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1 Abstract

This thesis explores the use of functional data analytic methods to examine
climate change in a select group of 16 cities in the United States. The
purpose of the project was to explore methods of functional data analysis
in the context of climate change. Data used in this study was collected
from NOAA’s National Climatic Data Center. Major cities from around the
United States were selected provided they had 100 percent coverage for the
span of years of interest, 1950 through 2013. Sixteen cities were found to
have complete data for every day of the 64-year period. Spline functions
were fit to the temperature time series after removing seasonal variation.
Mean temperature curves and associated confidence limits were computed.
The results show a significant rise of temperature in U.S. cities within the
last few decades and that the rate of increase has consistently stayed above
zero since the 1970s.
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2 Introduction

The Intergovernmental Panel on Climate Change defines climate change as
”a change in the state of the climate that can be identified (e.g. using sta-
tistical tests) by changes in the mean and/or the variability of its properties,
and that persists for an extended period, typically decades or longer[8].”
Climate change is one of the most pressing concerns the world faces as a
global community. Numerous studies are published each year to describe the
state of the climate on global, national, and even local scales. According
to the United States Global Change Research Program, the United States
average temperature has risen more than two degrees Fahrenheit (approx-
imately one degree Celsius) in the last 50 years [4]. This is more varied
and extreme than overall global warming because oceans absorb more heat
than air, slowing down the increase of surface temperature throughout the
world[11]. Researchers find the shift of temperature detrimental to all areas
of concern in the world. There is significant extinction of species due to the
loss of habitat and resources from these new weather patterns and more are
sure to follow[10]. The increasing temperatures and shifting climate patterns
are a global crisis, which soon no one will be able to deny.

The overall aim of this study is to determine if changes in temperature
of United States cities in the last 60 years is detectable using methods of
functional data analysis (FDA). The methods of this paper transform dis-
crete data into functions. In particular, the study will examine temperature
trends over time after removing the effects of seasonal variation. It will com-
pare trends using both an analysis on the function itself and its derivative.
This will allow for a further interpretation of the speed and timing of tem-
perature changes. The statistical methodology of functional data analysis
is explained in the background section to provide the statistical model, as-
sumptions, and theory behind the methods used. The methodology describes
the transformation of the data into the functional form and the specific de-
cisions made based on the data. Finally, the results section includes the
statistical analysis and the functional plots of the data and concludes with
interpretation and a discussion about future implications.
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3 Background on FDA

In Functional data analysis (FDA) the data object to be analyzed is a func-
tion rather than a single data point. Using functions as data objects necessi-
tates entirely new methods of analysis. There are many potential applications
for FDA, including the analysis of longitudinal data. An advantage of FDA
is it requires fewer assumptions than other methods of analyzing data over
time. Many statistical methods for ”profile analysis” have been developed,
but these methods either require assumptions on the specific functional form
of the data over time, rely on repeatedly analyzing data at separate time
points or require data to be measured at the same time point for each unit
in the study. FDA also provides a richer set of analyses than just comparing
means. With functions, it is possible to see and estimate trends, rates of
change, and acceleration.

FDA starts with transforming data points to continuous functions, which
is typically accomplished using spline functions or Fourier series. These func-
tions are represented as

yij = xi(tij) + εij

where t is time (or another continuous variable), yij is the jth observation of
the ith sample function, and xi is a smooth function. This smooth function
is defined as

xi(tij) =
K∑
k=1

φk(tij)cik.

The φk(t) are basis functions, which are the building blocks for constructing
functions. The cik are the coefficients associated with these K basis functions
for the ith function and are estimated by the data.

Two types of basis functions are employed in this analysis, Fourier basis
functions and B-spline basis functions. Fourier basis functions are limited in
their usage since they only represent periodic data. Fourier basis functions
are useful for examining annual trends with seasonal variation. The set of
basis functions for Fourier series includes one constant function and then
pairs of sine and cosine functions to capture the variation in phase (this
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implies the number of bases must always be odd).

