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Abstract 
Chagas Disease impacts millions of people in South and Central America and yet it 

remains a mostly unheard of disease outside its area of influence. The Center of Disease Control 

refers to Chagas Disease as one of the primary “neglected” diseases of the world (CDC, 2013). 

This parasitic disease is spread primarily through the feces of blood sucking insects of the 

Triatominae subfamily, also known as “kissing bugs”. When the insect drops its feces, a 

vertebrate host can transfer the parasite, Trypanosoma cruzi (T. cruzi), into the bloodstream, i.e. 

via the eyes, mouth, or open wounds, and become infected.  In this honors thesis, a susceptible, 

infected and removed/resistant (SIR) model of disease transmission at the household level was 

developed. The model is replicated and parameterized with geospatial survey data for all 

households within a town. In addition, a logistic regression analysis was performed on all the 

household survey data collected in Guayabo and Chiquimula, Guatemala to identify parameters 

of importance (p<0.10) to infested houses (i.e. the presence of insects collected in a household 

and the presence of insect evidence within a household). Eventually the individual household 

models will be linked for the purpose of modeling the disease transmission between houses at the 

town scale. The latter will enable better insect and disease control mitigation strategies. 
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1. Introduction 

1.1 Motivation 

Chagas disease currently infects 8 to 15 million people in Latin America with 28 million 

more at risk for contracting the disease (Barbu et al. 2010). Approximately 41,000 people 

become infected each year by a protozoan parasite called Trypanosoma cruzi (Barbu et al. 2010). 

The disease also accounts for approximately 12,500 deaths per year (Barbu et al. 2010). Chagas 

disease is mainly located in Central and South America; but with increased immigration, it has 

been showing up in the southern parts of North America (Rassi et al. 2010). This research will 

provide a detailed susceptible, infected and removed/resistant (SIR) household model of Chagas 

disease and parameterize the household model for the eventual scale up to the “town level”, 

where it can be used to better understand disease outbreaks and optimize disease control 

strategies.  

The vector responsible for the spread of the disease is mainly a group of blood sucking 

insects from the triatominae subfamily. This family of insects is capable of hosting the T. cruzi 

parasite.  These insects are active mainly at night when many vertebrate hosts (humans and 

vertebrate animals) are sleeping. The parasite of T. cruzi is spread through the feces of the insect, 

which gets into the host’s blood system through the body’s openings. For example, it can enter a 

person’s bloodstream when they scratch an insect bite, through open wounds in the feet, or from 

a person using parasite-laden hands on the mucous membrane of their mouth or eyes. The 

parasite reproduces in the blood stream, among other organs, and will remain in a body for life if 

not treated (Rassi et al. 2010). 
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When in a human host, the parasite replicates potentially causing both immediate and 

future complications. The immediate complications (acute Chagas disease) include a prolonged 

fever, malaise, and enlargement of the liver, spleen and lymph nodes. These symptoms are 

enough to kill many human infants infected with the disease, but it is not as lethal to adults. 

Sometimes symptoms of chronic Chagas disease appear 10-20 years later, and may result in the 

premature death of older individuals. These deaths are mostly from cardiac problems such as 

arrhythmia. There is no known vaccine or preventative medicine for Chagas disease (Rassi et al. 

2010).  

1.2 Literature Review 

Rassi et al., (2010) provide a nice introduction to the significance of Chagas disease. The 

article describes the history of Chagas disease, how the disease is spread, the impacts of the 

disease in the body and the treatments available for symptoms and the parasite. 

Insects from the triatominae subfamily play a large role in the spread of Chagas disease; 

and understanding the basic foraging techniques of the individual insects is key to understanding 

how the disease spreads.  Hassel and Southwood (1978) compiled an article on the common 

foraging strategies of different insects. Their work revealed several factors that may be important 

in modeling, including odor, carbon dioxide output, host heat output, and the defensive nature of 

vertebrate hosts. 

Inaba and Sekine (2004) developed mathematical models for the number of secondary 

infections in a completely susceptible population, defined as Ro. By definition, if Ro is less than 

one, then the disease will die off, while if Ro is greater than one, then the disease will spread until 

it reaches equilibrium. They conclude it is important to control and limit contact between the 

vector population and infected individuals. 
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An insect’s niche or living area is important for modeling the vectors of insect-borne 

diseases. Drake et al. (2006) created a model using a learning algorithm to determine where 

niches would/could be located. The model accomplished this by analyzing multiple variables and 

their importance to insect niches. They determined that with variables specific to a vector’s 

wellbeing, for example an important variable for mosquitoes would be a stationary body of 

water, an accurate location of insect niches could be modeled in an area. 

Magori et al. (2009) created a mosquito model that included breeding grounds and 

genetics of a population. This model also includes how the distribution of mosquitoes changes 

between houses in a location. Breeding grounds, inter-house dispersion, and genetics are 

important modeling features for Chagas disease.  

Slimi et al. (2009) created a spatial-temporal model of Chagas disease and showed the 

importance of modeling the dispersion of the disease. They concluded that the forest insect 

population, insect movement between locations, and re-infestation are needed to create an 

accurate model. A spatial distribution model of Triatominae was also developed by Hernandez et 

al. (2013) on a regional scale to create an accurate representation of Triatominae regional 

densities using macro-environmental data. Climate, geological data, topography and land cover 

maps were used to predict the distribution of Triatominae. 

Barbu et al. (2010) created a model using the departure rates of T. dimidiata to find the 

spread of the insect through a town. They had three different locations of effect in their model, 

forest, domicile and the peridomicile (the area around the domicile). As might be expected, the 

domicle and peridomicile where found to be the most responsible for the number of insects 

within a home.  
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There is a genetic difference between Triatominae within the house (“domestic”) and in 

the forest, (“wild” or sylvatic). Lardeux (2013) created a model to determine how likely it was 

for wild T. infestans to invade a domicile and concluded that it was unlikely for a wild T. 

infestans to start a colony in a house, if there was a colony already there. 

