maximum data value, and  is the minimum data value: 

4 

 (  )    

Once a set of predicted outputs is correctly scaled to match known outputs, the backpropagation 
updating procedure begins. 

Where forward propagation runs from input layer to output layer, backpropagation runs in reverse, 
hence the name. Backpropagation begins with a calculation of error between the known and predicted 
output values, which informs the updates applied to all weights in the network. The first error 
calculation (Equation 5) is a function of the difference between known and predicted output, where  

is the output layer error,  ( ) is the derivative of the logistic squashing function,  is the known output 
vector, and  is the predicted output vector: 
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Subsequent error calculations precipitate from this (Equation 6), where   is hidden layer error,  ( ) 
is the derivative of the logistic squashing function,   is the output layer error, and  are the output 
weights: 
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The weight adjustments are a function of these error calculations following the general form shown in 
Equation 7, where   is the change in weight matrix between layers i and j,  is the updating 

coefficient (generally 0.5),  is the error for forward layer j, and  are the current values for nodes at 

backward layer i: 
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The network’s new weight matrices are then calculated by simply adding the changes in weights to the 
previous weight states (Equation 8), where  is the new weight matrix between layers i and j,  is 

the current weight matrix between layers i and j, and   is the change in weight matrix between 

layers i and j:  
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4.4.4 Training Criteria: Root Mean Square Error 
Through iterative application, the backpropagation procedure is successful in lowering the error 
between known and predicted output. A simple error metric, known as Root Mean Square Error (RMSE), 
is used to evaluate the BPNN training progress (see Figure 13). A user-defined threshold RMSE is 
commonly used to decide when training ends. At the end of any iteration, if the RMSE is less than or 
equal to the threshold, training terminates and network weights are saved.  

During this BPNN training, a threshold RMSE is used in conjunction with a maximum iteration criterion. 
Since a network may never reach the threshold RMSE, a 10,000-iteration limit was applied to ensure 
that network training would occur for a finite amount of time. 

4.4.5 Network Improvements: Noise, Momentum & Bias 
The BPNN used in this study includes three major improvements to the general BPNN structure 
described in Figure 10. These improvements called noise, momentum, and bias, allow the network to 
train more efficiently by allowing the BPNNs error descent to occur over less iterations.  

Noise 
A major problem with training a BPNN is the issue of specification versus generalization. Even for a large 
datasets of training patterns, iterative BPNN training has the potential to create a set of weights which 
have been overfit to a training set. In this way, a network’s weights may have developed the information 
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necessary to replicate patterns used in training very accurately, but poorly predict untrained values. The 
purpose of the network is to be able to generalize. To aid in generalization during the training process, 
randomness is introduced into the training patterns passed to the network. This randomness, or noise, 
causes the BPNN to become less inclined to specify, because it will never train on exactly the same 
inputs (Reed and Marks 1998). This noise can be applied in various ways, though in this study, a singular 
input value is randomly chosen from a training pattern and varied during each training iteration. The 
values are only changed by ±0.1% of their original value to ensure that training patterns retain their 
relevance to the values they represent. 

Momentum 
Iterative BPNN training can be costly in terms of both time and computation and techniques that can 
speed up the training process have been sought after and developed. Momentum attempts to utilize 
information in a previous training step to quickly force the BPNN’s descent toward lower error. Within 
the weight updating procedure in the backpropagation process, the weight adjustment,   is 

supplemented with a momentum term (Equation 9), where   is the change in weight matrix between 

layers i and j,  is the updating coefficient (generally 0.5),  is the error for forward layer j,  are the 

current values for nodes at backward layer i,  is a momentum coefficient (generally 0.9), and   is 

the change in weight matrix from the previous training step: 
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By adding a term that considers the weight changes used in the previous iteration, changes in weights 
have the potential to occur more quickly, allowing the training procedure to gain ‘momentum’. If the 
newly calculated and previous changes are of the same sign, changes in the coming iteration experience 
a more significant change than they would without momentum. If the signs of these two terms conflict, 
this momentum dissipates.  

Momentum provides a secondary utility in helping the network avoid and escape from error ‘ruts’. If 
one were to consider an RMSE training curve for a network, like the one in Figure 14, one would notice 
that there could be local minima between the initial network weight states and a more global minimum. 
Without momentum, a network in training would be more likely to get stuck in these local minima, and 
fail to find a weight state that provides even lower RMSE. 

Bias 
Another way to improve a BPNN’s training speed is by applying bias to the network. Analogous to an 
intercept in a linear equation, a unique bias term is added to each hidden node within a network. The 
addition of the bias term in the forward propagation procedure is known to increase the training speed 
of a network, as it shifts the logistic squashing function (Figure 13).  The bias node is connected via 
weights to all other hidden nodes within the BPNN. The bias node always has a value of 1, though the 
weights associated with it are updated following the same backpropagation procedure as all other 
weights in the network. A schematic diagram of a BPNN equipped with bias is shown in Figure 15. 

4.5 Optimization of BPNN 
A BPNN’s structure must be optimized to ensure the best possible predictive model. In the successful 
training of a BPNN, the RMSE associated with the error between known and predicted outputs descends 
to a desirably low value. In varying the number of nodes in the BPNN’s hidden layer, one may be able to 
find the node sizing that provides an optimally low RMSE.  
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Since the BPNN is developed for prediction of ør’, the network’s predictive performance must be 
evaluated. A subset of data must be withheld from the training process for testing and validation and a 
BPNN may be biased toward data used in the training process. To ensure the network’s ability to 
accurately predict, the data subset that is withheld from training is used in a testing procedure. At the 
end of each training iteration, the network should be able to accurately predict the values of the testing 
subset. This prediction error, called testing RMSE, is iteratively calculated alongside training RMSE to 
provide training performance metrics. A BPNN that is training correctly experiences a testing RMSE that 
follows a similar trend to that observed in the training RMSE.  Though the testing RMSE follows the 
same trend as training RMSE, it is systematically higher, due to the predictive bias provided to trained 
data. Optimal network sizing can be determined by identifying the network sizing that generates with 
the lowest terminal value of testing RMSE. 

Networks with a smaller number of hidden nodes than the optimal BPNN may not be capable of 
mapping the mathematical relationship between input and output parameters, leading to an 
undesirably high terminal RMSE. It is desirable to keep the network’s hidden layer as small as possible to 
avoid overtraining. Overtraining occurs when a network’s structure provides a level of mathematical 
complexity that exceeds what is necessary to map a relationship. This mathematical complexity conflicts 
with the network’s ability to accurately map the relationship between input and output parameters, 
resulting in high RMSE. 

An example of the structural optimization performed in this study is shown in Figures 16-21. These 
figures show the notable iterative RMSE testing values as the number of hidden nodes varies from 3 to 
25. The optimal hidden layer nodes sizing for this particular model and training data set was determined 
to be a 6 node BPNN (Figure 19) due to its low training RMSE of 0.1351 at training termination. 
Networks smaller than this were incapable of reaching such a low testing RMSE and networks larger 
than this were incapable of improving on this error. In Figure 21, a 13 node BPNN’s testing RMSE 
departs significantly from the training RMSE. This shows an extreme example of overtraining, where the 
network’s ability to correctly train is inhibited by its mathematical complexity. The same optimization 
procedure was used for all BPNNs developed in this study.  

4.6 Stark & Hussain (2013) – Equations for the Prediction of ør’ 
An alternative to the BPNN model developed in this study is the correlation-based model provided by 
Stark and Hussain (2013). Using the Stark and Eid dataset, these equations were developed for specific 
CF and PL data ranges at discrete σ’ loadings. The equations are shown in Figure 22. 

Note that there are gaps between CF data ranges. These equations were adapted to encompass all data 
by redefining the low, middle, and high CF ranges to CF 23, 23 CF 48, CF 48. These adapted 
equations were embedded into a MATLAB code that enables interpolation between σ’ loadings to 
predict ør’. This along with all other code relevant to this study can be found in Appendix B. 

5. Results 
Analysis of the predictive performance of the BPNNs developed in this study is discussed below. Major 
areas of analysis included: 

1. Preliminary statistical data analysis 
2. CF distribution across BPNN prediction space 
3. BPNN performance with and without the SF input parameter 
4. BPNN predictive capability as compared to: 
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a. Linear multivariate regression analyses 
b. Equations developed in Stark & Hussain’s 2013 publication 

5.1 Preliminary Statistical Analysis 

4.1.1 Correlation Analysis 
First, a correlation analysis of soil parameters was performed to determine which input parameters 
(independent variables: LL,PL,CF,SF,σ’) showed with Secant Residual Friction Angle (ør’). Figure 23 
demonstrates this analysis, individually comparing each parameter against the remaining parameters. Of 
greatest concern is the comparison between input parameters and ør’, as is seen along the first row and 
column. Correlation coefficients are provided for each parameter to mathematically describe these 
relationships. The strength of the correlation between the two parameters increases as the absolute 
value of the correlation coefficient approaches 1. These correlations are also visualized through the 
ellipsoids transposed correlation plots. A slanted and thin ellipsoid surrounding data points indicates a 
strong correlation between the two parameters. This analysis shows that liquid limit, plastic limit, and 
clay fraction are all highly correlated with ør’, while sand fraction is identified as slightly less correlated. 
It is clear that effective normal stress is not as predictive as the other parameters, though ør’s 
dependence upon normal stress loading, seen in Equation 1, has been well established in geotechnical 
engineering (Tiwari, Brandon et al. 2005). It is therefore important to retain the normal stress loading 
parameter when trying to establish predictive models for ør’.  

In the literature, BPNNs are commonly compared to multivariate linear regression models to provide a 
benchmark for comparison of predictive capacity (Ceryan, Okkan et al. 2013; Sezer 2013; Torabi, Shirazi 
et al. 2013). The next section describes the least squares multivariate linear regression model of secant 
residual friction angle as a function of input soil parameters (σ’, LL, PL, CF, and SF) performed using JMP 
Pro 10 software.  

4.1.2 Least Squares Multivariate Linear Regression 
Two least squares regressions were performed on the dataset.  The first version included all five input 
parameters for a total of 195 data points from four datasets (Dewoolkar, Hayden, Commercial, and 
Tiwari 2003). A larger dataset was available for ør’ which did not include sand fraction, allowing for a 
total of 388 data points from 6 datasets (Dewoolkar, Hayden, Commercial, Stark & Eid, Tiwari 2003, and 
Tiwari 2005). Least squares models were generated for each of these datasets individually, and as a 
whole to understand the predictive relationship between these variables.  

In all cases, the models’ p-values are extremely low (p<0.0001), suggesting that, from a linear statistical 
sense, the models have successfully defined a linear model between secant residual friction angle and 
the input soil parameters. However, the 1 to 1 plots of actual vs. predicted ør’ in Figure 24 show these 
models poorly estimate the relationship between soil parameters and ør’. This lack of fit can be 
quantitatively described by considering the adjusted R2 parameter associated with the predictive model 
error. For multivariate analysis, the adjusted R2 value is considered because it accounts for the number 
of explanatory terms (input variables) in the model. Although the adjusted R2 values (ranging from 0.413 
to 0.426) suggest some relationship between explanatory soil parameters and ør’, the linear regression 
model does not provide a robust predictive method for determining ør’ (Figure 24 (a) & (b)). 

Models for this dataset were created with and without consideration of the input soil parameter, sand 
fraction, to demonstrate that sand fraction provides useful predictive capacity to these predictive 
models, as is seen by the decrease in adjusted R2 value when sand fraction is no longer considered as an 
input parameter (Figure 24).  



 

18 
 

While multivariate linear regression does not successfully develop a robust predictive model, it is 
successful at quantifying a level of importance for each input parameter on ør’, making the regression 
model useful, despite its predictive shortcomings.  

5.1 Analysis of CF distribution across BPNN Prediction Space  
Analysis of the predictive performance of the BPNNs developed in this study is discussed in this section. 
In various models, including the widely accepted equations provided in Stark & Hussain (2013), 
prediction of ør’ requires that soil data be divided into data ranges. Stark and Hussain’s predictive 
equations vary for different ranges of CF. Within each of these CF ranges there are equations for 3 or 4 
discrete σ’ loadings that consider LL as an input parameter.  

It was posited that in the same way that the predictive ability of Stark and Hussain’s equations depends 
on this subgrouping of input variables, the BPNN may benefit from division of data as well. It was 
decided that multiple BPNNs could be developed for various CF ranges. By doing this, the BPNNs may 
have been more streamlined for prediction of the different phenomena observed in different CF data 
ranges. It is clear that various levels of nonlinearity exist for the three data ranges graphically described 
in the ellipses of Figure 25. While this is a simplification of the complex, multidimensional nonlinear 
relationship between ør’ and the input parameters considered in this study, this figure shows the 
potential for distinct subgroupings of data.  

