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Abstract 
 

β-Casein is a major milk protein, which is synthesized in mammary alveolar 

secretory epithelial cells (MECs) upon the stimulation of lactogenic hormones, mainly 

prolactin and glucocorticoids (HP). Previous studies revealed that the proximal promoter 

(-258 bp to +7 bp) of the β-casein gene is sufficient for induction of the promoter activity 

by HP. This proximal region contains the binding sites for the signal transducer and 

activator of transcription 5 (STAT5), glucocorticoid receptor (GR), and octamer 

transcription factors (Oct). STAT5 and GR are essential downstream mediators of 

prolactin and glucocorticoid signaling, respectively. This study investigated the functions 

of Oct-1 and Oct-2 in HP induction of β-casein gene expression. By transiently 

transfection experiment, we showed that individual overexpression of Oct-1 and Oct-2 

further enhanced HP-induced β-casein promoter activity, respectively, while Oct-1 and 

Oct-2 knockdown significantly inhibited the HP-induced β-casein promoter activity, 

respectively. HP rapidly induced the binding of both Oct-1 and Oct-2 to the β-casein 

promoter, and this induction was not mediated by either increasing their expression or 

inducing their translocation to the nucleus. In MECs, Oct-2 was found to physically 

interact with Oct-1 regardless of HP treatment. However, HP induced physical 

interactions of Oct-1 or Oct-2 with both STAT5 and GR. Although the interaction 

between Oct-1 and Oct-2 did not synergistically stimulate HP-induced β-casein gene 

promoter activity, the synergistic effect was observed for the interactions of Oct-1 or Oct-

2 with STAT5 and GR. The interactions of Oct-1 with STAT5 and GR enhanced or 

stabilized the binding of STAT5 and GR to the promoter. Abolishing the interaction 

between Oct-1 and STAT5 significantly reduced the hormonal induction of β-casein gene 

transcription. Thus, our study indicates that HP activate β-casein gene expression by 

inducing the physical interactions of Oct-1 and Oct-2 with STAT5 and GR in mouse 

MECs. 

There is a high and increasing demand for insulin because of the rapid increase in 

diabetes incidence worldwide. However, the current manufacturing capacities can barely 

meet the increasing global demand for insulin, and the cost of insulin production keeps 

rising. The mammary glands of dairy animals have been regarded as ideal bioreactors for 

mass production of therapeutically important human proteins. We tested the feasibility of 

producing human proinsulin in the milk of transgenic mice. In this study, four lines of 

transgenic mice were generated to harbor the human insulin gene driven by the goat β-

casein gene promoter. The recombinant human proinsulin was detected in the milk by 

Western blotting and enzyme-linked immunosorbent assay. The highest expression level 

of human proinsulin was as high as 8.1 µg/µl in milk of transgenic mice at mid-lactation. 

The expression of the transgene was only detected in the mammary gland during lactation. 

The transgene expression profile throughout lactation resembled the milk yield curve, 

with higher expression level at middle lactation and lower expression level at early and 

late lactation. The blood glucose and insulin levels and major milk compositions of 

transgenic mice were not changed. The mature insulin derived from the milk proinsulin 

retained biological activity. Thus, our study indicates that it is practical to produce high 

levels of human proinsulin in the milk of dairy animals, such as dairy cattle and goat. 
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Chapter 1 Literature review 

 

REGULATION OF MILK PROTEIN GENE EXPRESSION 

Milk is the primary source of nutrients for neonates before they are able to 

consume and digest other types of foods [1]. For hundreds of years, dairy milk and other 

agricultural products derived from dairy milk (e.g., cheese, butter, and yogurt) have been 

important foods for humans [2]. Among the many nutrients provided in dairy milk and 

dairy products, milk protein is an important part of daily protein intake in the human diet. 

Milk protein provides a high biological value to human health; it is a good source of 

essential amino acids, and the amino acid composition of major milk proteins is well-

balanced for human body utilization [3, 4]. 

Studies on the regulation of milk protein gene expression in the mammary gland 

date back to more than a half century ago. Knowledge generated from these studies has 

not only provided fundamental insight into genetic and nutritional improvement in milk 

composition and milk production, but it has also elucidated the molecular mechanisms of 

tissue-specific gene expression. Furthermore, with the development of genetic 

engineering technology, the promoters of different milk protein genes have been 

employed for directing the expression of pharmaceutically important proteins in the milk 

of transgenic livestock, which is the driving force of the emerging “pharming” industry. 

The studies of the regulation of milk protein gene expression began as a result of the 

development of endocrine organ surgical ablation, access to pure hormones for 
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replacement therapy, and the development of mammary explant cultures six decades ago 

[5]. These early studies demonstrated that basic hormone complexes, namely the 

lactogenic hormone prolactin (PRL), glucocorticoids (GCs), and insulin (INS), 

synergistically activate milk protein gene expression [6, 7]. Later studies have focused on 

the molecular pathways involved in the operations of individual hormones and the 

interactions of these pathways. The full view of the molecular details of these pathways is 

emerging: milk protein gene expression is regulated at multiple levels within mammary 

epithelial cells and depends on concerted actions of hormones, local growth factors, cell-

cell interactions, and cell-extracellular matrix (ECM) interactions that modulate the 

function of specific transcription factors, alter cytoskeletal organization, and change the 

chromatin state and nuclear structure. 

In this review, we aim to provide an overview of the regulation of different milk 

protein genes (mainly transcriptional regulation) and discuss regulatory mechanisms from 

the perspective of epigenetics and chromatin. We mainly focus on data that have 

accumulated since two previous reviews on this subject published more than fifteen years 

ago [8, 9]. 

Major milk proteins 

Although the proteins in milk can arise from different sources, the focus of this 

review is on the major proteins that are specifically synthesized in mammary epithelial 

cells. These mammary-specific proteins in mammals can be grouped into two categories: 

caseins and whey proteins. The proteins in cow milk contain ~80% caseins and ~20% 

whey proteins, whereas the proteins in human milk comprise ~40% caseins and ~60% 
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whey proteins [10]. Caseins are a family of related phosphoproteins, which include αS1-, 

αS2-, β-, and κ-caseins. αS1-, αS2-, and β-casein are characterized as calcium-sensitive 

caseins because of their quantitative precipitation with calcium chloride, while κ-casein 

does not precipitate with calcium chloride and can quantitatively stabilize calcium-

sensitive caseins [11]. The appropriate amino acid composition of caseins and their high 

digestibility make milk essential for the growth and development of neonates. As a food 

source, they provide not only large amounts of amino acids but also phosphorus and 

calcium. In the industry, caseins have a wide variety of applications, ranging from being 

a major component of cheese, being used as a food additive, and being used in non-food 

applications, such as casein-based coating or sizing agents [12]. As a result of their 

relatively hydrophobic nature, individual caseins are not very soluble in aqueous 

environments; however, caseins can form multi-molecular, spherical casein micelles and 

thus become colloidally suspended in milk [13]. Caseins can be precipitated from milk by 

reducing the pH to disturb the charge equilibrium inside colloidal micelles, resulting in a 

yellow whey solution. Whey is composed of water, lactose, mammary-specific whey 

proteins [α-lactalbumin, β-lactoglobulin, and whey acidic protein (WAP)], and non-

mammary-specific whey proteins (serum albumin, immunoglobulins, growth factors, etc). 

Whey proteins have been extensively studied for their anti-inflammatory and anti-cancer 

properties [14] and potential use as a supplementary treatment for diseases [15]. Human 

mammary-specific whey proteins contain only α-lactalbumin, mouse whey proteins 

contain α-lactalbumin and WAP, and cow whey proteins contain α-lactalbumin and β-

lactoglobulin. α-Lactalbumin serves as a regulatory subunit for lactose synthase, and it is 
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critical for lactose synthesis [16]. β-Lactoglobulin is a major whey protein in cow milk 

and an allergen for human infants fed on formula based on cow milk [17]. WAP is 

important in regulating the proliferation of mammary epithelial cells [18]. 

The genomic location and organization of the casein and whey protein genes in 

humans, cattle, and mice are summarized in Table 1.1 and 1.2. As shown in Table 1.2, 

each of the mammary-specific whey proteins, α-lactalbumin, β-lactoglobulin, and WAP, 

is encoded by a single-copy gene with relatively small size in different chromosomes. In 

contrast, caseins are encoded by a cluster of different casein genes on the same 

chromosome. In humans, the αS1-, β-, and κ-casein genes are sequentially clustered in 

chromosome 4 (Table 1.1). In comparison with the human casein gene locus, there is one 

αS2-casein gene in cows and two related αS2-casein genes (αS2-casein-like A and αS2-

casein-like B) in mice (Table 1.1). The genes encoding the calcium-sensitive caseins 

(αS1-, β-, and αS2-casein genes) are evolutionarily related, while the κ-casein gene is not 

derived from a common ancestral gene although its expression profile is similar to other 

casein genes [19].  

β-Casein, which is one of the most abundant caseins, accounts for 25-35% of total 

caseins and ~30% of total milk protein in bovine milk [20]. Secreted bovine β-casein 

protein is a single polypeptide chain composed of 209 amino acid residues, with a 

molecular weight of 23983 Da [21]. The β-casein protein can be phosphorylated at 

multiple positions [22]. The presence of multiphosphorylated forms of β-casein is 

considered to influence casein micelle stability and the abundance and distribution of 

calcium in milk [22]. The β-casein gene has been thoroughly studied in different 
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mammals, and extensive genetic variation has been identified and characterized in bovine 

[23], goat [24], and camel [25]. Thus far, at least 17 alleles corresponding to 12 β-casein 

protein variants have been identified in bovine [23]. The most common bovine β-casein 

protein variants are A1 and A2 [26]. The A1 type β-casein variant evolved from its 

progenitor A2 type 5000 years ago due to a proline67 to histidine67 point mutation. β-

Casein variants have been associated with human health. For example, in vitro and 

animal studies suggest that digesting of A1 but not A2 β-casein influences 

gastrointestinal inflammation and transit time through the release of beta-casomorphin-7 

(BCM-7) [27, 28]. In addition, results from epidemiological studies suggest that 

consuming A1 type β-casein is statistically associated with higher national mortality rates 

from ischemic heart disease and with a high incidence of diabetes [26]. 

Transcriptional regulation of milk protein gene expression 

Transcriptional regulation of milk protein gene expression is regulated by cis-

regulatory regions (promoter and/or enhancer, Fig. 1.1). The cis-regulatory region is a 

stretch of DNA (100-1000 bp) with transcription factor binding sites that are clustered 

into modular structures. Through protein-DNA and protein-protein interactions, these 

modularly structured regions integrate positive and negative regulatory signal 

transduction pathways induced by various extracellular stimuli to regulate gene 

expression by controlling the initiation and/or stabilization of the transcription complex 

on gene promoters and enhancers [9]. Previous studies using stable or transiently 

transfected mammary/non-mammary cells and transgenic mice have established the 

functional importance of various transcription factors in the regulation of milk protein 
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genes (Fig. 1.1) [9]. None of these transcription factors are mammary gland specific. 

Therefore, it is the specific combination of these transcription factors that leads to the 

unique temporal and spatial expression profiles of milk protein genes. 

The β-casein (Fig. 1.1A) and WAP (Fig. 1.1C)  gene promoters have been 

extensively studied for decades as models for hormone signaling control of milk protein 

gene expression. β-Casein gene regulation involves two principal cis-regulatory regions, 

a proximal promoter and a distal enhancer. The core proximal promoter homologous in 

humans, cows, and rodents extends ~250 bp upstream from the transcription start site 

(TSS) of the β-casein gene, and the evolutionally conserved enhancer is located between -

1.6 and -6 kb upstream of the 5' of the TSS in different mammalian species (Fig. 1.1A) 

[19, 29]. The hormone-responsive β-casein proximal promoter has so-called lactogenic 

response elements that harbor multiple or single binding site(s) for transcription factors, 

mainly including signal transducer and transcription activator 5 (STAT5) [30, 31], 

glucocorticoid receptor (GR) [32, 33], CAAT/enhancer binding protein β (C/EBPβ) [34, 

35], octamer binding factor-1 (Oct-1) [36, 37], runt-related transcription factor 2 (Runx2) 

[38], and the repressive transcription factor Yin Yang 1 (YY-1) [39, 40]. The distal 

enhancer of the β-casein gene, also known as the ECM-responsive element, is responsive 

to ECM and lactogenic hormones and contains recognition sites for C/EBPβ and STAT5 

[29, 41, 42]. 

The WAP gene promoter (Fig. 1.1C) also contains two regulatory regions, one 

proximal (-50 to -150 bp in both rat and mouse) and one distal (-720 to -820 bp in rat and 

-530 to -630 bp in mouse) to the TSS [43, 44]. Both of these regions contain consensus 
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binding sequences for a number of transcription factors, including nuclear factor 1 (NF-1) 

[44, 45], GR [46] and STAT5 [44], which have been demonstrated to be responsible for 

mammary-specific WAP gene expression. 