Buitrago et al. (2013) conducted a study where they analyzed bloodmeals taken from T. 

infestans in Bolivia. They determined that the sylvatic (forest dwelling) T. infestans had taken 

human bloodmeals and therefore still expose people to T. cruzi. Porcasi et al. (2006) reported on 

the aftermath of an insecticide application in Argentina. The conclusion was that the application 

of insecticide was effective in towns away from the surrounding forest but had little to no effect 

when applied to houses on the outskirts of town and in rural areas. They also identified three 

variables that correlated highly with high and low infestation: average night temperature, 

maximum day temperature and vegetation index.   

Re-infestation is always a problem with a vector-borne disease; Dohna et al. (2007) 

conducted insect re-infestation surveys after a community-wide insecticide spraying and found a 

correlation to high insect counts before sprayings to insect counts after spraying. A study by 

Depickere et al. (2012) performed in the Apolo region of Bolivia found a large number of 

Triatominae remained in the region after 5 years of chemical control. Throughout this time 

period, many individuals would still complain about insect bites. Despickere et al. (2012) 

determined that the housing quality impacted the effect of the chemical control, and was 

correlated with re-infestation. 

Environmental factors are important to insect population distribution. Black et al. (2007) 

conducted a study in Ecuador that showed the quality of the house (e.g., type of construction 

material and conditions of walls) and piles of objects around the house were related to a higher 
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level of T. cruzi infection. Cecere et al. (2003) researched the effect of housing quality on the 

population capacity of T. infestans and found that better quality houses (i.e. houses with 

plastered walls and non-grass roofs) had considerably fewer insects. Houses with plaster also had 

significantly fewer insects than houses without plaster. Housing quality is important in insect 

population control. Saunders et al. (2012) conducted a survey on risk variables for infestation 

and found that many housing quality parameters (i.e. cracks in the walls, adobe walls, clutter 

around perdomicile, and free range animals) were correlated highly with infestation. 

Kelly and Thompson (2000) created a model that examined the change in distribution of  

hosts with insect density. They concluded that host preference (human vs. animal) is an 

important model feature, as an insect’s host preference does not remain constant. Torres-Montero 

et al. (2012) collected data about the insects’ location and host preferences. The data identified a 

seasonal increase in insects during the trimester from April to June, a slight difference in male to 

female ratio, and that most insects had only one blood source in their body. 

Gurtler et al. (1997) performed a field study of host preference in Northwest Argentina. 

The goal of the study was to see how animals around the household impacted the bloodmeals of 

T. infestans. Insect feeding relationships between hosts consisting of dogs, cats, chickens and 

humans were identified. Gurtler et al. (2009) conducted a laboratory test to determine the host 

preferences of T. infestans at different densites involving cats, dogs and chickens, all common 

hosts for T. infestans. The experiment found that dogs were the favored host, then chickens, 

followed by cats. They also showed a shift in favored hosts depending on the density of insects. 

Cruz-Pacheco et al. (2012) created a Chagas disease model examining the infection among 

humans, vectors and animals. They concluded that removing the insects and keeping animals out 

of the house are the best ways to fight the disease.  



 6 

1.3 Overall goals and specific aims 

The overall goal of the project is to develop a household-scale SIR model and replicate 

and parameterize each household model within a town, such that they can be run in parallel. 

Figure 1 shows an example town with each household having its own individually parameterized 

SIR model. Each household will be supplied with data about animal populations and house 

conditions; and then the model will simulate infestation. Currently there are no connections 

between households, but each household will run in parallel during a single simulation. These 

individual household models will eventually be linked together to create a town-scale model of 

Chagas Disease that can be calibrated using real household-scale field measurements. The 

significance of this research is to begin the process of taking a household-scaled SIR systems 

model of Chagas disease and upscaling it to a town setting for the purpose of optimizing disease 

control strategies. This research has the following specific aims: 

1) to develop the individual household SIR model,  

2) to replicate and parameterize it for multiple households, and 

3) perform a logistic regression analysis on survey variables to determine the significance 

and importance of variables with respect to house insect infestation.   
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Figure 1: An example of how the individual SIR household models operating in parallel. 

1.4 Model Considerations 

 The model was designed to supply infestation data to a multitude of households and have 

the ability to simulate the impact of spray-infested houses. The house insecticide-spraying 

feature requires that the model include a temporal component and house component. Houses 

cannot be sprayed all at once in practice; nor are they sprayed continuously, and the model needs 

to be able to represent this temporal pattern. The time component allows numerical 

differentiation to be applied to equations that track population, mainly vectors, and vertebrate 

host infection. These equations are difficult and impractical to solve analytically; numerical 

solution of differential equations allows for a reliable approximation.  
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2. Methodology and Software 

 The following sections are very programming intensive and are included to describe in 

detail how the model works. The first of the methodology sections describes the reasons for 

modifying the modeling framework of Cohen and Gürtler (2001), while the other subsections are 

used to provide details of the code developed in this thesis. 

2.1 Motivation for modifying the model 

 The code written by Cohen and Gürtler (2001) is a very useful starting point. However 

the overall goal for my code is to predict future infestation of insects and infected individuals in 

multiple households over time. In order to accomplish this, a conceptual change needed to be 

applied to the code of Cohen and Gürtler (2001). The most important being the inclusion of a 

time-step feature. This means that the output will be dynamic and will not reach steady state, 

unless given a large enough runtime. Time steps will allow for different features to interact and 

impact the system. It was also necessary to include an insecticide feature. Insecticides are used to 

combat Chagas disease by targeting the triatominae population. 

 Another important feature is the individual household models be run in parallel. This 

allows different types of houses to be analyzed at the same time, which is necessary before up-

scaling the model to a town scale. Features of the code have been created to import and interpret 

town survey results collected by graduate students under the guidance of our collaborator Dr. 