The subgroupings are implemented, using CF distributions modified from the three used in Stark and 
Hussain’s 2013 publication (Figure 25). The success of this method was investigated by comparing it to a 
BPNN that used all provided data and BPNNs that were trained on data subsets determined by these CF 
ranges shown in bold in Table 5. 

The CF distribution analysis began with the consideration of a successfully trained BPNN’s CF distribution 
across its entire prediction space. Division of data three into distinct CF-based subsets significantly 
reduces the size of the data available to the network during training. Therefore, this analysis used the 
largest data subset available in this study (n=388). This analysis includes data from D,H,S,T03,T05,SE 
datasets which incorporate LL, PL, CF, and σ’ as input parameters (no SF). Figure 26 shows that these 
three CF ranges occupy relatively distinct areas of the ør’ prediction space. This 1 to 1 plot shows the 
predicted values of ør’ on the y axis and known values of ør’ on the x axis with a black line running along 
the 45° which signifies a perfect ratio between predicted and known values.  These spatial distinctions 
support the idea that BPNN models could be successfully developed for the distinct CF ranges described 
in Table 5. 

Predictions of drained secant residual friction angle, used the comprehensive BPNN, and were trained 
on the entire dataset, and each BPNN trained on CF subsets of this data are shown in Figures 27-29. 
Figure 27 shows the comprehensive BPNN predictions for compared to the CF 23 data range, Figure 28 
shows same as compared to the 23 CF 48 data range, and Figure 29 shows the same compared to 
CF 48 range. The terminal testing RMSE associated with these networks is used for evaluating 
performance and is shown in the top left of the 1 to 1 prediction plots shown on the first row of figures. 
A more qualitative analysis may be made by observing the RMSE plots in the second row of each figure. 

In Figure 27, it is clear that the RMSE associated with the training of the comprehensive BPNN 
outperformed the BPNN that only considered data in the CF 23 range. Not only did terminal RMSE 
remain lower for the comprehensive BPNN, the RMSE for both testing and training was substantially 
lower throughout the training process. Figure 28 shows a similar trend for data in the 23 CF 48 range.  
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The BPNN trained on data in the CF 48 range (Figure 29) is more successful than the comprehensive 
BPNN. The terminal RMSE for the subgrouped BPNN was significantly lower than the comprehensive 
BPNN. Further, it is visually apparent that predictions created by this network are more accurate. The 
comprehensive BPNN’s predictions for the CF 48 range, shown in black in the top left window, are 
clearly overestimated. These data are systematically biased above the 45° black line, showing a 
tendency to overpredict. The top-right window shows that the network trained only on the CF 48 range 
is more successful in mapping the relationship between input parameters and ør’.  

Results from these analyses suggest that subdivision of data before developing a predictive BPNN could 
be useful in enhancing the predictive capabilities of BPNN models developed for this application. 
Despite this subdivision’s inability to reduce predictive error for all CF data ranges, significant reduction 
in prediction error was developed for the CF 48 range. As was recognized at the beginning of this 
analysis, it is possible that there were not enough data for the BPNN to successfully map the complex 
relationships observed in the lower CF ranges. Further, data subgrouping may have been improved 
through more sophisticated data subdivision techniques. Insights provided by data clustering, similar to 
analysis capabilities of the SOM described in 2.1.3. 

5.2 Analysis of BPNN Performance with and without SF 
While most other studies do not include SF in their models, this study considered BPNN models that 
incorporated SF as an input parameter along with models that neglected that parameter. The choice to 
incorporate this parameter was motivated by a multivariate linear correlation analysis. This correlation 
analysis, shown in Figure 23 provided a correlation coefficient of 0.3118 between ør’ and SF. While this is 
a weaker correlation coefficient as compared to various other input parameters (LL,PL,CF), it provides 
substantive evidence that there may be a relationship between ør’ and SF.  

In order to conduct a controlled analysis of a BPNN’s predictive capacity with and without SF, identical 
datasets needed to be compared. Only datasets that included SF data were considered in this study, 
limiting this model to D,H,S, and T03 datasets. Due to concerns related to internal consistency, the D 
and T03 datasets were initially neglected from this analysis. First, a BPNN was trained to the H and S 
datasets with and without consideration of SF as an input parameter. A schematic of the two networks 
used in this comparison are provided in Figure 10.  

The resultant optimally structured networks from both BPNN input parameter scenarios are shown in 
Figure 30. It is notable that the network including SF has an optimal sizing of 3 input nodes while the 
other is optimally sized at 4 input nodes. This is due the fact that the different input parameter scenarios 
provide different data loadings to the network. Since this compares the best-case predictive models for 
the two input parameter scenarios, the variation in these network sizings is not concerning. Comparison 
of the terminal testing RMSE values for the networks suggests that the BPNN may perform better 
without SF being considered. 

This first analysis used only 120 data points, of which only 80 were used for training. Due to concern 
about the validity of an analysis that utilized such a small data subset, further analyses were employed 
to develop a more robust understanding of the predictive contribution of SF. Since the low testing RMSE 
values validated that the BPNNs shown in Figure 30 were training correctly, the network was retrained 
to the entire dataset with no data withheld for testing. Figure 31 shows the results of these network 
trainings for H and S datasets. In order to further increase the amount of training data the T03 dataset 
was added to H and S. Following similar positive trends in testing for this new dataset, the results of 
withholding no data for testing are shown in Figure 32.  
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The analyses described in Figure 31 & 32 both provide results contrary to those initially observed in 
Figure 30. The training RMSE would suggest that the optimal networks that include SF as an input 
parameter outperform those that do not. Despite this trend, it would be unwise to draw such a 
conclusion without further study. Error margins between these two networks are no larger than 0.0210 
in normalized RMSE, and it could be argued that the difference in performance between these two 
networks is trivial. A more exhaustive study would require a significantly larger dataset to come to a 
concrete conclusion about the contribution of SF to the prediction of ør’. 

5.3 BPNN Performance 
The predictive performance of the BPNN models developed in this study was evaluated to determine 
their viability as an alternative to other models employed to predict ør’. The performance of the BPNN 
was evaluated in comparison to two alternative predictive models for ør’. RMSE was utilized as the 
quantitative metric used in these comparisons. First the BPNN was compared against multivariate linear 
regression models before being compared against equations described in Stark and Hussain (2013). 

5.3.1 BPNN vs. Multivariate Linear Regression Models 
A common metric of BPNN performance is the comparison of a network to a linear regression (REG) 
model (Ceryan, Okkan et al. 2013; Sezer 2013; Torabi, Shirazi et al. 2013). The multivariate linear 
regressions used in this study were developed using JMP Pro 10 software, though figures were created 
in MATLAB. As was discussed in 4.1.2, these linear REG models do not successfully develop a robust 
predictive model, and BPNN models historically outperform them. This is apparent in Figure 33 & 34 
where optimal BPNNs are compared to linear regression models of best fit.  

Where data tends to follow the 1 to 1 error lines in the BPNN model, the data in the linear REG model 
follows no such trend. The spread of these data show that the linear REG model fails to accurately 
predict ør’, especially when compared to the performance of the BPNN. A quantitative measure of this is 
shown by the differential in RMSE between the two models. In both cases, the BPNN models outperform 
the linear REG models by a normalized RMSE of at least 0.1. From this analysis, it is clear that the BPNN 
provides a relatively successful model for prediction of ør’, continuing the historical trend of BPNNs 
outperforming linear REG models. 

5.3.2 BPNN vs. Stark & Hussain Equations (2013) 
The BPNNs outperformance of linear REG models warranted comparison to an established predictive 
model for ør’. As discussed in 4.4, Stark and Hussain (2013) provides a series of equations that allow for 
the prediction of ør’ given input data related to LL, PL, CF, and σ’. These equations were adapted and 
written into a MATLAB code to compare predictions from this method to BPNN models. Because SF is 
not a parameter required by this model, these equations were applied to all six datasets included in this 
study. Figure 35 shows a 1 to 1 comparison of prediction results to known values for all 6 datasets. 
Datasets are color coordinated and broken into CF range subgroups by different marker shapes. 
Alternatively, Figure 36 shows these predictions on the same ør’ vs. LL plot used in Stark & Hussain 
(2013). Predictive equations are plotted as black lines with ør’ predictions coded in color by dataset, and 
in shape by CF range. In comparison to the data distribution shown in Figure 25, it is clear that there is 
significantly more scatter for ør’ predictions than for the dataset used in the development of these 
equations. 

Figure 22 shows that Stark and Hussain’s equations are only available for discrete σ’ loadings that fall 
within a specific PL range for each CF range subset. This code interpolates between the discrete σ’ 
loadings described in these equations to provide predictions to a larger range of soil data values. Despite 
this, some data which did not fall within the required PL ranges for their CF subset, were omitted from 
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prediction. These omissions are indicated in the figure’s title and legend, which show the number of 
data points which were used for prediction versus the total number available. While the predicted 
versus known axes allow for easy visual interpretation, the RMSE is shown in the figure title allowing for 
quantitative analysis of predictive performance. 

The results of the ør’ predictions created by the adapted Stark and Hussain equations were compared to 
BPNN predictions. The optimal BPNN predictions for all 6 datasets are compared to those produced 
using the Stark and Hussain equations in Figure 37. As is visually and quantitatively apparent, the BPNN 
outperforms these equations in accuracy of prediction. In comparing various data subsets by color, 
some datasets are more accurately predicted by Stark and Hussain than others. One such dataset is the 
Stark and Eid 1994 dataset shown in turquoise. A comparison for this data subset is shown in Figure 38 
and an exhaustive list of figures for all datasets is found in Appendix C. 

In comparison to all other datasets, the prediction accuracy for the SE dataset is significantly higher. This 
makes sense, given that the dataset was used to develop the Stark and Hussain 2013 equations. Despite 
this, the BPNN trained to the SE dataset did achieve a slightly lower RMSE. Though the difference in 
RMSE values may be trivial, their closeness shows that the BPNN provides a comparable model to these 
equations.  

Observe that this higher prediction accuracy for the SE dataset is also seen for the BPNN model. In 
comparison to the Commercial and Dewoolkar datasets, shown in Figure 39 & 40, the RMSE for the 
BPNN trained to the SE dataset is significantly lower. Where the RMSE for the Stark and Eid BPNN is 
0.0671, the RMSE for Commercial and Dewoolkar are 0.1625 and 0.1934; roughly a magnitude of 10 
larger. This is suggestive of a dataset that is, perhaps intentionally, less dimensionally complex. The fact 
that, in comparison to others, the BPNN trains so well to the SE dataset suggests the mapping developed 
for these data is simpler than those needed to map to other datasets. 

It is clear from the left plot on Figure 37 that the BPNN predictions are highly successful for ør’ values 
less than 10°, and greater than 20°. The relatively high prediction accuracy of ør’ in these regions can be 
explained by observing the predictive empirical models of Figure 36, which show that for these data 
ranges, the relationship between LL and ør’ is quite linear. This linearity is indicative of a reduced 
mathematical complexity between ør’ and all other variables, leading to a more successful mapping of 
the complex nonlinear relationship in the ør’<10° and ør’>20° data ranges. This irregularity in predictive 
accuracy further supports the subdivision of soil data by CF range. This subdivision could lend accuracy 
to the middle range values that experience a higher level of mathematical complexity in the 10°<ør’<20° 
range (Figure 36). 

The predictions of ør’ by the Stark and Hussain equations are significantly less accurate for datasets 
other than SE. This is especially apparent for the Dewoolkar dataset, where most equation-based 
predictions don’t fall within the 30% error line. This incongruity in prediction accuracy suggests that the 
Stark and Hussain equations may be capable of providing accurate equations for soil data that is 
dimensionally similar to the SE dataset, but the model was produced using data that is not 
representative of a larger soil population. 

The superiority of BPNN predictive accuracy is shown both visually by the comparison using 1 to 1 plots 
and quantitatively using RMSE. Further, the BPNN model allows for consideration of input parameters 
along a continuum. While adapted to be applied more continuously by interpolating between σ’, the 
Stark and Hussain equations were originally only applied to discrete loadings across limited CF and PL 
ranges that provide significant data gaps.  
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While RMSE provided a basis to quantitatively compare the Stark and Hussain equations to the BPNN 
models developed in this study, this comparison is not comprehensive enough to definitively state that 
one predictive model is better than the other. A more conclusive study would require a significantly 
large, internally consistent soil dataset from multiple sites, allowing for a more meticulous evaluation of 
performance for both BPNN and Stark and Hussain (2013) models. 