Hormonal regulation of milk protein genes 

Prolactin (PRL) and glucocorticoids (GC) 

Long before the discovery of the molecular mechanisms of the activation of milk 

protein gene expression, researchers demonstrated the synergism between PRL and GC 

[6, 7]. The most extensively studied milk protein gene is the β-casein gene. Using 

transgenic mouse models [9, 35, 47] and cell culture systems including primary or 

transformed mammary epithelial cells [48-50], researchers established in the 1990s that 

STAT5, GR, and C/EBPβ are important signal transducers that mediate PRL and GC 

synergism in the induction of β-casein gene expression (Fig. 1.2). STAT5, with two 

closely related protein isotypes STAT5A and STAT5B, is the leading transcription factor 

responsible for PRL signaling [51]. The binding of PRL to the prolactin receptor (PRLR) 

triggers activation of Janus kinase 2 (JAK2). Activated JAK2 phosphorylates tyrosine 

residues on PRLR and creates docking sites for Src homology 2 (SH2) domain-

containing proteins. SH2-containing STAT5 is then recruited and phosphorylated by 

JAK2 at a conserved tyrosine residue within the carboxyl-terminal transcriptional 

activation domain (Y694 for STAT5A and Y699 for STAT5B) [52, 53]. Phosphorylated 

STAT5 dimerizes, translocates into the nucleus, and induces β-casein gene transcription 

by binding to clustered STAT5 binding sites in both promoters and enhancers. Of the two 

STAT5 protein isotypes, STAT5A is the principal and indispensable mediator of 
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mammary epithelial cell differentiation and milk protein gene expression [54], whereas 

STAT5B is more important for growth hormone (GH) signaling in the liver [55]. GC 

alone can barely activate β-casein gene expression; however, GC potentiates PRL 

signaling through synergistic protein-protein interactions between GR and STAT5, 

leading to much more robust induction than PRL alone [32, 33, 56]. A GC potentiation 

effect occurs in a half glucocorticoid response element (1/2 GRE) binding dependent [32, 

57] or independent [58, 59] manner. The interaction between GR and STAT5 promotes 

sustained STAT5 tyrosine phosphorylation and STAT5 DNA binding [60]. C/EBPβ is 

another transcription factor that binds to the β-casein proximal promoter and enhancer as 

a homo- or heterodimer in response to PRL and/or GC [34, 35, 61], and it is implicated in 

the regulation of milk protein gene expression [35, 47]. Three C/EBPβ protein isotypes, 

which are translated from a single C/EBPβ mRNA, have been identified, including two 

transcription-activating isoforms, termed liver-enriched transcriptional activator proteins 

(LAP and LAP2), and one inhibitory isoform, liver-enriched transcriptional inhibitory 

protein (LIP) [34, 62, 63]. The LAP C/EBPβ isoform has been shown to synergize with 

STAT5 and GR during the induction of β-casein gene expression by PRL and GC in a 

reconstituted COS-7 cell system [56]. The cooperative effects of STAT5 and C/EBPβ for 

PRL and GC-induced β-casein gene transcription are mediated by GR [56]. All of these 

transcription factors i.e., STAT5, GR, and C/EBPβ, interact with the p300 coactivator, 

which remodels the chromatin confirmation via its intrinsic histone acetyltransferase 

activity to facilitate gene transcription [64-66]. In addition to these positive regulatory 

transcription factors, YY-1 has been demonstrated to constitutively bind the β-casein 
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gene proximal promoter in the absence of lactogenic hormones and repress β-casein gene 

expression [39, 40]. The YY-1 site in the β-casein gene proximal promoter is a low-

affinity site, and in response to PRL, its association can readily be interrupted by STAT5 

and C/EBPβ binding at adjacent sites [39, 61]. 

In addition to the transcription factor binding sites mentioned above, there are two 

highly conserved adjacent binding sites for Oct-1 [36] and Runx2 [38] in casein gene 

proximal promoters [38]. It has been shown that both Oct-1 [37, 67-69] and Runx2 [38] 

bind to the endogenous β-casein gene promoter in mammary epithelial cells both in vivo 

and in vitro. Oct-1 alone can activate both basal and hormonally induced β-casein gene 

promoter activity [68], while Runx2 alone cannot [38]. However, Runx2 cooperates with 

Oct-1, leading to higher activation of the β-casein promoter than Oct-1 alone [38]. This 

cooperation may be explained by the fact that Oct-1 stimulates the recruitment of Runx2 

to the β-casein gene promoter by physically interacting with Runx2 [38]. In addition to 

Runx2, Oct-1 synergizes with STAT5 and GR through physical interaction to activate β-

casein gene expression in response to PRL and GC [69]. Similar to its stimulating effects 

on Runx2 recruitment, Oct-1 enhances or stabilizes the binding of STAT5 and GR to the 

β-casein promoter in response to PRL and GC [69]. In addition to the combination of 

PRL and GC, Oct-1 binding activity can also be induced by progesterone (PG) [37], 

which is a reproductive hormone that inhibits β-casein gene expression [70]. As Oct-1 

has been shown to interact with the progesterone receptor (PR) [71], it is possible that 

Oct-1 also participates in the repression of β-casein gene expression via interaction with 

different transcription factors, such as PR.  
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PRL and GC also regulate milk protein gene expression at other levels e.g., 

stabilization of milk protein mRNA and milk protein mRNA translation, which have been 

well reviewed elsewhere [72]. 

Insulin (INS) 

The functional role of INS in regulating milk protein production is supported by 

in vitro and in vivo studies. Early in vitro studies in mouse [73], rat [74], and bovine [75] 

mammary explant cultures showed that, in addition to maintaining mammary tissue in 

culture, INS is required for the maximum induction of the major casein and whey milk 

protein genes by PRL and hydrocortisone (a type of GC). In in vivo studies in cows using 

a hyperinsulinemic-euglycemic clamp (HEC) approach in which circulating INS levels 

were elevated four-fold while euglycemia was maintained via the infusion of exogenous 

glucose, milk protein yield was increased by 15% within four days of HEC treatment [76, 

77]. Because the administration of extra glucose to well-fed cows does not increase milk 

yield [78, 79] and INS does not induce an acute increase in glucose uptake by ruminant 

mammary glands [80-82], the increase in milk protein yield possibly resulted from an 

INS stimulatory effect on mammary epithelial cells.  

The underlying molecular mechanism of how INS regulates milk protein 

synthesis is not well understood. However, previous studies suggest that INS may play an 

important role in milk protein synthesis at multiple levels. First, at the transcriptional 

level, INS may synergistically cooperate with PRL and hydrocortisone to induce milk 

protein gene transcription by stimulating the expression of E74-like factor 5 (Elf5) via 

phosphoinositide 3-kinase (PI3K)/Akt signaling [83, 84], as demonstrated in bovine [85] 
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and murine [86] mammary explant cultures. Elf5 is a transcription factor that belongs to 

the E26 transformation-specific (Ets) family, and it regulates mammary epithelium 

proliferation and differentiation and the transcription of milk protein genes [87-90]. INS-

dependent milk protein gene transcription may also be accomplished by INS-induced 

expression and the activity of STAT5 [9, 85]. Second, in CID-9 mammary epithelial cells, 

which were derived from the COMMA-D cells originally isolated from the mammary 

glands of mice in mid-pregnancy [91], INS alone or INS plus PRL increases the rate of 

milk protein mRNA translation, whereas PRL alone has no effect [92]. INS enhances the 

translation of β-casein by increasing the initiation of translation and lengthening the 

mRNA poly(A) tail by cytoplasmic polyadenylation element binding proteins [92]. 

Finally, more recent studies in cows and mice have suggested that INS may enhance 

protein synthesis by stimulating genes involved in folate metabolism [85, 86, 93]. Folate 

metabolism plays an important role in protein synthesis by accepting and releasing one-

carbon units, which is also known as the one-carbon pool. A functional role of folate in 

milk protein synthesis is supported by the fact that folate supplementation in lactating 

cows results in a significant increase in milk production and milk protein yield [94-96].  

Progesterone (PG) 

PG is a steroid hormone secreted by the corpus luteum. PG exerts its primary 

action through the nuclear PR. When bound with PG, the PR dissociates from protein 

chaperones, dimerizes, and binds to specific binding sites in its target genes, regulating 

their expression by recruiting its coactivators [97]. Circulating levels of PG rises 

throughout pregnancy followed by a rapid decline at parturition. In the early pregnancy 
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stage, PG promotes mammary gland development and functional differentiation. In mid-

to-late pregnancy, PG inhibits the production of milk proteins and the closing of the tight 

junctions until parturition. At parturition, a dramatic decline in circulating PG in 

combination with decreased PR expression in the mammary gland results in tight junction 

closure and copious milk protein production [98-100]. The repressive effects of PG on 

milk protein gene expression were initially observed in an experiment in which 

ovariectomy led to transient lactogenesis, which is characterized by the transcription of 

important milk protein genes such as caseins and α-lactalbuminin in late-pregnant mice, 

and PG but not other hormones (estrogen, PRL, or GC) abolishes the transient 

lactogenesis triggered by ovariectomy [101, 102].  

Only recently have we begun to understand the molecular mechanism of the 

repression of milk protein gene expression by PG. By using different cell culture systems 

reconstituted to express the PR, Buser and colleagues found that direct antagonism 

between activated PR and STAT5/GR signaling contributes to the physiological role of 

PG in repressing lactogenic hormone-induced β-casein transcription in mammary 

epithelial cells [70]. However, direct transcriptional repression of milk protein genes by 

PR is unlikely to be the primary mechanism for PG repression in mammary epithelial 

cells during pregnancy because PR is expressed only in a scattered subset of mammary 

epithelial cells during pregnancy [100, 103]. It is possible that the inhibitory effects might 

be mediated by paracrine factors regulated by PG [104]. Transforming growth factor-β 

(TGFβ) is likely to be the mediator of PG action in repressing milk protein gene 

expression [105] because of several lines of evidence: 1) TGFβ antagonizes PRL-induced 
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signals in mammary epithelial cells [106, 107] and inhibits alveolar formation and the 

synthesis of milk proteins during pregnancy [108-112], 2) the expression profile of the 

TGFβ isoforms TGFβ1, TGFβ2, and TGFβ3 in the mammary gland correlates with 

changes in the level of plasma PG during the transition from pregnancy to lactation [108, 

109], and 3) in bovine mammary cells and tissue, PG tends to have increased TGFβ 

expression [113, 114]. Moreover, PG significantly up-regulates TGFβ expression in 

normal human osteoblast-like cells [115]. 

Furthermore, milk protein genes are already transcribed at a considerable level 

during mid-to-late pregnancy [116] when PG levels are still high, implying that PG may 

mainly inhibit milk protein synthesis at the post-transcriptional level or milk protein 

secretion. 

Growth hormone (GH) and insulin-like growth factor-1 (IGF-1) 

Growth hormone (GH), also known as somatotropin, is a peptide hormone 

synthesized and secreted by the anterior pituitary. GH stimulates cell growth and changes 

in protein, carbohydrate, and fat metabolism. Upon binding to its cell membrane-

integrated GH receptor (GHR) in target tissues, GH activates various intracellular 

signaling molecules to regulate gene expression and protein modifications [117]. One 

well-defined example of GH function is the stimulation of IGF-1 expression [118, 119]. 

IGF-1 is believed to mediate many of the growth-stimulating and metabolic effects of GH. 

GH is well known for its galactopoietic effects on the mammary gland [119, 120]. 

However, the underlying mechanisms mediating the effects of GH on protein synthesis 

remain unclear. Early studies employing ligand binding assays failed to detect the GHR 
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in bovine mammary glands [121, 122], leading to the widely accepted hypothesis that GH 

acts on the mammary gland through IGF-1 produced locally and by the liver [123]. The 

direct effects of IGF-1 in the mammary gland are supported by the fact that locally 

increased IGF-1, either by local arterial IGF-1 infusion in the mammary gland (in 

lactating goats) [124] or mammary-targeted IGF-1 expression (in mice) [125], increases 

milk production. This result may be attributable to the ability of IGF-1 to inhibit 

apoptosis in the mammary gland [126] and stimulate mammary epithelial cell 

proliferation and glucose transport [127], as shown in cows. However, mammary-specific 

IGF-1 over-expression in swine [128] and rabbits [129] did not impact milk production 

and composition. The exact role of IGF in GH-enhanced milk yield requires further 

investigation. 

While it is widely accepted that GH only has indirect action on mammary gland 

function, the direct role of GH is emerging. Recent studies have shown that both GHR 

mRNA and protein are found to be expressed in the stromal and epithelial tissues of the 

bovine mammary gland [130-132]. GHR protein expression in lactating mammary glands 

was found to be higher than that in non-lactating mammary glands [130]. In addition, GH 

is capable of stimulating the mRNA expression of milk protein genes, in bovine 

mammary epithelial cell lines, such as MAC-T [133, 134] and BMEC [135, 136], and 

bovine mammary explant cultures [137]. Furthermore, it has been recently shown that in 

bovine [138-141] and swine [142] mammary gland tissues, GH may up-regulate milk 

protein mRNA translation initiation and elongation via the mammalian target of 
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rapamycin (mTOR) pathway. Thus, GH may directly stimulate milk protein synthesis at 

the transcriptional and translational levels. 

Extracellular matrix (ECM) 

The ECM is a group of filamentous and insoluble proteins that are present 

between clusters of cells in all tissues [143]. In addition to providing tensile support, the 

ECM provides channels for the communication of cells in a given tissue. The ECM is 

categorized into two types: stromal ECM and basement membrane (BM) [143]. The 

stromal ECM resides in connective tissues, while the BM, also known as the basal lamina, 

separates the epithelium from the stroma in any given tissue. Representative BM 

constituents include laminin, type IV collagen, nidogen/entactin, and heparin sulfate 

[144]. The ECM can alter gene expression profiles by influencing cell morphology and 

nuclear and chromatin organization [143, 145]. The ECM performs its function by 

binding to cell-surface integrin receptors and initiating mechanical and chemical 

signaling [143].  

The ECM cooperates with soluble cues, including hormones and growth factors, 

to guide mammary gland development, functional differentiation, alveolar morphogenesis, 

lactation, and involution. During lactation, the ECM is needed to induce milk protein 

gene expression. With the exception of mammary epithelial cell lines such as HC11, 

which can deposit its own laminin matrix after reaching confluence, for primary 

mammary epithelial cells and most other mammary epithelial cell lines, endogenous milk 

protein gene expression can be induced by lactogenic hormones only when they are 

cultured on a laminin-rich ECM [9]. The ECM has been shown to be required for the 
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induction of milk protein genes, such as casein [146, 147], β-lactoglobulin [148], and 

WAP [149] genes, in response to lactogenic hormones. The ECM-dependent regulation 

of milk protein genes is mediated by certain DNA sequence elements in their promoter 

regions. For example, promoter truncation analysis revealed an ECM-responsive element, 

originally named bovine casein enhancer element (BCE-1), ~1.5 kb upstream of the 

bovine β-casein TSS [41]. This BCE-1 element was found to be highly conserved among 

different species and was defined to be a β-casein distal enhancer (Fig. 1.1A) that 

contains binding sites for various mammary transcription factors [19, 29, 41]. More 

recently, the β-casein proximal promoter was found to be responsive to the ECM as well 

[147]. ECM-responsive elements in other milk protein genes and other genes are 

summarized elsewhere [145]. However, exactly how the ECM regulates milk protein 

genes via these ECM-responsive DNA elements is not well understood. Current evidence 

suggests several potential mechanisms.  