φ1(t) = 1

φ2(t) = sin(tω)

φ3(t) = cos(tω)

φk(t) = sin(
k

2
tω)

φk+1(t) = cos(
k

2
tω)

where φk is the kth basis function and ω = 2π/T where T is the period
of the function. When data points are equally spaced, the functions have
advantageous computational properties.

Splines, on the other hand, are piecewise polynomial functions defined
over intervals such that they are continuous at interval endpoints, referred
to as knots. For splines, the number of basis functions is

the number of knots + order of the spline.
This means that there will usually be many more basis functions to repre-

sent the data than there would be if just using Fourier series. Cubic splines,
which only involve basis functions of at most degree three, are common in
many analyses because they arise through constrained optimization prob-
lems, which provide theoretical justification for their use. Cubic splines are
continuous and differentiable. However, in order to estimate derivatives well,
the spline must have order four more than the derivative intended to be exam-
ined. This ensures derivatives are smooth. Using order six splines guarantees
that the first and the second derivatives can be estimated well [5].

Determining the number of basis functions is a delicate process. Several
factors must be considered and in the end the researcher may need to make
somewhat subjective decisions. One technique common to help determine
the number of basis functions is comparable to testing the variability of least
squares regression. This is done by minimizing the square of the residuals
of the predicted xi and the observed yij. The residuals should be penalized
by the number of basis functions (in the case of splines, the number of basis
functions is equal to the number of knots plus the order of the spline) so as
to give more information in terms of variability. The residual calculation is

s2i =
1

ni −K

ni∑
j

[yij(t) − x̂i(tij)]
2
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where ni is the number of observations for the ith curve and K is the number
of basis functions used in the analysis. Adding basis functions will decrease
the sum of squared error but at the expense of complicating the model. An
appropriate number of basis functions can be determined by plotting

∑
s2i

versus K and noting where the plot flattens, an indication that adding basis
functions beyond this point is not improving model fit.

Fitting data using either splines or Fourier series results in smoothing of
data. Great care must be taken not to over-smooth, thereby missing im-
portant features of the true underlying curve, nor to under-smooth, thereby
estimating noise(random error). More knots means less smoothing.

Another way to determine the amount of smoothing is to choose many
knots and add a roughness penalty λ to the integrated squared second deriva-
tive of the estimating function:

PenSSE =

ni∑
j=1

(yij − xi(tij))
2 + λ

∫
[D2x(t)]2 dt.

The first term is the sum of square error for residuals where yij is fit by the
curves of xi, which were defined before as basis functions with coefficients
specific to the data. Minimizing only the sum of squares is a least squares
problem and can result in oversmoothing if there are many knots. Therefore
a roughness penalty λ is added to the equation. The roughness of a function
is commonly measured by the total curvature of the function, given by the
integrated squared second derivative. If derivatives of x(t) are of interest,
increasing the degree of the derivative of the integrated penalty would ensure
the functional derivative was smooth. In many cases, the fourth derivative
is penalized to ensure acceleration of the function is smooth. For Fourier
series, testing the curvature does not necessarily fit the purpose so instead
the use of harmonic acceleration operator is suitable (although this paper
does not go in depth with this topic). Determining the roughness penalty is
not an exact science and should be evaluated in more than one way to make
sure results are consistent. Generalized cross-validation is typically used to
choose λ [5]. Define

GCV(λ) =

(
n

n− df(λ)

)(
SSE

n− df(λ)

)
,

where df(λ) measures the effectiev number of parameteres used to estimate
x(t). [6]. Typically, a range of values around the value of λ minimizing
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GCV(λ) give similar results and choosing an exact value adds some subjec-
tivity to the analysis.

The last main topic of transforming the data before analysis is aligning
the features of the curves, called registration. Data over time collected on
different units can exhibit differences of amplitude and phase. Averaging
over functions that are not aligned can dilute functional features. To align
functions, time warping is used to slow down and speed up the phase of the
curves. This can be done with landmark registration, which requires finding
a feature of interest to align curves. An example would be to find the second
derivative and then align every curve so they had zero acceleration at the
same time. This is not too demanding if the functions are short and they
are strictly increasing. But for larger data sets with periodic functions over
a long stretch of time, the effort can be much more difficult.