A major shortcoming of the BPNN is that it provides a ‘black box’ in that there is no equation that can be 
provided to the user. Instead, the user must provide input values to the BPNN and accept the output 
response, trusting the weight matrices that connect a digital structure to deliver a once again tangible 
output. This mathematical intangibility is a quality that could be undesirable in that it requires a 
suspension of disbelief and trust in a nontraditional model. Conversely, the Stark and Hussain equations 
are given in the form of tangible mathematical equations. In this way, a user may actively perform 
calculations by his or herself in a way that lends trust through its traditional mathematical structure. It is 
clear that there are distinct advantages and disadvantages to each modeling technique, though the 
RMSE error comparisons across various datasets suggest that the BPNN modeling approach provides a 
more robust and accurate predictive model than Stark and Hussain’s correlation-based equations. 

6. Conclusions and Future Work 

6.1 Conclusions 
With six different soil datasets that include input soil parameters LL, PL, CF, σ’, and sometimes SF, 
various BPNN models were developed to predict ør’. The subdivision of soil data by CF ranges specified 
in Stark and Hussain (2013) equations was considered in an attempt to lend predictive accuracy to the 
model by grouping like data. While the clustering observed in Figure 26 makes this division attractive, 
analyses show that the reduction in data size caused by dividing these data does not allow for the 
improvement of predictive ability in this case. Further, prediction accuracy varies for different ranges of 
ør’. ør’<10° and ør’>20° have higher prediction accuracies than the middle range, suggesting that data 
subdivision may supply increased prediction accuracy for the middle range. Thus, the subdivision of data 
by CF range is suggested for a more robust dataset with substantial amounts of data to map a BPNN to 
each range. 

Where other studies neglect SF as a predictive parameter for ør’, this study considered the predictive 
capacity lent to a BPNN model by incorporating SF. Comparisons between BPNN models that 
incorporate SF versus those that don’t are inconclusive. While one RMSE comparison suggests that ør’ is 
better predicted by a network that doesn’t include SF, two subsequent comparisons suggest the 
opposite. In all three cases, the RMSE between the two models is not statistically different.  

The analyses performed on the BPNN models developed in this study suggest that the BPNN 
outperformed the other models. Where Stark and Hussain’s equations were inconsistent in their ability 
to reliably predict ør’ for datasets other than SE, the BPNN consistently exhibited relatively low RMSE 
across all datasets. This suggests that a BPNN model provides a robust mapping the characteristic 
nonlinear relationship between input soil parameters and ør’. In comparison, the Stark and Hussain 
equations fail to accurately predict ør’ for datasets other than the SE dataset (the dataset used in the 
development of these equations). This can only be said for the data provided, and there are concerns 
related to internal consistency of datasets and the combination of these data. It is posited that provided 
with a large and internally consistent dataset subdivided by CF ranges, BPNN models would be able to 
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improve on the predictive performance observed in the models developed in this study and serve as a 
robust predictive tool for the indirect determination of ør’. 

6.2 Future Work 
A more complicated analysis of data clusters, beyond the division of soil data by CF ranges, may provide 

even higher predictive accuracy to a predictive BPNN model. Unsupervised algorithms such as the SOM 

discussed in the literature review are a powerful means by which to identify these multidimensional 

subgroups of data. Unsupervised algorithms such as this one are beyond the scope of this honors thesis 

research, though future work should include clustering techniques such as a SOM to provide robust data 

subdivisions to improve the predictive capacities of BPNN models. 

Not included in this study is an analysis of the predictive capacity of PL in a BPNN model. Given that LL 
and PL are both functions of clay mineralogical composition, and thus related, it is possible that a 
network that only considers one Atterberg limit may experience increased predictive accuracy due to 
minimized mathematical complexity within the network. Future studies involving the parameterization 
of a BPNN for the prediction of ør’ should involve a study of predictive performance of a BPNN with and 
without PL, similar to what was performed in this study for SF.  
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Figures 

 

Figure 1: Schematics of (a) biological vs. (b) artificial neurons. 

 

 
Figure 2: Generalized schematic of a supervised ANN structure showing sample input and output vectors. 

  

(a) – Schematic of a biological neuron.  (b) – Schematic of an artificial neuron. 
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Figure 3: A RANN architecture showing outputs as inputs for recurrent calculation (Johari, Javadi et al. 2011). 

 

 
Figure 4: Results of a SOM’s clustering results for marine sediment data from the Zakynthos canyon area in Greece  

(Ferentinou, Hasiotis et al. 2012). 
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Figure 5: A SOM’s cluster distribution by input parameters (Ferentinou, Hasiotis et al. 2012). 

 
Figure 6: Residual condition of clayey soil (Nelson 2013). 

 
Figure 7: Secant residual friction angle on a soil failure envelope (Nelson 2013). 
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Figure 8: Generalized schematic of the torsional ring shear stress procedure (England 1992). 

  
Figure 9: The complex nonlinear relationship between secant residual friction angle and various common soil parameters 

(Stark, Choi et al. 2005). 
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Figure 10: BPNN schematics for training with (a) and without SF (b). 

 
Figure 11: Example of a BPNN with multiple hidden layers (Neyamadpour, Taib et al. 2009). 

(a) 

(b) 
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Figure 12: Logistic squashing function. 

 
Figure 13: Iterative RMSE calculation for BPNN output. 
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Figure 14: Avoiding local error minima in BPNN training via momentum. 

 
Figure 15: Biased BPNN. 
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Figure 16: 3 node BPNN model tested for optimization. 
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Figure 17: 4 node BPNN model tested for optimization. 
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Figure 18: 5 node BPNN model tested for optimization. 
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Figure 19: 6 node BPNN model tested for optimization. 

Optimal 
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Figure 20: 7 node BPNN model tested for optimization. 
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Figure 21: 13 node BPNN model tested for optimization. 
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Figure 22: Equations for prediction of ør’ subdivided by CF (Stark and Hussain 2013). 
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Figure 23: Scatter plots showing correlations between all available of soil parameters; correlations are provided in the upper 

right corner of each plot. 
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Figure 24: Summary of least-squares regression for soil datasets with SF ((a) n=195) and without SF ((b) n=388). 

Connor, Dewoolkar, Tiwari 2003, Commercial 
Least Squares Multivariate Linear Regression Model 

LL, PL, CF, SF, σ’ LL, PL, CF, σ’ (no SF) 

  
Number of data points 195 Number of data points 388 
RSquare 0.440805 RSquare 0.419844 
RSquare Adj 0.426011 RSquare Adj 0.413785 
P value (prob>F) <0.0001 P value (prob>F) <0.0001 

 

(b) (a) 



 

17 
 

 
Figure 25: Relationship of friction angle with LL across a large dataset (Stark and Hussain 2013) with three CF regions 

identified corresponding to three BPNN developed in this thesis. 
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Figure 26 – Predicted ør’ values using a 4 node BPNN plotted against known values with the CF distribution shown. 
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Figure 27: Typical BPNN vs. low CF range BPNN for same dataset. 
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Figure 28: Typical BPNN vs. middle CF range BPNN for same dataset. 
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Figure 29: Typical BPNN vs. high CF range BPNN for same dataset. 
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Figure 30: Initial comparison of BPNN performance with and without SF. 
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Figure 31: Training only comparison of BPNN performance with and without SF for H & S datasets. 
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Figure 32: Training only comparison of BPNN performance with and without SF for H, S, & T03 datasets. 
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Figure 33: Comparison of BPNN to REG model for input parameters: CF, SF, LL, PL, & σ’. 
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Figure 34: Comparison of BPNN to REG model for input parameters: CF, LL, PL, & σ’ (no SF). 
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Figure 35: ør’ predictions for all data using equations from Stark & Hussain 2013. 
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Figure 36: ør’ predictions from Stark & Hussain (2013) correlations shown on a ør’ vs. LL plot. 
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Figure 37: Comparison between ør’ predictions using a BPNN and Stark and Hussain equations for all data. 
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Figure 38: Comparison between ør’ predictions using a BPNN and Stark and Hussain equations for Stark & Eid 1994 data. 
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Figure 39: Comparison between ør’ predictions using a BPNN and Stark and Hussain equations for Commercial data. 
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Figure 40: Comparison between ør’ predictions using a BPNN and Stark and Hussain equations for Dewoolkar data.
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Tables 
Table 1: Comparison of BPNN and regression model prediction accuracies. 

Model R2 - BPNN R2 – REG 

Unconfined Compressive Strength of Carbonate Rocks 
(Ceryan, Okkan et al. 2013) 

0.81 0.74 

Shearing Resistance Angle (ø) for Uniform Sands 

(Sezer 2013) 
0.98 0.77 

Tunnel Boring Machine Performance 
(Torabi, Shirazi et al. 2013) 

0.99 0.79 

 
Table 2: List of parameters associated with ør’. 

Symbol Parameter Units Description 

LL Liquid Limit % Minimum water content at which a cohesive soil continues to exhibit 
plastic properties. 

PL Plastic Limit % Maximum water content at which a cohesive soil continues to exhibit 
plastic soil properties 

CF Clay Fraction % Mass fraction of clay  (soil solids smaller than 0.002 mm) 

SF Sand 
Fraction 

% Mass fraction of sand (soil solids between 2-0.075 mm in diameter) 

σ’ Normal 
Stress 

kPa Normal stress loading applied to a soil sample during shear strength 
test 

 

Table 3: 6 soil datasets used in this study. 

Dataset 
Name 

Abbreviation n - Sample 
Size 

Internally 
Consistent 

SF Source 

Dewoolkar D 43 X Yes Dewoolkar & Huzjak 2005 

Hayden H 25 Yes Yes UVM - Connor Hayden - Honors 
Thesis Manuscript 

Tiwari 2003 TM03 33 Yes Yes Tiwari & Mauri 2003 

Tiwari 2005 TM05 82 Yes X Tiwari & Mauri 2005 

Stark & Eid SE 96 Yes X Stark & Eid 1994 

Commercial S 97 X Yes Commercial Dataset 
 

Table 4: BPNN performance for varied structures. 

 



 

34 
 

 
Table 5: CF ranges as considered by Stark & Hussain 2013 and this study. 

 Low CF Range Middle CF Range High CF Range 

Stark & Hussain 2013 CF     25   CF     CF     

This Study CF     23   CF     CF     
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APPENDIX A – BPNN Code 

Functions: 

normalize() 
function [normIn,minIn,maxIn,normOut,minOut,maxOut]=normalize(in,out) 

% Luke Detwiler - Aug 2013 

  

% Normalizes input and output data vectors for BPNN training. Provided 

% input and output data matrices, normalize() determines linearly  

% normalized values (0 to 1) based on minimum and maximum values. This 

% process is applied on a column, by column basis, as data is parametrized 

% by column. Minimum and maximum data values associated with each of these 

% data ranges are provided for post-training data un-normalization using 

% the function unNormalize(). 

  

% in - input data matrix (data point x parameter) 

% out - output data matrix (data point x parameter) 

  

% normIn - normalized input data matrix (data point x parameter) 

% minIn - minimum input data value vector (1 x parameter) 

% maxIn - maximum input data value vector (1 x parameter) 

% normOut - normalized output data matrix (data point x parameter) 

% minOut - minimum output data value vector (1 x parameter) 

% maxOut - maximum output data value vector (1 x parameter) 

  

%% Normalize Input values 

% Preallocate 

normIn=zeros(size(in)); 

minIn=zeros(1,size(in,2)); 

maxIn=zeros(1,size(in,2)); 

% Repeat for each data parameter (iterate by column) 

for col=1:size(in,2) 

%     Store minimum and maximums 

    minIn(1,col)=min(in(:,col)); 

    maxIn(1,col)=max(in(:,col)); 

%     Calculate normalized data values 

    normIn(:,col)=(in(:,col)-minIn(1,col))./(maxIn(1,col)-minIn(1,col)); 

    if isnan(normIn(:,col)) 

        normIn(:,col)=1; 

    end 

end 

  

%% Normalize Output Values (same as above) 

normOut=zeros(size(out)); 

minOut=zeros(1,size(out,2)); 

maxOut=zeros(1,size(out,2)); 

for col=1:size(out,2) 

    minOut(1,col)=min(out(:,col)); 

    maxOut(1,col)=max(out(:,col)); 

    normOut(:,col)=(out(:,col)-minOut(1,col))./(maxOut(1,col)-minOut(1,col)); 

    if isnan(normOut(:,col)) 

        normOut(:,col)=1; 

    end 

end 

 

backprop() 
function Network=backprop(in,out,eta,alph,maxit,tol,hid,r) 

% Luke Detwiler - 1/18/2014 

  

% This function trains a one hidden layer BPNN (sized by hid) to the the  

% dataset (in,out), given training parameters eta, alph, maxit, tol, & r. 

  

% in - input dataset (# data subsets,# input parameters) 
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% out - output dataset (# data subsets, # output parameters) 

% eta - learning coefficient - defines rate at which weights change 

% alph - momentum coefficient - defines rate at which momentum updates 

% maxit - maximum number of training iterations 

% tol - RMSE error tolerance threshold 

% hid - vector of number of nodes in hidden layer(s) - length(hid) 

%       determines how many 

% r - random number seed (for testing network) - IF r=-1: NO SEEDING 

  

% Network - MATLAB structure holding relevant data for a trained BPNN. 

