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ABSTRACT 

This research spans a variety of research topics with a common theme, 
providing decision support through the development and analysis of methods that assist 
decision making for natural resource and wildlife management.  I used components of 
structured decision making and decision analysis to address natural resources 
management problems, specifically monitoring and estimating the status of harvested 
populations, as well as data collection decisions for landscape conservation. 

 
My results have implications for the way populations are monitored and their 

status is estimated. I find that the inclusion of error in data collection can have a 
substantial impact of the performance of abundance and growth rate estimates of 
harvested species and that the selection of estimation methods depends on what 
management objectives are most important.  For example, the Sex-Age-Kill population 
estimation method best estimates the size of populations, while the Downing population 
reconstruction method better estimates trends in population growth rates.  I provide a 
framework to support selection of the best estimation method while considering a 
monitoring program as a whole.  Based on this framework the Vermont Fish and 
Wildlife Department will obtain the most benefits from a monitoring program including 
necropsy analysis that uses the Downing method to track population status.  Finally, I 
demonstrated the use of value of information analysis as a tool to determine the relative 
expected benefits of addition spatial data collection for use in landscape mapping and 
conservation.  This type of analysis can provide conservation agencies with a planning 
tool to direct budgets and mapping efforts. 
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CHAPTER 1. INTRODUCTION 

1.1 Dissertation Haiku and Big Picture Summary 

I recently discovered there is a website that publishes PhD dissertations in haiku 

form (http://dissertationhaiku.wordpress.com/), so without further ado, here is my PhD 

in haiku form: 

 

There’s a better way 

Structured Decision Making 

This is how it works 

 

This dissertation spans a variety of research topics with a common theme, 

decision support for natural resource management.  The big picture view of this effort 

is captured above, with the dissertation itself focusing on developing, demonstrating, 

and analyzing methods that can assist decision making for natural resource and wildlife 

management. I describe particular applications of these methods to landscape 

conservation decisions as well as game species management and monitoring. 

Currently the predominant process for making natural resource decisions is 

structured decision making (SDM), which is the approach to decision support used in 

this dissertation.  SDM is used to identify the components of a problem, namely the 

objectives to be achieved and the alternatives available to meet them.  Once the 

components of the problem are identified, decision analysis is implemented to 

determine the alternative that best achieves the objectives. 
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For this dissertation, I used components of SDM and decision analysis to 

address natural resources management questions.  The questions addressed are wildlife 

management and landscape conservation related.  Specifically, what estimation 

methods are best for determining the status of game species populations in the presence 

of error in harvest data collection, which monitoring program best achieves game 

species management objectives, and how valuable mapping efforts are for landscape 

conservation. 

1.2 Structured Decision Making 

Structured Decision Making is a process for deconstructing the pieces of a 

decision process, examining and developing them one at a time, and finally 

recombining the pieces to see the full view of a problem and arrive at the best available 

decision (Gregory et al. 2012, Conroy and Peterson 2013).  It is a process that arose 

from combining elements of economic analysis, management science, conservation 

planning, and the scientific method (Edwards et al. 2007).  From an analytical 

perspective, the decision analysis techniques used in SDM come from an expansion of 

cost-benefit analysis to include multiple objectives that are often expressed in units 

other than dollar values.  This form of decision analysis, known as multiple criteria 

decision analysis (MCDA, Keeney and Raiffa 1976), is the predominant decision 

analysis method from which SDM is built.  Another important expansion of previous 

decision analysis techniques is that SDM begins by identifying the values decision 

makers are interested in achieving.  These values are specified  at the beginning of the 

process, shape the problem framing that is developed, and therefore aid in determining 

both the appropriate form of MCDA to conduct and the variables to include (Keeney 
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1992).  The initial focus on the values to be achieved places an emphasis on interaction 

between decision analysts, decision makers, and the stakeholders whose views are 

included for consideration in identifying the values to address.  Due to the interactive 

nature of eliciting objectives and identifying alternatives, this portion of the process 

borrows heavily from techniques in the fields of facilitation, planning, cooperative 

management, and negotiation. 

The steps of the Structured Decision Making approach are referred to using the 

abbreviation PrOACT (Hammond et al. 1999). The PrOACT steps are:  identifying the 

Problem, describing the Objectives, enumerating the Alternatives, predicting the 

Consequences, and evaluating the Trade-offs. 

The purpose of identifying and documenting the problem for decision analysis 

is to place all participants (such as the decision analyst, decision maker(s), 

stakeholders, scientists, public, etc.) on the same page about what is being considered 

and to aid communication between participants and any other interested parties.  The 

key component of documenting a problem is the decision – the irrevocable allocation of 

resources. However, other common components include:  the trigger that makes the 

decision a pressing problem, who the decision makers are, when the decision needs to 

be made, any key objectives, additional actions or uncertainties to consider, and any 

factors that limit the objectives or alternatives that can be considered. 

Objectives are the values or goals the decision maker aims to achieve by 

making the decision.  To make them useful in a decision analysis framework, 

objectives are specified with a direction and a measureable noun; for example, an 

objective could be to maximize the number of deer harvested.  In this example, the 
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direction is maximizing, and the number of deer harvested gives a measureable 

attribute to the desire to harvest objective so that outcomes can be compared.  Often 

decisions involve multiple objectives that trade-off with each other.  For example, other 

objectives of a deer management plan likely include maximizing the number of deer in 

the population, as well as minimizing the number of negative human–deer interactions, 

objectives that are probably negatively correlated. 

Alternatives are the actions or things that the irrevocable allocations of 

resources are directed towards.  A list of alternatives is the list of items that a decision 

maker is selecting one of when making a decision.  A single alternative at times can 

consist of multiple action elements that are combined into a single selectable entity, 

(known as a strategy or portfolio alternative). 

The problem, objective, and alternatives portions of the process are the areas 

where facilitation and planning techniques are relevant, because this portion of the 

process focuses on engaging participants and eliciting information from them.  This is 

also when stakeholders can aid and contribute to the decision making process (Howard 

1975, Gregory and Keeney 1994, Redpath et al. 2004, Dankel et al. 2007) by assisting 

in identifying the attributes (Martin et al. 2000) such as the objectives they deem 

important, the alternatives they believe could be successful, or the consequences they 

predict would result from implementing an alternative.  The techniques developed in 

this dissertation will likely be most beneficial when natural resource managers and 

stakeholders work with a facilitator to guide them through the planning portion of the 

SDM process. 
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Once the problem has been framed, i.e., the problem, objectives and alternatives 

have been identified, the next step is to predict consequences that would result from 

selecting any one of the alternatives. The consequences are measured in terms of the 

degree to which they achieve the objectives.  The prediction of consequences relies 

either on elicitation of expert knowledge to produce forecasts (e.g., Ayyub 2001, 

Martin et al. 2012, McBride et al. 2012, Perera et al. 2012), past observation of 

outcomes in similar settings (e.g., scientific observation), or some form of predictive 

statistical modeling (e.g., Starfield and Bleloch 1986, Starfield 1997). 

1.3 Decision Analysis 

The final step in structured decision making, apart from actually deciding and 

implementing an alternative, is the analysis of tradeoffs through decision analysis.  

Decision analysis focuses on determining the best action to take in order to select the 

best available alternative and address the problem at hand.  As noted previously, 

decision analysis is the key element that SDM was built around.  The early 

development of decision analysis resulted from the efforts of Ronald Howard (Howard 

1966, 1975, 1980, 1988).  Following Howard’s work, there were efforts to expand upon 

the central decision analysis technique (Keeney and Raiffa 1993), to include the values 

focused approach to problem framing (Keeney 1992), and to distill the process down to 

its key components for ease of communication (Hammond et al. 1999).  Since its 

origination, the techniques of decision analysis have been further developed and 

expanded to match a variety of decision types, and the application to environmental 

decisions has greatly expanded.  Indeed, a review by Ivy Huang et al. (2011) found that 
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the published use of MCDA for environmental problems has increased from the single 

digits in the 1990s to hundreds of applications by the late 2000s. 

Expansion in the use decision analysis, along with the spreading idea that 

management actions can be tracked over time in the form of scientific observations, has 

placed a greater emphasis on making transparent, repeatable decisions and on recording 

the performance of management actions over time, resulting in the expanding use of 

structured decision making (for example, see: 

http://nctc.fws.gov/courses/ALC/ALC3159/reports/index.html).  The increasing use of 

adaptive management, a specialized form of SDM for recurrent decisions where 

learning can improve future outcomes, may also be responsible for the increased 

interest in SDM.  By using SDM in conjunction with adaptive management, decision 

analysts can provide managers with a monitoring plan as well as a transparent rational 

for what decisions were made and what actions were taken so that learning can occur 

over time to improve future decisions (Walters 2001, Walters 2007, Ruhl and Fischman 

2010, McFadden et al. 2011). 

1.4 Natural Resources and Wildlife Management 

This dissertation focuses on applying decision analysis techniques to the 

management of wildlife and natural resources.  Natural resources are the natural capital 

that supports our human economy (Hawken et al. 1999).  Natural resources also benefit 

us through their general use, through the aesthetic benefits I derive, and through their 

existence.  Wildlife species in particular provide society with a number of benefits, 

such as filling important roles in an ecosystem, providing recreational, aesthetic, and 

existence value, and enabling economic and subsistence benefits through harvest 
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(Decker et al. 1987).  The role of wildlife management is to maintain these benefits, 

which requires ensuring that populations are healthy and sustainable. 

1.5 Game Species Management 

Successful game species management is an important aspect of effective 

wildlife management authorities.  Game species are those that are harvested in one 

form or another to provide recreational, subsistence, and economic benefits.   

Unsuccessful game species management can result in decreased benefits due to 

individuals being unavailable for harvest both now and in the future and for other non-

consumptive uses when over-harvest occurs.  Alternatively under-harvest can result in 

opportunity costs from forgoing current harvest or in damage due to overpopulation, 

which may lead to excessive human-wildlife conflict.  Managing a game species to 

obtain optimal benefits requires an understanding of its life history, its habitat needs, 

the way it interacts with its ecosystem, and an assessment of the status of the species 

(Sinclair et al. 2006).  Assessing species status and adjusting management practices and 

harvest regimes is one of the main tasks game species managers perform. 

In order to successfully manage game species and adjust management practices, 

most managers require an accurate assessment of the population status.  Obtaining that 

assessment requires time and effort to collect and analyze data.  Optimal game species 

management is therefore a combination of collecting data effectively and efficiently 

and selecting the best method for analysis.  Due to the many interactions wildlife 

managers have with other agencies and the public, collecting data in a way that 

facilitates interaction with their partners is often another key to effective management 

(C. Bernier pers. comm., Vermont Fish and Wildlife Department).  In the chapters that 
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follow, I evaluate the impacts of data quality on game species status assessment and 

determine what estimation methods provide the best assessments (chapter 2), and I 

explore what monitoring program provides the best data for game species assessment 

while facilitating wildlife management agency outreach efforts and disease detection 

objectives (chapter 3). 

1.6 Estimating Abundance 

There are numerous methods available for converting monitoring data into 

estimates of abundance (Skalski et al. 2005).  The particular abundance estimation 

methods available to a game species manager depends on what is collected (Skalski et 

al. 2005).  The simplest monitoring programs only collect annual counts of the total 

number of individuals harvested.  There are other ways of counting harvest that can 

provide additional information, such as counting harvest by day, by harvest method, or 

by season.  Counting harvest by age, by age group, or by sex also supports the use of 

additional estimation methods (e.g., Eberhardt 1960, Downing 1980, Fryxell et al. 

1988, Gove et al. 2002, Fieberg et al. 2010). 

Monitoring programs can also increase the range of abundance estimation 

methods available by collecting other information about game species in addition to the 

numbers harvested, such as hunting effort, life history characteristics, and vital rates 

(Skalski et al. 2005).  Tracking the hunting effort a species was subject to daily or 

throughout the season allows managers to utilize removal and catch per unit effort 

abundance estimation methods (e.g., Otis et al. 1978, Huggins 1989, Gould and Pollock 

1997).  Information about demographic rates of a game species enables use of the more 

complex abundance estimation methods, such as statistical population reconstruction 
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(e.g., Gove et al. 2002, Skalski et al. 2007, Fieberg et al. 2010).  There are a number of 

methods for collecting information about demographic rates, and studies tracking the 

fate of marked individuals are used quite frequently. 

1.6.1 Harvest Index Method 

Harvest indices provide indirect abundance estimates from counts of a portion 

of a population, such as the number of harvested individuals.  The ratios of membership 

in sub-groups of the population (e.g. the ratio of adult females to adult males that are 

harvested) are sometimes used as well.  For example, both adult sex ratio and juvenile 

to adult female ratios are common indices of abundance for furbearers (Douglas and 

Strickland 1987).  The number of either harvested individuals or another portion of a 

total population provides an index of the total population size, but variability in effort 

and harvest success result in this being an imperfect indicator of the total abundance 

(Skalski et al. 2005). 

1.6.2 Removal Method 

The information contained in daily harvest counts enables the use of removal 

methods to estimate population size (Skalski et al. 2005).  Removal methods compute a 

probability of harvest for each animal in the population for every day of the harvest 

from daily harvests in order to estimate the total number of animals that do not get 

harvested during the harvest season (Otis et al. 1978, Huggins 1989).  Adding the 

observed harvest count to the estimated number of individuals that were not harvested 

produces the pre-season estimate of abundance.  However, use of the removal method 

requires the assumption that the only source of change to the population size is through 
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the removal of harvested individuals (e.g. there are no immigrates or emigrates, no 

births, and no deaths other than harvest) during the hunting season. 

1.6.3 Catch Per Unit Effort Method 

With both daily harvest counts and daily effort data, the catch per unit effort 

methods are options for estimating abundance.  Catch per unit effort methods estimate 

the population size necessary to result in the observed harvest by deriving both the 

probability of harvest from one unit of effort and the population size necessary to 

produce the observed harvest given the probability of harvest from one unit of effort 

and the effort exerted on the population. (DeLury 1947, Otis et al. 1978, Gould and 

Pollock 1997). 

1.6.4 Sex-Age-Kill Method 

The Sex-Age-Kill method is based on recreating the total abundance using life 

history rates for the species being monitored.  This method requires estimates of the 

proportion of the mortality due to harvest, the number of young per adult female, and 

counts of the number of harvested individuals by age group and sex.  Using the 

proportion of mortality due to harvest, the estimated male harvest is converted into 

male abundance.  Based on the estimated adult sex ratio, the adult female abundance is 

estimated, and the number of young individuals is estimated from the female 

abundance using the estimate of young per adult female. Summing the adult male, adult 

female, and young abundance estimates produces the total abundance estimate 

(Eberhardt 1960, Roseberry and Woolf 1991, Millspaugh et al. 2009). 
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1.6.5 Population Reconstruction Methods 

Population reconstruction methods are based on data that includes counts of 

harvested individuals by age, known as age-at-harvest data.  These methods back-

calculate the initial abundance necessary to produce the year and age specific harvests 

observed.  This provides the minimum abundance necessary to produce the observed 

harvest.  To determine the estimated abundance rather than the minimum abundance 

necessary to produce the harvest, various virtual population reconstruction methods use 

different methods of adjusting the minimum abundance (Skalski et al. 2005).  These 

adjustments are based upon calculated demographic rates for the virtual population 

reconstruction methods or supplied rates from additional data for the statistical 

population reconstruction methods. 

The difference between the various virtual population reconstruction methods is 

how they account for the survival and exploitation rates.  The method utilized by Fry 

(1949) simply estimates the minimum population size by summing lifetime harvest 

numbers for each cohort.  Because the Fry method does not account for additional 

sources of mortality, this abundance estimate is only an index of the total population 

size and not an accurate estimate of the total population size. 

The Downing reconstruction method does not estimate vital or harvest rates 

directly either, but uses a weak proxy of adult mortality to reconstruct the pre-hunt 

population by backward-addition of known mortality and a minimal assumption of 

unaccounted-for mortality (Downing 1980).  The performance of the Downing method 

is improved by pooling adults to produce a single adult age class, a practice that is 

typically followed in the use of this method (Davis et al. 2007). 
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The Fryxell reconstruction method uses effort data in addition to age at harvest 

data to inflate harvest counts and to obtain an abundance estimate (Fryxell et al. 1988). 

This method also requires an estimate of the natural survival rate by age.  These 

additional inputs require more data collection efforts, but can result in less negatively 

biased abundance estimates than the Fry and Downing methods (Fryxell et al. 1988, 

Skalski et al. 2005). 

The virtual population reconstruction methods listed above have difficulty 

obtaining estimates from incomplete cohorts (Skalski et al. 2005).  Statistical 

population reconstruction (SPR) methods use auxiliary data to avoid this bias (Gove et 

al. 2002).  SPR methods are flexible to various auxiliary data inputs, so long as they 

provide information about either a demographic rate of the population or the likelihood 

of counting an individual.  Therefore, there is no single SPR method, but instead a 

general technique that is adaptable to the information available.  The information is 

used in a joint likelihood framework to determine the population size by finding the 

abundance with the maximum likelihood for providing the information entered into the 

SPR analysis. 

In chapter 2, I evaluate the performance of the abundance estimators currently 

available for estimating the abundance of fisher (Martes pennanti) in the state of 

Vermont, USA based on the data the Vermont Fish and Wildlife Department collects 

from its fisher monitoring program. 

1.7 Monitoring Programs 

Monitoring programs enable production of the abundance estimates used for 

wildlife management.  While obtaining accurate abundance estimates through 
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monitoring is a key objective of a monitoring program (Lyons et al. 2008), there are 

additional considerations for  selection of a monitoring program.  For instance, an 

agency may have objectives that include minimizing the cost of data collection, 

maximizing the precision in abundance estimates, minimizing the bias of abundance 

estimates, maximizing the probability of detecting a disease in the game species, and 

maximizing the level of citizen, academic institution, and recreational participant 

engagement in and knowledge of the management process. 

The degree to which a monitoring program will achieve these objectives 

depends upon what activities are included in the monitoring program.  For example, to 

carry out their mission and meet their objectives, the Vermont Fish and Wildlife 

Department collects three types of data to assess the fisher population status: daily 

harvest data, daily effort data, and necropsy data, which provides information on the 

age and sex of harvested individuals, as described below.  However, it is possible that 

collecting only harvest data, or harvest and effort data would better meet the full set of 

the monitoring program objectives.   

I apply structured decision making, and the SMART decision analysis technique 

to evaluate the tradeoffs between the objectives for the fisher monitoring programs 

available to the Vermont Fish and Wildlife Department in chapter 3. 

1.8 Fisher 

I use fisher management in Vermont as the managed game species for analysis 

in chapters 2 and 3.  While fishers were once nearly extirpated in Vermont, they were 

successfully reintroduced in the 1960s (Powell and Zielinski 1994).  Following 
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reintroduction, they have been harvested in Vermont since 1974, other than during a 

five year trapping reprieve between 1979 and 1983 (Powell and Zielinski 1994). 

The fisher is the largest member of the Martes genus, with males averaging 3.3 

kg and 60 cm in length and females averaging 1.8 kg and 51 cm (Douglas and 

Strickland 1987).  Females produce their first litter at 24 months and proceed to 

produce one litter per year thereafter, while males become reproductively active at age 

one (Powell and Zielinski 1994).  Breeding females have been found to produce 

between one and four corpora lutea annually, with averages ranging from 1.8 to 2.7 

across ages in studies within the northeastern U.S., but averages are slightly higher for 

females in their peak reproductive years (Douglas and Strickland 1987, Van Why and 

Giuliano 2001, Powell et al. 2003).  Offspring sex ratio has not been found to differ 

from 50:50 (Powell 1994).  The annual recruitment (birth rate) of offspring into the 

population has been found to range from 0.63 to 4.14 offspring per female, with means 

ranging from 1.18 to 2.16 across studies in the northeast (Paragi et al. 1994, Koen et al. 

2007, Buskirk et al. 2012).   

The estimated life span of a fisher is 10 years (Powell et al. 2003), and the 

survival rate depends on their age and the trapping rate.  The annual without trapping 

survival rate commonly ranges between 0.7 and 0.8 for juveniles and 0.9 and nearly 1 

for adults (Krohn et al. 1994, Powell 1994).  In the presence of trapping, adult  survival 

rates as low as 0.61 have been observed, while juvenile survival rates for heavily 

trapped populations has been recorded to be as low as 0.34 (Krohn et al. 1994, Powell 

1994).  Fisher density has been found to range from 0.05 to 0.38 fisher per square 
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kilometer, with an average value of 0.18 in habitat similar to Vermont (Powell et al. 

2003). 

1.9 Mapping 

Wildlife and other natural resources exist in landscapes, making both habitat 

management programs and landscape scale data collection efforts a key component of 

conservation efforts (Poiani et al. 2000, Hilty and Groves 2008).  Many of the most 

pressing challenges facing wildlife managers include human population growth, 

landscape development, and climate change, all of which operate predominantly at the 

landscape scale (Schwartz 1999).  Spatial information is used to aid management for 

these and other landscape scale problems, such as determining the risk of invasive 

species colonization (Gormley et al. 2011), the design and selection of sites for 

biodiversity reserves (Csuti et al. 1997, Araujo and Williams 2000, Cabeza and 

Moilanen 2001), and the prediction of outcomes from wildlife reintroductions (Carden 

et al. 2010, Cook et al. 2010, Zimmermann et al. 2011).  Therefore, the demand for 

spatially explicit scientific information has increased to address various landscape 

conservation efforts. 

While spatial information can substantially benefit management efforts, these 

benefits are constrained by the reliability of the spatial information.  Reliability is a 

product of the bias and precision with which landscapes are classified into categories, 

the size of the area at which classification occurs, any errors accrued during site 

assessment, and irregularities across combined mapping efforts (Aerts et al. 2003).  

These factors result in uncertainty that a management action taken based on spatial data 

will achieve the management goal. 
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Given the uncertainty present in spatial data collection and the limited resources 

that land managers have available for landscape scale research, managers may benefit 

from a means to evaluate alternative management actions and to choose an action that 

optimizes their management goals (Noon et al. 2012).  To address spatial data 

collection decisions, chapter 4 evaluates the value of spatial data collection to natural 

resource management using a method known as value of information. 

1.10 Value of Information 

There are numerous uncertainty types that can affect management decisions and 

their outcomes.  Decisions require predictions of the future.  These predictions can be 

based on a combination of past experience, expert knowledge, or predictive models, all 

of which can be affected by uncertainty.  The uncertainties affecting decisions are: 

measurement error (i.e., imperfect observation of the past), subjective judgment (i.e., 

human errors in the elicitation and documentation of expert knowledge), systematic 

error or bias (i.e., acting in an inherently error prone manner, which can affect all 

sources of information), the model based parametric uncertainty (i.e., uncertainty about 

the true value of model inputs), and structural uncertainty (i.e., uncertainty about the 

form of the model) (Morgan and Henrion 1990).  Decision analysts developed decision 

trees, sensitivity analyses, and other methods in order to account for uncertainty in 

decision making (Morgan and Henrion 1990). 

Decision trees model the possible chain of events between the initial actions a 

decision maker considers and the possible final outcomes.  The intermediate events in a 

decision tree model the different paths, or branches, that can result from uncertainty 
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about the future.  A branching point is added for each factor that can cause multiple 

possible outcomes given the initial set of available alternatives. 

Value of information (VoI) analyses originated as extensions of uncertainty 

analysis tools, where the initial decisions to be made are: what type of information to 

use in making a decision, and determining the branching points representing the 

possible predictions and subsequent decisions that could be made with the various 

information available (Morgan and Henrion 1990).  VoI analyses compare the expected 

outcome of taking an action or making a decision using only the current knowledge that 

is available with the expected outcome of collecting additional information prior to 

making the decision. 

The type of VoI analysis I conduct in chapter 4 is referred to as Expected Value 

of Sample Information (EVSI), where the value of the information contained in a 

sample (e.g. a survey, map, or field data) is being determined.  The EVSI approach is 

used to provide an estimate of the value of spatial information for natural resource 

management purposes.  By predicting the expected value of obtaining additional spatial 

information, I provide managers with a means to evaluate the potential benefits of 

research efforts which can be used to optimize research budgets and better target their 

management actions. 
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2.1 Abstract 

A large number of alternative methods have been proposed for estimating 

population size and growth rate (λ) of harvested game species, but the effect of errors 

in data collection have not been evaluated across estimation methods.  Using a 

simulation setting, I evaluated the effect of data collection errors due to incomplete 

reporting, incorrect aging, and incorrect sexing of harvested individuals on estimator 

performance over a range of estimators and population trajectories for a simulated 

fisher (Martes pennanti) population.  I evaluated four estimators that require only age-

at-harvest data:  Fry (Fry 1949), Downing (Downing 1980),  Sex-Age-Kill (Eberhardt 

1960), and an index method. Using coefficient of error and raw bias as the performance 

measures, under a stable population and without errors in data collection, the Sex-Age-

Kill model had the best performance in terms of estimating abundance, while the Fry 

and Downing methods were the best performers in terms of estimating population 

trend.  Addition of errors to the data collection process affected performance more than 

changes in population trend, but did not change the relative ranking of estimators in 

terms of performance in abundance or trend estimation.  Overall, reporting error had a 

greater effect on performance than the effect of aging and sexing error.  The exception 

to this result was the Sex-Age-Kill estimator, where performance improved with the 

addition of aging and sexing errors based on the life history of the simulated fisher 

population and the Sex-Age-Kill estimation algorithm. 

Key Words: Martes pennanti, abundance estimation, game species management 
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2.2 Introduction 

Game species provide society with a number of benefits, such as filling 

important roles in a functional ecosystem, providing recreational opportunities, and 

providing aesthetic and existence value, while enabling economic and subsistent 

benefits through harvest (Decker et al. 1987).  The role of wildlife management is to 

ensure and maintain these benefits, which requires ensuring healthy and sustainable 

game populations. 

Wildlife management agencies manage game species by assessing the status of 

populations and adjusting management practices accordingly.  In order to successfully 

manage game species, managers require an accurate assessment of the population 

status. 

A large number of alternative methods have been proposed for estimating 

population size of harvested game species (Skalski et al. 2005), which can generally be 

classified into three major methodologies.  Virtual population reconstruction methods 

use the age and sex of harvest individuals through multiple years, and provide an 

estimate of the population size at the beginning of each cohort by tracing the harvest 

fate of the cohort through time (Fry 1949, Downing 1980, Fryxell et al. 1988).  

Populations may also be reconstructed using within-year harvest numbers of adult 

males, adult females, and juveniles (e.g., the sex-age-kill model; Eberhardt 1960).  In 

addition to reconstruction methods, catch per unit effort models incorporate effort data 

with the age at harvest data to estimate abundances.  Finally, statistical population 

reconstruction methods combine auxiliary data (e.g., marked animal studies) with age-

at-harvest data, enabling statistical estimation of survival, harvest, and abundance 
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parameters (Gove et al. 2002, White and Lubow 2002, Skalski et al. 2005, Conn 2007, 

Skalski et al. 2007, Conn et al. 2008, Fieberg et al. 2010). Of these, the population 

reconstruction methods are commonly applied due to the minimal data inputs, requiring 

only the age-at-harvest data which most agencies collect. 

While a number of estimation methods are available, it is not easy for managers 

to determine which estimation method to select to obtain the best estimate of 

population status because estimators have rarely been compared directly.  Each 

estimation method embodies a set of assumptions that must be met to obtain a precise 

and unbiased estimate of the true population size or trend.  Although a number of 

evaluations of these estimation methods have been conducted (e.g., Roseberry and 

Woolf 1991, Davis et al. 2007, Millspaugh et al. 2009, Skalski et al. 2012), they often 

vary from one evaluation to the next in terms of the estimators that are evaluated and 

the species analyzed, often evaluating the performance of only a single estimator by 

comparing the resultant estimates to a simulated population. For example, Millspaugh 

et al. (2009) evaluated the performance of the sex-age-kill (SAK) model when the 

assumptions of a stable-age distribution and stationary population size were violated, 

and when changes in harvest strategies were introduced, but did not include any other 

estimation methods in the evaluation. 

A key violation of assumptions that has received little attention to date involves 

data collection and processing.  This error includes incomplete reporting of harvest 

counts, error in aging individuals, and error in sexing individuals (e.g., Atwood 1956, 

Asmus and Weckerly 2011, Williams et al. 2011b).  If analyses are not robust to these 

violations, the resultant estimates may lead to faulty estimates of the true population 
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abundance and population trend.  Because game species management is adjusted based 

on assessments of population status and trend, accounting for data collection errors in 

the evaluation of estimator performance is an important consideration for successful 

game species management. 

Here, I build on previous efforts and present a means to evaluate the 

performance of several common estimators under various scenarios of user-simulated 

conditions and errors.  While I evaluate estimator performance from the perspective of 

a furbearer biologist in Vermont, USA (VT), and focus on data collection errors under 

differing levels of population growth, this approach can be used to evaluate estimators 

for a wide range of species and conditions. 

2.2.1 Research Objectives 

My objective was to conduct an evaluation of four common abundance 

estimators available for monitoring furbearers in Vermont: 1) indexEst  (an index 

method where population size is estimated based on estimated harvest probability; 2) 

fryEst  (a virtual population reconstruction method), 3) downingEst  (another 

virtual population reconstruction method), and 4) sakEst  (the sex-age-kill model).  

These estimators are widely used and require only the age-at-harvest data (Davis et al. 

