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ABSTRACT

This research spans a variety of research topidth @i common theme,
providing decision support through the developnaem analysis of methods that assist
decision making for natural resource and wildlifamagement. | used components of
structured decision making and decision analysis atliress natural resources
management problems, specifically monitoring angreging the status of harvested
populations, as well as data collection decisi@ngandscape conservation.

My results have implications for the way populascare monitored and their
status is estimated. | find that the inclusion ofoein data collection can have a
substantial impact of the performance of abundasmog growth rate estimates of
harvested species and that the selection of estimahethods depends on what
management objectives are most important. For plgrthe Sex-Age-Kill population
estimation method best estimates the size of popnf while the Downing population
reconstruction method better estimates trends pulption growth rates. | provide a
framework to support selection of the best estiomtmethod while considering a
monitoring program as a whole. Based on this fiaank the Vermont Fish and
Wildlife Department will obtain the most benefiterin a monitoring program including
necropsy analysis that uses the Downing methodatik tpopulation status. Finally, |
demonstrated the use of value of information amsalys a tool to determine the relative
expected benefits of addition spatial data coltecfor use in landscape mapping and
conservation. This type of analysis can provideseovation agencies with a planning
tool to direct budgets and mapping efforts.
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CHAPTER 1. INTRODUCTION

1.1 Dissertation Haiku and Big Picture Summary
| recently discovered there is a website that ghiels PhD dissertations in haiku

form (http://dissertationhaiku.wordpress.cQyrgo without further ado, here is my PhD

in haiku form:

There’s a better way
Structured Decision Making

This is how it works

This dissertation spans a variety of research sopith a common theme,
decision support for natural resource manageme&he big picture view of this effort
is captured above, with the dissertation itselukiog on developing, demonstrating,
and analyzing methods that can assist decisionnmgd&r natural resource and wildlife
management. | describe particular applications loédsé methods to landscape
conservation decisions as well as game speciesgaarant and monitoring.

Currently the predominant process for making natueaource decisions is
structured decision making (SDM), which is the @agh to decision support used in
this dissertation. SDM is used to identify the paments of a problem, namely the
objectives to be achieved and the alternativeslaai to meet them. Once the
components of the problem are identified, decisamalysis is implemented to

determine the alternative that best achieves tiextes.

1



For this dissertation, | used components of SDM dedision analysis to
address natural resources management questioresquBstions addressed are wildlife
management and landscape conservation related. cifiSapy, what estimation
methods are best for determining the status of ggpmeies populations in the presence
of error in harvest data collection, which monibgriprogram best achieves game
species management objectives, and how valuabl@intaefforts are for landscape

conservation.

1.2 Structured Decision Making

Structured Decision Making is a process for decaoshg the pieces of a
decision process, examining and developing them ahea time, and finally
recombining the pieces to see the full view of @bpem and arrive at the best available
decision (Gregory et al. 2012, Conroy and Pete@@iB). It is a process that arose
from combining elements of economic analysis, manant science, conservation
planning, and the scientific method (Edwards et 2807). From an analytical
perspective, the decision analysis techniques uis&DM come from an expansion of
cost-benefit analysis to include multiple objecsivthat are often expressed in units
other than dollar values. This form of decisioralgsis, known as multiple criteria
decision analysis (MCDA, Keeney and Raiffa 1976),the predominant decision
analysis method from which SDM is built. Anotherportant expansion of previous
decision analysis techniques is that SDM beginddeytifying the values decision
makers are interested in achieving. These valtesgecified at the beginning of the
process, shape the problem framing that is devd|oged therefore aid in determining

both the appropriate form of MCDA to conduct and trariables to include (Keeney
2



1992). The initial focus on the values to be aahikeplaces an emphasis on interaction
between decision analysts, decision makers, andstiddeholders whose views are
included for consideration in identifying the vadue address. Due to the interactive
nature of eliciting objectives and identifying aitatives, this portion of the process
borrows heavily from techniques in the fields otili#éation, planning, cooperative
management, and negotiation.

The steps of the Structured Decision Making apgraae referred to using the
abbreviation PrOACT (Hammond et al. 1999). The P@JAsteps are: identifying the
Problem, describing theéDbjectives, enumerating thélternatives, predicting the
Consequences, and evaluating Thade-offs.

The purpose of identifying and documenting the fgwbfor decision analysis
is to place all participants (such as the decismmalyst, decision maker(s),
stakeholders, scientists, public, etc.) on the spage about what is being considered
and to aid communication between participants andaher interested parties. The
key component of documenting a problem is the dw&tis the irrevocable allocation of
resources. However, other common components inclutle trigger that makes the
decision a pressing problem, who the decision nsaleg, when the decision needs to
be made, any key objectives, additional actionsirarertainties to consider, and any
factors that limit the objectives or alternativkattcan be considered.

Objectives are the values or goals the decisionemakms to achieve by
making the decision. To make them useful in a gsieci analysis framework,
objectives are specified with a direction and a snesable noun; for example, an
objective could be to maximize the number of demwvésted. In this example, the
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direction is maximizing, and the number of deervhated gives a measureable
attribute to the desire to harvest objective sd thacomes can be compared. Often
decisions involve multiple objectives that tradéwith each other. For example, other
objectives of a deer management plan likely inclondximizing the number of deer in
the population, as well as minimizing the numbenegative human—deer interactions,
objectives that are probably negatively correlated.

Alternatives are the actions or things that theeviocable allocations of
resources are directed towards. A list of altevestis the list of items that a decision
maker is selecting one of when making a decisidnsingle alternative at times can
consist of multiple action elements that are comthimto a single selectable entity,
(known as a strategy or portfolio alternative).

The problem, objective, and alternatives portiohshe process are the areas
where facilitation and planning techniques arevahe, because this portion of the
process focuses on engaging participants andietjdinfformation from them. This is
also when stakeholders can aid and contributega@étision making process (Howard
1975, Gregory and Keeney 1994, Redpath et al. 2ZD@dkel et al. 2007) by assisting
in identifying the attributes (Martin et al. 2008jch as the objectives they deem
important, the alternatives they believe could becsessful, or the consequences they
predict would result from implementing an altermati The techniques developed in
this dissertation will likely be most beneficial & natural resource managers and
stakeholders work with a facilitator to guide thé&mough the planning portion of the

SDM process.



Once the problem has been framed, i.e., the prqlaéjactives and alternatives
have been identified, the next step is to predictsequences that would result from
selecting any one of the alternatives. The consempseare measured in terms of the
degree to which they achieve the objectives. Timgliption of consequences relies
either on elicitation of expert knowledge to produlrecasts (e.g., Ayyub 2001,
Martin et al. 2012, McBride et al. 2012, Pereraakt 2012), past observation of
outcomes in similar settings (e.g., scientific alsagon), or some form of predictive

statistical modeling (e.g., Starfield and Blelo&@8&, Starfield 1997).

1.3 Decision Analysis

The final step in structured decision making, afamn actually deciding and
implementing an alternative, is the analysis ofiéaffs through decision analysis.
Decision analysis focuses on determining the betsbrato take in order to select the
best available alternative and address the prolderhand. As noted previously,
decision analysis is the key element that SDM wadt karound. The early
development of decision analysis resulted frometfierts of Ronald Howard (Howard
1966, 1975, 1980, 1988). Following Howard’s wdHere were efforts to expand upon
the central decision analysis technique (KeeneyRaitfa 1993), to include the values
focused approach to problem framing (Keeney 198, to distill the process down to
its key components for ease of communication (Handnet al. 1999). Since its
origination, the techniques of decision analysivehdeen further developed and
expanded to match a variety of decision types, thedapplication to environmental

decisions has greatly expanded. Indeed, a rewjelwybHuang et al. (2011) found that



the published use of MCDA for environmental probdelnas increased from the single
digits in the 1990s to hundreds of applicationshzylate 2000s.

Expansion in the use decision analysis, along Wi spreading idea that
management actions can be tracked over time ifothe of scientific observations, has
placed a greater emphasis on making transpar@eatable decisions and on recording
the performance of management actions over tinsltieg in the expanding use of
structured decision making (for example, see:
http://nctc.fws.gov/courses/ALC/ALC3159/reportskxchtml). The increasing use of
adaptive management, a specialized form of SDM rémurrent decisions where
learning can improve future outcomes, may also dspansible for the increased
interest in SDM. By using SDM in conjunction wigldlaptive management, decision
analysts can provide managers with a monitoring plewell as a transparent rational
for what decisions were made and what actions waken so that learning can occur
over time to improve future decisions (Walters 208/hlters 2007, Ruhl and Fischman

2010, McFadden et al. 2011).

1.4 Natural Resources and Wildlife Management
This dissertation focuses on applying decision yaisl techniques to the
management of wildlife and natural resources. Ndtesources are the natural capital
that supports our human economy (Hawken et al. J198@tural resources also benefit
us through their general use, through the aestbetiefits | derive, and through their
existence. Wildlife species in particular proviseciety with a number of benefits,
such as filling important roles in an ecosystengvaing recreational, aesthetic, and

existence value, and enabling economic and subsistdenefits through harvest
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(Decker et al. 1987). The role of wildlife managarhis to maintain these benefits,

which requires ensuring that populations are hgaltid sustainable.

1.5 Game Species Management

Successful game species management is an impaoatpect of effective
wildlife management authorities. Game speciestlose that are harvested in one
form or another to provide recreational, subsistenand economic benefits.
Unsuccessful game species management can resuledreased benefits due to
individuals being unavailable for harvest both nand in the future and for other non-
consumptive uses when over-harvest occurs. Alteaig under-harvest can result in
opportunity costs from forgoing current harvestimdamage due to overpopulation,
which may lead to excessive human-wildlife conflicManaging a game species to
obtain optimal benefits requires an understandingsdife history, its habitat needs,
the way it interacts with its ecosystem, and arsssent of the status of the species
(Sinclair et al. 2006). Assessing species statdsaaljusting management practices and
harvest regimes is one of the main tasks gameespeawnagers perform.

In order to successfully manage game species godtadanagement practices,
most managers require an accurate assessment pdpgb&ation status. Obtaining that
assessment requires time and effort to collectaaradyze data. Optimal game species
management is therefore a combination of collectiatp effectively and efficiently
and selecting the best method for analysis. Duéhéomany interactions wildlife
managers have with other agencies and the pulbbitecting data in a way that
facilitates interaction with their partners is oftanother key to effective management

(C. Bernier pers. comm., Vermont Fish and Wildifepartment). In the chapters that
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follow, | evaluate the impacts of data quality cenge species status assessment and
determine what estimation methods provide the hesessments (chapter 2), and |
explore what monitoring program provides the bedador game species assessment
while facilitating wildlife management agency owatcld efforts and disease detection

objectives (chapter 3).

1.6 Estimating Abundance

There are numerous methods available for convemnmgitoring data into
estimates of abundance (Skalski et al. 2005). [dmicular abundance estimation
methods available to a game species manager depanalbat is collected (Skalski et
al. 2005). The simplest monitoring programs omdjlect annual counts of the total
number of individuals harvested. There are othaysaof counting harvest that can
provide additional information, such as countingviat by day, by harvest method, or
by season. Counting harvest by age, by age gaulpy sex also supports the use of
additional estimation methods (e.g., Eberhardt 1986wning 1980, Fryxell et al.
1988, Gove et al. 2002, Fieberg et al. 2010).

Monitoring programs can also increase the rangealmindance estimation
methods available by collecting other informatitroat game species in addition to the
numbers harvested, such as hunting effort, liféohyscharacteristics, and vital rates
(Skalski et al. 2005). Tracking the hunting effartspecies was subject to daily or
throughout the season allows managers to utilineov@l and catch per unit effort
abundance estimation methods (e.g., Otis et aB,119dggins 1989, Gould and Pollock
1997). Information about demographic rates of megapecies enables use of the more

complex abundance estimation methods, such aststaktipopulation reconstruction
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(e.g., Gove et al. 2002, Skalski et al. 2007, Fgle¢ al. 2010). There are a number of
methods for collecting information about demograpfates, and studies tracking the

fate of marked individuals are used quite frequentl

1.6.1Harvest Index Method

Harvest indices provide indirect abundance estisnfitam counts of a portion
of a population, such as the number of harvesté@iguals. The ratios of membership
in sub-groups of the population (e.g. the ratiad@lt females to adult males that are
harvested) are sometimes used as well. For exatnpile adult sex ratio and juvenile
to adult female ratios are common indices of abooddor furbearers (Douglas and
Strickland 1987). The number of either harvestetividuals or another portion of a
total population provides an index of the total plagion size, but variability in effort
and harvest success result in this being an imgtenfielicator of the total abundance

(Skalski et al. 2005).

1.6.2Removal Method

The information contained in daily harvest coumsl#es the use of removal
methods to estimate population size (Skalski e2@05). Removal methods compute a
probability of harvest for each animal in the p@tigdn for every day of the harvest
from daily harvests in order to estimate the totamber of animals that do not get
harvested during the harvest season (Otis et d18,1Bluggins 1989). Adding the
observed harvest count to the estimated numberdofiduals that were not harvested
produces the pre-season estimate of abundance.ewdonuse of the removal method

requires the assumption that the only source ofgh&o the population size is through



the removal of harvested individuals (e.g. there @@ immigrates or emigrates, no

births, and no deaths other than harvest) duriadgtmting season.

1.6.3Catch Per Unit Effort Method
With both daily harvest counts and daily effortajathe catch per unit effort
methods are options for estimating abundance. hQagc unit effort methods estimate
the population size necessary to result in the rebgeharvest by deriving both the
probability of harvest from one unit of effort amlkle population size necessary to
produce the observed harvest given the probalmfitharvest from one unit of effort
and the effort exerted on the population. (DeLugg, Otis et al. 1978, Gould and

Pollock 1997).

1.6.4Sex-Age-Kill Method

The Sex-Age-Kill method is based on recreatingttiial abundance using life
history rates for the species being monitored. sThethod requires estimates of the
proportion of the mortality due to harvest, the twemof young per adult female, and
counts of the number of harvested individuals bg ggoup and sex. Using the
proportion of mortality due to harvest, the estiathtmale harvest is converted into
male abundance. Based on the estimated adulatexthe adult female abundance is
estimated, and the number of young individuals stineated from the female
abundance using the estimate of young per adulileer®umming the adult male, adult
female, and young abundance estimates producestothé abundance estimate

(Eberhardt 1960, Roseberry and Woolf 1991, Millggeat al. 2009).
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1.6.5Population Reconstruction Methods

Population reconstruction methods are based on thataincludes counts of
harvested individuals by age, known as age-at-Bardata. These methods back-
calculate the initial abundance necessary to p@duoe year and age specific harvests
observed. This provides the minimum abundancessacg to produce the observed
harvest. To determine the estimated abundancerrétan the minimum abundance
necessary to produce the harvest, various virtopiifation reconstruction methods use
different methods of adjusting the minimum abunéa(fskalski et al. 2005). These
adjustments are based upon calculated demograptes for the virtual population
reconstruction methods or supplied rates from amdht data for the statistical
population reconstruction methods.

The difference between the various virtual popatatieconstruction methods is
how they account for the survival and exploitatrates. The method utilized by Fry
(1949) simply estimates the minimum population dzesumming lifetime harvest
numbers for each cohort. Because the Fry methed dot account for additional
sources of mortality, this abundance estimate Ig an index of the total population
size and not an accurate estimate of the totallptpo size.

The Downing reconstruction method does not estimvétd or harvest rates
directly either, but uses a weak proxy of adult taldy to reconstruct the pre-hunt
population by backward-addition of known mortalepd a minimal assumption of
unaccounted-for mortality (Downing 1980). The periance of the Downing method
is improved by pooling adults to produce a singlelaage class, a practice that is
typically followed in the use of this method (Dawisal. 2007).

11



The Fryxell reconstruction method uses effort dataddition to age at harvest
data to inflate harvest counts and to obtain amdénce estimate (Fryxell et al. 1988).
This method also requires an estimate of the nlaBuevival rate by age. These
additional inputs require more data collection gffpbut can result in less negatively
biased abundance estimates than the Fry and Downetgods (Fryxell et al. 1988,
Skalski et al. 2005).

The virtual population reconstruction methods tdstegbove have difficulty
obtaining estimates from incomplete cohorts (Skalsk al. 2005). Statistical
population reconstruction (SPR) methods use auyitiata to avoid this bias (Gove et
al. 2002). SPR methods are flexible to variousilauy data inputs, so long as they
provide information about either a demographic cdtéhe population or the likelihood
of counting an individual. Therefore, there is single SPR method, but instead a
general technique that is adaptable to the infaonatvailable. The information is
used in a joint likelihood framework to determiree tpopulation size by finding the
abundance with the maximum likelihood for providihg information entered into the
SPR analysis.

In chapter 2, | evaluate the performance of thendbnce estimators currently
available for estimating the abundance of fishdar{es pennanti) in the state of
Vermont, USA based on the data the Vermont Fish\&iidlife Department collects

from its fisher monitoring program.

1.7 Monitoring Programs
Monitoring programs enable production of the abuegaestimates used for

wildlife management.  While obtaining accurate atante estimates through
12



monitoring is a key objective of a monitoring pragr (Lyons et al. 2008), there are
additional considerations for selection of a mamitg program. For instance, an
agency may have objectives that include minimizthg cost of data collection,
maximizing the precision in abundance estimatesimizing the bias of abundance
estimates, maximizing the probability of detectanglisease in the game species, and
maximizing the level of citizen, academic institutj and recreational participant
engagement in and knowledge of the managementgsoce

The degree to which a monitoring program will agkiethese objectives
depends upon what activities are included in thaeitoong program. For example, to
carry out their mission and meet their objectivikee Vermont Fish and Wildlife
Department collects three types of data to asdesdigher population status: daily
harvest data, daily effort data, and necropsy datach provides information on the
age and sex of harvested individuals, as desche&ulv. However, it is possible that
collecting only harvest data, or harvest and effiath would better meet the full set of
the monitoring program objectives.

| apply structured decision making, and the SMARTision analysis technique
to evaluate the tradeoffs between the objectivesttfe fisher monitoring programs

available to the Vermont Fish and Wildlife Departii chapter 3.

1.8 Fisher
| use fisher management in Vermont as the managetk gpecies for analysis
in chapters 2 and 3. While fishers were once geadirpated in Vermont, they were

successfully reintroduced in the 1960s (Powell ahedlinski 1994). Following
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reintroduction, they have been harvested in Vernsamte 1974, other than during a
five year trapping reprieve between 1979 and 18&8vell and Zielinski 1994).

The fisher is the largest member of artes genus, with males averaging 3.3
kg and 60 cm in length and females averaging 1.8akd 51 cm (Douglas and
Strickland 1987). Females produce their firstetittt 24 months and proceed to
produce one litter per year thereafter, while méesome reproductively active at age
one (Powell and Zielinski 1994). Breeding females/e been found to produce
between one and four corpora lutea annually, witdrages ranging from 1.8 to 2.7
across ages in studies within the northeastern, bus.averages are slightly higher for
females in their peak reproductive years (Dougtas Strickland 1987, Van Why and
Giuliano 2001, Powell et al. 2003). Offspring saxio has not been found to differ
from 50:50 (Powell 1994). The annual recruitmdnittly rate) of offspring into the
population has been found to range from 0.63 td 4fiispring per female, with means
ranging from 1.18 to 2.16 across studies in th¢heaist (Paragi et al. 1994, Koen et al.
2007, Buskirk et al. 2012).

The estimated life span of a fisher is 10 yearsm#loet al. 2003), and the
survival rate depends on their age and the traprtegy The annual without trapping
survival rate commonly ranges between 0.7 and @&.8ulveniles and 0.9 and nearly 1
for adults (Krohn et al. 1994, Powell 1994). le tiresence of trapping, adult survival
rates as low as 0.61 have been observed, whilenijeveurvival rates for heavily
trapped populations has been recorded to be aaddv34 (Krohn et al. 1994, Powell

1994). Fisher density has been found to range 0dd® to 0.38 fisher per square
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kilometer, with an average value of 0.18 in hab#atilar to Vermont (Powell et al.

2003).

1.9 Mapping

Wildlife and other natural resources exist in lavagses, making both habitat
management programs and landscape scale datationlletforts a key component of
conservation efforts (Poiani et al. 2000, Hilty a@doves 2008). Many of the most
pressing challenges facing wildlife managers ineludguman population growth,
landscape development, and climate change, allhadhnoperate predominantly at the
landscape scale (Schwartz 1999). Spatial infoona used to aid management for
these and other landscape scale problems, sucletesnthing the risk of invasive
species colonization (Gormley et al. 2011), theigfesand selection of sites for
biodiversity reserves (Csuti et al. 1997, Araujad aWilliams 2000, Cabeza and
Moilanen 2001), and the prediction of outcomes frwitdlife reintroductions (Carden
et al. 2010, Cook et al. 2010, Zimmermann et al120 Therefore, the demand for
spatially explicit scientific information has inaged to address various landscape
conservation efforts.

While spatial information can substantially benefianagement efforts, these
benefits are constrained by the reliability of 8matial information. Reliability is a
product of the bias and precision with which larages are classified into categories,
the size of the area at which classification occarsy errors accrued during site
assessment, and irregularities across combined ingpmfforts (Aerts et al. 2003).
These factors result in uncertainty that a managemion taken based on spatial data

will achieve the management goal.
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Given the uncertainty present in spatial data cotb@ and the limited resources
that land managers have available for landscade sesearch, managers may benefit
from a means to evaluate alternative managemeiainacand to choose an action that
optimizes their management goals (Noon et al. 20120 address spatial data
collection decisions, chapter 4 evaluates the vafugpatial data collection to natural

resource management using a method known as vaio®onation.

1.10Value of Information

There are numerous uncertainty types that cantafiacagement decisions and
their outcomes. Decisions require predictionshef future. These predictions can be
based on a combination of past experience, expewledge, or predictive models, all
of which can be affected by uncertainty. The utaieties affecting decisions are:
measurement error (i.e., imperfect observationhef gast), subjective judgment (i.e.,
human errors in the elicitation and documentatibrexpert knowledge), systematic
error or bias (i.e., acting in an inherently erpppne manner, which can affect all
sources of information), the model based paramatreertainty (i.e., uncertainty about
the true value of model inputs), and structuraleutainty (i.e., uncertainty about the
form of the model) (Morgan and Henrion 1990). Bam analysts developed decision
trees, sensitivity analyses, and other methodsrderoto account for uncertainty in
decision making (Morgan and Henrion 1990).

Decision trees model the possible chain of eveataden the initial actions a
decision maker considers and the possible finalaues. The intermediate events in a

decision tree model the different paths, or brasgciigat can result from uncertainty
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about the future. A branching point is added fachefactor that can cause multiple
possible outcomes given the initial set of avadaddternatives.

Value of information (Vol) analyses originated agemsions of uncertainty
analysis tools, where the initial decisions to bedmare: what type of information to
use in making a decision, and determining the Wmagc points representing the
possible predictions and subsequent decisionsdbaid be made with the various
information available (Morgan and Henrion 1990)ol ¥nalyses compare the expected
outcome of taking an action or making a decisiangisnly the current knowledge that
is available with the expected outcome of collegtadditional information prior to
making the decision.

The type of Vol analysis | conduct in chapter 4eferred to as Expected Value
of Sample Information (EVSI), where the value oé timformation contained in a
sample (e.g. a survey, map, or field data) is beeigrmined. The EVSI approach is
used to provide an estimate of the value of spatif@rmation for natural resource
management purposes. By predicting the expectieg wh obtaining additional spatial
information, | provide managers with a means tolieta the potential benefits of
research efforts which can be used to optimizearebebudgets and better target their

management actions.
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2.1 Abstract

A large number of alternative methods have beerpgeed for estimating
population size and growth ratk) (of harvested game species, but the effect of®rro
in data collection have not been evaluated acrs$gna&tion methods. Using a
simulation setting, | evaluated the effect of detdlection errors due to incomplete
reporting, incorrect aging, and incorrect sexinghafvested individuals on estimator
performance over a range of estimators and populdtiajectories for a simulated
fisher (Martes pennanti) population. | evaluated four estimators thauregjonly age-
at-harvest data: Fry (Fry 1949), Downing (Downit®80), Sex-Age-Kill (Eberhardt
1960), and an index method. Using coefficient obreand raw bias as the performance
measures, under a stable population and withoatseim data collection, the Sex-Age-
Kill model had the best performance in terms ofnesting abundance, while the Fry
and Downing methods were the best performers imgeof estimating population
trend. Addition of errors to the data collectiawwgess affected performance more than
changes in population trend, but did not changeréhagive ranking of estimators in
terms of performance in abundance or trend estimatOverall, reporting error had a
greater effect on performance than the effect ofgagnd sexing error. The exception
to this result was the Sex-Age-Kill estimator, wagrerformance improved with the
addition of aging and sexing errors based on tleeHistory of the simulated fisher
population and the Sex-Age-Kill estimation algomith

Key Words:Martes pennanti, abundance estimation, game species management
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2.2 Introduction

Game species provide society with a number of hsnesuch as filling
important roles in a functional ecosystem, prowdiecreational opportunities, and
providing aesthetic and existence value, while Bngbeconomic and subsistent
benefits through harvest (Decker et al. 1987). idle of wildlife management is to
ensure and maintain these benefits, which requresiring healthy and sustainable
game populations.

Wildlife management agencies manage game speciasd®ssing the status of
populations and adjusting management practicesr@diogy. In order to successfully
manage game species, managers require an accessssment of the population
status.

A large number of alternative methods have beerpgeed for estimating
population size of harvested game species (Skatski 2005), which can generally be
classified into three major methodologies. Virtpapulation reconstruction methods
use the age and sex of harvest individuals thromgittiple years, and provide an
estimate of the population size at the beginningaxth cohort by tracing the harvest
fate of the cohort through time (Fry 1949, Downith§80, Fryxell et al. 1988).
Populations may also be reconstructed using wigear- harvest numbers of adult
males, adult females, and juveniles (e.g., theaggxkill model; Eberhardt 1960). In
addition to reconstruction methods, catch per efidrt models incorporate effort data
with the age at harvest data to estimate abundané@sally, statistical population
reconstruction methods combine auxiliary data (emgrked animal studies) with age-
at-harvest data, enabling statistical estimationswoifvival, harvest, and abundance
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parameters (Gove et al. 2002, White and Lubow 2883|ski et al. 2005, Conn 2007,
Skalski et al. 2007, Conn et al. 2008, Fiebergle2@l10). Of these, the population
reconstruction methods are commonly applied dubdaninimal data inputs, requiring
only the age-at-harvest data which most agencikscto

While a number of estimation methods are available,not easy for managers
to determine which estimation method to select twaim the best estimate of
population status because estimators have raredyn m®mpared directly. Each
estimation method embodies a set of assumptiongrthat be met to obtain a precise
and unbiased estimate of the true population siz&emd. Although a number of
evaluations of these estimation methods have beeducted (e.g., Roseberry and
Woolf 1991, Davis et al. 2007, Millspaugh et al020 Skalski et al. 2012), they often
vary from one evaluation to the next in terms @& #@stimators that are evaluated and
the species analyzed, often evaluating the perfocsaf only a single estimator by
comparing the resultant estimates to a simulatguilption. For example, Millspaugh
et al. (2009) evaluated the performance of theaggxkill (SAK) model when the
assumptions of a stable-age distribution and statio population size were violated,
and when changes in harvest strategies were irgeafjlbut did not include any other
estimation methods in the evaluation.