%           Includes network weights (W & V) and training & testing RMS 

%           (RMS & validRMS). 

  

%% PARAMETERIZATION (Allow network to run for various input parameterizations) 

switch nargin 

%     Run for general case using 3 in and out data values. Used to prove 

%     network is working. 

    case 0 

in=[-.2 .1 .3 -.4;.6 -.1 .7 -.5;.8 .1 -.6  0];  % training input data 

out=[.4 .6 .5 .7;.1 .3 .2 .9;.7 .1 .2 .1];      % training output data 

  

eta=.5;     % learning coef 

alph=.9;    % momentum coef 

maxit=1000; % maximum # iterations 

tol=.01;    % RMSE tolerance (breaks iterative updating once reached) 

hid=3;      % # hidden nodes 

r=3;        % rng seed 

%     Run for general case where no training parameters are provided 

    case 2 

eta=.5;     % learning coef 

alph=.9;    % momentum coef 

maxit=1000; % maximum # iterations 

tol=.01;    % RMSE tolerance (breaks iterative updating once reached) 

hid=3;      % # hidden nodes  

r=3;        % rng seed 

%     Run for case when no random number is specified. 

    case 7 

r=3;        % rng seed 

%     Run when all parameters are specified. (This is how it should run normally) 

    case 8 

            % do nothing 

    otherwise 

        errordlg({'runloopBPNNvalidate() requires:';'     -0';'     -2 (in,out)';'     -7 

(in,out,eta,alph,maxit,tol,hid)';'parameters to run correctly'}) 

end 

  

bestW=0; 

%% NODE SIZING 

% input node size 

i=size(in,2); 

% hidden node size 

j=hid; 

% output node size 

k=size(out,2); 

  

%% Randomly select training and validation sets from data 

  

% NOTE: Random seed is used to ensure that training is done correctly, to 

% identify a best set of weights, vary the random generator. 

if r~=-1 

rng(r)                                          % Ensures same random idx 

end 

%   Creates a randomized list of index values corresponding to the # of 

%   data points within a dataset. This is divided up into a training and 

%   validation section in order to train and validate on randomized 

%   samples. 

randIdx=randperm(size(out,1));                  % Creates random idx 

  

trainIdx=randIdx(1:floor(length(out).*2./3));   % Uses first 2/3 for train 

validIdx=randIdx(length(trainIdx)+1:end);       % Uses last 1/3 for validation 
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% Stores traning input and output sets 

trainIn=in(trainIdx,:); 

trainOut=out(trainIdx,:); 

  

% Stores validationg input and output sets 

validIn=in(validIdx,:); 

validOut=out(validIdx,:); 

  

%% GENERATE RANDOM WEIGHTS 

% % rng(r) seeds random number generator to generate the same numbers 

if r~=-1 

rng(r) 

end 

W=2*(rand(i,j)-.5); 

  

if r~=-1 

rng(r) 

end 

V=2*(rand(j,k)-.5); 

%% PREALLOCATION 

  

% RMS vector updating BPNN until RMS reaches a specified RMS threshold 

RMS=ones(1,maxit); 

        e=1./(1+exp(-trainIn*W)); 

        % hidden to output layer using squashing function: 

        f=1./(1+exp(-e*V)); 

        % a=s*V; 

        res=f; 

RMS(1)=sqrt(sum(sum((trainOut-res).^2))./(size(res,1).*size(res,2))); 

  

% RMS vector for cross checking for generalization instead of memorization 

validRMS=size(RMS); 

        c=1./(1+exp(-validIn*W)); 

        % hidden to output layer using squashing function: 

        d=1./(1+exp(-c*V)); 

        % a=s*V; 

        calcValOut=d; 

validRMS(1)=sqrt(sum(sum((validOut-calcValOut).^2))./(size(calcValOut,1).*size(calcValOut,2))); 

  

% count used in updating RMS size before breaking from training loop 

count=0; 

  

% instantiates deltaWeight vectors (1 space bigger than the number of 

% iterations it can run in order to count the first space as a 0 for 1st 

% iteration) 

vjk=zeros(size(V,1),size(V,2),maxit+1); 

wij=zeros(size(W,1),size(W,2),maxit+1); 

  

% holds weight updates from previous iteration for each input set (row of  

% in vector). Used in 'momentum' influenced weight updating: 

%   W=W+wij+alph*wold 

wold=zeros(size(W,1),size(W,2)); 

vold=zeros(size(V,1),size(V,2)); 

%% Start BPNN Training (runs for maxIt iterations or until validRMS=tol) 

for x=1:length(RMS) 

    count=count+1; 

    for y=1:size(trainIn,1) 

%% FORWARD PROPOGATION 

        % input to hidden layer using squashing function: 

        s=1./(1+exp(-trainIn(y,:)*W)); 

        % hidden to output layer using squashing function: 

        a=1./(1+exp(-s*V)); 

        % a=s*V; 

%% BACK ERROR 

        % Error between calculated and real output: 

        %   Difference of (actual-calculated)*(derivative squashing function) 

        dk=(out(y,:)-a).*a.*(1-a); 

         

        % Weight updates (w calculated as an avg of error between all training 

        % sets with momentum) 

        %   Momentum: The current change in weight is given 'momentum' to 
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        %   remove error by adding some fraction of the previous iteration's 

        %   change in weight: 

        %       (momentum weight change)=(current wt chg)+(#<1)*(prev wt chg) 

        %   for hidden to output layer: 

        vjk=eta.*s'*dk+alph.*vold; 

         

        % Apply weight change to weight matrices 

        V=V+vjk; 

         

        % store weight changes for momentum update at next iteration for 

        % current input dataset defined by y 

        vold=vjk; 

%% Repeat for input to hidden layer matrix 

        dj=(dk*V').*s.*(1-s); 

        wij=eta.*in(y,:)'*dj+alph.*wold; 

        W=W+wij; 

        wold=wij;        

         

    end 

%% RMS ERROR 

        % calculate current network output: 

        g=1./(1+exp(-trainIn*W)); 

        % hidden to output layer using squashing function: 

        h=1./(1+exp(-g*V)); 

        % a=s*V; 

        res=h; 

         

        % calculate validation RMS: 

        c=1./(1+exp(-validIn*W)); 

        % hidden to output layer using squashing function: 

        d=1./(1+exp(-c*V)); 

        % a=s*V; 

        calcValOut=d; 

  

    % Root Mean Square Error: 

    RMS(x+1)=sqrt(sum(sum((trainOut-res).^2))./(size(res,1).*size(res,2))); 

    validRMS(x+1)=sqrt(sum(sum((validOut-

calcValOut).^2))./(size(calcValOut,1).*size(calcValOut,2))); 

     

    % if validRMS is at its lowest, weights are stored 

    if validRMS(x+1)==min(validRMS) 

        bestW=W; 

        bestV=V; 

        bestIt=x+1; 

    end 

     

    % if error is within predefined RMS tolerance, tol, break loop & store 

    % RMS values only for effective part of preallocated RMS vector 

    if validRMS(x+1)<=tol 

        RMS=RMS(1:count+1); 

        validRMS=validRMS(1:count+1); 

        break 

    end 

     

end 

%% Relevant data storage 

  

% Store best weights as end weights if last iteration holds best training 

% weights (Most cases this is true) 

if bestW==0 

    bestW=W; 

    bestV=V; 

    bestIt=length(RMS); 

end 

% Store relevant BPNN data in Network 

Network.W=W; 

Network.V=V; 

Network.bestW=bestW; 

Network.bestV=bestV; 

Network.bestIt=bestIt; 

Network.RMS=RMS; 
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Network.validRMS=validRMS; 

Network.trainIdx=trainIdx; 

Network.validIdx=validIdx; 

unNormalize() 
function [in,out,netOut]=unNormalize(normIn,minIn,maxIn,normOut,normNetOut,minOut,maxOut) 

% Luke Detwiler - Aug 2013 

  

% Un-normalizes data matrices normIn, normOut, and normNetOut using 

% corresponding minimum and maximum data values stored from data 

% normalization using the normalize() function. The primary focus of this 

% function is to normalize the predictions from BPNN training, though the 

% original input and output data vectors are also re-normalized. 

  

% normIn - normalized input data matrix (data point x parameter) 

% minIn - minimum input data value vector (1 x parameter) 

% maxIn - maximum input data value vector (1 x parameter) 

% normOut - normalized output data matrix (data point x parameter) 

% normNetOut - normalized BPNN predicted out values (size(out)) 

% minOut - minimum output data value vector (1 x parameter) 

% maxOut - maximum output data value vector (1 x parameter) 

  

% in - un-normalized input data matrix (data point x parameter) 

% out - un-normalized output data matrix (data point x parameter) 

% netOut - un-normalized BPNN predicted out values (size(out)) 

  

%% Un-normalize input data  

for a=1:size(normIn,2) 

%     Use input minimum and maximums to perform linear un-normalization 

    normIn(:,a)=normIn(:,a)*(maxIn(1,a)-minIn(1,a))+minIn(1,a); 

end 

  

%% Un-normalize output & predicted data (same as above) 

for b=1:size(normOut,2) 

    normOut(:,b)=normOut(:,b)*(maxOut(1,b)-minOut(1,b))+minOut(1,b); 

    normNetOut(:,b)=normNetOut(:,b)*(maxOut(1,b)-minOut(1,b))+minOut(1,b); 

end 

Driver: 

Directory1to1withErrorLines.m 
% Directory1to1withErrorLines.m - 1/24/2014 

  

% Runs BPNN training for all datasets in a given directory. Each dataset is 

% trained for the hidden layer sizings specified by the n vector. For each  

% network training, this script creates 1 to 1 plots of data with 10/20/30%  

% error lines and RMS training plots, and stores all necessary data 

clear all, close all, clc 

  

%% Prepare for Training 

% Define hidden node sizings to train for  

n=3:20;     % train each BPNN at 3 and 20 nodes 

  

% Ask user for necessary directory information 

Dir=uigetdir([],'Where is your code located?'); 

Dir2=uigetdir([],'Where are your soil datasets?'); 

cd(Dir2) 

datasets=dir; 

plotsave=uigetdir([],'Where is the master folder where you would like images & data stored?'); 

  

  

%% Begin Training 

% Iterate through each dataset in the Dir2 directory. 

for dataset=3:length(datasets) 

    %% Normalize data 

     

    % normalize data between 0 and 1, storing mins and maxs for future 

    % 'unnormalization' 
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    %% Train BPNN w/ Validation 

    % trains a version of the BPNN whose error convergence is entirely based on 

    % the convergence of a validation error set. runloopBPNNvalidate stores 

    % weight matrices W,V the index of the best validation error, RMS values 

    % for both training and validation RMS, and the indices of the sub-datasets 

    % (training and validation) for the location of these values within the 

    % total data vector (in). 

    for node=n 

        %% 

        cd(Dir2) 

        load(datasets(dataset).name) 

        cd(Dir) 

%           normalize data: 

        [TrainingPatterns,minIn,maxIn,Targets,minOut,maxOut]=normalize(in,out); 

%           train BPNN:          

        Network = backprop(TrainingPatterns,Targets,.5,.9,10000,.01,node,1); 

%           un-normalize data: 

        

[TrainingPatterns,Targets,Predictions]=unNormalize(TrainingPatterns,minIn,maxIn,Targets,Network.p

redictions,minOut,maxOut); 

         

        %% Compare Predicted Outputs to Known Outputs on 1 to 1 plot 

        figure(1) 

%         plot 1 to 1 comparisons 

        plot(Targets(Network.validIdx),Predictions(Network.validIdx),'ro') 

        hold on 

%         plot training data 

        plot(Targets(Network.trainIdx),Predictions(Network.trainIdx),'b^') 

%         specify square axes, apply error lines, & add labels and titles: 

        ax=[5 35]; 

        set(gca,'Xlim',ax,'Ylim',ax) 

        plot(get(gca,'Xlim'),get(gca,'Ylim'),'k--') 

         

 

plot(1.1*get(gca,'Xlim'),get(gca,'Ylim'),'g:',1.2*get(gca,'Xlim'),get(gca,'Ylim'),'c:',1.3*get(gc

a,'Xlim'),get(gca,'Ylim'),'m:',get(gca,'Xlim'),1.1*get(gca,'Ylim'),'g:',get(gca,'Xlim'),1.2*get(g

ca,'Ylim'),'c:',get(gca,'Xlim'),1.3*get(gca,'Ylim'),'m:') 

        axis square 

        xlabel('Known \phi_r'' (deg)') 

        ylabel('BPNN approximated \phi_r'' (deg)') 