2007, Millspaugh et al. 2009). 

I evaluate these for 13 scenarios representing five models of population trends 

(strong decrease, weak decrease, stable, weak increase, and strong increase ) and 5 

models of measurement error:  1) no error in data collection, 2) error in the assignment 

of age to individuals, 3) error in the assignment of the sex for individuals (males 

identified as females and vice versa), 4)  incomplete reporting rate, and 5) an all error 
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model with all three types of measurement error included (aging and sexing errors as 

well as incomplete reporting).  I evaluated estimators in terms of their ability to 

estimate abundance and population trend (lambda) using two performance measures:  

1) the coefficient of error (see Millspaugh et al. 2009) which combines bias and 

precision of the estimates into a single measure, and 2) the percent bias in the 

abundance and lambda estimates. 

2.3 Methods 

2.3.1 Study Species 

To provide insight to estimator selection in VT, my simulated population was 

designed to approximate the conditions of the fisher population in VT.  Following 

successful reintroduction in the 1960s, fishers have been harvested in Vermont since 

1974 with a five year trapping reprieve between 1979-1983 (Powell and Zielinski 

1994).  Trappers are required to tag all carcasses, submit an accompanying record to the 

VTFWD within 48 hours of the close of the trapping season, and notify a game warden, 

who collects and stores carcasses until they can be processed.  Age and sex of each 

harvested individual are collected for each year of the harvest via necropsy, in which 

aggregated carcasses are matched with submitted records.  However, the error rates 

associated with these data are unknown (C. Bernier pers. comm., Vermont Fish and 

Wildlife Department). The state also collects annual effort data, measured as the total 

number of trap-nights (e.g., 2 traps deployed for the full 31 day fisher trapping season 

would be counted as 62 trap-nights), which are used in simulating annual harvest (see 

below). 
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The fisher is the largest member of the Martes genus with males averaging 3.3 

kg and 60 cm in length and females averaging 1.8 kg and 51 cm (Douglas and 

Strickland 1987).  Females produce their first litter at 24 months and proceed to 

produce one litter per year thereafter, with males becoming reproductively active at age 

one (Powell and Zielinski 1994).  Breeding females have been found to produce 

between 1 and 4 corpora lutea annually, with an average ranging from 1.8 to 2.7 across 

ages in studies in the northeastern U.S., but slightly higher for females in their prime 

(Douglas and Strickland 1987, Van Why and Giuliano 2001, Powell et al. 2003).  

Offspring sex ratio has not been found to differ from 50:50 (Powell 1994).  The annual 

recruitment (birth rate) of offspring into the population averages between 1.18 to 2.16 

across studies in the northeast (Paragi et al. 1994, Koen et al. 2007, Buskirk et al. 

2012).   

The estimated life span of a fisher is 10 years (Powell et al. 2003).  The survival 

rate of fishers depends on their age and the trapping rate.  The annual survival rate 

without trapping ranges between 0.7 and 0.8 for juveniles and is greater than 0.9 adults 

(Krohn et al. 1994, Powell 1994). With trapping, these rates can decline to as low as 

0.34 (Krohn et al. 1994, Powell 1994).  Fisher density has been found to range from 

0.05 to 0.38 fisher per square kilometer, with an average value of 0.18 in habitat similar 

to VT (Powell et al. 2003). 

2.3.2 Simulated Population Trajectories 

I simulated 5 alternative population trajectories of fisher (1 stable, 2 increasing, 

and 2 decreasing populations) using the popMod function in the AMharvest package  

developed for the Vermont Fish and Wildlife Department.  The package combines a 
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mySQL database with a Microsoft Access front-end for data storage, entry and 

viewing, with R functions for simulating game species population dynamics, harvest 

data collection (including reporting, aging, and sexing error), and estimating abundance 

and trend from several, existing population estimators.  Using this package I 

stochastically simulated game species abundance, harvest of that species, and 

monitoring of that species on an annual basis.  The popMod function required inputs 

that control population dynamics across the annual cycle (Figure 2.1).  The life cycle is 

anchored by three major events: the census, in which the true population size is counted 

immediately before the onset of harvest (and is the goal of population estimation 

methods to determine), the harvest (the start and duration of the annual harvest season), 

and the birthday (in which a birth-pulse is assumed).  The total number harvested is 

controlled by a harvest model (annualHarvestMod  or dailyHarvestMod for 

annual or daily simulation of harvest),  which returns the true harvest numbers by age 

and sex, as well as the error-laden harvest data that would be analyzed by biologists 

(including  reporting rate, age error, and sex error).  The numbers of individuals 

between each event is controlled by vital population rates, such as pre-breeding 

survival (the probability that animals that have escaped the harvest will survive to 

breeding) and post-breeding survival (the probability that animals will survive to the 

census after the birth pulse) and 100% survival between the census and the harvest.  By 

selecting the desired parameterization for the input models popMod can mimic a wide 

range of conditions such that the simulation matches the conditions for a species of 

interest. 
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For my estimator comparison, the population modeling function popMod is 

initialized with a population seed (the numbers of individuals in each age and sex 

class), and is parameterized by selecting 7 “settings” or groupings of inputs which 

control the numbers and rates through time.  These settings include 1) a simulation 

specification setting, which specifies the number of simulations to run, the start year, 

end year, and species, 2) a species setting, which specifies the age at first reproduction, 

maximum age, the birthday, and whether the terminal age class is a composite age class 

(e.g., 10 year olds and older are all counted as ten year olds)  or not (only 10 years old 

individuals, no survival to age 11),  3) a population setting, which specifies the size of 

the population seed and vital rates such as survival and birth rates, 4) a stochastic 

setting, which controls how each life history rate is modeled (stochastic or not), 5) a 

harvest season setting, which specifies the day the harvest begins and season length, 6) 

a harvest setting, which specifies the harvest rate (here, controlled by annual harvest 

effort), the age at first harvest, the percentage of the harvest that is compensatory 

(mortality that compensates for and therefore reduces the natural mortality rate), and 

whether the harvest is stochastic, and 7) a harvest-data setting, which introduces 

reporting, aging, and sexing errors to the true harvest. 

Each of the 5 population trajectories required inputs for all 7 settings, 6 of 

which contained elements that were constant across trajectories.  First, for the 

simulation setting, I simulated conditions similar to the VT fisher population over a 50 

year period using a hypothetical start year of 1901 and an end year of 1950.  Second, 

for the species setting, I assumed that the age at first reproduction was 1 and 2 for 

males and females, respectively. I set the maximum modeled age to 10, where the final 
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age class represented a composite age class of 10+ year olds.  Third, while the vital 

rates varied by trajectory as described below, I used the following population seeds that 

result in a stable age and sex distribution for males and females for all 5 population 

trajectories: 

Females =  [813,380,267,212,178,153,132,114,99,83,65] 

Males = [535,267,191,154,129,112,99,88,78,69,59] 

This corresponds with the estimated fisher population given available density 

estimates (Kelly 1977, Powell 1994, Powell et al. 2003) and resulted in an initial 

population size of 4,277 fishers.  Fourth, the life history stochasticity settings were all 

set to 0, in which none of the vital rates (birth and survival) were modeled with 

stochasticity.  Fifth, for all trajectories, the harvest season setting was assumed to be 31 

days beginning on December 1st of each year.  And sixth, the age at first harvest was set 

at age 0 (indicating juveniles are harvested), the compensatory harvest rate was 0 

(indicating that harvest is 100% additive to natural mortality), and the stochastic 

harvest value was set at 1 (indicating that harvest was modeled stochastically).  The 

stochastic harvest was implemented using a binomial distribution with the census 

abundance at each age as the number of trials and the simulated harvest rate as the 

probability of success. 

I developed several population and harvest models which controlled population 

rates (Table 2.1), in which the “baseline” models yielded a stable population size 

through time.  The baseline birth rate model included an age and density dependent 

effect, and resulted in an average of 1.68 offspring per reproductive female (ages 2-10; 

Table 2.1, Model 1).  I assumed a 50-50 offspring sex ratio. The baseline pre-breeding 
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and post-breeding survival rate models were simulated with some small differences by 

age and sex such that the combined, annual rate was similar to the reported without 

trapping survival rate, which ranges between 0.7 and 0.8 for juveniles and is greater 

than 0.9 for adults (Krohn et al. 1994, Powell 1994).  The baseline pre-breeding 

survival rates were 0.73 for male and females juveniles, and increased to a peak 

survival rate of 0.996 for six year old males and females (Table 2.1, Models 3 and 4).  

The baseline post breeding survival rates were 0.86 for female and 0.90 for male 

juveniles, with a peak survival rate of 0.98 for 8 year old females and 0.99 for 9 year 

old males (Table 2.1, Models 7 and 8). The baseline harvest rate model resulted in 

average annual harvest rate of 0.154 across ages and sexes, with higher harvest rates for 

young and old fishers and slightly lower rates for 3 to 7 year old fishers and an annual 

effort of 15,000 trap-nights (Table 2.1, Models 9 and 10). 

The five trajectories varied in their vital rates for the population setting through 

changes in birth rates and in survival rates, and in their harvest rate through changes in 

annual effort (Table 2.1), which created stable, increasing, or declining populations 

through time.  An alternative birth, pre-breeding survival, and annual effort were 

parameterized to simulate changes in population trajectory that result in population 

growth rates of 1.02, 1.01, 0.99, and 0.98.  The birth rate was increased via an increase 

in the birth rate model’s intercept from 0.32 to 0.37, resulting in an increase to an 

average of 1.77 offspring per reproductive female (Table 2.1, Model 2).  The 

alternative female and male pre-breeding survival rates were reduced by changing to 

the female and male pre breeding survival rate intercept values from 1.0 to 0.8757, 

resulting in a reduction in the average pre breeding survival rate across ages from 0.94 
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to 0.93 for females and 0.96 to 0.95 for males (Table 2.1, Models 5 and 6).  Two 

alternative harvest probabilities were produced by maintaining the harvest model 

parameters but varying the effort (the simulated number of trap nights per year in 

thousands) downward to 11.33 (Table 2.1, Models 11 and 12) and upward to 19.15 

(Table 2.1, Models 13 and 14).  Without taking the stochasticity into effect, decreasing 

the simulated effort decreased the average harvest rate across ages by approximately 

0.01 and increasing the effort increases the average harvest rate across ages by 

approximately 0.01. 

I then combined the different models to simulate 5 different growth trajectory 

scenarios (Table 2.2).  The five trajectories were a stable population (stable), an 

increasing population due to the increased birth rate model (increase.birth), a 

decreasing population due to the decreased survival rate model (decrease.survival), an 

increasing population due to a decrease in harvest effort (increase.harvest), and a 

decreasing population due to an increase in harvest effort (decrease.harvset). 

Without stochasticity in harvest, the populations ended with 4,277, 6,824, 

2,613, 11,260, and 1,593 individuals for the stable, increase.birth, decrease.survival, 

increase.harvest, and decrease.harvest trajectories which correspond to average annual 

lambda values of 1.01, 0.99, 1.02, and 0.98, respectively.  Including stochasticity in the 

harvest produced variation in the annual abundance as shown by the ribbons 

surrounding the median abundance in the plot of trajectories (Figure 2.3). 

Each trajectory in Table 2.2 produced a different number of harvested 

individuals by age, sex, and year.  From this harvest data, I then created 6 “error” 

models that allowed the inclusion of reporting error (the probability that a harvested 
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animal was reported), sexing error (the probability that an animal would be correctly 

assigned by sex), and aging error (the probability that an animal of a given age would 

be classified into each alternative age class (Table 2.3).  Errors modeled included 

reporting rate (which included 100% reporting and 90% reporting; Models 1 and 2 

respectively) and correct sex classification rates for males and females (100% and 90% 

correct classification, Models 3 and 4 respectively).  In addition, age-error could be 

applied and was modeled with a distance-to-and-from age class formula: 
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Where At, “age-to” is the number of individuals in the resulting data count for 

age t, Af is the number of truly harvested individuals for age f, and E is the age error 

parameter (see Table 2.3, Models 5 and 6).  I use age error parameter values of -25 to 

produce no age error and -3.54 to produce 5% error in aging, which generally assigned 

ages to a neighboring age-class (Figure 2.2). 

I combined the different error models into five error scenarios that represented 

alternative rigor in the data collection process.  The five scenarios of error were a null 

scenario with no error in data collection, an age scenario with measurement error in the 

age assigned to individuals (95% of individuals of age x correctly identified as age x 

and 5% misidentified as another age), a sex scenario with measurement error in the 

assignment of the sex for individuals (10% of males identified as females and vice 

versa), a reporting scenario with a 90% reporting rate, such that the true number of 

harvested animals was under reported by 10%, and an all-error scenario with all three 

types of measurement error included (aging and sexing errors as well as incomplete 
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reporting).  These represent “slight” errors in the data collection process, but are 

thought to be representative of the fisher data collection in Vermont (C. Bernier, pers. 

comm., Vermont Fish and Wildlife Department). 

Due to the greater numbers of females in the population, and therefore in the 

harvest, sex error resulted in harvest datasets with an increased male count and 

decreased female count (Figure 2.4, Sex Error).  Age error had a minor effect on the 

counts as individuals swapped from one age to another are partially compensated for by 

the swap in the opposite direction.  Zero year olds had the greatest differential in count 

from any other age, so the main difference caused by aging error was a small reduction 

in the number of zero year olds as the number of zero year olds reclassified to 1 year 

olds exceeded the number of 1 year olds reclassified as zero year olds (Figure 2.4, Age 

Error).  Reporting errors reduced the overall count in each category (Figure 2.4, 

Reporting Error).  Combining all the errors causes a further reduction in the count of 

females because of the shift from females to males caused by the sexing error (Figure 

2.4, All Error). 

Combining the five error scenarios generated by the error models (Table 2.3) 

with the five population trajectory scenarios (Table 2.2) would result in 25 combined 

scenarios.  In order to focus the set of evaluations to the key sources of potential 

influence, I selected a subset (n = 13) of the 25 for evaluation.  The differential effects 

of the sources of measurement error were evaluated only for a stable population 

trajectory.  For the other four trajectories I limited the evaluation to the null error and 

all error models (Table 2.4). 
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2.3.3 Estimation Methods 

Given the 13 simulated harvest datasets, I estimated population abundance and 

growth rate (λ) with four different estimation methods.  There are a number of methods 

available for converting the monitoring data into estimates of abundance (Skalski et al. 

2005), but a limited selection given only age-at-harvest data as collected for fish 

monitoring in Vermont, and for many other furbearer monitoring programs.   In 

Vermont, the exact date of harvest is sometimes unknown, and the data are analyzed by 

compiling the total harvest by age, sex, and year rather than by day.  A suite of 

commonly used estimators in the package, AMharvest, can be evaluated using this 

aggregated annual data, which are:  the index method (indexEst ), some virtual 

population reconstruction methods (fryEst  and downingEst ), and sex-age-kill 

method (sakEst ). 

2.3.3.1 Harvest Index Method 
Harvest indices provide an indirect estimate of abundance using counts of sub-

groups of the total population (e.g. harvested individuals or only adult males) or the 

ratio of membership in sub-groups (e.g. the ratio of adult females to adult males that are 

harvested).  The number of harvested individuals provides an index of the total 

population size, but variability in effort and harvest success result in this being an 

imperfect indicator of the total abundance.  Adult sex ratio and juvenile to adult female 

ratios are also common indices of abundance, but like the harvest index, changes in 

hunting success for each subgroup, or changes in survival for each subgroup can 

confound the interpretation of changes to these indices relative to changes in the total 

population. 
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The harvest index method in AMharvest uses the function indexEst , which 

takes the annual harvest data and an estimated harvest rate model as inputs.  Due to the 

lack of telemetry or other studies which have estimated the harvest rate of fishers in 

VT, there is no available estimate of the harvest rate.  I use a constant value of 0.15385 

(the average harvest rate across age and sex for the stable population trajectory 

simulation) as the harvest rate input to the indexEst method in all of my evaluations.  

By using this harvest rate, I am giving the indexEst  method the best possible chance 

of providing an accurate estimate of the abundance without adjusting the harvest rate 

based on changes to the population trajectory, effort, or age and sex effects.  A manager 

would normally not have this information at their disposal, and would use expert 

opinion or output from another estimator to provide the approximate annual harvest rate 

required by indexEst . 

2.3.3.2 Virtual Population Reconstruction Methods 
Population reconstruction methods are based on age-at-harvest data.  These 

methods use back-calculation of harvest data to produce year-, age-, and sex-specific 

abundances.  By summing over the age classes, annual abundance levels are estimated 

by including survival rates that are adjusted to reflect other sources of mortality in 

addition to the harvest (Skalski et al. 2005).  The difference between the different 

population reconstruction methods is how they account for the survival and harvest 

rates.  The method utilized by Fry (1949) estimates the minimum population size by 

summing lifetime harvest numbers of each cohort, but does not account for additional 

sources of mortality, producing only the minimum population size as an index of the 

absolute abundance.  In contrast, the Downing reconstruction method (Downing 1980) 
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does not estimate vital or harvest rates directly, but uses a weak proxy of adult 

mortality to reconstruct the pre-hunt population by backward-addition of known 

mortality and a minimal assumption of unaccounted-for mortality (Downing 1980). 

The Fry and Downing population reconstruction methods in AMharvest use the 

functions fryEst  and downingEst , respectively.  Both the fryEst  function and 

downingEst  function take annual age at harvest data as input, with the 

downingEst  function requiring a grouping age (the age above which all individuals 

are summed into a single count) input as well.  I pooled data into 5 classes, 4 for 

animals of ages 0 through 3 and a fifth class for animals of age 4 or greater for the 

Downing estimation method. 

2.3.3.3 Sex-Age-Kill Method 
The Sex-Age-Kill method is a life-history based method that uses harvest 

information and sex and age ratios to estimate the abundance of the population 

(Eberhardt 1960, Roseberry and Woolf 1991, Millspaugh et al. 2009).  The Sex-Age-

Kill method in AMharvest uses the function sakEst , which takes annual harvest data 

by age group (young, subadults, recruits, and vets), as well as estimates of the 

proportion of mortality due to harvest, and the young per adult female as inputs.  

Young are less than one year old, subadults are 1 plus years old but have not yet 

reached breeding age, recruits first-year breeders that have been recruiting into the 

breeding population, and vets include experienced breeders (individuals above the age 

of recruitment).   

The method estimates the adult male harvest rate, and the total adult male 

population is estimated from the adult male harvest rate and the proportion of the total 
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mortality that is due to harvest.  The total adult female population is derived from the 

SAK output of adult sex ratio, and the total juvenile population is derived from the total 

female adult estimate and the assumed birth rate.  Summing the adult male, adult 

female, and young abundance estimates produces the total abundance estimate. 

As with the harvest index method, I used the true values on average from the 

stable population trajectory simulation as my inputs to the sakEst  function 

(proportion of mortality due to harvest and the young per adult female).  In this way I 

are reporting the best possible expected performance from the sakEst  method.  The 

average total mortality due to harvest in my simulation was 0.4702 and the young per 

adult females was 1.128, which were used as the sakEst  inputs for total mortality due 

to harvest and young per adult females, respectively. 

2.3.4 Performance Evaluation 

I used the function, performanceEst  in AMharvest to evaluate the 

estimators in terms of their Coefficient of Error (CE) in abundance and lambda and in 

terms of their bias and precision in estimating population size and lambda. I report the 

estimator performance for year 1 to 40 of the simulations to avoid known biases in the 

virtual population reconstruction methods (Fry and Downing) that result from 

estimating the abundance from incomplete cohorts in the most recent years. 

The precision of the abundance estimates and the lambda estimates were 

assessed with the Coefficient of Error (CE) introduced by Millspaugh et al. (2009) that 

combines bias and precision into a single measure.  The CE in abundance is expressed 

as a percentage calculated as: 
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Here, y is the number of years being compared (y = 40), n is the number of 

simulations (n = 100), 1�2 is the simulated abundance for simulation i and year j, and 

1-�2 is the associated abundance estimate.  The CE in lambda is calculated the same 

way, but substituting 34�2 and 3�2 for 1-�2 and 1�2: 

The CE calculation takes the squared difference between the true metric and the 

estimated metric, and thus obscures the direction of bias.  Because of this, I also 

evaluated percent bias of each estimator in terms of population estimates and lambda.  I 

measured the percent bias in abundance estimates by taking individual annual 

abundance estimates, subtracting the true abundance and then dividing by the true 

abundance, (
5,-
,6

, � 100�, and then finding the median value from the 40 years of the 

simulation.  Similarly, I calculated percent bias for lambda estimates in a similar 

manner to the bias in abundance. First I calculated the annual change in the population 

size, lambda (λt = Nt+1 / Nt) for true and estimated abundances starting in year two.  The 

annual bias in lambda was calculated by subtracting the true lambda from the estimated 

lambda and dividing by the true lambda, 	78-
89
8 � 100�. 
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2.4 Results 

2.4.1 Coefficient of error 

I evaluated performance using the Coefficient of Error (CE) that summarizes 

bias and precision in a single value (Millspaugh et al. 2009).  A perfect estimator would 

have a coefficient of error equal to 0.  The estimators generally performed better in 

regards to estimating population trend (Figure 2.5, bottom panels) than they did in 

regards to estimating abundance (Figure 2.5, top panels).  Overall, there was a trade-off 

in the ranking of the estimators for abundance estimation performance and lambda 

estimation performance.  For the (informed) parameterization provided, the indexEst  

method was best for CE in abundance across all scenarios, and third best for lambda, 

while sakEst  was second best for abundance and worst for lambda.  The fryEst  

and downingEst  methods had the lowest and second lowest CE in lambda across all 

scenarios, but highest and second highest CE in abundance respectively. 

For a stable population with no error in data collection, the CE in abundance 

estimation was lowest for the indexEst  method with a CE in abundance of 7.35% 

followed by the sakEst , downingEst  and fryEst  methods with CE in abundance 

scores of 21.24%, 47.30%, and 51.59% (Figure 2.5, top panel, λ = 1,null).  This is 

associated with a significant difference in the bias of the abundance estimates by 

estimation method (Appendix C).  Changes in trajectory, without error, resulted in a 

general decline in performance when estimating abundance (Figure 2.6, top, panels 2-

5).  For the sakEst  method, the CE was the highest when lambda was 0.98; under the 

same lambda the fryEst  and downingEst  methods improved in performance 
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(Figure 2.6, top, λ = 0.98, null).  However, these improvements did not change the 

overall ranking of estimators in terms of the CE in abundance.  The median bias of the 

estimators helps explain this pattern.  The sakEst  method was negatively biased 

when the population was stable or increasing and positively biased when the population 

was strongly decreasing for the null error scenarios (Figure 2.7, top, λ = 0.98-1.02, 

null).  Note that this result had high uncertainty, as reflected by the large range in 

results from trial to trial (Figure 2.7, top panels, sakEst  whiskers).  The fryEst  and 

downingEst methods , which were the worst performers for abundance, had highly 

negatively biased estimates of abundance regardless of trajectory (Figure 2.7, top 

panels). 

As a consequence of these biases, the median estimate of population size varied 

by both estimator and trajectory (Figure 2.8, top panels).  For example in Figure 2.8, 

panel 1, given their biases at λ = 1, null, on average indexEst  was off by 3 

individuals, fryEst  by -2160, downingEst  by -1979, and sakEst  by -124 

individuals.  Changing trajectory slightly by 0.01 increased these biases slightly (Figure 

2.8, top, panels 2 and 4), but as lambda deviated more from 1 the changes were more 

substantial.  For example, when λ = 1.02 with no error, the indexEst  went from 

overestimating by 3 individuals to underestimating by -380 individuals, a change in 

estimate of -383 individuals (the value shown in Figure 2.8 top panel 3).  For the same 

trajectory (λ = 1.02, null), sakEst  started with a bias of -124 individuals, and this 

negative bias increased by -402 (value in figure), which resulted in a bias of -526 

individuals. In the case of declining trajectories (λ= 0.98), all four estimators produced 

higher population estimates (Figure 2.8, top, panel 5).  For downingEst  and 
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fryEst , this resulted in an improved CE but still significantly worse than the other 

two estimators. For indexEst  and sakEst , the declining trajectory resulted in an 

overestimate of population size. Thus the change in bias was most dramatic as lambda 

deviated from 1. 

While indexEst  and sakEst  performed best in terms of abundance, 

fryEst  and downingEst  performed best in terms of lambda when there were no 

errors in data collection (Figure 2.5, bottom, panels 1-5).  The fryEst , downingEst  

and indexEst  method all had significantly different mean bias in lambda values than 

the sakEst  method, but were not significantly different from each other (Appendix 

C).  For a stable population with no error, the CE in lambda was lowest for the 

fryEst  and downingEst  methods with values of 1.75% and 2.04%, while the 

indexEst  value was 5.81% and the sakEst  value was 22.96% (Figure 2.5, bottom 

left panel, λ = 1, null).  The estimator performance improved with slight deviations 

from λ=1, i.e., λ=1.01 and 0.99 (Figure 2.6, bottom, panels 2 & 4), but decreased with 

stronger deviations from 1.0, i.e., λ=1.02 and 0.98 (Figure 2.6, bottom, panels 3 & 5) 

relative to the λ = 1, null scenario, with sakEst  showing the largest change.  The 

estimators all performed best when λ = 0.99 (Figure 2.6, bottom panel 4) however, 

changes in trajectory did not change the relative ranking of estimators in terms of CE in 

lambda. 

2.4.2 Effect of error 

The effects of error on CE in abundance values depended on the type of error 

(reporting, age, or sexing error) and the estimation method.  Each error type produce 
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significantly different mean bias in abundance values (with the exception of the 

difference between reporting and all error as well as sex and age error), but 

insignificantly different mean bias in lambda values (Appendix C).  When λ = 1, 

reporting error played the biggest role in affecting CE in abundance, increasing CE to 

12.14%, 56.37%, and 52.45%, for indexEst , fryEst , and downingEst , 

respectively (Figure 2.5, λ = 1, reporting).  For these estimators, CE increased by 

roughly 5 units (Figure 2.6, top, panel 1 and 6).  This change in CE in abundance for 

reporting error translated into increases in the negative bias of all estimators (Figure 

2.8, top, panel 6).  For example, given the indexEst  was off by 3 individuals, 

fryEst  by -2160, downingEst  by -1979, and sakEst  by -124 individuals when λ 

= 1, the bias from reporting error was -407, -2363, -2196 , and -526.  These represented 

a change in bias of -410, -203, -217, and -402 individuals for indexEst , fryEst , 

downingEst  and sakEst  respectively (Figure 2.8, top, panel 6).  This change in 

performance was larger than the effect of most of the trajectory effects without error 

(Figure 2.6, λ = 1, reporting). 

The introduction of aging and sexing mistakes resulted in a small reduction in 

CE for indexEst , fryEst , and downingEst , but a small increase for sakEst  

(Figure 2.6, top, panels 7 & 8).  For the sakEst  method, the addition of sex error 

positively increased the percent bias, which would force the estimator to overestimate 

abundance (Figure 2.7, top, panel 7).  In contrast, without aging and sex effects, the 

sakEst  method was negatively biased (Figure 2.7, top, panel 1).  The result of this 

bias would increase the abundance estimate by 330 individuals (Figure 2.8, top, panel 
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7).  When including all sources of error for λ = 1, the performance of sakEst  

improved with the addition of minor error rates in data collection (Figure 2.6, top, 

panels 1 vs. 11).  This improvement diminished as lambda deviated from 1.0.  In 

contrast, errors in the data collection process degraded the performance of indexEst , 

fryEst , and downingEst . 

Inclusion of errors into the estimation of population growth (λ) had a relatively 

minor effect on CE compared to abundance.  When lambda was 1, including reporting, 

aging, and sexing error did not change the relative ranking of the estimators.  Error had 

small effects on the indexEst , fryEst , and downingEst  CE in lambda values, 

but improved the sakEst  CE in lambda (Figure 2.6, bottom panels, λ = 1, reporting, 

sex, age, all).  Sexing error caused the largest improvement in sakEst  performance.  

Despite this improvement, the sakEst  remained the worst estimator for CE in lambda 

by some margin (Figure 2.5, bottom panels, λ = 1, reporting, sex, age, all). 

2.5 Discussion 

2.5.1 Estimator Performance 

I evaluated four commonly used estimators that require only age-at-harvest data 

across time to produce an estimate of population size and trend.  Across estimation 

methods, I found that obtaining accurate estimates of abundance is a challenge, while 

estimates of lambda were more accurate.  When populations are not stable, particularly 

for larger changes in growth rate (λ = 0.98 or 1.02), caused by the simulated changes in 

effort and thereby the harvest rates, accuracy in abundance estimates suffer.  This result 

is in line with those of Davis et al. (2007) and Millspaugh et al. (2009), who found 
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changes in population trends decreased performance of the Downing method and sex-

age-kill method respectively.  My results allow a comparison of these two widely used 

methods, and showed that the comparative degree of impact on the virtual population 

reconstruction methods (Fry and Downing methods) was smaller than the effect on the 

index and sex-age-kill methods. I further demonstrated  that slight error in data 

collection (5-10%) effected the performance of the estimation methods as much, or 

more, than a 2% deviation in the population trend from λ = 1.0 with no errors in data 

collection. 