Carlota Monroy at the University of Guatemala. Also through discussion it was decided to have a 

house quality parameter capable of impacting the insect cappacity limit for an individual 

household. The surveys rated households on a three-part scale: A, B, and C with C being the 

worst housing condition. The overall purpose of this code is to model multiple household 

infestations simultaneously over time.  
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2.2 Software and Data 

To create the SIR household model of Chagas disease variables from field surveys were 

stored in Excel and then imported into MATLAB 2013b, created by MathWorks. The latter is a 

programming language based on C++ and uses matrices for computations and data storage. The 

survey data collected for the towns were also statistically analyzed for variable significance 

using JMP11 software, created by SAS.     

Field survey data include: 

1. geographic (e.g., Lat/Long of Houses, Points of Interest (e.g., roads, streams), 

elevation, climate), 

2. demographic (e.g., number of inhabitants, employment, education number and type of 

animals), and 

3. house characteristics (e.g., age of house, presence of electricity, house condition, 

house building materials, house hygiene, presence of chicken coops). 

2.3 The original code 

 As a starting point, the MATLAB code from Cohen and Gürtler (2001) was analyzed. 

They designed a deterministic empirical model of the number of vectors in a household to 

simulate Chagas Disease. The main goal of the model was to estimate the level of infestation at 

the household level. The model has a user-specified number of animals, initial percentage of 

dogs infected by Chagas disease, initial percentage of humans infected by Chagas Disease, insect 

biting frequency, feeding frequency and the chance of transmission. Numbers of animals can be 

input in a range so that a variety of households can be evaluated in a single simulation. 
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 The main script contains three functions named model5, iterate5, and chidogtable5. 

Chidogtable5 calls both model5 and iterate5 to produce a multitude of figures. Model5 is the 

part of the code that evaluates the change of infection over time. It uses two-season distinction 

(i.e. summer and spring) because in the summer the chickens are assumed to be moved outdoors, 

while in the spring chickens are kept inside and are a blood source for household insects.  The 

code transforms the blood sources into a human equivalence of the total blood sources.  For 

example, one chicken is equivalent to having 3 humans in a household. Equation 1 shows how 

human equivalence was calculated. The model does this to represent how animals get bitten at 

different frequencies, and more importantly, how they impact the insect population. Model5 then 

uses equivalence to calculate a static seasonal insect population. The number of infected insects 

per season is then calculated. This is used to estimate the number of infected humans within a 

household. Seasonal blood meals are also estimated for humans, chickens and dogs during this 

process and passed into the chidogtable5. 

Equation 1: Human Equivalences 

ppleqs = H + Rc * C + Rd * D + Ro * O 

ppleqs = Human Equivalence 
H = Number of Humans 
C = Number of Chickens 
O = Number of Other animals 
Rc, Rd, Ro = Number of humans equivalent to another animal (humans/animal) 
 
Sample Calculation: 
Given: H = 4, C = 2, D = 2, O = 1, Rc=Rd=Ro = 3 
ppleqs = 4 + 3*2 + 3*2 + 1*3 
ppleqs = 19 
 

 The purpose of iterate5 is to continually evaluate the function model5 until the change in 

model output has reached a steady state solution for the given initial conditions. It does this using 
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a while loop that runs until a user-specified tolerance has been reached. iterate5 then passes the 

output into the chidogtable5 to create multiple graphics of the results. 

  The function chidogtable5  analyzes the data acquired from iterate5 and model5. The 

output data from model5 generates 11 figures that provide visuals of the sensitivity analysis for a 

varying number of dogs, chickens and humans. The graphical outputs include the fraction of 

insects biting humans and the percent of blood meals that would be attained from a species. 

2.4 Overview of new code 

 The MATLAB code (Appendix J) is capable of analyzing multiple households given data 

acquired from town surveys. The survey information provides the initial conditions for 

households and specifies animal populations and house quality. It should be noted that 

parameters requiring further research to calibrate the model include infection rates of insects and 

animals within households, insect biting frequencies and blood source preference.  

 The code is written as a mixture of deterministic and stochastic principles. Insect upper 

limit is currently evaluated stochastically, once insect upper limit is selected the code runs 

deterministically (i.e. if houses are given the same upper insect limit and initial conditions the 

code will arrive at the same result). The main goal is to analyze multiple households using a 

time-dependent SIR model that includes an insecticide feature to model how spraying impacts 

disease. The user specifies transmissivity of the disease, spraying times, and which houses are 

sprayed. The code is split into 5 main functions with some important sub-functions within each. 

2.4.1 Main Driver 

 This driver calls all the other functions and analyzes Chagas disease through a town with 

selected field survey information. The first four functions are used to acquire all of the data 
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needed within the model. The fifth function analyzes the data over time and stores the 

information acquired at each time step.  

2.4.2 Constantinput 

 The Constantinput function specifies biting frequency, human equivalences, disease 

transmissivity, runtime and fractions of insects that bite per time step. The information is then 

passed out into main program. 

2.4.3 Megadatainfo 

 Megadatainfo is used to acquire all the data from the surveys and convert it into a useful 

form.  The passing in of survey data was implemented as one function so a user could easily 

replace the data from surveys with example household information. the data that would normally 

be acquired from this with example households. This is useful for two reasons, one if a user 

would like to test specific houses they may exclude this function and provide only the 

information they needed for testing. Reason two is that should a different survey be used, then 

this function could be replaced by a function that turns that survey information into useful data. 

Megadatainfo asks the user to choose the file containing the text-formatted version of the survey 

information. The function then passes this information into the function numerify, explained 

below in section 2.4.4 Megadatainfo also calls housequality to obtain a house quality number 

for each house based on the survey information. This function also estimates a value of insect 

population. During household surveys the amount of infestation is determined by the number of 

insects collected within a given amount of search time. It was assumed that this would be about a 

tenth of the total amount of 4th and 5th Instars based on field results from our collaborators (C. 