         

        ttlStr2=sprintf('%d node BPNN - RMSE: %.3',node,Network.validRMS(end)); 

        title({strcat(datasets(dataset).name(1:end-4),' dataset 

n=',num2str(length(Targets))),ttlStr2,'1 to 1 plot for validation values of \phi_r'}) 

        valid=strcat('Validation data - n=',num2str(length(Network.validIdx))); 

        train=strcat('Training data - n=',num2str(length(Network.trainIdx))); 

        legend(valid,train,'1 to 1 line','10% error line','20% error line','30% error 

line','Location','SouthEast') 

        %% Plot training and testing RMS 

        figure(2) 

        p=plot(Network.RMS,'b'); 

        set(p,'LineWidth',2) 

        hold on 

        q=plot(Network.validRMS,'r--'); 

        set(q,'LineWidth',2) 

        legend('RMS of training data','RMS of validation data') 

        xlabel('# of iterations') 

        ylabel('Root Mean Square Error') 

        title({strcat(datasets(dataset).name(1:end-4),' dataset 

n=',num2str(length(Network.validIdx))),strcat(num2str(node),' node BPNN'),'Prediction Error 

plot'}) 

         

        %% Plot Results by CF type 

  

%         repeat 1 to 1 plot for specified CF ranges 

        CF=TrainingPatterns(:,4); 

        CFlow=find(CF<=23); 

        CFhig=find(CF>48); 

        a=zeros(size(CF)); 

        a(CFlow)=1; 
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        a(CFhig)=1; 

        CFmid=find(a==0); 

         

        figure(3) 

        plot(Targets(CFlow),Predictions(CFlow),'ro') 

        hold on 

        plot(Targets(CFmid),Predictions(CFmid),'b^') 

        plot(Targets(CFhig),Predictions(CFhig),'ks') 

        ax=[5 35]; 

        set(gca,'Xlim',ax,'Ylim',ax) 

        plot(get(gca,'Xlim'),get(gca,'Ylim'),'k--') 

        

plot(1.1*get(gca,'Xlim'),get(gca,'Ylim'),'g:',1.2*get(gca,'Xlim'),get(gca,'Ylim'),'c:',1.3*get(gc

a,'Xlim'),get(gca,'Ylim'),'m:',get(gca,'Xlim'),1.1*get(gca,'Ylim'),'g:',get(gca,'Xlim'),1.2*get(g

ca,'Ylim'),'c:',get(gca,'Xlim'),1.3*get(gca,'Ylim'),'m:') 

        axis square 

        xlabel('Known \phi_r'' (deg)') 

        ylabel('BPNN approximated \phi_r'' (deg)') 

         

        ttlStr2=sprintf('%d node BPNN - RMSE: %.3f',node,Network.validRMS(end)); 

        title({strcat(datasets(dataset).name(1:end-4),' dataset 

n=',num2str(length(Targets))),ttlStr2,'1 to 1 plot for validation values of \phi_r'}) 

        CFlowStr=strcat('CF<=23 - n=',num2str(length(Network.validIdx))); 

        CFmidStr=strcat('23<CF<=48 - n=',num2str(length(Network.trainIdx))); 

        CFhigStr=strcat('CF>48 - n=',num2str(length(Network.trainIdx))); 

        legend(CFlowStr,CFmidStr,CFhigStr,'1 to 1 line','10% error line','20% error line','30% 

error line','Location','SouthEast') 

%% Save data and figures 

%       Save plots         

        plotfile1to1=strcat(plotsave,'\',datasets(dataset).name(1:end-

4),'\',datasets(dataset).name(1:end-4),num2str(node),'node1to1'); 

        plotfileRMS=strcat(plotsave,'\',datasets(dataset).name(1:end-

4),'\',datasets(dataset).name(1:end-4),num2str(node),'nodeRMS'); 

        plotfileCF=strcat(plotsave,'\',datasets(dataset).name(1:end-

4),'\',datasets(dataset).name(1:end-4),num2str(node),'CFcomparisons'); 

        saveas(figure(1),plotfile1to1,'fig') 

        saveas(figure(2),plotfileRMS,'fig') 

        saveas(figure(3),plotfileCF,'fig') 

%       Save data 

        savefile=strcat(plotsave,'\',datasets(dataset).name(1:end-

4),'\',datasets(dataset).name(1:end-4),num2str(node),'data'); 

        save(savefile,'TrainingPatterns','Targets','Predictions','Network') 

%       Clear workspace for next BPNN training 

        close all 

        clearvars -except Dir Dir2 dataset datasets plotsave 

    end 

     

end 
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APPENDIX B – Stark & Hussain 2013 Interpolation Code  

Function: 
function data=StarkEidPredictions(data) 

% function data=StarkEidPredictions(data) 1/30/2014 - Luke Detwiler 

%   This function predicts secant residual friction angles for a soil  

%   dataset that contains data in the form of a structure (data) that  

%   includes correlation values: 1-3 (CorrVal) that correspond to CF ranges 

%   specified in Stark and Eid's relations for the data provided (2013).  

%   For each CF range, 4 empirical correlations related to the Norm  

%   loadings applied in a ring shear test are given for a soil's secant  

%   residual friction angle as a function of the soil's LL value. For Norm  

%   loadings determined to be betweeen ranges, predicted values are  

%   linearly interpolated between the two nearest equations.  

  

%   IT SHOULD BE NOTED that these range specifications have been modified  

%   from their original ranges (CF<=20,25<=CF<=45,CF>=50) to fit a 

%   continuous range (CF<=23,23<CF<=48,CF>48). 

  

% Loop through length of data structure (number of datasets). 

for i=1:length(data) 

    % Loop through number of subsets making up each dataset. 

    for j=1:size(data(i).set,1) 

        % Extract and store necessary soil characteristics for calculation. 

        CFtype=data(i).CorrVal(j); 

        LL=data(i).set(j,2); 

        Norm=data(i).set(j,1); 

        % Calculate secant residual friction angle considering the CF type, 

        % Norm value, and LL value (in that order).         

        switch CFtype 

            case 1 

                % Ensure that soil data is within the LL range specified by 

                % Stark & Eid.                 

                if LL>=30&&LL<80 

                    % If Norm lower than lowest specified loading, use that 

                    % correlation.                     

                    if Norm<=50 

                        data(i).pred(j)=39.71-0.29*LL+.000663*LL^2; 

                    % If between ranges, interpolate.                         

                    elseif Norm>50&&Norm<=100 

                        Low=39.71-0.29*LL+.000663*LL^2; 

                        High=39.41-0.298*LL+.000681*LL^2; 

                        data(i).pred(j)=Low+(Norm-50)/(100-50)*(High-Low); 

                    elseif Norm>100&&Norm<=400 

                        Low=39.41-0.298*LL+.000681*LL^2; 

                        High=40.24-0.375*LL+.00136*LL^2; 

                        data(i).pred(j)=Low+(Norm-100)/(400-100)*(High-Low); 

                    elseif Norm>400&&Norm<=700 

                        Low=40.24-0.375*LL+.00136*LL^2; 

                        High=40.34-0.412*LL+.001683*LL^2; 

                        data(i).pred(j)=Low+(Norm-400)/(700-400)*(High-Low); 

                    % If Norm higher than highest specified loading, use  

                    % that correlation. 

                    else 

                        data(i).pred(j)=40.34-0.412*LL+.001683*LL^2; 

                    end 

                % If not within the LL range specified for a given CF 

                % range, store prediction as a nan to suppress output. 

                else 

                    data(i).pred(j)=nan; 

                end 

            case 2 

                % See case 1 (lines 28-58) for comments                 

                if LL>=30&&LL<130 

                    if Norm<=50 

                        data(i).pred(j)=31.4-.00679*LL-.003616*LL^2+.00001864*LL^3; 

                    elseif Norm>50&&Norm<=100 

                        Low=31.4-.00679*LL-.003616*LL^2-.00001864*LL^3; 

                        High=29.8-.0003627*LL-.003584*LL^2+.00001854*LL^3; 
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                        data(i).pred(j)=Low+(Norm-50)/(100-50)*(High-Low); 

                    elseif Norm>100&&Norm<=400 

                        Low=29.8-.0003627*LL-.003584*LL^2+.00001854*LL^3; 

                        High=28.4-.05622*LL-.002952*LL^2+.00001721*LL^3; 

                        data(i).pred(j)=Low+(Norm-100)/(400-100)*(High-Low); 

                    elseif Norm>400&&Norm<=700 

                        Low=28.4-.05622*LL-.002952*LL^2+.00001721*LL^3; 

                        High=28.05-.2083*LL-.0008183*LL^2+.000009372*LL^3; 

                        data(i).pred(j)=Low+(Norm-400)/(700-400)*(High-Low); 

                    else 

                        data(i).pred(j)=28.05-.2083*LL-.0008183*LL^2+.000009372*LL^3; 

                    end 

                else 

                    data(i).pred(j)=nan; 

                end 

            case 3 

                if LL>=30&&LL<120 

                    if Norm<=50 

                        data(i).pred(j)=33.5-.31*LL+.00039*LL^2+.0000044*LL^3; 

                    elseif Norm>50&&Norm<=100 

                        Low=33.5-.31*LL+.00039*LL^2+.0000044*LL^3; 

                        High=30.7-.2504*LL-.00042053*LL^2+.0000080479*LL^3; 

                        data(i).pred(j)=Low+(Norm-50)/(100-50)*(High-Low); 

                    elseif Norm>100&&Norm<=400 

                        Low=30.7-.2504*LL-.00042053*LL^2+.0000080479*LL^3; 

                        High=29.42-.2621*LL-.0004011*LL^2+.000008718*LL^3; 

                        data(i).pred(j)=Low+(Norm-100)/(400-100)*(High-Low); 

                    elseif Norm>400&&Norm<=700 

                        Low=29.42-.2621*LL-.0004011*LL^2+.000008718*LL^3; 

                        High=27.7-.3233*LL+.0002896*LL^2+.0000071131*LL^3; 

                        data(i).pred(j)=Low+(Norm-400)/(700-400)*(High-Low); 

                    else 

                        data(i).pred(j)=27.7-.3233*LL+.0002896*LL^2+.0000071131*LL^3; 

                    end 

                elseif LL<=120&&LL<=300 

                    if Norm<=50 

                        data(i).pred(j)=12.03-.0215*LL; 

                    elseif Norm>50&&Norm<=100 

                        Low=12.03-.0215*LL; 

                        High=10.64-.0183*LL; 

                        data(i).pred(j)=Low+(Norm-50)/(100-50)*(High-Low); 

                    elseif Norm>100&&Norm<=400 

                        Low=10.64-.0183*LL; 

                        High=8.32-.0114*LL; 

                        data(i).pred(j)=Low+(Norm-100)/(400-100)*(High-Low); 

                    elseif Norm>400&&Norm<=700 

                        Low=8.32-.0114*LL; 

                        High=5.84-.0048*LL; 

                        data(i).pred(j)=Low+(Norm-400)/(700-400)*(High-Low); 

                    else 

                        data(i).pred(j)=5.84-.0048*LL; 

                    end 

                else 

                    data(i).pred(j)=nan; 

                end 

        end 

    end 

end 
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Driver: 

starkHussainAnalysis1to1Plots.m 
% starkHussainAnalysis1to1Plots.m  - 1/26/2014 - Luke Detwiler 

% 

% This code manipulates soil data for the prediction of secant residual  

% friction angle using equations provided in Stark and Hussain 2013. 

% Instead of being plotted with phi on the y axis and LL on the x axis,  

% the data is plotted to show the predicted values of phi vs the known  

% values of phi in a 1 to 1 plot. This will allow for the easy comparison  

% of this prediction method's performance to that of the BPNN's. 

  

clear all 

close all 

load ALLDATAStarkHussainCorrelation.mat 

  

% Create CF data indices for future predcition of friction angle.  