While the indexEst  method performed best in terms of estimating 

abundance, this was a direct result of the unrealistically accurate inputs to this 

estimation method that are not typically available to wildlife managers.  Without 

auxiliary data collection, such as a marking study or other means, to accurately 

determine the harvest rate for use in the index method, it is unlikely to produce such 

accurate estimates in practice.  As such, the inclusion of the index method here served 

as a benchmark for the Fry, Downing and SAK estimators, which will be the focus of 

our discussion. 

Based on abundance estimation, the sex-age-kill method was far less biased 

than the Fry and Downing estimation methods.  The performance of all estimators was 

diminished by changes in population trend, where, estimators were most biased in their 

abundance estimates for strongly declining populations (λ = 0.98), with Downing and 

Fry underestimating abundance and Sex-Age-Kill overestimating abundance.  This 

increases the difficulty of management because tracking changing populations is 

essential, and managers are often precautionary and act to avoid population decline. If a 
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manager used the best performer to track abundance, the sex-age-kill method, while the 

bias is smallest, the direction of the bias tends to be negatively correlated with the 

population growth rate.  Therefore, managers could be under the false impression that 

the population is more abundant than it actually is (or vice versa), leading to potential 

delays in management responses and immoderate harvest allowances (or unnecessary 

or disproportionate reductions in harvest), which can substantially affect the outcome of 

management (Artelle et al. 2013).  The repercussions of overharvesting a declining 

population can be difficult to recover from, particularly if species are managed with 

quotas intended to achieve maximum sustainable yield because once a population is 

unable to compensate for harvest removals the size of quota reductions must be 

increasingly more drastic to enable recovery.  The risk of failed recovery from 

overharvest may be slightly smaller for fisher than in other species, as they were able to 

successfully establish themselves enough to support trapping in the 1970s, and at 

current rates in 1983 following reintroductions in the mid 1960s.  However, fishers are 

not highly fecund species, with first reproduction in females at age two, and limited 

until age three at which time greater than two offspring per female is still unusual. 

I found that the Downing method was more biased in its estimation of 

population change than the Fry method for unstable populations and with the inclusion 

of error.  This result is due to the grouping of adult age classes in the Downing method.  

With this grouping the observed variation from year to year is dampened, resulting in 

increased bias when the population lambda strays further from 1.00.   

Interestingly, the addition of age, sex, and reporting error improved the 

performance of the sex-age-kill method.  This is likely due to the sex-age-kill 
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estimation algorithm, which relies first on an estimate of male harvest rate to estimate 

the male adult population.  The adult female population is then estimated based on the 

sex ratio of adult males to adult females. In turn, the number of young in the population 

is estimated by the per capita birth rate times the number of adult females.  Thus, if the 

estimate of adult males is biased, this bias trickles through the estimates of adult 

females and young.  Therefore, an increase in the count of adult males will cause an 

increase in the sex-age-kill abundance estimate because a count of more males leads to 

an estimate of more females and more juveniles.  With sex and age structured 

populations sometimes containing greater numbers of females and juveniles, the effect 

of sex error is to shift individuals from relatively more prevalent female and juvenile 

classes to the relatively less prevalent adult male class.  This inflation in the number of 

classified males inflates the male abundance estimate and subsequent total estimate.  

Because the sex-age-kill method initially tended towards a negatively biased estimate, 

these errors increase estimates, improving the performance as long as the error rate 

does not overcompensate for the initial negative bias.  This is an effect that managers 

should be cognizant of because many game species have age and sex distributions that 

favor young and females.  This is particularly common when males are selectively 

harvested, as often occurs in game species due to greater size of males as a food source 

and for trophy hunting (e.g., Marealle et al. 2010). 

The error rates that I applied are believed to mimic the range of error in the 

current fisher data collection methods in Vermont, but may be low relative to error 

rates of other game species monitoring programs.  In Vermont, trappers are required to 

submit “cards” containing the age and sex of trapped animals, and to match the card 
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with a carcass.  The carcasses are then collected by a warden, and aggregated carcasses 

are aged and sexed via necropsy.  With necropsies, the error is small because the sex of 

fisher carcasses can be readily assessed as long as they are not too decrepit, and age is 

accurately assessed from cementum annuli analysis.  However, there is the possibility 

of human error in storage and transfer of carcasses, teeth, and records.  Without 

necropsies, the sex and aging errors would be expected to be greater than what I 

simulated.  Relative to other species, it is possible these error rates are low, particularly 

for species with less structured management and monitoring such as some other 

furbearing species monitoring without necropsies as is more typically the case, or those 

without carcass collection (e.g., muskrat, beaver, fox, opossum, mink, raccoon, skunk, 

weasel, coyote). Repeating the analysis with a range of error rates representing the 

spread of data collection errors for other species and monitoring programs would aid 

the understanding of estimator performance for games species with more or less robust 

data collection methods.  Additionally, altering the error rate by age and sex would 

likely change the impact of the error because individuals could transfer between groups 

at different rates depending on age, sex and species. 

2.5.2 Estimator Selection 

I found that estimating abundance is more difficult than population changes, as 

the bias in abundance was much greater than the bias in lambda.  There also was not a 

single estimation method that was best for both estimating abundance and population 

change.  While the sex-age-kill method was least biased for abundance estimates, the 

Fry and Downing methods performed best at estimating lambda, and they were also 

least sensitive to errors and changes in trajectory for their lambda estimates. Based on 
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this trade-off in performance, there is not a single method that is consistently the best 

estimation method.  The model that will best meet the objectives of tracking population 

state depends on the perceived importance of the possible objectives, as evidence by the 

trade-off between performance for abundance and lambda and the differences in 

robustness to changes in lambda and error. 

One approach to selecting an estimation method is to identify a single 

characteristic for evaluating performance, such as the ability to estimate abundance, in 

which case the sex-age-kill method would be selected, or the ability to track population 

change, in which case the Fry or Downing method would be selected.   

Alternatively, managers can account for performance across multiple criteria.  

For example, additional criteria that managers may wish to consider outside of 

estimator performance itself are:  a monitoring program’s ability to collect and process 

different data sources, the cost of collecting data, other analyses a particular set of data 

allows, or other criteria.  Once relevant objectives have been selected, they are 

weighted according to their relative importance.  Thus, managers can incorporate 

multiple objectives to produce a single score for a population monitoring program that 

combines the weighted performance of the objectives using a decision analysis 

framework (Keeney and Raiffa 1993, Cummings and Donovan in preparation-a). 

Short of an evaluation of the multiple objectives likely present in the selection 

of estimation methods and monitoring programs managers may benefit most from a 

combination of estimation methods, or an adjustment to one of the estimation methods 

evaluated.  For example, using sex-age-kill for abundance estimation, while also using 



56 
 
 

Fry or Downing for trend, or only using Fry and Downing, but adding a positive 

adjustment to minimize the bias in abundance. 
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Table 2.1 List of models used for simulating the fisher population. 

Population 
Model 
Number 

Model 
Name 

Model 
Type 

Transformation Stochastic Parameters 

1 Baseline 
Birth Rate 

Birth rate Log No intercept = 0.32 
AGE = 0.09 
AGE2 = -0.008 

2 Increased 
Birth Rate 

Birth rate Log No intercept = 0.37 

3 Baseline 
Pre-BS 
Females 

Pre-
breeding 
survival 
females 

Logit No intercept = 1.0 
AGE = 1.65 
AGE2 = -0.16 

4 Baseline 
Pre-BS 
Males 

Pre-
breeding 
survival 
males 

Logit No intercept = 1.0 
AGE = 1.5 
AGE2 = -0.125 

5 Decreased 
Pre-BS 
Females 

Pre-
breeding 
survival 
females 

Logit No intercept = 
0.8757 

6 Decreased 
Pre-BS 
Males 

Pre-
breeding 
survival 
males 

Logit No intercept = 
0.8757 

7 Baseline 
Post-BS 
Females 

Pre-
breeding 
survival 
females 

Logit No intercept = 1.85 
AGE = 0.45 
AGE2 = -0.028 

8 Baseline 
Post-BS 
Males 

Pre-
breeding 
survival 
males 

Logit No intercept = 2.25 
AGE = 0.4 
AGE2 = -0.02 

9 Baseline 
Harvest 
Rate 
Females 

Annual 
harvest rate 
females 

Logit Yes intercept = -1.777 
simeffort*=0.032
5 
AGE = -0.325 
AGE2 = 0.03 

*simeffort is multiplied by the effort covariate value – 15.00 for the baseline harvest rate models 
▪simeffort is multiplied by the effort covariate value – 11.33 for the decreased harvest rate models 
◦simeffort is multiplied by the effort covariate value – 19.15 for the increased harvest rate models 

  



62 
 
 

Table 2.1 continued 
Population 
Model 
Number 

Model 
Name 

Model 
Type 

Transformation Stochastic Parameters 

10 Baseline 
Harvest 
Rate Males 

Annual 
harvest rate 
males 

Logit Yes intercept = -1.9 
simeffort*=0.032
5 
AGE = -0.25 
AGE2 = 0.02 

11 Decreased 
Harvest 
Rate 
Females 

Annual 
harvest rate 
females 

Logit Yes intercept = -1.777 
simeffort▪=0.032
5 
AGE = -0.325 
AGE2 = 0.03 

12 Decreased 
Harvest 
Rate Males 

Annual 
harvest rate 
males 

Logit Yes intercept = -1.9 
simeffort▪=0.032
5 
AGE = -0.25 
AGE2 = 0.02 

13 Increased 
Harvest 
Rate 
Females 

Annual 
harvest rate 
females 

Logit Yes intercept = -1.777 
simeffort◦=0.032
5 
AGE = -0.325 
AGE2 = 0.03 

14 Increased 
Harvest 
Rate Males 

Annual 
harvest rate 
males 

Logit Yes intercept = -1.9 
simeffort◦=0.032
5 
AGE = -0.25 
AGE2 = 0.02 

*simeffort is multiplied by the effort covariate value – 15.00 for the baseline harvest rate models 
▪simeffort is multiplied by the effort covariate value – 11.33 for the decreased harvest rate models 
◦simeffort is multiplied by the effort covariate value – 19.15 for the increased harvest rate models 



 

Table 2.2 Simulation trajectories produced from population models.  All trajectories use the baseline models unless otherwise specified. 

Trajectory 
Number 

Trajectory Name Trajectory Birth Rate 
Model 

Survival Rate Model Simulated Effort 
Covariate 

Average annual 
lambda 

1 stable stable 1 - Baseline 
Birth Rate 

3 - Baseline Pre-BS Females & 
Baseline Pre-BS Males 

6 - Baseline 
Effort 

1.0 

2 increase.birth increase 2 - Increased 
Birth Rate 

3 - Baseline Pre-BS Females & 
Baseline Pre-BS Males 

6 - Baseline 
Effort 

1.01 

3 decrease.survival decrease 1 - Baseline 
Birth Rate 

4 - Decreased Pre-BS Females & 
Decreased Pre-BS Males 

6 - Baseline 
Effort 

0.99 

4 increase.harvest increase 1 - Baseline 
Birth Rate 

3 - Baseline Pre-BS Females & 
Baseline Pre-BS Males 

7 - Decreased 
Effort 

1.02 

5 decrease.harvest decrease 1 - Baseline 
Birth Rate 

3 - Baseline Pre-BS Females & 
Baseline Pre-BS Males 

8 - Increased 
Effort 

0.98 
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Table 2.3 List of models used in simulating the data collection process. 

Error Model 
Number 

Model Name Model Type Transformation Stochastic Parameters 

1 100% Reporting Rate 
Females 

reporting rate females None No intercept = 1 

100% Reporting Rate 
Males 

reporting rate males None No intercept = 1 

2 90 % Reporting Rate 
Females 

reporting rate females None No intercept = 0.9 

90% Reporting Rate 
Males 

reporting rate males None No intercept = 0.9 

3 No Error – Females gender classification females None No intercept = 1 
No Error – Males gender classification males None No intercept = 1 

4 10% Error – Females gender classification females None No intercept = 0.9 
10% Error – Males gender classification males None No intercept = 0.9 

5 No Age Error age error polynomial No -25 
6 5% Age Error age error polynomial No -3.54 
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Table 2.4 List of scenarios and their associated population trajectories and error models used in simulating the data collection process for that 
trajectory. 

Scenario 
Number 

Scenario Name Error 
Name 

Error Model 
Numbers 

Population 
Trajectory Name  

Population Trajectory 
Number 

1 stable.null Null 1,3,5 stable 1, λ = 1.00 
2 increase.birth.null Null 1,3,5 increase.birth 2, λ = 1.01 
3 increase.harvest.null Null 1,3,5 increase.harvest 4, λ = 1.02 
4 decrease.survival.null Null 1,3,5 decrease.survival 3, λ = 0.99 
5 decrease.harvest.null Null 1,3,5 decrease.harvest 5, λ = 0.98 
6 stable.reporting Reporting 2,3,5 stable 1, λ = 1.00 
7 stable.sex Sex 1,4,5 stable 1, λ = 1.00 
8 stable.age Age 1,3,6 stable 1, λ = 1.00 
9 decrease.harvest.all All 2,4,6 decrease.harvest 5, λ = 0.98 
10 decrease.survival.all All 2,4,6 decrease.survival 3, λ = 0.99 
11 stable.all All 2,4,6 stable 1, λ = 1.00 
12 increase.birth.all All 2,4,6 increase.birth 2, λ = 1.01 
13 increase.harvest.all All 2,4,6 increase.harvest 4, λ = 1.02 
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Figure 2.1 Simulated Life Cycle.  An annual census occurs at which time the true count of the 
number of individuals is determined.  100% of individuals survive from the time of the census until 
the harvest occurs, at which time all mortality is assumed to be due to harvest.  Harvest is 
determined by the simulated harvest rate, with errors resulting in the count of the harvest depending 
on the error model used.  Following the harvest individuals may survive until their birthdays based 
on the pre-breeding survival rate, at which time they advance in age by one year and reproduce 
based on the birth rate.  Following the birthday individuals advance to the next census depending on 
the post-breeding survival rate. 
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Figure 2.2 Simulated population trajectories.  Each line represents the median abundance over the 
100 simulations, with the shaded region surrounding each line showing the range from the minimum 
to maximum simulated abundance in each year.  The scenarios are the increase.harvest, 
increase.birth, stable, decrease.survival, and decrease.harvest from top to bottom. 

  



68 
 

 

Figure 2.3 Example age classification rate for individuals that are truly 5 years old.  The y-axis show 
the rate at which 5 year olds are classified into each of the ages shown on the x-axis.  The left panel 
shows the rates for no error in age (0% age error.  The right panel shows the rates with age error 
included (5% age error).
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Figure 2.4 Median observed annual harvest counts by age and sex for the different error models.  Each panel shows the median null error harvest 
count for females (null females) and males (null males) in black with the counts including error shown in grey.  The top left panel shows the effects 
of sex error in the counts, the top right of age error, the bottom left of incomplete reporting, and the bottom right shows the combined effect of all 
three error models. 
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Figure 2.5 Estimator coefficient of error (CE) in abundance and lambda.  The CE in abundance is shown in the top panels and CE in lambda is 
shown in the bottom panels.  Each panel contains a bar for each of the four estimation methods (indexEst, fryEst, downingEst, and sakEst 
from left to right).  The panels from left to right are the thirteen simulation scenarios, denoted by the scenario lambda value and error model.  For 
example, the left most panel is scenario number 1, which is a stable population (λ = 1) with no error, which is produced by the null error model. 
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Figure 2.6 Difference from baseline coefficient of error (CE) performance. The change in the CE in abundance (top panels) and change in CE in 
lambda (bottom panels) by estimator relative to the CE in abundance and lambda in the “stable.null” scenario.  Each panel contains a bar for each 
of the four estimation methods (indexEst, fryEst, downingEst, and sakEst from left to right).  The panels from left to right are the thirteen 
simulation scenarios, denoted by the scenario lambda value and error model.  The value of each bar is the change in CE from scenario one to the 
current scenario, by estimator, with negative values indicating a decrease (improvement) in the CE value and a positive value indicating an increase 
(worsening) in the CE value.  For example, the CE for downingEst increase by 5 from scenario one to scenario 11 (λ=1.00, null to λ=1.00, all). 
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Figure 2.7 Boxplots of raw bias in abundance and lambda.  Boxplots of the performance in terms of percent bias in abundance (top panels) and 
percent bias in lambda (bottom panels) on the y-axes.  Each panel contains a box plot of the values across simulations from years 1 to 40 for each of 
the four estimation methods (indexEst, fryEst, downingEst, and sakEst from left to right).  The panels from left to right are the thirteen 
simulation scenarios, denoted by the scenario lambda value and error model.  

73 



 

 

74 



 

Figure 2.8 Difference from baseline performance. This figure displays the change in the median estimate of abundance (top panels) and lambda 
(bottom panels) relative to the median estimate in scenario one (λ=1.00, null) for each estimator.  The labels in the left most panels denote the 
median bias in abundance and the median bias in lambda relative to the initial stable null population size (4277 individuals).  For example, the 
median sakEst abundance estimate was negatively biased by -124 individuals.  Each panel contain a bar for each of the four estimation methods 
(indexEst, fryEst, downingEst, and sakEst from left to right).  The panels from left to right are the thirteen simulation scenarios, denoted by 
the scenario lambda value and error model.  The value of each bar is the change in the median estimate from scenario one to the current scenario, 
by estimator, with negative values indicating a change toward negative bias and a positive vale indicating a change toward positive bias.  For 
example, the sakEst median bias for scenario two (e bias.  For example, the sakEst median bias for scenario 2 (λ=1.01, null) is 61 individuals more 
negatively bias, and 172 individuals more positively biased for scenario 4 (λ=0.99, null). 
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3.1 Abstract 

Population monitoring programs aim to meet many objectives.  Some common 

objectives include accurately estimating population size and trend, effectively detecting 

disease in a population, minimizing management costs, and improving citizen 

engagement in the management and monitoring process. I present a decision analysis 

framework that supports monitoring program selection.  The framework includes a 

simulation package that evaluates monitoring programs for their ability to accurately 

track wildlife populations.  The framework also translates this evaluation into a relative 

performance score for a set of possible monitoring programs.  Therefore, unlike the 

coefficient of error performance measure, this framework enables explicit trade-offs 

between management objectives and links estimator performance directly to 

management objectives.  Here I demonstrate this approach to evaluate monitoring 

programs that combine the option to conduct or not conduct necropsies for fisher 

(Martes pennanti) data collection in the state of Vermont, USA with 4 estimation 

methods: an index method, Fry, Downing, and Sex-Age-Kill.  Only index and Sex-

Age-Kill are available without necropsy data, because Fry and Downing methods 

require age at harvest data.  I found that the necropsy monitoring program using the 

Downing estimation method best achieves the fisher monitoring program objectives for 

the Vermont Fish and Wildlife Department, a conclusion that may not have been 

reached from the coefficient of error measure alone. 

Key Words: population monitoring, abundance estimation, wildlife management, game 

species, martes pennanti, decision analysis, structured decision making 
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3.2 Introduction 

Successful game management is an important aspect of effective wildlife 

management authorities.  Game species provide a wide range of benefits, such as 

economic and subsistence benefits, personal fulfillment and recreational opportunities, 

aesthetic and existence value, as well as the benefit of supporting ecological processes 

(Decker et al. 1987).  While stakeholders are interested in successful management 

outcomes, the objectives must be met within budgetary constraints of management 

organizations.  For game species, sub-optimal management can result in a) a population 

size that exceeds the target size (resulting in lost opportunity costs of foregone current 

harvest), or b) a population size below the target size (resulting in lost future harvest 

and future non-consumptive use while the population recovers). Given the risk, is not 

easy for managers to determine what monitoring program (defined here as the 

combination of data collection activities and the estimation method used to estimate the 

population state) to select to best manage a game species. 

A hallmark objective of many monitoring programs is to estimate the state of a  

population (Lyons et al. 2008) while minimizing cost.  State variables of interest can 

range from occupancy to abundance to population trend, among others. A monitoring 

program includes all of the activities, data collection, and estimation methods used to 

assess and track state variable over time.  Managers select various combinations of data 

sources and an accompanying estimation technique to obtain an estimate of the 

population status to make management decisions.  The combination of data sources can 

range from monitoring total yearly harvest to  more involved data collection, including 

harvest reports by day, necropsies or other techniques to determine age, sex and 
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nutrition of each harvested individual, surveys to assess daily effort and harvest rates, 

surveys of marked individuals to determine demographic rates, and direct observations 

of individuals.  All of these activities contribute to the cost of operating a monitoring 

program.  

The second objective of many monitoring programs is to maximize the 

performance of the method used for converting the data into an estimate of the state of 

the population; that is, select a method which minimizes bias and maximizes precision.  

I define an estimation method as the mathematical model that converts monitoring data 

and or expert opinion into an estimate of population state.  There are a number of 

estimation methods available for converting the monitoring data into estimates of 

abundance, ranging from harvest indices that only need an annual count of the number 

of individuals harvested to statistical population reconstruction methods that use counts 

of harvested animals by age and by sex as well as auxiliary observations of individual’s 

fate in order to enter population vital rates as model inputs.  Several evaluations have 

been conducted on the performance of these estimators, often using the Coefficient of 

Error (CE) method introduced by Millspaugh et al. (2009), which effectively combines 

bias and precision into a single metric.  The evaluations that have been conducted (e.g., 

Roseberry and Woolf 1991, Davis et al. 2007, Millspaugh et al. 2009, Skalski et al. 

2012, Cummings and Donovan in preparation-b, Rinehart and Donovan in preparation) 

often vary from one evaluation to the next in terms of the estimators evaluated and the 

species analyzed, making it difficult to compare among alternatives.   

To complicate matters, managers may have objectives beyond cost and 

estimator performance when selecting monitoring programs.  For instance, in selecting 
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a monitoring program, an agency may have objectives such as minimizing bias and 

maximizing precision in the estimation of the state variable(s), minimizing costs in data 

collection, maximizing participation rate across partner agencies, or others.  

Accounting for all of these objectives simultaneously requires going beyond the 

previously developed metrics of estimator performance.  In addition, a complicating 

factor is that objectives vary from agency to agency, and the importance that they place 

on each objective can vary also. 

As an example of this challenge, the primary objectives for management of 

fisher (Martes pennanti) in the state of Vermont (VT), USA are to maintain a 

sustainable population through an unbiased and precise measurement of the population 

status and to maximize the opportunity for citizen engagement and participation in data 

collection.  To carry out their mission and meet these objectives, the Vermont Fish and 

Wildlife Department (VFWD) collects daily harvest data (the number of animals 

harvested per day during the season) and necropsy data (which provide information on 

the age and sex of harvested individuals, described below).  They additionally conduct 

a survey of trappers on an annual basis to engage trappers and estimate trapper effort.  

With these data sources, each with an associated cost, there are several estimation 

approaches that can be used for long-term monitoring of a state variable.  With the 

harvest totals alone, the index method is the only option.  If trappers can accurately 

identify the sex of the animal and classify animals into age groups (first-year breeders, 

older breeders, or other), the Sex-Age-Kill method can be employed without the benefit 

of necropsy.  With necropsy data collection, some of the population reconstruction 
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methods such as Fry (Fry 1949) and Downing (Downing 1980), along with the index 

and Sex-Age-Kill estimator (Eberhardt 1960) are available for use. 

In a previous paper (Chapter 2), I evaluated the performance of these four 

estimators with respect to bias and precision (CE), and how robust they were to errors 

in the data collection process.  I found the Sex-Age-Kill model had the best  

performance in terms of estimating abundance, while the Fry and Downing methods 

were the best performers in terms of estimating population trend. However, this 

evaluation may be insufficient for selecting a monitoring program because the state has 

additional objectives, including cost and participation with trappers and research that is 

external to the Department.  Selecting the best set of data and estimation method 

(monitoring program) is difficult.  What is needed is an approach that scores the 

alternatives with respect to the VFWD’s multiple monitoring objectives. 

In this paper (Chapter 3), I demonstrate the utility of decision analysis as a 

means to address this monitoring program dilemma.  By including demonstrating the 

analysis of the consequences and trade-offs of selecting one monitoring program over 

another in terms of the multiple objectives often present for game species monitoring 

an informed and justifiable decision can be determined.  In particular I use the 

structured decision making approach (Gregory et al. 2012, Conroy and Peterson 2013) 

to decision framing and evaluation, which follows steps know by the abbreviation 

PrOACT (Hammond et al. 1999), included in the R package AMharvest  (Cummings 

and Donovan in preparation-b, Donovan et al. in preparation).  PrOACT refers to the 

process of breaking a decision into its component parts by identifying the Problem, 

describing the Objectives, enumerating the Alternatives, predicting the Consequences, 



82 
 

and evaluating the Trade-offs in order to identify the best available decision.  I use a 

SMART analysis (simple multi attribute ranking technique) as a decision analysis tool 

for trade-off evaluation (Von Winterfeldt and Edwards 1986), and demonstrate this 

approach with a decision problem focused on the selection of a monitoring program for 

fishers in Vermont. 

My objectives are to 1) Describe the decision problem of monitoring program 

selection for VT furbearer management, 2) Describe my simulation of that problem and 

its analysis using the R package AMharvest , 3) Determine the monitoring program 

that will best meet the objectives for VT fisher management, and 4) Compare the result 

with the selection of a monitoring program based solely on a Coefficient of Error (CE) 

selection method. 

3.3 Methods 

3.3.1 Fisher 

The fisher is the largest member of the Martes genus with males averaging 3.3 

kg and 60 cm in length and females averaging 1.8 kg and 51 cm (Douglas and 

Strickland 1987).  Females produce their first litter at 24 months and proceed to 

produce one litter per year thereafter, with males becoming reproductively active at age 

one (Powell and Zielinski 1994).  Breeding females have been found to produce 

between 1 and 4 corpora lutea annually, with an average ranging from 1.8 to 2.7 across 

ages in studies in the northeastern U.S., but slightly higher for females in their prime 

(Douglas and Strickland 1987, Van Why and Giuliano 2001, Powell et al. 2003).  

Offspring sex ratio has not been found to differ from 50:50 (Powell 1994).  The annual 
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recruitment (birth rate) of offspring into the population averages between 1.18 to 2.16 

across studies in the northeast (Paragi et al. 1994, Koen et al. 2007, Buskirk et al. 

2012).   

Following successful reintroduction in the 1960s, fishers have been harvested in 

Vermont since 1974 with a five year trapping reprieve between 1979-1983 (Powell and 

Zielinski 1994). The survival rate of fishers depends on their age and the trapping rate.  

The annual survival rate without trapping ranges between 0.7 and 0.8 for juveniles and 

is greater than 0.9 adults (Krohn et al. 1994, Powell 1994). The estimated life span of a 

fisher is 10 years (Powell et al. 2003).  With trapping, these rates can diminish to as low 

as 0.34 (Krohn et al. 1994, Powell 1994).  Fisher density has been found to range from 

0.05 to 0.38 fisher per square kilometer, with an average value of 0.18 in habitat similar 

to VT (Powell et al. 2003). 

3.3.2 Decision Problem 

Currently there are two main elements to the data collection of harvested fisher 

in VT.  First, trappers are required to tag all carcasses and submit an accompanying 

record to the VTFWD within 48 hours of the close of the trapping season, and notify a 

game warden, who collects and stores carcasses until they can be processed.  These 

records provide information on the number of harvested animals per trapping season.  

Second, necropsies are conducted on every harvested fisher collected by wardens.  The 

necropsy process enables managers to obtain data on the age and sex of the fishers that 

are harvested, as well as providing external researchers the opportunity to collect 

samples for toxicity, disease, nutritional or other research studies.  In addition to the 

harvest data, the Department conducts an annual survey of trappers to solicit their 



84 
 

knowledge and to collect data on annual trapping effort.  The Department places value 

on these external studies for increasing general knowledge about fisher and providing 

possible alerts that may trigger fisher population change. 

However, conducting necropsies and trapper surveys requires a monetary 

commitment by the VFWD to maintain equipment and support staff, in addition to 

additional time investments from trappers who provide the carcasses, wardens who 

collect harvest reports and transport the carcasses to a central data processing area, and 

volunteers who assist with the necropsy process itself.  Because of the time and money 

that goes into the necropsy process in particular, there is some question for Vermont 

game species managers as to whether the benefits of using necropsies as part of the 

fisher monitoring program justify the costs, or if a simpler monitoring program that 

only collects harvest data (in the form of total number harvested) is sufficient to meet 

the management objectives.  Based on this, the problem to address is:  How to monitor 

the fisher population in Vermont in order to best achieve the objectives of the 

monitoring program? 

3.3.3 Decision Objectives 

The objectives I include for evaluating the alternative fisher monitoring 

programs fall into three categories: 1) maintain a sustainable fisher population, 2) 

minimize the cost of monitoring the species, and 3) maximize the public knowledge 

and engagement (Table 1). Within each category, specific decision objectives were 

defined, resulting in 8 total decision objectives for selecting a monitoring program.  To 

quantify the assessment of these objectives, measureable attributes were identified and 

importance scores were given to each of the objectives (Table 1).  
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The objectives and their importance scores (weights) are elicited from the 

decision maker or decision makers.  The furbearer monitoring program is designed and 

administered by Chris Bernier, the VT Fish and Wildlife Department furbearer 

managers, with input from the Big Game lead and committee.  Therefore, I interviewed 

the objectives and measureable attributes were developed via interviews with Chris 

Bernier to represent the interests the VT Fish and Wildlife Department wish to achieve 

through fisher monitoring and the relative importance of achieving each of them. 