Monvy personal communication). 
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2.4.4 Numerify 

 This function takes the user specified survey information and converts the data into a 

matrix of numerical values for all of the households. This matrix is called megadata (Appendix B 

and C show the headers or each of the matrix columns). The survey information is initially 

loaded into MATlab as vectors by using Importfile. These vectors, consisting of both strings and 

numerical information, are then turned into a numerical matrix for ease of later modification. In 

order to convert strings to numbers, it was necessary to use a loop that analyzes each string.  As a 

result, everything in this section that turns strings into numbers is hardcoded, and based on the 

two survey data sheets available. If the data in the original excel spreadsheet are entered 

differently (i.e. as different column heading names or varying order) then data entry errors will 

arise. The string input will not be recognized and therefore not entered into the correct category. 

To fix this data sorting error, a user will need to alter the text to match the inputted survey data. 

The output of this function is a matrix of values called megadata, and it contains all of the 

surveyed data about the houses in a town. 

2.4.5 Importfile 

 Importfile is called within numerify, and transfers the survey data information into a 

vector format that is usable in MATLAB. This function was created by the import feature of 

MATLAB 2013 and separates each survey question into individual vectors. It does this because 

the survey data is a mix of numbers and strings and so if imported together, would be stored as a 

cell array. Cell arrays are ideal for holding information but are more difficult to change. These 

vectors of information are then passed back to numerify, where the string data are converted into 

a numerical representation.  
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2.4.6 Housequality 

 This function takes all of the surveyed information about the house and turns the data into 

a house quality parameter. In reality, how each parameter will affect the overall house quality is 

not known. An odds ratio could be calculated for each of the survey questions to determine 

significant variables and their impact; this is further explained in the results section.  Currently 

all of the surveyed information is used to create this house quality unit. To calculate the house 

quality, the function uses a summation of the megadata matrix per household and applies a 

weighting factor to the survey results. This simple summed weighting is subject to change as 

house quality parameters are analyzed for their overall effect on the house quality. The number 

of house quality parameters will likely decrease and be weighted relative to their importance. 

The current weights have no physical basis but are used to show variability between households. 

The house quality parameter is calculated and stored by household. 

Equation 2: House Quality 

€ 

HQ = NSDw∑  
HQ = House Quality 
NSDw = Weighted Nominal Survey Data 
 
Sample Calculation 
Weight affect from poor walls 1.5; weighting from firewood next to house 0.5 
HQ = 1.5 + 0.5 
HQ = 2 
 
2.4.7 Preall 

 There are quite a few matrices and vectors used throughout the code that need to be pre-

allocated to ensure overall program efficiency. The function Preall pre-allocates these matrices 

and assigns initial values to data. In this function, the user specifies the initial infection rates of 

animals and insects. These two were chosen to show variability and have no physical basis. 

Initial infections rates are difficult to find for ethical and practical reasons. In order to find the 
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infection rates, a large population needs to be sampled; or to find the rates for a household, all 

individuals would need to be sampled. This is not likely to happen on a town level. Also finding 

infection rates of the insect population is impossible because there are a large number of insects 

that will not be found. For this work, dogs were assumed to have the highest probability of 

infection followed by “other” animals (defined in equation 3) then humans and insects. An 

overall average infection rate could be found through laboratory testing and should be replaced 

when such data are acquired.   

2.4.8 Stepdata 

 This function is used to create summary data used during the looping process. The 

function outputs the people equivalents, and the insect upper limit per household. It also lets the 

user specify spraying times, and which households will get sprayed during those times. People 

equivalents are calculated using three R values (i.e. Rc, Rd, and Ro. The R values represent how 

much more likely an animal is to be bitten compared to humans. The subscript c, d, and o refer to 

the animals, chickens, dogs and “other” respectively. A person equivalent is calculated by taking 

the total number of animals multiplied by their respective R value and totaled. A sample 

calculation is provided in equation 1. The R values were assumed to be three, meaning that 

insects are three times more likely to bite chickens, dogs and other animals over humans. The 

value three was obtained from Cohen and Gürtler (2001) and applied additionally to “other” 

animals. These values are open to debate and many laboratories have tried to obtain values for 

relative biting frequencies; but results are inconclusive, especially when compared to field data. 

It is possible that through bloodmeals measured in the field, an insect “preference” for biting an 

animal may be found. 

Equation 3: Other Animals 

other = cats + pigs + cows + other animals 



 16 

Other = number of other animals 
Cats = Number of cats from survey 
Pigs = Number of pigs from survey 
Cows = Number of cows from survey 
Other animals = Number of all the other animals from survey 
 
Sample Calculation: 
Cats = 1, Pigs = 2, Cows =1, Other animals = 3 
Other = 1 + 2 + 1 + 3 
Other = 7 
 
2.4.9 Blimiteq 

 The insect limit function takes the previously calculated house quality number and 

converts that into an insect upper limit carrying capacity. The house quality number is grouped 

into one of three categories. This system is modeled using the house “risk” survey question, 

where the house was rated as an A, B or C with A being the highest quality. The function then 

splits the house quality number and places it into one of three subcategories + or – much like the 

grading system. For example, a house within the A category could be further subdivided into A+, 

A, or A-. Once a house quality has been categorized, a normalized distribution curve is used to 

randomize the house quality affect. This was included to allow more overlap between categories, 

meaning that a house quality category that falls within the A- range has a higher chance of 

overlapping in their insect upper limit with a house that has a B+ rating. The purpose of the 

house quality affect is to allow for houses of a good quality to have a low insect limit.   

 

Equation 4: Upper insect limit (blimit) 

Blimit = HQA * ppleqs * bbp 
	  

bpp = insects that can be sustained per person 
ppleqs = people equivalents 
HQA = impact from house quality 
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Sample Calculation 
HQA = 0.5; ppleqs = 19; bpp = 20/12 
Blimit = 0.5 *19 * 20/12 
Blimit = 16 insects 
 
2.4.10 Spraydata 

 The Spraydata function allows the user to define when and which houses get sprayed 

with insecticide. This function first asks the user when spraying occurs and then asks to specify 

which houses are going to get sprayed during each of the times selected, with the default option 

to spray all of the houses at once.  