Processing the data is the central backbone of functional data analysis and
deserves a great deal of thought. When it comes time for analysis, the model
assumptions must be verified and the data needs to be processed in a way that
does not misrepresent the underlying true function. Descriptive statistics
such as mean, standard deviations, and even confidence intervals can be
analyzed once the data is properly fit. The mean and variance functions are:

x̄(t) =
1

N

N∑
i=1

xi(t)

s2(t) =
1

N − 1

N∑
i=1

[xi(t) − x̄(t)]2

where N is the number of sample functions.
The standard deviation formula is just extended from other common sta-

tistical analysis. In order to get confidence limits for the different functions
Σe, the covariance matrix of the residuals is estimated. Methods for estima-
tion of Σe are described in Ramsey and Silverman [6]. Means are calculated
from every sample function for every time step and then the coefficents of
the basis functions were used. This allowed for a more accurate estimation
of the standard error because instead of looking at discrete points it used the
calculated coefficients. This error matrix is assumed to be diagonal so only
the residuals across each curve for each observation need to be calculated.
This helps with the estimation of the standard error so that a confidence for
each curve, including the mean curve, can have a 95% point-wise confidence
limit.
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Derivatives can be important functional statistics as well since they mea-
sure rate of change. This is in fact one of the real benefits of using functional
data analysis[3]. With discrete data, the ability to look at changes over time
is very limited because analyses involve looking mostly at endpoints and de-
scribes little information inbetween unless strong assumptions on the para-
metric form of the model are made. In FDA, statistical software constructs
derivatives from the original spline fits (this is based on the assumption that
the smoothing parameter was chosen such that two more than the derivative
of interest was used as a penalty).

Two-sample t-tests can be extended to FDA and are commonly empliyed
as it is a common scenario to have data collected over time on individuals
or units in two groups, and to then ask whether functional forms for the
groups differ. Hall and Van Keilegom[2] go into great detail about the as-
sumptions and the type of data necessary to compare two groups. They
recommend equal smoothing parameters and subsamples of the groups at
the same equally spaced locations for each curve. The null hypothesis is that
the two samples come from identical populations. The fda package in R exe-
cutes a two-sample t-test that outputs point-wise t statistics which determine
where in the functions there exists a significant difference if any.

4 Methods

4.1 Collection

The data used in this study was collected from NOAA’s National Climatic
Data Center. Major cities from around the United States were selected pro-
vided they had 100 percent coverage for the span of years of interest, 1950
through 2013. The NOAA Data Center provided the minimum and maximum
temperatures of different weather stations. In the end, sixteen cities were
found to have complete data for every day of the 64-year period. (Burling-
ton, VT, Los Angeles, CA, Portland, OR, Miami, FL, Salt Lake City, UT,
Nashville, TN, New York City, NY, San Antonio, TX, Indianapolis, IN, Min-
neapolis, MN, Atlanta, GA, Green Bay, WI, Missoula, MT, Fairbanks, AK,
Boston, MA, San Francisco, CA). The average of the minimum and maxi-
mum temperatures were used for analyses and in total there were 23376 time
points (ni were all equal). Most of the procedures that follow are from the
package fda in R created by J. O. Ramsay et al [5].
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4.2 Transforming the Data into Functions