The interview process was completed in three steps.  In the first interview 

session I explained the structured decision making process, the role objectives play in 

the analysis, and how objectives are structured.  During the second interview I elicited 

the objectives, their measureable attributes, and the with and with-out necropsy 

consequences for the objectives unrelated to estimator performance.  Following this 

interview Chris discussed the interview results with the VTFWD big game committee 

and the objectives and their consequences were re-evaluated and the objectives weights 

were elicited in a third interview. 

Within the “maintain sustainable population” category, there were five 

objectives that the monitoring program selection can affect, based on the type of data 

collection that occurs, that are means to achieving the sustainable fisher population 

objective.  They are:  minimizing the bias in lambda estimates, maximizing the 

precision in lambda estimates, minimizing the bias in abundance estimates, maximizing 

the precision of abundance estimates, and maximizing the probability of detecting 

disease in the population.  The bias objectives are measured by the bias in the 

estimates, and the precision estimates are measured by the 5th to 95th percentile range of 
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the estimates (see Decision Consequences).  The disease detection objective was 

measured by the probability that the monitoring program selected will detect a disease 

if one is present.  These probabilities were elicited from Chris Bernier, the Vermont 

Fish and Wildlife Department furbearer manager. 

Under the cost category (decision objective 6),  the cost of the monitoring 

program derives from staff time, travel costs, equipment, and data processing necessary 

to track the status of the population and obtain information from trappers, the public, 

and academic institutions, which is affected by the type of data collection that occurs. 

The goal of the public knowledge and engagement category (decision objectives 

7 and 8) is to have an informed citizenry that is aware of the management and 

monitoring efforts undertaken for game species management and the status of the 

population.  There are two groups of individuals that managers are concerned with, the 

trappers who directly participate in the harvest of fishers, and secondly academic 

institutions and the general public that help inform management and communicate the 

status of management and the species. 

The weights for the objectives representing the relative importance of the 

objectives were placed on a 100 point scale.  The most important objective identified 

was the maximize precision of lambda objective with an importance score of 20, 

followed by precision of the abundance estimate with a score of 18, bias in the lambda 

estimate with a score of 16, bias in the abundance estimate with a score of 14, and 

disease detection with a score of 12.  The cost objective was assigned an importance 

score of 12.  The trapper engagement objective received an importance score of 5 and 

the academic and public engagement objective received an importance score of 3.  A 
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combined final score of 100 would indicate that an alternative was best for all 

objectives, a score of zero that it was worst, and a score of 50 that an alternative’s 

average outcome was half-way between the best and worst alternatives’ outcomes. 

3.3.4 Decision Alternatives 

3.3.4.1 Estimation Methods 
There are a number of methods available for converting the fisher monitoring 

data into estimates of abundance that I evaluate here, namely:  the index method 

(indexEst ), two virtual population reconstruction methods (fryEst  and 

downingEst ), and the sex-age-kill method (sakEst ).  Each of these estimators has 

unique data input requirements, along with different costs. 

The harvest index method in AMharvest  uses the function indexEst , which 

takes the annual harvest data (total or by age and sex) and an estimated harvest rate 

model as inputs.   This rate is normally based on expert opinion.  Harvest indices 

provide an indirect estimate of abundance using counts of sub-groups of the total 

population (e.g. harvested individuals or only adult males) or the ratio of membership 

in sub-groups (e.g. the ratio of adult females to adult males that are harvested).  The 

number of harvested individuals provides an index of the total population size, but 

variability in effort and harvest success result in this being an imperfect indicator of the 

total abundance.   

The estimators introduced by Fry (1949) and Downing (1980) are known as 

population reconstruction methods.  These methods use back-calculation of harvest 

data to produce year-, age-, and sex-specific abundances.  By summing over the age 

classes, annual abundance levels are estimated by including survival rates that are 
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adjusted to reflect other sources of mortality in addition to the harvest (Skalski et al. 

2005).  The difference between the different population reconstruction methods is how 

they account for the survival and harvest rates.  The method utilized by Fry (1949) 

estimates the minimum population size by summing lifetime harvest numbers of each 

cohort, but does not account for additional sources of mortality, producing only the 

minimum population size as an index of the absolute abundance.  In contrast, the 

Downing reconstruction method (Downing 1980) does not estimate vital or harvest 

rates directly, but uses a weak proxy of adult mortality to reconstruct the pre-hunt 

population by backward-addition of known mortality and a minimal assumption of 

unaccounted-for mortality (Downing 1980). The Fry and Downing population 

reconstruction methods in AMharvest  use the functions fryEst  and 

downingEst , respectively. 

The Sex-Age-Kill method is a life-history based method that uses harvest 

information and sex and age ratios to estimate the abundance of the population 

(Eberhardt 1960, Roseberry and Woolf 1991, Millspaugh et al. 2009).  The Sex-Age-

Kill method in AMharvest  uses the function sakEst , which takes annual harvest 

data by age group (young, subadults, recruits, and vets), as well as estimates of the 

proportion of mortality due to harvest, and the young per adult female as inputs.  

Young are less than one year old, subadults are 1 plus years old but have not yet 

reached breeding age, recruits first-year breeders that have been recruiting into the 

breeding population, and vets include experienced breeders (individuals above the age 

of recruitment).  The sakEst  method estimates the adult male harvest rate, and the 

total adult male population is estimated from the adult male harvest rate and the 
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proportion of the total mortality that is due to harvest.  The total adult female 

population is derived from the SAK output of adult sex ratio, and the total juvenile 

population is derived from the total female adult estimate and the assumed birth rate.  

Summing the adult male, adult female, and young abundance estimates produces the 

total abundance estimate. 

3.3.4.2 Monitoring Programs 
I considered 6 alternative monitoring programs, consisting of an estimation 

method and the data collection process (Table 2).  Namely, I evaluated the 

consequences and trade-offs of a monitoring program that includes necropsy analysis 

and trapper surveys (with necropsy) against the consequences of a monitoring program 

that does not include conducting necropsies (without necropsy).  When necropsies are 

conducted, all of the above estimation methods are available for use, resulting in 4 

alternatives with necropsy (N-Index, N-Fry, N-Downing, and N-SAK).   I assumed that 

the necropsy data would be supplemented with an annual trapper survey.  Without 

necropsy, age data is not available and sex data is likely to be more error prone, which 

eliminates the population reconstruction methods (Fry and Downing) from 

consideration, leaving the index method (WO-Index) and the sex-age-kill method (WO-

SAK), which must now rely on trapper or warden age-group and sex classifications that 

are less reliable because they are unconfirmed by necropsy.  In both without-necropsy 

alternatives, I assumed that annual trapper surveys would continue as the cost of 

conducting them is compensated for by the benefits of maintaining trapper engagement 

in fisher management. 
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3.3.5 Decision Consequences 

The consequences of a decision analysis link the 8 decision objectives and 6 

alternative monitoring programs through predictions of the outcomes of each 

alternative for each objective.  The methods used to determine the consequence of an 

alternative varied from objective to objective. 

3.3.5.1 Performance Evaluation (Decision Objectives 1-4) 
Decision objectives 1-4 focus on evaluating each of the 6 monitoring program 

alternatives with respect to bias (minimize) and precision (maximize) of abundance and 

lambda estimates. To determine the consequences of these objectives with respect to 

the 6 alternative monitoring programs, I simulated a fisher population, its harvest, and 

data collection that produce a population that mimics the VT fisher population, its 

harvest, and the fisher monitoring program (both with and without necropsy).  I 

determined the bias and precision that results from each monitoring program using 

population simulation and estimator evaluation functions in AMharvest  (Cummings 

and Donovan in preparation-b).  The primary functions for simulating the true 

population through time and its associated harvest datasets were popMod (which 

simulates annual population dynamics with discrete, one year time steps), 

annualHarvestMod  (which simulates the harvest of individuals from popMod), 

and harvestDataMod  (which incorporates error into the harvest data from 

annualHarvestMod ).  For a full description of the simulation structure see 

Cummings and Donovan (in preparation-b). 

Briefly, popMod is parameterized with an initial population size (seed) by age 

and sex for the first year census period, with subsequent harvest, pre-breeding 
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mortality, birth, and post-breeding mortality determining the age and sex based count at 

the next years census (Figure 1).  I simulated conditions similar to the VT fisher 

population over a 30 year period using a hypothetical start year of 1901 and an end year 

of 1930.  I assumed that the age at first reproduction was 1 and 2 for males and females, 

respectively and the final age class represented a composite age class of 10+ year olds.  

The initial population (the seed) was:  

Males =  [535,267,191,154,129,112,99,88,78,69,59] 

Females =  [813,380,267,212,178,153,132,114,99,83,65] 

in all simulations, for a total of 4,277 individuals.  The harvest season setting 

was assumed to be 31 days beginning on December 1st of each year, with all ages 

susceptible to additive harvest (harvest is 100% additive to natural mortality). 

The baseline birth rate model included an age and density dependent effect, and 

resulted in an average of 1.68 offspring per reproductive female (ages 2-10; Table 3, 

Model 1) which conforms with published rates for the northeast (Krohn et al. 1994, 

Van Why and Giuliano 2001, Buskirk et al. 2012).  I assumed a 50-50 offspring sex 

ratio. The baseline pre-breeding and post-breeding survival rate models were simulated 

with some small differences by age and sex such that the combined, annual rate was 

similar to the reported without trapping survival rate, which ranged between 0.7 and 0.8 

for juveniles and is greater than 0.9 for adults (Krohn et al. 1994, Powell 1994).  My 

baseline pre-breeding survival rates were 0.73 for male and females juveniles, and 

increased to a peak survival rate of 0.996 for six year old males and females (Table 3, 

Models 2 and 3).  The baseline post breeding survival rates were 0.86 for female and 

0.90 for male juveniles, with a peak survival rate of 0.98 for 8 year old females and 
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0.99 for 9 year old males (Table 3, Models 4 and 5). The baseline harvest rate model 

(used by annualHarvestMod ) was a function of simulated annual harvest effort, 

which ranged between 11.3 and 19.2 thousand trap nights per year.  This resulted in 

average annual harvest rate of 0.154 across ages and sexes, with higher harvest rates for 

young and old fishers and slightly lower rates for 3 to 7 year old fishers (Table 3, 

Models 6 and 7).   

With the exception of the post-breeding survival rate, all rates (birth rate, pre-

breeding survival, and harvest effort) include stochasticity in the model intercept term, 

with values drawn from uniform distributions between two values (Table 3.3).  In 

addition, annual harvest was implemented using the binomial distribution with the 

census abundance at each age as the number of trials and the simulated harvest rate as 

the probability of success.  These inputs produced the 250 simulated population trends 

(Figure 2), with resultant lambda values that ranged from 0.96 to 1.04 (Figure 3). 

Each simulation produced a different number of harvested individuals by age, 

sex, and year (a true value), to which I  applied a harvest data “error” via the function, 

harvestDataMod , which introduces reporting error (the probability that a harvested 

animal is reported), sexing error (the probability that a harvested male or female are 

correctly classified by sex), and aging error (the probability that a harvested animal of 

age X is classified into each age group).  I used harvestDataMod  to simulate the 

harvest datasets with and without necropsies.  With necropsies, trappers must submit 

carcasses to the state, so I assumed that all trapped fishers are reported, sexed, and age 

correctly for the necropsy data set.  Without necropsies, the likelihood of reporting 

likely remains high as pelts would still require tagging.  However, aging of individuals 
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to year would not occur and would be restricted to age group (young, adult) with some 

error.  Without carcasses, sexing would occur in the field by trappers or wardens, which 

increases the likelihood of error.  I modeled a 95% reporting rate, 10% aging error, and 

10% sexing error rate for the without necropsy monitoring alternative (Table 4).  Age 

errors were modeled with a distance-to-and-from age class formula: 
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where At, “age-to” is the number of individuals in the resulting data count for 

age t, Af is the number of truly harvested individuals for age f, and E is the age error 

parameter (see Table 4).  I used age error parameter values of -25 to produce no age 

error and -2.791 to produce 10% error in aging (Figure 4).  These represent the 

expected errors in the data collection process from the two monitoring programs (C. 

Bernier, pers. comm., Vermont Fish and Wildlife Department). 

For each harvested dataset, I estimated the true abundance and lambda with four 

alternative estimators, all of which input the annual harvest dataset.  The harvest index 

method in AMharvest  uses the function indexEst , which takes the annual harvest 

data and an estimated harvest rate model as inputs.  I used a constant value of 0.15385 

(the average harvest rate across age and sex for the stable population trajectory 

simulation) as the harvest rate input to the indexEst  method in all of my evaluations.  

By using this harvest rate, I gave the indexEst  method the best possible chance of 

providing an accurate estimate of the abundance without adjusting the harvest rate 

based on changes to the population trajectory, effort, or age and sex effects.  A manager 

would normally not have this information at their disposal, and would use expert 
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opinion or output from another estimator to provide the approximate annual harvest rate 

required by indexEst .  As with the harvest index method, I used a constant value 

from (the true values on average from the stable population trajectory) simulation as 

my inputs to the sakEst  function.  In this way I reported the best possible expected 

performance from the sakEst  method.  The average total mortality due to harvest in 

my simulation was 0.4702 and the young per adult females was 1.128, which were used 

as the sakEst  inputs for total mortality due to harvest and young per adult females, 

respectively.  Both the fryEst  function and downingEst  function take annual age 

at harvest data as input, with the downingEst  function requiring a grouping age (the 

age above which all individuals are summed into a single count) input as well.  I pooled 

my data into 5 classes, 4 for animals of ages 0 through 3 and a fifth class for animals of 

age 4 or greater for the Downing estimation method.  The combinations of datasets and 

analysis method represented the 6 alternative monitoring programs that are the basis for 

the decision analysis problem (Table 5). 

For decision objectives 1-4, I measured the bias in abundance estimates under 

each monitoring program by taking individual annual abundance estimates, subtracting 

the true abundance and then dividing by the true abundance (71- : 19/1� for each 

simulation.  The measurable attribute for bias in the decision problem was the median 

of the median values over the first 20 years (to avoid know bias in the Fry and 

Downing methods in the most recent years of estimation) of the 250 simulations (Table 

1), while the measureable attribute for precision was measured as the range in the 5th to 

95th percentile median values over the 250 simulations.  I calculated median percent 

bias for lambda estimates in a similar manner to the bias in abundance. First I 
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calculated the annual change in the population size, lambda (λt = Nt+1 / Nt) for true and 

estimated abundances starting in year two.  The annual bias in lambda is then 

calculated the same way the annual bias in abundance is calculated, subtracting the true 

lambda from the estimated lambda and dividing by the true lambda, 	7λ= : λ9/λ�, then 

finding the median over the analysis period (20 years) and simulations (250).  I used the 

5th to 95th percentile range in error over the simulations as my measure of precision in 

the lambda estimate. 

To ease interpretation, I converted the bias and lambda measures into units 

representing the numbers of individuals by which the estimation methods would have 

erred relative to a true population size of 5,000 individuals.  In the case of lambda, I 

used the resulting difference in population size over a ten year period assuming the true 

population was stable.  For example, a percent bias in abundance value of 1 would 

indicate the estimated abundance was twice the actual abundance, while a percent bias 

of -0.5 would indicate the estimated abundance was one half the actual abundance.  

Using number of individuals as my units, bias values of 1 and -0.5, would produce 

abundance estimates of 10,000 and 2,500, errors of 5,000 and 2,500 individuals.  A bias 

in lambda of 0.001 indicates the estimated lambda is 1.001 times the actual lambda. For 

example a bias in lambda value of 0.001 would result from an estimated lambda of 

1.001 (i.e., population growth of 0.1% per year) when the true lambda is 1.00 (i.e., the 

population is stable).  This bias in lambda of 0.001 would equate to an error 50 

individuals over a ten year period with an initial population size of 5,000 individuals.  

When used in the decision analysis context I take the absolute value of these measures 

with the desired direction being minimization.  In this way negative and positive bias 
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(e.g., an error of 100 or -100 individuals) are both treated in the same way (an error of 

100 individuals) and given the same performance score.  

As a point of comparison, the performance of the abundance estimates and the 

lambda estimates were also assessed with the Coefficient of Error (CE) summary 

statistic used by Millspaugh et al (2009).  The CE in abundance expressed as a 

percentage calculated as: 
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y is the number of years being compared (y = 40), n is the number of 

simulations (n = 100), N�? is the true population for simulation i and year j, and N-�? is 

the associated abundance estimate.  The CE in lambda is calculated the same way, but 

substituting 34�2 and 3�2 for 1-�2 and 1�2: 

3.3.5.2 Disease Detection, Cost, and Public Engagement (Decision Objectives 4-7) 
I developed estimates of the monitoring program impacts on disease detection, 

costs, and public engagement through an interview of Chris Bernier of the VT Fish and 

Wildlife Department. Based on the interview responses, the probability of detecting 

disease with a necropsy monitoring program was 75%, and 20% if necropsy was not 

conducted (C. Bernier pers. comm., Vermont Fish and Wildlife Department, Objective 

5, Table 5). 

The cost of the monitoring programs was estimated to be $120,000 with 

necropsy and effort surveys, and $70,000 for the without necropsy and survey 
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alternative (C. Bernier pers. comm., Vermont Fish and Wildlife Department, Objective 

6, Table 5). 

The highest level of public engagement would be achieved by conducting 

necropsies and effort surveys.  The necropsy process involves a number of volunteers 

and academic institutions often participate to collect additional data as well.  This level 

of participation involves the public and presents an opportunity for communication 

between game species managers and the public.  There was not a natural scale 

measurement that well-represented the degree that the public engagement objective is 

achieved, so a constructed scale between 0 and 10 was used.  A score of ten was 

assigned to the best possible outcome for the trapper engagement and the public and 

academic institution objectives, with the remaining scores relative to the best 

alternative.  The trapper engagement as well as the public and academic engagement 

objective received scores of 10 for the “with necropsy” alternatives, and a 6 for the 

without-necropsy alternatives (C. Bernier pers. comm., Vermont Fish and Wildlife 

Department, Objective 7 & 8, Table 5).  

3.3.6 Decision Trade-Offs – Decision analysis 

For use in decision analyses, consequences are often organized into a 

consequence table as shown in Table 5.  A consequence table stores the predicted 

outcome of each alternative for each of the objectives.   

Once the consequences have been determined, the 6 decision alternatives were 

scored across all objectives, given their weights, using a SMART analysis (Simple 

Multi-Attribute Ranking Technique) (Von Winterfeldt and Edwards 1986).   I 

conducted the SMART trade-off analysis in AMharvest  using the smartDA  function 
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(Donovan et al. in preparation).  There are three steps in this process, normalizing 

consequences, applying objective weights, and summing the weighted results.  

Normalizing consequences places the outcomes of each of the objectives on a standard 

scale such that the best outcome for each objective receives a score of 1, the worst a 0, 

and the mid-point between the best and worst outcomes would receive a normalized 

consequence score of 0.5.  This is accomplished by dividing the outcome of each 

alternative for each objective by the range of outcomes for each objective for 

maximization objectives, and one minus this value for minimization objective. 

Once the normalized consequences have been calculated, they are multiplied by 

the objective weights for each objective, and summed for each alternative to provide a 

final score for each alternative.  The alternative with the highest total score is then the 

one that fulfills the objectives for the decision to the greatest degree. 

3.4 Results 

3.4.1 Estimator Performance 

Considering only decision objectives 1-4, I found that the best with-necropsy 

monitoring program alternatives performed better than the without-necropsy 

alternatives (Figure 3.7), with the N-Fry and N-Downing, WO-Index and WO-SAK 

methods obtaining scores of 51.37, 53.52, 48.56, 35.62.  However, within the with-

necropsy alternatives, which estimator performed best depended on the objective.  The 

sex-age-kill (N-SAK) method when used with necropsy data performed best for the 

bias in abundance estimate objective (Table 5, objective 4).  The N-Fry method was 

best for the precision in abundance objective (Table 5, objective 2), and the N-Downing 
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method produced the least biased and most precise estimates of lambda (Table 5, 

objectives 1 and 3).  The N-Fry and N-Downing estimates were often quite similar, 

performing best or second best for the precision in abundance, bias in lambda, and 

precision in lambda objectives.   

Based on the CE analysis of Millspaugh et al. (Millspaugh et al. 2009), the 

relative performance of the alternative monitoring programs differed for abundance 

estimation and lambda estimation.  The CE in abundance values by estimation method 

were: 52.1, 56.1, 22.7, 30.3, 22.1, and 26.1 for the N-Downing, N-Fry, N-Index, N-

SAK, WO-Index, and WO-SAK methods respectively.  Without necropsy (and the 

addition of errors in data collection), the CE slightly improved for the sex-age-kill 

method (see Chapter 2), whereas these errors in data collection did not affect the index 

method because it uses totals only.  In terms of population trend, lambda, N-Downing 

method performed best for CE in lambda (Figure 5).  Thus, the selection of the best 

monitoring program depends heavily on the weighting (importance) of each of the four 

monitoring objectives centered on bias and precision.  However, the remaining four 

objectives must be considered. 

3.4.2 Decision Analysis 

I used a SMART analysis to consider all 8 monitoring objectives 

simultaneously.  A score of 100 would indicate that an alternative was best for all 

objectives, a score of zero that it was worst, and a score of 50 that the alternative’s 

outcomes averaged half-way between the best and worst alternative’s outcomes across 

all objectives.  Given the objective weights in Table 1, I found that N-Downing was the 

best alternative with a score of 73.5, followed closely by the N-Fry alternative with a 
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score of 71.4 (Figure 6).  The N-Downing method performed well for most of the 

objectives, ranking in the top two for all but the bias in abundance and cost objectives 

where it performs poorly.  The Sex-Age-Kill with necropsy program was the lowest 

scoring monitoring program alternative, given the objective weights in Table 1. 

While there were some unexpected benefits of the without-necropsy approach in 

terms of estimator performance, necropsy provided numerous benefits that resulted in 

necropsy-based alternatives performing best overall.  The main benefits of the without 

necropsy alternatives was their reduction in cost.  However, based on the importance 

weights provided, the increased probability of disease detection gained by necropsy 

compensated for the reduction in cost of the without necropsy alternatives.  After the 

cost of the necropsy method is compensated for by disease detection the benefits of the 

necropsy methods are accounted for by the benefits of citizen engagement and the 

availability of the Fry and Downing estimation methods accounted for in the increased 

score of the N-Downing and N-Fry alternatives relative to the without necropsy 

alternatives. 

3.4.3 Sensitivity Analysis 

I assessed how changing the weights for each objective affected the relative 

ranking of the 6 alternative monitoring programs.  I found that the ranking of the N-

Downing alternative as the best method was robust to changing the objective weights.  

Considering only estimator performance (by setting the weights of objectives 5-8 to 0, 

while the weights on objectives 1-4 remained unchanged) resulted in alternative scores 

of 53.5, 51.4, 19.5, 37.3, 48.6, and 35.6 for the N-Downing, N-Fry, N-Index, N-SAK, 

WO-Index, and WO-SAK alternatives respectively (Figure 7).  While keeping the other 
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7 weights constant (at the weights in Table 1), weight on the bias in abundance 

objective needed to be increased to an importance score (weight) of at least 20 in order 

for the WO-Index alternative to score highest, and increased to 35 for the WO-SAK 

estimate to outperform the N-Downing estimate.  The weight of the precision in 

abundance objective needed to be increased to 42 (while the other 7 objectives retained 

their Table 1 weights) for the Fry estimation performance to exceed the Downing 

estimation performance. 

When the performance of the estimation methods was ignored (setting weights 

for objectives 1-4 to 0 while objectives 5-8 retained their initial weights), the necropsy 

alternatives all received an outcome score of 20 and the without necropsy alternatives 

received a score of 12 (Figure 8).  In order for the without necropsy alternatives to be 

favored (while ignoring estimator performance), either the benefit of reducing the cost 

must have received an increased importance score of greater than 20 (with objectives 1-

4 at zero, and 5, 7, and 8 at their initial weights), or the combined disease detection and 

engagement objective weights must have received a score of less than 12 (with 

objectives 1-4 at zero, and 6 at its initial weight). 

Therefore, robustness of the N-Downing alternative was due to necropsy 

outscoring without necropsy overall for the objectives unrelated to estimator 

performance, and it being the best performing estimation method when all estimation 

performance measures are considered. 

3.5 Discussion 

I demonstrated an approach for evaluating among alternative monitoring 

programs, given multiple objectives for managing the fisher population in Vermont.  
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Multiple Criteria Decision Analyses like this one have been applied to many natural 

resource problems (Linkov et al. 2006, Mendoza and Martins 2006, Huang et al. 2011, 

Davies et al. 2013), with several applications to wildlife management (Peterson and 

Evans 2003, Converse et al. 2011, Irwin et al. 2011, Converse et al. 2013, Runge 2013), 

but none specific to management and monitoring of harvested wildlife species that I are 

aware of.  My approach, however, could be used by other agencies, with unique 

objectives and monitoring program alternatives and consequence elicitation and 

simulations specific to their species and management setting. 

I found that game species managers in VT should conduct necropsies and use the 

Downing estimation method given the relative importance of fisher monitoring program 

objectives.  This result demonstrated some robustness to objective weights, as it typically 

required doubling the importance of objectives favoring another alternative to change the 

ranking of the alternatives.  Therefore, managers can be confident that the cost of 

conducting necropsies is warranted based on the monitoring program objectives and their 

relative importance, particularly given that the disease detection and citizen engagement 

benefits are perceived to provide greater value than the reduction in cost from cessation 

of necropsies. 

There are numerous examples of the benefits of increasing engagement.  As an 

example, a single year worth of necropsy analysis provided data collection opportunities 

for two college research projects (Bernier and Adler 2012).  A Johnson State College 

study examined the E. coli present in the digestive systems harvest animals in an effort to 

develop a library of E. coli strains by species for subsequent use in identifying the 

presence of games species in watersheds.  Researchers from Green Mountain College 
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also collected tissue samples to conduct population genetic analysis and to test for canine 

Parvo virus.  Additional studies have examined mercury levels in fishers (C. Bernier, 

pers. comm., Vermont Fish and Wildlife Department).  

The selection of the Downing method from the necropsy supported estimation 

methods is largely due to its more consistent estimates.  The consistency of the Downing 

estimation method across simulations and changes in population growth rate was likely 

due to the pooling of adults and the calculation of abundance using a cohort approach that 

considers observations across multiple years.  Combining observations over multiple 

years likely dampens the impacts of an unusual year’s worth of data.  However, while the 

Downing estimation method performed best for the full set of objectives and the 

objective weights specified, this method is strongly and negatively biased in its estimate 

of abundance, and it is more inaccurate at estimating population status in the most recent 

years (Davis et al. 2007).  If there is a way to compensate for this poor performance 

through the creation of another alternative, then a better alternative may be found than 

those examined here.  For example, perhaps the sex-age-kill method can be used to 

provide abundance estimates for the most recent year in conjunction with the Downing 

method estimates for past years.  Alternatively, even though the Downing abundance 

estimate is strongly (negatively) biased, the precision is good; thus it may be “predictably 

biased.”  Perhaps a formula for a robust positive adjustment, on the order of doubling, to 

the Downing method’s abundance estimates can be found that eliminates its negative 

bias, or the abundance can be estimated through other data collection and analysis 

methods. 
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The confidence in selection of the Downing estimation method found here would 

not be possible from the coefficient of error (CE) evaluation alone.  The coefficient of 

error evaluation revealed a strong trade-off between the ability to estimate abundance and 

the ability to estimate lambda.  Downing and Fry had the best CE for estimating lambda, 

but the worst CE for estimating abundance.  However, the relative contributions of bias 

and precision to the evaluation of estimator performance were also unavailable by using 

the CE method alone.  The explicit specification of what estimation performance 

measures to consider, and how important they are, facilitates clarity in the selection 

procedure and the subsequent decision that is unavailable from a statistical measure of 

performance alone. 

Using a structured decision approach in natural resource management is 

challenging, but the benefits may be great (Gregory et al. 2012, Conroy and Peterson 

2013).  Selecting the appropriate objectives requires management agencies to reflect on 

the goals of management and their values.  Once objectives are specified, an additional 

challenge is how to measure performance of each alternative with respect to each 

objective.  Based on conversations with the VFWD managers, I selected median bias and 

5th to 95th percentile range as the performance measures for estimator abundance and 

lambda estimation quality.  However, there are many performance measures available for 

evaluating population estimator performance, such as mean square error, root mean 

square error, absolute error, raw error, r-squared, AIC, and more (Willmott 1982, 

Willmott and Matsuura 2005, Cummings et al. 2011).  The selection of performance 

measures that accurately capture the objectives of estimation is important, as the outcome 

of the evaluation can depend on what performance measures are selected (Cummings et 
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al. 2011).  There may also be more relevant performance measures for the other 

objectives, such as a telephone survey that measures the knowledge and perception of 

fisher management for the general public, academics, and trappers that quantifies the 

outcome of the citizen engagement objective, or a direct study of disease detectability to 

quantify the outcome of the disease detection objective.   

There are also other ways of quantifying the relative benefit of outcomes relative 

to decision objectives.  I assumed that the value derived from the achievement of an 

objective is linear with respect to a change in the outcome of a measurable attributes 

value for that objective.  That is, if the measurable attribute (e.g., probability of disease 

detection) doubles, the value derived from the achievement of that objective doubles.  It 

is possible that this linearity does not accurately reflect the perception of value, in which 

case alternative value functions should be used, because the selection of value functions 

can impact the selection of wildlife management models (Cummings et al. in review). 