A key violation of assumptions that has receivételattention to date involves
data collection and processing. This error inctludeomplete reporting of harvest
counts, error in aging individuals, and error ixisg individuals (e.g., Atwood 1956,
Asmus and Weckerly 2011, Williams et al. 2011K)arlalyses are not robust to these
violations, the resultant estimates may lead tdtyaestimates of the true population
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abundance and population trend. Because gameespaanagement is adjusted based
on assessments of population status and trendumiicg for data collection errors in
the evaluation of estimator performance is an irigmirconsideration for successful
game species management.

Here, | build on previous efforts and present a mee#o evaluate the
performance of several common estimators undepwarscenarios of user-simulated
conditions and errors. While | evaluate estimg@gnformance from the perspective of
a furbearer biologist in Vermont, USA (VT), and éiscon data collection errors under
differing levels of population growth, this apprbacan be used to evaluate estimators

for a wide range of species and conditions.

2.2.1Research Objectives

My objective was to conduct an evaluation of fouwmenon abundance
estimators available for monitoring furbearers iarviont: 1)indexEst (an index
method where population size is estimated baseedstimated harvest probability; 2)
fryEst  (a virtual population reconstruction method), &wningEst (another
virtual population reconstruction method), andsdkEst (the sex-age-kill model).
These estimators are widely used and require drdyage-at-harvest data (Davis et al.
2007, Millspaugh et al. 2009).

| evaluate these for 13 scenarios representingrfigdels of population trends
(strong decrease, weak decrease, stable, weakagg;rand strong increase ) and 5
models of measurement error: 1) no error in dalieation, 2) error in the assignment
of age to individuals, 3) error in the assignmehtttee sex for individuals (males

identified as females and vice versa), 4) incomepieporting rate, and 5) an all error
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model with all three types of measurement erroluohed (aging and sexing errors as
well as incomplete reporting). | evaluated estoratin terms of their ability to

estimate abundance and population trend (lambda} &0 performance measures:
1) the coefficient of error (see Millspaugh et a009) which combines bias and
precision of the estimates into a single measungl, 2) the percent bias in the

abundance and lambda estimates.

2.3 Methods

2.3.1Study Species

To provide insight to estimator selection in VT, miynulated population was
designed to approximate the conditions of the fighgpulation in VT. Following
successful reintroduction in the 1960s, fishersehiagen harvested in Vermont since
1974 with a five year trapping reprieve between 9983 (Powell and Zielinski
1994). Trappers are required to tag all carcassdsnit an accompanying record to the
VTFWD within 48 hours of the close of the trappsgason, and notify a game warden,
who collects and stores carcasses until they caprdseessed. Age and sex of each
harvested individual are collected for each yeathef harvest via necropsy, in which
aggregated carcasses are matched with submitteddsec However, the error rates
associated with these data are unknown (C. Bepees. comm., Vermont Fish and
Wildlife Department). The state also collects arreffort data, measured as the total
number of trap-nights (e.qg., 2 traps deployed ler full 31 day fisher trapping season
would be counted as 62 trap-nights), which are usesdmulating annual harvest (see

below).
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The fisher is the largest member of the Martes gemth males averaging 3.3
kg and 60 cm in length and females averaging 1.8akd 51 cm (Douglas and
Strickland 1987). Females produce their firstetittt 24 months and proceed to
produce one litter per year thereafter, with mélesoming reproductively active at age
one (Powell and Zielinski 1994). Breeding females/e been found to produce
between 1 and 4 corpora lutea annually, with amameeranging from 1.8 to 2.7 across
ages in studies in the northeastern U.S., but tbhgiigher for females in their prime
(Douglas and Strickland 1987, Van Why and Giulid@@01, Powell et al. 2003).
Offspring sex ratio has not been found to diffemir50:50 (Powell 1994). The annual
recruitment (birth rate) of offspring into the pdgiion averages between 1.18 to 2.16
across studies in the northeast (Paragi et al. ,186é4n et al. 2007, Buskirk et al.
2012).

The estimated life span of a fisher is 10 yearsv@toet al. 2003). The survival
rate of fishers depends on their age and the tmgpmate. The annual survival rate
without trapping ranges between 0.7 and 0.8 foemiles and is greater than 0.9 adults
(Krohn et al. 1994, Powell 1994). With trappingesk rates can decline to as low as
0.34 (Krohn et al. 1994, Powell 1994). Fisher dgnsas been found to range from
0.05 to 0.38 fisher per square kilometer, with @@rage value of 0.18 in habitat similar

to VT (Powell et al. 2003).

2.3.2Simulated Population Trajectories
| simulated 5 alternative population trajectoriégisher (1 stable, 2 increasing,
and 2 decreasing populations) using plepMod function in the AMharvest package

developed for the Vermont Fish and Wildlife Depatin The package combines a
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mySQL database with a Microsoft Access front-end data storage, entry and
viewing, with R functions for simulating game specipopulation dynamics, harvest
data collection (including reporting, aging, andisg error), and estimating abundance
and trend from several, existing population estorsat Using this package |
stochastically simulated game species abundancejestaof that species, and
monitoring of that species on an annual basis. gdpMod function required inputs
that control population dynamics across the anayele (Figure 2.1). The life cycle is
anchored by three major events: the census, innnthi true population size is counted
immediately before the onset of harvest (and is dbal of population estimation
methods to determine), the harvest (the start anatidn of the annual harvest season),
and the birthday (in which a birth-pulse is assumethe total number harvested is
controlled by a harvest modannhualHarvestMod  or dailyHarvestMod for
annual or daily simulation of harvest), which resithe true harvest numbers by age
and sex, as well as the error-laden harvest datavwtbuld be analyzed by biologists
(including reporting rate, age error, and sex rgrroThe numbers of individuals
between each event is controlled by vital poputatrates, such as pre-breeding
survival (the probability that animals that haveagged the harvest will survive to
breeding) and post-breeding survival (the probgbthat animals will survive to the
census after the birth pulse) and 100% survivakeen the census and the harvest. By
selecting the desired parameterization for thetimpodelspopMod can mimic a wide
range of conditions such that the simulation metcie conditions for a species of

interest.
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For my estimator comparison, the population modehunnction popMod is
initialized with a population seed (the numbersirddividuals in each age and sex
class), and is parameterized by selecting 7 “ggtiror groupings of inputs which
control the numbers and rates through time. Thsesngs include 1) a simulation
specification setting, which specifies the numbkesimulations to run, the start year,
end year, and species, 2) a species setting, ebietifies the age at first reproduction,
maximum age, the birthday, and whether the termagalclass is a composite age class
(e.g., 10 year olds and older are all counted myé¢ar olds) or not (only 10 years old
individuals, no survival to age 11), 3) a popuatsetting, which specifies the size of
the population seed and vital rates such as surand birth rates, 4) a stochastic
setting, which controls how each life history redemodeled (stochastic or not), 5) a
harvest season setting, which specifies the dahadneest begins and season length, 6)
a harvest setting, which specifies the harvest (ia¢ee, controlled by annual harvest
effort), the age at first harvest, the percentafehe harvest that is compensatory
(mortality that compensates for and therefore redube natural mortality rate), and
whether the harvest is stochastic, and 7) a hadatsat setting, which introduces
reporting, aging, and sexing errors to the truedsir

Each of the 5 population trajectories required tapior all 7 settings, 6 of
which contained elements that were constant actagectories. First, for the
simulation setting, | simulated conditions similarthe VT fisher population over a 50
year period using a hypothetical start year of 186d an end year of 1950. Second,
for the species setting, | assumed that the ad&satreproduction was 1 and 2 for
males and females, respectively. | set the maxirmadeled age to 10, where the final
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age class represented a composite age class oyedi+olds. Third, while the vital
rates varied by trajectory as described belowgtube following population seeds that
result in a stable age and sex distribution foremand females for all 5 population
trajectories:

Females = [813,380,267,212,178,153,132,114,9%83,6

Males = [535,267,191,154,129,112,99,88,78,69,59]

This corresponds with the estimated fisher popaagliven available density
estimates (Kelly 1977, Powell 1994, Powell et @002) and resulted in an initial
population size of 4,277 fishers. Fourth, the hfstory stochasticity settings were all
set to 0, in which none of the vital rates (birthdasurvival) were modeled with
stochasticity. Fifth, for all trajectories, thert@st season setting was assumed to be 31
days beginning on Decembeét af each year. And sixth, the age at first harvess set
at age O (indicating juveniles are harvested), dbmpensatory harvest rate was 0O
(indicating that harvest is 100% additive to natureortality), and the stochastic
harvest value was set at 1 (indicating that harwest modeled stochastically). The
stochastic harvest was implemented using a binowhitiibution with the census
abundance at each age as the number of trialshendimulated harvest rate as the
probability of success.

| developed several population and harvest modhlshacontrolled population
rates (Table 2.1), in which the “baseline” modeislded a stable population size
through time. The baseline birth rate model inetlichn age and density dependent
effect, and resulted in an average of 1.68 offgppar reproductive female (ages 2-10;
Table 2.1, Model 1). | assumed a 50-50 offspriex tio. The baseline pre-breeding

36



and post-breeding survival rate models were siradlatith some small differences by
age and sex such that the combined, annual rateswalsr to the reported without
trapping survival rate, which ranges between 0d @8 for juveniles and is greater
than 0.9 for adults (Krohn et al. 1994, Powell 1994The baseline pre-breeding
survival rates were 0.73 for male and females jiesnand increased to a peak
survival rate of 0.996 for six year old males aathéles (Table 2.1, Models 3 and 4).
The baseline post breeding survival rates were fo8&emale and 0.90 for male
juveniles, with a peak survival rate of 0.98 foyeéar old females and 0.99 for 9 year
old males (Table 2.1, Models 7 and 8). The basdtimeest rate model resulted in
average annual harvest rate of 0.154 across ageseans, with higher harvest rates for
young and old fishers and slightly lower rates3ao 7 year old fishers and an annual
effort of 15,000 trap-nights (Table 2.1, Modelsrald4.0).

The five trajectories varied in their vital rates the population setting through
changes in birth rates and in survival rates, angheir harvest rate through changes in
annual effort (Table 2.1), which created stablereasing, or declining populations
through time. An alternative birth, pre-breedingrvsval, and annual effort were
parameterized to simulate changes in populatiojedi@y that result in population
growth rates of 1.02, 1.01, 0.99, and 0.98. T lvate was increased via an increase
in the birth rate model’s intercept from 0.32 t@7A. resulting in an increase to an
average of 1.77 offspring per reproductive femalable 2.1, Model 2). The
alternative female and male pre-breeding surviatés were reduced by changing to
the female and male pre breeding survival ratercetg values from 1.0 to 0.8757,
resulting in a reduction in the average pre bregdurvival rate across ages from 0.94
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to 0.93 for females and 0.96 to 0.95 for males [@dbhl, Models 5 and 6). Two

alternative harvest probabilities were produced nbgintaining the harvest model

parameters but varying the effort (the simulatedhber of trap nights per year in

thousands) downward to 11.33 (Table 2.1, Modelsaidd 12) and upward to 19.15

(Table 2.1, Models 13 and 14). Without taking shechasticity into effect, decreasing
the simulated effort decreased the average haragéstacross ages by approximately
0.01 and increasing the effort increases the awetzayvest rate across ages by
approximately 0.01.

| then combined the different models to simulatdifterent growth trajectory
scenarios (Table 2.2). The five trajectories waretable population (stable), an
increasing population due to the increased birtte rmodel (increase.birth), a
decreasing population due to the decreased sumat@lmodel (decrease.survival), an
increasing population due to a decrease in harefett (increase.harvest), and a
decreasing population due to an increase in haefest (decrease.harvset).

Without stochasticity in harvest, the populationded with 4,277, 6,824,
2,613, 11,260, and 1,593 individuals for the stablerease.birth, decrease.survival,
increase.harvest, and decrease.harvest trajectohies correspond to average annual
lambda values of 1.01, 0.99, 1.02, and 0.98, rés@é¢ Including stochasticity in the
harvest produced variation in the annual abundamseshown by the ribbons
surrounding the median abundance in the plot gédtaries (Figure 2.3).

Each trajectory in Table 2.2 produced a differentmber of harvested
individuals by age, sex, and year. From this h&tngata, | then created 6 “error”
models that allowed the inclusion of reporting erftine probability that a harvested
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animal was reported), sexing error (the probabifitgt an animal would be correctly

assigned by sex), and aging error (the probakitifg an animal of a given age would
be classified into each alternative age class @'@&B). Errors modeled included

reporting rate (which included 100% reporting ari@®reporting; Models 1 and 2

respectively) and correct sex classification réesnales and females (100% and 90%
correct classification, Models 3 and 4 respectivelyn addition, age-error could be

applied and was modeled with a distance-to-and-fagmclass formula:

d of H(F—D)E
At = Z Af * T 2
f=1 Yiz1 ef +(f—1)2+E

WhereA,, “age-to” is the number of individuals in the ritgg data count for
aget, A is the number of truly harvested individuals fge# andE is the age error
parameter (see Table 2.3, Models 5 and 6). | geeearor parameter values of -25 to
produce no age error and -3.54 to produce 5% erraging, which generally assigned
ages to a neighboring age-class (Figure 2.2).

| combined the different error models into fiveagrscenarios that represented
alternative rigor in the data collection proce3se five scenarios of error were a null
scenario with no error in data collection, an agenario with measurement error in the
age assigned to individuals (95% of individualsage x correctly identified as age x
and 5% misidentified as another age), a sex seendth measurement error in the
assignment of the sex for individuals (10% of matintified as females and vice
versa), a reporting scenario with a 90% reportiaig,rsuch that the true number of
harvested animals was under reported by 10%, aradl-®nror scenario with all three
types of measurement error included (aging andnge&irors as well as incomplete
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reporting). These represent “slight” errors in thata collection process, but are
thought to be representative of the fisher datéectwbn in Vermont (C. Bernier, pers.
comm., Vermont Fish and Wildlife Department).

Due to the greater numbers of females in the pdipualaand therefore in the
harvest, sex error resulted in harvest dataseth wafit increased male count and
decreased female count (Figure 2.4, Sex Error)e é&gor had a minor effect on the
counts as individuals swapped from one age to anaite partially compensated for by
the swap in the opposite direction. Zero year blad the greatest differential in count
from any other age, so the main difference caugeabing error was a small reduction
in the number of zero year olds as the number of year olds reclassified to 1 year
olds exceeded the number of 1 year olds recladsasezero year olds (Figure 2.4, Age
Error). Reporting errors reduced the overall coumteach category (Figure 2.4,
Reporting Error). Combining all the errors cauadsirther reduction in the count of
females because of the shift from females to medesed by the sexing error (Figure
2.4, All Error).

Combining the five error scenarios generated byettier models (Table 2.3)
with the five population trajectory scenarios (T&@al2) would result in 25 combined
scenarios. In order to focus the set of evaluatitmthe key sources of potential
influence, | selected a subset (n = 13) of thed%efaluation. The differential effects
of the sources of measurement error were evaluatdyl for a stable population
trajectory. For the other four trajectories | lied the evaluation to the null error and

all error models (Table 2.4).
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2.3.3Estimation Methods

Given the 13 simulated harvest datasets, | estanadpulation abundance and
growth rate %) with four different estimation methods. There arnumber of methods
available for converting the monitoring data ingtimates of abundance (Skalski et al.
2005), but a limited selection given only age-atvkat data as collected for fish
monitoring in Vermont, and for many other furbearaonitoring programs. In
Vermont, the exact date of harvest is sometimesownk, and the data are analyzed by
compiling the total harvest by age, sex, and yeadhner than by day. A suite of
commonly used estimators in the package, AMhanams, be evaluated using this
aggregated annual data, which are: the index rdefinmexEst ), some virtual
population reconstruction methodgygEst and downingEst ), and sex-age-kill

method $akEst ).

2.3.3.1 Harvest Index Method
Harvest indices provide an indirect estimate ofralaunce using counts of sub-

groups of the total population (e.g. harvestedwviddials or only adult males) or the
ratio of membership in sub-groups (e.g. the ratiadult females to adult males that are
harvested). The number of harvested individualsvides an index of the total
population size, but variability in effort and hast success result in this being an
imperfect indicator of the total abundance. Adk ratio and juvenile to adult female
ratios are also common indices of abundance, katthe harvest index, changes in
hunting success for each subgroup, or changes ririvali for each subgroup can
confound the interpretation of changes to these@sdrelative to changes in the total

population.

41



The harvest index method in AMharvest uses thetiomindexEst , which
takes the annual harvest data and an estimateddtaate model as inputs. Due to the
lack of telemetry or other studies which have eated the harvest rate of fishers in
VT, there is no available estimate of the harvast.r | use a constant value of 0.15385
(the average harvest rate across age and sex dostdble population trajectory
simulation) as the harvest rate input to the indéxgethod in all of my evaluations.
By using this harvest rate, | am giving theexEst method the best possible chance
of providing an accurate estimate of the abundavitteout adjusting the harvest rate
based on changes to the population trajectoryrtefio age and sex effects. A manager
would normally not have this information at theiisgbsal, and would use expert
opinion or output from another estimator to provide approximate annual harvest rate

required byindexEst

2.3.3.2 Virtual Population Reconstruction Methods
Population reconstruction methods are based onaibarvest data. These

methods use back-calculation of harvest data tdym® year-, age-, and sex-specific
abundances. By summing over the age classes, lasinuwadance levels are estimated
by including survival rates that are adjusted tilect other sources of mortality in
addition to the harvest (Skalski et al. 2005). Tikerence between the different
population reconstruction methods is how they aotdar the survival and harvest
rates. The method utilized by Fry (1949) estimakes minimum population size by
summing lifetime harvest numbers of each cohort,dmes not account for additional
sources of mortality, producing only the minimunpplation size as an index of the

absolute abundance. In contrast, the Downing igoaction method (Downing 1980)
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does not estimate vital or harvest rates diredtlyt uses a weak proxy of adult
mortality to reconstruct the pre-hunt population bgckward-addition of known
mortality and a minimal assumption of unaccountadafiortality (Downing 1980).

The Fry and Downing population reconstruction mdthm AMharvest use the
functionsfryEst anddowningEst , respectively. Both th&yEst function and
downingEst  function take annual age at harvest data as inpuith the
downingEst function requiring a grouping age (the age abowekvall individuals
are summed into a single count) input as well. obled data into 5 classes, 4 for
animals of ages 0 through 3 and a fifth class famals of age 4 or greater for the

Downing estimation method.

2.3.3.3 Sex-Age-Kill Method
The Sex-Age-Kill method is a life-history based huet that uses harvest

information and sex and age ratios to estimate abendance of the population
(Eberhardt 1960, Roseberry and Woolf 1991, Millggaet al. 2009). The Sex-Age-
Kill method in AMharvest uses the functisakEst , which takes annual harvest data
by age group (young, subadults, recruits, and yvets)well as estimates of the
proportion of mortality due to harvest, and the nyguwer adult female as inputs.
Young are less than one year old, subadults artud years old but have not yet
reached breeding age, recruits first-year breetteas have been recruiting into the
breeding population, and vets include experienageéeders (individuals above the age
of recruitment).
The method estimates the adult male harvest raie,tlae total adult male

population is estimated from the adult male harvat and the proportion of the total
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mortality that is due to harvest. The total adeihale population is derived from the
SAK output of adult sex ratio, and the total judermopulation is derived from the total
female adult estimate and the assumed birth r&@amming the adult male, adult
female, and young abundance estimates producéstgh@bundance estimate.

As with the harvest index method, | used the trakies on average from the
stable population trajectory simulation as my igpub the sakEst function
(proportion of mortality due to harvest and the ygyer adult female). In this way |
are reporting the best possible expected performénoen thesakEst method. The
average total mortality due to harvest in my sirhafawas 0.4702 and the young per
adult females was 1.128, which were used asdk&st inputs for total mortality due
to harvest and young per adult females, respegtivel

2.3.4Performance Evaluation

| used the function,performanceEst in AMharvest to evaluate the
estimators in terms of their Coefficient of Err@E) in abundance and lambda and in
terms of their bias and precision in estimatingyapon size and lambda. | report the
estimator performance for year 1 to 40 of the sanahs to avoid known biases in the
virtual population reconstruction methods (Fry abBbdwning) that result from
estimating the abundance from incomplete cohortsemmost recent years.

The precision of the abundance estimates and timbda estimates were
assessed with the Coefficient of Error (CE) introeth by Millspaugh et al. (2009) that
combines bias and precision into a single meastilee CE in abundance is expressed

as a percentage calculated as:
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v MSE

CE = —w—=—— * 100, where
Zi:jz;;lNij
ny
y P 2
e _ 1o = (Vi Nij)
MSE - n lzll (y—l) H

Here,y is the number of years being compargd=(40), n is the number of
simulations G = 100),N;; is the simulated abundance for simulaticand yeajj, and
N;; is the associated abundance estimate. The C&nibda is calculated the same
way, but substitutin@ij and4;; for IVU andn;;:

The CE calculation takes the squared differencerdst the true metric and the
estimated metric, and thus obscures the directiobias. Because of this, | also
evaluated percent bias of each estimator in tefrpspulation estimates and lambda. |
measured the percent bias in abundance estimatetaknyg individual annual

abundance estimates, subtracting the true abundamdethen dividing by the true

abundance,[—r;M* 100), and then finding the median value from the 40ryed the

simulation. Similarly, | calculated percent biaw lambda estimates in a similar
manner to the bias in abundance. First | calcul#tedannual change in the population
size, lambda){ = Ni+1 / Ny) for true and estimated abundances starting intyga The

annual bias in lambda was calculated by subtrathiadgrue lambda from the estimated

lambda and dividing by the true Iambqg‘;—l] * 100).
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2.4 Results

2.4.1Coefficient of error

| evaluated performance using the Coefficient afoE(CE) that summarizes
bias and precision in a single value (Millspaughle2009). A perfect estimator would
have a coefficient of error equal to 0. The estorsaagenerally performed better in
regards to estimating population trend (Figure B&tom panels) than they did in
regards to estimating abundance (Figure 2.5, toplpp Overall, there was a trade-off
in the ranking of the estimators for abundancenegion performance and lambda
estimation performance. For the (informed) paramzdtion provided, thendexEst
method was best for CE in abundance across albsosn and third best for lambda,
while sakEst was second best for abundance and worst for lamidtee fryEst
anddowningEst methods had the lowest and second lowest CE ibdamacross all
scenarios, but highest and second highest CE indance respectively.

For a stable population with no error in data ait, the CE in abundance
estimation was lowest for thedexEst method with a CE in abundance of 7.35%
followed by thesakEst , downingEst andfryEst methods with CE in abundance
scores of 21.24%, 47.30%, and 51.59% (Figure 2/,panel,A = 1,null). This is
associated with a significant difference in thesb@ the abundance estimates by
estimation method (Appendix C). Changes in trajctwithout error, resulted in a
general decline in performance when estimating dance (Figure 2.6, top, panels 2-
5). For thesakEst method, the CE was the highest when lambda was Orfiler the

same lambda théryEst and downingEst methods improved in performance
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(Figure 2.6, topA = 0.98, null). However, these improvements did cltange the
overall ranking of estimators in terms of the CEabundance. The median bias of the
estimators helps explain this pattern. TdakEst method was negatively biased
when the population was stable or increasing arsitipely biased when the population
was strongly decreasing for the null error scemsaiéigure 2.7, topA = 0.98-1.02,
null). Note that this result had high uncertaingg, reflected by the large range in
results from trial to trial (Figure 2.7, top panelakEst whiskers). ThdryEst and
downingEst methods , which were the worst performers for abundancd,tighly
negatively biased estimates of abundance regardiessajectory (Figure 2.7, top
panels).

As a consequence of these biases, the median &stfpopulation size varied
by both estimator and trajectory (Figure 2.8, t@meds). For example in Figure 2.8,
panel 1, given their biases at= 1, null, on averagendexEst was off by 3
individuals, fryEst by -2160, downingEst by -1979, andsakEst by -124
individuals. Changing trajectory slightly by 0.Dicreased these biases slightly (Figure
2.8, top, panels 2 and 4), but as lambda deviate fnom 1 the changes were more
substantial. For example, whan= 1.02 with no error, thendexEst went from
overestimating by 3 individuals to underestimathng-380 individuals, a change in
estimate of -383 individuals (the value shown igufe 2.8 top panel 3). For the same
trajectory § = 1.02, null),sakEst started with a bias of -124 individuals, and this
negative bias increased by -402 (value in figure)jch resulted in a bias of -526
individuals. In the case of declining trajectorigs 0.98), all four estimators produced

higher population estimates (Figure 2.8, top, pabel For downingEst and
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fryEst , this resulted in an improved CE but still sigceintly worse than the other

two estimators. FomdexEst andsakEst , the declining trajectory resulted in an
overestimate of population size. Thus the chand@aa was most dramatic as lambda
deviated from 1.

While indexEst and sakEst performed best in terms of abundance,
fryEst anddowningEst performed best in terms of lambda when there were
errors in data collection (Figure 2.5, bottom, parde5). TheryEst , downingEst
andindexEst method all had significantly different mean biadambda values than
the sakEst method, but were not significantly different framach other (Appendix
C). For a stable population with no error, the {DElambda was lowest for the
fryeEst and downingEst methods with values of 1.75% and 2.04%, while the
indexEst value was 5.81% and tlsakEst value was 22.96% (Figure 2.5, bottom
left panel,A = 1, null). The estimator performance improvedhwslight deviations
from A=1, i.e.,A=1.01 and 0.99 (Figure 2.6, bottom, panels 2 &4}, decreased with
stronger deviations from 1.0, i.e.1.02 and 0.98 (Figure 2.6, bottom, panels 3 & 5)
relative to theh = 1, null scenario, witlsakEst showing the largest change. The
estimators all performed best wher= 0.99 (Figure 2.6, bottom panel 4) however,
changes in trajectory did not change the relativking of estimators in terms of CE in

lambda.

2.4.2Effect of error
The effects of error on CE in abundance values rtigek on the type of error

(reporting, age, or sexing error) and the estinmatreethod. Each error type produce
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significantly different mean bias in abundance ealywith the exception of the
difference between reporting and all error as wadl sex and age error), but
insignificantly different mean bias in lambda vau@ppendix C). Wherk = 1,
reporting error played the biggest role in affegt®E in abundance, increasing CE to
12.14%, 56.37%, and 52.45%, fandexEst , fryEst , and downingEst |,
respectively (Figure 2.5\ = 1, reporting). For these estimators, CE inadaky
roughly 5 units (Figure 2.6, top, panel 1 and &his change in CE in abundance for
reporting error translated into increases in thgatiee bias of all estimators (Figure
2.8, top, panel 6). For example, given thdexEst was off by 3 individuals,
fryEst by -2160,downingEst by -1979, andakEst by -124 individuals wheh
=1, the bias from reporting error was -407, -23@396 , and -526. These represented
a change in bias of -410, -203, -217, and -402viddals forindexEst , fryEst
downingEst andsakEst respectively (Figure 2.8, top, panel 6). Thisrg®in
performance was larger than the effect of mostefttajectory effects without error
(Figure 2.6\ = 1, reporting).