One potential mechanism by which the ECM activates milk protein gene 

expression is by inducing the binding of mammary transcription factors to ECM-

responsive DNA elements. Using primary mammary epithelial cells from mice in mid 

pregnancy, Streuli et al. demonstrated that in the presence of PRL, only cells cultured on 

laminin-rich ECM but not cells cultured on collagen I are capable of inducing STAT5 

DNA binding activity [148]. These authors also found that the DNA binding activity of 

NF-1 is only stimulated in cells cultured on a laminin-rich ECM, but this activation is 

independent of PRL, whereas the DNA binding activity of specificity protein 1 (Sp1) is 

induced in cells cultured on plastic or collagen I substrata in the presence of PRL [148]. 
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These data suggest that the activities of transcription factors in mammary epithelial cells 

are differentially regulated by the type of substratum on which the cells are cultured. 

Subsequently, Edwards et al. found that exposure to a laminin-rich ECM is required for 

the PRL-induced phosphorylation and nuclear translocation of STAT5 in primary 

mammary epithelial cells [150]. In EpH4 cells, which were originally isolated from the 

mammary tissue of a Balb/c mouse in mid pregnancy [151], PRL can induce the transient 

phosphorylation of STAT5 independent of a laminin-rich ECM, but sustained STAT5 

activation, which is necessary for the induction of β-casein transcription, depends on the 

presence of a laminin-rich ECM [152]. These results suggest that the cross-talk between 

the ECM and PRL signaling pathway is needed for the induction of milk protein gene 

expression. In support of this hypothesis, it was found that the ECM cooperates with PRL 

to induce the binding of STAT5, C/EBP-β, and RNA polymerase II to casein gene 

promoters, whereas either alone fails to do so [147]. 

A second potential mechanism is that mediation of milk protein gene transcription 

by ECM-responsive DNA elements is involved in changes in chromatin structure. Studies 

using the CID-9 mammary epithelial cell line revealed that BCE-1 must be stably 

integrated into the genome to become activated by the ECM [41]. Furthermore, inhibitors 

of histone deacetylase were shown to be sufficient for stimulating the activity of 

chromatin-integrated BCE-1 in the absence of ECM [41]. Together, these results suggest 

that epigenetic mechanisms and chromatin remodeling are involved in the ECM-mediated 

induction of milk protein gene transcription, which will be discussed in the next section. 
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In addition to regulation through ECM-responsive DNA elements, the ECM can 

initiate mechanical signals that can induce changes in cell shape and cytoskeletal 

organization, which may be crucial for the hormonal induction of milk protein genes. For 

example, when EpH4 cells were cultured in a laminin-rich ECM, they formed into polar, 

acinar-like structures, and their cytoskeleton reorganized into a cortical network that is 

required for PRLR/STAT5 signaling [152-154]. During these processes, exposure of 

mammary epithelial cells to a laminin-rich ECM recruits PRLR to the basal surface of 

acini, allowing for the binding of PRL and thus the activation of PRLR/STAT5 signaling 

[152]. Furthermore, increased ECM stiffness can reduce β-casein expression by 

regulating cellular actin polymerization, implying that matrix compliance is required for 

cytoskeleton reorganization, a crucial factor for cell-specific gene expression [155]. 

Epigenetics and chromatin structure in regulation of milk 

protein gene expression 

Casein and WAP gene expression is regarded as a marker for the functional 

differentiation of mammary epithelial cells, and it has been suggested that epigenetic 

mechanisms play a key role in mammary gland development and functional 

differentiation [156]. It is then conceivable that epigenetic mechanisms are implicated in 

the tissue- and developmental stage-specific regulation of milk protein genes. Epigenetics 

refers to the study of heritable changes in genome function that occur due to chemical 

changes in DNA and its surrounding chromatin rather than changes in DNA sequences. 

Epigenetic regulation is mediated by DNA methylation, histone modifications 

(acetylation, ubiquitination, methylation, and phosphorylation), and microRNAs, which 
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modulate the chromatin confirmation and thus gene expression. The development of new 

technologies, such as chromatin immunoprecipitation (ChIP) followed by quantitative 

PCR (qChIP), microarrays (ChIP-chip), and more recently DNA sequencing (ChIP-seq) 

and the availability of complete genomic sequences enable us to quantitatively analyze 

epigenetic modifications at specific genomic sites as well as on a global scale. Studies 

investigating epigenetic mechanisms in rodent mammary gland development and 

functional differentiation [156] and dairy cow milk production [157, 158] have recently 

been reviewed elsewhere. Here, we only review the involvement of epigenetic and 

chromatin mechanisms that regulate milk protein gene expression. 

DNA methylation 

DNA methylation refers to conversion of the cytosine bases in DNA strands into 

5-methylcytosine. DNA methylation results in the repression of gene expression perhaps 

by blocking cis-regulating elements where transcription activators should bind [159]. An 

inverse correlation between DNA methylation status and milk protein gene expression 

has been documented in many studies. Over three decades ago, Johnson et al. noticed that 

certain restriction sites in the rat β- and γ-casein genes from lactating mammary glands 

are readily digested by the methylation-sensitive restriction enzymes MspI and HpaII, but 

DNA samples from liver are resistant to digestion at the same restriction sites [160]. 

Using a similar strategy, the rat κ-casein gene was shown to be hypomethylated in 

lactating mammary glands, but it was hypermethylated in non-mammary tissues and non-

lactating mammary glands [161]. The same study also implied the possibility that 

lactogenic hormonal induction of κ-casein gene expression is mediated by reducing DNA 



20 
 

methylation [161]. Hypomethylation during lactation has also been described for three 

specific sites flanking the bovine αS1-casein gene, and methylation of one of these three 

sites is inversely correlated with αS1-casein gene expression [162]. In addition to the 

casein locus, the WAP gene is also specifically hypomethylated in the lactating 

mammary gland in its coding and 5' flanking regions including the proximal promoter 

and a hormone-responsive distal site [163, 164]. More recently, the relationship between 

methylation and bovine αS1-casein gene expression has been explored during different 

physiological states [165] and during mastitis [166]. DNA methylation at a STAT5-

binding enhancer located -10 kb upstream of the TSS can be induced following an 18 h 

non-milking period, and this induced methylation occurs before the decline in PRL 

signaling and milk protein gene expression that takes place at 24 to 36 h post-milking 

[157, 165]. Vanselow and colleagues found that Escherichia coli-induced mastitis results 

in DNA methylation in the same region that is associated with αS1-casein gene silencing 

[166]. Thus, milk protein gene expression is potentially regulated by DNA methylation, 

which is influenced by cues not only from mammary gland development and functional 

differentiation but also from physiological circumstances and health status. However, 

how these cues change the DNA methylation status and how modified DNA methylation 

status regulates milk protein gene expression remain unanswered. 

Histone modification 

Histone modifications have also been implicated in cell differentiation and the 

transcriptional control of tissue-specific and inducible genes. Histone-modifying 

complexes catalyze the addition or removal of various chemical elements on histones. 



21 
 

These enzymatic modifications include acetylation, methylation, phosphorylation, and 

ubiquitination and primarily occur at N-terminal histone tails. Such modifications affect 

the binding affinity between histones and DNA and loosen or tighten the condensed 

DNA wrapped around histones, preventing the binding of transcription factors to DNA 

and leading to gene repression. In contrast, histone acetylation relaxes chromatin 

condensation and exposes DNA for transcription factor binding, leading to increased 

gene expression.  

There is emerging evidence implying that histone modifications are involved in 

the regulation of milk protein gene expression. Using ChIP, it has been shown that 

enrichment in histone H3 acetylation (H3Ac) at proximal promoters and many potential 

distal regulatory elements in the mouse casein and WAP gene loci occurs specifically in 

lactating mammary glands but not in the liver [19, 156]. Furthermore, at the cellular level, 

lactogenic hormones were found to recruit the histone-modifying enzyme p300 to the β-

casein promoter in HC11 mouse mammary epithelial cells, which correlated with an 

increase in histone H3 acetylation and the stable association of RNA polymerase II at 

promoters and enhancers [61]. Three classical milk transcription factors, STAT5, GR, 

and C/EBPβ, can interact with p300 [64-66]. Presumably, histone acetylation may 

contribute to mammary-specific milk protein gene transcription. 

In contrast, it has been shown that the ECM and ECM-induced cell shape changes 

lead to a global deacetylation of histones H3 and H4 and a global reduction in gene 

expression in HMT-3522-S1 and -T4-2 human mammary epithelial cells [167]. However, 

these findings do not rule out the possibility that there are locally hyperacetylated regions 
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involved in tissue-specific gene expression in differentiated cells. For example, the ECM 

alone or in combination with PRL induces histone acetylation at the promoters of the 

αS1-casein and β-casein genes in primary rabbit mammary epithelial cells [168] and 

EpH4 mouse mammary epithelial cells [147]. 

Chromatin structure 

More than a decade ago, researchers noticed that methylated CpG-islands 

coincide with hypoacetylated histones [169]. Subsequently, it was found that methylated 

DNA can be bound by methyl-CpG-binding domain proteins (MBDs), which in turn 

recruit additional proteins, such as histone deacetylases and other chromatin remodeling 

proteins that modify histones, thereby forming a compact, closed chromatin structure 

termed heterochromatin [170-173]. DNase I digestion has been widely used to identify 

open chromatin regions by the presence of DNase I hypersensitive sites. Using this 

method, DNase I hypersensitive regions have been identified in lactating mammary 

glands at sites for different milk protein genes, such as ovine β-lactoglobulin [174], rat 

[45, 46], rabbit [175], and mouse [176] WAP genes, and mouse casein genes [156]. The 

DNase I hypersensitive sites are usually located upstream of milk protein genes, overlap 

with regions with DNA hypomethylation and positive histone marks [156], and correlate 

with transcription factor binding sites, such as binding sites for STAT5 [177, 178], GR 

[46], and NF-1 [45]. Several lines of evidence indicate that the DNase I hypersensitive 

sites of milk protein genes appear to be developmentally regulated and potentially 

activated by lactogenic hormones as indicated by in vivo and in vitro experiments [175, 

178, 179]. This possibility is supported by a recent study using DNase I hypersensitivity, 
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histone H3 acetylation enrichment, and H3K4-di-methylation enrichment as indicators of 

open chromatin in which researchers found that milk protein gene loci progressively gain 

positive chromatin marks from puberty to lactation in conjunction with mouse mammary 

gland development and differentiation [180]. For example, distal regulatory regions 

within casein gene loci and the WAP gene region present open chromatin marks after 

pubertal development, and these open chromatin marks persist after lactation ceases, 

while proximal promoters only gain an open-chromatin conformation during pregnancy 

and become closed at the weaning stage [180]. These results suggest a model in which 

milk protein gene loci achieve a chromatin structure during pubertal development that is 

poised to be sensitive to lactogenic hormones to achieve the lactation capacity of the 

mammary gland. 

Chromatin structure is influenced not only by histone modifications but also ATP-

dependent remodeling. ATP-dependent chromatin remodeling complexes have a 

common ATPase domain, and energy from the hydrolysis of ATP allows these 

remodeling complexes to reposition (slide, twist or loop) nucleosomes along DNA, 

expelling histones from DNA or facilitating the exchange of histone variants, thus 

creating nucleosome-free DNA regions for gene activation [181]. ATP-dependent 

chromatin remodeling Switch/Sucrose nonfermentable (SWI/SNF) complexes are 

implicated in cellular differentiation and tissue-specific gene transcription [182, 183]. 

Recruitment of SWI/SNF complexes to the cis-elements of tissue-specific genes is 

mediated by association with specific transcription factors, such as GR and C/EBPβ, or 

binding to acetylated histone tails through their bromodomains [184-187]. For milk 
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protein gene regulation, Xu et al. showed that laminin-rich ECM and PRL cooperate to 

recruit the SWI/SNF complex to β-casein and γ-casein promoters via interaction with GR, 

STAT5, and C/EBPβ, which are needed for stable RNA polymerase II binding and gene 

transcription [147]. Thus, ECM and PRL may be able to regulate casein gene 

transcription via ATP-dependent chromatin remodeling.  

Aside from the biochemical level, chromatin conformation changes, such as 

chromatin bending and looping, can occur on a macroscopic scale and lead to the 

interaction of distantly spaced genomic regions [188, 189]. This possible high order 

interaction provides a way for transcription factors and other coactivators, associated at 

proximal promoters and distal enhancers, to cooperate with each other through chromatin 

looping-mediated protein-protein interaction. It has been demonstrated that lactogenic 

hormones promote physical interaction between the β-casein gene proximal promoter and 

an upstream enhancer in HC11 cells and primary three-dimensional mammary acini 

cultures [190]. This interaction is blocked by PG-induced PR binding to the promoter 

[190]. Furthermore, developmental regulation of DNA-looping between β-casein 

regulatory regions was observed in lactating but not virgin mouse mammary glands, and 

the DNA looping was directly correlated with β-casein gene transcription [156]. 

 

POU TRANSCRIPTION FACTOR FAMILY 

The octamer motif, ATTTGCAT, and its closely related sequences are in the cis-

acting regulatory regions of genes that are both ubiquitously expressed and cell type-
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specific [191-193]. These sequences can be recognized and bound by a group of trans-

acting factors, known as octamer transcription factors (Oct). Thus far, eight genes 

encoding the following Oct proteins have been cloned and characterized: Oct-1, Oct-2, 

Oct-3/4, Oct-6, Oct-7, Oct-8, Oct-9, and Oct-11 [193]. Apart from Oct-1 [194] and 

possibly Oct-2 [195], all other Oct proteins are expressed in a tissue-specific and 

developmental stage-specific manner [193].  

Oct factors belong to the POU (Pit-1, Oct and Unc-86) factor family, which is a 

family of transcription factors that share a characteristic bipartite DNA-binding domain, 

which is called the POU domain [196, 197]. The POU domain is composed of a 

conserved amino-terminal-specific domain (POUS) and a relatively variant carboxy-

terminal homeodomain (POUH), which are tethered by an unconserved linker [193]. 

Efficient and sequence-specific DNA binding is dependent on the cooperation of POUH 

with POUS [198]. The two subdomains are independently folded and bind to the opposite 

faces of the DNA in two adjacent major grooves through a helix-turn-helix (HTH) 

structure [199]. In addition to DNA binding, the POU domain also mediates specific 

protein-protein interactions between Oct factors or between Oct factors and other 

transcription factors or cofactors [193]. 