This decision analysis approach to monitoring program selection can provide 

clarity where typical evaluation procedures are inconclusive, as the CE evaluation was 

here.  This approach also provides transparency to the process, as well as a tool for 

managers to validate and communicate why a particular monitoring program was chosen.  

Furthermore, due to the flexibility of the AMharvest  package, this type of decision 

analysis can be repeated with other species, population demographics, harvest rates, data 

collection regimes, and estimators to provide insight into many wildlife management 

decisions. 
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Table 3.1 List of fisher monitoring program categories, objectives, the desired direction for the objectives, how the objectives are measured, and 
their relative importance. 

Category Objective Direction Measureable Attribute Weight 
(relative 
importance) 

Maintain 
sustainable 
population 

1. Precision of lambda estimate Maximize 5th to 95th percentile range of median  20 

2. Precision of abundance estimate Maximize 5th to 95th percentile range of median 18 

3. Bias in lambda estimate Minimize Median error in lambda estimate 16 

4. Bias in abundance estimate Minimize Median error in abundance estimate 14 

5. Disease detection Maximize Probability of detection 12 

Cost 6. Cost Minimize Thousands of dollars 12 

Public knowledge 
and engagement 

7. Trapper knowledge and engagement Maximize Constructed 0-10 scale 5 

8. Academic and public knowledge and 
engagement 

Maximize Constructed 0-10 scale 3 
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Table 3.2 List of the alternatives, their short names, input data, and the estimation method they used with and without necropsy analysis 

 With Necropsy 
- Index 

With Necropsy 
- Fry 

With Necropsy 
- Downing 

With Necropsy 
- SAK 

Without Necropsy - 
Index 

Without Necropsy - 
SAK 

Short 
Name 

N-Index N-Fry N-Downing N-SAK WO-Index WO-Index 

Data Type Annual Harvest 
Count 

Annual Harvest 
Count 

Annual 
Harvest Count 

Annual 
Harvest Count 

Annual Harvest 
Count 

Annual Harvest 
Count 

Age at Harvest Age at Harvest Age at Harvest Age at Harvest  Age Group of 
Harvest with error 

Sex of Harvest Sex of Harvest Sex of Harvest Sex of Harvest  Sex of Harvest with 
error 

Estimation 
Method 

Index Fry Downing Sex-Age-Kill Index Sex-Age-Kill 
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Table 3.3 List of models used for simulating the fisher population. 

Model Name Model Type Transformation Stochastic Parameters 
1. Birth Rate Birth rate Log Yes, by simulation intercept = U(0.245,0.375) 

AGE = 0.09 
AGE2 = -0.008 

2. Pre-BS Females Pre-breeding survival females Logit Yes, by simulation intercept* = U(0.875,0.1.11) 
AGE = 1.65 
AGE2 = -0.16 

3. Pre-BS Males Pre-breeding survival males Logit Yes, by simulation intercept = intercept* 
AGE = 1.5 
AGE2 = -0.125 

4. Post-BS Females Pre-breeding survival females Logit No intercept = 1.85 
AGE = 0.45 
AGE2 = -0.028 

5. Post-BS Males Pre-breeding survival males Logit No intercept = 2.25 
AGE = 0.4 
AGE2 = -0.02 

Effort Effort covariate (simeffort) None Yes, by simulation intercept = U(11.3,19.2) 
6. Harvest Rate 
Females 

Annual harvest rate females Logit Yes, annually intercept = -1.777 
simeffort= 
0.0325 
AGE = -0.325 
AGE2 = 0.03 

7. Harvest Rate 
Males 

Annual harvest rate males Logit Yes, annually intercept = -1.9 
simeffort=0.0325 
AGE = -0.25 
AGE2 = 0.02 
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Table 3.4 List of models used in simulating the data collection process with and without necropsy 

Monitoring 
Program 

Model Name Model Type Transformation Stochastic Parameters 

With 
Necropsy 
(N) 

100% Reporting 
Rate Females 

reporting rate 
females 

None No intercept = 1 

100% Reporting 
Rate Males 

reporting rate males None No intercept = 1 

No Error – 
Females 

gender 
classification 
females 

None No intercept = 1 

No Error – Males gender 
classification males 

None No intercept = 1 

No Age Error age error polynomial No -25 
Without 
Necropsy 
(WO) 

95 % Reporting 
Rate Females 

reporting rate 
females 

None No intercept = 0.95 

95% Reporting 
Rate Males 

reporting rate males None No intercept = 0.95 

10% Error – 
Females 

gender 
classification 
females 

None No intercept = 0.9 

10% Error – 
Males 

gender 
classification males 

None No intercept = 0.9 

10% Age Error age error polynomial No -2.791 
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Table 3.5 Consequence Table.  The outcome of each alternative is listed for each objective, with the best result for each objective in bold. 

 Alternatives    

Objective N-Index N-Fry N-Downing N-SAK WO-
Index 

WO-SAK 

1. Precision of lambda 
estimate 

5,733 4,992 4,762 13,019 5,471 10,340 

2. Precision of 
abundance estimate 

2,914 1,563 1,747 3,606 2,815 3,247 

3. Bias in lambda 
estimate 

124 46 37 94 67 57 

4. Bias in abundance 
estimate 

-67 -2545 -2338 -5 -201 -67 

5. Disease detection 75% 75% 75% 75% 20% 20% 

6. Cost $120,000 $120,000 $120,000 $120,000 $70,000 $70,000 

7. Trapper knowledge 
and engagement 

10 10 10 10 6 6 

8. Academic and public 
knowledge and 
engagement 

10 10 10 10 6 6 
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Figure 3.1 Simulated Life Cycle.  An annual census occurs at which time the true count of the 
number of individuals is determined.  100% of individuals survive from the time of the census until 
the harvest occurs, at which time all mortality is assumed to be due to harvest.  Harvest is 
determined by the simulated harvest rate, with errors resulting in the count of the harvest depending 
on the error model used.  Following the harvest individuals may survive until their birthdays based 
on the pre-breeding survival rate, at which time they advance in age by one year and reproduce 
based on the birth rate.  Following the birthday individuals advance to the next census depending on 
the post-breeding survival rate. 

Birthday

•birth rate

•offsrping sex ratio

Census

•true count of 

individuals by age 
and sex

•initiated by a 

population seed.

Harvest
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•data collection
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100% survival rate
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Figure 3.2 Simulated Population Trajectories.  Each line shows the true population size by year for 
each of the 250 simulations. 

 

Figure 3.3 Histogram of simulated population growth rates with the number of population growth 
rates from the 250 simulations that fall in each of the 16 bins from 0.96 to 1.04 by 0.05 increments. 
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Figure 3.4  Example age classification rate for individuals that are truly 5 years old.  The y-axis 
shows the rate at which 5 year olds are classified into each of the ages shown on the x-axis.  The left 
panel show the rates for no error in age (0% age error).  The right panel shows the rates with age 
error included (10% age error). 
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Figure 3.5 Coefficient of Error in abundance (Top Panel) and lambda (Bottom Panel) for each 
alternative monitoring program, where lower scores indicate better performance.  A CE of zero 
would indicate perfect performance.  Each panel contains a bar for each of the six monitoring 
program estimation methods (N-Downing, N-Fry, N-Index, N-SAK, WO-Index, and WO-SAK from 
left to right).  
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Figure 3.6 Decision analysis scores by alternative monitoring program (N-Downing, N-Fry, N-Index, 
N-SAK, WO-Index, and WO-SAK from left to right) wit h the contribution from each objective from 
objective 1 to 8 (top to bottom) as stacking.  A higher score indicates better performance.  A score of 
zero results for an alternative with the worst outcome for all objectives, while a score of 100 results if 
an alternative scores the best for all objectives.  
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Figure 3.7 Decision analysis scores by alternative monitoring program with the contribution to the 
score from estimation performance only stacked from objective 1 to 4 top to bottom.  Objectives 5-8 
were given weights of zero, while the importance scores for objectives 1-4 remain the same.  A higher 
score indicates better performance for an alternative.  A score of zero would result if an alternative 
was worst for each objective and 68 if an alternative was best for all four.  
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Figure 3.8 Decision analysis scores by alternative monitoring program with the contribution to the 
score from objectives 5-8 only stacked from objective 5-8 top to bottom.  Objectives 1-4 were given 
weights of zero, while the importance scores for objectives 5-8 remain the same.  A higher score 
indicates better performance for an alternative.  A score of zero would result if an alternative was 
worst for each objective and 32 if an alternative was best for all four. 
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CHAPTER 4. THE VALUE OF MAPS IN NATURAL RESOURCE 

MANAGEMENT: AN APPLICATION OF EXPECTED VALUE OF SAM PLE 

INFORMATION 

4.1 Abstract 

Many of today’s most pressing challenges such as climate change, human 

population growth and development are often assessed at the landscape scale.  

Consequently, demand for spatially explicit scientific information has increased.  

However, mapping scientific information is costly and often includes many sources of 

uncertainty.   This creates challenges when evaluating whether a desired management 

outcome will be achieved and whether the benefits of mapping are cost effective.  Here, 

we apply the Expected Value of Sample Information methodology to spatial 

information analyses as a means of addressing issues of uncertainty and cost. The 

method:  1) allows an assessment of the benefits of investment in improved mapping 

efforts, 2) enables an analysis of the relative gains of mapping efforts in comparison to 

acting with current knowledge, and 3) allows comparisons of one potential mapping 

effort with another.  We demonstrate the method with several hypothetical examples 

that involve the use of maps in natural resource decision making.    As these examples 

illustrate, using this method allows identification of a map’s value, enabling the 

selection of mapping efforts that will be of greatest value and efficient allocation of 

budgets to the most beneficial projects. 

Key Words:  Value of Information, Spatial Analysis, EVSI, Landscape Ecology, 

Structured Decision Making, Applied Science, Mapping 
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4.2 Introduction 

Applied landscape ecology is a key component of successful natural resource 

management (Poiani et al. 2000, Hilty and Groves 2008).  Managers face challenges at 

multiple scales, but many of the most pressing challenges such as climate change, 

human population growth and landscape development operate at the landscape scale 

(Schwartz 1999).  Addressing these challenges requires management considerations not 

just at the individual species scale, but also at a system scale (Schwartz 1999).  

Consequently, demand for spatially explicit scientific information has increased, 

enabling land managers to evaluate alternative management actions and choose an 

action that optimizes their management goals (Noon et al. 2012). 

There are multiple examples of the need for spatial information in natural 

resource management.  Spatial information is essential in the design and selection of 

sites for reserve networks used to maintain biodiversity (Csuti et al. 1997, Araujo and 

Williams 2000, Cabeza and Moilanen 2001).  Spatial information is often used to 

determine the risk of colonization by invasive species (Gormley et al. 2011), or the 

probability of colonization and range expansion for wildlife reintroductions (Carden et 

al. 2010, Cook et al. 2010, Zimmermann et al. 2011).  Maps provide the spatial 

information for effective habitat management to maintain ecosystems and target 

populations. 

While spatial information may be used in a variety of ecological applications, 

its value in natural resource management is related to the reliability of the spatial 

information.  Many sources of uncertainty exist in mapping, including the size of the 

minimum mapping unit, the bias and precision of classification algorithms, image 
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registration error and discontinuity in scale between spatial coverages, and the resource 

in question (Aerts et al. 2003).  These uncertainties result in outcome uncertainty, or 

uncertainty that a management decision (based on the uncertain spatial information) 

will produce the desired management outcome.  For instance, in reserve design 

problems, the reserve selection algorithms can only produce recommendations that are 

as accurate as the spatial information upon which they are based.  The resource 

manager then uses this information to determine, for example, which parcels of land to 

protect within the reserve system to maximize conservation of a target species.  The 

success of this action, in part, is determined by the quality and accuracy of initial 

spatial data. 

While reducing the error and uncertainty in spatial information can improve 

management decisions, an important limitation to spatial information is the cost of 

obtaining that information.  Natural resource management often occurs on a limited 

budget.  If managers allocate too much of their budget to spatial information now, they 

may be left without the means to conduct on-the-ground management in the future.  

However, if managers allocate too little of their budget to spatial information, they may 

use highly uncertain information, or not include information that would be useful in 

choosing among alternative management options.  What is needed is a tool that allows 

managers to weigh the costs and benefits of increasing map accuracy with the costs and 

benefits to the resources that are being managed. 

In this paper, we demonstrate how a decision analysis framework called Value 

of Information (VoI) can provide an estimate of the value of spatial information to 

managers.  For clarity, we use “map” as a term for a visual representation of spatial 
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information and use “spatial information” and “map” interchangeably as terms for 

spatial input to management decisions.  VoI analyses compare the expected outcome of 

taking an action or making a decision with additional information to the expected 

outcome of taking an action or making a decision with the current, more limited set of 

information (Morgan and Henrion 1990).  A VoI analysis determines how much better 

the outcome of the action or decision is expected to be with the additional information, 

where the value of the information is equal to the improvement in the outcome when 

the information is used.  The type of VoI analysis we demonstrate is referred to as 

Expected Value of Sample Information (EVSI) where the value of the information 

contained in a sample (e.g. a survey, map, field data, etc.) is being determined. 

As a hypothetical example, suppose one is managing the spillway of a dam for 

farm irrigation purposes, with a goal to maximize harvest.  Each day, the manager 

decides whether to release water.  The decision to release water depends on several 

factors, including the current condition of the field (which is known) and the future 

condition of the field (which is unknown and depends on future precipitation).  The 

decision may be improved if the manager had information about likely precipitation in 

the future.  The uncertainty in upcoming rainfall can be reduced by producing a long 

term weather forecast.  The VoI contained in the weather forecast is measured as the 

difference between the expected outcome of spillway management with the weather 

forecast and the expected outcome of the spillway management without the forecast.  

For example, if the farmers lost $5,000 worth of crops due to spillway management 

without the weather forecast, and lost $1,000 due to spillway management with a 

perfect weather forecast, the VoI in the weather forecast is $4,000.  Technically, this is 
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called the expected value of perfect information (EVPI) if the forecast is 100% 

accurate, without error (Morgan and Henrion 1990).  Therefore, the spillway manager 

should be willing to pay up to $4,000 for the weather forecast data.  With VoI analysis, 

the change in outcome (measured in dollars in this example) is the expected value of 

obtaining the additional information.  Using VoI analysis, the manager can determine if 

the weather forecast is a worthy investment.  If the cost is greater than the VoI, the 

forecast isn’t worth it, and vice versa.  Unlike this example, predictions are rarely 100% 

accurate.  Most predictions are imperfect and are based on a sample of the truth.  Using 

the VOI technique described with samples, where the information may not be perfect, 

produces an EVSI. 

The EVSI approach can similarly be used to provide an estimate of the value of 

spatial information for natural resource management purposes.  By predicting the 

expected value of obtaining additional spatial information, managers can better target 

their management and research budget to acquire spatial information when it improves 

the expected outcome of their management decisions.  Here we demonstrate how the 

EVSI methodology can inform the use of spatial data layers for natural resource 

management.  Our specific objectives were to:  1) Provide a framework for evaluating 

the value of developing or improving spatial information, and 2) demonstrate flexibility 

in the framework by applying it to natural resource management scenarios. 
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4.3 Methods 

4.3.1 Framework for map value of information 

We considered management decisions that could result in one of two outcomes 

for a given management objective:  1 = successful outcome, 0 = unsuccessful outcome.  

For example, a wildlife manager may be tasked with making a decision that will lead to 

the recovery (1) or failed recovery (0) of a resource, such as a species of concern.  The 

management objective (or the goal the manager wishes to achieve) includes a 

measureable attribute (e.g. species population status), along with a target, standard, or 

threshold for that attribute.  For example, the management objective may be average 

occupancy probability (the measurable attribute) reaching 0.60 (the target) across an 

area of interest.  In mapping terms, each mapping unit (e.g. a pixel or polygon in the 

spatial data layer) contains a probability of occupancy which depends on the landscape 

conditions associated with the pixel; the target of 0.60 represents the average 

probability of occupancy across all mapping units in the study area (for example see 

Noon et al. 2012). 

In addition to metrics for the decision outcomes, VoI analyses also require an 

estimate of the current resource status in relation to the target.   There is often 

uncertainty about this status.  Continuing our example, if the last species status 

assessment was some time ago, the species status may have changed across the entire 

study area, or disproportionately in its distribution across space.  A consultant 

specializing in occupancy modeling may be available to develop a new occupancy map 

of the species that can resolve some of the uncertainty about the current status.  

However, obtaining this map requires paying the consultant’s fee. 
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The manager has two linked decisions to make in this scenario.  The first is 

whether or not to pay money for a map to determine the current status of the resource 

(with its associated error), and the second is whether or not to take any management 

action based on that assessment.  The management outcome (successful, unsuccessful) 

of these decisions is affected by three sets of probabilities.  The first set is the 

probability (P) that the predicted, current status (PS) is at or above the target t, P(PS≥t).  

P(PS<t) is the probability that the predicted status is below the target, which is 1- 

P(PS≥t).  Although the actual status (AS) of the resource does not change based on the 

predicted status, the probability that the actual status is at or above the target is 

conditional on the predicted status. Consequently, the second set is the probability that 

the actual (but unknown) status is at or above the target, P(AS≥t) or below the target, 

P(AS<t), given the predicted status.  A natural resource manager is specifically 

interested in these probabilities as they relate directly to the outcome:  unsuccessful (0) 

or successful (1).  The third set is the probability that any management actions that are 

taken will successfully alter the true, current status to achieve an outcome of 1 

(recovery), designated by P(Ms). 

The first two probability sets (predicted and actual status relative to the target) 

can be depicted and calculated using a conjoint probability table (Table 4.1a).  The 

table is populated with two inputs:  (1) p, which is the probability that the predicted 

status (symbolized above as PS) is correct, and (2) a, which is the probability that the 

actual status (symbolized above as AS) is at or above the target threshold, t.  If a is the 

marginal probability that the actual status achieves the target, 1- a is the marginal 

probability that the actual status is below the target.  Given the actual target is 
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achieved, the joint probability that the predicted status also achieves the target is a * p, 

and the joint probability that the predicted status is below the target is a * (1-p).  

Similarly, given that the actual target is not achieved, the joint probability that the 

predicted status achieves the target is (1 - a) * (1 - p), and the joint probability that the 

predicted status is below the target is (1- a) * p.  From this information, the first set of 

probabilities can be calculated.  The marginal probability that the predicted status is at 

or above the target is: 

@	@(A�� � BC D 	1 : B�	1 : C�    Eq 1. 

and the marginal probability the predicted status is below the target is: 

@	@(E�� � 	1 : B�C D  B	1 :  C� � 1 : @	@(A��.   Eq 2. 

From here it is straightforward to calculate the second set of probabilities, 

which are conditional probabilities, by dividing the joint probability by the appropriate 

marginal probability.  For example, the conditional probability that the actual status 

achieves the target, given the predicted status achieves the target is BC @	@(A��⁄ . 

Table 4.1b puts these probabilities back into the management context.   When 

the species is truly at or above the target, the management objective will be met and the 

outcome will be successful; otherwise it will be unsuccessful.  Thus, the marginal 

probabilities P(AS≥t) and P(AS<t) represent the probabilities of these two outcomes, 

respectively.  When the prediction is that the species achieves the target, a manager will 

not take a management action; when the prediction is that the species is below the 

target, a manager will take action.  Thus, the marginal probabilities P(PS≥t) and P(PS<t) 

represent the probability of no management action and the probability of management 

action, respectively. 
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Note that each column in Table 4.1a (conjoint table) and 4.1b (management 

implications) contains an assessment error.  When the actual status is at or above the 

target but is predicted to be below the target, a manager will take action even when 

action is not required (a false assessment).  The resultant cost is the cost of the 

unnecessary management action.  When the actual status is below the target but is 

predicted to be at or above the target, the lack of management is an error resulting in an 

unsuccessful outcome (a false assessment).  This error is detrimental in that the species 

does not achieve the target; associated costs of this error may include legal 

ramifications, loss of ecosystem services, further decline of the species, etc. 

Improving the accuracy of the predicted status through spatial information such 

as a map could reduce the likelihood of both false assessment errors described above.  

Thus, the first decision a manager faces is whether to purchase a map. The second 

decision is whether to manage or not, where the success of the management action is 

our third probabilistic event.  These decisions and probabilistic outcomes can be 

collectively represented as a decision tree (Figure 4.1).  A decision tree is a visual 

representation of the outcomes of a decision, or series of decisions, and the 

probabilistic chain of events that must occur to result in each possible outcome.  Our 

primary interest is in whether the natural resource management objective is met (1) or 

not (0) while minimizing the cost associated with each outcome. The decision tree 

allows us to compute the expected value of a decision to purchase a map in terms of 

these objectives. 

To demonstrate calculating VoI of a map (Figure 4.1), we consider the case 

where a manager must decide whether to purchase a map to predict the species status 
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across the area of interest (“Purchase Map?”). Thus, the first split is whether a map is 

purchased or not.  For this example, we assume the cost of spatial information and its 

processing, i.e. the map cost is $2,500.  The upper branches of the tree following this 

split depict the information necessary to determine the expected cost given the map, 

while the lower branches of the tree depict the expected cost of carrying on using 

current knowledge without the addition of a map.  For our calculations, we will assume 

that the probability that the predicted status is correct, p using current information is 

0.6, whereas p = 0.9 with a purchased map that has greater map accuracy.  A manager 

assigning these values should reflect on their past predictive skills with the current 

information at their disposal, as well as the predictive accuracy with an improved map 

to arrive at these values.  We will also assume the probability the actual status is at or 

above the target threshold, a = 0.75.  Thus, P(AS≥t) = 0.75, and without management 

there is a 75% chance of a successful outcome  and a 25% chance of an unsuccessful 

outcome. 

Based on these inputs, we calculate the first set of probabilities which are 

associated with the predicted status probability nodes (Figure 4.1, Probability Set 1).  

With the purchased map (upper branches of the decision tree following the “Purchase 

Map?” split), the probability that the predicted status is at or above the target, P(PS≥t) = 

0.9*0.75 + (1-0.9) *(1-0.75) = 0.7 (Equation 1) and the probability that the predicted 

status is below the target, P(PS<t) is then 0.3 (Equation 2).  With the current 

information (lower branches), the probability that the predicted status is at or above the 

target, P(PS≥t) = 0.6*0.75 + (1-0.6) *(1-0.75) = 0.55 (Equation 1) and probability that 

the predicted status is below the target, P(PS<t) is then 0.45 (Equation 2). 
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Based on these predictions of species status, the manager decides whether to 

conduct management or not.  If the prediction is that the species is already at the target, 

the manager would decide not to take action (“No Mgt Action”), while a prediction that 

the current status is below the target results in deciding to take the management action 

(“Mgt Action”).  For this example, we assume that the cost of management, if 

undertaken, is $20,000. 

Once the management action is selected, the next set of probability nodes in 

Figure 4.1 represents the probability of the actual status being above or below the 

target, given the predicted status.  Since the predicted status differs depending on 

whether a map is purchased or not, these probabilities will differ between the upper and 

lower branches of the tree.  We focus now on the two topmost branches of the tree 

(Figure 4.1), where the predicted status suggests the target has been met and no 

management action is necessary.  For the upper most branch leading to leaf tip i, the 

probability that the actual status is at the target, P(AS≥t), given the predicted status, 

P(PS≥t ), is at or above the target can be expressed in many ways:  
@	�(A��|@	@(A�� � @	@(A��|@	�(A�� � @	�(A��@	@(A��|@	�(A�� � @	�(A�� D @	@(A��|@	�(E�� � @	�(E�� 

� B � C@	@(A�� � 0.675. 7 � 0.964 

The second expression demonstrates the application of Bayes’ Theorem to 

compute P(AS≥t) | P(PS≥t ), but the third expression can be easily intuited from Table 

4.1.  The Bayesian formulation, however, makes it clear that the hypotheses of interest 

to the manager are the probability that the actual status is above or below the target.  
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This upper most tree branch results in a successful outcome (1), and the cost incurred 

by the manager is the cost of the map (Figure 4.1, leaf tip i). 

Similarly, the probability that the actual status is less than the target, P(AS<t), 

given the predicted status, P(PS≥t ), is at or above the target can be expressed in many 

ways: 

@	�(E��|@	@(A�� � 	@(A��|@	�(E�� � @	�(E��@	@(A��|@	�(A�� � @	�(A�� D @	@(A��|@	�(E�� � @	�(E�� 

� 	1 : C�	1 : B�@	@(A�� � 	1 : 0.9�	1 : 0.75�0.7 � 0.0357 

This tree branch results in a failed outcome (0), and the cost incurred by the 

manager is the cost of the map, plus the cost of failing to meet the resource objective, 

including economic loss, loss of ecosystem services, and potential legal costs (Figure 

4.1, leaf tip ii).  The remaining actual status conditional probabilities in the tree (Figure 

4.1, probability set 2) are calculated in a similar manner. 

In cases where management action is called for (i.e., P(PS<t)), the final set of 

probability nodes (Figure 4.1, Management Success) represent the probability of the 

management action successfully altering the species status.  This is the third probability 

set used in the VoI analysis.  We assume that the probability of successful management 

P(Ms) is 0.8 and is independent of the other two probability nodes, making the 

probability of failed management 0.2 for our example.  For example, if the management 

is habitat manipulation, there is an 80% chance that the management will be successful 

in moving the attribute (occupancy) to the target (0.60). 

We now focus on the two bottommost branches in the top half of the tree 

leading to leaf tips iv and v, where the predicted status suggests the target has not been 
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met and the actual status is below the target.  The outcome and costs associated with 

these tips depends on whether the management action successfully altered the actual 

status.  When management is successful, the result is a successful outcome (1), and the 

cost incurred by the manager is the cost of the map and the cost of the management 

action (Figure 4.1, leaf tip iv).  When management is unsuccessful, the result is a failed 

outcome (0), and the cost incurred by the manager is the cost of the map, the cost of the 

management action, and the cost of failing to meet the resource objective, including 

economic loss, loss of ecosystem services, and potential legal costs (Figure 4.2, leaf tip 

v). 

We now demonstrate the calculation of EVSI for a map, using the decision tree 

in Figure 4.1 and inputs a = 0.75 (the probability that the actual status exceeds the 

target), p = 0.9 with a map, p = 0.6 without a map (the probability of correctly assessing 

the actual status), and P(Ms) = 0.8 (the probability of successful management). We also 

assume some costs:  a map costs $2,500 to acquire, management costs total $20,000, 

and the total costs of failed recovery (economic loss, lost ecosystem services, and legal 

costs) are valued at $100,000.  The cost of any leaf tip can be calculated using the 

appropriate set of these three values.  For example, the value of leaf tip iv is the cost of 

the map and the management ($2,500 + $20,000 = $22,500) as there is no cost due to 

failed recovery.  After filling in the costs for each leaf, we determine the expected cost 

(EC) of each leaf by multiplying the leaf costs by the probabilistic chain of events 

leading to the branch node.   For example, the expected cost of leaf iv in Figure 4.2  is 

$22,500*0.3*0.75*0.8 = $4,050, where 0.3, 0.7 and 0.8 are the P(PS<t), P(AS<t) | 

P(PS<t), and P(Ms) respectively.  These expected costs are calculated for each leaf of 
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the decision tree and summed for the top (map) and bottom (no map) branches of the 

tree. 

The expected cost of purchasing the map, $15,500, is calculated by summing 

the EC’s across the top (map) branches of the tree.  The expected cost of not purchasing 

a map, $22,000, is calculated by summing the EC’s across the lower (no map) branches 

of the tree.  The difference ($6,500) provides the expected difference between the 

outcome of the decision using current knowledge and using the map. 

If a manager doesn’t yet know how much the map with cost, they would be 

more interested in calculating the total value of information the map provides.  To 

calculate the EVSI provided by the map, we repeat the above calculation as if the map 

was free (i.e. $22,000 - $15,500 + $2,500 = $9,000).  This determines the gross value of 

information rather than the net.  Using this EVSI, a manager can directly compare the 

expected $9,000 benefit the map provides to a consultant’s price quote for producing 

the map, and select to purchase the map if it costs less than the $9,000. 

While we know it is unlikely for a map to be perfect, a manager may be 

interested in the maximum benefit a map could provide.  By setting p=1, i.e. making 

the map perfect, which sets P(PS>t) = P(AS>t) = 0.75, the manager can determine the 

maximum benefit of a map relative to current knowledge.  Setting p=1 changes the 

expected cost of purchasing the map to $12,500 rather than $15,500, making the EVPI 

$12,000 ($22,000 – $12,500).  Based on this EVPI and the assumptions that went into it 

the manager knows that at best a map can be worth $12,000, so any map costing more 

than this isn’t even worth considering. 
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4.3.2 Example Application:  Invasive species mapping 

This framework can be applied to a large variety of natural resource 

management decisions that involve spatial information.  To exemplify this, we now 

examine an adaptation of the framework presented above to another management 

situation using a simplified model of forest management.  The management objective 

for this situation is to minimize the economic impact of emerald ash borer (EAB; 

Agrilus planipennis) induced damage to a forest parcel.  Because discussing and 

analyzing the full details of EAB biology, spread, and management are beyond the 

scope of our analysis, and EAB management efforts have limited efficacy, we present a 

simplified version of a management situation loosely based on EAB to demonstrate an 

application of spatial EVSI analysis to the current, pressing natural resource problem of 

invasive species management. 