To properly examine changes in temperature across cities, seasonal and ran-
dom variation need to be removed. Seasonal variation can be removed by
subtracting off the average median temperature of the cities at given times
of the year (in this case everyday). There are many different ways to at-
tempt this, for example finding an annual average using the first five years
of data and subtracting that average from the full data set. Using functional
data techniques, fitting a Fourier series to the full data seemed appropriate
[7][6].The Fourier series used the entire data set to create a periodic function
that repeats the same function every year (a period of 365.25 days since there
are 16 leap years in the data) and used five basis functions. To determine
the appropriate number of basis functions, the residuals of the predicted and
the observed data points were minimized. Figure 1 plots the number of ba-
sis functions versus the residuals penalized by the number of basis functions
(since raw residuals would naturally decrease). The biggest decline occurs
when number of basis functions, k, is five and the sum of the residuals is 288.
Although the plot does not go out further, the Fourier series with 101 basis
functions has residuals that sum up to 283. This shows when adding more
basis functions the sum doesnt substantially decrease and it is not worth the
cost of complicating the model.
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Figure 1: Sum of the Squared Residuals from the original data and the data
predicted by a Fourier series. K is the number of basis functions required
(the number of sine and cosine functions used) and sumvector is the total of
the squared residuals added together.

Next, an order six spline was fit to the original data with 133 basis func-
tions so the curves of the cities were smoother than the raw data. Figure
2 shows the sum of the residuals versus the number of basis functions sim-
ilar to the calculation used for the Fourier series to determine the number
of basis functions. With 133 basis functions, the sum decreases significantly
and does not get back down to a sum of around 400 unless 20 more basis
functions are added. This is a strange drop in the data since usually the sum
should consistently decrease. One possible explanation for this drop at 133
basis functions is that 133 is twice the number of years plus the degree of the
spline. It would make sense to have two knots each year, one representing
the minimum value and the other the maximum value. So for future analysis
133 was chosen because it kept the model as simple as possible.
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Figure 2: Sum of the Squared Residuals from the original data and the data
predicted using an order 6 spline fitted to the data. K is the number of basis
functions required (the number of knots plus the order of the splines used)
and sumvector is the total of the squared residuals added together.

The seasonal fits (using Fourier basis) were subtracted off each time point
of the spline fits to the raw data. This was done by evaluating both the
Fourier series and spline functions at every time point over the 64 year period.
The residuals of these two functions are now the main concern of analysis.

The residuals from the Fourier series and spline of the original data went
through multiple subjective processes. This was taken into account when the
residual data needed to be smoothed again. An order six spline with only ten
basis functions was created using these residuals. It was important that the
splines be order six so that subsequent analyses would have a smooth second
derivative penalized against the fourth derivative. In this test, the number of
basis functions was not determined from the plot of

∑
s2i vs k as described

above. Instead, a minimal number of basis functions was used in order to
”de-noise” the data before penalization to further smooth the data. Ten was
chosen as the number of basis functions in order to retain the shape of the
curve, yet ensure the function did not exhibit excessive variation. In addition
to using a small number of basis functions, another smoothing technique was
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applied. The fourth derivative of the spline was penalized using a roughness
penalty λ. Using generalized cross validation criteria, λ was chosen so that
the residuals from the curves without seasonal variation was minimized as
much as possible but still allowed for a smooth curve. Figure 3 shows the
plot of the the log10GCV versus the log10 λ since the only interest is the scale
of the number of digits. It is seen that increasing λ to even 1014 is not all
that different from when λ is 10−2. In order to follow through with GCV
criteria, when λ = 1010 the GCV value is minimized. This was the smoothing
parameter used through the rest of the analysis[5].

Figure 3: The sum of GCV over all cities versus the smoothing parameter λ
penalized against the fourth derivative.

Before statistical analysis were performed, registration of the curves was
considered. Registration is used to align the curves in phase and amplitude.
This allows more information to be retained when calculating the mean of
the curves because the functions match up more. This was found to be a
challenging undertaking on this data set because there were no clear align-
ing characteristics of the curves. Therefore, the analysis was done without
registering so the effects and timing of the curves may have been slightly
muted.
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4.3 Statistical Analysis

The functional mean and standard deviation of the 16 cities were computed
and graphed. The mean and standard deviation were found using functions
in the fda package in R built specifically for analyzing multiple functional
curves. The standard deviation was calculated by summing the squared
differences of the mean function and each individual curve. The standard
error was calculated by estimating the covariance matrix of the error. This
was estimated by smoothing mean square residuals of every station at every
time point (every day) and then using the coefficients and the functions of
the basis functions to determine the covariance matrix for the curve values,
not just each data point. This standard error was then doubled and added
to each curve so that each city at had a 95% confidence limit.