The introduction of aging and sexing mistakes ttesuin a small reduction in
CE forindexEst , fryEst , anddowningEst , but a small increase f@akEst
(Figure 2.6, top, panels 7 & 8). For teakEst method, the addition of sex error
positively increased the percent bias, which wdolde the estimator to overestimate
abundance (Figure 2.7, top, panel 7). In contraghout aging and sex effects, the
sakEst method was negatively biased (Figure 2.7, topepah The result of this

bias would increase the abundance estimate byr&8@iduals (Figure 2.8, top, panel
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7). When including all sources of error far= 1, the performance ofakEst
improved with the addition of minor error rates data collection (Figure 2.6, top,
panels 1 vs. 11). This improvement diminished aasbida deviated from 1.0. In
contrast, errors in the data collection processatbtgl the performance widexEst
fryEst , anddowningEst

Inclusion of errors into the estimation of popwdatigrowth §) had a relatively
minor effect on CE compared to abundance. Whemdiamvas 1, including reporting,
aging, and sexing error did not change the relaawnking of the estimators. Error had
small effects on théendexEst , fryEst , anddowningEst CE in lambda values,
but improved thesakEst CE in lambda (Figure 2.6, bottom panals; 1, reporting,
sex, age, all). Sexing error caused the largegtawement insakEst performance.
Despite this improvement, tilsakEst remained the worst estimator for CE in lambda

by some margin (Figure 2.5, bottom pankls,1, reporting, sex, age, all).

2.5Discussion

2.5.1Estimator Performance
| evaluated four commonly used estimators thatireqanly age-at-harvest data
across time to produce an estimate of populatiae and trend. Across estimation
methods, | found that obtaining accurate estimafesbundance is a challenge, while
estimates of lambda were more accurate. When ptpuas are not stable, particularly
for larger changes in growth rate € 0.98 or 1.02), caused by the simulated changes i
effort and thereby the harvest rates, accuracpumdance estimates suffer. This result

is in line with those of Davis et al. (2007) andlispaugh et al. (2009), who found
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changes in population trends decreased performainde Downing method and sex-
age-kill method respectively. My results allowarparison of these two widely used
methods, and showed that the comparative degre@apafct on the virtual population

reconstruction methods (Fry and Downing methods svaaller than the effect on the
index and sex-age-kill methods. | further demonstta that slight error in data

collection (5-10%) effected the performance of #@stimation methods as much, or
more, than a 2% deviation in the population tremanfA = 1.0 with no errors in data

collection.

While the indexEst method performed best in terms of estimating
abundance, this was a direct result of the untezllyy accurate inputs to this
estimation method that are not typically availabbewildlife managers. Without
auxiliary data collection, such as a marking stuayother means, to accurately
determine the harvest rate for use in the indexhatktit is unlikely to produce such
accurate estimates in practice. As such, the simtuof the index method here served
as a benchmark for the Fry, Downing and SAK estmsatwhich will be the focus of
our discussion.

Based on abundance estimation, the sex-age-kilhadetvas far less biased
than the Fry and Downing estimation methods. Téréopmance of all estimators was
diminished by changes in population trend, whestmators were most biased in their
abundance estimates for strongly declining poputatif. = 0.98), with Downing and
Fry underestimating abundance and Sex-Age-Kill esttmating abundance. This
increases the difficulty of management becausekittgcchanging populations is

essential, and managers are often precautionarg@rd avoid population decline. If a
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manager used the best performer to track abunddresgex-age-kill method, while the
bias is smallest, the direction of the bias terml$e negatively correlated with the
population growth rate. Therefore, managers cteldinder the false impression that
the population is more abundant than it actuallforsvice versa), leading to potential
delays in management responses and immoderateshail@vances (or unnecessary
or disproportionate reductions in harvest), whiah substantially affect the outcome of
management (Artelle et al. 2013). The repercussiminoverharvesting a declining
population can be difficult to recover from, paulgxly if species are managed with
guotas intended to achieve maximum sustainablel yoecause once a population is
unable to compensate for harvest removals the sizquota reductions must be
increasingly more drastic to enable recovery. Tis& of failed recovery from
overharvest may be slightly smaller for fisher tiaother species, as they were able to
successfully establish themselves enough to supgpmpping in the 1970s, and at
current rates in 1983 following reintroductionstie mid 1960s. However, fishers are
not highly fecund species, with first reproductionfemales at age two, and limited
until age three at which time greater than twopifsy per female is still unusual.

| found that the Downing method was more biaseditsn estimation of
population change than the Fry method for unstpbfailations and with the inclusion
of error. This result is due to the grouping ofilh@ge classes in the Downing method.
With this grouping the observed variation from y&arear is dampened, resulting in
increased bias when the population lambda stragiseiufrom 1.00.

Interestingly, the addition of age, sex, and rapgrterror improved the
performance of the sex-age-kill method. This isely due to the sex-age-Kill
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estimation algorithm, which relies first on an esite of male harvest rate to estimate
the male adult population. The adult female pojpartais then estimated based on the
sex ratio of adult males to adult females. In ttine, number of young in the population

is estimated by the per capita birth rate timesnilmaber of adult females. Thus, if the

estimate of adult males is biased, this bias wgkihrough the estimates of adult
females and young. Therefore, an increase in dli@tcof adult males will cause an

increase in the sex-age-kill abundance estimatauseca count of more males leads to
an estimate of more females and more juveniles.thV8ex and age structured

populations sometimes containing greater numbefeméles and juveniles, the effect

of sex error is to shift individuals from relatiyemore prevalent female and juvenile

classes to the relatively less prevalent adult rades. This inflation in the number of

classified males inflates the male abundance estimad subsequent total estimate.
Because the sex-age-kill method initially tendedams a negatively biased estimate,
these errors increase estimates, improving theopedance as long as the error rate
does not overcompensate for the initial negatiaes.biThis is an effect that managers
should be cognizant of because many game speciesage and sex distributions that

favor young and females. This is particularly coommwhen males are selectively

harvested, as often occurs in game species duedbeg size of males as a food source
and for trophy hunting (e.g., Marealle et al. 2010)

The error rates that | applied are believed to mithe range of error in the
current fisher data collection methods in Vermdntf may be low relative to error
rates of other game species monitoring programsvermont, trappers are required to
submit “cards” containing the age and sex of trapaeimals, and to match the card
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with a carcass. The carcasses are then collegtadMarden, and aggregated carcasses
are aged and sexed via necropsy. With necrogbie®rror is small because the sex of
fisher carcasses can be readily assessed as |ldhgyaare not too decrepit, and age is
accurately assessed from cementum annuli analy$msvever, there is the possibility
of human error in storage and transfer of carcasseth, and records. Without
necropsies, the sex and aging errors would be &qgbdo be greater than what |
simulated. Relative to other species, it is pdediese error rates are low, particularly
for species with less structured management anditonmy such as some other
furbearing species monitoring without necropsiesasore typically the case, or those
without carcass collection (e.g., muskrat, beafiger, opossum, mink, raccoon, skunk,
weasel, coyote). Repeating the analysis with agasfgerror rates representing the
spread of data collection errors for other speai®s monitoring programs would aid
the understanding of estimator performance for gaspecies with more or less robust
data collection methods. Additionally, alteringetlrror rate by age and sex would
likely change the impact of the error because inldials could transfer between groups

at different rates depending on age, sex and specie

2.5.2Estimator Selection
| found that estimating abundance is more diffitbdin population changes, as
the bias in abundance was much greater than tserblambda. There also was not a
single estimation method that was best for botimedging abundance and population
change. While the sex-age-kill method was leaa$dd for abundance estimates, the
Fry and Downing methods performed best at estigaambda, and they were also

least sensitive to errors and changes in trajedtoryheir lambda estimates. Based on
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this trade-off in performance, there is not a snglethod that is consistently the best
estimation method. The model that will best mbetdbjectives of tracking population
state depends on the perceived importance of tbgille objectives, as evidence by the
trade-off between performance for abundance andodamand the differences in
robustness to changes in lambda and error.

One approach to selecting an estimation methodoisdéntify a single
characteristic for evaluating performance, suckthasability to estimate abundance, in
which case the sex-age-kill method would be seteaethe ability to track population
change, in which case the Fry or Downing methodldv/be selected.

Alternatively, managers can account for performaacess multiple criteria.
For example, additional criteria that managers magh to consider outside of
estimator performance itself are: a monitoringgpam’s ability to collect and process
different data sources, the cost of collecting dather analyses a particular set of data
allows, or other criteria. Once relevant objedivieave been selected, they are
weighted according to their relative importance.hu3, managers can incorporate
multiple objectives to produce a single score f@oaulation monitoring program that
combines the weighted performance of the objectiuesg a decision analysis
framework (Keeney and Raiffa 1993, Cummings anddvan in preparation-a).

Short of an evaluation of the multiple objectivéely present in the selection
of estimation methods and monitoring programs marsaghay benefit most from a
combination of estimation methods, or an adjustnb@mne of the estimation methods

evaluated. For example, using sex-age-kill forralaunce estimation, while also using
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Fry or Downing for trend, or only using Fry and Dang, but adding a positive

adjustment to minimize the bias in abundance.

2.6 Acknowledgements
| thank J. Pontius, J. Murdoch, and R. Mickey feit assistance reviewing this
chapter. S. Hafner and K. Rinehart assisted witlcoRing of the simulation and
analysis functions in the AMharvest package. Imgufisher management in Vermont
was provided by Chris Bernier, Kim Royar and Séxtling. Funding was provided
by the Vermont Fish and Wildlife Department and tbeited States Geological

Survey.

2.7 References — Chapter 2

Artelle, K. A., S. C. Anderson, A. B. Cooper, P.Raquet, J. D. Reynolds, and C. T.
Darimont. 2013. Confronting uncertainty in wildlileanagement: performance
of grizzly bear management. PLoS Ghe.

Asmus, J., and F. W. Weckerly. 2011. Evaluatingisfen of cementum annuli
analysis for aging mule deer from Southern Califardournal of Wildlife
Managemen?5:1194-1199.

Atwood, E. L. 1956. Validity of mail survey data bagged waterfowl. Journal of
Wildlife Managemeng0:1-16.

Buskirk, S. W., L. Bowman, and J. H. Gilbert. 20B®pulation biology and matrix
demographic modeling of american martens and fsshi®ages 77-92 K. B.

Aubry, W. J. Zielinski, M. G. Raphael, G. ProulxdaS. W. Buskirk, editors.

56



Biology and conservation of martens, sables, asitefs : a new synthesis.
Comstock Pub. Associates, Ithaca, New York, USA.

Conn, P. B. 2007. Bayesian analysis of age-at-lsadaga with focus on wildlife
monitoring programs. Colorado State University,tFaollins, Colorado, USA.

Conn, P. B., D. R. Diefenbach, J. L. Laake, M. ArAant, and G. C. White. 2008.
Bayesian analysis of wildlife age-at-harvest dBiametrics64:1170-1177.

Cummings, J. W., and T. Donovan. in preparationdegison analysis approach to
selecting a program for monitoring population sfgame species.

Davis, M. L., J. Berkson, D. Steffen, and M. K.tdil. 2007. Evaluation of accuracy
and precision of downing population reconstructidournal of Wildlife
Managemen?1:2297-2303.

Decker, D. J., G. R. Goff, and Wildlife Society. W& ork Chapter. 1987. Valuing
wildlife : economic and social perspectives. WestwvPress, Boulder.
Douglas, C. W., and M. A. Strickland. 1987. Fisligaiges 510-529 Wild Furbearer
Management and Conservation in North America. QmiBrappers Association

and Ontario Ministry of Natural Resources, Onta@ianada.

Downing, R. L. 1980. Vital statistics of animal pd@tions. Pages 247-267 S. D.
Schemnitz, editor. Wildlife techniques manual. Vkidlife Society,
Washington, D.C., USA.

Eberhardt, L. L. 1960. Estimation of vital charaigiécs of Michigan deer herds.
Michigan Department of Conservation Game DivisiBast Lansing, Michigan,

USA.

57



Fieberg, J. R., K. W. Shertzer, P. B. Conn, K. @ybk, and D. L. Garshelis. 2010.
Integrated population modeling of black bears imMisota: Implications for
monitoring and management. Plos Gnel2114.

Fry, F. E. J. 1949. Statistics of a lake troutdish Biometrics:27-67.

Fryxell, J. M., W. E. Mercer, and R. B. Gellatel@288. Population dynamics of
Newfoundland moose using cohort analysis. Jourh@litwlife Management
52:14-21.

Gove, N. E., J. R. Skalski, P. Zager, and R. L. ieand. 2002. Statistical models for
population reconstruction using age-at-harvest. datarnal of Wildlife
Managemen66:310-320.

Keeney, R. L., and H. Raiffa. 1993. Decisions withltiple objectives : preferences
and value tradeoffs. Cambridge University Pressni@alge UK and New
York, USA.

Kelly, G. M. 1977. Fisher (Martes pennanti) biolagythe White Mountain National
Forest and adjacent areas. University of Massatisugenherst.

Koen, E. L., J. Bowman, and C. S. Findlay. 2008heér survival in eastern Ontario.
Journal of Wildlife Managemem1:1214-1219.

Krohn, W. B., S. M. Arthur, and T. F. Paragi. 19%brtality and vulnerability of a
heavily trapped fisher population. Pages 137414S. Buskirk, A. S. Harestad,
M. G. Raphael, and R. A. Powell, editors. Martesadles, and fishers : biology
and conservation. Comstock Pub. Associates, Ithéea, York, USA.

Marealle, W. N., F. Fossoy, T. Holmern, B. G. Stekénd E. Roskaft. 2010. Does
illegal hunting skew Serengeti wildlife sex ratiodMdlife Biology 16:419-429.

58



Millspaugh, J. J., J. R. Skalski, R. L. TownsendRDDiefenbach, M. S. Boyce, L. P.
Hansen, and K. Kammermeyer. 2009. An evaluatiosegfage-kill (SAK)
model performance. Journal of Wildlife Managemésigi42-451.

Paragi, T. F., S. M. Arthur, and W. B. Krohn. 19%&asonal and circadian activity
patterns of female fisher®lartes pennanti, with kits. Canadian Field-Naturalist
10852-57.

Powell, R. A. 1994. Structure and spacingvairtes populations. Pages 101-121S.
Buskirk, A. S. Harestad, M. G. Raphael, and R. dwéll, editors. Martens,
sables, and fishers : biology and conservation. €€ock Pub. Associates,
Ithaca, New York, USA.

Powell, R. A., S. W. Buskirk, and W. J. ZielinsRDO3. Fisher and MartiMMartes
pennanti andMartes americana Pages 635-64ih G. A. Feldhamer, B. C.
Thompson, and J. A. Chapman, editors. Wild mamiofadorth America :
biology, management, and conservation. Johns Heglimversity Press,
Baltimore, Maryland, USA.

Powell, R. A., and W. J. Zielinski. 1994. Fisheag@es 38-73n L. F. Ruggiero, K. B.
Aubry, S. W. Buskirk, L. J. Lyon, and W. J. Zielkiseditors. American
marten, fisher, lynx, and wolverine in western @diStates. United States
Forest Service, General Technical Report RM-254t €ollins, Colorado,
USA.

Roseberry, J. L., and A. Woolf. 1991. A comparagvaluation of techniques for

analyzing white-tailed deer harvest data. WildMenographs:3-59.

59



Skalski, J. R., M. V. Clawson, and J. J. Millspau2®12. Model evaluation in
statistical population reconstruction. Wildlife Bigy 18:225-234.

Skalski, J. R., K. E. Ryding, and J. J. Millspaugf05. Wildlife demography: analysis
of sex, age, and count data. Elsevier AcademicsPraasterdam and Boston,
Massachusetts, USA.

Skalski, J. R., R. L. Townsend, and B. A. Gilb&a07. Calibrating statistical
population reconstruction models using catch-efiod index Data. Journal of
Wildlife Managemen#1:1309-1316.

Van Why, K. R., and W. M. Giuliano. 2001. Fall fobdbits and reproductive
condition of Fisherdylartes pennanti, in Vermont. Canadian Field-Naturalist
11552-56.

White, G. C., and B. C. Lubow. 2002. Fitting popida models to multiple sources of
observed data. Journal of Wildlife Managem@®B00-309.

Williams, B. W., D. R. Etter, P. D. DeWitt, K. TcBbner, and P. D. Friedrich. 2011.
Uncertainty in Determination of Sex From HarvedBatcats. Journal of

Wildlife Managemen#5:1508-1512.

60



Table 2.1List of models used for simulating the fisher popudtion.

Population Model Model Transformation Stochastic  Parameters
Model Name Type
Number
1 Baseline Birth rate Log No intercept = 0.32
Birth Rate AGE =0.09
AGE2 =-0.008
2 Increased Birth rate Log No intercept = 0.37
Birth Rate
3 Baseline Pre- Logit No intercept =1.0
Pre-BS breeding AGE =1.65
Females survival AGE2 =-0.16
females
4 Baseline Pre- Logit No intercept =1.0
Pre-BS breeding AGE =15
Males survival AGE2 =-0.125
males
5 Decreased Pre- Logit No intercept =
Pre-BS breeding 0.8757
Females survival
females
6 Decreased Pre- Logit No intercept =
Pre-BS breeding 0.8757
Males survival
males
7 Baseline Pre- Logit No intercept = 1.85
Post-BS breeding AGE =0.45
Females survival AGE2 =-0.028
females
8 Baseline Pre- Logit No intercept = 2.25
Post-BS breeding AGE =0.4
Males survival AGE2 =-0.02
males
9 Baseline  Annual Logit Yes intercept =-1.777
Harvest harvest rate simeffort*=0.032
Rate females 5
Females AGE =-0.325
AGE2 =0.03

*simeffort is multiplied by the effort covariate ual— 15.00 for the baseline harvest rate models
‘simeffort is multiplied by the effort covariate ual— 11.33 for the decreased harvest rate models
‘simeffort is multiplied by the effort covariate ual— 19.15 for the increased harvest rate models
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Table 2.1 continued

Population Model Model Transformation Stochastic  Parameters
Model Name Type
Number
10 Baseline  Annual Logit Yes intercept =-1.9
Harvest harvest rate simeffort*=0.032
Rate Males males 5
AGE =-0.25
AGE2 =0.02
11 Decreased Annual Logit Yes intercept = -1.777
Harvest harvest rate simefforf=0.032
Rate females 5
Females AGE =-0.325
AGE2 =0.03
12 Decreased Annual Logit Yes intercept =-1.9
Harvest harvest rate simefforf=0.032
Rate Males males 5
AGE =-0.25
AGE2 =0.02
13 Increased Annual Logit Yes intercept = -1.777
Harvest harvest rate simeffort=0.032
Rate females 5
Females AGE =-0.325
AGE2 =0.03
14 Increased Annual Logit Yes intercept =-1.9
Harvest harvest rate simefforf=0.032

Rate Males males

5
AGE =-0.25
AGE2 =0.02

*simeffort is multiplied by the effort covariate ual— 15.00 for the baseline harvest rate models
“simeffort is multiplied by the effort covariate ual— 11.33 for the decreased harvest rate models
“simeffort is multiplied by the effort covariate ual— 19.15 for the increased harvest rate models
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Table 2.2 Simulation trajectories produced from poplation models. All trajectories use the baselinenodels unless otherwise specified.

Trajectory  Trajectory Name Trajectory  Birth Rate Survival Rate Model Simulated Effort Average annual

Number Model Covariate lambda

1 stable stable 1 - Baseline 3 -Baseline Pre-BS Females & 6 - Baseline 1.0
Birth Rate Baseline Pre-BS Males Effort

2 increase.birth increase 2 - Increased 3 - Baseline Pre-BS Females & 6 - Baseline 1.01
Birth Rate Baseline Pre-BS Males Effort

3 decrease.survival decrease 1 - Baseline 4 - Decreased Pre-BS Females &6 - Baseline 0.99
Birth Rate Decreased Pre-BS Males Effort

4 increase.harvest increase 1 - Baseline 3 - Baseline Pre-BS Females & 7 - Decreased 1.02
Birth Rate Baseline Pre-BS Males Effort

5 decrease.harvest decrease 1 - Baseline 3 - Baseline Pre-BS Females & 8 - Increased 0.98
Birth Rate Baseline Pre-BS Males Effort
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Table 2.3 List of models used in simulating the datcollection process.

Error Model Model Name Model Type Transformation Stochastic aRwaters

Number

1 100% Reporting Rate reporting rate females None No intercept =1
Females
100% Reporting Rate reporting rate males None No intercept=1
Males

2 90 % Reporting Rate  reporting rate females None No intercept = 0.9
Females
90% Reporting Rate  reporting rate males None No intercept = 0.9
Males

3 No Error — Females gender classification females None No intercept =1
No Error — Males gender classification males None o N intercept=1

4 10% Error — Females gender classification femalesNone No intercept = 0.9
10% Error — Males gender classification males None No intercept = 0.9

5 No Age Error age error polynomial No -25

6 5% Age Error age error polynomial No -3.54
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Table 2.4 List of scenarios and their associated palation trajectories and error models used in simlating the data collection process for that
trajectory.

Scenario Scenario Name Error Error Model Population Population Trajectory
Number Name Numbers Trajectory Name  Number

1 stable.null Null 1,35 stable 1=1.00
2 increase.birth.null Null 1,3,5 increase.birth AZ1.01
3 increase.harvest.null Null 1,3,5 increase.harvest 4,1 =1.02
4 decrease.survival.null Null 1,3,5 decrease.safviv 3,A =0.99
5 decrease.harvest.null Null 1,3,5 decrease.harvests, A = 0.98
6 stable.reporting Reporting  2,3,5 stable A £,1.00
7 stable.sex Sex 1,45 stable AE 1.00
8 stable.age Age 1,3,6 stable AE 1.00
9 decrease.harvest.all All 2,4,6 decrease.harvest , A =9.98
10 decrease.survival.all All 2,4,6 decrease.sutviva 3, A = 0.99
11 stable.all All 2,4,6 stable 1=1.00
12 increase.birth.all All 2,4,6 increase.birth A2 1.01
13 increase.harvest.all All 2,46 increase.harvest 4,A =1.02
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Figure 2.1 Simulated Life Cycle. An annual census occurs athich time the true count of the

number of individuals is determined. 100% of indivduals survive from the time of the census until
the harvest occurs, at which time all mortality isassumed to be due to harvest. Harvest is
determined by the simulated harvest rate, with erros resulting in the count of the harvest depending
on the error model used. Following the harvest indiduals may survive until their birthdays based

on the pre-breeding survival rate, at which time tiey advance in age by one year and reproduce
based on the birth rate. Following the birthday idividuals advance to the next census depending on
the post-breeding survival rate.

66



12500 -

10000 ?
° // scenario
L}
% / rincreaae.haweat
g 7500 /%,/ increase.birth
o ’_,/"'“6 L stable
ﬁ ____.-—-"f#ﬂ—”f decrease survival
2 5000 ] T '
- ifﬂ: decrease harvest
SS=cnm—"
2500 - \—\\%H__
ey e e
I ——

I 1
1900 1910 1920 1930 1940 1950
Year

Figure 2.2 Simulated population trajectories. EacHine represents the median abundance over the
100 simulations, with the shaded region surroundingach line showing the range from the minimum
to maximum simulated abundance in each year. Theenarios are the increase.harvest,
increase.birth, stable, decrease.survival, and deease.harvest from top to bottom.
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Figure 2.3 Example age classification rate for indiduals that are truly 5 years old. The y-axis she
the rate at which 5 year olds are classified intoazh of the ages shown on the x-axis. The left pdne
shows the rates for no error in age (0% age errorThe right panel shows the rates with age error
included (5% age error).
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Figure 2.4 Median observed annual harvest counts bgge and sex for the different error models. Eachanel shows the median null error harvest
count for females (null females) and males (null mes) in black with the counts including error shownin grey. The top left panel shows the effects
of sex error in the counts, the top right of age eor, the bottom left of incomplete reporting, and the bottom right shows the combined effect of all

three error models.
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Figure 2.5 Estimator coefficient of error (CE) in d@undance and lambda. The CE in abundance is shown the top panels and CE in lambda is
shown in the bottom panels. Each panel containskar for each of the four estimation methodsi(ndexEst , f r yEst , downi ngEst , and sakEst
from left to right). The panels from left to right are the thirteen simulation scenarios, denoted bthe scenario lambda value and error model. For
example, the left most panel is scenario number Which is a stable population X = 1) with no error, which is produced by the nullerror model.
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Figure 2.6 Difference from baseline coefficient oérror (CE) performance. The change in the CE in abodance (top panels) and change in CE in
lambda (bottom panels) by estimator relative to theCE in abundance and lambda in the “stable.null” senario. Each panel contains a bar for each
of the four estimation methods i ndexEst , f r yEst , downi ngEst , andsakEst from left to right). The panels from left to right are the thirteen
simulation scenarios, denoted by the scenario lambdvalue and error model. The value of each bar ihe change in CE from scenario one to the

current scenario, by estimator, with negative valug indicating a decrease (improvement) in the CE vaé and a positive value indicating an increase

(worsening) in the CE value. For example, the CEof downingEst increase by 5 from scenario one to enario 11 A=1.00, null toA=1.00, all).
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Figure 2.7 Boxplots of raw bias in abundance and tabda. Boxplots of the performance in terms of pemnt bias in abundance (top panels) and
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the four estimation methods ( ndexEst , f r yEst , downi ngEst , andsakEst from left to right). The panels from left to right are the thirteen
simulation scenarios, denoted by the scenario lamhdvalue and error model.
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Figure 2.8 Difference from baseline performance. Tis figure displays the change in the median estimatof abundance (top panels) and lambda
(bottom panels) relative to the median estimate iscenario one X=1.00, null) for each estimator. The labels in thieft most panels denote the
median bias in abundance and the median bias in lamda relative to the initial stable null populationsize (4277 individuals). For example, the
median sakEst abundance estimate was negatively bed by -124 individuals. Each panel contain a bdor each of the four estimation methods

(i ndexEst , f ryEst , downi ngEst , andsakEst from left to right). The panels from left to right are the thirteen simulation scenarios, denoted by
the scenario lambda value and error model. The vak of each bar is the change in the median estimat®m scenario one to the current scenario,

by estimator, with negative values indicating a chage toward negative bias and a positive vale inditiag a change toward positive bias. For
example, the sakEst median bias for scenario two f@as. For example, thesakEst median bias for scenario 2X=1.01, null) is 61 individuals more
negatively bias, and 172 individuals more positivglbiased for scenario 4X=0.99, null).
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3.1 Abstract

Population monitoring programs aim to meet manciyes. Some common
objectives include accurately estimating populas@e and trend, effectively detecting
disease in a population, minimizing management scosihd improving citizen
engagement in the management and monitoring prot@sesent a decision analysis
framework that supports monitoring program selectioThe framework includes a
simulation package that evaluates monitoring pnogréor their ability to accurately
track wildlife populations. The framework alsortséates this evaluation into a relative
performance score for a set of possible monitopregrams. Therefore, unlike the
coefficient of error performance measure, this #aork enables explicit trade-offs
between management objectives and links estimaterfoppnance directly to
management objectives. Here | demonstrate thisoapp to evaluate monitoring
programs that combine the option to conduct or ewiduct necropsies for fisher
(Martes pennanti) data collection in the state of Vermont, USA withestimation
methods: an index method, Fry, Downing, and Sex-Kile Only index and Sex-
Age-Kill are available without necropsy data, besmaury and Downing methods
require age at harvest data. | found that theapsgr monitoring program using the
Downing estimation method best achieves the figh@mitoring program objectives for
the Vermont Fish and Wildlife Department, a conidasthat may not have been
reached from the coefficient of error measure alone
Key Words: population monitoring, abundance estiomatwildlife management, game

speciesmartes pennanti, decision analysis, structured decision making
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3.2Introduction

Successful game management is an important aspeeffective wildlife
management authorities. Game species provide a vadge of benefits, such as
economic and subsistence benefits, personal faHitit and recreational opportunities,
aesthetic and existence value, as well as the ibafefupporting ecological processes
(Decker et al. 1987). While stakeholders are e#tad in successful management
outcomes, the objectives must be met within budgetanstraints of management
organizations. For game species, sub-optimal menagt can result in a) a population
size that exceeds the target size (resulting indpportunity costs of foregone current
harvest), or b) a population size below the tasget (resulting in lost future harvest
and future non-consumptive use while the populatemovers). Given the risk, is not
easy for managers to determine what monitoring namog (defined here as the
combination of data collection activities and tiséirmation method used to estimate the
population state) to select to best manage a gpewes.