2.4.11 Chagasvstime 

 The Chagasvstime function groups all the functions that are analyzed over time. The 

function stores the information used and acquired during each time step and determines when 

along the runtime to change seasons. This is explained in greater detail below. 

2.4.12 Deathspray 

 Deathspray applies an insecticide affect to specified households. The initial insecticide 

impact kills off 100 percent of the insects and then impacts the insect upper limit carrying 

capacity and insect fecundity. Insecticides have a residual effect on their surroundings after 

application. The main impacts are: insects will be less capable of reproducing and fewer insects 

will be able to be supported by a household. This impact on fecundity and insect upper limit 

decays over time. Currently the default decay is two months after which time the initial 

insecticide spraying no longer impacts the insects. To simulate this, a decay feature was built 

into the function. This function uses an exponential decay with a lambda of one time step. After 

two time steps, the house returns to an insect carrying capacity and the fecundity before the 

spraying. 
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Equation 5: Incecticide Decay 

 

Id = insecticide decay 
sd = spray decay length 
tfs = time from spraying 
 
Sample Calculation: 
Given: sd = 2 months, one time step is 1 month 

 
 

Once tfs equals sd, the equation is no longer used and insecticide decay remains constant 

at one representing no insecticide impact. 

2.4.13 dryseason 

 The function dryseason is used to calculate how the insects and other populations change 

over one time-step. The function initially calculates the number of infected individuals. Then it 

calculates the change in insect population, and given the new insect populations estimates the 

number of infected and non-infected bites that occur during one time-step. It then uses all the 

information to calculate the change of infection rate between the animals and insects and uses 

this information in the next time-step.  

2.4.14 wetseason 

 The function wetseason currently operate in exactly the same manner as the function 

dryseason. The reason for its inclusion is to allow for a future seasonality impact. If a significant 

change is found relating to time of year, then this would be where it would be implemented. For 
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example, if insects produced more offspring during the wet-season, then fecundity would be 

changed within this function.  

2.4.15 Figproduction 

Figproduction is a “main” driver that calls the above functions. This driver uses example 

household information rather than surveyed data to enable figures to be more easily produced 

and interpreted. This driver produces 6 figures shown below in the results section of the thesis.  

3. Results 

 Although real data exist in the form of surveys and insect bloodmeals, it should be noted 

again that the model has not been calibrated to real data. This means that the constants used (i.e. 

a dirt floor adding 1.0 to the house quality number) are not physically-based. Once the data are 

thoroughly analyzed, it will be possible to adjust the constants for model calibration. The results 

that follow show the overall picture rather than calibrated forecasts. 

3.1 Upper Insect Limit 

 The Upper Insect Limit has a stochastic nature, such that houses with the same 

parameters could, and most likely will, end up with slightly different upper insect limits. Figure 2 

shows the resulting upper insect limit for a house with the same characteristics analyzed five 

times. This represents the variation that occurs even if houses have the same rank (i.e. A, B or C 

quality houses) and same parameters (i.e. number of dogs and humans). This is important 

because the boundaries of the letter ranking system are not well-defined; and it is possible that a 

house ranked as a B will have the same number of insects as a house ranked as a C. The 

stochastic nature of the insect limit decreases the impact of immediately stepping into a new 

ranking category, in essence smoothing out the relationship between house quality and insect 
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limit. This system was used because one of the survey questions was a house risk level using the 

categories A, B, and C. Keeping the ranking system provides a variable that can be calibrated in 

the future. 

 

Figure 2: Upper Insect Limit given the same household conditions. The left panel shows five 
simulations of a household with the same parameters. Each house contained 4 humans, 1 dog, 1 
cat, 1 other animal, 1 initial insect, and a house quality number of 11. The right panel of the 
figure shows how the Upper Insect limits impact the Insect population over time. 

3.2 The Effects of Spraying 

A major goal of this thesis was to show the impact that insecticide spraying would have 

on insect infestation. Insecticide application is often used to keep the insect population in control 
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when there are outbreaks.  Figure 3 shows the impact of an insecticide application on houses of 

varying quality. Each house has the same number of humans, dogs, chickens, other animals, and 

initial insects but has a variety of summed weighted house quality numbers; 1, 11 and 20 

respectively, corresponding to low, medium and high risk values of a household.  

Figure 3 also shows the insecticide does not affect the upper insect limits of a household 

but does impact the population and growth rate of the insects. The only way to change the upper 

insect limit is by changing the house quality values. Insecticides do not improve the quality of a 

house, they have a shorter-term impact than any house improvement. The immediate impact of 

the insecticide application is an initial death of all the insects; see for example time-step 20 

(Figure 3). This is expected in a real-life application, where all insects will hopefully die when a 

house is sprayed. The next part of the insecticide application is the “leftover” impact on the 

insect population resulting in decrease growth (see the solid red line of a low risk household. 

Immediately following the insecticide application the insect population drops to zero, which is 

the result of a lowered insect fecundity. What is more difficult to perceive by eye is the slight 

decrease in the slope of the insect population growth for the two months that the insecticide 

impacts a household.  
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Figure 3: Impact of insecticide application on houses of varying quality. Each household 
contained the same parameters, except for house quality number (i.e. risk level). Each house 
contained 4 humans, 2 dogs, 1 cat, 1 other animal, and 1 initial insect. The house quality 
numbers ranged from 1 to 21 corresponding to each of the risk levels (i.e. A+ to C-). The right 
hand side of the figure shows the insect population for three different house risk levels. The solid 
red line is a Risk level of A+, the blue dashed lined is a risk level of B and the green dash dot 
line is a risk level of C-.  