The next task was to examine the derivatives calculated using the function
deriv.fd, which is also part of the fda package. The mean of the derivative
functions were plotted. Using the standard deviation, based on the sum
of the squared differences of the mean and actual derivatives, two standard
deviations bounds were placed around the mean of the derivative.

Lastly, a two-sample t-test was utilized to evaluate the differences in the
residuals between groups of cities defined by different geographic locations.
The hypothesis tested was that there was no difference in temperature trends
between the West Coast and East Coast of the United States. For the evalua-
tion of differences between the coasts, only cities relatively close to the oceans
were examined. East Coast cities were Burlington VT, Miami FL, New York
City NY, and Boston MA while West Coast cities were Los Angeles CA,
Portland OR, Fairbanks AK, and San Francisco CA. A t permutation test
was calculated based on an R function in the fda package. This test looks
compares the tests using both overall and pointwise

5 Results

As described above, seasonal variation was modeled using a Fourier series
comprised of five basis functions. To provide adequate resolution, Figure 4
(a) shows the Fourier fits for all cities only for the first decade. Figure 4 (b)
shows the Fourier series for only the city of Burlington VT.
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Figure 4

(a) Fourier series of the original data using 5 basis func-
tions. Each color represents one of the 16 cities. Only the
first decade of the data is represented.

(b) Fourier Series of Burlington VTusing 5 basis functions.
Only the first decade of the data is represented.

From the graph of only Burlington VT, it is easily observed that the
function is purely periodic. It does not vary from year to year in its period,
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maximum value, minimum value, or even its phase. In essence this represents
the average trend of temperature over the 64 years of interest in Burlington.

Deseaonalized data was obtained by subtracting the Fourier fits from a
smooth of the original data. In order to remove additional noise, the spline
was first fit to the original data and the season component (Fourier series)
was subtracted off from this spline. Based on previous criteria, 133 basis
functions were used with order 6 splines on the original data. The graph
of the first decade of these splines are in Figure 5. The curves retain the
seasonality but unlike the Fourier series the seasonality varies from year to
year, reflecting changes in the timing of the onset of seasons and their severity.
Instead of representing an average, the splines represent the actual trend of
that specific year for each city. Figure 5 (b) of Burlington VT shows the
minimum and maximum values of the function change based on each year of
data. The period of some of the functions are shifted very slightly, though
not apparent to the naked eye, which captures the difference in timing of the
change of seasons from one year to the next.
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Figure 5

(a) Order 6 splines of the original data using 133 basis
functions. Each color represents one of the 16 cities. Only
the first decade of the data is represented.

(b) Order 6 splines of the Burlington VT using 133 basis
functions. Only the first decade of the data is represented.
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Using these two functional data objects, it was appropriate to find a new
object based on their differences. For each city, a spline was fit to the dif-
ferences of the Fourier series and the spline fit to the original data. However
only 10 total basis functions were used in order to avoid having excess noise
obscure the underlying trend in the temperature time series. Figure 6 (a)
shows the splines of all the cities with the seasonal variation removed and
(b) shows just the city of Burlington, VT. Figure 7 represents very similar
functions except these were penalized using λ=1010 as the smoothing param-
eter. Figure 6 and Figure 7 are almost identical to the naked eye. This was
expected because the main smoothing occured by decreasing the number of
knots used. In comparing derivatives the differences in the fits become more
obvious, but for the purpose of seeing a trend through time they are almost
equal. It is clear from these graphs temperature is increasing over time.
Some warmer weather occurs in the early 1950s, affecting the functions dra-
matically. Many climate sources explain the high temperatures of the 1950’s
as just variation of each year with no particular reason as to the specific
cause[1]. Other scientists are more skeptical and say this could just be due
to measurement error since recording temperatures was not regulated until
later [4]. From other graphical representations, which implement different
methods to visualize temperatures of the US throughout the 20th century,
this peak is minor. The effect is amplified with functional analysis because
spline functions are less accurate around the endpoints. The functions detect
these higher values and don’t ignore them as outliers. Though, even with
this overall warmer temperature trend in the beginning of the data set, it
is still discernable that the temperatures in the 2010s are higher than all
other times in this data. The IPCC has reliable information on temperature
dating back as far as the 19th century and no temperatures during any year
compare with the high temperatures of the 2010s[8]. This affirms the belief
that temperatures have been consistently becoming warmer and there is no
indication this course will change.
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(a) Order 6 splines of the data of
all cities with seasonal variation re-
moved.