A hallmark objective of many monitoring programgasestimate the state of a
population (Lyons et al. 2008) while minimizing tosState variables of interest can
range from occupancy to abundance to populatiardiramong others. A monitoring
program includes all of the activities, data cdil@t, and estimation methods used to
assess and track state variable over time. Masagégct various combinations of data
sources and an accompanying estimation techniquebtain an estimate of the
population status to make management decisions. cbmbination of data sources can
range from monitoring total yearly harvest to mumeolved data collection, including
harvest reports by day, necropsies or other tedesiq¢o determine age, sex and
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nutrition of each harvested individual, surveysagsess daily effort and harvest rates,
surveys of marked individuals to determine demogi@pates, and direct observations
of individuals. All of these activities contribute the cost of operating a monitoring

program.

The second objective of many monitoring programstasmaximize the
performance of the method used for converting #ita thto an estimate of the state of
the population; that is, select a method which minés bias and maximizes precision.
| define an estimation method as the mathematicaleinthat converts monitoring data
and or expert opinion into an estimate of popuratsbate. There are a number of
estimation methods available for converting the nooimg data into estimates of
abundance, ranging from harvest indices that oagdran annual count of the number
of individuals harvested to statistical populatrenonstruction methods that use counts
of harvested animals by age and by sex as wellaaay observations of individual’s
fate in order to enter population vital rates adetonputs. Several evaluations have
been conducted on the performance of these estishatften using the Coefficient of
Error (CE) method introduced by Millspaugh et 20@9), which effectively combines
bias and precision into a single metric. The eataduns that have been conducted (e.qg.,
Roseberry and Woolf 1991, Davis et al. 2007, Mdlsgh et al. 2009, Skalski et al.
2012, Cummings and Donovan in preparation-b, Ririedrad Donovan in preparation)
often vary from one evaluation to the next in tewwhshe estimators evaluated and the
species analyzed, making it difficult to compareoamalternatives.

To complicate matters, managers may have objecthgond cost and
estimator performance when selecting monitoringgEams. For instance, in selecting
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a monitoring program, an agency may have objectsteh as minimizing bias and

maximizing precision in the estimation of the stedeiable(s), minimizing costs in data
collection, maximizing participation rate acrossrtpar agencies, or others.

Accounting for all of these objectives simultandgusequires going beyond the

previously developed metrics of estimator perforogan In addition, a complicating

factor is that objectives vary from agency to agemand the importance that they place
on each objective can vary also.

As an example of this challenge, the primary olbjest for management of
fisher Martes pennanti) in the state of Vermont (VT), USA are to maintan
sustainable population through an unbiased andsgreseasurement of the population
status and to maximize the opportunity for citisergagement and participation in data
collection. To carry out their mission and meedsth objectives, the Vermont Fish and
Wildlife Department (VFWD) collects daily harvestatd (the number of animals
harvested per day during the season) and necragiay(which provide information on
the age and sex of harvested individuals, desciiednlv). They additionally conduct
a survey of trappers on an annual basis to engagpdrs and estimate trapper effort.
With these data sources, each with an associatet] te@re are several estimation
approaches that can be used for long-term mongaoina state variable. With the
harvest totals alone, the index method is the aptyon. If trappers can accurately
identify the sex of the animal and classify aninmate age groups (first-year breeders,
older breeders, or other), the Sex-Age-Kill metead be employed without the benefit

of necropsy. With necropsy data collection, sorhéhe population reconstruction
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methods such as Fry (Fry 1949) and Downing (Dowrdifig§0), along with the index
and Sex-Age-Kill estimator (Eberhardt 1960) areilatée for use.

In a previous paper (Chapter 2), | evaluated thdopmance of these four
estimators with respect to bias and precision (@gg, how robust they were to errors
in the data collection process. | found the Sex-Kgl model had the best
performance in terms of estimating abundance, whide Fry and Downing methods
were the best performers in terms of estimatingufaon trend. However, this
evaluation may be insufficient for selecting a ntoring program because the state has
additional objectives, including cost and partitipa with trappers and research that is
external to the Department. Selecting the bestofetlata and estimation method
(monitoring program) is difficult. What is needesl an approach that scores the
alternatives with respect to the VFWD’s multiple mtoring objectives.

In this paper (Chapter 3), | demonstrate the wtiift decision analysis as a
means to address this monitoring program dilemg.including demonstrating the
analysis of the consequences and trade-offs oftsgjeone monitoring program over
another in terms of the multiple objectives oftersent for game species monitoring
an informed and justifiable decision can be deteedi In particular | use the
structured decision making approach (Gregory e2@l2, Conroy and Peterson 2013)
to decision framing and evaluation, which followeps know by the abbreviation
PrOACT (Hammond et al. 1999), included in the Rkage AMharvest (Cummings
and Donovan in preparation-b, Donovan et al. irparation). PrOACT refers to the
process of breaking a decision into its componemtspby identifying theProblem,
describing theDbjectives, enumerating th&lternatives, predicting th€onsequences,
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and evaluating th@rade-offs in order to identify the best availabkcidion. | use a
SMART analysis (simple multi attribute ranking tadue) as a decision analysis tool
for trade-off evaluation (Von Winterfeldt and Edwar1986), and demonstrate this
approach with a decision problem focused on thecieh of a monitoring program for
fishers in Vermont.

My objectives are to 1) Describe the decision pEoblof monitoring program
selection for VT furbearer management, 2) Desamilyesimulation of that problem and
its analysis using the R packag®&lharvest , 3) Determine the monitoring program
that will best meet the objectives for VT fishermagement, and 4) Compare the result
with the selection of a monitoring program basel@lgamn a Coefficient of Error (CE)

selection method.

3.3 Methods

3.3.1Fisher

The fisher is the largest member of tartes genus with males averaging 3.3
kg and 60 cm in length and females averaging 1.8akd 51 cm (Douglas and
Strickland 1987). Females produce their firstetittt 24 months and proceed to
produce one litter per year thereafter, with mélesoming reproductively active at age
one (Powell and Zielinski 1994). Breeding females/e been found to produce
between 1 and 4 corpora lutea annually, with amameeranging from 1.8 to 2.7 across
ages in studies in the northeastern U.S., but thligtigher for females in their prime
(Douglas and Strickland 1987, Van Why and Giulidg@1, Powell et al. 2003).

Offspring sex ratio has not been found to diffemir50:50 (Powell 1994). The annual
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recruitment (birth rate) of offspring into the pdgion averages between 1.18 to 2.16
across studies in the northeast (Paragi et al. ,186é4n et al. 2007, Buskirk et al.
2012).

Following successful reintroduction in the 1960@shérs have been harvested in
Vermont since 1974 with a five year trapping repeibetween 1979-1983 (Powell and
Zielinski 1994). The survival rate of fishers degermn their age and the trapping rate.
The annual survival rate without trapping rangesvben 0.7 and 0.8 for juveniles and
is greater than 0.9 adults (Krohn et al. 1994, Riol894). The estimated life span of a
fisher is 10 years (Powell et al. 2003). With piag, these rates can diminish to as low
as 0.34 (Krohn et al. 1994, Powell 1994). Fishensity has been found to range from
0.05 to 0.38 fisher per square kilometer, with @@rage value of 0.18 in habitat similar

to VT (Powell et al. 2003).

3.3.2Decision Problem

Currently there are two main elements to the dali@ation of harvested fisher
in VT. First, trappers are required to tag allcesises and submit an accompanying
record to the VTFWD within 48 hours of the closettod trapping season, and notify a
game warden, who collects and stores carcassdstheyi can be processed. These
records provide information on the number of haeesnimals per trapping season.
Second, necropsies are conducted on every harviestted collected by wardens. The
necropsy process enables managers to obtain dadkee @ye and sex of the fishers that
are harvested, as well as providing external rebeas the opportunity to collect
samples for toxicity, disease, nutritional or otlhesearch studies. In addition to the

harvest data, the Department conducts an annueéyswf trappers to solicit their
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knowledge and to collect data on annual trappifgrief The Department places value
on these external studies for increasing generawledge about fisher and providing
possible alerts that may trigger fisher populattbange.

However, conducting necropsies and trapper survegsiires a monetary
commitment by the VFWD to maintain equipment angpsut staff, in addition to
additional time investments from trappers who pidevihe carcasses, wardens who
collect harvest reports and transport the carcassasentral data processing area, and
volunteers who assist with the necropsy procesf.it8ecause of the time and money
that goes into the necropsy process in partictibe@re is some question for Vermont
game species managers as to whether the benefitsirgj necropsies as part of the
fisher monitoring program justify the costs, oraifsimpler monitoring program that
only collects harvest data (in the form of totahther harvested) is sufficient to meet
the management objectives. Based on this, thdemoto address is: How to monitor
the fisher population in Vermont in order to beshiave the objectives of the

monitoring program?

3.3.3Decision Objectives
The objectives | include for evaluating the altée fisher monitoring
programs fall into three categories: 1) maintaisustainable fisher population, 2)
minimize the cost of monitoring the species, andnaximize the public knowledge
and engagement (Table 1). Within each categoryifspalecision objectives were
defined, resulting in 8 total decision objectives $electing a monitoring program. To
guantify the assessment of these objectives, mealsier attributes were identified and

importance scores were given to each of the obgsi{iTable 1).
84



The objectives and their importance scores (wejghts elicited from the
decision maker or decision makers. The furbeam@ritoring program is designed and
administered by Chris Bernier, the VT Fish and \iféd Department furbearer
managers, with input from the Big Game lead androdtee. Therefore, | interviewed
the objectives and measureable attributes werelame via interviews with Chris
Bernier to represent the interests the VT Fish\fildlife Department wish to achieve
through fisher monitoring and the relative impodawf achieving each of them.

The interview process was completed in three stelps.the first interview
session | explained the structured decision maknogess, the role objectives play in
the analysis, and how objectives are structuredring the second interview | elicited
the objectives, their measureable attributes, dvel with and with-out necropsy
consequences for the objectives unrelated to estinpgerformance. Following this
interview Chris discussed the interview resultshviie VTFWD big game committee
and the objectives and their consequences wereataaged and the objectives weights
were elicited in a third interview.

Within the “maintain sustainable population” catggothere were five
objectives that the monitoring program selection affect, based on the type of data
collection that occurs, that are means to achievimgg sustainable fisher population
objective. They are: minimizing the bias in larabdstimates, maximizing the
precision in lambda estimates, minimizing the lmmegbundance estimates, maximizing
the precision of abundance estimates, and maximiie probability of detecting
disease in the population. The bias objectives measured by the bias in the
estimates, and the precision estimates are meabyrie: %' to 95" percentile range of
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the estimates (see Decision Consequences). Tleasdisdetection objective was
measured by the probability that the monitoringgpam selected will detect a disease
if one is present. These probabilities were @difrom Chris Bernier, the Vermont

Fish and Wildlife Department furbearer manager.

Under the cost category (decision objective 6)e tlost of the monitoring
program derives from staff time, travel costs, pqent, and data processing necessary
to track the status of the population and obtaformation from trappers, the public,
and academic institutions, which is affected bytipe of data collection that occurs.

The goal of the public knowledge and engagemeeigcay (decision objectives
7 and 8) is to have an informed citizenry that vgage of the management and
monitoring efforts undertaken for game species mameent and the status of the
population. There are two groups of individualattmanagers are concerned with, the
trappers who directly participate in the harvestfishers, and secondly academic
institutions and the general public that help iMdomanagement and communicate the
status of management and the species.

The weights for the objectives representing thatined importance of the
objectives were placed on a 100 point scale. Thstnmportant objective identified
was the maximize precision of lambda objective wath importance score of 20,
followed by precision of the abundance estimaté \aiscore of 18, bias in the lambda
estimate with a score of 16, bias in the abundastinate with a score of 14, and
disease detection with a score of 12. The costctibp was assigned an importance
score of 12. The trapper engagement objectivaueden importance score of 5 and
the academic and public engagement objective redeswn importance score of 3. A
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combined final score of 100 would indicate that @ternative was best for all
objectives, a score of zero that it was worst, anscore of 50 that an alternative’s

average outcome was half-way between the best arst alternatives’ outcomes.

3.3.4Decision Alternatives

3.34.1 Estimation Methods
There are a number of methods available for comgethe fisher monitoring

data into estimates of abundance that | evaluate, eamely: the index method
(indexEst ), two virtual population reconstruction methoddryEst and
downingEst ), and the sex-age-kill methodakEst ). Each of these estimators has
unique data input requirements, along with diffé@sts.

The harvest index method AMharvest uses the functiomdexEst , which
takes the annual harvest data (total or by agesaryl and an estimated harvest rate
model as inputs. This rate is normally based xmed opinion. Harvest indices
provide an indirect estimate of abundance usingntsowf sub-groups of the total
population (e.g. harvested individuals or only adndles) or the ratio of membership
in sub-groups (e.g. the ratio of adult females daltamales that are harvested). The
number of harvested individuals provides an indéxhe total population size, but
variability in effort and harvest success resulthis being an imperfect indicator of the
total abundance.

The estimators introduced by Fry (1949) and Downib@80) are known as
population reconstruction methods. These methads hack-calculation of harvest
data to produce year-, age-, and sex-specific amges. By summing over the age

classes, annual abundance levels are estimatedichyding survival rates that are
87



adjusted to reflect other sources of mortality ddiion to the harvest (Skalski et al.
2005). The difference between the different pojartareconstruction methods is how
they account for the survival and harvest ratefie method utilized by Fry (1949)
estimates the minimum population size by summifegitne harvest numbers of each
cohort, but does not account for additional soumesortality, producing only the
minimum population size as an index of the absohlteandance. In contrast, the
Downing reconstruction method (Downing 1980) does$ @stimate vital or harvest
rates directly, but uses a weak proxy of adult aliyt to reconstruct the pre-hunt
population by backward-addition of known mortalapd a minimal assumption of
unaccounted-for mortality (Downing 1980). The FrydaDowning population
reconstruction methods in Af&rvest use the functions fryEst and
downingEst , respectively.

The Sex-Age-Kill method is a life-history based hust that uses harvest
information and sex and age ratios to estimate abhendance of the population
(Eberhardt 1960, Roseberry and Woolf 1991, Millgpaet al. 2009). The Sex-Age-
Kill method in AMharvest uses the functiosakEst , which takes annual harvest
data by age group (young, subadults, recruits, \aatd), as well as estimates of the
proportion of mortality due to harvest, and the ygwer adult female as inputs.
Young are less than one year old, subadults artud years old but have not yet
reached breeding age, recruits first-year breetteas have been recruiting into the
breeding population, and vets include experiengeéders (individuals above the age
of recruitment). ThesakEst method estimates the adult male harvest rate tfand

total adult male population is estimated from thila male harvest rate and the
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proportion of the total mortality that is due torvest. The total adult female
population is derived from the SAK output of adséx ratio, and the total juvenile
population is derived from the total female addtireate and the assumed birth rate.
Summing the adult male, adult female, and younghdbaoce estimates produces the

total abundance estimate.

3.3.4.2 Monitoring Programs
| considered 6 alternative monitoring programs, steting of an estimation

method and the data collection process (Table 2)lamely, | evaluated the
consequences and trade-offs of a monitoring prograhincludes necropsy analysis
and trapper surveys (with necropsy) against thes@gmences of a monitoring program
that does not include conducting necropsies (witln@meropsy). When necropsies are
conducted, all of the above estimation methodsaaaglable for use, resulting in 4
alternatives with necropsy (N-Index, N-Fry, N-Dowgj and N-SAK). | assumed that
the necropsy data would be supplemented with amanmapper survey. Without
necropsy, age data is not available and sex daiteelg to be more error prone, which
eliminates the population reconstruction methodsy (end Downing) from
consideration, leaving the index method (WO-Indax) the sex-age-kill method (WO-
SAK), which must now rely on trapper or warden ggedp and sex classifications that
are less reliable because they are unconfirmedebyopsy. In both without-necropsy
alternatives, | assumed that annual trapper surveysld continue as the cost of
conducting them is compensated for by the benefitsaintaining trapper engagement

in fisher management.
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3.3.5Decision Consequences
The consequences of a decision analysis link tldedsion objectives and 6
alternative monitoring programs through predictioos the outcomes of each
alternative for each objective. The methods usedetermine the consequence of an

alternative varied from objective to objective.

3.3.5.1 Performance Evaluation (Decision Objectives 1-4)
Decision objectives 1-4 focus on evaluating eacthef6 monitoring program

alternatives with respect to bias (minimize) anelcmion (maximize) of abundance and
lambda estimates. To determine the consequencte®é objectives with respect to
the 6 alternative monitoring programs, | simulagefisher population, its harvest, and
data collection that produce a population that rogmthe VT fisher population, its
harvest, and the fisher monitoring program (boththwand without necropsy). |
determined the bias and precision that results femoh monitoring program using
population simulation and estimator evaluation fiores in AMharvest (Cummings
and Donovan in preparation-b). The primary funwdiofor simulating the true
population through time and its associated hardegasets werg@opMod (which
simulates annual population dynamics with discretme year time steps),
annualHarvestMod  (which simulates the harvest of individuals frggupMod),
and harvestDataMod (which incorporates error into the harvest datamfr
annualHarvestMod ). For a full description of the simulation st see
Cummings and Donovan (in preparation-b).

Briefly, popMod is parameterized with an initial population sizedd) by age

and sex for the first year census period, with sghent harvest, pre-breeding
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mortality, birth, and post-breeding mortality detémning the age and sex based count at
the next years census (Figure 1). | simulated itond similar to the VT fisher
population over a 30 year period using a hypothestart year of 1901 and an end year
of 1930. | assumed that the age at first repradnatas 1 and 2 for males and females,
respectively and the final age class representamhgosite age class of 10+ year olds.
The initial population (the seed) was:

Males = [535,267,191,154,129,112,99,88,78,69,59]

Females = [813,380,267,212,178,153,132,114,9%83,6

in all simulations, for a total of 4,277 individsal The harvest season setting
was assumed to be 31 days beginning on Decentbef gach year, with all ages
susceptible to additive harvest (harvest is 100&itiaeé to natural mortality).

The baseline birth rate model included an age amsity dependent effect, and
resulted in an average of 1.68 offspring per repctide female (ages 2-10; Table 3,
Model 1) which conforms with published rates foe thortheast (Krohn et al. 1994,
Van Why and Giuliano 2001, Buskirk et al. 2012)asksumed a 50-50 offspring sex
ratio. The baseline pre-breeding and post-breeslimgival rate models were simulated
with some small differences by age and sex suchthiacombined, annual rate was
similar to the reported without trapping survivate, which ranged between 0.7 and 0.8
for juveniles and is greater than 0.9 for adultsofiq et al. 1994, Powell 1994). My
baseline pre-breeding survival rates were 0.73nfiale and females juveniles, and
increased to a peak survival rate of 0.996 forysiar old males and females (Table 3,
Models 2 and 3). The baseline post breeding sarvates were 0.86 for female and
0.90 for male juveniles, with a peak survival rate0.98 for 8 year old females and
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0.99 for 9 year old males (Table 3, Models 4 andThe baseline harvest rate model
(used byannualHarvestMod ) was a function of simulated annual harvest effort
which ranged between 11.3 and 19.2 thousand tmgiptsnper year. This resulted in

average annual harvest rate of 0.154 across ageseans, with higher harvest rates for
young and old fishers and slightly lower rates 3oto 7 year old fishers (Table 3,

Models 6 and 7).

With the exception of the post-breeding survivderall rates (birth rate, pre-
breeding survival, and harvest effort) include Basticity in the model intercept term,
with values drawn from uniform distributions betwetvo values (Table 3.3). In
addition, annual harvest was implemented usinghinemial distribution with the
census abundance at each age as the number sfamicithe simulated harvest rate as
the probability of success. These inputs produbed50 simulated population trends
(Figure 2), with resultant lambda values that rahigem 0.96 to 1.04 (Figure 3).

Each simulation produced a different number of esi®d individuals by age,
sex, and year (a true value), to which | applidthevest data “error” via the function,
harvestDataMod , which introduces reporting error (the probabititat a harvested
animal is reported), sexing error (the probabititat a harvested male or female are
correctly classified by sex), and aging error (pnebability that a harvested animal of
age X is classified into each age group). | usad/estDataMod to simulate the
harvest datasets with and without necropsies. \Wétropsies, trappers must submit
carcasses to the state, so | assumed that alletldighers are reported, sexed, and age
correctly for the necropsy data set. Without npsies, the likelihood of reporting

likely remains high as pelts would still requirggang. However, aging of individuals
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to year would not occur and would be restrictedde group (young, adult) with some
error. Without carcasses, sexing would occur enfibld by trappers or wardens, which
increases the likelihood of error. | modeled a 98%orting rate, 10% aging error, and
10% sexing error rate for the without necropsy rtaymg alternative (Table 4). Age

errors were modeled with a distance-to-and-fromdass formula:

i of H(F—D)E
A = ;Af * ST oI U

whereA;, “age-to” is the number of individuals in the riégg data count for
aget, A is the number of truly harvested individuals fge# andE is the age error
parameter (see Table 4). | used age error paramaliges of -25 to produce no age
error and -2.791 to produce 10% error in aging f@g4). These represent the
expected errors in the data collection process ftloentwo monitoring programs (C.
Bernier, pers. comm., Vermont Fish and Wildlife Bament).

For each harvested dataset, | estimated the twedabce and lambda with four
alternative estimators, all of which input the aalnibarvest dataset. The harvest index
method inAMharvest uses the functiomdexEst , which takes the annual harvest
data and an estimated harvest rate model as inputsed a constant value of 0.15385
(the average harvest rate across age and sex dostdble population trajectory
simulation) as the harvest rate input toithdexEst method in all of my evaluations.
By using this harvest rate, | gave tinelexEst method the best possible chance of
providing an accurate estimate of the abundanchowitadjusting the harvest rate
based on changes to the population trajectoryrtefioage and sex effects. A manager

would normally not have this information at theiisgbsal, and would use expert
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opinion or output from another estimator to provikde approximate annual harvest rate
required byindexEst . As with the harvest index method, | used a @nisvalue
from (the true values on average from the stabjaulabion trajectory) simulation as
my inputs to thesakEst function. In this way | reported the best possibkpected
performance from theakEst method. The average total mortality due to hdrires
my simulation was 0.4702 and the young per aduiades was 1.128, which were used
as thesakEst inputs for total mortality due to harvest and ygurer adult females,
respectively. Both th&yEst function anddowningEst function take annual age
at harvest data as input, with tlewningEst function requiring a grouping age (the
age above which all individuals are summed intimgle count) input as well. | pooled
my data into 5 classes, 4 for animals of ages@utyir 3 and a fifth class for animals of
age 4 or greater for the Downing estimation methdde combinations of datasets and
analysis method represented the 6 alternative wramgt programs that are the basis for
the decision analysis problem (Table 5).

For decision objectives 1-4, | measured the biagbundance estimates under
each monitoring program by taking individual annalalindance estimates, subtracting
the true abundance and then dividing by the truendénce [(1\7 — N]/N) for each
simulation. The measurable attribute for biashi@ decision problem was the median
of the median values over the first 20 years (toigaknow bias in the Fry and
Downing methods in the most recent years of estimpbf the 250 simulations (Table
1), while the measureable attribute for precisi@smeasured as the range in tfedb
95" percentile median values over the 250 simulatiohsalculated median percent

bias for lambda estimates in a similar manner t® bias in abundance. First |
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calculated the annual change in the population famebda X; = Ni.1 / Ny) for true and
estimated abundances starting in year two. Theauanhias in lambda is then
calculated the same way the annual bias in abuedarzalculated, subtracting the true
lambda from the estimated lambda and dividing leytthe lambda([A — A]/2), then
finding the median over the analysis period (20rgeand simulations (250). | used the
5™ to 958" percentile range in error over the simulationsngsmeasure of precision in
the lambda estimate.

To ease interpretation, | converted the bias amtbtta measures into units
representing the numbers of individuals by which éstimation methods would have
erred relative to a true population size of 5,08@ividuals. In the case of lambda, |
used the resulting difference in population sizeravten year period assuming the true
population was stable. For example, a percent ibicabundance value of 1 would
indicate the estimated abundance was twice thelkabundance, while a percent bias
of -0.5 would indicate the estimated abundance @res half the actual abundance.
Using number of individuals as my units, bias valawé 1 and -0.5, would produce
abundance estimates of 10,000 and 2,500, err&@$00 and 2,500 individuals. A bias
in lambda of 0.001 indicates the estimated lambda@01 times the actual lambda. For
example a bias in lambda value of 0.001 would tesam an estimated lambda of
1.001 (i.e., population growth of 0.1% per year)ewlhe true lambda is 1.00 (i.e., the
population is stable). This bias in lambda of Q.00ould equate to an error 50
individuals over a ten year period with an iniedpulation size of 5,000 individuals.
When used in the decision analysis context | thkeabsolute value of these measures

with the desired direction being minimization. this way negative and positive bias
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(e.g., an error of 100 or -100 individuals) aretbweated in the same way (an error of
100 individuals) and given the same performanceesco

As a point of comparison, the performance of thenalance estimates and the
lambda estimates were also assessed with the Cleaffiof Error (CE) summary
statistic used by Millspaugh et al (2009). The @®Eabundance expressed as a

percentage calculated as:

CE= =% __ 4100, where
Ziszjleij
ny
y -~ 2
e _ 1o = (Vi Nij)
MSE - n lzll (y—l) H

y is the number of years being compargd= 40), n is the number of
simulations ¢ = 100),Nj; is the true population for simulatiorand yeay, andNi]- is
the associated abundance estimate. The CE in kmbzhiculated the same way, but
substitutingd;; and;; for N;; andN;;:

3.3.5.2 Disease Detection, Cost, and Public Engagement (Decision Objectives 4-7)

| developed estimates of the monitoring programaotp on disease detection,
costs, and public engagement through an intervie@hois Bernier of the VT Fish and
Wildlife Department. Based on the interview resmsshe probability of detecting
disease with a necropsy monitoring program was 7&3d, 20% if necropsy was not
conducted (C. Bernier pers. comm., Vermont Fish\afidlife Department, Objective
5, Table 5).