Figure 4 shows the impact of an insecticide application on the percent of insects infected 

over time. The most notable change is the sudden decrease in the percent of insects infected at 

time step 20. If the insect population suddenly decreases to zero, then the percent infected is 

expected to go to zero. The reason that the percent infected never fully reach zero is due to how 

the insect population grows. The model incorporates both an incoming and exporting source of 

insects from the peridomicile and forest. This growth dynamic causes the insect population to 

immediately return to three insects (an number with no physical basis but causes houses to 

become re-infested), which are capable of biting animals and becoming infected. An aspect 

worth noting is how the fraction of infection is largest for insects inside the best quality house. 
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This is the result of there being fewer insects to infect; so an infection of one insect, means a 

larger percent will become infected.  

Figure 4 also shows that there is a slightly greater slope in the percent infected over time 

after the insecticide application. This is due to the animal population being more infected at this 

point than it was initially. Even though insecticides help control the insect population, if new 

insects enter into the system, they will rapidly become infected due to the host population’s 

infection. The sooner the insecticide is applied, the less noticeable the change in infection rates.  

Figure 4 also explores the impact of an insecticide application on the fraction of humans 

infected over time. The fraction of humans infected grows exponentially initially and then levels 

off; following the trend seen in the insect population.  This trend is most pronounced 

immediately after the insecticide application. The plateau for fraction of infected humans occurs 

because the likelihood of biting an uninfected individual will decrease as the number of 

uninfected individuals decreases. Another trend to note is that if the insect population reaches its 

maximum and becomes fully infected, then the percent humans infected grows linearly. Once the 

insect population has reached its maximum capacity, then they will supply a constant number of 

bites, and infection rates will be based on the fraction of insects infected. The infection rate will 

still have a changing slope at this point because as more insects become infected, the faster the 

animals in the model will become infected. Once the insect population is 100 percent infected, 

the fraction of infected humans grows linearly (solid red line of Figure 4). 
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Figure 4: Impact of insecticide application on infected populations over time. The houses 
simulated here are the same as Figure 3. The solid red line has a Risk level of A+; the blue 
dashed lined has a risk level B, and the green dash-dot line has a risk level C-. The left panels of 
the figure represent the infection rate of populations without an insecticide application. The right 
panels show the infection rate of populations with an insecticide application at time step 20.  
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 Figures 4 shows the impact of the insecticide spray on the fraction of  infected dogs and 

other animals over time. Since the cause of infection is assumed to be the same for dogs and 

other animals as for humans, there is no difference in the overall trends of either figure. What is 

of note, however, is that the rate of infection is much higher for dogs and other animals than it is 

for humans. Dogs and other animals are more likely to be bitten by insects, so they are also more 

likely to become infected. The rate of infection for dogs and other animals are assumed to be the 

same in this model (i.e. defined as having the same R or insect biting preference). 

3.3 Animal Sensitivity Analysis 

 A sensitivity analysis was performed on the household model with varying numbers of 

animals to examine the impact of animals on a household. This is important in determining 

methods for best controlling the spread of Chagas disease, as animals have a large role in the 

transmission of the disease.   

 In order to analyze the impact of different animals, the people equivalents and percent 

insects infected were analyzed for each household. The people equivalents of a household were 

analyzed because this produces constant answers (unlike the upper insect limit, which possesses 

a random variable) and is directly related to the insect population.  The fraction of insects 

infected was analyzed at the 50th time step to show the overall impact of animals on the rate of 

infection within a household. Despite being just one potentially infected vertebrate, insects are 

directly related to the number of vertebrate animals that become infected. Two vertebrates were 

analyzed at a time, while holding all other household variables constant.  
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 Figure 5 shows the effect of chickens and dogs within a household. Chickens and dogs 

are common in households and the relationship between the two will be helpful in determining a 

general “feel” for how houses should respond in terms of insect population and infection.  

The people equivalents of a household is greatest when there are the greatest number of 

chickens and dogs in a house. This is expected, as a greater number of vertebrates leads to a 

larger host population. The results are symmetric because dogs and chickens have the same 

people equivalence (i.e. three people per one animal). If a different relationship for dogs or 

chickens is selected, then the people equivalents will not be symmetric.  

The right side of Figure 5 shows the fraction of insects infected at time step 50. Note: An 

increase in the number of chickens decreases the percent of infected insects for a household, 

while an increase in dogs increases the fraction of infected insects for a household. This 

relationship occurs because chickens do not have the ability to become infected, so they help 

support insect population, but will not provide a source of infection for the insects. Dogs on the 

other hand have a very large initial percent infected; so if an insect bites a dog, there is a much 

higher chance that it will become infected. As a cautionary note, a decrease in the fraction of 

infected insects does not necessarily imply an overall decrease in infection, as more animals will 

increase the number of insects in a particular house.  
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Figure 5: Sensitivity analysis of the different animals inside of a household. Parameters for each 
household are held constant except for the two animals being analyzed. The household has 4 
humans, 1 initial insect, a house quality number of 20 and 1 for whichever animal is not being 
analyzed. The two animals being analyzed are varied between 1 and 4. The left panels display 
the people equivalence of a household for the sensitivity analysis.  The right panels display the 
fraction of insects infected at the 50th time step for each sensitivity analysis. 
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 Figure 5 also shows the sensitivity analysis done between chickens and other animals. 

The people equivalents of a household with varying numbers of chickens and other animals, look 

similar to the people equivalence of the chicken and dog analysis (i.e. in this case, they are 

identical). The people equivalence of other animals is the same as the people equivalence of 

chickens and dogs. Meaning that an increase in any type of animal will have the same impact on 

the insect population. This was chosen because of the current uncertainty in  how frequently 

different animals become bit.   

This looks similar to analysis done for chickens and other animals, with slightly different 

values. The reason for the similarities is due to the fact that chickens still provide no infection 

source to the insects, while the other animals do. This means that an increase in the number of 

chickens in a household will decrease the percent of infected insects, while an increase in the 

number of other animals will increase the percent of insects infected.  