(b) Closer look at one of the lines on
the graph on the right: only includes
Burlington VT.

Figure 6: Order 6 splines of the data over the 64 years with seasonal variation
taken out and using only 10 basis functions.

Figure 7: Splines of all the cities with seasonal variation removed penalized
against the 4th derivative using 1010 as λ, the smoothing parameter, and 10
basis functions.
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Although a glimpse of warming has been seen through the example of
Burlington VT, it is also possible to look at the average of all of the cities
together. The functional data objects were averaged together the same way
any data set would be using the sum of the functions and dividing by 16
(number of functions contributing to the mean). The standard deviation
of the mean was doubled and added to both sides of the mean function to
represent the mean with standard deviation limits above and below, shown
in Figure 8. It is evident that even the upper limit of the 1950s is smaller
than the lower limit of the 2010s, showing a definite upward escalation of
temperature. This also gives us an indication of how the temperature is
changing. The function is not a straight line so this pattern of upward
momentum is not fully linear. Within most decades, the shape of the function
changes and it is possible to see that the warming isn’t linear. An example
of this can be seen between years 1950 and 1960. There is a high peak but
then it seems to jump back down to previous lower temperatures. This shows
natural variation within the overall trend and can help explain why even in
todays climate, winters can still see record low temperatures.

Using a more precise calculation, the standard error covariance matrix
was calculated and used to create a 95% confidence limit for the different
cities in the study. These calulations were based on the sampling distribution
of the coefficients of the basis functions of the spline used on the data with
seasonal variation removed. Figure 9 depicits the true confidence limits for
one specific city, Burlington VT. The high degree of precision evident from
the plot is partially the result of the removal of significant noise earlier in the
analysis process. Figure 8 and 9 both present a significant observed difference
in temperature from the start to finish. Upon further inspection Figure 9
shows Burlington was one of the cities whose temperature spiked in the 1950s
and then dramatically drop to pre-50s levels of temperature and eventually
began to consistently rise again. For Burlington, it also appears during the
early part of the new millenium the temperature did not change much and
may have even slightly decreased. But around 2005 the temperature quickly
rose again and hit around one degree Celsius above the average of these years.
This finding is consistent with many other studies stating 2013 was one of
the warmest recorded years globally and we can see this on even a single
city[11].
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Figure 8: Mean of the penalized splines with seasonal variation removed and
using 1010 as λ. The bands surrounding the mean are 2 standard devia-
tion units from the mean computed by using the common sample standard
deviation calculation.

Figure 9: 95% Confindence Limit for the city of Burlington VT. The standard
deviation used was calculated based on the coeffecients of the spline basis
functions rather than considering the functions as observed data.
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To further understand the temperature trend of the last 64 years, an
investigation into derivative estimates was used. Figure 10 (a) depicts the
mean of the derivative functions and Figure 10 (b) examines only the city
of Burlington VT. The scale of the derivative is very small, on the order of
10−3 because it measures the change of temperature per day. Most studies
report the average temperature over 1950 though 2010 is at most one degree
Celsius [4] and in our case that change is distributed over more than twenty
thousand observations. Similar to Figure 8, two times the standard deviation
of the derivative mean was used as limits for the mean function. From the
late 1960s until the early 1990s, even the lower limit was above the zero mark
meaning temperatures were in fact increasing at a significant rate. For the
derivatives, it is best to not make inferences near the endpoints because the
splines are very extreme on the edges when referencing the derivative[5]. The
high temperatures in the 1950s created the substantial negative derivative at
the beginning of the graph because the variation during that time was so
different compared to the years surrounding it. When a single city (e.g.
Burlington VT) is examined in isolation, the standard deviation increases
resulting in less precision for estimating effects over time.