The cost of the monitoring programs was estimatede $120,000 with

necropsy and effort surveys, and $70,000 for théhowit necropsy and survey
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alternative (C. Bernier pers. comm., Vermont Fisl ®ildlife Department, Objective
6, Table 5).

The highest level of public engagement would beies@d by conducting
necropsies and effort surveys. The necropsy psoice®lves a number of volunteers
and academic institutions often participate toemilladditional data as well. This level
of participation involves the public and presents ag@portunity for communication
between game species managers and the public. e Mias not a natural scale
measurement that well-represented the degreehbgbublic engagement objective is
achieved, so a constructed scale between 0 andasOuged. A score of ten was
assigned to the best possible outcome for the ¢érappgagement and the public and
academic institution objectives, with the remainisgores relative to the best
alternative. The trapper engagement as well aptidic and academic engagement
objective received scores of 10 for the “with n@sy alternatives, and a 6 for the
without-necropsy alternatives (C. Bernier pers. somVermont Fish and Wildlife

Department, Objective 7 & 8, Table 5).

3.3.6Decision Trade-Offs — Decision analysis
For use in decision analyses, consequences ar@ aftganized into a
consequence table as shown in Table 5. A consequible stores the predicted
outcome of each alternative for each of the objesti
Once the consequences have been determined, theistod alternatives were
scored across all objectives, given their weigh®ng a SMART analysis (Simple
Multi-Attribute  Ranking Technique) (Von Winterfeldand Edwards 1986). I

conducted the SMART trade-off analysisAMharvest using thesmartDA function
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(Donovan et al. in preparation). There are threpssin this process, normalizing
consequences, applying objective weights, and suagnthe weighted results.
Normalizing consequences places the outcomes of @aihe objectives on a standard
scale such that the best outcome for each objectnaives a score of 1, the worst a 0,
and the mid-point between the best and worst outdsowould receive a normalized
consequence score of 0.5. This is accomplishedliaging the outcome of each
alternative for each objective by the range of ootes for each objective for
maximization objectives, and one minus this valuenfinimization objective.

Once the normalized consequences have been caltulbey are multiplied by
the objective weights for each objective, and suthifioe each alternative to provide a
final score for each alternative. The alternatiwth the highest total score is then the

one that fulfills the objectives for the decisianthe greatest degree.

3.4 Results

3.4.1Estimator Performance

Considering only decision objectives 1-4, | foumattthe best with-necropsy
monitoring program alternatives performed betteranththe without-necropsy
alternatives (Figure 3.7), with the N-Fry and N-Domg, WO-Index and WO-SAK
methods obtaining scores of 51.37, 53.52, 48.56235 However, within the with-
necropsy alternatives, which estimator performest depended on the objective. The
sex-age-kill (N-SAK) method when used with necroplsfa performed best for the
bias in abundance estimate objective (Table 5,ctibge 4). The N-Fry method was

best for the precision in abundance objective (@#&bhlobjective 2), and the N-Downing
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method produced the least biased and most presttmates of lambda (Table 5,
objectives 1 and 3). The N-Fry and N-Downing eat#s were often quite similar,
performing best or second best for the precisiombnndance, bias in lambda, and
precision in lambda objectives.

Based on the CE analysis of Millspaugh et al. (¢pdlugh et al. 2009), the
relative performance of the alternative monitoripgpgrams differed for abundance
estimation and lambda estimation. The CE in abocelaalues by estimation method
were: 52.1, 56.1, 22.7, 30.3, 22.1, and 26.1 fer NADowning, N-Fry, N-Index, N-
SAK, WO-Index, and WO-SAK methods respectively. thdut necropsy (and the
addition of errors in data collection), the CE ktlg improved for the sex-age-Kkill
method (see Chapter 2), whereas these errors ancddéction did not affect the index
method because it uses totals only. In terms pljadion trend, lambda, N-Downing
method performed best for CE in lambda (Figure Bhus, the selection of the best
monitoring program depends heavily on the weightingportance) of each of the four
monitoring objectives centered on bias and pregisiétdlowever, the remaining four

objectives must be considered.

3.4.2Decision Analysis
| used a SMART analysis to consider all 8 monitgrirobjectives
simultaneously. A score of 100 would indicate that alternative was best for all
objectives, a score of zero that it was worst, angtore of 50 that the alternative’s
outcomes averaged half-way between the best anst albernative’s outcomes across
all objectives. Given the objective weights in Teab, | found that N-Downing was the

best alternative with a score of 73.5, followedsely by the N-Fry alternative with a
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score of 71.4 (Figure 6). The N-Downing methodfqgrened well for most of the
objectives, ranking in the top two for all but thias in abundance and cost objectives
where it performs poorly. The Sex-Age-Kill with arepsy program was the lowest
scoring monitoring program alternative, given tigective weights in Table 1.

While there were some unexpected benefits of thieont-necropsy approach in
terms of estimator performance, necropsy providetierous benefits that resulted in
necropsy-based alternatives performing best oveiitle main benefits of the without
necropsy alternatives was their reduction in cddtwever, based on the importance
weights provided, the increased probability of dge detection gained by necropsy
compensated for the reduction in cost of the withwecropsy alternatives. After the
cost of the necropsy method is compensated foridBade detection the benefits of the
necropsy methods are accounted for by the benefiitgtizen engagement and the
availability of the Fry and Downing estimation medls accounted for in the increased
score of the N-Downing and N-Fry alternatives fetatto the without necropsy

alternatives.

3.4.3Sensitivity Analysis
| assessed how changing the weights for each olgeaffected the relative
ranking of the 6 alternative monitoring programisfound that the ranking of the N-
Downing alternative as the best method was rolmshanging the objective weights.
Considering only estimator performance (by setthmgweights of objectives 5-8 to 0,
while the weights on objectives 1-4 remained unged resulted in alternative scores
of 53.5, 51.4, 19.5, 37.3, 48.6, and 35.6 for thBdWwning, N-Fry, N-Index, N-SAK,

WO-Index, and WO-SAK alternatives respectively (Fgy7). While keeping the other
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7 weights constant (at the weights in Table 1),ghtion the bias in abundance
objective needed to be increased to an importarme gweight) of at least 20 in order
for the WO-Index alternative to score highest, amaeased to 35 for the WO-SAK
estimate to outperform the N-Downing estimate. Wmeight of the precision in
abundance objective needed to be increased to [k (thie other 7 objectives retained
their Table 1 weights) for the Fry estimation perfance to exceed the Downing
estimation performance.

When the performance of the estimation methodsigrasred (setting weights
for objectives 1-4 to 0 while objectives 5-8 retirtheir initial weights), the necropsy
alternatives all received an outcome score of 20the without necropsy alternatives
received a score of 12 (Figure 8). In order fa without necropsy alternatives to be
favored (while ignoring estimator performance)hertthe benefit of reducing the cost
must have received an increased importance scayeater than 20 (with objectives 1-
4 at zero, and 5, 7, and 8 at their initial weigjhts the combined disease detection and
engagement objective weights must have receiveaoae sof less than 12 (with
objectives 1-4 at zero, and 6 at its initial wejght

Therefore, robustness of the N-Downing alternativas due to necropsy
outscoring without necropsy overall for the objees unrelated to estimator
performance, and it being the best performing edion method when all estimation

performance measures are considered.

3.5Discussion
| demonstrated an approach for evaluating amorgraltive monitoring

programs, given multiple objectives for managing fisher population in Vermont.
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Multiple Criteria Decision Analyses like this onave been applied to many natural
resource problems (Linkov et al. 2006, MendozaMadins 2006, Huang et al. 2011,
Davies et al. 2013), with several applications tllkfe management (Peterson and
Evans 2003, Converse et al. 2011, Irwin et al. 2@dhverse et al. 2013, Runge 2013),
but none specific to management and monitoringaovdsted wildlife species that | are
aware of. My approach, however, could be usedthgragencies, with unique
objectives and monitoring program alternatives emasequence elicitation and
simulations specific to their species and managéseting.

| found that game species managers in VT shouldwtimecropsies and use the
Downing estimation method given the relative impode of fisher monitoring program
objectives. This result demonstrated some robasttteobjective weights, as it typically
required doubling the importance of objectives fawp another alternative to change the
ranking of the alternatives. Therefore, managarshe confident that the cost of
conducting necropsies is warranted based on thétonioig program objectives and their
relative importance, particularly given that theedise detection and citizen engagement
benefits are perceived to provide greater value tha reduction in cost from cessation
of necropsies.

There are numerous examples of the benefits oéasing engagement. As an
example, a single year worth of necropsy analysigiged data collection opportunities
for two college research projects (Bernier and Adl12). A Johnson State College
study examined thE. coli present in the digestive systems harvest animais ieffort to
develop a library oE. coli strains by species for subsequent use in idengfthe
presence of games species in watersheds. Resesirdme Green Mountain College
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also collected tissue samples to conduct populgsmetic analysis and to test for canine
Parvo virus. Additional studies have examined mgrtevels in fishers (C. Bernier,
pers. comm., Vermont Fish and Wildlife Department).

The selection of the Downing method from the nesyogupported estimation
methods is largely due to its more consistent egés The consistency of the Downing
estimation method across simulations and changespolation growth rate was likely
due to the pooling of adults and the calculatioalmindance using a cohort approach that
considers observations across multiple years. @Guntpobservations over multiple
years likely dampens the impacts of an unusualyearth of data. However, while the
Downing estimation method performed best for tHesket of objectives and the
objective weights specified, this method is strgragid negatively biased in its estimate
of abundance, and it is more inaccurate at estiggtopulation status in the most recent
years (Davis et al. 2007). If there is a way tmpensate for this poor performance
through the creation of another alternative, théetter alternative may be found than
those examined here. For example, perhaps thagexkill method can be used to
provide abundance estimates for the most recemntiyeanjunction with the Downing
method estimates for past years. Alternativelgnethough the Downing abundance
estimate is strongly (negatively) biased, the @ieaiis good; thus it may be “predictably
biased.” Perhaps a formula for a robust positdjesiment, on the order of doubling, to
the Downing method’s abundance estimates can blfthat eliminates its negative
bias, or the abundance can be estimated through d#ta collection and analysis

methods.
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The confidence in selection of the Downing estioratnethod found here would
not be possible from the coefficient of error (Ealuation alone. The coefficient of
error evaluation revealed a strong trade-off betwtbe ability to estimate abundance and
the ability to estimate lambda. Downing and Frg tee best CE for estimating lambda,
but the worst CE for estimating abundance. Howewerrelative contributions of bias
and precision to the evaluation of estimator pentomce were also unavailable by using
the CE method alone. The explicit specificationvbft estimation performance
measures to consider, and how important they acditates clarity in the selection
procedure and the subsequent decision that is Ualbleafrom a statistical measure of
performance alone.

Using a structured decision approach in naturalue® management is
challenging, but the benefits may be great (Gregosl. 2012, Conroy and Peterson
2013). Selecting the appropriate objectives reguinanagement agencies to reflect on
the goals of management and their values. On@rtgs are specified, an additional
challenge is how to measure performance of eaemaltive with respect to each
objective. Based on conversations with the VFWDhagers, | selected median bias and
5™ to 95" percentile range as the performance measurestiaraor abundance and
lambda estimation quality. However, there are n@grnyormance measures available for
evaluating population estimator performance, sicimaan square error, root mean
square error, absolute error, raw error, r-squakéd, and more (Willmott 1982,

Willmott and Matsuura 2005, Cummings et al. 201The selection of performance
measures that accurately capture the objectivestohation is important, as the outcome
of the evaluation can depend on what performancesuores are selected (Cummings et
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al. 2011). There may also be more relevant pedoce measures for the other
objectives, such as a telephone survey that meatha&knowledge and perception of
fisher management for the general public, acaderarcd trappers that quantifies the
outcome of the citizen engagement objective, drextistudy of disease detectability to
guantify the outcome of the disease detection tilbgc

There are also other ways of quantifying the re¢éabienefit of outcomes relative
to decision objectives. | assumed that the vakresed from the achievement of an
objective is linear with respect to a change indhteeome of a measurable attributes
value for that objective. That is, if the measiegatitribute (e.g., probability of disease
detection) doubles, the value derived from the@aament of that objective doubles. It
is possible that this linearity does not accuratefiect the perception of value, in which
case alternative value functions should be usezhus® the selection of value functions
can impact the selection of wildlife management eil®@dCummings et al. in review).

This decision analysis approach to monitoring peogselection can provide
clarity where typical evaluation procedures ar@nausive, as the CE evaluation was
here. This approach also provides transparenthetprocess, as well as a tool for
managers to validate and communicate why a paaticnbnitoring program was chosen.
Furthermore, due to the flexibility of tteMharvest package, this type of decision
analysis can be repeated with other species, pibpuidemographics, harvest rates, data
collection regimes, and estimators to provide insigto many wildlife management

decisions.
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Table 3.1List of fisher monitoring program categories, objetives, the desired direction for the objectives, he the objectives are measured, and
their relative importance.

Category Objective Direction Measureable Attribute Weight
(relative
importance)

Maintain 1. Precision of lambda estimate Maximize™ t6 95" percentile range of mediar20

;lé;ﬁ::t?:rl]e 2. Precision of abundance estimate Maximize" t595" percentile range of median 18

3. Bias in lambda estimate Minimize  Median errolambda estimate 16
4. Bias in abundance estimate Minimize  Median emr@bundance estimate 14
5. Disease detection Maximize Probability of datect 12
Cost 6. Cost Minimize  Thousands of dollars 12
. Public knowledge 7. Trapper knowledge and engagement  Maximize Qactsil 0-10 scale 5

~o and engagement 8. Academic and public knowledge andMaximize Constructed 0-10 scale 3

engagement
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Table 3.2 List of the alternatives, their short names, input data, and the estimation method they usasith and without necropsy analysis

With Necropsy With Necropsy With Necropsy With Necropsy Without Necropsy - Without Necropsy -

- Index - Fry - Downing - SAK Index SAK
Short N-Index N-Fry N-Downing N-SAK WO-Index WO-Index
Name
Data Type Annual Harvest Annual Harvest Annual Annual Annual Harvest Annual Harvest
Count Count Harvest Count Harvest Count Count Count
Age at Harvest  Age at Harvest  Age at Harvest Adgaavest Age Group of
Harvest with error
Sex of Harvest ~ Sex of Harvest  Sex of Harvest Sdiavbest Sex of Harvest with
error
Estimation Index Fry Downing Sex-Age-Kill Index Sex-Age-Kill
Method
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Table 3.3 List of models used for simulating the $her population.

Model Name Model Type Transformation ~ Stochastic aRwters

1. Birth Rate Birth rate Log Yes, by simulation intercept =U(0.245,0.375)
AGE = 0.09
AGE2 = -0.008

2. Pre-BS Females Pre-breeding survival females  itLog Yes, by simulation intercept* =U(0.875,0.1.11)

3. Pre-BS Males Pre-breeding survival males Logit es,Yoy simulation
4. Post-BS Females Pre-breeding survival females gitLo No

5. Post-BS Males Pre-breeding survival males Logit No

Effort Effort covariate (simeffort) None Yes, byrsilation
6. Harvest Rate Annual harvest rate females Logit Yes, annually
Females

7. Harvest Rate Annual harvest rate males Logit Yes, annually

Males

AGE = 1.65
AGE2 =-0.16
intercept = intercept*
AGE=15
AGE2 =-0.125
intercept = 1.85
AGE =0.45
AGE2 =-0.028
intercept = 2.25
AGE=0.4
AGE2 =-0.02
intercept =U(11.3,19.2)
encept =-1.777
simeffort=
0.0325
AGE =-0.325
AGE2 =0.03
cept =-1.9
simeffort=0.0325
AGE =-0.25
AGE2 = 0.02
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Table 3.4 List of models used in simulating the datcollection process with and without necropsy

Monitoring  Model Name Model Type Transformation Stochastic  aRwaters
Program
With 100% Reporting reporting rate None No intercept =1
Necropsy Rate Females females
(N) 100% Reporting reporting rate males None No intercept =1
Rate Males
No Error — gender None No intercept =1
Females classification
females
No Error — Males gender None No intercept=1
classification males
No Age Error age error polynomial No -25
Without 95 % Reporting  reporting rate None No intercept = 0.95
Necropsy Rate Females females
(WO) 95% Reporting  reporting rate males None No intercept = 0.95
Rate Males
10% Error — gender None No intercept = 0.9
Females classification
females
10% Error — gender None No intercept = 0.9
Males classification males

10% Age Error age error polynomial No -2.791
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Table 3.5 Consequence Table. The outcome of eadtemative is listed for each objective, with the lst result for each objective in bold.

Alternatives

Objective N-Index  N-Fry N-Downing N-SAK WO- WO-SAK
Index

1. Precision of lambda 5,733 4,992 4,762 13,019 5,471 10,340
estimate
2. Precision of 2,914 1,563 1,747 3,606 2,815 3,247
abundance estimate
3. Bias in lambda 124 46 37 94 67 57
estimate
4. Bias in abundance g7 2545  -2338 5 201 -67
estimate
5. Disease detection 75% 75% 75% 75% 20% 20%
6. Cost $120,000 $120,000 $120,000 $120,0870,000 $70,000
7. Trapper knowledge 10 10 10 10 6 6
and engagement
8. Academic and public 10 10 10 10 6 6

knowledge and
engagement
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edata collection
ereporting rate
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Figure 3.1 Simulated Life Cycle. An annual censusccurs at which time the true count of the

number of individuals is determined. 100% of indivduals survive from the time of the census until
the harvest occurs, at which time all mortality isassumed to be due to harvest. Harvest is
determined by the simulated harvest rate, with erros resulting in the count of the harvest depending
on the error model used. Following the harvest ingiduals may survive until their birthdays based

on the pre-breeding survival rate, at which time tkey advance in age by one year and reproduce
based on the birth rate. Following the birthday idividuals advance to the next census depending on
the post-breeding survival rate.
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Figure 3.2 Simulated Population Trajectories. Eacline shows the true population size by year for
each of the 250 simulations.

o
')
|
o
=
& 8
o
o0 W _|
G"\_
bl
)
L 2 4
u’j_
D_

| | | | |
0.96 0.98 1.00 1.02 1.04

Lambda

Figure 3.3 Histogram of simulated population growthrates with the number of population growth
rates from the 250 simulations that fall in each ofhe 16 bins from 0.96 to 1.04 by 0.05 increments.
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Figure 3.4 Example age classification rate for ingliduals that are truly 5 years old. The y-axis
shows the rate at which 5 year olds are classifiedto each of the ages shown on the x-axis. Thetlef
panel show the rates for no error in age (0% age esr). The right panel shows the rates with age
error included (10% age error).
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Figure 3.5 Coefficient of Error in abundance (Top Rinel) and lambda (Bottom Panel) for each
alternative monitoring program, where lower scoresndicate better performance. A CE of zero
would indicate perfect performance. Each panel cdains a bar for each of the six monitoring
program estimation methods (N-Downing, N-Fry, N-Inéx, N-SAK, WO-Index, and WO-SAK from
left to right).
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Figure 3.6 Decision analysis scores by alternativaonitoring program (N-Downing, N-Fry, N-Index,
N-SAK, WO-Index, and WO-SAK from left to right) wit h the contribution from each objective from
objective 1 to 8 (top to bottom) as stacking. A bher score indicates better performance. A scord o
zero results for an alternative with the worst outome for all objectives, while a score of 100 resslif

an alternative scores the best for all objectives.
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Figure 3.7 Decision analysis scores by alternativaonitoring program with the contribution to the
score from estimation performance only stacked fronobjective 1 to 4 top to bottom. Objectives 5-8
were given weights of zero, while the importance eces for objectives 1-4 remain the same. A higher
score indicates better performance for an alternatie. A score of zero would result if an alternative
was worst for each objective and 68 if an alternatie was best for all four.
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Figure 3.8 Decision analysis scores by alternativaonitoring program with the contribution to the
score from objectives 5-8 only stacked from objeate 5-8 top to bottom. Objectives 1-4 were given
weights of zero, while the importance scores for ¢éctives 5-8 remain the same. A higher score
indicates better performance for an alternative. Ascore of zero would result if an alternative was
worst for each objective and 32 if an alternative a&s best for all four.
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CHAPTER 4. THE VALUE OF MAPS IN NATURAL RESOURCE
MANAGEMENT: AN APPLICATION OF EXPECTED VALUE OF SAM PLE

INFORMATION

4.1 Abstract

Many of today’s most pressing challenges such amat® change, human
population growth and development are often asdesgethe landscape scale.
Consequently, demand for spatially explicit sci@ntinformation has increased.
However, mapping scientific information is costlydaoften includes many sources of
uncertainty. This creates challenges when evalyathether a desired management
outcome will be achieved and whether the benefitaapping are cost effective. Here,
we apply the Expected Value of Sample Informatiorthndology to spatial
information analyses as a means of addressing sssti@incertainty and cost. The
method: 1) allows an assessment of the benefitsvestment in improved mapping
efforts, 2) enables an analysis of the relativagaif mapping efforts in comparison to
acting with current knowledge, and 3) allows congmars of one potential mapping
effort with another. We demonstrate the method wiveral hypothetical examples
that involve the use of maps in natural resouragsdn making. As these examples
illustrate, using this method allows identificatimf a map’s value, enabling the
selection of mapping efforts that will be of gresitealue and efficient allocation of
budgets to the most beneficial projects.
Key Words: Value of Information, Spatial AnalysiEVSI, Landscape Ecology,

Structured Decision Making, Applied Science, Magpin

124



4.2 Introduction

Applied landscape ecology is a key component otessful natural resource
management (Poiani et al. 2000, Hilty and Grove3820 Managers face challenges at
multiple scales, but many of the most pressinglehges such as climate change,
human population growth and landscape developmeetate at the landscape scale
(Schwartz 1999). Addressing these challenges megjaianagement considerations not
just at the individual species scale, but also aystem scale (Schwartz 1999).
Consequently, demand for spatially explicit sci@ntinformation has increased,
enabling land managers to evaluate alternative genant actions and choose an
action that optimizes their management goals (Nsial. 2012).

There are multiple examples of the need for spatidrmation in natural
resource management. Spatial information is esdantthe design and selection of
sites for reserve networks used to maintain biaditse (Csuti et al. 1997, Araujo and
Williams 2000, Cabeza and Moilanen 2001). Spath&rmation is often used to
determine the risk of colonization by invasive spedGormley et al. 2011), or the
probability of colonization and range expansionwaldlife reintroductions (Carden et
al. 2010, Cook et al. 2010, Zimmermann et al. 201Maps provide the spatial
information for effective habitat management to m@in ecosystems and target
populations.

While spatial information may be used in a varietyecological applications,
its value in natural resource management is rel&tethe reliability of the spatial
information. Many sources of uncertainty existmapping, including the size of the
minimum mapping unit, the bias and precision ofssification algorithms, image
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registration error and discontinuity in scale bedswapatial coverages, and the resource
in question (Aerts et al. 2003). These uncertasntesult in outcome uncertainty, or
uncertainty that a management decision (based ®rnuticertain spatial information)
will produce the desired management outcome. HRetance, in reserve design
problems, the reserve selection algorithms can prdguce recommendations that are
as accurate as the spatial information upon whiwy tare based. The resource
manager then uses this information to determineexample, which parcels of land to
protect within the reserve system to maximize cora®n of a target species. The
success of this action, in part, is determined hmy quality and accuracy of initial
spatial data.

While reducing the error and uncertainty in spaidibrmation can improve
management decisions, an important limitation tatigp information is the cost of
obtaining that information. Natural resource mamgnt often occurs on a limited
budget. If managers allocate too much of theirgetido spatial information now, they
may be left without the means to conduct on-thasgdomanagement in the future.
However, if managers allocate too little of thaudiget to spatial information, they may
use highly uncertain information, or not includdommnation that would be useful in
choosing among alternative management options. tW8heeeded is a tool that allows
managers to weigh the costs and benefits of incrgasap accuracy with the costs and
benefits to the resources that are being managed.

In this paper, we demonstrate how a decision arsafygmework called Value
of Information (Vol) can provide an estimate of thalue of spatial information to
managers. For clarity, we use “map” as a termafsisual representation of spatial

126



information and use “spatial information” and “mapiterchangeably as terms for
spatial input to management decisions. Vol analgsenpare the expected outcome of
taking an action or making a decision with addidbmformation to the expected
outcome of taking an action or making a decisiothwhe current, more limited set of
information (Morgan and Henrion 1990). A Vol amafydetermines how much better
the outcome of the action or decision is expeabeloet with the additional information,
where the value of the information is equal to itherovement in the outcome when
the information is used. The type of Vol analysis demonstrate is referred to as
Expected Value of Sample Information (EVSI) whehe tvalue of the information
contained in a sample (e.g. a survey, map, fietd,ddc.) is being determined.

As a hypothetical example, suppose one is managmgpillway of a dam for
farm irrigation purposes, with a goal to maximizarvest. Each day, the manager
decides whether to release water. The decisioelease water depends on several
factors, including the current condition of theldidwhich is known) and the future
condition of the field (which is unknown and depsrah future precipitation). The
decision may be improved if the manager had inféionaabout likely precipitation in
the future. The uncertainty in upcoming rainfahcbe reduced by producing a long
term weather forecast. The Vol contained in thativer forecast is measured as the
difference between the expected outcome of spillwenagement with the weather
forecast and the expected outcome of the spillwapagement without the forecast.
For example, if the farmers lost $5,000 worth adps due to spillway management
without the weather forecast, and lost $1,000 duesgillwvay management with a
perfect weather forecast, the Vol in the weatheedast is $4,000. Technically, this is
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called the expected value of perfect informatio’VRE if the forecast is 100%
accurate, without error (Morgan and Henrion 199Uherefore, the spillway manager
should be willing to pay up to $4,000 for the wesitforecast data. With Vol analysis,
the change in outcome (measured in dollars ingk@&mple) is the expected value of
obtaining the additional information. Using Voladysis, the manager can determine if
the weather forecast is a worthy investment. & ¢ost is greater than the Vol, the
forecast isn’t worth it, and vice versa. Unlikestbxample, predictions are rarely 100%
accurate. Most predictions are imperfect and aset on a sample of the truth. Using
the VOI technique described with samples, wherarife@mation may not be perfect,
produces an EVSI.