The management situation we will examine is that of a forester responsible for 

managing a parcel of land near or within the outskirts of the known extent of EAB.  

The manager knows EAB is an exotic invasive species already responsible for 

destroying millions of ash trees in North America, resulting in millions of dollars in 

damages (Herms et al. 2004, www.emeraldashborer.info, Kovacs et al. 2010). 

Using the initial framework as our template, we make necessary adaptations and 

assumptions to fit the circumstances of the EAB situation (Figure 4.2).  The 

management objective is best met if no EAB infestation occurs on the forest parcel, as 

the cost of EAB damages and the resulting decrease in timber value are avoided.  In 

this example, the management action is the pre-emptive removal of large ash trees from 

the parcel.  The 2012 silviculture recommendations from Michigan 
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(http://www.emeraldashborer.info/files/Ash_Mgt_Guidelines.pdf) suggest that the 

probability of EAB destroying the ash trees in a parcel can be reduced by removing the 

largest trees in a parcel (referred to as thinning). Although this action has since been 

shown to be ineffective (Klooster et al. 2013), we proceed as if successful EAB 

management is a possibility for the purposes of demonstrating EVSI analysis. 

With this assumption the combinations of possible EAB infestation status 

(infested, not infested) and management actions (thinning, no action) results in four 

possible outcomes: 1) Full timber value results when no EAB presence occurs without 

thinning, allowing the stand to fully mature and be harvested when value is maximized 

(assumed to be $500 thousand dollars); 2) Damaged timber value results when EAB 

infestation occurs without thinning, leaving only what little value can be salvaged from 

the damaged trees ($55 thousand); 3) Managed timber value results when thinning 

prevents EAB infestation providing the value of the thinned trees and the eventual 

maximum value of the remaining trees ($400 thousand), and 4) Managed and damaged 

timber value results when thinning occurs, but is unsuccessful at preventing EAB 

infestation leaving the value of the thinned trees and what little can be salvaged from 

the remaining damaged trees ($75 thousand). 

Currently the manager is uncertain about the status of EAB in the area 

surrounding the forest parcel.  EAB can spread at a rate of 0.5 miles per year or more in 

large dense EAB populations (Mercader et al. 2009, Mercader et al. 2012), so the 

greater the probability of EAB in the surrounding area, the greater the likelihood of the 

parcel becoming infested in the near future.  Although the known locations of EAB are 

often marked and mapped (e.g., 
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http://www.emeraldashborer.info/files/MultiState_EABpos.pdf), unmarked locations 

may or may not have EAB.  They could be uninfested or infested but not detected.  An 

alternative to mapping only the known locations of EAB is to develop a predictive map 

that shows the relative threat of EAB across the landscape, such as might be generated 

with a MaxEnt analysis (e.g., Phillips et al. 2006), or to develop a predictive map that 

shows the probability of infestation, such as might be generated with a MaxLike 

analysis (e.g., Royle et al. 2012). 

Based on the uncertainty of current knowledge and using our framework, the 

decisions are whether to purchase a map delimiting the threat of EAB and whether to 

manage preemptively based on current knowledge.  Regardless of whether of a map is 

purchased, the first step for the manager is to determine the management threshold t, 

i.e. the level of EAB threat within a given distance of the parcel at which the 

management action may be warranted.  That is, the level of EAB threat that makes the 

expected value of ash thinning become greater than the expected value of not taking 

action.  For example, suppose the manager determines this threshold occurs at 0.4, any 

prediction indicating less than this level of EAB threat in the surrounding area suggests 

there is little risk of infestation so management is unlikely to be necessary, while a 

prediction of 0.4 or greater suggests there is a risk of infestation and management is 

likely prudent.   This threshold is used like the target level in objective one for the VoI 

analysis. Unlike our first example, in this scenario, the manager may choose to manage 

even if the threshold is not met, and may choose not to manage if the threshold is 

exceeded. 
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With a set of input probabilities we can now examine the expected value of the 

mapping decision using the decision tree (Figure 4.2).  The upper branches of the tree, 

the half above the purchase map split, depict the information necessary to determine the 

expected value obtained from the timber parcel given the map, while the lower 

branches depict the expected value of the parcel when the manager uses current 

knowledge.  For our calculations, we will assume that the probability that the predicted 

status (p) of EAB is accurate (i.e. on the correct side of the 0.4 threshold) using current 

information is p =0.5, whereas p = 0.75 with a purchased map that has greater accuracy.  

If the manager really has no knowledge of what EAB risk is in neighboring areas, the 

0.5 probability using current information is akin to setting equal odds to this risk.  We 

will also assume the probability the actual status of EAB is at or above the management 

threshold, a = 0.2.  Thus, the probability that EAB is truly present in the area, 

P(ASpresent) = 0.2, and without management there is a 20% chance of a EAB infestation 

and an 80% chance of no EAB infestation. 

To correspond with the circumstances of this situation, we need to slightly 

modify values calculated by Equations 1 and 2.  Because the management action will 

be taken when the threshold is met, the antithesis of our initial species example in 

objective one where action was taken if the target was not met, Equation 1 now applies 

to the probability the prediction is above the threshold and Equation 2 now applies to 

the probability the prediction is below the threshold.  Therefore, given the inputs, with 

the map (upper branches) the probability that the predicted status is at or above the 

threshold, P(PS≥t) = a*p + (1-a)*(1-p) = 0.2*0.75 + 0.8*0.25 = 0.35 (Equation 1), and 

the probability that the predicted status is below the threshold, P(PS<t) =  
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1 - 0.35  = 0.65 (Equation 2).  With current information (lower branches), the 

probability that the predicted status is at or above the target, P(PS≥t) = a*p + (1-a)*(1-

p) =  0.2*0.5 + 0.8 *0.5 = 0.5 and the probability that the predicted status is below the 

target, P(PS<t) =  1 – 0.5 = 0.5.  These probabilities are found just above and below the 

predicted status probability nodes in Figure 4.2. 

Following these predictions, the manager decides whether to take a 

management action (“Thinning”) or not (“No Action”), with the outcome depending on 

the actual status of EAB risk and the probability that thinning is effective.  The upper 

two leaves (i and ii, Figure 4.2) and the branches leading to them depict the outcomes 

when no management action is taken, even though PS≥t .  Leaves iii, iv, and v and their 

branches depict the outcomes when management action given PS≥t. 

Recall that the actual probability that EAB is present or absent, given the 

predicted status, is a conditional probability which can be calculated by multiplying the 

appropriate probability of prediction and actual status and dividing by the probability 

that the given prediction was made.  For example, if we want the probability that EAB 

is truly present P(ASpresent) given the map predicts that EAB exceeds the threshold, 

(PS≥t), we multiple the probability EAB is present, a = 0.2, by the probability the map 

is accurate (because the prediction is correct here), p =0.75, and divide by the 

probability that the map predicts (PS≥t) = 0.35 (calculated with equation 1 above), 

giving the P(ASpresent| PS≥t) = 0.43 (Figure 4.2, top branch). 

The expected values can now be calculated by supplying the probability of 

management success.  As previously stated, for demonstration purposes while 

acknowledging that EAB is a successful colonist, we will assume management has a 
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40% chance of effectively preventing EAB infestation in the parcel, i.e. P(Ms) = 0.4.  

Rolling back the decision tree by multiplying the tree probabilities by the outcomes for 

each leaf tip gives the expected value (EV) of each leaf tip (Figure 4.2, leaf EVs).  (The 

term “expected value” is used in this example because we are interested in maximizing 

value of ash trees, whereas in our previous example the term “expected cost” was used 

because our interest was in minimizing cost). 

Because managers have two decisions to make, the mapping decision and the 

subsequent management decision to make when deciding whether to manage for EAB, 

the expected value calculations require an additional step.  In rolling back the decision 

tree the expected values from each leaf are first summed for the set of branches 

following the management action.  For example, summing the EVs in leaf tip i and ii 

($8.25 thousand plus $100 thousand) provides the EV ($108.25 thousand) of taking no 

action given the decision to purchase a map which predicts the EAB probability is at or 

above the threshold (Figure 4.2).  Leaf tip iii, iv, and v sum to give the EV ($110.75 

thousand) of thinning when the map is purchased and its prediction is at or above the 

threshold (Figure 4.2).  In order to maximize the EV the manager would therefore 

choose to take action and thin if the map is purchased and its PS≥t, eliminating no 

action from consideration by pruning these branches from the tree (Figure 4.2, double 

tick marks).  After pruning to remove the lower EV branches, only the remaining 

branches with the higher EV from the “Mgt Action?” nodes are then used to determine 

the EV for the map decision (Figure 4.2, branches without double tick marks). 

We find that the expected value of managing with a map is $413.5 thousand 

(while the expected value of managing with current knowledge is $411 thousand.  Note 
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that the decision tree was constructed without any cost to obtain a regional EAB threat 

map because the costs of producing a regional map likely would have been born by a 

state or regional body; therefore the EVSI contained in the map in regards to managing 

this parcel is $2.5 thousand. 

To compute these results, the parcel manager made two key assumptions in the 

analysis:  (1) the probability the actual status of EAB is at or above the management 

threshold (a) = 0.2 and (2) the probability that the predicted status (p) of EAB is 

accurate = 0.5 without a map and 0.75 with a map.  These assumptions may not be 

correct and the actual values are difficult to obtain (but see Discussion, Challenges 

Estimating VoI).  To account for this, sensitivity analyses can be used to examine the 

effect of the range of reasonable uncertainty present about any input (Morgan and 

Henrion 1990).  For example, if the manager believes the probability of correctly 

identifying whether EAB is at or above the management threshold given a map is 0.8 

rather than 0.75, the value of p for the map is changed to 0.8, the probabilities are 

recalculated in the decision tree and the analysis is repeated.  This would produce an 

EVSI of $8 thousand rather than the $2.5 thousand we reported above.  The analysis 

can be repeated with adjustments to the other probabilities and timber values to 

determine their impact on the resulting EVSI as well. 

A sensitivity analysis can also be used to determine thresholds, such as the 

probability of EAB presence, a, or the probability of management success, P(Ms), 

below which there is no EVSI.  For example, keeping the other inputs constant while 

changing a or P(Ms), the EVSI drops to zero if a is below 0.182 or if P(Ms) is below 

0.349 (Figure 4.3).  Therefore, if the probability that EAB is present at the management 
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threshold level is less than 18.2% or the probability of successfully managing for EAB 

less than 34.9% in our example a manager would expect to obtain no benefit from 

additional information. 

While our discussion of Figure 4.2 focuses on a one-time decision for the parcel 

manager, the decision tree also enables iterative analysis of this problem.  For example, 

imagine the manager chose to map in 2012 and took no action based on the map’s 

predicted status, and a new upgrade to the map is being proposed.  Now, because the 

parcel has not been thinned the situation will repeat itself with the information from the 

2012 map acting as the current information with its p of 0.75, and the newly proposed 

map will have some new p value, such as 0.8.  Repeating the EVSI analysis with these 

new values produces an EVSI of $5.5 thousand. Over time the analysis can also be 

repeated to account for advances in methodology, or technology.  For example, these 

advances can be accounted for updating the probability of management success P(Ms), 

or mapping accuracy (p) as a response to better management, surveying, or mapping 

techniques and repeating the analysis. 

4.4 Discussion 

EVSI methodology is one of many techniques in the field of structured decision 

making (Gregory et al. 2012) and represents an important approach for identifying and 

reducing uncertainties in adaptive resource management programs (Williams et al. 

2011a).  The application of EVSI methodology to spatial information analyses 

discussed here provides a means of: 1) assessing the benefits of investment in improved 

mapping efforts, 2) enabling an analysis of the relative gains of mapping efforts in 

comparison to acting with current knowledge, and 3) comparing one potential mapping 
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effort with another.  With this assessment, the mapping efforts that will be of greatest 

value can be selected and budgets can be allocated to the most beneficial projects, 

improving efficiency and the overall productivity of management agencies. 

While there are many theoretical discussions of VoI analyses, as well as a 

number of specific applications, the applications of VoI analyses to natural resource 

management are quite limited.  Past applications either focus on a description of the 

data required for VoI analyses (e.g. objectives and economic valuation) with a rather 

general description of the methodology (e.g. Macauley 2006, Kangas et al. 2010), or on 

evaluating the VoI to a limited situation, with a focus on the results for that situation 

rather than on the implementation of VoI methodology (e.g. Costello et al. 2010, Moore 

et al. 2011, Moore and Runge 2012).  We aimed to complement these approaches by 

focusing on the methodology used in VoI analysis, demonstrating its general 

application to enable understanding and replication, as well as demonstrating its 

adaptability to realistic natural resource management situations. To this end we provide 

a template spreadsheet and the list of specific input assumptions to guide the use of this 

methodology for a range of natural resource applications (See Supplement). 

4.4.1 Challenges Estimating VoI. 

While VoI methodology is a useful means of determining the benefits of 

information, it has some limitations.  For example, an error free VoI analysis requires 

error-free estimates of the probabilities, benefits, and costs used in the analysis, which 

can be difficult, impractical, or even impossible to fully obtain.  Assigning accurate 

probabilities to events can be particularly difficult if management in a similar situation 

has not been tried, similar mapping techniques to those proposed have not been applied, 
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the quality of the predictive method is not well known, or the true state of the system is 

poorly understood.  However, the alternative to using the VoI approach is to make a 

decision about mapping and management action without a formal approach, implicitly 

estimating the expected value calculations.  Therefore, at some level, prediction of 

these probabilities and outcomes is occurring whenever a decision is being made.  By 

making the probabilities and expected outcomes explicit, VoI analysis allows better 

documentation of the decision process.  Additionally, an explicit analysis enables 

evaluation, replication and potential improvement for future attempts; it increases the 

ability to learn from experience, both one’s own, and with documentation, the 

experience of others.  The dependence of VoI on map accuracy should also alert land 

managers to the importance of considering accuracy when maps are used during the 

management process. 

In addition to estimating probabilities in the VoI analysis, determining the 

benefits or costs of a management action in monetary terms, such as the cost of 

thinning, can be challenging.  However, there are many examples of methods for 

assessing the economic value of natural resources (Costanza et al. 1997, Bockstael et al. 

2000, de Groot et al. 2002, Farber et al. 2002).  These methods are not always easy or 

affordable to implement (Turner et al. 2003, Chee 2004).  An alternative to economic 

valuation techniques is expected utility theory (utility here is being used in the 

economic sense, meaning the amount of satisfaction, or dissatisfaction, obtained from 

an outcome) and the use of even swaps (Keeney and Raiffa 1976, Hammond et al. 

1998).   Rather than using money to measure preferences for something, preferences for 

outcome A are measured by how much of another outcome, B, one would trade for 
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outcome A and still obtain the same degree of benefit.  For example, if you are twice as 

satisfied by a chocolate bar as you are by a granola bar, and you would pay $1.25 for 

the granola bar, based on even swaps you would pay $2.50 for the chocolate bar, or 

twice as many units on another non-monetary utility scale. 

4.4.2 Applications of EVSI to mapping. 

VoI analysis in a mapping context provides an opportunity to determine the level of 

spatial accuracy needed for management applications.  All models, and therefore all 

maps, being spatial models, have error, quantified by their user and producer error, that 

is the rate at which they predict something is in a location when it is not (user), or fail 

to predict something is in a location when in fact it is (producer) (Congalton 1991).  In 

addition to varying in these error rates, maps also can vary in the resolution (pixel size), 

minimum mapping unit, and spatial extent, all of which can potentially affect the 

probability of predicting the actual status of a resource, and potentially the success of a 

management action (Aerts et al. 2003).  Some regions of the world are mapped at low 

resolution (100m by 100m pixels rather than the more standard 30m by 30m pixels) and 

some regions on maps have been classified using a greater or lesser number of 

distinctions than others, with categories that may not match the scale of the local 

system of interest or are poorly validated (Sales-Luis et al. 2012). 

The analysis presented here allows one to evaluate the value provided as map 

information varies based on components of map quality and their associated costs.  By 

producing a set of branches on the decision tree for each map alternative that is being 

proposed, providing the estimated map accuracy and costs for the proposed map as 

inputs, managers can compare the value of a range of maps.  In this way, by using 
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decision trees with multiple map branches emanating from the purchase map decision 

node, rather than the single map branch shown here, managers can compare maps with 

different costs and error rates, choosing the one that produces the greatest expected 

value, or least expected cost. 

While our work focused on evaluating a single set of spatial information, a 

productive extension of this work is to include multiple management decisions using 

the same map.  For example, national mapping programs in the USA such as the Multi-

Resolution Land Characterization Consortium (www.mrlc.gov) generates maps such as 

the National Land Cover Database (NLCD) that are used by federal, state, town 

governments, NGO’s, water districts, planning districts, and many other agencies for a 

variety of purposes such as management of water quality, ecosystem heath, and wildlife 

habitat, as well as land use planning (www.mrlc.gov).  The agencies tasked with 

constructing such maps have a goal of providing sound spatial data that can be used to 

address multiple management needs in a cost effective manner (www.mrlc.gov).  To 

estimate the value of such maps, map producers could survey the maps’ potential users, 

asking them to conduct individual EVSI analyses for the map’s proposed uses focusing 

on the decision or decisions relevant to each individual agency.  By aggregating the 

results of each EVSI analysis, managers of these multi-user mapping efforts could 

determine the most cost-effective level of effort to devote to producing the map.  For 

example, the full expected value of a regional EAB  map would be the sum of the EVSI 

results from all of the local parcel managers within the area of the map’s coverage. 

In summary, we believe the VoI approach will be useful for a wide range of 

natural resource managers making decisions about spatial information acquisition. 
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Table 4.1 a. Conjoint probability table used in calculating predicted status probabilities given a, the probability the actual status is at or above the 
target, and p, the probability the predicted status is correct.  b. Associated management implications of the four possible combinations of predicted status 
and actual status.  

 
  

≥ t < t Marginal ≥ t < t Mgt Objective

≥ t a  * p a  * (1-p ) P(AS≥t) = a
True Assessment

No mgt action

False Assessment

Cost of mgt action
P(Successful)

< t (1- a ) * (1-p )  (1-a ) * p P(AS<t) = 1-a
False Assessment

Cost of mgt inaction

True Assessment

Mgt action
P(Unsuccessful)

Marginal P(PS≥t) P(PS<t) P(No Mgt Action) P(Mgt Action)

Predicted Status

Conjoint Table Management Implications

Actual Status

Predicted Status
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Figure 4.1 Decision Tree calculating the expected cost of species management with and without a species occupancy map. Decision nodes ar
represented by rectangles, probability nodes are represented by ovals.  The tree begins at the far 
decision node and splits into additional branches at the probability nodes.  Branches terminate at ‘leaf tips’ labeled i thro
probability node is accompanied by the appropriate probability from its associated probability set.
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Decision Tree calculating the expected cost of species management with and without a species occupancy map. Decision nodes ar
represented by rectangles, probability nodes are represented by ovals.  The tree begins at the far left with branches emanating from the purchase map 
decision node and splits into additional branches at the probability nodes.  Branches terminate at ‘leaf tips’ labeled i through x at the far right.  Each 

probability from its associated probability set. 

 
Decision Tree calculating the expected cost of species management with and without a species occupancy map. Decision nodes are 

left with branches emanating from the purchase map 
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Figure 4.2 Decision Tree calculating the expected value of emerald ash borer management with and without a map of the probability of neighboring 
emerald ash borer infestation.  Outcomes and expected values (EV) are in leaf tips i-xx are in thousands of dollars.  Double tick marks on branches 
emerging from the “Mgt Action?” decision nodes indicate branches that are pruned due to the lesser EV of those branches relative to their alternatives. 
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Figure 4.3 Contour plot of EVSI over the range of possible values of 
status is at or above the target) and P(
successful).  The probability 
with current information.  Lines at 
example application for invasive species mapping, intersecting at the EVSI value of $2,500.  
Following the line at a = 0.2 shows the impact of changes to P(
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Contour plot of EVSI over the range of possible values of a (the probability the actual 
status is at or above the target) and P(Ms) (the probability that a management action will be 
successful).  The probability that the predicted status is correct, p, was set at 0.75 with a map and 0.5 
with current information.  Lines at a = 0.2, and P(Ms) = 0.4, correspond to the values described in the 
example application for invasive species mapping, intersecting at the EVSI value of $2,500.  

= 0.2 shows the impact of changes to P(Ms) on EVSI when a

 

(the probability the actual 
) (the probability that a management action will be 

, was set at 0.75 with a map and 0.5 
) = 0.4, correspond to the values described in the 

example application for invasive species mapping, intersecting at the EVSI value of $2,500.  
a is constant at 0.2. 
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APPENDIX A.  EXECUTIVE SUMMARY 

A.1 Chapter 2 

In chapter 2 I evaluated the index, sex-age-kill, Fry, and Downing estimation methods.  

For those estimators I found: 

• Estimating abundance is more difficult than estimating population change 

• There is a tradeoff between estimating abundance and estimation population 

change in the estimation methods selected 

• The sex-age-kill estimation method (sakEst ) is best for abundance 

• The Fry (fryEst ) and Downing (downingEst ) estimation methods and 

are best for estimating population change 

• The performance of these estimation methods declines when populations are 

unstable (growing or declining) 

Error in data collection impacts the performance of the estimation methods in the 

following ways: 

• Reporting error (incomplete reporting) results in underestimates of abundance 

• Sex and age error resulted in improved abundance estimates for the sex-age-

kill method by increasing the abundance estimate under the simulated 

conditions 

Some implications to be aware of: 

• The declining performance for unstable populations could cause a lag in the 

recognition of populations changes, making it more difficult to determine 
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when to take management actions, and difficult to recognize an effect of 

management action 

• Of the error types, allocating resources to reporting error will have the biggest 

impact on reducing bias 

A.2 Chapter 3 

In chapter 3 I evaluated the performance of two fisher monitoring programs (with and 

without necropsy) and the estimation methods they enable.  I found that based on the 

weights (importance scores) provided: 

• The Downing (downingEst) estimation method performs best 

• Performing necropsies is worth the cost of doing so because the value 

obtained from disease detection and public engagement is greater than the 

value obtained from the reduced cost from not conducting necropsies. 

• The use of the Downing estimation method with necropsies performs best, but 

does not perform well in terms of minimizing bias in the abundance estimate 

Some comments on the methodology to be aware of: 

• The results, while fairly robust to the weights and consequences found here, 

are dependent on the objectives and weights identified. 

• Should the objectives, their weights, or the consequences change; the analysis 

can be readily repeated so that the Vermont Fish and Wildlife Department can 

adapt the monitoring program to future changes in values. 
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A.3 Chapter 4 

In chapter 4 I demonstrate the use of Expected Value of Sample Information (EVSI) to 

evaluate the benefits of collecting and analyzing spatial information (conducting 

mapping efforts).  The method enables analysis of: 

• The relative gains of mapping efforts vs. acting with current knowledge 

• The benefits of investing in mapping efforts 

• The benefits of one mapping effort vs. another 

These analyses enable decision making by supporting: 

• Comparison of the value of mapping efforts to their costs 

• Comparison of multiple mapping efforts to each other to select the most 

beneficial. 

• Budgeting and staffing decisions that depend on the comparisons listed above  

I developed a spreadsheet to support independent EVSI analyses: 

• To obtain a copy email me at jonathan.cummings@gmail.com, Subject: EVSI 

spreadsheet 
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APPENDIX B. DECISION ANALYSIS IN THE R SOFTWARE PACKAGE 

AMHARVEST 

B.1 Abstract 

I present a portion of the software package (harvest ) that facilitates decision 

analysis through R functions and database storage.  The software’s associated database 

supports storage of the information accumulated during the structured decision making 

process, including the problem, objectives, and alterative, the predictive models, and 

the decision outcome.  The software linking to the database calculates the consequences 

and trade-offs of the decision, which can also be stored in the database to track decision 

making over time. The package is written in the R programming language and is 

available through the Comprehensive R Archive Network (CRAN; http://cran.r-

project.org/). Here, I describe the uses of the database and decision analysis functions 

provided by the harvest  package harvest and demonstrate its use on a hypothetical 

natural resource management. 

Keywords:  Decision Analysis, Structured Decision Making, MCDA, SMART, 

smartDA 

Note:   

Names of Access database items are displayed in Calibri, while names of items 

and functions in R are displayed in Courier New . 
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B.2 Introduction 

The use of structured decision making (SDM, Gregory et al. 2012, Conroy and 

Peterson 2013) and decision analysis (Keeney and Raiffa 1976) is expanding, 

particularly in the environmental sciences (Huang et al. 2011) as they become more 

familiar.  The first portion of structured decision making process centers on problem 

framing, or laying out the decision to be made and the components that affect the 

structure and outcome of the decision.  With assistance or experience with the 

structured decision making process decision makers tend to be comfortable and 

effective at this completing this stage of the structured decision making process.  

However, after using the structured decision making process to frame a problem a 

decision maker still needs to determine the consequences of the decision and needs to 

conduct the decision analysis to identify the best course of action.  Currently managers 

tend to rely on decision analysts to conduct the decision analysis due to the complexity 

of the stage in the process and the complexity and cost of the currently commercially 

available decision analysis software. 

Expansion in the use decision analysis along with the spreading idea that 

management actions can be tracked over time in form of scientific observation has 

placed a greater emphasis on making transparent, repeatable decisions and on recording 

the performance of management actions over time.  For example, a key component of 

adaptive management is monitoring what decisions were made and what actions were 

taken in the past and present so that learning can occur over time and improve future 

decisions (Walters 2001). 
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Environmental and natural resources managers, and decision makers generally 

will likely benefit from a freely available means of evaluating the predicted outcomes 

of decisions, recording what decisions were made, and tracking the results of those 

decisions.  The use of database software in conjunction with the R programming 

language (CRAN; http://cran.r-project.org/) makes this possible.  Here I present the use 

of a Microsoft Access linked MySQL database and R based decision analysis functions 

in a means to conduct decision analysis and track decision making over time using the 

newly developed R package harvest .   

My objectives are to: 1) Describe the methods for entering inputs to a decision 

analysis in the harvest  package database; 2) Describe the steps for conducting the 

decision analysis in harvest ; 3) Describe this process in term of an example 

problem, describing the decision analysis and its results along the way. 

B.3 Decision analysis and decision information storage with AMharvest 

The R package AMharvest  links to a database to store decision analysis 

inputs and output while R functions are used to predict consequences and to conduct 

the decision analysis.   I describe these components using the structured decision 

making approach to problem framing and decision analysis (Gregory et al. 2012, 

Conroy and Peterson 2013), which follows the abbreviation PrOACT (Hammond et al. 

1999).  PrOACT refers to the process of identifying the Problem, describing the 

Objectives, enumerating the Alternatives, predicting the Consequences, and evaluating 

the Trade-offs.  Here I demonstrate the data entry and decision analysis in 

AMharvest  for a hypothetical decision regarding the management of a park 
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(Centennial Woods) in light of a declining population of Bowtruckle following the 

steps of the PrOACT process. 

B.3.1 Database 

The AMharvest  package comes with a downloadable MySQL database to 

store data for decisions and an accompanying Microsoft Access front-end for data entry 

and retrieval.  I designed the database to be flexible to a range of decision problems and 

components as I discuss below.  Decisions and their components are entered into the 

Access front-end using the Decisions forms under the Decision Analysis header in the 

AMharvest  package’s database (Figure A.1).  I encourage readers to open the 

database so that they may follow along while reading this manuscript. 

B.3.2 Problem 

The first step in structured decision making is defining the problem.  Defining 

the problem is also the first step for decision analysis with AMharvest which is done by 

entering the problem definition into the database (Figure A.2).  Problems are stored by 

name and automatically given an identification number (pkdecisionid).  I named my 

example problem “Centennial Woods Habitat Management Problem” which was 

assigned a pkdecisionid of 5.  For linked decisions the id that the decision is linked to is 

entered as well (fklinkeddecisionid).  My problem has no linked decision, but as an 

example, an annual harvest management decision would likely depend on the decision 

a year prior.  Therefore the pkdecisionid for the prior year’s decision would be entered 

as the fklinkeddecisionid for the current year’s decision. 
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Information about the decision to be made and the background information 

about that decision are entered in the Decision Question and Problem Definition 

portions of the Decisions form.  The Decision Question is a succinct statement of the 

decision to be made, often defined as the irrevocable allocation of resources under 

consideration (Dale and English 1999).  For my example the Decision Question is, 

“What habitat management action should be taken to meet the needs of Bowtruckles 

and the public?” The problem definition is a fuller explanation of the situation the 

decision maker is facing.  A problem definition typically includes a number of 

components such as the location, scale, frequency, and timing of the decision, who the 

decision maker or decision makers are, any significant uncertainties that could 

influence the outcome of the decision, the nature of any linked decisions, any key 

stakeholders in the decision process or the result of the decision, and or any other 

important considerations in the decision making process.  In my example I provided a 

brief problem definition (Figure A.2, Problem Definition). 