% CorrVal=1: low CF range 

% CorrVal=2: middle CF range 

% CorrVal=3: high CF range 

names=who(); 

data=struct; 

for i=1:length(names) 

    data(i).name=names(i); 

    data(i).set=eval(names{i}); 

    for j=1:size(data(i).set,1) 

        if round(data(i).set(j,4))<=23 

            data(i).CorrVal(j)=1; 

        elseif round(data(i).set(j,4))>48 

            data(i).CorrVal(j)=3; 

        else 

            data(i).CorrVal(j)=2; 

        end 

    end 

end 

  

% Use StarkHussainPredictions to calculate interpolated Phi_r from LL polynomial 

% equations from (Stark and Hussain, 2013): 

data=starkHussainPredictions(data); 

  

%% Plot prediction results for each dataset: 

cmap=colormap(lines); 

for i=1:length(data) 

    corrInd1=find(data(i).CorrVal==1); 

    corrInd2=find(data(i).CorrVal==2); 

    corrInd3=find(data(i).CorrVal==3); 

    known=eval(data(i).name{1}); 

    known=known(:,6); 

    figure(i) 

    plot(known(corrInd1),data(i).pred(corrInd1),'o','MarkerEdgeColor',cmap(i,:)) 

    hold on 

    plot(known(corrInd2),data(i).pred(corrInd2),'^','MarkerEdgeColor',cmap(i,:)) 

    plot(known(corrInd3),data(i).pred(corrInd3),'s','MarkerEdgeColor',cmap(i,:)) 

    ax=[5 35]; 

    set(gca,'Xlim',ax,'Ylim',ax) 

    plot(get(gca,'Xlim'),get(gca,'Ylim'),'k--') 

    

plot(1.1*get(gca,'Xlim'),get(gca,'Ylim'),'g:',1.2*get(gca,'Xlim'),get(gca,'Ylim'),'c:',1.3*get(gc

a,'Xlim'),get(gca,'Ylim'),'m:',get(gca,'Xlim'),1.1*get(gca,'Ylim'),'g:',get(gca,'Xlim'),1.2*get(g

ca,'Ylim'),'c:',get(gca,'Xlim'),1.3*get(gca,'Ylim'),'m:') 

    axis square 

    xlabel('Known \phi_r (deg)') 

    ylabel('Stark & Hussain predicted \phi_r (deg)') 

    ntot=size(data(i).pred,2)-sum(isnan(data(i).pred)); 

    nall=size(data(i).pred,2); 

    nlow=size(data(i).pred(corrInd1),2)-sum(isnan(data(i).pred(corrInd1))); 

    nlowall=size(data(i).pred(corrInd1),2); 

    nmid=size(data(i).pred(corrInd2),2)-sum(isnan(data(i).pred(corrInd2))); 

    nmidall=size(data(i).pred(corrInd2),2); 
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    nhig=size(data(i).pred(corrInd3),2)-sum(isnan(data(i).pred(corrInd3))); 

    nhigall=size(data(i).pred(corrInd3),2); 

    legLow=strcat('CF<=23 - n=',num2str(nlow),'/',num2str(nlowall)); 

    legMid=strcat('23<CF<=48 - n=',num2str(nmid),'/',num2str(nmidall)); 

    legHig=strcat('CF>48 - n=',num2str(nhig),'/',num2str(nhigall)); 

    totaln=strcat('n=',num2str(ntot),'/',num2str(nall)); 

%   RMSE calculation: 

    a=~isnan(data(i).pred); 

    [normOut,normPred,minOut,maxOut]=normalizeStarkEid(data(i).set(a,end),data(i).pred(a)'); 

        sqDif=(normOut-normPred).^2; 

    RMSE=sqrt(sum(sum(sqDif))/sum(a)); 

    RMSEstring=sprintf('RMSE: %.4f',RMSE); 

     

    legend(legLow,legMid,legHig,'1 to 1 line','10% error line', '20% Error Line','30% Error 

Line','Location','EastOutside') 

    title({data(i).name{1};totaln;RMSEstring}) 

    data(i).CFlow=corrInd1; 

    data(i).CFmid=corrInd2; 

    data(i).CFhig=corrInd3; 

    data(i).RMSE=RMSE; 

end 

% Establish maximum length for legend cell array (each smaller string needs 

% to be padded to the same size by sprintf): 

maxlength=60; 

spacing=['%-',num2str(maxlength),'s']; 

legStrs=sprintf(spacing,[]); 

allOuts=[]; 

allPred=[]; 

% Plot each dataset on the same figure 

for i=1:length(data) 

    % Establish indices for each CF data subset 

    corrInd1=find(data(i).CorrVal==1); 

    corrInd2=find(data(i).CorrVal==2); 

    corrInd3=find(data(i).CorrVal==3); 

    known=eval(data(i).name{1}); 

    known=known(:,6); 

    % Plot on new figure 

    figure(length(data)+1) 

    % Plot each data subset following the same colormap 

    plot(known(corrInd1),data(i).pred(corrInd1),'o','MarkerEdgeColor',cmap(i,:)) 

    hold on 

    plot(known(corrInd2),data(i).pred(corrInd2),'^','MarkerEdgeColor',cmap(i,:)) 

    plot(known(corrInd3),data(i).pred(corrInd3),'s','MarkerEdgeColor',cmap(i,:)) 

    % Count # of data points being used in each CF group: 

    ntot(i)=size(data(i).pred,2)-sum(isnan(data(i).pred)); 

    nall(i)=size(data(i).pred,2); 

        nlow=size(data(i).pred(corrInd1),2)-sum(isnan(data(i).pred(corrInd1))); 

    nlowall=size(data(i).pred(corrInd1),2); 

    nmid=size(data(i).pred(corrInd2),2)-sum(isnan(data(i).pred(corrInd2))); 

    nmidall=size(data(i).pred(corrInd2),2); 

    nhig=size(data(i).pred(corrInd3),2)-sum(isnan(data(i).pred(corrInd3))); 

    nhigall=size(data(i).pred(corrInd3),2); 

    % Store legend strings for each data subset (had a lot of trouble with  

    % cell arrays of strings being interpreted by the legend() function) 

    legCell=strcat(data(i).name,' - CF<=23 - n=',num2str(nlow),'/',num2str(nlowall)); 

    legStr=legCell{1}; 

    legStr=sprintf(spacing,legStr); 

    if i==1 

        legStrs=legStr; 

    else 

        legStrs=[legStrs;legStr]; 

    end 

    legCell=strcat(data(i).name,' - 23<CF<=48 - n=',num2str(nmid),'/',num2str(nmidall)); 

    legStr=legCell{1}; 

    legStr=sprintf(spacing,legStr); 

    legStrs=[legStrs;legStr]; 

    legCell=strcat(data(i).name,' - CF>48 - n=',num2str(nhig),'/',num2str(nhigall)); 

    legStr=legCell{1}; 

    legStr=sprintf(spacing,legStr); 

    legStrs=[legStrs;legStr]; 
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%   Combine all useful data for SSE calculation preparation: 

    a=~isnan(data(i).pred); 

        allOuts=[allOuts; data(i).set(a,end)]; 

        allPred=[allPred; data(i).pred(a)']; 

end 

  

%% Finish All Data Plot 

ax=[5 35]; 

set(gca,'Xlim',ax,'Ylim',ax) 

plot(get(gca,'Xlim'),get(gca,'Ylim'),'k--') 

plot(1.1*get(gca,'Xlim'),get(gca,'Ylim'),'g:',1.2*get(gca,'Xlim'),get(gca,'Ylim'),'c:',1.3*get(gc

a,'Xlim'),get(gca,'Ylim'),'m:',get(gca,'Xlim'),1.1*get(gca,'Ylim'),'g:',get(gca,'Xlim'),1.2*get(g

ca,'Ylim'),'c:',get(gca,'Xlim'),1.3*get(gca,'Ylim'),'m:') 

axis square 

xlabel('Known \phi_r'' (deg)') 

ylabel('Stark & Hussain predicted \phi_r'' (deg)') 

totaln=strcat('n=',num2str(sum(ntot)),'/',num2str(sum(nall))); 

legStr=sprintf(spacing,'1 to 1 line'); 

legStrs=[legStrs;legStr]; 

legStr=sprintf(spacing,'10% error line'); 

legStrs=[legStrs;legStr]; 

legStr=sprintf(spacing,'20% Error Line'); 

legStrs=[legStrs;legStr]; 

legStr=sprintf(spacing,'30% Error Line'); 

legStrs=[legStrs;legStr]; 

legend(legStrs,'Location','EastOutside') 

  

%% RMSE calculations: 

SSE=0; 

n=0; 

[normOut,normPred,minOut,maxOut]=normalizeStarkEid(allOuts,allPred); 

RMSE=sqrt(sum((normOut-normPred).^2)/numel(allPred)); 

RMSEstring=sprintf('RMSE: %.4f',RMSE); 

title({'All Datasets';totaln;RMSEstring}) 

  

%% Save figures and data for future use: 

figHandles=findobj('Type','figure'); 

for x=1:length(figHandles) 

    filename=get(get(get(figure(figHandles(x)),'CurrentAxes'),'Title'),'String'); 

    saveas(figHandles(x),filename{1},'fig') 

end 

  

save('ConnorData_2_1_14','data') 
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APPENDIX C – BPNN Optimization 
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APPENDIX D – BPNN vs. Stark & Hussain (2013) Equations 

 



 

 26 
 

 



 

 27 
 

 



 

 28 
 

 



 

 29 
 

 



 

 30 
 

 



 

 31 
 

 

  



 

 32 
 

APPENDIX E – Datasets 

Dewoolkar 

Sample 
ID # Soil ID # 

Effective Normal Stress  
(kPa) PI (%) LL (%) PL (%) CF (%) SF (%) 

Secant Residual Friction Angle 
(deg) 

1 B-109, S-3 (2m) 27.8 40 64 24 0 4 13.2 

2 B-109, S-3 (2m) 109.6 40 64 24 0 4 17 

3 B-109, S-3 (2m) 275.8 40 64 24 0 4 14.1 

4 96-B102 (7m) 67 33 54 21 0 12 14.4 

5 96-B102 (7m) 139.3 33 54 21 0 12 12.8 

6 96-B102 (7m) 281.5 33 54 21 0 12 10.9 

7 TP-410 (3m) 79 28 49 21 0 14 25.3 

8 TP-410 (3m) 154.2 28 49 21 0 14 24.7 

9 TP-410 (3m) 379.2 28 49 21 0 14 24.2 

10 B-303 (16m) 70.4 41 65 24 36 6 17.7 

11 B-303 (16m) 286.3 41 65 24 36 6 11.8 

12 B-303 (16m) 557.3 41 65 24 36 6 10.7 

13 B-203 (40m) 69 50 72 22 36 22 21.9 

14 B-203 (40m) 281.5 50 72 22 36 22 13.2 

15 B-203 (40m) 547.3 50 72 22 36 22 10.9 

16 B-201 (34m) 70.4 56 81 25 41 3 18.8 

17 B-201 (34m) 287.7 56 81 25 41 3 11.1 

18 B-201 (34m) 559.3 56 81 25 41 3 9.8 

19 Sample-5 16.8 17 45 28 42 5 21.8 

20 Sample-5 80.9 17 45 28 42 5 10.4 

21 Sample-5 369.2 17 45 28 42 5 8.2 

22 B-302 (14m) 69.9 40 66 26 43 4 17.5 
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Sample 
ID # Soil ID # 

Effective Normal Stress  
(kPa) PI (%) LL (%) PL (%) CF (%) SF (%) 

Secant Residual Friction Angle 
(deg) 

23 B-302 (14m) 283.9 40 66 26 43 4 12.5 

24 B-302 (14m) 552.1 40 66 26 43 4 10.5 

25 B-301 (10m) 70.4 55 82 27 43 18 20.2 

26 B-301 (10m) 286.3 55 82 27 43 18 11.5 

27 B-301 (10m) 556.4 55 82 27 43 18 10 

28 Sample-2 17.7 21 51 30 45 3 22.1 

29 Sample-4 35 22 49 27 45 3 16.8 

30 Sample-2 82.4 21 51 30 45 3 13.1 

31 Sample-4 102.5 22 49 27 45 3 14.7 

32 Sample-4 379.2 22 49 27 45 3 12.3 

33 Sample-2 381.1 21 51 30 45 3 9.1 

34 Sample-6 35 32 50 18 47 2 16.8 

35 Sample-6 104.4 32 50 18 47 2 11.5 

36 Sample-6 380.7 32 50 18 47 2 8.9 

37 Sample-3 35 38 62 24 49 1 16.1 

38 Sample-3 104.9 38 62 24 49 1 11.9 

39 Sample-3 382.6 38 62 24 49 1 8.9 

40 Sample-1 35 22 53 31 53 1 11.6 

41 Sample-1 104.4 22 53 31 53 1 10.7 

42 Sample-1 380.2 22 53 31 53 1 8.9 
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Hayden 

Sample ID # Soil ID # Effective Normal Stress  (kPa) PI (%) LL (%) PL (%) CF (%) SF (%) Secant Residual Friction Angle (deg) 