The EVSI approach can similarly be used to proadestimate of the value of
spatial information for natural resource managemmnposes. By predicting the
expected value of obtaining additional spatial infation, managers can better target
their management and research budget to acquitalsipdormation when it improves
the expected outcome of their management decisibtese we demonstrate how the
EVSI methodology can inform the use of spatial diagers for natural resource
management. Our specific objectives were to: rbyiBe a framework for evaluating
the value of developing or improving spatial inf@tnon, and 2) demonstrate flexibility

in the framework by applying it to natural resouns@nagement scenarios.
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4.3 Methods

4.3.1Framework for map value of information

We considered management decisions that couldtiesahe of two outcomes
for a given management objective: 1 = successftdame, 0 = unsuccessful outcome.
For example, a wildlife manager may be tasked wietking a decision that will lead to
the recovery (1) or failed recovery (0) of a resayisuch as a species of concern. The
management objective (or the goal the manager widbe achieve) includes a
measureable attribute (e.g. species populationstadlong with a target, standard, or
threshold for that attribute. For example, the agament objective may be average
occupancy probability (the measurable attributechéng 0.60 (the target) across an
area of interest. In mapping terms, each mappmg(a.g. a pixel or polygon in the
spatial data layer) contains a probability of o@ugy which depends on the landscape
conditions associated with the pixel; the target 0060 represents the average
probability of occupancy across all mapping unitghe study area (for example see
Noon et al. 2012).

In addition to metrics for the decision outcomes] ¥nalyses also require an
estimate of the current resource status in relatmrithe target.  There is often
uncertainty about this status. Continuing our eplamif the last species status
assessment was some time ago, the species stayusane changed across the entire
study area, or disproportionately in its distributi across space. A consultant
specializing in occupancy modeling may be availabldevelop a new occupancy map
of the species that can resolve some of the umegrtabout the current status.

However, obtaining this map requires paying thesattant’s fee.
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The manager has two linked decisions to make i& $henario. The first is
whether or not to pay money for a map to deterntingecurrent status of the resource
(with its associated error), and the second is adrebr not to take any management
action based on that assessment. The managenteamau(successful, unsuccessful)
of these decisions is affected by three sets obgbilities. The first set is the
probability (P) that the predicted, current stgf@S) is at or above the targeP(PS)).
P(P%) is the probability that the predicted status é&otwv the target, which is 1-
P(PSy. Although the actual status (AS) of the resoutoes not change based on the
predicted status, thprobability that the actual status is at or above the target
conditional on the predicted status. Consequetiiyy second set is the probability that
the actual (but unknown) status is at or abovetdhget, P(AS) or below the target,
P(ASy), given the predicted status. A natural resount@nager is specifically
interested in these probabilities as they relatectly to the outcome: unsuccessful (0)
or successful (1). The third set is the probabtlitat any management actions that are
taken will successfully alter the true, currenttisdato achieve an outcome of 1
(recovery), designated by P{M

The first two probability sets (predicted and atitatus relative to the target)
can be depicted and calculated using a conjoinbghtity table (Table 4.1a). The
table is populated with two inputs: (ft) which is the probability that theredicted
status (symbolized above as PS) is correct, anda(2yhich is the probability that the
actual status (symbolized above as AS) is at or above the tdhgesholdt. If ais the
marginal probability that thectual status achieves the target, &-is the marginal

probability that theactual status is below the target. Given thactual target is
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achieved, the joint probability that tipeedicted status also achieves the targetas p,
and the joint probability that thpredicted status is below the target i& * (1-p).
Similarly, given that the actual target is not aefeid, the joint probability that the
predicted status achieves the target is () * (1 - p), and the joint probability that the
predicted status is below the target is (B) * p. From this information, the first set of
probabilities can be calculated. The marginal phality that thepredicted status is at
or above the target is:
P(PSsp) =ap+ (1 —a)(1 —p) Eq 1.

and the marginal probability theeedicted status is below the target is:

P(PS.;)) =1 —-ayp+ a(1 — p) =1—P(PS5p). Eq 2.

From here it is straightforward to calculate theosel set of probabilities,
which are conditional probabilities, by dividingetfoint probability by the appropriate
marginal probability. For example, the conditiopabbability that theactual status
achieves the target, given theedicted status achieves the target i /P (PSs;).

Table 4.1b puts these probabilities back into tleagement context. When
the species is truly at or above the target, theagament objective will be met and the
outcome will be successful; otherwise it will besuncessful. Thus, the marginal
probabilities P(AS) and P(AS) represent the probabilities of these two outcqgmes
respectively. When the prediction is that the sggeachieves the target, a manager will
not take a management action; when the predicBothat the species is below the
target, a manager will take action. Thus, the matgrobabilities P(P9 and P(PS)
represent the probability of no management actrahthe probability of management

action, respectively.
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Note that each column in Table 4.1a (conjoint tplaled 4.1b (management
implications) contains an assessment error. Wherattual status is at or above the
target but is predicted to be below the target,amager will take action even when
action is not required (a false assessment). THEseltant cost is the cost of the
unnecessary management action. When the actuak st below the target but is
predicted to be at or above the target, the lacgkaiagement is an error resulting in an
unsuccessful outcome (a false assessment). Troisiedetrimental in that the species
does not achieve the target; associated costs isf @lror may include legal
ramifications, loss of ecosystem services, furthemline of the species, etc.

Improving the accuracy of the predicted statusughospatial information such
as a map could reduce the likelihood of both falssessment errors described above.
Thus, the first decision a manager faces is whetihggurchase a map. The second
decision is whether to manage or not, where theesscof the management action is
our third probabilistic event. These decisions gdbabilistic outcomes can be
collectively represented as a decision tree (Figug. A decision tree is a visual
representation of the outcomes of a decision, ateseof decisions, and the
probabilistic chain of events that must occur teutein each possible outcome. Our
primary interest is in whether the natural resoum@magement objective is met (1) or
not (0) while minimizing the cost associated withicle outcome. The decision tree
allows us to compute the expected value of a deti® purchase a map in terms of
these objectives.

To demonstrate calculating Vol of a map (Figure)4vte consider the case
where a manager must decide whether to purchasgpaapredict the species status
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across the area of interest (“Purchase Map?”). Ttnasfirst split is whether a map is
purchased or not. For this example, we assumedsieof spatial information and its
processing, i.e. the map cost is $2,500. The upperches of the tree following this
split depict the information necessary to deterntime expected cost given the map,
while the lower branches of the tree depict theeeigd cost of carrying on using
current knowledge without the addition of a magr &ur calculations, we will assume
that the probability that the predicted statusasrect, p using current information is
0.6, whereap = 0.9 with a purchased map that has greater mayraxy. A manager
assigning these values should reflect on their pestlictive skills with the current
information at their disposal, as well as the ptae accuracy with an improved map
to arrive at these values. We will also assumeptiobability the actual status is at or
above the target threshola,= 0.75. Thus, P(A9 = 0.75, and without management
there is a 75% chance of a successful outcomea&fo chance of an unsuccessful
outcome.

Based on these inputs, we calculate the first $gbrobabilities which are
associated with the predicted status probabilitgeso(Figure 4.1, Probability Set 1).
With the purchased map (upper branches of the idacieee following the “Purchase
Map?” split), the probability that the predictedtsis is at or above the target, P{PS
0.9*0.75 + (1-0.9) *(1-0.75) = 0.7 (Equation 1) atiet probability that the predicted
status is below the target, P)Sis then 0.3 (Equation 2). With the current
information (lower branches), the probability thta¢ predicted status is at or above the
target, P(PS) = 0.6*0.75 + (1-0.6) *(1-0.75) = 0.55 (Equatioh dnd probability that
the predicted status is below the target, RjRSthen 0.45 (Equation 2).
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Based on these predictions of species status, Hreager decides whether to
conduct management or not. If the prediction & the species is already at the target,
the manager would decide not to take action (“Nd Kigtion”), while a prediction that
the current status is below the target resultseriding to take the management action
(“Mgt Action”). For this example, we assume thétke tcost of management, if
undertaken, is $20,000.

Once the management action is selected, the néxdf ggobability nodes in
Figure 4.1 represents the probability of the acstatus being above or below the
target, given the predicted status. Since the predicted status differs depending on
whether a map is purchased or not, these probabiliill differ between the upper and
lower branches of the tree. We focus now on the twpmost branches of the tree
(Figure 4.1), where the predicted status suggeésistarget has been met and no
management action is necessary. For the upper lbnasth leading to leaf tip i, the
probability that the actual status is at the tar€AS;), given the predicted status,
P(PS; ), is at or above the target can be expressed ianymways:

P(PSs¢)|P(AS5¢) * P(ASsy)
P(PS5;)|P(AS5;) * P(ASs) + P(PSs¢)|P(AS<:) * P(AS<t)

P(ASzt)|P(PSzt) =

axp  0.675

= = = 0.964
P(PSs,) .7

The second expression demonstrates the applicafioBayes’ Theorem to
compute P(AS) | P(PS: ), but the third expression can be easily intuiredn Table
4.1. The Bayesian formulation, however, makeseiarcthat the hypotheses of interest

to the manager are the probability that the acstetius is above or below the target.
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This upper most tree branch results in a successiicome (1), and the cost incurred
by the manager is the cost of the map (Figureldat tip i).

Similarly, the probability that the actual statgsless than the target, P(AS
given the predicted status, P{P¥ is at or above the target can be expressedaimym
ways:

(PS>)|P(AS<y) * P(AS<t)

PUSOIP(PS20) = p P TP(AS D) * P(AS.0) + P(PS.)IP(AS=D) * P(AS<0)

_A-p(l-a) (1-09)(1-075)

= 0.0357
P(PS.,) 0.7

This tree branch results in a failed outcome (@Y the cost incurred by the
manager is the cost of the map, plus the costilidao meet the resource objective,
including economic loss, loss of ecosystem seryiaad potential legal costs (Figure
4.1, leaf tip ii). The remaining actual status ditional probabilities in the tree (Figure
4.1, probability set 2) are calculated in a simiteanner.

In cases where management action is called far RES;)), the final set of
probability nodes (Figure 4.1, Management Succexmesent the probability of the
management action successfully altering the spesta#ss. This is the third probability
set used in the Vol analysis. We assume thatrbigapility of successful management
PMs) is 0.8 and is independent of the other two prditgbnodes, making the
probability of failed management 0.2 for our examplFor example, if the management
is habitat manipulation, there is an 80% chancettirmmanagement will be successful
in moving the attribute (occupancy) to the tar@e6Q).

We now focus on the two bottommost branches inttpe half of the tree

leading to leaf tips iv and v, where the predicteatus suggests the target has not been
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met and the actual status is below the target. dtteome and costs associated with
these tips depends on whether the management attemessfully altered the actual

status. When management is successful, the lissuluccessful outcome (1), and the
cost incurred by the manager is the cost of the amapthe cost of the management
action (Figure 4.1, leaf tip iv). When managemeninsuccessful, the result is a failed
outcome (0), and the cost incurred by the managérel cost of the map, the cost of the
management action, and the cost of failing to ntleetresource objective, including

economic loss, loss of ecosystem services, andhipaltéegal costs (Figure 4.2, leaf tip

V).

We now demonstrate the calculation of EVSI for gmssing the decision tree
in Figure 4.1 and inputa = 0.75 (the probability that the actual statuseexs the
target),p = 0.9 with a mapp = 0.6 without a map (the probability of correclgsessing
the actual status), andN®) = 0.8 (the probability of successful managemamg. also
assume some costs: a map costs $2,500 to acmargggement costs total $20,000,
and the total costs of failed recovery (economss)dost ecosystem services, and legal
costs) are valued at $100,000. The cost of anfytipacan be calculated using the
appropriate set of these three values. For exartievalue of leaf tip iv is the cost of
the map and the management ($2,500 + $20,000 5@2Ras there is no cost due to
failed recovery. After filling in the costs for @aleaf, we determine thexpected cost
(EC) of each leaf by multiplying the leaf costs thwe probabilistic chain of events
leading to the branch node. For example, the @gpdecost of leaf iv in Figure 4.2 is
$22,500%0.3*0.75*0.8 = $4,050, where 0.3, 0.7 anél @re the MS.), PAX) |
PP, and Pis) respectively. These expected costs are calclfateeach leaf of
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the decision tree and summed for the top (map)bartbm (no map) branches of the
tree.

The expected cost of purchasing the map, $15,506alculated by summing
the EC’s across the top (map) branches of the ffbe. expected cost of not purchasing
a map, $22,000, is calculated by summing the EE&‘'sss the lower (no map) branches
of the tree. The difference ($6,500) provides é&xpected difference between the
outcome of the decision using current knowledgessidg the map.

If a manager doesn’t yet know how much the map wihkt, they would be
more interested in calculating the total value mfbimation the map provides. To
calculate the EVSI provided by the map, we repeatabove calculation as if the map
was free (i.e. $22,000 - $15,500 + $2,500 = $9,00bi)is determines the gross value of
information rather than the net. Using this EV&Inanager can directly compare the
expected $9,000 benefit the map provides to a d¢@mis price quote for producing
the map, and select to purchase the map if it desssthan the $9,000.

While we know it is unlikely for a map to be perfea manager may be
interested in the maximum benefit a map could mlevi By settingo=1, i.e. making
the map perfect, which sets PGS P(ASy = 0.75, the manager can determine the
maximum benefit of a map relative to current knalgie. Settingp=1 changes the
expected cost of purchasing the map to $12,50@ratian $15,500, making the EVPI
$12,000 ($22,000 — $12,500). Based on this EVRItha assumptions that went into it
the manager knows that at best a map can be wb0@0, so any map costing more

than this isn’t even worth considering.
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4.3.2Example Application: Invasive species mapping

This framework can be applied to a large variety radtural resource
management decisions that involve spatial inforamati To exemplify this, we now
examine an adaptation of the framework presentem/eatio another management
situation using a simplified model of forest mamagat. The management objective
for this situation is to minimize the economic impaf emerald ash borer (EAB;
Agrilus planipennis) induced damage to a forest parcel. Because sisgy and
analyzing the full details of EAB biology, spreaahd management are beyond the
scope of our analysis, and EAB management effate limited efficacy, we present a
simplified version of a management situation lopseised on EAB to demonstrate an
application of spatial EVSI analysis to the currgmessing natural resource problem of
invasive species management.

The management situation we will examine is thaa ébrester responsible for
managing a parcel of land near or within the outskof the known extent of EAB.
The manager knows EAB is an exotic invasive speeiksady responsible for
destroying millions of ash trees in North Americasulting in millions of dollars in
damages (Herms et al. 2004, www.emeraldashborey idvacs et al. 2010).

Using the initial framework as our template, we malkcessary adaptations and
assumptions to fit the circumstances of the EABiation (Figure 4.2). The
management objective is best met if no EAB inféstabccurs on the forest parcel, as
the cost of EAB damages and the resulting decreatimber value are avoided. In
this example, the management action is the preieenmoval of large ash trees from
the parcel. The 2012 silviculture recommendatiorfsom  Michigan
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(http://www.emeraldashborer.info/files/Ash_Mqgt_Gudides.pd) suggest that the

probability of EAB destroying the ash trees in acphcan be reduced by removing the
largest trees in a parcel (referred to as thinniAdfhough this action has since been
shown to be ineffective (Klooster et al. 2013), w®ceed as if successful EAB
management is a possibility for the purposes ofatestrating EVSI analysis.

With this assumption the combinations of possibkBEinfestation status
(infested, not infested) and management actionsanftig, no action) results in four
possible outcomes: 1) Full timber value resultsnmwhe EAB presence occurs without
thinning, allowing the stand to fully mature andHaevested when value is maximized
(assumed to be $500 thousand dollars); 2) Damagduket value results when EAB
infestation occurs without thinning, leaving onlyat little value can be salvaged from
the damaged trees ($55 thousand); 3) Managed tivddee results when thinning
prevents EAB infestation providing the value of tiienned trees and the eventual
maximum value of the remaining trees ($400 thougaamtl 4) Managed and damaged
timber value results when thinning occurs, but msuccessful at preventing EAB
infestation leaving the value of the thinned traed what little can be salvaged from
the remaining damaged trees ($75 thousand).

Currently the manager is uncertain about the stafu€AB in the area
surrounding the forest parcel. EAB can spreadrateaof 0.5 miles per year or more in
large dense EAB populations (Mercader et al. 20@8rcader et al. 2012), so the
greater the probability of EAB in the surroundirrga the greater the likelihood of the
parcel becoming infested in the near future. Altfiothe known locations of EAB are
often marked and mapped (e.g.,
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http://www.emeraldashborer.info/files/MultiState Bpos.pdf), unmarked locations
may or may not have EAB. They could be uninfestethfested but not detected. An
alternative to mapping only the known location€EdB is to develop a predictive map
that shows the relative threat of EAB across tineldaape, such as might be generated
with a MaxEnt analysis (e.g., Phillips et al. 2Q0&) to develop a predictive map that
shows the probability of infestation, such as miget generated with a MaxLike
analysis (e.g., Royle et al. 2012).

Based on the uncertainty of current knowledge asidguour framework, the
decisions are whether to purchase a map delimitieghreat of EAB and whether to
manage preemptively based on current knowledgeyafdiess of whether of a map is
purchased, the first step for the manager is terdene the management threshagld
i.e. the level of EAB threat within a given distenof the parcel at which the
management action may be warranted. That is.ethed bf EAB threat that makes the
expected value of ash thinning become greater tharexpected value of not taking
action. For example, suppose the manager detesrthiethreshold occurs at 0.4, any
prediction indicating less than this level of EABdat in the surrounding area suggests
there is little risk of infestation so managementunlikely to be necessary, while a
prediction of 0.4 or greater suggests there isl of infestation and management is
likely prudent. This threshold is used like theget level in objective one for the Vol
analysis. Unlike our first example, in this scenathe manager may choose to manage
even if the threshold is not met, and may choodetmaonanage if the threshold is

exceeded.
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With a set of input probabilities we can now exaenthe expected value of the
mapping decision using the decision tree (Figugd.4The upper branches of the tree,
the half above the purchase map split, depictrifgmation necessary to determine the
expected value obtained from the timber parcel mgilee map, while the lower
branches depict the expected value of the parcednwihe manager uses current
knowledge. For our calculations, we will assunet the probability that the predicted
status ) of EAB is accurate (i.e. on the correct side & @4 threshold) using current
information isp =0.5, whereap = 0.75 with a purchased map that has greater acgur
If the manager really has no knowledge of what E#R is in neighboring areas, the
0.5 probability using current information is akmdetting equal odds to this risk. We
will also assume the probability the actual statuUSAB is at or above the management
threshold,a = 0.2. Thus, the probability that EAB is trulyegent in the area,
P(ASpresen) = 0.2, and without management there is a 20%azhaha EAB infestation
and an 80% chance of no EAB infestation.

To correspond with the circumstances of this sibmatwe need to slightly
modify values calculated by Equations 1 and 2. aBee the management action will
be taken when the threshold is met, the antithelisur initial species example in
objective one where action was taken if the tavgget not met, Equation 1 now applies
to the probability the prediction is above the gfi@d and Equation 2 now applies to
the probability the prediction is below the threshoTherefore, given the inputs, with
the map (upper branches) the probability that trezlipted status is at or above the
threshold, P(P9 = a*p + (1-a)*(1-p) = 0.2*0.75 + 0.8*0.25 = 0.35 (Equation 1), and
the probability that the predicted status is beldae threshold, P(R§ =
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1 - 035 = 0.65 (Equation 2). With current infatmon (lower branches), the
probability that the predicted status is at or abthe target, P(R$ = a*p + (1-a)*(1-

p) = 0.2*0.5 + 0.8 *0.5 = 0.5 and the probabilihat the predicted status is below the
target, P(PQ) = 1 - 0.5 =0.5. These probabilities are fopusd above and below the
predicted status probability nodes in Figure 4.2.

Following these predictions, the manager decidesetdr to take a
management action (“Thinning”) or not (“No Actioniyith the outcome depending on
the actual status of EAB risk and the probabilitgttthinning is effective. The upper
two leaves (i and ii, Figure 4.2) and the brandeesling to them depict the outcomes
when no management action is taken, even though R®aves iii, iv, and v and their
branches depict the outcomes when management govem PS:.

Recall that the actual probability that EAB is mets or absent, given the
predicted status, is a conditional probability whaan be calculated by multiplying the
appropriate probability of prediction and actuatgs and dividing by the probability
that the given prediction was made. For examplegiwant the probability that EAB
is truly present P(Asesen) given the map predicts that EAB exceeds the kinles
(PSy), we multiple the probability EAB is preseat= 0.2, by the probability the map
is accurate (because the prediction is correct)hgre=0.75, and divide by the
probability that the map predicts (S= 0.35 (calculated with equation 1 above),
giving the P(AQresent PSt) = 0.43 (Figure 4.2, top branch).

The expected values can now be calculated by simgplyre probability of
management success. As previously stated, for dstnation purposes while
acknowledging that EAB is a successful colonist, mitt assume management has a
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40% chance of effectively preventing EAB infestatio the parcel, i.e. R{s) = 0.4.
Rolling back the decision tree by multiplying thee probabilities by the outcomes for
each leaf tip gives thexpected value (EV) of each leaf tip (Figure 4.2, leaf EVSs). €Th
term “expected value” is used in this example beeaue are interested in maximizing
value of ash trees, whereas in our previous exathpléerm “expected cost” was used
because our interest was in minimizing cost).

Because managers have two decisions to make, tppimgadecision and the
subsequent management decision to make when dgaidiather to manage for EAB,
the expected value calculations require an additistep. In rolling back the decision
tree the expected values from each leaf are fustnsed for the set of branches
following the management action. For example, surgnthe EVs in leaf tip i and ii
($8.25 thousand plus $100 thousand) provides thé$08.25 thousand) of taking no
action given the decision to purchase a map whiedipts the EAB probability is at or
above the threshold (Figure 4.2). Leaf tip iii, and v sum to give the EV ($110.75
thousand) of thinning when the map is purchaseditsngrediction is at or above the
threshold (Figure 4.2). In order to maximize the¢ te manager would therefore
choose to take action and thin if the map is pwetaand its R eliminating no
action from consideration by pruning these brandhms the tree (Figure 4.2, double
tick marks). After pruning to remove the lower BWanches, only the remaining
branches with the higher EV from the “Mgt Actionr®ddes are then used to determine
the EV for the map decision (Figure 4.2, brancheisomt double tick marks).

We find that the expected value of managing witmap is $413.5 thousand
(while the expected value of managing with curterdwledge is $411 thousand. Note
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that the decision tree was constructed without@sf to obtain a regional EAB threat
map because the costs of producing a regional kely Wwould have been born by a
state or regional body; therefore the EVSI cont@imethe map in regards to managing
this parcel is $2.5 thousand.

To compute these results, the parcel manager mamkeay assumptions in the
analysis: (1) the probability the actual statu€£aB is at or above the management
threshold §) = 0.2 and (2) the probability that the predictgdtus ) of EAB is
accurate = 0.5 without a map and 0.75 with a m@ipese assumptions may not be
correct and the actual values are difficult to obt@ut seeDiscussion,Challenges
Estimating Vol). To account for this, sensitivity analyses carubed to examine the
effect of the range of reasonable uncertainty mteséout any input (Morgan and
Henrion 1990). For example, if the manager bebetiee probability of correctly
identifying whether EAB is at or above the manageintereshold given a map is 0.8
rather than 0.75, the value pffor the map is changed to 0.8, the probabilities a
recalculated in the decision tree and the analgsispeated. This would produce an
EVSI of $8 thousand rather than the $2.5 thousaedeported above. The analysis
can be repeated with adjustments to the other piliiies and timber values to
determine their impact on the resulting EVSI asl.wel

A sensitivity analysis can also be used to deteenthresholds, such as the
probability of EAB presencea, or the probability of management successVig(
below which there is no EVSI. For example, keepimg other inputs constant while
changinga or PMs), the EVSI drops to zero d is below 0.182 or if B{s) is below
0.349 (Figure 4.3). Therefore, if the probabititat EAB is present at the management
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threshold level is less than 18.2% or the probighilf successfully managing for EAB
less than 34.9% in our example a manager wouldotxpeobtain no benefit from
additional information.

While our discussion of Figure 4.2 focuses on atime decision for the parcel
manager, the decision tree also enables iteratighysis of this problem. For example,
imagine the manager chose to map in 2012 and too&ction based on the map’s
predicted status, and a new upgrade to the mapimng lproposed. Now, because the
parcel has not been thinned the situation will a¢ptself with the information from the
2012 map acting as the current information withpitsf 0.75, and the newly proposed
map will have some new value, such as 0.8. Repeating the EVSI analysls tivese
new values produces an EVSI of $5.5 thousand. @rex the analysis can also be
repeated to account for advances in methodologyeamology. For example, these
advances can be accounted for updating the pratyatilmanagement success\R),
or mapping accuracyp) as a response to better management, surveyingapping

techniques and repeating the analysis.

4.4 Discussion
EVSI methodology is one of many techniques in thklfof structured decision
making (Gregory et al. 2012) and represents an itapbapproach for identifying and
reducing uncertainties in adaptive resource managermrograms (Williams et al.
2011a). The application of EVSI methodology to tgpainformation analyses
discussed here provides a means of: 1) assessitgtiefits of investment in improved
mapping efforts, 2) enabling an analysis of thatre¢ gains of mapping efforts in

comparison to acting with current knowledge, and@jparing one potential mapping
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effort with another. With this assessment, the pivag efforts that will be of greatest
value can be selected and budgets can be allotatdte most beneficial projects,
improving efficiency and the overall productivitf management agencies.

While there are many theoretical discussions of "Wpalyses, as well as a
number of specific applications, the applicatioisvol analyses to natural resource
management are quite limited. Past applicatiotieeeifocus on a description of the
data required for Vol analyses (e.g. objectives ecmhomic valuation) with a rather
general description of the methodology (e.g. Maeal006, Kangas et al. 2010), or on
evaluating the Vol to a limited situation, with actis on the results for that situation
rather than on the implementation of Vol methodgl¢gg. Costello et al. 2010, Moore
et al. 2011, Moore and Runge 2012). We aimed toptement these approaches by
focusing on the methodology used in Vol analysigmdnstrating its general
application to enable understanding and replicatias well as demonstrating its
adaptability to realistic natural resource managemguations. To this end we provide
a template spreadsheet and the list of specifigtinpsumptions to guide the use of this

methodology for a range of natural resource apttina (See Supplement).

4.4.1Challenges Estimating Vol.