Oct-1 

Oct-1 is one of the most studied Oct transcription factors. This transcription factor 

is widely expressed in adult and embryonic tissues. Various Oct-1 isoforms have been 

identified in both humans (at least four) and mice (at least seven) [194]. These isoforms 

originate from a single-copy Oct-1 gene on chromosome 1 in both humans and mice. In 
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response to upstream signals, Oct-1 can regulate the expression of a variety of genes 

either positively or negatively [196]. By regulating target gene expression, Oct-1 is 

involved in diverse biological processes, such as embryogenesis, organ development, 

immune responses, and tumorigenicity [196]. Current studies have begun to reveal how 

Oct-1 mediates the effects of upstream signals on downstream gene expression. Evidence 

suggests that extracellular signals control target gene expression by modulating Oct-1 

DNA binding properties through post-translational modifications, including 

phosphorylation [200, 201], O-GLcNAcylation [202], and ubiquitylation [203]. For 

example, following exposure to H2O2 and ionizing radiation, Oct-1 is phosphorylated at 

multiple serines and threonines, and these phosphorylation modifications are able to alter 

Oct-1 DNA binding properties, resulting in the modulation of targeted gene expression 

[204]. The subcellular localization of Oct-1 is also finely regulated. For example, in 

proglucagon-expressing endocrine cells, cAMP elevation results in the nuclear exclusion 

of Oct-1, thus reducing the interactions between Oct-1 and the Cdx-2 gene promoter and 

leading to enhanced Cdx-2 expression [205]. Oct-1 also regulates gene expression by 

interacting with other transcription factors and/or cofactors. For example, the 

transcriptional synergism between the glucocorticoid receptor (GR) and Oct-1 in mouse 

mammary tumor virus (MMTV) expression is mediated by direct binding between the 

GR DNA-binding domain and the POU domain of Oct-1 [71]. Oct-1 binds directly to 

Oct-1 coactivator in S phase (OCA-S); this complex is selectively recruited to the H2B 

promoter in S phase, and is essential for S phase-specific H2B transcription in vivo and in 

vitro [206]. 
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Oct-2 

Oct-2 is generally considered only expressed in the lymphoid and neuronal cells. 

Oct-2 is encoded by a single gene; however, multiple alternatively spliced isoforms of 

Oct-2 have been identified [207]. The Oct-2 isoforms present in B lymphocytes play a 

predominantly trans-activating role in gene expression, whereas those Oct-2 isoforms 

expressed in neuronal cells have a primarily repressive effect [208]. These octamer and 

octamer-related sequences exist in virtually all Ig variable region promoters and in both 

the Ig heavy and k light chain enhancers [209, 210]. Mutations in these sequences lead to 

significantly inhibited B cell-specific expression of Ig genes [211, 212]. Because Oct-2 is 

predominantly expressed in B cells, Oct-2 was believed to play a critical role in 

determining the B cell-specific expression of Ig genes. However, Oct-2 deficient mice 

express Ig and other B cell-specific genes tested at the normal level at the pre-B-cell 

stage of development, indicating that Oct-2 is not essential for Ig gene expression [213]. 

Then, a model was proposed suggesting that Oct-1 could compensate for Oct-2’s function 

in regulating Ig gene expression. This model is supported by the fact that Oct-1 and Oct-2 

have nearly identical DNA binding specificity and that the Ig promoters are equally 

responsive to both Oct-1 and Oct-2 [214]. The discovery of OCA-B/Bob-1/OBF-1, which 

is a B cell-specific cofactor, explains the B cell-restricted activity of the octamer element 

in the promoters of Ig genes [215]. OCA-B interacts with both Oct-1 and Oct-2 and 

enhances Oct-1- and Oct-2-dependent promoter activity in B cells [216]. Thus, 

interacting with tissue-specific cofactors confers the B cell-restricted activity of the 

octamer element and contributes to tissue-specific gene activation. In neuronal cells, 
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specific Oct-2 isoforms inhibit not only the endogenous tyrosine hydroxylase gene 

promoter activity [217], but also the expression of the herpes simplex virus immediate-

early genes [218]. In addition to lymphocytes and neuronal cells, Oct-2 is also expressed 

in the testis, kidney, intestine, and mammary gland [195, 219]. Oct-2 can also activate 

basal mammary-specific β-casein gene promoter activity in mammary epithelial cells 

[195]. 

 

UTILIZATION OF MILK PROTEIN GENE PROMOTERS 

TO EXPRESS TRANSGENES IN THE MILK OF 

TRANSGENIC ANIMALS 

A number of transgenic animals harboring transgenes containing the 5' and 3' 

flanking sequences of milk protein genes have been generated. These animals have been 

used not only for determining the functional importance of cis-elements in milk protein 

gene regulation but also for producing pharmaceutical proteins in the milk of these 

transgenic animals. Producing pharmaceutical proteins in animal mammary glands has 

led to the development of a new field of biotechnology known as mammary bioreactor.  

Before the development of animal bioreactors, pharmaceutical proteins were 

either extracted from plants and animals or produced in bacterial or mammalian cell 

cultures. The transgenic animal bioreactor is superior for its scalability [220]. Because 

transgenic animals can transmit transgenes to their offspring, productivity can easily be 

increased by optimizing the breeding program efficiency. On the other side, the large-
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scale production of proteins by cell culture is expensive and time-consuming. The cost of 

building a modern cell culture-based industrial bioreactor is over one hundred million 

dollars, and it may take several years to build such a facility. Another appeal of 

genetically engineered animals is the ability to perform many post-translational 

modifications, such as disulfide bond formation, tyrosine sulfation, glycosylation, and 

carboxylation, and proper folding of expressed proteins, which occurs in native cells and 

is required for their biological activity [221]. These features are distinctly superior 

compared with producing recombinant proteins in prokaryotes such as bacteria because 

bacteria lack the post-translational machinery found in mammalian cells. In addition, 

recombinant proteins synthesized in bacteria cannot be secreted into an extracellular 

environment but often accumulate as insoluble aggregates in inclusion bodies [221]. 

Producing proteins by mammalian cell culture can overcome the shortages of prokaryotes 

systems; however, mammalian cells usually require the addition of serum to culture 

media, and using serum may have contamination from unknown or undetected viruses 

[220]. Furthermore, expression of recombinant proteins in the mammary gland offers 

more advantages [222]. The sole function of the mammary gland is to produce milk, 

which is composed of up to 4% protein (40 g/L). An average dairy cow produces 

approximately 40 kg milk/day, with up to 1.6 kg of proteins secreted each day. Thus, the 

mammary gland is a natural protein-secreting organ with high capacity. In addition, milk 

has only a few main protein components. Thus, recombinant proteins expressed in milk 

are relatively easier to extract. Extensive studies have shown that the mammary gland has 
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the ability to synthesize, properly fold, assemble, and secrete complex proteins [221, 222]. 

These unique properties make the mammary gland the best available bioreactor. 

Genetically engineered mammary glands as animal bioreactors have mainly 

focused on producing biopharmaceuticals. Many different biopharmaceuticals, such as 

human recombinant erythropoietin [223], human coagulation/clotting factors VIII [224] 

and IX [225], and human α-1-antitrypsin [226], have been produced in the milk of 

different transgenic mammals. In 2006, the European Commission approved a 

biopharmaceutical protein produced in the milk of goats, antithrombin III (commercially 

named Atryn
®
), for the treatment of patients with hereditary antithrombin deficiency 

[227]. Atryn
® 

was then approved by the Food and Drug Administration (FDA) in the 

United States in 2009 [227]. Atryn
®
 has been the first ever pharmaceutical protein 

produced in the milk of transgenic animals and the first recombinant antithrombin 

product approved worldwide. Recently, in our lab, transgenic mice were generated to 

harbor the human insulin gene driven by a goat β-casein gene promoter [228]. These 

animals secrete high levels of proinsulin in their milk, and the mature insulin derived 

from the milk proinsulin retains biological activity [228]. Our study suggests that it may 

be feasible to produce large amounts of human proinsulin in the milk of dairy animals, 

such as dairy goats and cows. 

Genetically transformed dairy breeds may be or already have been generated to 

produce milk with modified biochemical composition to meet specific needs. For 

example, the transgenic approach may be employed to humanize cow milk by 

overexpressing β- and κ-casein variants [227]. The milk casein concentration has already 
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been increased to enhance cheese-making efficiency [229, 230]. Human lysozyme is 

being produced in the milk of genetically engineered goats to decrease the rennet-clotting 

time and increase curd strength, leading to faster cheese making and firmer cheese [231]. 

It has been shown that increasing the lysozyme concentration in goat milk can extend 

shelf life by causing spoilage bacteria to grow more slowly [231]. 

 

In this study, we first investigated the functional roles of Oct-1 and Oct-2 in 

lactogenic hormonal regulation of β-casein gene expression. Another aim of this study 

was to utilize the goat β-casein gene promoter to direct human proinsulin expression in 

the milk of transgenic mice and to provide a foundation for the potential scale-up of 

human proinsulin production in the milk of transgenic ruminants. 
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Table 1.1. Genomic location and organization of the human, cow, and mouse casein genes 

 

Protein 
Gene 

symbol
1
 

Species 
Chromosome: 

location
1
 

Transcript and CDS region 

αS1-

casein 

CSN1S1 

Human 

4:  

70,796,799-

70,812,289  

Cattle 

6: 

87,141,556-

87,159,096  

Csn1s1 Mouse 

5:  

87,666,224-

87,682,573  

β-casein 

CSN2 

Human 

4: 

70,820,974-

70,826,726  

Cattle 

6: 

87,179,499-

87,188,004  

Csn2 Mouse 

5: 

87,692,624-

87,699,421  

αS2-

casein 
CSN1S2 Cattle 

6: 

87,262,457-

87,280,936  

αS2-

casein-

like A 

Csn1s2a Mouse 

5: 

87,774,567-

87,788,797  

αS2-

casein-

like B 

Csn1s2b Mouse 

5: 

87808122-

87824421  
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1
Adapted from the NCBI Gene website (http://www.ncbi.nlm.nih.gov/pubmed?Db=gene&Cmd=retrieve&dopt=full_report&list_uids=“gene id”) version: 12-

Jan-2012. In the genomic organization column, each vertical bar represents an exon, and arrows indicate the orientation of the gene. The GenBank Accession 

Number for each reference sequence is shown.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1.1. cont’d…. 

κ-casein 

CSN3 

Human 
4: 
71,108,333-

71,117,145  

Cattle 

6: 
87,349,410-

87,386,900 

87,390,197-

87,392,750 

 

 

Csn3 Mouse 

5: 

87,925,633-

87,932,264  
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Table 1.2. Genomic location and organization of the human, cattle, mouse whey protein genes 

 

 
1
Adapted from the NCBI Gene website (http://www.ncbi.nlm.nih.gov/pubmed?Db=gene&Cmd=retrieve&dopt=full_report&list_uids=“gene id”) version: 12-

Jan-2012. In the genomic organization column, each vertical bar represents an exon, and arrows indicate the orientation of the gene. The GenBank Accession 

Number for each reference sequence is shown.  

 

 

 

 

 

 

 

 

 

Protein 
Gene 

symbol
1
 

Species 
Chromosome: 

location
1
 

Transcript and CDS region 

α-Lactalbumin 

LALBA 

Human 

12:  

48,961,467-

48,963,829  

Cattle 

5:  

31,347,861-

31,349,882  

Lalba Mouse 

15:  

98,480,400-

98,482,683  

β-

Lactoglobulin 
PAEP Cattle 

11: 

103,301,664-

103,306,381  

Whey acidic 

protein 
Wap Mouse 

11: 

6,635,483-

6,638,649  
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FIGURE LEGENDS 

Fig. 1.1. Schematic representation of the cis-regulatory regions of milk protein genes. 

DNA binding sites for transcription factors are shown in different shapes. A) 

Transcription factor binding sites mapped in the promoter and enhancer of the β-casein 

gene. The β-casein gene enhancer was originally identified in the bovine species; thus, it 

was named bovine casein enhancer element (BCE-1) [41]. These binding sites are highly 

conserved in β-casein gene promoters and enhancers in rabbits, rats, mice, goats, sheep, 

and cows [29]. Signal transducer and activator of transcription 5 (STAT5) [30, 41, 52, 53, 

61, 232-234], CCAAT/enhancer binding protein (C/EBP) [35, 41, 47, 61, 63], and Yin 

Yang 1 (YY-1) [39, 40, 61] binding sites and half glucocorticoid response elements (½ 

GREs) for glucocorticoid receptor (GR) [32, 61, 235] in the β-casein proximal promoter 

and/or distal enhancer have been functionally verified and extensively studied. The 

binding sites for octamer factors (Oct) [37, 68, 69, 236] and runt-related transcription 

factor 2 (Runx2) [38] have recently been characterized. The E26 transformation-specific 

(Ets) site and nuclear factor 1 (NF-1) binding site are predicted based on sequence 

identity [29]. B) Transcription factor binding sites mapped in the promoter of the αS1-

casein gene promoter. These binding sites are putative based on sequence identity, and 

they are highly conserved in αS1-casein gene promoters in buffalo, yak, cow, sheep, goat, 

camel, and human [237]. AP-1: activator protein 1. C) Structural organization of the 

transcription binding sites in the two highly conserved cis-regulatory regions of the 

rodent whey acidic protein (WAP) promoters. These binding sites are highly conserved in 

rats and mice [44]. NF-1 [44-46] and STAT5 [44] binding sites and ½ GREs [46, 235] 

have been functionally characterized in rats and/or mice. D) Schematic representation of 

the transcription factor binding sites in the β-lactoglobulin proximal promoter. STAT5 

[238], NF-1 [232], and activator protein 2 (AP-2) [239] sites have been verified in the β-

lactoglobulin gene promoters of sheep and/or cows. The numbers indicate positions 

relative to the transcription start sites (TSSs, +1). 
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Fig. 1.2. Induction of β-casein gene transcription by lactogenic hormones is mediated by 

synergism between signal transducer and activator of transcription 5 (STAT5) and 

glucocorticoid receptor (GR). The binding of prolactin (PRL) to the PRL receptor (PRLR) 

on the cell membrane of mammary epithelial cells (MECs) triggers activation of Janus 

kinase 2 (JAK2). Activated JAK2 phosphorylates tyrosine residues on PRLR and creates 

docking sites for Src homology 2 (SH2) domain-containing proteins. SH2-containing 