1 1 400 17.5 44 26.5 12.5 65 23.5 

2 2 400 6.1 36.3 30.2 14.1 45.9 21.9 

3 3 400 16.9 38.2 21.3 16.6 59.6 26 

4 4 400 18 50.5 32.5 18.5 14.2 12.3 

5 5 400 12 38 26 18.5 47.3 22.6 

6 6 400 8.3 41.2 32.9 19.1 43.8 18.3 

7 7 400 7.8 41.3 33.5 22.5 36.9 20.9 

8 8 400 24.6 58.8 34.2 22.8 52.6 14.4 

9 9 400 19.9 48.9 29 24.1 32.8 10.1 

10 10 400 7.8 40.9 33.1 24.3 43 14.7 

11 11 400 21.8 49.7 27.9 26.8 9.1 14 

12 12 400 27 60 33 27.8 3.1 10.3 

13 13 400 9.3 35.5 26.2 28.9 58 15.4 

14 14 400 24.2 64.7 40.5 31.4 14 7.5 

15 15 400 25.9 52 26.1 32.2 0 9 

16 16 400 26.8 55.3 28.5 32.9 4.1 9.3 

17 17 400 23.9 49.9 26 34.7 23.9 18 

18 18 400 30 63.1 33.1 34.8 2 7.6 

19 19 400 27 53.2 26.2 36.1 0 10.1 

20 20 400 32.8 58.5 25.7 37.3 17.9 17 

21 21 400 18.5 49.8 31.3 38.3 5.1 8.5 

22 22 400 32.2 61.2 29 45.9 1.5 8.5 

23 23 400 46.3 79.8 33.5 48.8 1.9 6.7 

24 24 400 39 67 28 56.5 3.1 10.8 

25 25 400 49.5 81.3 31.8 61.4 24.7 7.4 
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Commercal 

Sample ID # Soil ID # 
Effective Normal 
Stress  (kPa) PI (%) LL (%) PL (%) CF (%) SF (%) 

Secant 
Residual 
Friction Angle 
(deg) 

1 1 12.3 8.0 37.0 29.0 5.6 2.5 17.1 

2 1 49.0 8.0 37.0 29.0 5.6 2.5 17.5 

3 1 195.9 8.0 37.0 29.0 5.6 2.5 23.8 

4 2 12.3 8.0 37.0 29.0 5.6 3.3 19.8 

5 2 49.0 8.0 37.0 29.0 5.6 3.3 19.4 

6 2 195.9 8.0 37.0 29.0 5.6 3.3 22.0 

7 3 24.5 25.0 49.0 24.0 7.5 1.6 23.4 

8 3 49.0 25.0 49.0 24.0 7.5 1.6 20.8 

9 3 97.9 25.0 49.0 24.0 7.5 1.6 17.5 

10 4 146.9 9.0 38.0 29.0 8.9 0.2 29.3 

11 4 293.8 9.0 38.0 29.0 8.9 0.2 29.9 

12 4 1150.7 9.0 38.0 29.0 8.9 0.2 31.2 

13 5 146.9 9.0 38.0 29.0 8.9 0.9 29.8 

14 5 293.8 9.0 38.0 29.0 8.9 0.9 29.0 

15 5 1150.7 9.0 38.0 29.0 8.9 0.9 31.4 

16 6 97.9 17.0 35.0 18.0 9.2 65.5 28.2 

17 7 97.9 28.0 59.0 31.0 10.2 26.6 14.9 

18 7 416.2 28.0 59.0 31.0 10.2 26.6 14.0 

19 7 710.0 28.0 59.0 31.0 10.2 26.6 15.0 

20 8 97.9 27.0 57.0 30.0 13.0 38.0 28.3 

21 8 416.2 27.0 57.0 30.0 13.0 38.0 25.9 

22 8 734.5 27.0 57.0 30.0 13.0 38.0 19.5 

23 9 97.9 55.0 77.0 22.0 13.0   27.4 

24 9 416.2 55.0 77.0 22.0 13.0   25.7 

25 9 710.0 55.0 77.0 22.0 13.0   22.1 
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Sample ID # Soil ID # 
Effective Normal 
Stress  (kPa) PI (%) LL (%) PL (%) CF (%) SF (%) 

Secant 
Residual 
Friction Angle 
(deg) 

26 10 97.9 20.0 49.0 29.0 15.0   27.3 

27 10 416.2 20.0 49.0 29.0 15.0   28.5 

28 10 734.5 20.0 49.0 29.0 15.0   24.7 

29 11 24.5 22.0 57.0 35.0 15.5 6.4 23.4 

30 11 49.0 22.0 57.0 35.0 15.5 6.4 16.6 

31 11 97.9 22.0 57.0 35.0 15.5 6.4 10.7 

32 12 244.8 16.0 33.0 17.0 16.4 29.2 28.4 

33 12 465.2 16.0 33.0 17.0 16.4 29.2 29.2 

34 12 1199.6 16.0 33.0 17.0 16.4 29.2 28.8 

35 13 244.8 16.0 33.0 17.0 16.4 44.8 28.6 

36 13 465.2 16.0 33.0 17.0 16.4 44.8 29.2 

37 13 1199.6 16.0 33.0 17.0 16.4 44.8 29.4 

38 14 97.9 15.0 44.0 29.0 16.8 31.9 22.8 

39 14 416.2 15.0 44.0 29.0 16.8 31.9 27.8 

40 14 710.0 15.0 44.0 29.0 16.8 31.9 24.4 

41 15 24.5 14.0 30.0 16.0 18.0 23.2 29.2 

42 15 49.0 14.0 30.0 16.0 18.0 23.2 30.0 

43 15 97.9 14.0 30.0 16.0 18.0 23.2 29.0 

44 16 97.9 18.0 35.0 17.0 18.0 39.0 28.9 

45 16 416.2 18.0 35.0 17.0 18.0 39.0 30.2 

46 17 97.9 18.0 35.0 17.0 18.5   25.5 

47 17 416.2 18.0 35.0 17.0 18.5   29.5 

48 17 710.0 18.0 35.0 17.0 18.5   29.9 

49 18 73.4 16.0 33.0 17.0 18.8 16.2 26.5 

50 18 195.9 16.0 33.0 17.0 18.8 16.2 25.6 

51 18 734.5 16.0 33.0 17.0 18.8 16.2 28.5 
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Sample ID # Soil ID # 
Effective Normal 
Stress  (kPa) PI (%) LL (%) PL (%) CF (%) SF (%) 

Secant 
Residual 
Friction Angle 
(deg) 

52 19 73.4 16.0 33.0 17.0 18.8 25.0 25.4 

53 19 195.9 16.0 33.0 17.0 18.8 25.0 26.8 

54 19 734.5 16.0 33.0 17.0 18.8 25.0 28.5 

55 20 97.9 11.0 28.0 17.0 19.0   28.8 

56 20 416.2 11.0 28.0 17.0 19.0   32.4 

57 20 979.3 11.0 28.0 17.0 19.0   28.3 

58 21 97.9 30.0 50.0 20.0 19.3 21.8 23.2 

59 21 416.2 30.0 50.0 20.0 19.3 21.8 23.9 

60 21 710.0 30.0 50.0 20.0 19.3 21.8 20.8 

61 22 73.7 21.0 42.0 21.0 23.7 18.6 21.7 

62 22 97.9 21.0 42.0 21.0 23.7 18.6 28.2 

63 22 391.7 21.0 42.0 21.0 23.7 18.6 22.8 

64 23 49.0 21.0 42.0 21.0 23.7 18.9 18.0 

65 23 195.9 21.0 42.0 21.0 23.7 18.9 22.2 

66 24 144.0 15.0 33.0 18.0 24.0 14.6 30.5 

67 24 265.5 15.0 33.0 18.0 24.0 14.6 29.7 

68 24 704.7 15.0 33.0 18.0 24.0 14.6 30.4 

69 25 244.8 15.0 33.0 18.0 24.0 21.5 29.0 

70 25 465.2 15.0 33.0 18.0 24.0 21.5 28.2 

71 25 1199.6 15.0 33.0 18.0 24.0 21.5 29.9 

72 26 24.5 11.0 32.0 21.0 27.8 11.9 25.1 

73 26 146.9 11.0 32.0 21.0 27.8 11.9 22.0 

74 26 440.7 11.0 32.0 21.0 27.8 11.9 25.6 

75 27 49.0 18.0 37.0 19.0 29.8 3.0 14.2 

76 27 97.9 18.0 37.0 19.0 29.8 3.0 17.5 

77 27 391.7 18.0 37.0 19.0 29.8 3.0 23.4 
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Sample ID # Soil ID # 
Effective Normal 
Stress  (kPa) PI (%) LL (%) PL (%) CF (%) SF (%) 

Secant 
Residual 
Friction Angle 
(deg) 

78 28 97.9 27.0 46.0 19.0 42.0 3.0 18.4 

79 28 416.2 27.0 46.0 19.0 42.0 3.0 16.1 

80 28 710.0 27.0 46.0 19.0 42.0 3.0 13.4 

81 29 24.5 35.0 57.0 22.0 42.6 1.0 20.3 

82 29 73.4 35.0 57.0 22.0 42.6 1.0 15.5 

83 29 293.8 35.0 57.0 22.0 42.6 1.0 19.5 

84 30 5.1 35.0 57.0 22.0 42.6 3.4 11.7 

85 30 13.6 35.0 57.0 22.0 42.6 3.4 10.5 

86 30 51.2 35.0 57.0 22.0 42.6 3.4 9.9 

87 31 49.8 21.0 42.0 21.0 43.1 3.5 26.9 

88 31 143.6 21.0 42.0 21.0 43.1 3.5 19.0 

89 31 248.1 21.0 42.0 21.0 43.1 3.5 19.3 

90 32 97.9 30.0 49.0 19.0 43.3 46.6 19.2 

91 32 416.2 30.0 49.0 19.0 43.3 46.6 15.6 

92 32 710.0 30.0 49.0 19.0 43.3 46.6 17.2 

93 33 220.3 32.0 54.0 22.0 44.1 4.3 19.5 

94 33 440.7 32.0 54.0 22.0 44.1 4.3 20.9 

95 33 483.0 32.0 54.0 22.0 44.1 4.3 21.9 

96 34 220.3 32.0 54.0 22.0 44.1 6.2 18.6 

97 34 440.7 32.0 54.0 22.0 44.1 6.2 20.1 

98 34 1199.6 32.0 54.0 22.0 44.1 6.2 23.3 

99 35 49.0 46.0 68.0 22.0 46.2   7.2 

100 35 97.9 46.0 68.0 22.0 46.2   7.2 

101 35 195.9 46.0 68.0 22.0 46.2   7.1 

102 36 97.9 36.0 54.0 18.0 48.7 30.2 12.5 

103 36 416.2 36.0 54.0 18.0 48.7 30.2 11.7 
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Sample ID # Soil ID # 
Effective Normal 
Stress  (kPa) PI (%) LL (%) PL (%) CF (%) SF (%) 

Secant 
Residual 
Friction Angle 
(deg) 

104 36 710.0 36.0 54.0 18.0 48.7 30.2 14.5 

105 37 88.9 43.0 67.0 24.0 57.1 4.7 12.0 

106 37 195.9 43.0 67.0 24.0 57.1 4.7 14.1 

107 37 308.4 43.0 67.0 24.0 57.1 4.7 14.4 

108 38 195.9 43.0 67.0 24.0 57.1 7.0 10.5 

109 38 416.2 43.0 67.0 24.0 57.1 7.0 10.2 

110 38 1199.6 43.0 67.0 24.0 57.1 7.0 15.1 

111 39 97.9 0.0       2.8 18.9 

112 39 416.2 0.0       2.8 20.4 

113 39 710.0 0.0       2.8 20.1 

114 40 49.0 23.5 31.0 7.5   5.7 19.8 

115 41 195.9 23.5 31.0 7.5   5.7 22.2 

116 41 440.7 23.5 31.0 7.5   5.7 23.4 

117 42 97.9 23.0 41.0 18.0   5.9 13.4 

118 43 24.5 0.0       6.8 12.7 

119 43 97.9 0.0       6.8 12.7 

120 43 195.9 0.0       6.8 10.5 

121 44 49.0 0.0       11.3 30.4 

122 44 195.9 0.0       11.3 30.4 

123 44 440.7 0.0       11.3 30.2 

124 45 171.4 42.0 62.0 20.0   11.4 10.1 

125 45 342.8 42.0 62.0 20.0   11.4 10.0 

126 47 49.0 0.0       14.7 24.7 

127 47 195.9 0.0       14.7 22.7 

128 47 440.7 0.0       14.7 24.1 

129 48 49.0 0.0       21.1 26.0 
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Sample ID # Soil ID # 
Effective Normal 
Stress  (kPa) PI (%) LL (%) PL (%) CF (%) SF (%) 

Secant 
Residual 
Friction Angle 
(deg) 

130 48 195.9 0.0       21.1 28.1 

131 48 440.7 0.0       21.1 29.3 

132 49 171.4 27.0 52.0 25.0   24.1 13.8 

133 49 342.8 27.0 52.0 25.0   24.1 10.7 

134 50 24.5 0.0       32.5 33.7 

135 50 97.9 0.0       32.5 28.7 

136 50 195.9 0.0       32.5 29.2 

137 51 24.5 0.0         13.2 

138 51 49.0 0.0         13.7 

139 51 97.9 0.0         16.3 
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Stark & Eid 

Sample ID # Soil ID # 

Effective 
Normal 
Stress  (kPa) PI (%) LL (%) PL (%) CF (%) SF (%) 