While Vol methodology is a useful means of deteingnthe benefits of
information, it has some limitations. For examgla, error free Vol analysis requires
error-free estimates of the probabilities, benghitsd costs used in the analysis, which
can be difficult, impractical, or even impossibte fully obtain. Assigning accurate
probabilities to events can be particularly difftcfi management in a similar situation

has not been tried, similar mapping techniquebdsd proposed have not been applied,
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the quality of the predictive method is not welbkm, or the true state of the system is
poorly understood. However, the alternative tcngghe Vol approach is to make a
decision about mapping and management action witadarmal approach, implicitly
estimating the expected value calculations. Tloeeefat some level, prediction of
these probabilities and outcomes is occurring whena decision is being made. By
making the probabilities and expected outcomesi@kpVol analysis allows better
documentation of the decision process. Additignadin explicit analysis enables
evaluation, replication and potential improvement future attempts; it increases the
ability to learn from experience, both one’s owmdawith documentation, the
experience of others. The dependence of Vol on atapracy should also alert land
managers to the importance of considering accuvdmgn maps are used during the
management process.

In addition to estimating probabilities in the Vahalysis, determining the
benefits or costs of a management action in moypetims, such as the cost of
thinning, can be challenging. However, there am@nynexamples of methods for
assessing the economic value of natural resou@estdnza et al. 1997, Bockstael et al.
2000, de Groot et al. 2002, Farber et al. 2002)esé methods are not always easy or
affordable to implement (Turner et al. 2003, Ch864). An alternative to economic
valuation techniques is expected utility theoryiligyt here is being used in the
economic sense, meaning the amount of satisfaabiodissatisfaction, obtained from
an outcome) and the use of even swaps (Keeney aifth R976, Hammond et al.
1998). Rather than using money to measure prefessfor something, preferences for
outcome A are measured by how much of another mgcd, one would trade for
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outcome A and still obtain the same degree of henebr example, if you are twice as
satisfied by a chocolate bar as you are by a gaabat, and you would pay $1.25 for
the granola bar, based on even swaps you wouldspa0 for the chocolate bar, or

twice as many units on another non-monetary utidsie.

4.4.2 Applications of EVSI to mapping.

Vol analysis in a mapping context provides an oppuoty to determine the level of
spatial accuracy needed for management applicatigik models, and therefore all
maps, being spatial models, have error, quantbietheir user and producer error, that
is the rate at which they predict something is loaation when it is not (user), or fail
to predict something is in a location when in fiaags (producer) (Congalton 1991). In
addition to varying in these error rates, maps e#ovary in the resolution (pixel size),
minimum mapping unit, and spatial extent, all ofiethcan potentially affect the
probability of predicting the actual status of aaarce, and potentially the success of a
management action (Aerts et al. 2003). Some regudrthe world are mapped at low
resolution (100m by 100m pixels rather than theexatandard 30m by 30m pixels) and
some regions on maps have been classified usingeateg or lesser number of
distinctions than others, with categories that may match the scale of the local
system of interest or are poorly validated (Sales et al. 2012).

The analysis presented here allows one to evathatealue provided as map
information varies based on components of map tyualid their associated costs. By
producing a set of branches on the decision treedoh map alternative that is being
proposed, providing the estimated map accuracycasts for the proposed map as

inputs, managers can compare the value of a rahgeaps. In this way, by using
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decision trees with multiple map branches emandtmy the purchase map decision
node, rather than the single map branch shown heaeagers can compare maps with
different costs and error rates, choosing the &wa¢ produces the greatest expected
value, or least expected cost.

While our work focused on evaluating a single sespmatial information, a
productive extension of this work is to include trple management decisions using
the same map. For example, national mapping pnegyra the USA such as the Multi-

Resolution Land Characterization Consortiumwv(v.mric.goy) generates maps such as

the National Land Cover Database (NLCD) that areduby federal, state, town
governments, NGO'’s, water districts, planning disty and many other agencies for a

variety of purposes such as management of watdityguecosystem heath, and wildlife

habitat, as well as land use planningwfv.mric.goy). The agencies tasked with
constructing such maps have a goal of providingidapatial data that can be used to

address multiple management needs in a cost ekentanner Www.mrlc.goy). To

estimate the value of such maps, map producersl souvey the maps’ potential users,
asking them to conduct individual EVSI analysestf@ map’s proposed uses focusing
on the decision or decisions relevant to each iddal agency. By aggregating the
results of each EVSI analysis, managers of theski-oser mapping efforts could
determine the most cost-effective level of effartdevote to producing the map. For
example, the full expected value of a regional EA®p would be the sum of the EVSI
results from all of the local parcel managers witthie area of the map’s coverage.

In summary, we believe the Vol approach will befuséor a wide range of
natural resource managers making decisions abatiasmformation acquisition.
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Table 4.1 a. Conjoint probability table used in catulating predicted status probabilities givena, the probability the actual status is at or above the

target, and p, the probability the predicted status is correct. b. Associated management impétions of the four possible combinations gbredicted status
and actual status.

Conjoint Table Management Implications
Predicted Status Predicted Status

>t <t Marginal >t <t Mgt Objective

True Assessment False Assessment

2t a*p a *(1-p) P(ASy) =a . . P(Successful)

No mgt action Cost of mgt action

Actual Status False Assessment True Assessment
<t (1-a) * (1-p) (1-a) *p P(AS,) = 1-a . . . P(Unsuccessful)

Cost of mgt inaction Mgt action
Marginal P(PSs) P(PS.) P(No Mgt Action) P(Mgt Action)
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P{ASy)| P(PSy)

= ap/P(PSy)
= 0.964

Actual
Status |

(P554)7

P(PS,)
=ap+{1-a)(1-p)

PSap
No Mgt Action

P(AS,) | P(PS)
=1-0.9604
=0.0357
P(ASy) |P(PSy)

= (1-a){1-p}/P(PS;)

Predicted
Status?

Map; Ayl =0.25
Improl\.'ed P(PS.) Status |
Knowledge; = (1-a}p+a(1-p) (PS)?

p=0:2 =0.3

P(AS)|P(PS)
=1-0.25
=0.75

Purchase Map?

P(ASy] | P(PSs)

=p*a/P(PSy)
No Map; P{PS.,) Actual = 0.818
Current = ap+{1-a)(1-p) = Mﬁict' Status |
K led 3 s o 1on ?
Sos - (P2d® Joiasle(esd
A =1-0.818
Predicted =0.182
Status? P(AS.,) | P(PSL)

LST

= (1-p)(1-a)/ P(PSsy)
=0.233

PPS) Actual
= (1-a)p+a(l-p) Status |
=0.55 (PSs)?

P{AS.) | P(PSs)
=1-0.333
= 0.667

i
Outcome =1; Cost=$ Map =52,500
EC = 51,687.50

ii
Outcome=0; Cost= Map + Economicloss, loss of ecosystem
services, legal costs =5102,500
EC = $2,562.50

na

Management
Success?

ini
Outcome = 1; Cost= Map + Cost of Unnecessary Mgt =522,500
EC = 51,687.50

iv
Successful, Outcome =1; Cost = Map + Cost of Mgt =522,500
EC = 54,050

v
Unsuccessful, Outcome =0; Cost=Map + Cost of failed mgt +
Economic loss, loss of ecosystem services, legal costs =5122,500
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vi
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vii
Outcome = 0; Cost = Economicloss, loss of ecosystem services,
legal costs =5100,000
EC =-510,000
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\

X
Unsuccessful, Outcome =0; Cost = Cost of failed mgt + Economic
loss, loss of ecosystem services, legal costs =5120,000
EC = 53,600

Figure 4.1Decision Tree calculating the expected cost of spes management with and without a species occupannyap. Decision nodes e
represented by rectangles, probability nodes are presented by ovals. The tree begins at the fleft with branches emanating from the purchase ma|
decision node and splits into additional branchestdahe probability nodes. Branches terminate at ‘laf tips’ labeled i through x at the far right. Each

probability node is accompanied by the appropriateprobability from its associated probability set
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Figure 4.2 Decision Tree calculating the expectedalue of emerald ash borer management with and withat a map of the probability of neighboring
emerald ash borer infestation. Outcomes and expead values (EV) are in leaf tips i-xx are in thousaas of dollars. Double tick marks on branches
emerging from the “Mgt Action?” decision nodes indcate branches that are pruned due to the lesser Bdf those branches relative to their alternatives.
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Figure 4.3 Contour plot of EVSI over the range of possible vales ofa (the probability the actual
status is at or above the target) and IM) (the probability that a management action will be
successful). The probabilitythat the predicted status is correctp, was set at 0.75 with a map and 0
with current information. Lines at a= 0.2, and PM) = 0.4, correspond to the values described in t
example application for invasive species mappingntersecting at the EVSI value of $2,500
Following the line ata = 0.2 shows the impact of changes to Ms) on EVSI whena is constant at 0.2.
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APPENDIX A. EXECUTIVE SUMMARY

A.1 Chapter 2
In chapter 2 | evaluated the index, sex-age-kil, Bnd Downing estimation methods.
For those estimators | found:
e Estimating abundance is more difficult than estingapopulation change
e There is a tradeoff between estimating abundandeeatimation population
change in the estimation methods selected
e The sex-age-kill estimation methaghKkEst ) is best for abundance
e The Fry {ryEst ) and Downing downingEst ) estimation methods and
are best for estimating population change
e The performance of these estimation methods declivteen populations are
unstable (growing or declining)
Error in data collection impacts the performancettid estimation methods in the
following ways:
e Reporting error (incomplete reporting) results nderestimates of abundance
e Sex and age error resulted in improved abundaroeatss for the sex-age-
kil method by increasing the abundance estimatdeurthe simulated
conditions
Some implications to be aware of:
e The declining performance for unstable populatioosld cause a lag in the

recognition of populations changes, making it mdikicult to determine
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when to take management actions, and difficult dcognize an effect of
management action
e Of the error types, allocating resources to repgrérror will have the biggest

impact on reducing bias

A.2 Chapter 3
In chapter 3 | evaluated the performance of twheismonitoring programs (with and
without necropsy) and the estimation methods thebke. | found that based on the
weights (importance scores) provided:
e The Downing (downingEst) estimation method perfolrast
e Performing necropsies is worth the cost of doing bexause the value
obtained from disease detection and public engageisegreater than the
value obtained from the reduced cost from not cotidg necropsies.
e The use of the Downing estimation method with npsies performs best, but
does not perform well in terms of minimizing biasthe abundance estimate
Some comments on the methodology to be aware of:
e The results, while fairly robust to the weights ammhsequences found here,
are dependent on the objectives and weights idgeahtif
e Should the objectives, their weights, or the conseges change; the analysis
can be readily repeated so that the Vermont Fighvdidlife Department can

adapt the monitoring program to future changesines.
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A.3 Chapter 4

In chapter 4 | demonstrate the use of Expectedé&/afutsample Information (EVSI) to
evaluate the benefits of collecting and analyzipgtial information (conducting
mapping efforts). The method enables analysis of:

e The relative gains of mapping efforts vs. actinggwvaurrent knowledge

e The benefits of investing in mapping efforts

e The benefits of one mapping effort vs. another
These analyses enable decision making by supporting

e Comparison of the value of mapping efforts to tivests

e Comparison of multiple mapping efforts to each otle select the most

beneficial.

e Budgeting and staffing decisions that depend orctimeparisons listed above
| developed a spreadsheet to support independest &valyses:

e To obtain a copy email me at jonathan.cummings@lgroai, Subject: EVSI

spreadsheet
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APPENDIX B. DECISION ANALYSIS IN THE R SOFTWARE PACKAGE

AMHARVEST

B.1 Abstract

| present a portion of the software packagaryest ) that facilitates decision
analysis through R functions and database stordage. software’s associated database
supports storage of the information accumulatedghduhe structured decision making
process, including the problem, objectives, andralive, the predictive models, and
the decision outcome. The software linking todaéabase calculates the consequences
and trade-offs of the decision, which can alsotbeed in the database to track decision
making over time. The package is written in the lRgpamming language and is
available through the Comprehensive R Archive Netw(@CRAN; http://cran.r-
project.org/). Here, | describe the uses of thalude and decision analysis functions
provided by theharvest package harvest and demonstrate its use on ahejuat
natural resource management.
Keywords: Decision Analysis, Structured Decisionakihg, MCDA, SMART,
smartDA

Note:

Names of Access database items are display€dliipri, while names of items

and functions in R are displayed@ourier New
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B.2 Introduction

The use of structured decision making (SDM, Gregargl. 2012, Conroy and
Peterson 2013) and decision analysis (Keeney aniffaR&976) is expanding,
particularly in the environmental sciences (Huah@le 2011) as they become more
familiar. The first portion of structured decisiomaking process centers on problem
framing, or laying out the decision to be made #mel components that affect the
structure and outcome of the decision. With assc# or experience with the
structured decision making process decision makensl to be comfortable and
effective at this completing this stage of the cied decision making process.
However, after using the structured decision makingcess to frame a problem a
decision maker still needs to determine the coreecps of the decision and needs to
conduct the decision analysis to identify the lmesirse of action. Currently managers
tend to rely on decision analysts to conduct thastten analysis due to the complexity
of the stage in the process and the complexitycsd of the currently commercially
available decision analysis software.

Expansion in the use decision analysis along with $preading idea that
management actions can be tracked over time in fofrracientific observation has
placed a greater emphasis on making transpar@eatable decisions and on recording
the performance of management actions over tin@. ekample, a key component of
adaptive management is monitoring what decision® weade and what actions were
taken in the past and present so that learningocaar over time and improve future

decisions (Walters 2001).
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Environmental and natural resources managers, aagion makers generally
will likely benefit from a freely available mean$ evaluating the predicted outcomes
of decisions, recording what decisions were madd, teacking the results of those
decisions. The use of database software in cotipmavith the R programming
language (CRAN; http://cran.r-project.org/) makieis possible. Here | present the use
of a Microsoft Access linked MySQL database andaReld decision analysis functions
in a means to conduct decision analysis and tracksibn making over time using the
newly developed R packagearvest

My objectives are to: 1) Describe the methods fdeeng inputs to a decision
analysis in thénharvest package database; 2) Describe the steps for congube
decision analysis irharvest ; 3) Describe this process in term of an example

problem, describing the decision analysis andesiits along the way.

B.3 Decision analysis and decision information storageith Alvhar vest

The R packageAMharvest links to a database to store decision analysis
inputs and output while R functions are used talisteconsequences and to conduct
the decision analysis. | describe these compsnasing the structured decision
making approach to problem framing and decisionlyaiga (Gregory et al. 2012,
Conroy and Peterson 2013), which follows the akbt®mn PrOACT (Hammond et al.
1999). PrOACT refers to the process of identifyithg Problem, describing the
Objectives, enumerating th&ternatives, predicting th€onsequences, and evaluating
the Trade-offs. Here | demonstrate the data entry amedisobn analysis in

AMharvest for a hypothetical decision regarding the managemaf a park
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(Centennial Woods) in light of a declining popubatiof Bowtruckle following the

steps of the PrOACT process.

B.3.1Database
The AMharvest package comes with a downloadable MySQL database t
store data for decisions and an accompanying Maréscess front-end for data entry
and retrieval. | designed the database to bebiexo a range of decision problems and
components as | discuss below. Decisions and do#imponents are entered into the
Access front-end using the Decisions forms underDRcision Analysis header in the
AMharvest package’s database (Figure A.1l). | encourageersatb open the

database so that they may follow along while regutinis manuscript.

B.3.2Problem

The first step in structured decision making isidaf the problem. Defining
the problem is also the first step for decisionlygsiga with AMharvest which is done by
entering the problem definition into the databdsgure A.2). Problems are stored by
name and automatically given an identification nemfpkdecisionid). | named my
example problem “Centennial Woods Habitat Managénfmblem” which was
assigned akdecisionid of 5. For linked decisions the id that the demds linked to is
entered as wellfklinkeddecisionid). My problem has no linked decision, but as an
example, an annual harvest management decisiordvigely depend on the decision
a year prior. Therefore thgkdecisionid for the prior year’s decision would be entered

as thefklinkeddecisionid for the current year’s decision.
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Information about the decision to be made and thekdround information
about that decision are entered in thecision Question and Problem Definition
portions of theDecisions form. TheDecision Question is a succinct statement of the
decision to be made, often defined as the irredecablocation of resources under
consideration (Dale and English 1999). For my elanthe Decision Question is,
“What habitat management action should be takemeet the needs of Bowtruckles
and the public?” The problem definition is a fullexplanation of the situation the
decision maker is facing. A problem definition iggdly includes a number of
components such as the location, scale, frequamd/timing of the decision, who the
decision maker or decision makers are, any sigmficuncertainties that could
influence the outcome of the decision, the natdrarny linked decisions, any key
stakeholders in the decision process or the reduthe decision, and or any other
important considerations in the decision makingcpss. In my example | provided a
brief problem definition (Figure A.2roblem Definition).

The remaining components to enter for a decisian the type of decision
analysis to conduct, the outcome, and the dat@éeotlecision. Currently the analysis
function available for use in the package is #martDA function, while future
iteration of the package will include an option ¢onduct portfolio type decision
analyses with theportfolioDA function. The analysis used for my example
problem is thesmartDA approach. The description of the outcome of esion is
entered in Outcome while the date the decision mvade, or the selected alternative
was implemented is entered Dute. These fields are not filled in until after the

decision analysis is conducted and the decisi@ttigsally made and implemented. In
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my example after analysis a protected area waslestad on 4/29/2014 (Figure A.2,

Date) that increased Bowtruckle abundance at a low (agure A.2,0utcome).

B.3.30bjectives

The second step in structured decision making &cril@ng the objectives.
Objectives are the criteria used to evaluate thteomme of a decision, determined by
the values of the individuals making the decisioQbjectives are entered in the
Objectives section of the Decisions form (Figure&)A.The name of the decision is
repeated (Figure A.3Decision) for reference while entering the components of an
Objective.

Objectives are selected by name from the list géailves in the drop down
Objective. To enter an objective that isn't in tdeop down list select the Edit
Objectives button and enter the name of a new tige(igure A.4).

An objective has a number of associated componenfsie Measureable
Attribute is the units used to assess the statwnadbjective. Measureable attributes
also go by a number of other names such as critere@asure, attribute, metric,
performance measure, or performance metric depgnaiinthe decision analysis or
decision analyst. Regardless of the name the messle attribute is the item being
counted, qualified, quantified, or otherwise reeatdo determine the state of the world
relative to what is desired. In my example the soe@able attribute for the abundance
objective is the number of Bowtruckle present imtéanial Woods. Each measureable
attribute also has an associated measurement ¢gehni

The Measurement Technique is the means of assesB@ngstatus of a

measureable attribute. That is, the descriptiothefmeasurement technique answers
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the question, “how is the amount of the measureat hging predicted, counted or
otherwise determined?” For my example the numb&owtruckles objective is being

measured using the output of a predictive modet tbeecasts the abundance of
Bowtruckle in Centennial Woods.

The Description is used to elaborate on the namiefobjective in order to
better communicate what the desire associated anthobjective is. The purpose
behind the description field is to clarify the inteof an objective, share the values an
objective represents, and more clearly communitetgurpose of an objective than is
possible through an objective’s name. For exarti@dalesire for the example objective
is to maximize the number of Bowtruckles in CentahwWoods.

Each objective also has a desired direction. Oihection for each objective has
one of four possible valuesiaximize — the more of the measurable attribute the better,
minimize — the less the bettetarget — the closer to a target value the better, or
constraint — either the objective is achieved (Yes/l) or (@b/0) relative to the
constraint level. In the case of my example objedhe desired direction is maximize,
meaning the desire is to have as many Bowtruckl€entennial Woods as possible.

An objective also has a relative importance orghei The weight is the
value, benefit, or utility derived from the rangepomssible outcomes for this objective
relative to the utility derived from the other otfjiges for the decision in question. My
example objective has a weight of 0.35 out of altof 1 across the objective in my
example, indicating that going from the worst te tiest possible outcomes in terms of
the number of Bowtruckles would provide 35% of thessible benefit of going from

the overall worst to best possible Bowtruckle alanu® outcomes.
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The full set of objectives in the example CentehnWdoods Habitat
Management Problem are to maximize the number eftBekles, to maximize the
percentage of Centennial Woods visitors that d@evetruckle, to maximize Centennial
Woods visitation, to maximize the enjoyment of tass (the visitor experience), and to
minimize the cost of management (Table A.1). Edwlkdiive is associated with one or
more (for multiple model prediction) models thae arsed to assess the status of the

objective and predict the consequences of seleatiayticular alternative.

B.3.4Models

In decision analysis models predict the statusnoblagjective for an alternative
as if the alternative is selected. That is, modetsused to forecast the consequences of
a decision. Each objective has an associated nasdkthese models also have beta
values for each of the model’s covariates thaugrice the status of an objective. The
model for each objective and that model’'s beta eslare selected using tModels
andKeys sub-forms that are shown in the Objectives erdryisn (Figure A.5).

Models are selected from a list of Models usingNtaelel drop down. If a new
model is needed models are added by selectingdhévi®dels button and entering the
new model’s information in the Models form. Foraexple, if the Bowtruckle
Abundance Model did not yet exist it would be eateas shown in Figure A.6. A
pkmodelid is automatically assigned to each modahlle fkparentmodelid references
an earlier version of the same model (using thehodsilogy described for linking
decisions with fklinkeddecisionid) if the model &etalues change over time. There

are two fkmodeltype values to select from for modgthe status of an objective in a
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decision analysisconsequence.predicted — for predictive models that are forecasting
the future state of an objective atwwhsequence.observed — for models that are storing
the results of the observed state of an objectiver example, the status of the visitor
experience objective from my example decision esrésult of a survey of Centennial
Woods visitors conducted specifically for this d#an, so in this case the model stores
values that would produce those observed surveytsesThe name stores the name of
the model, transformation stores the type of tramsétion that occurs between the
inputs and output of a model, Bayesian stores venetie model includes uncertainty
in its parameters such that it can be used in Balyesodeling, and description stores a
description of the model. For decision analysigppaes fkspeciesid is an optional link
to a species name if a model is used for a paaticggecies and the user wishes to track
this. The formula can be left blank for decisioralgsis purposes.

For decision analysis the model keys can also fegreel to as model betas, or
the rate of change in the model output that re$tdta one unit of change in the beta or
key (fkkeyid) selected. | further discuss the keyshe Alternatives section. The key
for each model beta is selected using the fkkeyigh dlown. If a key is not present a
new key can be added by selecting the Edit Keysd@8etas) button that opens the
Keys form (Supplement A.6.1). The beta value for élagfis entered in the valuenum
column. If the number in thealuenum column is a dummy coding for a character or
factor value the character or factor the dummy asdessociated with is stored in the
valuechar column. For decision analysis purposes the remgioolumns are left blank

under most circumstances (Supplement A.6.2). Tbdeibetas can either be entered
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in the Model Keys section of thaviodels form or by clicking the+ to the left of the
model drop down in thModels section of th@bjectives form.

While | describe entering a single model for eadfjective, AMharvest
supports multi-model predictions as well. By saier multiple models in the model
sub-form for each objective more than one modellmatinked to an objective. The
output from each of the selected models is themagesl to produce a single output
value using model weights for the selected modédel weights are added as an

additional key (model beta) for each of the modelisig combined (Supplement A.6.3)

B.3.5Alternatives

The third step in structured decision making ismeerating the alternatives.
Alternatives are the actions that one is choosietgveen. Alternatives are entered in
the final section of the Decisions form; the Aliatimes section (Figure A.7). The name
of the decision is repeated (Figure ADecision) for reference while entering the
components of an Alternative.

Like objectives, alternatives are selected by n&or@ a list of alternatives, in
this case using thalternative drop down. For my example ti#dternative name for
the first alternative is “Protected Area”. To end@ralternative that isn’t included in the
list for the drop down, click th&dit Alternatives button and enter the name of a new
alternative, the pkalternativeid will be filled automatically (Figure A.8).

In addition to an alternative’s name the databdeees a description of the
alternative; the decision analysis score for therahtive, and whether or not the

alternative was selected for implementation whendécision was made (Table A.2).
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Alternatives are also made up of one or more actil@ments, which describe the
degree to which an action is taken.

The description — which communicates the detailwlodit would be done if the
alternative is selected — of an alternative, it in theDescription box. For my
example protected area alternative, the descripgiofSet aside a region of Centennial
Woods that is off limits to visitors.”

An alternative’sscore field should be left blank at this point. There value
will be filled in when a decision analysis functimrun. For my example the decision
analysis has already been conducted, returningoiee sif 0.766792 for the protected
area alternative.

The selected check box can be set to unchecked when an altegnist first
entered for a decision. Once the decision is mémdealternative that is implemented
should have itselected box checked, while theelected box for the other alternatives
remain unchecked. In my example the protected @temative had the highest score
and was selected for implementation, sosttiected box is checked.

The remaining sections of th&lternatives form store the action elements
associated with an alternative. A range of termoigp has been used to describe pieces
of alternatives (called action elements here) dred dombination of action elements
into sets that one chooses between (alternativies.hdere | use alternative to mean
either the single action taken and action elemahtevimplemented if the alternative is
selected or the combination or set of actions gaotlements) taken if the alternative is
selected. So from a decision analysis perspetti@eset of alternatives to select from

always represents the set of implementable iteom fwhich to select, whether there is
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one or more actions associated with each of tre¥ratives. Other terms have been
used for alternatives when they contain combinatiohactions, such as strategies, or
portfolios, but | use alternative to mean both afpbo or actions one can select or a
single unique action that can be selected. A nurabgrms have been used for action
elements or pieces that make up an alternativeefis Wihey have been referred to as
alternatives themselves, actions, components, itoeist alternatives, and elements.
Here | refer to the parts or pieces of an alteveadis action elements.

In my usage an action element is the quantifiabtea that is taken when an
alternative is implemented. Where an objectiven&le up of a desired direction and a
unit of measure an alternative is made up of onenore action elements that have
names and a value enumerating the degree to whe&ladtion element is enacted.
These action elements are also the covariate inpute models | use to determine the
status of my decision objectives.

Action elements and the models they feed into alected in theAction
Elements sub-form. Action elements are selected from ifteof action elements in the
Action Element (Key, fkkeyid) drop down. Like adding new model betas, to add ne
action elements click th&dit Action Element (Keys) button and enter new action
elements there. For my example the action elemsbotvn is the intercept action
element. To match an objective’s model to an iadteve each of the model betas for
the objective’s model also needs a corresponditigraelement associated with each
alternative the model is used for. The outcomesetecting the protected area
alternative in terms of the Bowtruckle abundanceredicted using the “Bowtruckle

Abundance Model” which has model betas of intercppbdtected.area, viewing.area,
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and entry.fee. Therefore, the protected areanaltee also needs the intercept,
protected.area, viewing.area, and entry.fee aceteraents (Table A.3).

The status of each of these elements if an aliematere selected is entered in
the Action Value andAction Character fields. That is, the degree to which an action is
taken is entered. As with the model betas if tmiper in theAction Value field is a
dummy coding for a character or factor value tharabter or factor the dummy code is
associated with is stored in thetion Character field. For my example decision each
action element is either taken or not taken fohealternative, so the action character
values are either Yes or No with yes stored asira the Action Value field and No
stored as 0. If a model output depends on theevafuan action, say the size of the
protected area where one of the alternatives @eald acres protected area Alagon
Value field for the protected.area would be 10.