STAT5 is then recruited and phosphorylated by JAK2 at a conserved tyrosine residue 

within the carboxyl-terminal transcriptional activation domain. Phosphorylated STAT5 

dimerizes, translocates into the nucleus, and induces β-casein gene transcription at a 

minimal level by binding to clustered STAT5 binding sites. In the presence of 

glucocorticoids (GC), GC pass through the cell membrane, bind to, and activate GR by 

releasing GR from heat shock complexes. Activated GR dimerizes, translocates into 

nucleus, binds to glucocorticoid response element (GRE) half-sites, and physically 

interacts with STAT5. GC and PRL stimulation also activates C/EBPβ binding to its 

response elements at β-casein regulatory regions. The synergistic interactions among 

STAT5, GR, and C/EBPβ results in much more robust induction of β-casein gene 

transcription than PRL alone by recruiting the p300, a coactivator with histone acetylase 

(HAT) activity, and stabilizing the basal transcription complex. 
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Fig. 1.1. 
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Fig. 1.2. 
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ABSTRACT 

Regulation of milk protein gene expression by lactogenic hormones (prolactin and 

glucocorticoids) provides an attractive model for studying the mechanisms by which 

protein and steroid hormones synergistically regulate gene expression. β-Casein is one of 

the major milk proteins and its expression in mammary epithelial cells is stimulated by 

lactogenic hormones. The signal transducer and activator of transcription 5 and 

glucocorticoid receptor are essential downstream mediators of prolactin and 

glucocorticoid signaling, respectively. Previous studies have shown that mutating the 

octamer-binding site of the β-casein gene proximal promoter dramatically reduces the 

hormonal induction of the promoter activity. However, little is known about the 

underlying molecular mechanisms. In this report, we show that lactogenic hormones 

rapidly induce the binding of octamer-binding transcription factor-1 to the β-casein 

promoter and this induction is not mediated by either increasing the expression of 

octamer-binding transcription factor-1 or inducing its translocation to the nucleus. Rather, 

lactogenic hormones induce physical interactions between the octamer-binding 

transcription factor-1, signal transducer and activator of transcription 5, and 

glucocorticoid receptor to form a ternary complex, and these interactions enhance or 

stabilize the binding of these transcription factors to the promoter. Abolishing these 

interactions significantly reduces the hormonal induction of β-casein gene transcription. 

Thus, our study indicates that octamer-binding transcription factor-1 may serve as a 

master regulator that facilitates the DNA binding of both signal transducer and activator 

of transcription 5 and glucocorticoid receptor in hormone-induced β-casein expression, 
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and defines a novel mechanism of regulation of tissue-specific gene expression by the 

ubiquitous octamer-binding transcription factor-1. 

 

Keywords: Gene expression; Hormonal regulation; Milk protein; Protein-protein 

interactions; Octamer binding transcription factor; Transcriptional regulation 

 

Abbreviations: DTT, dithiothreitol; EGF, epidermal growth factor; EMSA, 

electrophoresis mobility shift assay; GAPDH, glyceraldehyde-3-phosphate 

dehydrogenase; GR, glucocorticoid receptor; GRE, glucocorticoid response elements; HP, 

hydrocortisone (glucocorticoids) and prolactin; IP, immunoprecipitation; MECs, 

mammary epithelial cells; Oct-1, octamer-binding transcription factor-1; PMSF, 

phenylmethylsulfonyl fluoride; POU, Pit-1, Oct, and Unc-86; POUH, POU homeodomain; 

POUS, POU-specific domain; PrlR, prolactin receptor; qChIP, quantitative chromatin 

immunoprecipitation; qPCR, quantitative PCR; qRT-PCR, quantitative reverse 

transcription PCR; snRNA, small nuclear RNA; STAT5, signal transducer and activator 

of transcription 5; TBP, TATA box-binding protein; WT, wild-type. 

 

INTRODUCTION 

Transcriptional regulation of gene expression is largely dependent on the 

interactions of transcription factors with the corresponding cis-DNA elements located in 

the promoter or enhancer region of a gene. Octamer-binding transcription factor-1 (Oct-1) 

was originally discovered for its ability to bind the conserved octamer motif 
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(ATGCAAAT), which is located in the promoter and enhancer sequences of the histone 

H2B, immunoglobulin, and U2 small nuclear RNA (snRNA) genes (Sive and Roeder, 

1986). As a member of the POU (Pit-1, Oct and Unc-86) family of homeodomain 

transcription factors, Oct-1 contains a POU specific domain (POUS) in addition to a POU 

homeodomain (POUH), which is distantly related to the classic homeodomain encoded by 

homeobox genes (Kang et al., 2009b, Zhao, 2013). Oct-1 has been implicated in many 

important biological processes, including embryogenesis (Range and Lepage, 2011; 

Sebastiano et al., 2010), immune/inflammatory responses (Cheng et al., 2012; Ren et al., 

2011), metabolic responses to stress (Goettsch et al., 2011; Malhas et al., 2009; Wang et 

al., 2009), and tumorigenicity (Kang et al., 2009b; Shakya et al., 2009). The genes 

regulated by Oct-1 include a wide variety of both ubiquitously expressed genes and 

tissue-specific genes. Oct-1 regulates these genes via DNA binding-dependent or -

independent mechanisms. Both of the POU-domains are required for the high-affinity, 

site-specific binding to the octamer motif and are involved in protein-protein interactions 

with other transcription factors and co-factors (Kang et al., 2009b; Ren et al., 2011; 

Robinson et al., 2011). 

β-Casein is a major milk protein, that is expressed via stimulation by lactogenic 

hormones, including prolactin and glucocorticoids (HP) (Rosen et al., 1999). There are 

three highly conserved regions in the proximal promoter of the casein genes, which are 

referred to as blocks A, B, and C (Yoshimura and Oka, 1990). Blocks A and B have been 

intensively studied and have been shown to be the binding sites of HP downstream 

molecules, signal transducer and activator of transcription 5 (STAT5) and glucocorticoid 
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receptor (GR) (Groner et al., 1994). Following mammary epithelial cell stimulation with 

lactogenic hormones, both STAT5 and GR are phosphorylated, translocate from the 

cytoplasm to the nucleus, recognize and bind to the corresponding binding sites in blocks 

A and B, and synergistically stimulate β-casein gene transcription (Lechner et al., 1997). 

Less is known about the mechanisms by which block C contributes to β-casein gene 

regulation. We have previously demonstrated that block C contains an octamer-binding 

site and that both its integrity and orientation are critical for the hormonal induction of β-

casein gene promoter activity (Dong and Zhao, 2007; Dong et al., 2009). 

In this study, we explored the molecular mechanisms by which Oct-1 participates 

in the hormonal induction of β-casein gene expression in mammary epithelial cells. 

Quantitative chromatin immunoprecipitation (qChIP) experiments indicated that Oct-1 

indeed binds to the β-casein gene promoter in mammary epithelial cells and that this 

binding activity is hormonally regulated. Transfection experiments revealed that Oct-1 

knockdown inhibits while overexpression stimulates β-casein gene expression induced by 

lactogenic hormones. Additionally, we demonstrated that in response to lactogenic 

hormones, Oct-1 physically interacts with STAT5 and GR, which facilitates the DNA 

binding of both STAT5 and GR to the β-casein gene promoter. Our data provide new 

insight into the molecular mechanisms by which the ubiquitously expressed Oct-1 

contributes to the hormonal regulation of mammary epithelial cell-specific β-casein gene 

expression. 

 

MATERIALS AND METHODS 
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Materials 

Prolactin (L6520), hydrocortisone (one of glucocorticoids, H6909), insulin 

(I0516), and murine epidermal growth factor (EGF) (E4127) were purchased from Sigma 

(St. Louis, MO). Heat-inactivated fetal calf serum (1082-147), RPMI 1640 medium 

(31800-022), gentamicin (15750-060), and antibiotic-antimycotic solution (15240-062) 

were purchased from Invitrogen (Carlsbad, CA). Dynabeads® Protein A (100-01D) for 

ChIPs and immunoprecipitations (IPs) and Dynabeads® M-280 Streptavidin (112-05D) 

for DNA pull-down assays were also obtained from Invitrogen. Charcoal-stripped horse 

serum (52-0745) was purchased from Cocalico Biologicals (Reams town, PA). Growth 

factor reduced matrigel (354230) and dispase (354235) were obtained from BD 

Biosciences (Franklin Lakes, NJ). The mouse Oct-1B (mOct-1B/pcDNA3.1), GR 

(mGR/pcDNA3.1), STAT5a (mSTAT5a/pcDNA3.1), and prolactin receptor (PrlR) 

expression plasmids as well as the wild-type (WT) mouse β-casein promoter (-

258/+7)/luciferase construct (LHRRWT/pGL3) have been described previously (Dong 

and Zhao, 2007). The Renilla luciferase control plasmid (phRL-CMV) was purchased 

from Promega (Madison, WI). The anti-TATA box binding protein (TBP) (sc-273), anti-

actin (sc-1615-R), anti-STAT5 (sc-1081), and anti-GR (sc-1004) antibodies were 

purchased from Santa Cruz Biotechnologies (Santa Cruz, CA). The anti-Oct-1 (A310-

610A) antibody was provided by Bethyl Laboratories (Montgomery, TX). Normal rabbit 

IgG (10500C) was obtained from Invitrogen. 

Cell Cultures, transfection, and luciferase assays 
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The murine mammary epithelial cell line, HC11, was cultured as previously 

described (Kabotyanski et al., 2006). HC11 Lux cells, which are HC11 cells stably 

transfected with a β-casein promoter luciferase construct (p-344/-1βc-Lux), were 

obtained from Dr. Hynes (Friedrich Miescher Institute, Switzerland) (Wartmann et al., 

1996) and cultured as described for HC11 cells. Primary mouse mammary epithelial cells 

(MECs) were isolated following the procedures described by Watkin and Streuli (2002). 

Briefly, the mammary glands from mid-pregnant C57BL/6 mice were pooled, minced, 

and digested by collagenase. Next, the epithelial cells were enriched via centrifugation, 

plated on 60-mm dishes that were pre-coated with matrigel, and cultured in complete 

growth medium (D-MEM⁄F-12 supplemented with 10% fetal calf serum, 5 µg/ml bovine 

insulin, 10 ng/ml EGF, 1 µg/ml hydrocortisone, 1× antibiotic-antimycotic solution, and 

50 µg/ml gentamicin). After 2 days of confluence, the cells were incubated in hormone-

priming medium (D-MEM/F-12 medium supplemented with 10% charcoal-treated horse 

serum, 5 µg/ml bovine insulin, 1× antibiotic-antimycotic solution, and 50 µg/ml 

gentamicin) for 24 h and then incubated for 24 h in hormone-treatment medium (priming 

medium supplemented with 1 µg/ml hydrocortisone and 5 µg/ml prolactin). 

The methods applied for the transfection and luciferase assays have been 

described previously (Dong and Zhao, 2007). In the Oct-1-overexpression studies, HC11 

cells were transfected with either 0.2 pmol of pcDNA3.1 or mOct-1B/pcDNA3.1, 0.2 

pmol of LHRRWT/pGL3, and 0.004 pmol of phRL-CMV using Lipofectamine 2000 

(Invitrogen). In the siRNA transfection experiments, HC11 Lux cells were transfected 

with either 40 pmol of Oct-1 siRNA #1 (Santa Cruz Biotechnologies, siRNA #sc-36120), 
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Oct-1 siRNA #2 [Ambion (Austin, TX), siRNA #68842], or control siRNA (Ambion, 

siRNA #4611). In the co-transfection studies, HC11 cells were transfected with 0.07 

pmol of the Oct-1B, GR, or STAT5 expression plasmid or various combinations of these 

constructs along with 0.2 pmol of LHRRWT/pGL3 and 0.004 pmol of phRL-CMV. In all 

groups, the total molar amount of DNA was balanced using pcDNA3.1. After 10-12 h, 

the transfection medium was replaced with hormone medium (RPMI1640 supplemented 

with 10% charcoal-treated horse serum, 50 µg/ml gentamicin, 1 µg/ml hydrocortisone, 5 

µg/ml bovine insulin, and 5 µg/ml prolactin). Luciferase activities were examined after 

24 h of hormone treatment. The Renilla luciferase control plasmid was used to normalize 

transfection efficiency. In HC11 Lux cells, the luciferase activity levels were normalized 

to protein concentrations. 

qChIP 

ChIP was performed as described previously (Kabotyanski et al., 2006) with a 

few modifications. Formaldehyde was added to the growth medium at a final 

concentration of 1% to crosslink the chromatin and interacting proteins. After sonication, 

the chromatin suspension was precleared with Dynabeads® Protein A. Before performing 

the IP, 1% of the total sheared chromatin was kept as a total input control. Next, the 

designated antibody was added to precipitate the sheared chromatin. The immuno-

complexes were then captured with Dynabeads® Protein A. After reverse cross-linking 

and DNA purification, 2 µl of the final precipitated DNA was used in each PCR with 

SsoFast EvaGreen Supermixes (Bio-Rad, Hercules, CA). The primer sequences used for 

the ChIP assays are as follows: forward, 5'-GCTTCTGAATTGCTGCCTTG-3', and 
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reverse, 5'-GTCCTATCAGACTCTGTGACCGTA-3'. The PCR efficiency of the primers 

was verified. The IP data were normalized to the input DNA. For the primary MECs, 

cells cultured on matrigel were released with dispase reagent at 37 °C followed by 

fixation with formaldehyde, and the fixation was stopped by adding 10 mM EDTA. 

Quantitative reverse transcription PCR (qRT-PCR) 

RNA was isolated from HC11 cells using Trizol reagent (Invitrogen). Reverse 

transcription was performed using SuperScript II reverse transcriptase (Invitrogen) per 

the manufacturer’s protocol. TaqMan gene expression assays were used to quantify the 

mRNA expression levels of Oct-1 [Applied Biosystems (Foster City, CA), 

Mm00448332_m1], β-casein (Mm00839664_m1), β-actin (Mm01205647_g1), and 

GAPDH (Mm99999915_g1). The PCRs were performed in duplicate in a 10 µl volume 

containing 5 µl Universal PCR Master Mix (Applied Biosystems, #4364338), 0.5 µl 

TaqMan assay, and 4.5 µl diluted cDNA (50 ng reverse-transcribed RNA). The relative 

expression levels of the target genes were normalized with the β-actin expression levels 

and calculated using the 2
-ΔΔCT

 method (Livak and Schmittgen, 2001). 