Secant 
Residual 
Friction 
Angle (deg) 

1 2 100 10 28 18 10   30.84 

2 2 400 10 28 18 10   30.57 

3 2 700 10 28 18 10   30.4 

4 14 100 35 76 41 16   20.14 

5 14 400 35 76 41 16   19.21 

6 14 700 35 76 41 16   18.71 

7 1 100 8 24 16 18   31.34 

8 1 400 8 24 16 18   31.32 

9 1 700 8 24 16 18   31.22 

10 4 100 12 37 25 19   28.15 

11 4 400 12 37 25 19   27.37 

12 4 700 12 37 25 19   27 

13 8 100 26 50 24 33   19.85 

14 8 400 26 50 24 33   19.24 

15 8 700 26 50 24 33   18.85 

16 7 100 20 47 27 41   22.4 

17 7 400 20 47 27 41   21.67 

18 7 700 20 47 27 41   21.3 

19 16 100 52 82 30 42   15.27 

20 16 400 52 82 30 42   14.09 

21 16 700 52 82 30 42   13.65 

22 5 100 19 39 20 43   24 

23 24 100 101 128 27 43   9.86 

24 5 400 19 39 20 43   23.28 

25 24 400 101 128 27 43   9.21 
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Sample ID # Soil ID # 

Effective 
Normal 
Stress  (kPa) PI (%) LL (%) PL (%) CF (%) SF (%) 

Secant 
Residual 
Friction 
Angle (deg) 

26 5 700 19 39 20 43   23 

27 24 700 101 128 27 43   8.9 

28 3 100 17 35 18 44   26.74 

29 3 400 17 35 18 44   25.97 

30 3 700 17 35 18 44   25.71 

31 10 100 24 53 29 50   17.11 

32 10 400 24 53 29 50   15.56 

33 10 700 24 53 29 50   14.52 

34 12 100 44 68 24 51   11.88 

35 12 400 44 68 24 51   9.92 

36 12 700 44 68 24 51   9.36 

37 13 100 47 69 22 56   13.32 

38 13 400 47 69 22 56   11.54 

39 13 700 47 69 22 56   10.32 

40 17 100 45 89 44 57   9.65 

41 17 400 45 89 44 57   7.62 

42 17 700 45 89 44 57   5.72 

43 15 100 52 77 25 59   13.23 

44 15 400 52 77 25 59   10.58 

45 15 700 52 77 25 59   9.28 

46 9 100 32 52 20 63   19.5 

47 21 100 69 111 42 63   8.59 

48 9 400 32 52 20 63   18.53 

49 21 400 69 111 42 63   7.39 

50 9 700 32 52 20 63   18.07 

51 21 700 69 111 42 63   6.01 
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Sample ID # Soil ID # 

Effective 
Normal 
Stress  (kPa) PI (%) LL (%) PL (%) CF (%) SF (%) 

Secant 
Residual 
Friction 
Angle (deg) 

52 29 100 145 192 47 65   7.1 

53 31 100 205 253 48 65   5.98 

54 29 400 145 192 47 65   5.67 

55 31 400 205 253 48 65   5.57 

56 29 700 145 192 47 65   5.57 

57 31 700 205 253 48 65   5.04 

58 20 100 66 101 35 66   9.05 

59 20 400 66 101 35 66   7.93 

60 20 700 66 101 35 66   6.14 

61 23 100 84 121 37 67   7.94 

62 23 400 84 121 37 67   7.02 

63 23 700 84 121 37 67   5.62 

64 11 100 30 62 32 68   15.52 

65 19 100 61 98 37 68   10.57 

66 11 400 30 62 32 68   12.91 

67 19 400 61 98 37 68   8.19 

68 11 700 30 62 32 68   12.64 

69 19 700 61 98 37 68   6.45 

70 26 100 126 157 31 71   7.51 

71 26 400 126 157 31 71   6.15 

72 26 700 126 157 31 71   5.51 

73 27 100 131 170 39 72   7.71 

74 30 100 163 219 56 72   6.59 

75 27 400 131 170 39 72   7.03 

76 30 400 163 219 56 72   5.92 

77 27 700 131 170 39 72   6.13 
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Sample ID # Soil ID # 

Effective 
Normal 
Stress  (kPa) PI (%) LL (%) PL (%) CF (%) SF (%) 

Secant 
Residual 
Friction 
Angle (deg) 

78 30 700 163 219 56 72   5.01 

79 6 100 21 46 25 73   18.59 

80 22 100 59 112 53 73   8.62 

81 6 400 21 46 25 73   17.58 

82 22 400 59 112 53 73   7.22 

83 6 700 21 46 25 73   16.66 

84 22 700 59 112 53 73   5.91 

85 18 100 68 94 26 77   7.81 

86 18 400 68 94 26 77   6.87 

87 18 700 68 94 26 77   6.73 

88 25 100 97 138 41 78   8.26 

89 25 400 97 138 41 78   7.35 

90 25 700 97 138 41 78   5.92 

91 28 100 129 184 55 84   7.41 

92 28 400 129 184 55 84   6.6 

93 28 700 129 184 55 84   5.64 

94 32 100 244 288 44 88   5.33 

95 32 400 244 288 44 88   5.03 

96 32 700 244 288 44 88   4.56 
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Tiwari & Mauri 2003 

Sample ID # Soil ID # Effective Normal Stress  (kPa) PI (%) LL (%) PL (%) CF (%) SF (%) Secant Residual Friction Angle (deg) 

1 1 250 0 0 0 0 100 29.7 

2 2 250 4 7.5 3.5 10 90 29.8 

3 3 250 13.7 44.9 31.2 10 90 29.2 

4 4 250 6 18.7 12.7 20 80 29.7 

5 5 250 59.3 88 28.7 20 80 21.6 

6 6 250 40.7 62.6 21.9 25 75 16.3 

7 7 250 6.7 23.5 16.8 30 70 29.3 

8 8 250 98.9 134.4 35.5 30 70 10.0 

9 9 250 6.9 27.6 20.7 40 60 28.2 

10 10 250 58.6 84.1 25.5 40 60 9.5 

11 11 250 157.6 183.3 25.7 40 60 7.2 

12 12 250 8.9 34.2 25.3 50 50 27.9 

13 13 250 34.2 55.3 21.1 50 50 20.2 

14 14 250 33.7 57.2 23.5 50 50 17.6 

15 15 250 201.7 232.5 30.8 50 50 4.9 

16 16 250 13.2 40.5 27.3 60 40 25.9 

17 17 250 105.8 134.4 28.6 60 40 5.7 

18 18 250 18.1 49.7 31.6 70 30 24.3 

19 19 250 64.3 95.1 30.8 70 30 10.1 

20 20 250 165.9 199.7 33.8 70 30 6.4 

21 21 250 312.4 343.2 30.8 70 30 5.2 

22 22 250 19.5 54.8 35.3 80 20 24.0 

23 23 250 245.6 288 42.4 80 20 6.0 

24 24 250 21.5 61 39.5 90 10 23.8 

25 25 250 25 70 45 100 0 18.3 

26 26 250 35.7 74.2 38.5 100 0 13.3 

27 27 250 73.6 115.2 41.6 100 0 10.2 

28 28 250 105.1 150.1 45 100 0 6.3 
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Sample ID # Soil ID # Effective Normal Stress  (kPa) PI (%) LL (%) PL (%) CF (%) SF (%) Secant Residual Friction Angle (deg) 

29 29 250 119.3 167.9 48.6 100 0 6.5 

30 30 250 175.9 224.3 48.4 100 0 6.0 

31 31 250 193.7 241.8 48.1 100 0 5.3 

32 32 250 228.1 277.5 49.4 100 0 5.7 

33 33 250 451.5 485.7 34.2 100 0 4.4 
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Tuiwariu and Mauri 2005 

Sample ID # Soil ID # Effective Normal Stress  (kPa) PI (%) LL (%) PL (%) CF (%) SF (%) Secant Residual Friction Angle (deg) 

1 1 250 9.6 36.4 26.8 0.4   28.4 

2 2 250 11.1 31.1 20 1   24.9 

3 3 250 4.5 32 27.5 1.8   23.6 

4 4 250 6 35 29 2.3   21.1 

5 5 250 23.5 54 30.5 2.4   24.4 

6 6 250 23 57 34 2.8   10.4 

7 7 250 6 41 35 2.9   28.9 

8 8 250 5.5 36 30.5 3.9   21.4 

9 9 250 16.1 42.7 26.6 4.2   29 

10 10 250 16.6 48.6 32 4.3   30.1 

12 12 250 8 26 18 5   31 

11 11 250 9 49 40 5   26.7 

13 13 250 28 56 28 5.4   25.7 

14 14 250 8 35 27 6   29 

16 16 250 9 47 38 6.5   28 

15 15 250 27 65 38 6.5   17.6 

17 17 250 42.6 65.8 23.2 6.7   21.3 

18 18 250 15.4 37.9 22.5 7   23.7 

19 19 250 21.9 47.8 25.9 8.9   17.8 

20 20 250 5 36 31 9   23.3 

25 25 250 10 36 26 10   29 

23 23 250 29.9 41.2 11.3 10   28.7 

24 24 250 30.3 46.8 16.5 10   23.1 

22 22 250 19 54 35 10   12.9 

21 21 250 17 57 40 10   12.7 

26 26 250 20.7 44.6 23.9 10.9   23.2 

27 27 250 12.7 57.3 44.6 11.2   23.4 

28 28 250 38.6 55.6 17 12   8.3 
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Sample ID # Soil ID # Effective Normal Stress  (kPa) PI (%) LL (%) PL (%) CF (%) SF (%) Secant Residual Friction Angle (deg) 

29 29 250 19 45 26 13   25.5 

30 30 250 26 53 27 14   19.3 

31 31 250 17.3 57 39.7 15.2   25.8 

32 32 250 34.3 56.8 22.5 16   7.8 

33 33 250 20.7 77.2 56.5 16.2   25.6 

34 34 250 27.5 67.7 40.2 17   14.4 

35 35 250 29.9 72.3 42.4 17   17.2 

36 36 250 21.9 66.7 44.8 17.5   22 

37 37 250 24 61 37 18   18.1 

38 38 250 34.1 64 29.9 19.2   12.7 

39 39 250 18 55 37 19.5   18.8 

40 40 250 29 62 33 19.9   12.8 

42 42 250 19 59 40 20   17.6 

41 41 250 15 61 46 20   16.2 

44 44 250 32.6 55.8 23.2 20.5   18 

43 43 250 25.8 78.2 52.4 20.5   12 

45 45 250 36.4 71.5 35.1 21.2   19 

46 46 250 29.2 58 28.8 21.3   19.2 

47 47 250 25.6 75.5 49.9 21.5   12 

48 48 250 19 51 32 21.8   10.7 

49 49 250 34 65 31 22   10.7 

50 50 250 31 84 53 22   14 

51 51 250 35.3 73 37.7 22.1   10.1 

52 52 250 21 64 43 23   11.1 

53 53 250 38 70 32 24   8.9 

54 54 250 32 63 31 24.8   17.1 

55 55 250 38 71 33 26.2   11.2 

56 56 250 31 69.2 38.2 26.3   12 

57 57 250 40 69 29 27.2   9.8 
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Sample ID # Soil ID # Effective Normal Stress  (kPa) PI (%) LL (%) PL (%) CF (%) SF (%) Secant Residual Friction Angle (deg) 

58 58 250 38 69 31 27.5   9.8 

59 59 250 31 66 35 27.7   12.5 

61 61 250 38.2 68 29.8 28.2   9.8 

60 60 250 47.1 86.3 39.2 28.2   10 

62 62 250 34.6 68.1 33.5 28.8   12 

63 63 250 38 78 40 30.1   16 

65 65 250 35 71 36 30.2   14 

64 64 250 38 75 37 30.2   15 

66 66 250 36 76 40 30.8   16 

67 67 250 51 82 31 31   15.2 

68 68 250 37.1 72.3 35.2 31.1   14 

69 69 250 39.1 82 42.9 32.2   16 

70 70 250 48 96.2 48.2 32.2   12 

71 71 250 50.5 91.3 40.8 32.8   10 

72 72 250 62.4 94.6 32.2 33.2   10 

73 73 250 59.2 94.7 35.5 33.5   12 

74 74 250 43.9 81.4 37.5 37.5   11 

75 75 250 41.9 89 47.1 37.5   10 

76 76 250 49.5 77.2 27.7 38.2   10 

77 77 250 36.3 79.8 43.5 40.2   10 

78 78 250 66.2 108 41.8 41.2   14.7 

79 79 250 65.5 120 54.5 42   10.9 

80 80 250 68.3 100 31.7 42.8   10 

81 81 250 52.9 84 31.1 45.2   11 

82 82 250 54 83 29 51   11 
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