 The sensitivity analysis between dogs and other animals has a similar result for people 

equivalence as the other two analyses, which occurs because each animal has the same number 

of human equivalences.  

In this analysis, both sets of animals are harbors of infection, so it is less clear how the 

fraction of infected insects would respond to an increase in either species. Figure 5 shows the 

percent of infected insects remains close to 100 percent, with a slight decrease in fraction of 

infected insects, when other animals are added to a household. Other animals have an initial 

infection lower than that of dogs, and so adding an extra other animal would slightly decrease the 

chance for an insect’s bite to cause infection.  

An interesting trend appears in the data; the more animals in a household the lower the 

fraction of infected insects. Increasing the number of animals in a household increases the insect 
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population. Approximately the same number of insects become infected each time step; but since 

the population is so much larger, the unit impact of an insect infection is less important on the 

fraction of insects infected.  

3.4 Spray, Recovery and House Improvements 

 It is important to examine the household insect population household with respect to 

mitigating the spread of the disease. There are many mitigation strategies; however, the most 

common is applying insecticide to a house. Another option is to spray the house in combination 

with house quality improvements. The house quality could be improved by improving the 

condition of the floors, walls, or roofs.  Figure 6 shows the result of three different control 

strategies. All three options have the same house parameters. The first scenario (solid red line of 

Figure 6) has a spraying that occurs at the 20th time step and then a “do nothing” strategy. The 

second option (the dashed blue line of Figure 6) has spraying at the 20th time step, again at the 

30th time step, and then “do nothing”. The third option (the dash dotted green line of Figure 6) 

has spraying at time step 20, followed by a spray and house quality improvement at time step 30.  

The first scenario shows that if the insecticide applications are not kept up, the insect population 

will recover to full strength within a fifteen year time frame. With the repeated insecticide 

treatments of the second scenario, insect populations can be kept at a manageable level. The third 

scenario, however, shows that combined spraying techniques and household improvements have 

a much longer impact on the reduction of the insect population.  
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Figure 6: Insect population with three different house treatment plans. All three simulations have 
the same initial conditions. Each simulation contains a household with 4 humans, 1 dog, 1 cat, 1 
other animal, 1 initial insect and a house quality number of 11. Scenario 1, the solid red line, 
represents a household with an insecticide application at the 20th time step. Scenario 2, the 
dashed blue line, represents a household with an insecticide application at the 20th and 30th time 
step. The third scenario, the dash dot green line, represents a household with an insecticide 
application at the 20th and 30th time step and a improvement in house quality number at the 30th 
time step.  

 Figure 7 shows the impact on the percent of creatures infected over time.  The top left 

panel of Figure 7 shows the fraction of insects infected. After each insecticide application, there 

is a sharp decrease in percent insects infected. If there are no insects, then the infestation will be 

zero. The reason the model simulation does not go to zero is that the insect population has a 

default number of insects (i.e. three) that come from outside of the household boundary resulting 

in insects within the house. The third scenario has the greatest percent of insects infected 

because, as was the case with Figure 4, so few insects are available for infection greatly 
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increasing the unit impact of each infected insect. The other three panels of Figure 7 look very 

similar, yet vary in slope because they all work under the same principles. Each is directly 

related to the number of insects, the number of bites, and the fraction of infected insects, it would 

make sense that they all behave similarly.  As noted earlier, the fraction of infected animals 

initially grows exponentially with the insect population, and then levels off as it approaches one. 

In the third scenario (i.e. one that includes the house quality improvement) the rate of the fraction 

of infected animals quickly approaches a straight line, which is a result of the insect population 

approaching its growing capacity and reaching 100 percent infection.  
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Figure 7: Impact of the three different house treatment plans on the population infection rates. 
Scenario 1, the solid red line, represents a household with an insecticide application at the 20th 
time step. Scenario 2, the dashed blue line, represents a household with an insecticide 
application at the 20th and 30th time step. The third scenario, the dash dot green line, represents 
a household with an insecticide application at the 20th and 30th time step and a improvement in 
house quality number at the 30th time step. 

3.5 Odds Ratios as Determined by Logistic Regression Analysis 

One way to calculate the importance and significance of the survey information used in 

calculating the house quality and other house parameters is by performing a logistic regression. 
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An odds ratio in essence shows how much more likely a piece of information is in predicting an 

outcome compared to another. In other words, event C is three times as likely to result in X than 

event A. This type of information allows one to identify the relative importance of the survey 

data, and can also provide information about demographics. Tables showing the full logistic 

regression analyses are provided in Appendix E through H.  

There were two parameters used as the response or the dependent variable: the presence 

or absence of insects collected within a house, and the presence or absence of evidence that 

insects existed in a house. The first parameter was chosen because if an insect is collected from a 

house, then the house is likely infested. Parameter two (i.e. evidence of insects being in the 

home), although similar to parameter one, does not always have the same result as insects being 

collected within a household. As a result, the evidence of insects within a house was analyzed as 

a surrogate for infestation.  

Initially the survey data were analyzed for variables of significance using a p 

€ 

≤  0.100, 

which allowed many of the survey questions to be eliminated altogether. Appendix I shows the 

variables that were first identified as important using a Chi squared analysis. Next, a logistic 

regression was performed on the variables that showed statistical significance. The logistic 

regression odds ratios were performed using a p 

€ 

≤ 0.05. The odds ratio tests were completed on 

both the Chiquimula (n = 1140) and Guayabo (n = 302) survey data to show the difference 

between a large spatial data set and a subset of that data. The analysis showed more variables as 

being significant when using the larger (Chiquimula) data set. But also of note was that different 

variables were identified as significant between the two data sets, indicating that variables may 

be important to some towns but not others. Table 1 contains a list of variables that showed up 

frequently between the four odds ratio tests. The four odds ratio tests were; two on Chiquimula 
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(i.e. one with the presence/absence of insects collected as the dependent and one with the 

presence/absence of insect evidence collected) and two on Guayabo (i.e. one with the 

presence/absence of insects collected as the dependent and one with the presence/absence of 

insect evidence collected). A sample of the significant odds ratio on Chiquimula with 

presence/absence of insects collected as the dependent variable is shown in Table 2.  