The last step in entering an alternative’s actilment is to select the models
for which the action element value is a covariaidis is done by selecting the names
of those models in thi&kmodelid column of theModels sub-form. The models should
already be in the list if they were entered alonitpwhe objectives, but clicking thlit
Models button allows the entry of new models from thieernatives section of the
Decision form as well should a user wish to enter infororatin a different order that
starts with alternativesAt this point all of the inputs to a decision arsa$yhave been

entered into the database and the decision analysibe conducted.
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B.4 R functions

B.4.1Consequences

The fourth step in structured decision making iedpting the consequences.
Consequences link alternatives to objectives bydiptieg the outcome of each
alternative in terms of the measureable attribfibeseach of the objectives. In my
framework the consequences involve determiningstiva of the model betas (entered
during the objectives section) multiplied by the dabcovariates (entered as action
elements during the alternatives section). For edemthe consequence for the
abundance objective and the protected area alteenat my example is determined
using the Bowtruckle abundance model (Table ABhis model multiplies thélodel
Beta value for each key by th&ction Value for that key, and sums the result for each
key. In this case 10*1 + 90*1 + 30*0 + 50*0 foetfour keys to the model equals 100,
so the predicted consequence of the protected atemative for the abundance
objective is an abundance of 100 Bowtruckles.

These calculations take place in teensequencesDA function. The
consequencesDA function requires two arguments as function inptitedb.name
and thedecision.id . The db.name is the name of the database where the
decision data is stored. This is the name you ¢jaeelatabase when you downloaded
it with the AMharvest package, | named ours “HARVESTR”. THecision.id
is the id number that was assigned to the decjgioblem back at the first step of data

entry. In my example the Centennial Woods Halltahagement Problem as assigned
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adecision.id of 5. The example code to raonsequencesDA on my example
is thereforeconsequencesDA("HARVESTR",5)

The output of theeonsequencesDA function is the resulting consequences
for the decision, which are uploaded to the dabsedected using théb.name
argument input to the function. The uploaded cqueaces are stored in
tblconsequence for use in a decision analysis imct The consequences for my

example decision are shown in Table A.5.

B.4.2 Trade-offs

The fifth step in structured decision making is @octing the decision analysis
and evaluating the trade-offs. There are thretsmdrthe decision analysis portion of
trade-off evaluation process. The first part oé tprocess is to normalize the
consequences in order place the status of eadte aflijectives on the same scale. The
normalized scores in the consequence table ras@itares of 1 for the best outcome
for each objective, scores of 0 for the worst onte@er objective, with the remaining
outcomes receiving a score relative to how farsitfrom the best outcome. For
example, the mid-point between the best and wotdtomes would receive a
normalized consequence score of 0.5.

The second part of the process is to apply the m®ifpr each objective to the
normalized consequences. By multiplying the weightelative importance of each
objective by its normalized consequence, rathem tieving the best outcome for each
objective score a 1, the best outcome for eachcobgewould receive a score equal to

that objective’s weight. For my example, the abumgaobjective has a weight of 0.35,
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so the best outcome for the abundance objectivaves a weighted consequence score
of 0.35 instead of the 1 it received during thenmalization step.

The third part of the process is to sum the wemjlstnsequence scores for each
alternative to arrive at the total score for theralative across the full set of objectives.
The alternative with the highest total score isittiee one that fulfills the objectives for
the decision to the greatest degree. The dec#ialysis process just described is also
referred to as the simple multiple attribute ratiaghnique (SMART, Von Winterfeldt
and Edwards 1986).

The decision analysis processes described abovecamged out by the
smartDA decision analysis function. ThemartDA function has four input
arguments,db.name , decision.id , database , and consequences.csv
Thedatabase argument specifies whether or not the functiorn @btain values from
a database and upload the results to a databdmsedefault value of databaseliRUE
indicating the database will be used, in which dhse€onsequence.csv  argument
retains its default value dNULL When the database is used tiename and
decision.id arguments are required. Like thensequencesDA function the
db.name is the name of the database where the decisiom dat stored
(“HARVESTR” in my example) and thdecision.id is the id number that was
assigned to the decision problede¢ision.id = 5 in my example). The code to
run the decision analysis for my example is theeefesmartDA("HARVESTR",5)

When the database is used the function obtainsnaeqoience table from the
database and formats it for analysis (Table Al6a user does not enter a decision into

the database and calculate the consequences osmggquencesDA they can
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instead enter a consequence table directly inty Reltting thedatabase argument
equal to FALSE and providing the name of a csv did@taining a consequence table.
The format of the csv file should match the forrofTable A.6 with the same column
names for objective, weight, and direction followsgda column for each alternative.
Each row is an objective with its correspondingueal If my example had a
consequence table stored in the csv file named t&deml Woods Problem” the
smartDA function could be run without using the databasé whe following code:
smartDA  (db.name=NA, decision.id=NA, database=FALSE :
consequence.csv="Centennial Woods Problem”)

The output ofsmartDA is the score for each alternative. The scoresmipr
example problem indicate that the protected aretheshighest scoring alternative
(Table A.7). For my example, the objectives weglum to 1. Therefore the range of
possible alternative scores ranges from 0 (wors¢ @autcome for all objectives) to 1
(best case outcome for all objectives). Any valaas be used for the weights, but
assigning weights such that they sum of 1 or to dfdkes interpreting the scores
easiest. Because the weights sum to 1 in this pbeathe protected area alternative
with its score of ~0.767 can be described as olbigi@6.7 percent of the best case
outcomes relative to the worst case outcomes.

Based on the results of the example decision aisalysvould select the
protected area alternative for implementation. otder to track the selection of this

alternative theselected check box for this alternative is checked on Affiernatives

section of theDecision entry form in the database. Once the outcomdefstlected
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alternative is clear a description of the outcomentered in theutcome field in the

decision entry form.

B.5 Conclusion, Extensions, and Additional functions

Here | presented the simple multiple attributengitechnique (SMART, Von
Winterfeldt and Edwards 1986) approach to decisiwalysis and storing the results of
the structured decision making process. The us&radtured decision making and the
AMharvest package provides a means to easily stereesults of a decision process,
facilitating transparency and communication as &sllearning over time from the
results of previous decisions.

For demonstration purposes the example decisioaskemted was a relatively
more straight forward and less complex one. Thesea number of possible extensions
to the decision analysis presented here that défalnmore complex forms of decision
analysis. Some of the possible extensions aremtlyrsupported by the AMharvest
package while others are not but may be developeflifure versions of the package.

For the decision presented only one action wastake alternative, but the
analysis can be conducted with multiple action elet® being implemented per
alternative and at with different levels of implamegion for the action elements. This
would be done using themartDA function as well, but with a greater number of
combinations action elements and variety of actlement values per alternative. The
yet to be releasegabrtfolioDA function will use the SMART approach to decision
analysis as well, but rather than running the asisiwith a predetermined combination of
action elements the function use optimization tectehe optimal combination of action

elements to produce the best possible alternafite also yet to be released
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optimizationDA function extends this further, removing the neegreselect the
action value associated with each action elem&he function then optimizes not only
the combination of action elements, but the acti@ne for each of those action
elements, arriving at the best possible alternagiven the action elements available.

The final extension available but not discusseithéexample is the ability to
enter multiple models per objective and enteringlehaveights for each of those models.
The predictions from multiple models can then belsimed to support a model
averaging approach to consequence prediction (Soppit A.6.3)

Currently the consequenceDA makes a single predi¢tr each model, making a
deterministic prediction. Possible extensionddother development of this package
include developing R functions that support sevigjtianalysis and uncertainty in the
model predictions and developing functions thapsupvariability in risk attitudes and

the use of non-linear utility functions.

B.6 Supplement

B.6.1Entering Keys
Keys, model betas for decision analysis, are edtgréhe Keys form (Figure
A.9). The pkkeyid is assigned automatically focte&iey,name stores the name of the
key, and description stores a description of thg k&he fkkeytype for a key stores
what the keytype is for the selected key from tle df keytypes (Table A.8). The
fksettingtype will autofill following selection of thefkkeytype. Keys can have one of

four datatypes: numeric, character, factor, or/tiate that are stored ifatatype.
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B.6.2 Additional Columns in the Model Keys entry form
The remaining columns in the Model Keys form wately be used for decision
analyses. Theenudensitystage and enudensitypop columns are only used for
simulating populations where the simulation is def@nt on the abundance of the
population. Theenudensitystage refers to the stage in the annual lifecycle of the
population at which the abundance is assesse@rarttnsitypop refers to the portion
of the population whose abundance is considergtiete is a standard error associated

with a model beta it is stored in tbecolumn.

B.6.3Predicting consequences with multiple models

To predict consequences from multiple models aeatiyje must be associated
with more than one model. This is done by selentattiple models in the model drop
down in the objectives section of the decision forAn additional model beta is also
selected for each of these models, their model hgig The model weights must be
between 0 and 1 for each model, with a sum of &ffull set of models predicting the
consequences of an objective. The weight for eachlel provides the relative
influence of that model’s prediction relative t@tbther models in the set. For example
if model A has a weight of 0.75 and model B haseggivt of 0.25, with predictions of 1
and 2 respectively, the multiple model predictisthe sum of the model predictions by

their weights. In this case 0.75 + 0.5 the mudtimlodel prediction is 1.25 (0.75+0.5).
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Table A.1 Objectives and their components for my eample Centennial Woods Habitat Management Problemekision.

Objective
Name Direction Weight Measureable Attribute Measurement Technique Description
Abundance maximize 0.35 Number of Bowtruckles Predictive model of the Maximize the abundance of
number of Bowtruckles present Bowtruckles in Centennial
in Centennial woods. Woods.
Sightings maximize 0.175 Percentage of visitors Predictive model of the Maximize the percentage of
with a Bowtruckle Bowtruckle sighting rate. visitors to Centennial Woods that
sighting see a Bowtruckle during their
visit.
Visits maximize 0.085 Number of visitors per Predictive Model of the Maximize the average number of
week. number of visits per week. individuals that visit Centennial
Woods per week.
Visitor maximize 0.27 Average rating (0-10). Observed response to an Maximize the visitor experience
Experience opinion survey of current of those who visit Centennial
visitors to Centennial Woods Woods.
and a random sample of the
local public.
Cost minimize 0.12 Number of park ranger Predictive Model of the Minimize the number of hours

hours.

number of hours required to

successfully manage the park.

required for park rangers to
manage Centennial Woods.




Table A.2 Alternatives, their descriptions, decisin analysis score, and whether or not they were
selected for implementation in my example CentennidVoods Habitat Management Problem.

Alternative Description Score Selected

Name

Protected Area  Set aside a region of Centennial Woods that is off 0.7668 1-Yes
limits to visitors.

Viewing Area Develop a viewing station that directs visitors to a 0.7517 0-No

Bowtruckle viewing sight that minimizes negative
effects to Bowtruckles.

Status Quo Maintain the status quo management of Centennial  0.16 0-No
Woods

Entry Fee Charging visitors an entry fee to enter Centennial 0.4221 0-No
Woods.

Table A.3 Alternatives with their action elementsaction values, action character values, and models.

Alternative Action Element Action Value Action Character Models*
Protected Area intercept 1 1,2,3,4,5
entry.fee 0 No 1,2,3,4,5
viewing.area 0 No 1,2,4,5
protected.area 1 Yes 1,2,3,4,5
Viewing Area intercept 1 1,2,3,4,5
viewing.area 1 Yes 1,2,4,5
entry.fee 0 No 1,2,3,4,5
protected.area 0 No 1,2,3,4,5
Status Quo intercept 1 1,2,3,4,5
protected.area 0 No 1,2,3,4,5
entry.fee 0 No 1,2,3,4,5
viewing.area 0 No 1,2,4,5
Entry Fee intercept 1 1,2,3,4,5
entry.fee 1 Yes 1,2,3,4,5
protected.area 0 No 1,2,3,4,5
viewing.area 0 No 1,2,4,5

*1 — Bowtruckle Abundance Model, 2 — Bowtruckle I8igg Model, 3 — Centennial Woods Visit Model, 4
— Centennial Woods Visitor Survey, 5 — Centennialdds Management Cost Model
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Table A.4 The inputs to the Bowtruckle Abundance Mdel that models the consequences for the Abundanobjective and Protected Area
alternative for my example problem.

Model Beta Action Action
Objective Alternative  Model Transformation Key Value Value Character
Abundance Protected Bowtruckle none intercept 10 1
Area Abundance
Model
Abundance Protected Bowtruckle none protected.area 90 1 Yes
Area Abundance
Model
Abundance Protected Bowtruckle none viewing.area 30 0 No
Area Abundance
Model
Abundance Protected Bowtruckle none entry.fee 50 0 No
Area Abundance
Model




Table A.5 Consequences by objective and alternatiier the example problem.

Alternatives

Objectives Protected Area Viewing Area Status Quo Entry Fee
Abundance 100 40 10 60
Sightings 55 95 20 25

Visits 175 250 250 50
Visitor Experience 5 7 2 6

Cost 8 12 20 40

Table A.6 Example layout of csv file for use withite smartDA function with three objective columns
and a column for each alternative.

objective weight  Direction Entry Protected Status Viewing
Fee Area Quo Area

Abundance 0.35 maximize 60 100 10 40

Cost 0.12 minimize 40 8 20 12

Sightings 0.175 maximize 25 55 20 95

Visitor 0.27 maximize 6 5 2 7

Experience

Visits 0.085 maximize 50 175 250 250

Table A.7 Decision analysis scores for each of tiadternatives in the example problem.

Entry Fee Protected Area  Status Quo  Viewing Area
0.4221111 0.7667917 0.16 0.7516667
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Table A.8 List of key types by name with their desgptions.

name

description

dataset.column
function.argument

model.beta
covariate.column
popmod.key

analysis.output
distribution.parameter
beta.info

model.info

covariate.value
sim.species
sim.mark
sim.pop
sim.harvest.data
sim.harvest
sim.season

A column of a dataset (does NOT include annual or daily
covariates). All keys entered in CAPS.

A key used as arguments for R function arguments, such as mean,
sd, dataset, etc.

A beta for a model, either for simulation or estimated.

A column in tblcovariate (includes annual and daily covariates)

A key created by and used in the popmod function for simulating a
population through time.

An output from an analysis

Keys used that define a parameter of a statistical distribution.
Additional information related to a model beta, such as se, uci, Ici
A key that provides additional information about a model, such as
its weight or aic score.

The value that is fed into a model and multiplied by a beta

Keys that identify a species life history

Keys used for simulating a marked population

Keys used to simulate population dynamics

Keys used for simulating agency handling of harvest data

Keys used to simulate the harvest

Identifies the type of harvest season (e.g., rifle, bow, etc)
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Vermont Cooperative Fish and Wildlife Research Unit

Access Front-End for the R package 'harvest'

Basic Info Models Pop Simulation Pop Analysis Decision Analysis
Species Model Types Seeds Estimators Decisions
Covariates Models Setting Types llllllll Analvses lllllllll Models
Keys R functions Settings Keys
Datasets RUNS
Enumerations

Figure A.1 The home page for Microsoft Access datase used in the R package AMharvest. The
majority of the decision analysis functionality islinked to the buttons under theDecision Analysis
header. To enter information about a decisions sett the Decisions button. To enter models used in
the consequences step select tModels button. To enter model betas and action elemengelect the
Keys button.

Decisions

Name |Centennial Woods Habitat Management Problem pkdecisionid - fklinkeddecisionid

What habitat management action should be taken to meet the needs of Bowtruckles and the public?

Recently there has been increased visitation to Centenial Woods causing a decrease in Bowtruckle abundance. Assecretive # |

1 |creatures visiters are venturing ever deeper into the woods in search of Bowtruckle, limiting the habitat available to L4
|Bowtruckles. The university is considering regulations and other efforts to satisfy visiters and increase bowtruckle numbers.

nalysis Function ;smaﬁbA E[

Cutcome: |A protected area was established to protect Bowtruckle. The protected area increased Date: 4/29/2014
Bowtruckle abundance while maintaining the average visiter experience and low cost.

Figure A.2 Decisions are entered in thBecisions form. The Name, pkdecisionid, fklinkeddecisionid,
Decision Question, Problem Definition, Analysis Function, Outcome, and Date are entered and
displayed in this form. Name is the name given to the decision. Thekgecisionid is the id assigned to
the decision, whilefklinkeddecision id store the id this displayed decision links tof there is one. The
Decision Question is the decision to be made, while theroblem Definition provides the background
information on the decision. TheAnalysis Funcition is the R function used for the decision analysis.
The Outcome is the result of the decision and th®ate is the date the decision was made.
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OBRJECTIVES | Edit Objectives | Decision: |Centennial Woods Habitat Management Problem

OEectivesi Abundance El[hremi.":: maximize E\‘\‘f:‘-ght; | 0.35
Measureable Attribute: :Numberofeosvtruck!es

Messurement |Predictive model of the number of Bowtruckles present in Centennial woods.

Technigue:
Deascription: [Maximize the abundance of Bowtruckles in Centennial Woods. ‘
Models (thidecisionobjectivemodel ) Edit Models | Edit Keys (Model Betas) | SB/Scive: —z[
Keys (Model Betas -thimadelkeyvalues) |
' Model -
= Bowtruckle Abundance Model E
Model Beta (Key) - | valuenum - valuechar -
intercept |E| 10
protected.area 90
viewing.area 30
entry.fee 50
*
*
Record: 4 _Lof]_ B M | % Mo Filte | Seﬂarsh.

Record: |4 1of5 boMoE $: Mo Filter | Search

Figure A.3 Objectives are entered in th@bjectives form. The Objective, Direciton, Weight,
Measureable Attribute, Measurement Technique, are entered and displayed in this form. The
decision the objective is a part offfecision) and the button for editing or entering new objecives
(Edit Objecitves) are just above the objectives section of the forn®bjective is the name given to the
objective. Direction is the desired state of the objecitveWeight is the relative importance of the
objective. TheMeasureable Attribute is the units the objective is assessed with, antetMeasurment
Technique is the means for assessing how many of the measdinnit result from the decision.

Objectives (tblobjective)
pkobjectiveid - Narne m

»

Figure A.4 Objective names are added or edited irhe form linked to by the Edit Objectives button.
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Maodels {tbldecisionobjectivemodel) Edit Models | Edit Keys (Model Betas) Ob;&r‘rive:_Zl

Keys (Model Betas -thimodelkeyvalues)

Model -
= Bowtruckle Abundance Model |Z|
Model Beta (Key) ~ | valuenum = valuechar #
intercept E 10
protected.area 30
viewing.area 30
entry.fee 50
*
=
Record: 4 1ofl |3 1 [ < No Filter [ Searciﬂ

Figure A.5 Model and their model betas (Keys) arergered in the Model and Keys sub-forms. The
Model, the Model Beta values, and thevaluenum and valuechar values are entered in these sub-forms.
Model is the name of the model usedvodel Beta is the name of the beta used in the model. The
valuenum is the numeric value of the beta, andaluechar an the character value of beta if applicable.
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Models
pkmodelid - fkparentmodelid B

fkmodeltype consequence.predicted El
fspeciesid E| Show Model Info
name Bowtruckle Abundance Model
formula
transformation |none E|
bayesian ]
description Predicts Bowtruckle abundance.
Model Keys
fkkeyid = ‘valuepum = valuechar -
intercept 10
protected.area 90
viewing.area 30
entry.fee 50
#
Record: M 1of4 L e Mo Fifte Search

Figure A.6 Model editing can also be conducted in Edel form. The fields in the model form are
pkmodelid, fkparentmodelid, fkmodeltype, fkspeciesid, name, formula, transformation, bayesian, and
description. The pkmodelid and fkparentmodelid fields store the id for the current model, and thed
for the parent model if the current model is an iteation of an earlier version of the model. The
fkmodeltype is the type of the model, and thékspeciesid is the species the model makes a prediction
about if applicable. The name field store the namef the model. Theformula field stores the model
formula if needed for use in R, whiletransformtion stores and transformation of the model output
that occurs. Thebayesian check box is used if the model includes bayesiameertainty. The
description field is a text description of the model. The Moel Keys sub-form stores the keys
associated with a modelfkkeyid), and there numeric galuenum) or character values ¢aluechar).
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Edit Alternatives | Name |Cerltennlal ‘Woods Habitat Management Problem

Protected Area E- 0.766792| [/}

Set aside a region of Centennial Woods that is off limits to visitors.

ALTERNATIVES

Edit Action Elements {Keys) I Edit Models

Action Element {Key, fkkeyid): |intercept |E|

Action Value: 1| Action Character: | |

Models (thldecisionalternativemodelinputs)
fkmodelid -

_I Bowtruckle Abundance Model |Z|
__| Bowtruckle Sighting Model

_] Centennial Woods Visit Model

_] Centennial Woods Visiter Survey

_I Centennial Woods Management Cost Model

*|

Record: M 10of5 bbb | i Mo Filter | Search

Record: M 1of4 LA I | & No Filter | Search i{ .I:I.I.I

Recardi M« 1of4 L 1 | K No Fitter |'Search |

Figure A.7 Alternatives are entered in theAlternatives form. The Alternative, Description, Score, and
Selected values, as well as the action elements and theilues are entered and displayed in this
form. The decision the alternative is a part of Becision) and the button for editing or entering new
alternatives (Edit Alternatives) are just above the alternatives section of the fm. Alternative is the
name given to the objective Description is a text description of the alternative.Score is the decision
analysis result for the alternative and selected isheck if the alternative was selected for
implementation. TheAction Elements sub-form stores the action elements, the actionezhent values
(Action Value) for the alternative and action element characteralues @ction Character) if applicable.
The models that the action elements are covariates are stored in theModels sub-form fkmodelid

drop down.

Alternatives (tblalternative)

pkalternativeid - Name: [ﬂ

Figure A.8 Alternative names are added or edited ithe form linked to by the Edit Alternatives
button.
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Keys

Show Key Types

name protected.area
fkkeytype |model.beta [=| fksettingtype [=]
datatype numeric E[

description Whether or nota proltected area is established.

Figure A.9 Keys are entered in thkeys form. The pkkeyid, name, fkkeytype, fksettingtype
datatype, and description field for keys are storednd displayed in this form. The pkkeyid is the
automatic id for each key, thefkkeytype is the type of key it isfksettingtype is the key’s setting type

if applicable, and datatype is the key’s type of day stored with the key. Thaame field is the name of
the key and thedescription field is the key’s description.
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APPENDIX C. ANALAYSIS OF VARIANCE IN ESTIMATOR PERFORMANCE

To test the significance of the differences in mparformance by estimation
method, and as a function of error | conducted VigkéISD tests. Based on this
analysis there is a significant difference in tleefprmance of all of the estimators in
terms of their ability to predict abundance as raess by the bias of the estimators
(Table C.1). In terms of the ability to predictputation change (lambda) measure by
bias in lambda there is a significant differencawieen the sex-age-kill method
(sakEst ) and the other three methods, but the other thresthods are not
significantly different from each other (Table C.2)

In terms of ability to predict abundance includiegor in data collection
resulted in significantly different performancerfrane error type to another with two
exceptions (Table C.3). , When reporting error alarror, as well as sex error and
age error (Table C.3) the differences were insigaift for the indexifdexEst ),
Fry, fryEst ) and Downing downingEst ) methods, but significant for the sex-age-
kill method GakEst ) except . There were no significant effects obem the ability

to predict lambda (Table C.4).

Table C.1 Differences in the mean bias in abundanastimate by estimation method across scenarios.

Estimator Difference Lower limit of 95% Lower limit of 95% Adjusted
comparison inmeans confidence interval on confidence interval on p-value
difference in means difference in means

indexEstto 0.4895 0.4877 0.4912 0.0000
fryEst

indexEstto 0.4480 0.4462 0.4497 0.0000
downingEst

indexEstto -0.0243 -0.0225 -0.0260 0.0000
sakEst

fryEst to -0.0415 -0.0432 -0.0397 0.0000
downingEst
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fryEst to -0.5137 -0.5120 -0.5155 0.0000
sakEst

downingEst -0.4723 -0.4705 -0.4740 0.0000
to sakEst
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Table C.2 Difference in the mean bias in lambda estate by estimation method across scenarios.

Estimator Difference Lower limit of 95% Lower limit of 95% Adjusted

comparison inmeans confidence interval on confidence interval on p-value
difference in means difference in means

indexEstto 0.0014 -0.0003 0.0032 0.1497

fryEst

indexEstto 0.0012 -0.0005 0.0030 0.2608

downingEst

indexEstto -0.0184 -0.0166 -0.0201 0.0000

sakEst

fryEst to -0.0002 -0.0019 0.0016 0.9920

downingEst

fryEst to -0.0198 -0.0180 -0.0215 0.0000

sakEst

downingEst -0.0196 -0.0178 -0.0213 0.0000

to sakEst
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Table C.3 Difference in the mean bias in abundancestimate for by error type across estimation

methods and by estimator.

Scenario All indexESt  fryEst downingEst sakEst
comparison estimation

methods
stable.nullto  0.0000 0.0000 0.0000 0.0000 0.0000
stable.reporting
stable.nullto  0.0000 0.0000 0.0000 0.0000 0.0000
stable.sex
stable.nullto  0.0000001 0.0000 0.0000 0.0000 0.0000
stable.age
stable.nullto  0.0000 0.0000 0.0000 0.0000 0.0000
stable.all
stable.reporting 0.0000 0.0000 0.0000 0.0000 0.0000
to stable.sex
stable.reporting 0.0000 0.0000 0.0000 0.0000 0.0000
to stable.age
stable.reporting 0.0000 0.9317 0.3516 0.9444 0.0000
to stable.all
stable.ageto  0.3310 0.8638 0.1687 0.5798 0.0000008
stable.sex
stable.ageto  0.0000 0.0000 0.0000 0.0000 0.0000
stable.all
stable.sexto  0.0000 0.0000 0.0000 0.0000 0.0000

stable.all
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Table C.4 Difference in the mean bias in lambda estate for by error type across estimation
methods and by estimator.

Scenario All indexEst  fryEst downingEst sakEst
comparison estimation

methods
stable.nullto  0.9999 0.9999 0.9999 0.9981 0.9996
stable.reporting
stable.nullto  0.8447 0.9999 0.7880 0.7684 0.6798
stable.sex
stable.nullto  0.9960 0.9999 0.9459 0.9569 0.9866
stable.age
stable.nullto  0.6605 0.9999 0.9968 0.9954 0.5557
stable.all
stable.reporting 0.9071 0.9999 0.8399 0.9092 0.7983
to stable.sex
stable.reporting 0.9995 0.9999 0.9679 0.9949 0.9981
to stable.age
stable.reporting 0.7527 0.9999 0.9991 0.9999 0.6863
to stable.all
stable.ageto  0.9659 0.9998 0.9951 0.9899 0.9276
stable.sex
stable.ageto  0.8646 0.9999 0.9949 0.9979 0.8544
stable.all
stable.sexto  0.9976 0.9999 0.9353 0.9346 0.9997
stable.all
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