The remaining components to enter for a decision are the type of decision 

analysis to conduct, the outcome, and the date of the decision.  Currently the analysis 

function available for use in the package is the smartDA  function, while future 

iteration of the package will include an option to conduct portfolio type decision 

analyses with the portfolioDA  function.  The analysis used for my example 

problem is the smartDA  approach.  The description of the outcome of the decision is 

entered in Outcome while the date the decision was made, or the selected alternative 

was implemented is entered in Date. These fields are not filled in until after the 

decision analysis is conducted and the decision is actually made and implemented.  In 
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my example after analysis a protected area was established on 4/29/2014 (Figure A.2, 

Date) that increased Bowtruckle abundance at a low cost (Figure A.2, Outcome). 

B.3.3 Objectives 

The second step in structured decision making is describing the objectives.  

Objectives are the criteria used to evaluate the outcome of a decision, determined by 

the values of the individuals making the decision.  Objectives are entered in the 

Objectives section of the Decisions form (Figure A.3). The name of the decision is 

repeated (Figure A.3, Decision) for reference while entering the components of an 

Objective. 

Objectives are selected by name from the list of objectives in the drop down 

Objective.  To enter an objective that isn’t in the drop down list select the Edit 

Objectives button and enter the name of a new objective (Figure A.4). 

An objective has a number of associated components.  The Measureable 

Attribute is the units used to assess the status of an objective.  Measureable attributes 

also go by a number of other names such as criteria, measure, attribute, metric, 

performance measure, or performance metric depending on the decision analysis or 

decision analyst.  Regardless of the name the measureable attribute is the item being 

counted, qualified, quantified, or otherwise recorded to determine the state of the world 

relative to what is desired.  In my example the measureable attribute for the abundance 

objective is the number of Bowtruckle present in Centennial Woods.  Each measureable 

attribute also has an associated measurement technique. 

The Measurement Technique is the means of assessing the status of a 

measureable attribute.  That is, the description of the measurement technique answers 
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the question, “how is the amount of the measured unit being predicted, counted or 

otherwise determined?”  For my example the number of Bowtruckles objective is being 

measured using the output of a predictive model that forecasts the abundance of 

Bowtruckle in Centennial Woods. 

The Description is used to elaborate on the name of the objective in order to 

better communicate what the desire associated with an objective is.  The purpose 

behind the description field is to clarify the intent of an objective, share the values an 

objective represents, and more clearly communicate the purpose of an objective than is 

possible through an objective’s name.  For example the desire for the example objective 

is to maximize the number of Bowtruckles in Centennial Woods. 

Each objective also has a desired direction. The Direction for each objective has 

one of four possible values: maximize – the more of the measurable attribute the better, 

minimize – the less the better, target – the closer to a target value the better, or 

constraint – either the objective is achieved (Yes/1) or not (No/0) relative to the 

constraint level.  In the case of my example objective the desired direction is maximize, 

meaning the desire is to have as many Bowtruckles in Centennial Woods as possible. 

 An objective also has a relative importance or weight.  The weight is the 

value, benefit, or utility derived from the range of possible outcomes for this objective 

relative to the utility derived from the other objectives for the decision in question.  My 

example objective has a weight of 0.35 out of a total of 1 across the objective in my 

example, indicating that going from the worst to the best possible outcomes in terms of 

the number of Bowtruckles would provide 35% of the possible benefit of going from 

the overall worst to best possible Bowtruckle abundance outcomes. 
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The full set of objectives in the example Centennial Woods Habitat 

Management Problem are to maximize the number of Bowtruckles, to maximize the 

percentage of Centennial Woods visitors that see a Bowtruckle, to maximize Centennial 

Woods visitation, to maximize the enjoyment of visitors (the visitor experience), and to 

minimize the cost of management (Table A.1). Each objective is associated with one or 

more (for multiple model prediction) models that are used to assess the status of the 

objective and predict the consequences of selecting a particular alternative. 

B.3.4 Models 

In decision analysis models predict the status of an objective for an alternative 

as if the alternative is selected.  That is, models are used to forecast the consequences of 

a decision.  Each objective has an associated model and these models also have beta 

values for each of the model’s covariates that influence the status of an objective.  The 

model for each objective and that model’s beta values are selected using the Models 

and Keys sub-forms that are shown in the Objectives entry section (Figure A.5). 

Models are selected from a list of Models using the Model drop down.  If a new 

model is needed models are added by selecting the Edit Models button and entering the 

new model’s information in the Models form.  For example, if the Bowtruckle 

Abundance Model did not yet exist it would be entered as shown in Figure A.6.  A 

pkmodelid is automatically assigned to each model, while fkparentmodelid references 

an earlier version of the same model (using the methodology described for linking 

decisions with fklinkeddecisionid) if the model beta values change over time.  There 

are two fkmodeltype values to select from for modeling the status of an objective in a 
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decision analysis: consequence.predicted – for predictive models that are forecasting 

the future state of an objective and consequence.observed – for models that are storing 

the results of the observed state of an objective.  For example, the status of the visitor 

experience objective from my example decision is the result of a survey of Centennial 

Woods visitors conducted specifically for this decision, so in this case the model stores 

values that would produce those observed survey results.  The name stores the name of 

the model, transformation stores the type of transformation that occurs between the 

inputs and output of a model, Bayesian stores whether the model includes uncertainty 

in its parameters such that it can be used in Bayesian modeling, and description stores a 

description of the model.  For decision analysis purposes fkspeciesid is an optional link 

to a species name if a model is used for a particular species and the user wishes to track 

this.  The formula can be left blank for decision analysis purposes. 

For decision analysis the model keys can also be referred to as model betas, or 

the rate of change in the model output that results from one unit of change in the beta or 

key (fkkeyid) selected. I further discuss the keys in the Alternatives section.  The key 

for each model beta is selected using the fkkeyid drop down.  If a key is not present a 

new key can be added by selecting the Edit Keys (Model Betas) button that opens the 

Keys form (Supplement A.6.1).  The beta value for each key is entered in the valuenum 

column.  If the number in the valuenum column is a dummy coding for a character or 

factor value the character or factor the dummy code is associated with is stored in the 

valuechar column. For decision analysis purposes the remaining columns are left blank 

under most circumstances (Supplement A.6.2).  The model betas can either be entered 
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in the Model Keys section of the Models form or by clicking the + to the left of the 

model drop down in the Models section of the Objectives form. 

While I describe entering a single model for each objective, AMharvest  

supports multi-model predictions as well.  By selecting multiple models in the model 

sub-form for each objective more than one model can be linked to an objective.  The 

output from each of the selected models is then averaged to produce a single output 

value using model weights for the selected models.  Model weights are added as an 

additional key (model beta) for each of the models being combined (Supplement A.6.3) 

B.3.5 Alternatives 

The third step in structured decision making is enumerating the alternatives.  

Alternatives are the actions that one is choosing between.  Alternatives are entered in 

the final section of the Decisions form; the Alternatives section (Figure A.7). The name 

of the decision is repeated (Figure A.7, Decision) for reference while entering the 

components of an Alternative. 

Like objectives, alternatives are selected by name from a list of alternatives, in 

this case using the Alternative drop down.  For my example the Alternative name for 

the first alternative is “Protected Area”. To enter an alternative that isn’t included in the 

list for the drop down, click the Edit Alternatives button and enter the name of a new 

alternative, the pkalternativeid will be filled in automatically (Figure A.8). 

In addition to an alternative’s name the database stores a description of the 

alternative; the decision analysis score for the alternative, and whether or not the 

alternative was selected for implementation when the decision was made (Table A.2).  
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Alternatives are also made up of one or more action elements, which describe the 

degree to which an action is taken. 

The description – which communicates the details of what would be done if the 

alternative is selected – of an alternative, is entered in the Description box.  For my 

example protected area alternative, the description is, “Set aside a region of Centennial 

Woods that is off limits to visitors.” 

An alternative’s score field should be left blank at this point.  The score value 

will be filled in when a decision analysis function is run.  For my example the decision 

analysis has already been conducted, returning a score of 0.766792 for the protected 

area alternative. 

The selected check box can be set to unchecked when an alternative is first 

entered for a decision.  Once the decision is made, the alternative that is implemented 

should have its selected box checked, while the selected box for the other alternatives 

remain unchecked.  In my example the protected area alternative had the highest score 

and was selected for implementation, so the selected box is checked. 

The remaining sections of the Alternatives form store the action elements 

associated with an alternative.  A range of terminology has been used to describe pieces 

of alternatives (called action elements here) and the combination of action elements 

into sets that one chooses between (alternatives here). Here I use alternative to mean 

either the single action taken and action element value implemented if the alternative is 

selected or the combination or set of actions (action elements) taken if the alternative is 

selected.  So from a decision analysis perspective the set of alternatives to select from 

always represents the set of implementable items from which to select, whether there is 
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one or more actions associated with each of the alternatives.  Other terms have been 

used for alternatives when they contain combinations of actions, such as strategies, or 

portfolios, but I use alternative to mean both a portfolio or actions one can select or a 

single unique action that can be selected.  A number of terms have been used for action 

elements or pieces that make up an alternative as well.  They have been referred to as 

alternatives themselves, actions, components, constituent alternatives, and elements.  

Here I refer to the parts or pieces of an alternative as action elements. 

In my usage an action element is the quantifiable action that is taken when an 

alternative is implemented.  Where an objective is made up of a desired direction and a 

unit of measure an alternative is made up of one or more action elements that have 

names and a value enumerating the degree to which the action element is enacted.  

These action elements are also the covariate inputs to the models I use to determine the 

status of my decision objectives. 

Action elements and the models they feed into are selected in the Action 

Elements sub-form.  Action elements are selected from the list of action elements in the 

Action Element (Key, fkkeyid) drop down.  Like adding new model betas, to add new 

action elements click the Edit Action Element (Keys) button and enter new action 

elements there.  For my example the action element shown is the intercept action 

element.  To match an objective’s model to an alternative each of the model betas for 

the objective’s model also needs a corresponding action element associated with each 

alternative the model is used for.  The outcome of selecting the protected area 

alternative in terms of the Bowtruckle abundance is predicted using the “Bowtruckle 

Abundance Model” which has model betas of intercept, protected.area, viewing.area, 
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and entry.fee.  Therefore, the protected area alternative also needs the intercept, 

protected.area, viewing.area, and entry.fee actions elements (Table A.3). 

The status of each of these elements if an alternative were selected is entered in 

the Action Value and Action Character fields.  That is, the degree to which an action is 

taken is entered.  As with the model betas if the number in the Action Value field is a 

dummy coding for a character or factor value the character or factor the dummy code is 

associated with is stored in the Action Character field.  For my example decision each 

action element is either taken or not taken for each alternative, so the action character 

values are either Yes or No with yes stored as a 1 in the Action Value field and No 

stored as 0.  If a model output depends on the value of an action, say the size of the 

protected area where one of the alternatives creates a 10 acres protected area the Action 

Value field for the protected.area would be 10. 

The last step in entering an alternative’s action element is to select the models 

for which the action element value is a covariate.  This is done by selecting the names 

of those models in the fkmodelid column of the Models sub-form.  The models should 

already be in the list if they were entered along with the objectives, but clicking the Edit 

Models button allows the entry of new models from the Alternatives section of the 

Decision form as well should a user wish to enter information in a different order that 

starts with alternatives.  At this point all of the inputs to a decision analysis have been 

entered into the database and the decision analysis can be conducted. 
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B.4 R functions 

B.4.1 Consequences 

The fourth step in structured decision making is predicting the consequences.  

Consequences link alternatives to objectives by predicting the outcome of each 

alternative in terms of the measureable attributes for each of the objectives.  In my 

framework the consequences involve determining the sum of the model betas (entered 

during the objectives section) multiplied by the model covariates (entered as action 

elements during the alternatives section). For example, the consequence for the 

abundance objective and the protected area alternative in my example is determined 

using the Bowtruckle abundance model (Table A.4).  This model multiplies the Model 

Beta value for each key by the Action Value for that key, and sums the result for each 

key.  In this case 10*1 + 90*1 + 30*0 + 50*0 for the four keys to the model equals 100, 

so the predicted consequence of the protected area alternative for the abundance 

objective is an abundance of 100 Bowtruckles. 

These calculations take place in the consequencesDA  function.  The 

consequencesDA  function requires two arguments as function inputs, the db.name  

and the decision.id .  The db.name  is the name of the database where the 

decision data is stored.  This is the name you gave the database when you downloaded 

it with the AMharvest  package, I named ours “HARVESTR”.  The decision.id  

is the id number that was assigned to the decision problem back at the first step of data 

entry.  In my example the Centennial Woods Habitat Management Problem as assigned 
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a decision.id  of 5.  The example code to run consequencesDA  on my example 

is therefore consequencesDA("HARVESTR",5) . 

The output of the consequencesDA  function is the resulting consequences 

for the decision, which are uploaded to the database selected using the db.name  

argument input to the function.  The uploaded consequences are stored in 

tblconsequence for use in a decision analysis function.  The consequences for my 

example decision are shown in Table A.5. 

B.4.2 Trade-offs 

The fifth step in structured decision making is conducting the decision analysis 

and evaluating the trade-offs.  There are three parts of the decision analysis portion of 

trade-off evaluation process.  The first part of the process is to normalize the 

consequences in order place the status of each of the objectives on the same scale.  The 

normalized scores in the consequence table result in scores of 1 for the best outcome 

for each objective, scores of 0 for the worst outcome per objective, with the remaining 

outcomes receiving a score relative to how far it is from the best outcome.  For 

example, the mid-point between the best and worst outcomes would receive a 

normalized consequence score of 0.5. 

The second part of the process is to apply the weights for each objective to the 

normalized consequences.  By multiplying the weight or relative importance of each 

objective by its normalized consequence, rather than having the best outcome for each 

objective score a 1, the best outcome for each objective would receive a score equal to 

that objective’s weight. For my example, the abundance objective has a weight of 0.35, 
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so the best outcome for the abundance objective receives a weighted consequence score 

of 0.35 instead of the 1 it received during the normalization step. 

The third part of the process is to sum the weighted consequence scores for each 

alternative to arrive at the total score for the alternative across the full set of objectives.  

The alternative with the highest total score is then the one that fulfills the objectives for 

the decision to the greatest degree.  The decision analysis process just described is also 

referred to as the simple multiple attribute rating technique (SMART, Von Winterfeldt 

and Edwards 1986). 

The decision analysis processes described above are carried out by the 

smartDA  decision analysis function.  The smartDA  function has four input 

arguments, db.name , decision.id , database , and consequences.csv .  

The database  argument specifies whether or not the function will obtain values from 

a database and upload the results to a database.  The default value of database is TRUE, 

indicating the database will be used, in which case the consequence.csv  argument 

retains its default value of NULL.  When the database is used the db.name  and 

decision.id  arguments are required.  Like the consequencesDA  function the 

db.name  is the name of the database where the decision data is stored 

(“HARVESTR” in my example) and the decision.id  is the id number that was 

assigned to the decision problem (decision.id  = 5 in my example).  The code to 

run the decision analysis for my example is therefore:  smartDA("HARVESTR",5) . 

When the database is used the function obtains a consequence table from the 

database and formats it for analysis (Table A.6).  If a user does not enter a decision into 

the database and calculate the consequences using consequencesDA  they can 
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instead enter a consequence table directly into R by setting the database  argument 

equal to FALSE and providing the name of a csv file containing a consequence table.  

The format of the csv file should match the format of Table A.6 with the same column 

names for objective, weight, and direction followed by a column for each alternative.  

Each row is an objective with its corresponding values.  If my example had a 

consequence table stored in the csv file named “Centennial Woods Problem” the 

smartDA  function could be run without using the database with the following code: 

smartDA (db.name=NA, decision.id=NA, database=FALSE , 

consequence.csv=”Centennial Woods Problem”) . 

The output of smartDA  is the score for each alternative.  The scores for my 

example problem indicate that the protected area is the highest scoring alternative 

(Table A.7).   For my example, the objectives weights sum to 1.  Therefore the range of 

possible alternative scores ranges from 0 (worst case outcome for all objectives) to 1 

(best case outcome for all objectives).  Any values can be used for the weights, but 

assigning weights such that they sum of 1 or to 100 makes interpreting the scores 

easiest.  Because the weights sum to 1 in this example the protected area alternative 

with its score of ~0.767 can be described as obtaining 76.7 percent of the best case 

outcomes relative to the worst case outcomes. 

Based on the results of the example decision analysis I would select the 

protected area alternative for implementation.  In order to track the selection of this 

alternative the selected check box for this alternative is checked on the Alternatives 

section of the Decision entry form in the database.  Once the outcome of the selected 
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alternative is clear a description of the outcome is entered in the outcome field in the 

decision entry form. 

B.5 Conclusion, Extensions, and Additional functions 

Here I presented the simple multiple attribute rating technique (SMART, Von 

Winterfeldt and Edwards 1986) approach to decision analysis and storing the results of 

the structured decision making process.  The use of structured decision making and the 

AMharvest package provides a means to easily store the results of a decision process, 

facilitating transparency and communication as well as learning over time from the 

results of previous decisions. 

For demonstration purposes the example decision I presented was a relatively 

more straight forward and less complex one.  There are a number of possible extensions 

to the decision analysis presented here that deal with more complex forms of decision 

analysis.  Some of the possible extensions are currently supported by the AMharvest 

package while others are not but may be developed for future versions of the package. 

For the decision presented only one action was taken per alternative, but the 

analysis can be conducted with multiple action elements being implemented per 

alternative and at with different levels of implementation for the action elements.  This 

would be done using the smartDA  function as well, but with a greater number of 

combinations action elements and variety of action element values per alternative. The 

yet to be released portfolioDA  function will use the SMART approach to decision 

analysis as well, but rather than running the analysis with a predetermined combination of 

action elements the function use optimization to select the optimal combination of action 

elements to produce the best possible alternative.  The also yet to be released 



182 
 

optimizationDA  function extends this further, removing the need to preselect the 

action value associated with each action element.  The function then optimizes not only 

the combination of action elements, but the action value for each of those action 

elements, arriving at the best possible alternative given the action elements available. 

The final extension available but not discussed in the example is the ability to 

enter multiple models per objective and entering model weights for each of those models.  

The predictions from multiple models can then be combined to support a model 

averaging approach to consequence prediction (Supplement A.6.3) 

Currently the consequenceDA makes a single prediction for each model, making a 

deterministic prediction.  Possible extensions for further development of this package 

include developing R functions that support sensitivity analysis and uncertainty in the 

model predictions and developing functions that support variability in risk attitudes and 

the use of non-linear utility functions. 

B.6 Supplement 

B.6.1 Entering Keys 

Keys, model betas for decision analysis, are entered in the Keys form (Figure 

A.9).  The pkkeyid is assigned automatically for each key, name stores the name of the 

key, and description stores a description of the key.  The fkkeytype for a key stores 

what the keytype is for the selected key from the list of keytypes (Table A.8).  The 

fksettingtype will autofill following selection of the fkkeytype.  Keys can have one of 

four datatypes: numeric, character, factor, or date/time that are stored in datatype. 
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B.6.2 Additional Columns in the Model Keys entry form 

The remaining columns in the Model Keys form will rarely be used for decision 

analyses. The enudensitystage and enudensitypop columns are only used for 

simulating populations where the simulation is dependent on the abundance of the 

population.  The enudensitystage refers to the stage in the annual lifecycle of the 

population at which the abundance is assessed and enudensitypop refers to the portion 

of the population whose abundance is considered. If there is a standard error associated 

with a model beta it is stored in the se column. 

B.6.3 Predicting consequences with multiple models 

To predict consequences from multiple models an objective must be associated 

with more than one model.  This is done by selected multiple models in the model drop 

down in the objectives section of the decision form.  An additional model beta is also 

selected for each of these models, their model weights.  The model weights must be 

between 0 and 1 for each model, with a sum of 1 for a full set of models predicting the 

consequences of an objective.  The weight for each model provides the relative 

influence of that model’s prediction relative to the other models in the set.  For example 

if model A has a weight of 0.75 and model B has a weight of 0.25, with predictions of 1 

and 2 respectively, the multiple model prediction is the sum of the model predictions by 

their weights.  In this case 0.75 + 0.5 the multiple model prediction is 1.25 (0.75+0.5). 
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Table A.1 Objectives and their components for my example Centennial Woods Habitat Management Problem decision. 

Objective 

Name Direction Weight Measureable Attribute Measurement Technique Description 
Abundance maximize 0.35 Number of Bowtruckles Predictive model of the 

number of Bowtruckles present 

in Centennial woods. 

Maximize the abundance of 

Bowtruckles in Centennial 

Woods. 
Sightings maximize 0.175 Percentage of visitors 

with a Bowtruckle 

sighting 

Predictive model of the 

Bowtruckle sighting rate. 
Maximize the percentage of 

visitors to Centennial Woods that 

see a Bowtruckle during their 

visit. 
Visits maximize 0.085 Number of visitors per 

week. 
Predictive Model of the 

number of visits per week. 
Maximize the average number of 

individuals that visit Centennial 

Woods per week. 
Visitor 

Experience 
maximize 0.27 Average rating (0-10). Observed response to an 

opinion survey of current 

visitors to Centennial Woods 

and a random sample of the 

local public. 

Maximize the visitor experience 

of those who visit Centennial 

Woods. 

Cost minimize 0.12 Number of park ranger 

hours. 
Predictive Model of the 

number of hours required to 

successfully manage the park. 

Minimize the number of hours 

required for park rangers to 

manage Centennial Woods. 
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Table A.2 Alternatives, their descriptions, decision analysis score, and whether or not they were 
selected for implementation in my example Centennial Woods Habitat Management Problem. 

Alternative 

Name 
Description Score Selected 

Protected Area Set aside a region of Centennial Woods that is off 

limits to visitors. 
0.7668 1 – Yes 

Viewing Area Develop a viewing station that directs visitors to a 

Bowtruckle viewing sight that minimizes negative 

effects to Bowtruckles. 

0.7517 0 – No 

Status Quo Maintain the status quo management of Centennial 

Woods 
0.16 0 – No 

Entry Fee Charging visitors an entry fee to enter Centennial 

Woods. 
0.4221 0 – No 

 

Table A.3 Alternatives with their action elements, action values, action character values, and models. 

Alternative Action Element Action Value Action Character Models* 

Protected Area intercept 1  1,2,3,4,5 
entry.fee 0 No 1,2,3,4,5 

viewing.area 0 No 1,2,4,5 

protected.area 1 Yes 1,2,3,4,5 

Viewing Area intercept 1  1,2,3,4,5 
viewing.area 1 Yes 1,2,4,5 

entry.fee 0 No 1,2,3,4,5 

protected.area 0 No 1,2,3,4,5 

Status Quo intercept 1  1,2,3,4,5 
protected.area 0 No 1,2,3,4,5 

entry.fee 0 No 1,2,3,4,5 

viewing.area 0 No 1,2,4,5 

Entry Fee intercept 1  1,2,3,4,5 
entry.fee 1 Yes 1,2,3,4,5 

protected.area 0 No 1,2,3,4,5 

viewing.area 0 No 1,2,4,5 

*1 – Bowtruckle Abundance Model, 2 – Bowtruckle Sighting Model, 3 – Centennial Woods Visit Model, 4 
– Centennial Woods Visitor Survey, 5 – Centennial Woods Management Cost Model 



 

Table A.4 The inputs to the Bowtruckle Abundance Model that models the consequences for the Abundance objective and Protected Area 
alternative for my example problem. 

Objective Alternative Model Transformation Key 
Model Beta 

Value 
Action 

Value 
Action 

Character 
Abundance Protected 

Area 
Bowtruckle 

Abundance 

Model 

none intercept 10 1  

Abundance Protected 

Area 
Bowtruckle 

Abundance 

Model 

none protected.area 90 1 Yes 

Abundance Protected 

Area 
Bowtruckle 

Abundance 

Model 

none viewing.area 30 0 No 

Abundance Protected 

Area 
Bowtruckle 

Abundance 

Model 

none entry.fee 50 0 No 
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Table A.5 Consequences by objective and alternative for the example problem. 

Objectives 

Alternatives 

Protected Area Viewing Area Status Quo Entry Fee 

Abundance 100 40 10 60 
Sightings 55 95 20 25 
Visits 175 250 250 50 

Visitor Experience 5 7 2 6 

Cost 8 12 20 40 

 

Table A.6 Example layout of csv file for use with the smartDA function with three objective columns 
and a column for each alternative. 

objective weight Direction Entry 

Fee 

Protected 

Area 

Status 

Quo 

Viewing 

Area 

Abundance 0.35 maximize 60 100 10 40 

Cost 0.12 minimize 40 8 20 12 

Sightings 0.175 maximize 25 55 20 95 

Visitor 

Experience 

0.27 maximize 6 5 2 7 

Visits 0.085 maximize 50 175 250 250 

 

Table A.7 Decision analysis scores for each of the alternatives in the example problem. 

Entry Fee Protected Area Status Quo Viewing Area 

0.4221111 0.7667917 0.16 0.7516667 
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Table A.8 List of key types by name with their descriptions. 

name description 
dataset.column A column of a dataset (does NOT include annual or daily 

covariates). All keys entered in CAPS. 
function.argument A key used as arguments for R function arguments, such as mean, 

sd, dataset, etc. 
model.beta A beta for a model, either for simulation or estimated. 
covariate.column A column in tblcovariate (includes annual and daily covariates) 
popmod.key A key created by and used in the popmod function for simulating a 

population through time. 
analysis.output An output from an analysis 
distribution.parameter Keys used that define a parameter of a statistical distribution. 
beta.info Additional information related to a model beta, such as se, uci, lci 
model.info A key that provides additional information about a model, such as 

its weight or aic score. 
covariate.value The value that is fed into a model and multiplied by a beta 
sim.species Keys that identify a species life history 
sim.mark Keys used for simulating a marked population 
sim.pop Keys used to simulate population dynamics 
sim.harvest.data Keys used for simulating agency handling of harvest data 
sim.harvest Keys used to simulate the harvest 
sim.season Identifies the type of harvest season (e.g., rifle, bow, etc) 
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Figure A.1 The home page for Microsoft Access database used in the R package AMharvest.  The 
majority of the decision analysis functionality is linked to the buttons under the Decision Analysis 
header.  To enter information about a decisions select the Decisions button.  To enter models used in 
the consequences step select the Models button.  To enter model betas and action elements select the 
Keys button. 

 

 

Figure A.2 Decisions are entered in the Decisions form.  The Name, pkdecisionid, fklinkeddecisionid, 
Decision Question, Problem Definition, Analysis Function, Outcome, and Date are entered and 
displayed in this form.  Name is the name given to the decision.  The pkdecisionid is the id assigned to 
the decision, while fklinkeddecision id store the id this displayed decision links to, if there is one.  The 
Decision Question is the decision to be made, while the Problem Definition provides the background 
information on the decision.  The Analysis Funcition is the R function used for the decision analysis.  
The Outcome is the result of the decision and the Date is the date the decision was made. 
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Figure A.3 Objectives are entered in the Objectives form.  The Objective, Direciton, Weight, 
Measureable Attribute, Measurement Technique, are entered and displayed in this form.  The 
decision the objective is a part of (Decision) and the button for editing or entering new objectives 
(Edit Objecitves) are just above the objectives section of the form. Objective is the name given to the 
objective.  Direction is the desired state of the objecitve.  Weight is the relative importance of the 
objective.  The Measureable Attribute is the units the objective is assessed with, and the Measurment 

Technique is the means for assessing how many of the measured unit result from the decision. 

 

 

Figure A.4 Objective names are added or edited in the form linked to by the Edit Objectives button. 
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Figure A.5 Model and their model betas (Keys) are entered in the Model and Keys sub-forms.  The 
Model, the Model Beta values, and the valuenum and valuechar values are entered in these sub-forms.  
Model is the name of the model used. Model Beta is the name of the beta used in the model. The 
valuenum is the numeric value of the beta, and valuechar an the character value of beta if applicable. 
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Figure A.6 Model editing can also be conducted in Model form.  The fields in the model form are 
pkmodelid, fkparentmodelid, fkmodeltype, fkspeciesid, name, formula, transformation, bayesian, and 
description.  The pkmodelid and fkparentmodelid fields store the id for the current model, and the id 
for the parent model if the current model is an iteration of an earlier version of the model.  The 
fkmodeltype is the type of the model, and the fkspeciesid is the species the model makes a prediction 
about if applicable.  The name field store the name of the model.  The formula field stores the model 
formula if needed for use in R, while transformtion stores and transformation of the model output 
that occurs.  The bayesian check box is used if the model includes bayesian uncertainty.  The 
description field is a text description of the model.  The Model Keys sub-form stores the keys 
associated with a model (fkkeyid), and there numeric (valuenum) or character values (valuechar). 
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Figure A.7 Alternatives are entered in the Alternatives form.  The Alternative, Description, Score, and 
Selected values, as well as the action elements and their values are entered and displayed in this 
form.  The decision the alternative is a part of (Decision) and the button for editing or entering new 
alternatives (Edit Alternatives) are just above the alternatives section of the form. Alternative is the 
name given to the objective.  Description is a text description of the alternative.  Score is the decision 
analysis result for the alternative and selected is check if the alternative was selected for 
implementation.  The Action Elements sub-form stores the action elements, the action element values 
(Action Value) for the alternative and action element character values (Action Character) if applicable.   
The models that the action elements are covariates of are stored in the Models sub-form fkmodelid 
drop down. 