Table 1: List of the variables that showed up common between the different odds ratio tests. The 
left column of the table displays the variables that showed up as significant in all four of the odds 
ratios tests.  The right column displays the variables that showed significance in three of the four 
odds ratios.  

 
 

Variables Common To All Four Odds Ratios Variables that show up Frequently
What Type of improvement have you done in 

the last 2 years
Number of people in house

Do you know some symptoms of Chagas 
Disease

How long Ago have you lived in the 
house

If you were given sand would you fix your walls How long ago was the house 
constructed

Are there birds nests Presence of animals in bedroom
Are there signs of mice Hygenic condition of the house

Number of beds in house Do you know T. Dimidiata
What are the predominant materials of the 

house walls
Can you show me which one is T 

dimidiata in the photo

Conditions of walls where family sleeps Have you or someone in your family 
been bitten

Condition of walls for the rest of the house Primary material of floor
Is the bedroom dark
Presence/ Absence 
Number of bugs in

Risk
Have you seen T. Dimidiata in your house



 35 

 
Table 2: Sample odds ratio table, Chiquimula Presence/absence of insects in house. The grayed 
out portion of the table represents the variables that had shown up frequently between all of the 
different odds ratio tests.  

 

The odds ratio tests were done for the absence of insects collected (i.e. a given variable is 

more likely to result in an absence of insects than another variable). Column 2 (Category) is 

modified from its original naming scheme to be more understandable. The original naming 

scheme uses a numerical representation for variables, the conversions are shown in Appendix D. 

The variables associated with the question “What are the predominant materials of the house 

walls” shows three categorical variable comparisons to be statistically significant. However, 

since the odds ratios are so large and the comparisons lack an upper 95% confidence interval, 

then it is not conclusive as to whether these odds ratios fall in a particular confidence interval. 

This may be the result of a lack of power in the available survey information.  

On the other hand, the odds ratios reported for the variable question “Conditions of walls 

where family sleeps” does have an upper and lower 95% confidence interval and these variables 

Variable Category Odds Ratio
Lower 95% 
Confidence 

Interval

Upper 95% 
Confidence 

Interval
p

Degrees of 
Freedom Chi Square

What are the 
predominant 

materials of the 
house walls

0.0002 7 28.11

Cinderblock vs Mud and Sticks 6.03E+06 4.94 - 0.0001
Cinderblock vs Adobe 5.66E+06 4.58 - 0.0001

Cinderblock vs Sticks Strands 
& Leaves

4.11E+06 2.74 - 0.0044

Conditions of 
walls where 

family sleeps
0.0001 2 43.06

Good Condition vs Deteriorated 5.81 2.88 13.86 0.0001
Condition of walls 
for the rest of the 

house
0.0001 2 36.67

Good Condition vs Deteriorated 5.20 2.58 12.42 0.0001
Primary material 

of floor
0.0001 2 24.02

Brick or Cement vs Earth 3.34 1.71 7.54 0.0002
Is the bedroom 

dark
0.0004 2 15.90

Yes vs No 1.76 1.16 2.73 0.0067
Number of bugs 

in
unit 0.00 0.00 . 0.0001 1 977.54

Marks of bugs 0.0001 1 166.28
Absence vs Presence 9.60 6.76 13.75 0.0001

Number of 
insects outised

unit 0.60 0.34 0.87 0.0006 1 11.84

Risk 0.0001 3 47.26
A,B 5.89 1.02 111.18 0.0466
A,C 21.98 4.84 388.47 0.0001
B,C 3.73 1.83 8.96 0.0001

-
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show statistical significance (p<0.0001, Chi Squared of 43.06). For this variable, the odds of 

“good condition” resulting in the absence of insects is approximately 6 times more likely (with 

an lower and upper bound of 3 times more and 14 times more likely respectively) than the odds 

of “poor condition” resulting in the absence of insects (p <0.0001).  

 This analysis provides a simple way to weight survey information in order to acquire a 

house quality parameter and also how the evidence of insects relates to whether an insect was 

collected within a household. The analysis allows the user to remove variables that do not show 

importance, while also showing how much more likely a variable (or category) is to link to 

infestation than another variable (or category).  

4. Conclusions and Future Work 

 The main accomplishments of this research were the creation of a SIR model that 

analyzes the insect population and infection in a household. This is important for the modeling of 

Chagas disease; insect populations, and the infected population will change over time.  Another 

accomplishment of this research was the inclusion of an insecticide application. Insecticides are 

often used for controlling the insect population; and modeling their impact on a house is an 

important consideration for infestation. This model allows individual houses to be sprayed at 

different times. Every house may not be sprayed during a particular time step, and it is important 

to include the option to accurately simulate the real scenario. The main goal of this research was 

to create a model that allowed multiple households to be simulated in parallel during a single 

time step. This was done by bringing in data sets from excel to supply the initial conditions for 

each individual household. The model is then capable of interpreting this data and running a 

unique simulation for each house simultaneously for each time step.   
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This research provides an initial starting point for the overall modeling of insect 

populations and Chagas disease at the town scale. Some important next steps for model 

calibration will be to parameterize the variables using values from the literature. The current 

model is designed with the hope that research and information acquired from the ongoing insect 

bloodmeal laboratory analysis will be able to provide insight on more realistic values. 

 Another consideration to advance to a town level is to find a relationship that links 

transmission between individual households. This can be done in different ways. One is 

determining the impact of neighbors with a house reported as being infested. Once that 

information is identified, then a transmission rate can be created using the quality of nearby 

houses. Another way to potentially represent house linkages is to use spatial distance. Part of the 

survey data contains the GPS coordinates of each house; with this information, a function could 

be created that relates the impact of distance on insect transmission.  
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