Cell lysis and Western blot 

Nuclear and cytoplasmic proteins were extracted based on the method described 

by Schreiber et al. (1989). Briefly, the collected cells were resuspended in 500 µl of cold 

hypotonic buffer A [10 mM HEPES (pH 7.4), 10 mM KCl, 0.1 mM EDTA, 0.1 mM 

EGTA, 1 mM dithiothreitol (DTT), proteinase inhibitor cocktail (Sigma), and 0.5 mM 

phenylmethylsulfonyl fluoride (PMSF)] and incubated on ice for 15 min. After the 

addition of 32 µl of 10% Nonidet P40 (NP40), the cells were vigorously vortexed for 10 s. 
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After centrifugation for 30 s, the supernatant was collected and treated as the cytoplasmic 

fraction. The nuclear pellet was then resuspended in 150 µl of ice-cold hypertonic buffer 

[20 mM HEPES (pH 7.4), 0.4 M NaCl, 1 mM EDTA, 1 mM EGTA, 1 mM DTT, 

proteinase inhibitor cocktail, and 1 mM PMSF], and the tube was vigorously rocked at 

4 °C for 15 min. After a 5-min centrifugation at 4 °C, the supernatant was isolated as the 

nuclear portion. 

Whole cell protein lysates were prepared by adding NP40 lysis buffer (Invitrogen) 

consisting of 50 mM Tris, pH 7.4, 250 mM NaCl, 5 mM EDTA, 50 mM NaF, 1 mM 

Na3VO4, 1% NP40, and 0.02% NaN3 with freshly added protease inhibitor cocktail and 

PMSF. 

The protein concentrations were determined using the Microplate BCA protein 

assay kit (Thermo Scientific, Rockford, IL). Equal amounts of protein from each 

treatment were analyzed via Western blotting with specific antibodies against Oct-1, 

STAT5, and GR, as described previously (Zhao et al., 2002). 

IPs 

The IPs were carried out according to the instructions provided with the Relia 

BLOT
®
 IP/Western Blot kit (Bethyl Laboratories). In general, 1 mg of cell lysate was 

incubated overnight with 3 µg of the corresponding antibodies at 4 °C with rotation. The 

immune complexes were captured using Dynabeads® Protein A and analyzed via 

Western blotting. 

DNA pull-down assays 
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DNA pull-down assays were carried out as previously reported by Magné et al. 

(2003). The biotinylated oligonucleotides used in the DNA pull-down assays are as 

follows: BK_C_WT, 5'-biotin-CCACAAAATTAGCATGTCATTA-3'; BK_C_MT, 5'-

biotin-CCACAAATAATCCATGTCATTA-3'; and BK_B_WT, 5'-biotin-

CACGTAGACTTCTTGGAATTGAAGGGACTTTTTGA-3'. Next, 1 mg of nuclear 

extract was incubated with 1 µg of the biotinylated oligonucleotides in binding buffer (10 

mM HEPES, 100 µM EDTA, 50 mM NaCl, 50 mM KCl, 5 mM MgCl2, 4 mM 

spermidine, 1 mM DTT, 0.1 mg/ml bovine serum albumin, 2.5% glycerol, proteinase 

inhibitor cocktail, and 1 mM PMSF) overnight at 4 °C. Dynabeads® M-280 Streptavidin 

was then added to pull down the oligonucleotide-protein complexes. The proteins pulled 

down were boiled in SDS-PAGE loading buffer and then analyzed via Western blotting. 

Site-directed mutagenesis of STAT5 

Site-directed mutagenesis was performed using the GeneArt® Site-Directed 

Mutagenesis System (Invitrogen). The leucine (Leu) 767 residue of STAT5 was mutated 

to proline (Pro), as this single mutation was shown to abolish the STAT5-Oct-1 

interaction (Magné et al., 2003). The following pair of primers was used: mSTAT5-

L767P-Forward, 5'-GGCACGTGGAAGAACTTCCACGCCGGCCCATGGACAG-3', 

and mSTAT5-L767P-Reverse, 5'-

CTGTCCATGGGCCGGCGTGGAAGTTCTTCCACGTGCC-3' (the mutations are 

underlined). 

Electrophoresis mobility shift assays (EMSAs) 
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EMSAs were performed using the 5'-end biotin labeled probe, Bio_βCP_STAT5 

(5'-biotin-AGACTTCTTGGAATTGAAGGGA-3'), which corresponds to a portion of the 

mouse β-casein promoter (the STAT5 binding motif is underlined). Twenty femtomoles 

of the probe was incubated with 6 µg of nuclear extract for 20 min at room temperature. 

The remaining steps were performed according to the instructions of the Light Shift 

Chemiluminescent EMSA Kit protocol (Pierce, Rockford, IL). 

Statistical analysis 

All statistical analyses were carried out using JMP statistical software (SAS, Cary, 

NC). The comparisons between two groups were performed using the t-test. A one-way 

ANOVA test with Turkey’s post hoc analysis was performed when comparisons were 

performed between more than two groups.  

 

RESULTS 

Lactogenic hormones, HP, rapidly induce Oct-1 binding to the 

β-casein gene promoter 

We have previously demonstrated by using EMSA that Oct-1 binds to the octamer 

motif in the β-casein promoter (Zhao et al., 2002). To determine whether this binding 

occurs in mammary epithelial cells and whether the binding activity is responsive to HP 

treatment, we performed ChIPs in HC11 cells using anti-Oct-1 antibody at different time 

points after HP treatment. The primers were designed to amplify the β-casein gene 

proximal promoter, which contains the binding sites for Oct-1, STAT5, and other 
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transcription factors (Fig. 2.1A). STAT5 binding was measured as a positive control. The 

binding activity of Oct-1 and STAT5 to the β-casein gene promoter was relatively low in 

the absence of HP (Fig. 2.1B) but increased dramatically at 30 min of HP treatment 

followed by an appreciable decrease at 24 h (Fig. 2.1B). Normal rabbit IgG, the negative 

control, was unable to immunoprecipitate Oct-1-DNA complexes (Fig. 2.1B). To 

quantify the effects of HP on Oct-1 binding activity, chromatin DNA obtained via ChIP 

was analyzed using qPCR. As shown in Fig. 2.1C, Oct-1 binding activity increased 

approximately 4-fold at 30 min after HP treatment and then decreased to only an ~2-fold 

increase compared with the levels detected in the untreated cells. STAT5, the positive 

control, displayed similar binding dynamics, which correlated with previously published 

results (Fig. 2.1D) (Kabotyanski et al., 2006). HP-induced Oct-1 binding activity was 

also confirmed in primary MEC cultures (Fig. 2.1E, bottom). The HP-induced β-casein 

mRNA expression levels observed in primary cells were verified using RT-PCR (Fig. 

2.1E, top). These results demonstrate that Oct-1 binds to the β-casein gene promoter in 

the intact HC11 cells and primary MECs, which is regulated by HP, with a dynamic 

binding profile similar to that of STAT5. 

Oct-1 serves as a transcriptional activator of the β-casein gene 

To test the effect of Oct-1 on HP-induced β-casein gene expression in mammary 

epithelial cells, we examined the effect of Oct-1 overexpression on HP-induced β-casein 

promoter activity and endogenous β-casein expression in HC11 cells. First, HC11 cells 

were co-transfected with the β-casein (-258/+7) firefly luciferase reporter plasmid 

(LHRRWT/pGL3) and the Renilla luciferase reporter vector (phRL-CMV) along with 
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either the Oct-1 expression plasmid or the empty vector followed by HP treatment. Oct-1 

overexpression further enhanced HP induction of β-casein promoter activity by 80% 

compared with the vector control group (Fig. 2.2A, left). Fig. 2.2A (right) shows that the 

quantity of Oct-1 protein in the cells transfected with the Oct-1 expression plasmid was 

substantially higher than that of the cells transfected with the empty vector. Second, 

overexpression of Oct-1 also increased endogenous HP-induced β-casein expression 

levels by approximately 3-fold in HC11 cells (Fig. 2.2B). 

To further verify the transactivator function of Oct-1 in the HP induction of β-

casein gene expression, we utilized siRNA to knockdown Oct-1 expression in HC11 Lux 

cells, which are stably transfected with a luciferase reporter driven by the β-casein gene 

promoter. Two different Oct-1 siRNAs, Oct-1 siRNA #1 and Oct-1 siRNA #2, were 

tested and both of them successfully repressed Oct-1 expression (Fig. 2.3A,  middle and 

bottom) and were able to significantly inhibit the HP-induced luciferase activity in HC11 

Lux cells by approximately 30% compared with the cells transfected with control siRNA 

(Fig. 2.3A, top). We also examined the effect of the Oct-1 siRNA #1 on endogenous HP-

induced β-casein expression in HC11 cells. As shown in Fig. 2.3B, endogenous HP-

induced β-casein expression in HC11 cells was reduced by approximately 65% in 

response to Oct-1 knockdown. Thus, our observations indicated that Oct-1 functions as a 

transactivator in HP-regulated β-casein gene expression. 

HP do not affect Oct-1 expression nor Oct-1 subcellular 

localization in mammary epithelial cells 
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HP may affect the binding of Oct-1 to the β-casein gene promoter by increasing 

either Oct-1 expression levels or Oct-1 levels in the nucleus. To test these possibilities, 

we investigated the effects of HP on Oct-1 mRNA and protein expression levels in HC11 

cells. HC11 cells were treated either with or without HP for various time periods. Oct-1 

mRNA levels were assessed using qRT-PCR. The mRNA levels of β-casein and GAPDH 

were also examined as positive and negative controls, respectively. As shown in Fig. 

2.4A, a dramatic HP-mediated induction of β-casein mRNA expression was observed at 

3-24 h of the HP treatment, while the GAPDH mRNA levels were not affected by HP 

treatment (Fig. 2.4B). The mRNA and protein levels of Oct-1 were unchanged by HP 

treatment (Fig. 2.4C and D). 

Next, to determine whether HP induces Oct-1 translocation from the cytoplasm to 

the nucleus, HC11 cells were treated with HP for various time periods. The cytoplasmic 

and nuclear fractions were then extracted and analyzed via Western blotting using an 

anti-Oct-1 antibody. As shown in Fig. 2.5A, Oct-1 was primarily localized to the nucleus 

regardless of the hormone treatment, while HP rapidly induced the translocation of 

STAT5 and GR to the nucleus within 5 min (Fig. 2.5A), as previously reported (Lechner 

et al., 1997). These results were also confirmed by immunofluorescence staining as 

shown in Fig. 2.5B. These observations suggest that HP induces Oct-1 binding activity 

via mechanisms other than enhancing Oct-1 expression and translocation. 

HP induce the formation of a ternary complex of Oct-1 with 

STAT5 and GR at the β-casein gene promoter 
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Transcription of the β-casein gene in the mammary gland is triggered by HP, 

mediated through the interaction between STAT5 and GR (Lechner et al., 1997). To 

study the role of Oct-1 in this process, co-IPs were performed. Whole cell lysates were 

prepared from HP-treated and HP-untreated HC11 cells and then immunoprecipitated 

with an anti-Oct-1, anti-GR, or anti-STAT5 antibody. As shown in Fig. 2.6A, the anti-

Oct-1 antibody co-immunoprecipitated STAT5 and GR in the cells treated with HP for 

only 30 min (Fig. 2.6A, top, lane 4), whereas STAT5 and GR were not associated with 

Oct-1 in the absence of HP (Fig. 2.6A, top, lane 3). As expected, normal rabbit IgG failed 

to co-immunoprecipitate STAT5 and GR (Fig. 2.6A, top, lanes 1 and 2). In Fig. 2.6A 

(top), lanes 5-8 show that the same amounts of proteins were used for each IP. The IPs 

with the anti-STAT5 and anti-GR antibodies revealed the same results (Fig. 2.6A, middle 

and bottom). These results demonstrated that HP induced rapid physical interactions 

between Oct-1, STAT5, and GR in HC11 cells. The same results were also observed in 

primary MECs (Fig. 2.6B). The physical interactions of Oct-1 with STAT5 and GR were 

also verified with DNA pull-down assays. A biotinylated, wild-type β-casein proximal 

promoter block C oligonucleotide (BK_C_WT) (Fig. 2.6C), which contains the Oct-1 

binding site, was incubated with nuclear extracts isolated from HC11 cells either with or 

without HP treatment and then immobilized on streptavidin-coated Dynabeads. The 

streptavidin-bead-bound complexes were then analyzed via Western blotting using the 

anti-Oct-1, anti-STAT5, and anti-GR antibodies. As shown in Fig. 2.6D, HP induced an 

increase in the quantity of Oct-1 molecules bound to wild-type BK_C_WT 

oligonucleotide (lanes 1 and 2), which agrees with our ChIP results. Additionally, the 
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BK_C_WT oligonucleotide pulled down STAT5 and GR (Fig. 2.6D, comparing lanes 1 

and 2), while the mutated BK_C_MT oligonucleotide (Fig. 2.6C), in which the sequence 

is identical to the BK_C_WT oligonucleotide except that the octamer-binding site was 

mutated so that Oct-1 is unable to bind (Zhao et al., 2002), failed to pull down Oct-1, 

STAT5, or GR (Fig. 2.6D, lanes 3 and 4). Thus, these data indicate that HP induce the 

formation of an Oct-1-STAT5-GR ternary complex in both HC11 cells and primary 

MECs. 

Previous reports have shown that the stable recruitment of STAT5 to the STAT5-

binding site at the cyclin D1 promoter depends on the presence of Oct-1 at the adjacent 

octamer motif (Brockman and Schuler, 2005). Therefore, we hypothesized that Oct-1 

facilitates STAT5 and GR binding to the β-casein gene promoter. To test this hypothesis, 

we performed DNA pull-down assays using a biotinylated β-casein gene promoter block 

B oligonucleotide, BK_B_WT, which contains a STAT5-binding site and two flanking 

half glucocorticoid response elements (1/2 GREs) (as shown in Fig. 2.7A) and has been 

previously shown to be bound by STAT5 and GR in EMSAs (Préfontaine et al., 1998). 