(a) Mean of derivative function with
2 standard deviations of the mean.

(b) Derivative function of only
Burlington VT with 2 standard de-
viations.

Figure 10: First derivative of the penalized splines with seasonal variation
removed and using 1010 as λ.

Finally, a permutation test was used to compare two groups of cities to
determine if there was a difference between the trends of different regions’
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temperature. The groups of interest were cities of the East Coast versus cities
of the West Coast. The Climate Central’s data explores in detail the differ-
ences between each state and the increase of temperature per decade. Some
states in the west and south only have gone up one tenth of a degree Celcius
while others especially in the north east are estimated to have increased by
a almost third of a degree every decade since the 1970s[9]. The hypothesis
under consideration for this study is whether there is a significant difference
the mean functional representation of temperature between the west and east
coast.

Figure 11(a) represents the cities in this study, which are considered East
Coast: New York City, Boston, Burlington, and Miami. Figure 11(b) displays
Los Angeles, San Francisco, Portland, and Fairbanks, these were considered
West Coast cities. From these figures there seems to be a big difference
in the residuals during the 1950s and 1960s. Both coastal regions appear
to be increasing together and to be above the zero average over time. A
permutation test was used to calculate the overall significance level for the
test and Figure 12 shows that the observed permutation statistic never crosses
this threshold. A point wise level of significance was calculated and represents
the significance level of each time value if a t-test was tested between the two
groups at that specific location. We can expect there to be some time points
were this is significant just because of random random error. Using pointwise
significance there is a difference between the East and West Coast at a couple
different times. There seems to be a difference between the 1950 and 1960
and also during the 2010s and it is also nearly significant in the permutation
tests at those times. This is something to consider in future analyses when
compiling the two coasts together to create a whole picture of the US. It
could be that instead of treating them as a collective set they should be
considered as distinct parts of a whole[9].
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(a) Order 6 splines of Burlington VT, Miami
FL, New York City, and Boston MA.

(b) Order 6 splines of Los Angeles CA, Port-
land OR, Fairbanks AK, and San Francisco.

Figure 11: East Coast and West Coast Cities with Season Variation Removed.
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Figure 12: T permutation test comparing the spline functions without sea-
sonal variation of the west and east coast cities in this study.

6 Discussion

This paper has described the purpose, concepts, and some of the methods
of functional data analysis in the context of analyzing temperature trends.
These methods were applied to 64 years of weather data in 16 cities in the
United States to evaluate the trend of increasing temperatures the world is
experiencing. Instead of working with discrete data, functional data analy-
sis allowed for statistical tests to be performed on the data represented as
functional objects.

The process of transforming the data into a functional form, while guided
by objective criteria, is nonetheless somewhat of an art form. These crite-
ria included generalized cross validation tests and minimization of sum of
squared residuals.

The statistical tests on the weather functional data object provided in-
sight into how the temperatures of US cities have increased significantly in
the last six decades. The mean function of the data with a 95% confidence
limit proved to be increasing significantly. There was no indication this up-
ward trend of temperatures would stop, potentially leading to many serious
unavoidable disasters unless the temperature increases stop.
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This work has shown it is possible to detect changes in temperature and
provided insight as to the rate of these changes. Different methods of anal-
ysis were explored along with different ways to determine knots, smoothing
parameters, and other parameters specific to this data set. This paper did
not explore some functional data methodologies, e.g. curve registration, a
method still under development. A relatively small (in comparison to the
new era of big data) data set was utilized that only included complete and
evenly spaced data points. Further analysis could allow for incomplete data,
which would allow a much longer span of time, with more cities, whose data
may not be complete for every day, to be included.
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