 

 
Figure A.8 Alternative names are added or edited in the form linked to by the Edit Alternatives 
button. 
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Figure A.9 Keys are entered in the Keys form.  The pkkeyid, name, fkkeytype, fksettingtype, 
datatype, and description field for keys are stored and displayed in this form.  The pkkeyid is the 
automatic id for each key, the fkkeytype is the type of key it is, fksettingtype is the key’s setting type 
if applicable, and datatype is the key’s type of day stored with the key.  The name field is the name of 
the key and the description field is the key’s description. 
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APPENDIX C. ANALAYSIS OF VARIANCE IN ESTIMATOR PERFORMANCE 

To test the significance of the differences in mean performance by estimation 

method, and as a function of error I conducted Tukey’s HSD tests.  Based on this 

analysis there is a significant difference in the performance of all of the estimators in 

terms of their ability to predict abundance as measured by the bias of the estimators 

(Table C.1).  In terms of the ability to predict population change (lambda) measure by 

bias in lambda there is a significant difference between the sex-age-kill method 

(sakEst ) and the other three methods, but the other three methods are not 

significantly different from each other (Table C.2). 

In terms of ability to predict abundance including error in data collection 

resulted in significantly different performance from one error type to another with two 

exceptions (Table C.3).  , When reporting error and all error, as well as sex error and 

age error (Table C.3) the differences were insignificant for the index (indexEst ), 

Fry, (fryEst ) and Downing (downingEst ) methods, but significant for the sex-age-

kill method (sakEst ) except .  There were no significant effects of error in the ability 

to predict lambda (Table C.4). 

Table C.1 Differences in the mean bias in abundance estimate by estimation method across scenarios. 
Estimator 
comparison 

Difference 
in means 

Lower limit of 95% 
confidence interval on 
difference in means 

Lower limit of 95% 
confidence interval on 
difference in means 

Adjusted 
p-value 

indexEst to 
fryEst       

0.4895 0.4877 0.4912   0.0000 

indexEst to 
downingEst 

0.4480   0.4462 0.4497 0.0000 

indexEst to 
sakEst 

-0.0243   -0.0225  -0.0260 0.0000 

fryEst to 
downingEst 

-0.0415 -0.0432 -0.0397    0.0000 
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fryEst to 
sakEst 

-0.5137  -0.5120   -0.5155 0.0000 

downingEst 
to sakEst 

-0.4723 -0.4705   -0.4740 0.0000 
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Table C.2 Difference in the mean bias in lambda estimate by estimation method across scenarios. 
Estimator 
comparison 

Difference 
in means 

Lower limit of 95% 
confidence interval on 
difference in means 

Lower limit of 95% 
confidence interval on 
difference in means 

Adjusted 
p-value 

indexEst to 
fryEst       

0.0014 -0.0003 0.0032 0.1497 

indexEst to 
downingEst 

0.0012 -0.0005 0.0030 0.2608 

indexEst to 
sakEst 

-0.0184 -0.0166 -0.0201 0.0000 

fryEst to 
downingEst 

-0.0002 -0.0019 0.0016 0.9920 

fryEst to 
sakEst 

-0.0198 -0.0180 -0.0215 0.0000 

downingEst 
to sakEst 

-0.0196 -0.0178 -0.0213 0.0000 
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Table C.3 Difference in the mean bias in abundance estimate for by error type across estimation 
methods and by estimator. 
Scenario 
comparison 

All 
estimation 
methods 

indexESt fryEst downingEst sakEst 

stable.null to 
stable.reporting     

0.0000 0.0000 0.0000 0.0000 0.0000 

stable.null to 
stable.sex 

0.0000 0.0000 0.0000 0.0000 0.0000 

stable.null to 
stable.age 

0.0000001 0.0000 0.0000 0.0000 0.0000 

stable.null to 
stable.all 

0.0000 0.0000 0.0000 0.0000 0.0000 

stable.reporting 
to stable.sex 

0.0000 0.0000 0.0000 0.0000 0.0000 

stable.reporting 
to stable.age 

0.0000 0.0000 0.0000 0.0000 0.0000 

stable.reporting 
to stable.all 

0.0000 0.9317 0.3516 0.9444 0.0000 

stable.age to 
stable.sex 

0.3310 0.8638 0.1687 0.5798 0.0000008 

stable.age to 
stable.all 

0.0000 0.0000 0.0000 0.0000 0.0000 

stable.sex to 
stable.all 

0.0000 0.0000 0.0000 0.0000 0.0000 
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Table C.4 Difference in the mean bias in lambda estimate for by error type across estimation 
methods and by estimator. 
Scenario 
comparison 

All 
estimation 
methods 

indexEst fryEst downingEst sakEst 

stable.null to 
stable.reporting     

0.9999 0.9999 0.9999 0.9981 0.9996 

stable.null to 
stable.sex 

0.8447 0.9999 0.7880 0.7684 0.6798 

stable.null to 
stable.age 

0.9960 0.9999 0.9459 0.9569 0.9866 

stable.null to 
stable.all 

0.6605 0.9999 0.9968 0.9954 0.5557 

stable.reporting 
to stable.sex 

0.9071 0.9999 0.8399 0.9092 0.7983 

stable.reporting 
to stable.age 

0.9995 0.9999 0.9679 0.9949 0.9981 

stable.reporting 
to stable.all 

0.7527 0.9999 0.9991 0.9999 0.6863 

stable.age to 
stable.sex 

0.9659 0.9998 0.9951 0.9899 0.9276 

stable.age to 
stable.all 

0.8646 0.9999 0.9949 0.9979 0.8544 

stable.sex to 
stable.all 

0.9976 0.9999 0.9353 0.9346 0.9997 

  



201 
 

APPENDIX D. FULL REFERENCE LIST 

Aerts, J. C. J. H., M. F. Goodchild, and G. B. M. Heuvelink. 2003. Accounting for 

spatial uncertainty in optimization with spatial decision support systems. 

Transactions in GIS 7:211-230. 

Araujo, M. B., and P. H. Williams. 2000. Selecting areas for species persistence using 

occurrence data. Biological Conservation 96:331-345. 

Artelle, K. A., S. C. Anderson, A. B. Cooper, P. C. Paquet, J. D. Reynolds, and C. T. 

Darimont. 2013. Confronting uncertainty in wildlife management: performance 

of grizzly bear management. PLoS One 8:9. 

Asmus, J., and F. W. Weckerly. 2011. Evaluating precision of cementum annuli 

analysis for aging mule deer from Southern California. Journal of Wildlife 

Management 75:1194-1199. 

Atwood, E. L. 1956. Validity of mail survey data on bagged waterfowl. Journal of 

Wildlife Management 20:1-16. 

Ayyub, B. M. 2001. Elicitation of expert opinions for uncertainty and risks. CRC Press, 

Boca Raton, Florida, USA. 

Bernier, C., and M. B. Adler. 2012. Vermont furbearer management newsletter. Pages 

7-8. Vermont Fish & Wildlife Department, Springfield, Vermont, USA. 

Bockstael, N. E., A. M. Freeman, R. J. Kopp, P. R. Portney, and V. K. Smith. 2000. On 

measuring economic values for nature. Environmental Science & Technology 

34:1384-1389. 

Buskirk, S. W., L. Bowman, and J. H. Gilbert. 2012. Population biology and matrix 

demographic modeling of american martens and fishers. Pages 77-92 in K. B. 



202 
 

Aubry, W. J. Zielinski, M. G. Raphael, G. Proulx, and S. W. Buskirk, editors. 

Biology and conservation of martens, sables, and fishers : a new synthesis. 

Comstock Pub. Associates, Ithaca, New York, USA. 

Cabeza, M., and A. Moilanen. 2001. Design of reserve networks and the persistence of 

biodiversity. Trends in Ecology & Evolution 16:242-248. 

Carden, R. F., C. M. Carlin, F. Marnell, D. McElholm, J. Hetherington, and M. P. 

Gammell. 2010. Distribution and range expansion of deer in Ireland. Mammal 

Review 41:313-325. 

Chee, Y. E. 2004. An ecological perspective on the valuation of ecosystem services. 

Biological Conservation 120:549-565. 

Congalton, R. G. 1991. A review of assessing the accuracy of classifications of 

remotely sensed data. Remote Sensing of Environment 37:35-46. 

Conn, P. B. 2007. Bayesian analysis of age-at-harvest data with focus on wildlife 

monitoring programs. Colorado State University, Fort Collins, Colorado, USA. 

Conn, P. B., D. R. Diefenbach, J. L. Laake, M. A. Ternant, and G. C. White. 2008. 

Bayesian analysis of wildlife age-at-harvest data. Biometrics 64:1170-1177. 

Conroy, M. J., and J. T. Peterson. 2013. Decision making in natural resource 

management: a structured, adaptive approach. Wiley, Hoboken, New Jersey, 

USA. 

Converse, S. J., C. T. Moore, M. J. Folk, and M. C. Runge. 2013. A matter of tradeoffs: 

reintroduction as a multiple objective decision. Journal of Wildlife Management 

77:1145-1156. 



203 
 

Converse, S. J., K. J. Shelley, S. Morey, J. Chan, A. LaTier, C. Scafidi, D. T. Crouse, 

and M. C. Runge. 2011. A decision-analytic approach to the optimal allocation 

of resources for endangered species consultation. Biological Conservation 

144:319-329. 

Cook, C. N., D. G. Morgan, and D. J. Marshall. 2010. Reevaluating suitable habitat for 

reintroductions: lessons learnt from the eastern barred bandicoot recovery 

program. Animal Conservation 13:184-195. 

Costanza, R., R. dArge, R. deGroot, S. Farber, M. Grasso, B. Hannon, K. Limburg, S. 

Naeem, R. V. Oneill, J. Paruelo, R. G. Raskin, P. Sutton, and M. vandenBelt. 

1997. The value of the world's ecosystem services and natural capital. Nature 

387:253-260. 

Costello, C., A. Rassweiler, D. Siegel, G. De Leo, F. Micheli, and A. Rosenberg. 2010. 

The value of spatial information in MPA network design. Proceedings of the 

National Academy of Sciences of the United States of America 107:18294-

18299. 

Csuti, B., S. Polasky, P. H. Williams, R. L. Pressey, J. D. Camm, M. Kershaw, A. R. 

Kiester, B. Downs, R. Hamilton, M. Huso, and K. Sahr. 1997. A comparison of 

reserve selection algorithms using data on terrestrial vertebrates in Oregon. 

Biological Conservation 80:83-97. 

Cummings, J. W., and T. Donovan. in preparation-a. A decison analysis approach to 

selecting a program for monitoring population size of game species. 

Cummings, J. W., and T. M. Donovan. in preparation-b. Effects of measurement error 

on population estimation of harvested species. 



204 
 

Cummings, J. W., M. J. Hague, D. A. Patterson, and R. M. Peterman. 2011. The impact 

of different performance measures on model selection for Fraser River sockeye 

salmon. North American Journal of Fisheries Management 31:323-334. 

Cummings, J. W., R. M. Peterman, M. J. Hague, and D. Patterson. in review. Effect of 

asymmetric valuation of losses on model selection for Fraser River sockeye 

salmon. North American Journal of Fisheries Management. 

Dale, V. H., and M. R. English. 1999. Tools to aid environmental decision making. 

Springer, New York. 

Dankel, D. J., U. Dieckmann, and M. Heino. 2007. Success in fishery management by 

reconciling stakeholder objectives in Hilborn's "Zone of new consensus". 

International Council for the Exploration of the Sea Annual Science Conference 

2007, Helsinki, Finland. 

Davies, A. L., R. Bryce, and S. M. Redpath. 2013. Use of multicriteria decision 

analysis to address conservation conflicts. Conservation Biology 27:936-944. 

Davis, M. L., J. Berkson, D. Steffen, and M. K. Tilton. 2007. Evaluation of accuracy 

and precision of downing population reconstruction. Journal of Wildlife 

Management 71:2297-2303. 

de Groot, R. S., M. A. Wilson, and R. M. J. Boumans. 2002. A typology for the 

classification, description and valuation of ecosystem functions, goods and 

services. Ecological Economics 41:393-408. 

Decker, D. J., G. R. Goff, and Wildlife Society. New York Chapter. 1987. Valuing 

wildlife : economic and social perspectives. Westview Press, Boulder. 



205 
 

DeLury, D. B. 1947. On the Estimation of Biological Populations. Biometrics 3:145-

167. 

Donovan, T. M., J. W. Cummings, K. Rinehart, and S. Hafner. in preparation. The R 

package harvest: simulating game species populations for monitoring 

evaluation. 

Douglas, C. W., and M. A. Strickland. 1987. Fisher. Pages 510-529  Wild Furbearer 

Management and Conservation in North America. Ontario Trappers Association 

and Ontario Ministry of Natural Resources, Ontario, Canada. 

Downing, R. L. 1980. Vital statistics of animal populations. Pages 247-267 in S. D. 

Schemnitz, editor. Wildlife techniques manual. The Wildlife Society, 

Washington, D.C., USA. 

Eberhardt, L. L. 1960. Estimation of vital characteristics of Michigan deer herds. 

Michigan Department of Conservation Game Division, East Lansing, Michigan, 

USA. 

Edwards, W., R. F. Miles, and D. Von Winterfeldt. 2007. Advances in decision analysis 

: from foundations to applications. Cambridge University Press, Cambridge, UK 

and New York, USA. 

Farber, S. C., R. Costanza, and M. A. Wilson. 2002. Economic and ecological concepts 

for valuing ecosystem services. Ecological Economics 41:375-392. 

Fieberg, J. R., K. W. Shertzer, P. B. Conn, K. V. Noyce, and D. L. Garshelis. 2010a. 

Integrated population modeling of black bears in Minnesota: implications for 

monitoring and management. PLoS One 5:11. 

Fry, F. E. J. 1949. Statistics of a lake trout fishery. Biometrics 5:27-67. 



206 
 

Fryxell, J. M., W. E. Mercer, and R. B. Gellately. 1988. Population dynamics of 

Newfoundland moose using cohort analysis. Journal of Wildlife Management 

52:14-21. 

Gormley, A. M., D. M. Forsyth, P. Griffioen, M. Lindeman, D. S. L. Ramsey, M. P. 

Scroggie, and L. Woodford. 2011. Using presence-only and presence-absence 

data to estimate the current and potential distributions of established invasive 

species. Journal of Applied Ecology 48:25-34. 

Gould, W. R., and K. H. Pollock. 1997. Catch-effort maximum likelihood estimation of 

important population parameters. Canadian Journal of Fisheries and Aquatic 

Sciences 54:890-897. 

Gove, N. E., J. R. Skalski, P. Zager, and R. L. Townsend. 2002. Statistical models for 

population reconstruction using age-at-harvest data. Journal of Wildlife 

Management 66:310-320. 

Gregory, R., L. Failing, M. Harstone, G. Long, T. McDaniels, and D. Ohlson. 2012. 

Structured decision making: A practical guide to environmental management 

choices. Wiley-Blackwell, West Sussex, UK. 

Gregory, R., and R. L. Keeney. 1994. Creating policy alternatives using stakeholder 

values. Management Science 40:1035-1048. 

Hammond, J. S., R. L. Keeney, and H. Raiffa. 1998. Even swaps: A rational method for 

making trade-offs. Harvard Business Review 76:137+. 

Hammond, J. S., R. L. Keeney, and H. Raiffa. 1999. Smart choices : a practical guide to 

making better decisions. Harvard Business School Press, Boston, 

Massachusetts, USA. 



207 
 

Hawken, P., A. B. Lovins, and L. H. Lovins. 1999. Natural capitalism: creating the next 

industrial revolution. 1st edition. Little, Brown and Co., Boston, Massachusetts, 

USA. 

Herms, D. A., D. G. McCullough, and D. R. Smitley. 2004. Under attack:  The current 

status of the emerald ash borer infestation and the program to eradicate it. 

American Nurseryman 200:20-27. 

Hilty, J. A., and C. R. Groves. 2008. Conservation planning: new tools and new 

approaches.in R. L. Knight and C. White, editors. Conservation for a New 

Generation: Redefining Natural Resources Management. Island Press, 

Washington, D.C., USA. 

Howard, R. A. 1966. Decision analysis: applied decision theory.in International 

Conference on Operational Research. Wiley, New York, USA. 

Howard, R. A. 1975. Social decision analysis. Proceedings of the Ieee 63:359-371. 

Howard, R. A. 1980. Assessment of decision-analysis. Operations Research 28:4-27. 

Howard, R. A. 1988. Decision-analysis - practice and promise. Management Science 

34:679-695. 

Huang, I. B., J. Keisler, and I. Linkov. 2011. Multi-criteria decision analysis in 

environmental sciences: Ten years of applications and trends. Science of the 

Total Environment 409:3578-3594. 

Huggins, R. M. 1989. On the Statistical-Analysis of Capture Experiments. Biometrika 

76:133-140. 

Irwin, B. J., M. J. Wilberg, M. L. Jones, and J. R. Bence. 2011. Applying structured 

decision making to recreational fisheries management. Fisheries 36:113-122. 



208 
 

Kangas, A. S., P. Horne, and P. Leskinen. 2010. Measuring the value of information in 

multicriteria decisionmaking. Forest Science 56:558-566. 

Keeney, R. L. 1992. Value-focused thinking : a path to creative decisionmaking. 

Harvard University Press, Cambridge, Massachusetts, USA. 

Keeney, R. L., and H. Raiffa. 1976. Decisions with multiple objectives: preferences and 

value tradeoffs. Cambridge University Press, New York, USA. 

Keeney, R. L., and H. Raiffa. 1993. Decisions with multiple objectives : preferences 

and value tradeoffs. Cambridge University Press, Cambridge UK and New 

York, USA. 

Kelly, G. M. 1977. Fisher (Martes pennanti) biology in the White Mountain National 

Forest and adjacent areas. University of Massachusetts, Amherst. 

Klooster, W. S., D. A. Herms, K. S. Knight, C. P. Herms, D. G. McCullough, A. Smith, 

K. J. K. Gandhi, and J. Cardina. 2013. Ash (Fraxinus spp.) mortality, 

regeneration, and seed bank dynamics in mixed hardwood forests following 

invasion by emeral ash borer (Agrilus planipennis). Biological Invasions 15. 

Koen, E. L., J. Bowman, and C. S. Findlay. 2007. Fisher survival in eastern Ontario. 

Journal of Wildlife Management 71:1214-1219. 

Kovacs, K. F., R. G. Haight, D. G. McCullough, R. J. Mercader, N. W. Siegert, and A. 

M. Liebhold. 2010. Cost of potential emerald ash borer damage in US 

communities, 2009-2019. Ecological Economics 69:569-578. 

Krohn, W. B., S. M. Arthur, and T. F. Paragi. 1994. Mortality and vulnerability of a 

heavily trapped fisher population. Pages 137-145 in S. Buskirk, A. S. Harestad, 



209 
 

M. G. Raphael, and R. A. Powell, editors. Martens, sables, and fishers : biology 

and conservation. Comstock Pub. Associates, Ithaca, New York, USA. 

Linkov, I., F. K. Satterstrom, G. Kiker, C. Batchelor, T. Bridges, and E. Ferguson. 

2006. From comparative risk assessment to multi-criteria decision analysis and 

adaptive management: Recent developments and applications. Environment 

International 32:1072-1093. 

Lyons, J. E., M. C. Runge, H. P. Laskowski, and W. L. Kendall. 2008. Monitoring in 

the context of structured decision-making and adaptive management. Journal of 

Wildlife Management 72:1683-1692. 

Macauley, M. K. 2006. The value of information: Measuring the contribution of space-

derived earth science data to resource management. Space Policy 22:274-282. 

Marealle, W. N., F. Fossoy, T. Holmern, B. G. Stokke, and E. Roskaft. 2010. Does 

illegal hunting skew Serengeti wildlife sex ratios? Wildlife Biology 16:419-429. 

Martin, T. G., M. A. Burgman, F. Fidler, P. M. Kuhnert, S. Low-Choy, M. McBride, 

and K. Mengersen. 2012. Eliciting expert knowledge in conservation science. 

Conservation Biology 26:29-38. 

Martin, W. E., H. W. Bender, and D. J. Shields. 2000. Stakeholder objectives for public 

lands: Rankings of forest management alternatives. Journal of Environmental 

Management 58:21-32. 

McBride, M. F., S. T. Garnett, J. K. Szabo, A. H. Burbidge, S. H. M. Butchart, L. 

Christidis, G. Dutson, H. A. Ford, R. H. Loyn, D. M. Watson, and M. A. 

Burgman. 2012. Structured elicitation of expert judgments for threatened 



210 
 

species assessment: a case study on a continental scale using email. Methods in 

Ecology and Evolution 3:906-920. 

McFadden, J. E., T. L. Hiller, and A. J. Tyre. 2011. Evaluating the efficacy of adaptive 

management approaches: Is there a formula for success? Journal of 

Environmental Management 92:1354-1359. 

Mendoza, G. A., and H. Martins. 2006. Multi-criteria decision analysis in natural 

resource management: A critical review of methods and new modelling 

paradigms. Forest Ecology and Management 230:1-22. 

Mercader, R. J., N. W. Siegert, A. M. Liebhold, and D. G. McCullough. 2009. 

Dispersal of the emerald ash borer, Agrilus planipennis, in newly-colonized 

sites. Agricultural and Forest Entomology 11:421-424. 

Mercader, R. J., N. W. Siegert, and D. G. McCullough. 2012. Estimating the influence 

of population density and dispersal behavior on the ability to detect and monitor 

Agrilus planipennis (Coleoptera: Buprestidae) populations. Journal of 

Economic Entomology 105:272-281. 

Millspaugh, J. J., J. R. Skalski, R. L. Townsend, D. R. Diefenbach, M. S. Boyce, L. P. 

Hansen, and K. Kammermeyer. 2009. An evaluation of sex-age-kill (SAK) 

model performance. Journal of Wildlife Management 73:442-451. 

Moore, J. L., and M. C. Runge. 2012. Combining structured decision making and 

value-of-information analyses to identify robust management strategies. 

Conservation Biology 26:810-820. 



211 
 

Moore, J. L., M. C. Runge, B. L. Webber, and J. R. U. Wilson. 2011. Contain or 

eradicate? Optimizing the management goal for Australian acacia invasions in 

the face of uncertainty. Diversity and Distributions 17:1047-1059. 

Morgan, M. G., and M. Henrion. 1990. Uncertainty: a guide to dealing with uncertainty 

in quantitative risk and policy analysis. Cambridge University Press, 

Cambridge, UK. 

Noon, B. R., L. L. Bailey, T. D. Sisk, and K. S. McKelvey. 2012. Efficient species-

level monitoring at the landscape scale. Conservation Biology 26:432-441. 

Otis, D. L., K. P. Burnham, G. C. White, and D. R. Anderson. 1978. Statistical 

inference from capture data on closed animal populations. Wildlife 

Monographs:3-135. 

Paragi, T. F., S. M. Arthur, and W. B. Krohn. 1994. Seasonal and circadian activity 

patterns of female fishers, Martes pennanti, with kits. Canadian Field-Naturalist 

108:52-57. 

Perera, A. H., C. A. Drew, and C. J. Johnson. 2012. Expert knowledge and its 

application in landscape ecology. 

Peterson, J. T., and J. W. Evans. 2003. Quantitative decision analysis for sport fisheries 

management. Fisheries 28:10-21. 

Phillips, S. J., R. P. Anderson, and R. E. Schapire. 2006. Maximum entropy modeling 

of species geographic distributions. Ecological Modelling 190:231-259. 

Poiani, K. A., B. D. Richter, M. G. Anderson, and H. E. Richter. 2000. Biodiversity 

conservation at multiple scales: Functional sites, landscapes, and networks. 

Bioscience 50:133-146. 



212 
 

Powell, R. A. 1994. Structure and spacing of Martes populations. Pages 101-121 in S. 

Buskirk, A. S. Harestad, M. G. Raphael, and R. A. Powell, editors. Martens, 

sables, and fishers : biology and conservation. Comstock Pub. Associates, 

Ithaca, New York, USA. 

Powell, R. A., S. W. Buskirk, and W. J. Zielinski. 2003. Fisher and Martin: Martes 

pennanti and Martes americana Pages 635-649 in G. A. Feldhamer, B. C. 

Thompson, and J. A. Chapman, editors. Wild mammals of North America : 

biology, management, and conservation. Johns Hopkins University Press, 

Baltimore, Maryland, USA. 

Powell, R. A., and W. J. Zielinski. 1994. Fisher. Pages 38-73 in L. F. Ruggiero, K. B. 

Aubry, S. W. Buskirk, L. J. Lyon, and W. J. Zielinski, editors. American 

marten, fisher, lynx, and wolverine in western United States. United States 

Forest Service, General Technical Report RM-254, Fort Collins, Colorado, 

USA. 

Redpath, S. A., B. E. Arroyo, E. M. Leckie, P. Bacon, N. Bayfield, R. J. Gutierrez, and 

S. J. Thirgood. 2004. Using decision modeling with stakeholders to reduce 

human-wildlife conflict: a Raptor-Grouse case study. Conservation Biology 

18:350-359. 

Rinehart, K., and T. M. Donovan. in preparation. Models, data, and cost: Efficient 

population estimates for wildlife managers. 

Roseberry, J. L., and A. Woolf. 1991. A comparative evaluation of techniques for 

analyzing white-tailed deer harvest data. Wildlife Monographs:3-59. 



213 
 

Royle, J. A., R. B. Chandler, C. Yackulic, and J. D. Nichols. 2012. Likelihood analysis 

of species occurrence probability from presence-only data for modelling species 

distributions. Methods in Ecology and Evolution 3:545-554. 

Ruhl, J. B., and R. L. Fischman. 2010. Adaptive management in the courts. Minnesota 

Law Review 95:424-484. 

Runge, M. C. 2013. Active adaptive management for reintroduction of an animal 

population. Journal of Wildlife Management 77:1135-1144. 

Sales-Luis, T., J. A. Bissonette, and M. Santos-Reis. 2012. Conservation of 

Mediterranean otters: the influence of map scale resolution. Biodiversity and 

Conservation 21:2061-2073. 

Schwartz, M. W. 1999. Choosing the appropriate scale of reserves for conservation. 

Annual Review of Ecology and Systematics 30:83-108. 

Sinclair, A. R. E., J. M. Fryxell, and G. Caughley. 2006. Wildlife ecology, 

conservation, and management. 2nd edition. Blackwell Pub., Oxford, UK and 

Malden, Massachusetts, USA. 

Skalski, J. R., M. V. Clawson, and J. J. Millspaugh. 2012. Model evaluation in 

statistical population reconstruction. Wildlife Biology 18:225-234. 

Skalski, J. R., K. E. Ryding, and J. J. Millspaugh. 2005. Wildlife demography: analysis 

of sex, age, and count data. Elsevier Academic Press, Amsterdam and Boston, 

Massachusetts, USA. 

Skalski, J. R., R. L. Townsend, and B. A. Gilbert. 2007. Calibrating statistical 

population reconstruction models using catch-effort and index data. Journal of 

Wildlife Management 71:1309-1316. 



214 
 

Starfield, A. M. 1997. A pragmatic approach to modeling for wildlife management. 

Journal of Wildlife Management 61:261-270. 

Starfield, A. M., and A. L. Bleloch. 1986. Building models for conservation and 

wildlife management. Macmillan; Collier Macmillan, New York, USA and 

London, UK. 

Turner, R. K., J. Paavola, P. Cooper, S. Farber, V. Jessamy, and S. Georgiou. 2003. 

Valuing nature: lessons learned and future research directions. Ecological 

Economics 46:493-510. 

Van Why, K. R., and W. M. Giuliano. 2001. Fall food habits and reproductive 

condition of Fishers, Martes pennanti, in Vermont. Canadian Field-Naturalist 

115:52-56. 

Von Winterfeldt, D., and W. Edwards. 1986. Decision analysis and behavioral research. 

Cambridge University Press, Cambridge UK and New York, USA. 

Walters, C. J. 2001. Adaptive management of renewable resources. Blackburn Press, 

Caldwell, New Jersey, USA. 

Walters, C. J. 2007. Is adaptive management helping to solve fisheries problems? 

Ambio 36:304-307. 

White, G. C., and B. C. Lubow. 2002. Fitting population models to multiple sources of 

observed data. Journal of Wildlife Management 66:300-309. 

Williams, B. K., M. J. Eaton, and D. R. Breininger. 2011a. Adaptive resource 

management and the value of information. Ecological Modelling 222:3429-

3436. 



215 
 

Williams, B. W., D. R. Etter, P. D. DeWitt, K. T. Scribner, and P. D. Friedrich. 2011b. 

Uncertainty in Determination of Sex From Harvested Bobcats. Journal of 

Wildlife Management 75:1508-1512. 

Willmott, C. J. 1982. Some comments on the evaluation of model performance. 

Bulletin of the American Meteorological Society 63:1309-1313. 

Willmott, C. J., and K. Matsuura. 2005. Advantages of the mean absolute error (MAE) 

over the root mean square error (RMSE) in assessing average model 

performance. Climate Research 30:79-82. 

Zimmermann, H., H. Von Wehrden, M. A. Damascos, D. Bran, E. Welk, D. Renison, 

and I. Hensen. 2011. Habitat invasion risk assessment based on Landsat 5 data, 

exemplified by the shrub Rosa rubiginosa in southern Argentina. Austral 

Ecology 36:870-880. 


	University of Vermont
	ScholarWorks @ UVM
	2014

	Decision Support for Natural Resource Management
	Jonathan Cummings
	Recommended Citation