The biotinylated BK_B_WT oligonucleotide was incubated with nuclear extracts isolated 

from HP-treated or HP-untreated HC11 cells, which were transfected with either an Oct-1 

siRNA or a control siRNA. The oligonucleotide-captured protein complexes were then 

analyzed via Western blotting. As shown in Fig. 2.7B, BK_B_WT pulled down the Oct-

1-STAT5-GR ternary complex upon HP treatment (lanes 1-4). Oct-1 knockdown both 

decreased the relative quantity of Oct-1 pulled down by BK_B_WT (Fig. 2.7B, the top 

gel, lanes 3 and 4 and lanes 5-8) and diminished the binding activity of STAT5 and GR 
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(Fig. 2.7B, two middle gels, lanes 3 and 4). The same experiment was performed using 

the biotinylated BK_C_WT oligonucleotide (Fig. 2.7C) in HC11 cells transfected with a 

STAT5 siRNA. STAT5 knockdown resulted in a decrease in the quantity of STAT5 in 

the complex pulled down by BK_C_WT following HP treatment (Fig. 2.7C, the second 

gel, comparing lanes 3 with 4) but did not alter the quantities of Oct-1 and GR that were 

pulled down (Fig. 2.7C, the first and third gel, lanes 3 and 4). These data indicate that 

Oct-1 may facilitate or stabilize the binding activities of STAT5 and GR at block B of the 

β-casein gene promoter, while HP-induced Oct-1 binding to block C is independent of 

STAT5. 

Oct-1 synergistically interacts with both STAT5 and GR in 

HP-mediated induction of β-casein promoter activity 

To examine the interactions of Oct-1, STAT5, and GR in the process of HP 

induction of β-casein expression, co-transfection experiments were performed. HC11 

cells were co-transfected with the Oct-1, STAT5, or GR expression plasmids or various 

combinations of these plasmids followed by HP treatment. As shown in Fig. 2.8, HP only 

marginally induced β-casein promoter activity when the individual plasmids were 

transfected. However, when two of the Oct-1, STAT5, and GR plasmids were co-

transfected, HP induction of the promoter activity increased significantly (Fig. 2.8, 

groups 4, 5, and 6), and the highest promoter activity was achieved only when all three 

plasmids were transfected (Fig. 2.8, group 7). Thus, the interactions of Oct-1 with both 

STAT5 and GR are critical for the full induction of β-casein promoter activity in response 

to HP. 
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A mutation that impairs the Oct-1 and STAT5 interaction 

significantly reduces the HP-mediated induction of β-casein 

gene promoter activity 

To further study the critical importance of the interaction between Oct-1 and 

STAT5 in the HP-mediated induction of β-casein gene expression, we mutated the Leu 

767 residue of STAT5 to Pro (MT STAT5) because this single mutation has been shown 

to impair the STAT5-Oct-1 interaction without jeopardizing STAT5 DNA binding 

(Magné et al., 2003). COS-7 cells were made to be HP sensitive by transfecting the cells 

with a pcDNA3.1, MT STAT5, or WT STAT5 plasmid along with the Oct-1, GR, PrlR, 

LHRRWT/pGL3, and phRL-CMV expression plasmids followed by a 24-h HP treatment. 

As shown in Fig. 2.9A, the MT STAT5 group showed only approximately 30% of the 

HP-induced β-casein gene promoter activity of the wild-type STAT5 group, and the 

pcDNA3.1 group showed the lowest activity. To verify the interaction between Oct-1 and 

MT STAT5, an IP was performed using the anti-Oct-1 antibody. As shown in Fig. 2.9B 

(lanes 3 and 4 of the second gel), the Leu/Pro single mutation greatly diminished the HP-

induced interaction between STAT5 and Oct-1, while the interaction between Oct-1 and 

GR was not disturbed (Fig. 2.9B, the third gel, lanes 3 and 4). Additionally, to rule out 

the possibility that the Leu/Pro mutation of STAT5 impairs its DNA binding ability, an 

EMSA was performed using a biotinylated STAT5-binding site probe, Bio_βCP_STAT5, 

of the β-casein gene promoter (Fig. 2.9C). The experiment confirmed that the Leu/Pro 

mutation did not affect the binding activity of STAT5 (Fig. 2.9C, compare lanes 2 and 3). 
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The protein-DNA complexes were abolished using an anti-STAT5 antibody but not 

normal rabbit IgG. In short, these data suggest that impairing the Oct-1-STAT5 

interaction significantly diminishes HP-induced β-casein gene promoter activity. 

 

DISCUSSION 

Previous studies have indicated that Oct-1 may play a role in the hormonal 

regulation of β-casein gene expression (Zhao et al., 2002; Dong and Zhao, 2007). In this 

study, we demonstrated that Oct-1 activates the hormonal induction of β-casein gene 

expression via physical interactions with STAT5 and GR and that interrupting these 

interactions significantly diminishes the hormonal induction. 

In this report, we show that Oct-1 is a downstream signaling molecule of 

lactogenic hormones in mammary epithelial cells. Although Oct-1 binds to the β-casein 

gene promoter without lactogenic hormone stimulation and this binding is important for 

the basal promoter activity of β-casein gene (Zhao et al., 2002, 2004), lactogenic 

hormones further induce Oct-1 binding to the promoter. These data are correlated with 

previous findings that have demonstrated that the Oct-1 DNA-binding ability is 

developmentally regulated in mouse mammary tissue and that its expression pattern 

correlates with β-casein expression (Saito and Oka, 1996). We also show that the increase 

in Oct-1-binding activity by lactogenic hormones does not result from the regulation of 

Oct-1 mRNA and protein expression or from the induction of Oct-1 nuclear translocation 

in mammary epithelial cells. One of the possible mechanisms for the binding activity 
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increase may be recruitment of Oct-1 to the DNA via the interactions with STAT5 and 

GR. 

STAT5 and GR play an essential role in mediating the induction of β-casein gene 

expression via prolactin and glucocorticoid signaling, respectively. The STAT5 and GR 

proteins physically interact with each other and synergistically stimulate β-casein gene 

transcription upon hormonal induction (Stöcklin et al., 1996; Wyszomierski et al., 1999). 

This interaction activates STAT5 by prolonging STAT5 DNA-binding and tyrosine 

phosphorylation (Wyszomierski et al., 1999) and enhances the binding of GR to the half-

GREs (Cella et al., 1998; Stöcklin et al., 1996). Previous studies have also shown that 

Oct-1 physically interacts with STAT5 or GR in a promoter-specific manner. For 

example, activation of the MMTV promoter has been shown to be highly dependent on 

the GR-Oct-1 interaction (Préfontaine et al., 1998). The cytokine-activated STAT5 and 

Oct-1 molecules form a stable complex in the transcriptional activation of Cyclin D1 

(Brockman and Schuler, 2005; Magné et al., 2003). In this study, using co-IP and DNA 

pull-down assays, we demonstrate for the first time that Oct-1, STAT5, and GR form a 

ternary complex upon stimulation with lactogenic hormones. This complex may stabilize 

Oct-1-binding at the β-casein gene promoter. 

Our DNA pull-down assays (Fig. 2.7), however, showed that the relative 

quantities of STAT5 and GR molecules pulled down by the β-casein promoter block B 

oligonucleotide were much less in Oct-1 knockdown cells, while surprisingly, STAT5 

knockdown in the cells had no effect on the quantity of either Oct-1 or GR protein pulled 

down by the β-casein promoter block C oligonucleotide. This result indicates that Oct-1 
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plays a central role in either facilitating or stabilizing STAT5 and GR bindings at the β-

casein promoter in response to lactogenic hormone signaling. Our data also show that the 

interactions between Oct-1, STAT5, and GR do not require the bindings of all of these 

factors to the corresponding DNA-binding sites of the promoter, as the oligonucleotides 

used in the pull down experiments did not contain the binding sites for all three factors. 

However, the maximal transcriptional activation of the β-casein promoter must require 

the binding activity of these factors, especially STAT5, because mutations in each of 

these sites at the β-casein promoter (especially the STAT5 site) dramatically reduced the 

hormonal induction of the promoter activity (Dong and Zhao, 2007). 

The importance of the Oct-1-STAT5-GR interaction in the hormonal induction of 

the β-casein gene was demonstrated by our co-transfection experiment in HC11 cells, 

which showed that the maximal transcriptional induction of the β-casein gene promoter 

by lactogenic hormones is achieved only in the presence of Oct-1, STAT5, and GR. 

These results agree with our previous study in COS-7 cells which are reconstituted to be 

lactogenic hormone- responsive (Dong and Zhao, 2007; Dong et al., 2009). Moreover, we 

employed a Leu/Pro-mutated form of STAT5, which showed diminished interaction with 

Oct-1 when stimulated with lactogenic hormones in a co-transfection experiment in COS-

7 cells. This experiment showed that the mutated form of STAT5 was not able to activate 

the β-casein gene promoter as efficiently as the WT STAT5. The reduced efficiency is 

mainly due to the impaired interaction of the mutated STAT5 molecule with Oct-1, as 

this mutation does not affect the binding activity of STAT5 to the β-casein gene promoter. 
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Overall, it is conceivable that the Oct-1, STAT5, and GR interactions are critical for the 

lactogenic hormone-mediated induction of the β-casein gene. 

Another mechanism by which lactogenic hormones enhance the DNA-binding 

activity of Oct-1 may be via post-translational modification of Oct-1 protein, such as 

protein phosphorylation. Oct-1 has been shown to be phosphorylated by several kinases, 

such as protein kinase A (PKA) (Caelles et al., 1995; Roberts et al., 1991), cyclic GMP-

dependent kinase (Belsham and Mellon, 2000), and DNA-dependent protein kinase 

(DNA-PK) (Kang et al., 2009a; Schild-Poulter et al., 2007). In mammary epithelial cells, 

prolactin rapidly induces the phosphorylation of STAT5 through Janus kinase 2 (JAK2), 

which then dimerizes, translocates to nucleus, and binds to the β-casein promoter 

(Wyszomierski and Rosen, 2001). Prolactin may also phosphorylate Oct-1 by activating 

downstream kinases. Aside from JAK2, the potential downstream protein kinases may 

include protein kinase B (PKB), protein kinase C (PKC), and mitogen-activated protein 

kinase (MAPK) (Goffin et al., 2002; Yu-Lee, 2002). Additionally, evidence has shown 

that Oct-1 DNA-binding activity can be modulated via phosphorylation. For example, 

Oct-1 is phosphorylated at both serine and threonine residues in vivo upon oxidative 

stress, and this phosphorylation at two conserved DNA-binding domain serine residues 

regulates the binding of Oct-1 to DNA (Kang et al., 2009a). The role of Oct-1 

phosphorylation in the hormonal induction of β-casein gene expression requires further 

study. 

Our previous study showed that Oct-1-binding activity in virgin mouse mammary 

glands is also induced by progesterone (Zhao et al., 2002), a reproductive hormone that 
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inhibits β-casein gene expression (Buser et al., 2007). The specific mechanism by which 

progesterone inhibits β-casein gene expression is unknown. As Oct-1 has been shown to 

interact with the progesterone receptor (PR) (Préfontaine et al., 1999), it is possible that 

Oct-1 also participates in the inhibition of β-casein gene expression via interactions with 

different factors, such as PR. 

Oct-1 has been reported to interact with basal transcription factors, such as TBP 

and TFIIB, at both the small nuclear RNA gene promoter (Zwilling et al., 1994) and the 

lipoprotein lipase promoter (Nakshatri et al., 1995). Although the interaction of Oct-1 

with TBP was not observed in our DNA pull-down assays performed in this study, the 

interaction may require the DNA binding of TBP. In the proximal β-casein gene promoter, 

the octamer motif is only 20 base pairs upstream of the TATA box. Thus, Oct-1 may 

potentially bind to the transcription initiation complex on the β-casein gene promoter. We 

hypothesize that lactogenic-hormone-activated Oct-1 (via phosphorylation) recruits and 

tethers other lactogenic hormone signaling molecules, including STAT5 and GR, to the 

basal transcription machinery to form and stabilize the active transcription complex at the 

β-casein promoter. 

In conclusion, we have demonstrated for the first time that Oct-1 forms a ternary 

complex with STAT5 and GR upon the stimulation with lactogenic hormones. 

Additionally, these interactions enhance or stabilize the binding of these transcription 

factors to the β-casein gene promoter and mediate the hormonal induction of β-casein 

gene expression. 

 



80 
 

Acknowledgements—We thank Dr. Bryan Ballif for his assistance with the project and 

for reviewing the manuscript. We also thank Dr. Margaret Neville for providing the 

murine β-casein antibody. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



81 
 

REFERENCES 

Belsham DD, Mellon PL. Transcription factors Oct-1 and C/EBPβ (CCAAT/enhancer-

binding protein-β) are involved in the glutamate/nitric oxide/cyclic-guanosine 5′-

monophosphate-mediated repression of gonadotropin-releasing hormone gene 

expression. Molecular  Endocrinology 2000;14:212-28. 

Brockman JL, Schuler LA. Prolactin signals via Stat5 and Oct-1 to the proximal cyclin 

D1 promoter. Molecular and Cellular Endocrinology 2005;239:45-53. 

Buser AC, Gass-Handel EK, Wyszomierski SL, Doppler W, Leonhardt SA, Schaack J, et 

al. Progesterone receptor repression of prolactin/signal transducer and activator of 

transcription 5-mediated transcription of the β-casein gene in mammary epithelial 

cells. Molecular  Endocrinology 2007;21:106-25. 

Caelles C, Hennemann H, Karin M. M-phase-specific phosphorylation of the POU 

transcription factor GHF-1 by a cell cycle-regulated protein kinase inhibits DNA 

binding. Molecular and Cellular Biology 1995;15:6694-701. 

Cella N, Groner B, Hynes NE. Characterization of Stat5a and Stat5b homodimers and 

heterodimers and their association with the glucocorticoid receptor in mammary cells. 

Molecular and Cellular Biology 1998;18:1783-92. 

Cheng CC, Yang SP, Lin WS, Ho LJ, Lai JH, Cheng SM, et al. Magnesium lithospermate 

B mediates anti-inflammation targeting activator protein-1 and nuclear factor-kappa 

B signaling pathways in human peripheral T lymphocytes. International 

Immunopharmacology 2012;13:354-61. 

Dong B, Huang C, Li D, Zhao FQ. Oct-1 functions as a transactivator in the hormonal 

induction of β-casein gene expression. Molecular and Cellular Biochemistry 

2009;328:93-9. 

Dong B, Zhao FQ. Involvement of the ubiquitous Oct-1 transcription factor in hormonal 

induction of β-casein gene expression. Biochemical Journal 2007;401:57-64. 

Goettsch C, Goettsch W, Brux M, Haschke C, Brunssen C, Muller G, et al. Arterial flow 

reduces oxidative stress via an antioxidant response element and Oct-1 binding site 

within the NADPH oxidase 4 promoter in endothelial cells. Basic Research in 

Cardiology 2011;106:551-61. 

Goffin V, Binart N, Touraine P, Kelly PA. Prolactin: the new biology of an old hormone. 

Annual Review of Physiology 2002;64:47-67. 

Groner B, Altiok S, Meier V. Hormonal regulation of transcription factor activity in 

mammary epithelial cells. Molecular and Cellular Endocrinology 1994;100:109-14. 

Kabotyanski EB, Huetter M, Xian W, Rijnkels M, Rosen JM. Integration of prolactin and 

glucocorticoid signaling at the β-casein promoter and enhancer by ordered 

recruitment of specific transcription factors and chromatin modifiers. Molecular 

Endocrinology 2006;20:2355-68. 

Kang J, Gemberling M, Nakamura M, Whitby FG, Handa H, Fairbrother WG, et al. A 

general mechanism for transcription regulation by Oct1 and Oct4 in response to 

genotoxic and oxidative stress. Genes and Development 2009a;23:208-22. 



82 
 

Kang J, Shakya A, Tantin D. Stem cells, stress, metabolism and cancer: a drama in two 

Octs. Trends in Biochemical Sciences 2009b;34:491-9. 

Lechner J, Welte T, Tomasi JK, Bruno P, Cairns C, Gustafsson J, et al. Promoter-

dependent synergy between glucocorticoid receptor and Stat5 in the activation of β-

casein gene transcription. Journal of Biological Chemistry 1997;272:20954-60. 

Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time 

quantitative PCR and the 2
-ΔΔCT

 method. Methods 2001;25:402-8. 

Magné S, Caron S, Charon M, Rouyez MC, Dusanter-Fourt I. STAT5 and Oct-1 form a 

stable complex that modulates cyclin D1 expression. Molecular and Cellular Biology 

2003;23:8934-45. 

Malhas AN, Lee CF, Vaux DJ. Lamin B1 controls oxidative stress responses via Oct-1. 

Journal of Cell Biology 2009;184:45-55. 

Nakshatri H, Nakshatri P, Currie RA. Interaction of Oct-1 with TFIIB. Implications for a 

novel response elicited through the proximal octamer site of the lipoprotein lipase 

promoter. Journal of Biological Chemistry1995;270:19613-23. 

Préfontaine GG, Lemieux ME, Giffin W, Schild-Poulter C, Pope L, LaCasse E, et al. 

Recruitment of octamer transcription factors to DNA by glucocorticoid receptor. 

Molecular and  Cellular Biology 1998;18:3416-30. 

Préfontaine GG, Walther R, Giffin W, Lemieux ME, Pope L, Haché RJ. Selective 

binding of steroid hormone receptors to octamer transcription factors determines 

transcriptional synergism at the mouse mammary tumor virus promoter. Journal of 

Biological Chemistry 1999;274:26713-9. 

Range R, Lepage T. Maternal Oct1/2 is required for Nodal and Vg1/Univin expression 

during dorsal-ventral axis specification in the sea urchin embryo. Developmental 

Biology 2011;357:440-9. 

Ren X, Siegel R, Kim U, Roeder RG. Direct interactions of OCA-B and TFII-I regulate 

immunoglobulin heavy-chain gene transcription by facilitating enhancer-promoter 

communication. Molecular Cell 2011;42:342-55. 

Roberts SB, Segil N, Heintz N. Differential phosphorylation of the transcription factor 

Oct1 during the cell cycle. Science 1991;253:1022-6. 

Robinson AR, Kwek SS, Hagemeier SR, Wille CK, Kenney SC. Cellular transcription 

factor Oct-1 interacts with the Epstein-Barr virus BRLF1 protein to promote 

disruption of viral latency. Journal of Virology 2011;85:8940-53. 

Rosen JM, Wyszomierski SL, Hadsell D. Regulation of milk protein gene expression. 

Annual Review of Nutrition 1999;19:407-36. 

Saito H, Oka T. Hormonally regulated double-and single-stranded DNA-binding 

complexes involved in mouse-casein gene transcription. Journal of Biological 

Chemistry 1996;271:8911-8. 

Schild-Poulter C, Shih A, Tantin D, Yarymowich NC, Soubeyrand S, Sharp PA, et al. 

DNA-PK phosphorylation sites on Oct-1 promote cell survival following DNA 

damage. Oncogene 2007;26:3980-8. 

Schreiber E, Matthias P, Müller MM, Schaffner W. Rapid detection of octamer binding 

proteins with ‘mini extracts’, prepared from a small number of cells. Nucleic Acids 

Research 1989;17:6419. 



83 
 

Sebastiano V, Dalvai M, Gentile L, Schubart K, Sutter J, Wu GM, et al. Oct1 regulates 

trophoblast development during early mouse embryogenesis. Development 

2010;137:3551-60. 

Shakya A, Cooksey R, Cox JE, Wang V, McClain DA, Tantin D. Oct1 loss of function 

induces a coordinate metabolic shift that opposes tumorigenicity. Nature Cell Biology 

2009;11:320-7. 

Sive HL, Roeder RG. Interaction of a common factor with conserved promoter and 

enhancer sequences in histone H2B, immunoglobulin, and U2 small nuclear RNA 

(snRNA) genes. Proceedings of National Academy of Sciences of the United States 

of America 1986;83:6382-6. 

Stöcklin E, Wissler M, Gouilleux F, Groner B. Functional interactions between Stat5 and 

the glucocorticoid receptor. Nature 1996;383:726-8. 

Wang P, Wang Q, Sun J, Wu J, Li H, Zhang N, et al. POU homeodomain protein Oct-1 

functions as a sensor for cyclic AMP. Journal of Biological Chemistry 

2009;284:26456-65. 

Wartmann M, Cella N, Hofer P, Groner B, Liu X, Hennighausen L, et al. Lactogenic 

hormone activation of Stat5 and transcription of the β-casein gene in mammary 

epithelial cells is independent of p42 ERK2 mitogen-activated protein kinase activity. 

Journal of Biological Chemistry 1996;271:31863-8. 

Watkin H, Streuli CH. Adenoviral-mediated gene transfer in two-dimensional and three-

dimensional cultures of mammary epithelial cells. Methods in Cell Biology 

2002;69:403-23. 

Wyszomierski SL, Rosen JM. Cooperative effects of STAT5 (signal transducer and 

activator of transcription 5) and C/EBPβ (CCAAT/enhancer-binding protein-β) on β-

casein gene transcription are mediated by the glucocorticoid receptor. Molecular 

Endocrinology 2001;15:228-40. 

Wyszomierski SL, Yeh J, Rosen JM. Glucocorticoid receptor/signal transducer and 

activator of transcription 5 (STAT5) interactions enhance STAT5 activation by 

prolonging STAT5 DNA binding and tyrosine phosphorylation. Molecular 

Endocrinology 1999;13:330-43. 

Yoshimura M, Oka T. Transfection of β-casein chimeric gene and hormonal induction of 

its expression in primary murine mammary epithelial cells. Proceedings of National 

Academy of Sciences of the United States of America 1990;87:3670-4. 

Yu-Lee LY. Prolactin modulation of immune and inflammatory responses. Recent 

Progress in Hormone Research 2002;57:435-55. 

Zhao F-Q. Octamer-binding transcription factors: genomics and functions (review). 

Frontiers in Bioscience 2013, in press. 

Zhao F-Q, Adachi K, Oka T. Involvement of Oct-1 in transcriptional regulation of β-

casein gene expression in mouse mammary gland. Biochimica Biophysica Acta 

2002;1577:27-37. 

Zhao F-Q, Zheng Y, Dong B, Oka T. Cloning, genomic organization, expression, and 

effect on β-casein promoter activity of a novel isoform of the mouse Oct-1 

transcription factor. Gene 2004;326:175-87. 



84 
 

Zwilling S, Annweiler A, Wirth T. The POU domains of the Oct1 and Oct2 transcription 

factors mediate specific interaction with TBP. Nucleic Acids Research 1994;22:1655-

62. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



85 
 

FIGURE LEGENDS 

Fig. 2.1. Lactogenic hormones induce the binding of Oct-1 to the β-casein gene promoter 

in vitro. (A) A schematic representation of the putative transcription factor-binding sites 

in the murine β-casein gene proximal promoter. The primers used for the qChIP assay 

(Primer F and Primer TR) are indicated. The abbreviations used are as follows: C/EBP, 

CCAAT/enhancer-binding protein; Runx2, Runt-related transcription factor 2; and TATA, 

TATA box. (B) ChIP assays were performed on chromatin prepared from the HC11 cells 

treated with HP for 0 min, 30 min, or 24 h using either anti-Oct-1 or anti-STAT5 

antibodies or normal rabbit IgG (Ctrl Ab). PCR was performed using primer F and 

Primer TR. (C and D) qPCR was performed to measure the binding dynamics of Oct-1 (C) 

and STAT5 (D) at the β-casein gene promoter in HC11 cells treated with HP for the 

indicated time periods. The IP data were normalized to the input DNA, and the quantity 

of the precipitated DNA is expressed as the fold change in the hormone-treated cells 

relative to the untreated cells. Three independent experiments were performed. The 

values are the mean ± SE. *P<0.05, **P<0.01, and n.s. = no significant difference. (E) 

Primary MECs were isolated from mid-pregnant mice and grown on matrigel until 

confluent. Two days later, the cells were primed followed by treatment either with or 

without HP stimulation for 24 hrs. β-Casein gene expression was analyzed by RT-PCR 

(top). The binding activity of Oct-1 at the β-casein gene promoter was measured using 

qChIP (bottom). The data represent the mean of three independent experiments ± SE. 

*P< 0.05. 
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Fig. 2.2. Oct-1 overexpression enhances HP-induced β-casein gene expression. (A) HC11 

cells were co-transfected with the pcDNA3.1 vector (V) or an Oct-1 expression plasmid 

(Oct-1B) along with a firefly luciferase reporter construct driven by the β-casein promoter 

and a Renilla luciferase control plasmid (phRL-CMV) followed by HP treatment for 24 h. 

The reporter luciferase activity levels are expressed as the mean values ± SE (left). The 

data were combined from three independent experiments. *P< 0.05. The Oct-1 

expression levels in transfected cells were monitored via Western blot analysis of the 

whole cell lysates using an anti-Oct-1 antibody (right). β-Actin was used as a loading 

control. (B) Western blot analysis was performed to measure the relative quantity of β-

casein protein in the whole cell lysates of HP-treated HC11 cells transfected with either 

the pcDNA3.1 (V) or Oct-1B plasmid (left). The densitometric analysis of β-casein 

expression shown represents the data of three independent experiments (right). The 

values are the mean ± SE. *P< 0.05. 

 

Fig. 2.3. Oct-1 knockdown inhibits HP-induced β-casein gene expression. (A) HC11 Lux 

cells, which are stably transfected with the mouse β-casein promoter (-344/-1)/luciferase 

reporter, were transfected with either Oct-1 siRNA #1 (Oct-1_#1), Oct-1 siRNA #2 (Oct-

1_#2), or control siRNA (Ctrl) followed by HP treatment for 24 h. The luciferase activity 

levels were then assayed and normalized by the protein concentrations (top). The relative 

luciferase activity levels are expressed as the mean values ± SE from three independent 

experiments (*P< 0.05). Oct-1 knockdown efficiencies in the cells were monitored via 

qRT-PCR and Western blot analysis (middle and bottom). β-Actin was used as a loading 
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control. (B) Western blot analysis was performed to measure the relative quantity of 

endogenous β-casein protein in whole cell lysates from HP-treated HC11 cells transfected 

with either Oct-1 siRNA #1 or Ctrl siRNA (top). The densitometric analysis of the β-

casein expression shown represents three independent experiments (bottom). The values 

represent the mean ± SE. *P< 0.05. 

 

Fig. 2.4. The effects of HP treatment on Oct-1 mRNA and protein expression levels in 

HC11 cells. (A-C) HC11 cells were treated with HP for 0, 1, 3, 6, 12, 24, or 48 h, and the 

total RNA isolated from the cells treated or untreated with HP was then analyzed via 

qRT-PCR for β-casein (A, positive control), GAPDH (B, negative control), and Oct-1 (C) 

mRNA expression. The data are expressed as the mean of three independent experiments 

± SE. **P<0.01 and ***P<0.001. (D) Western blot analysis was performed to examine 

Oct-1 protein expression in HC11 cells treated with HP for 0, 1, 6, 24, or 48 h. β-Actin 

was used as a loading control. 

 

Fig. 2.5. HP induce the translocation of STAT5 and GR but not Oct-1. (A) HC11 cells 

were treated with HP for the indicated time periods, and the cytoplasmic and nuclear 

fractions were subsequently isolated. Western blot analyses were performed using 

specific antibodies against Oct-1, STAT5, GR, TBP (nuclear loading control), and β-actin 

(cytoplasmic loading control). (B) HC11 cells were treated with or without HP for 30 min. 

The intracellular localization of Oct-1 was examined by immunofluorescence staining. 
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Intracellular localization of STAT5 was also studied as a positive control. DAPI = 4',6-

diamidino-2-phenylindole (nuclear staining). 

 

Fig. 2.6. HP induce the formation of the Oct-1-STAT5-GR ternary complex. (A) Whole 

cell lysates of HC11 cells treated either with or without HP for 30 min were 

immunoprecipitated using antibodies against Oct-1 (top), STAT5 (middle), and GR 

(bottom) and were subsequently analyzed via Western blot analyses with anti-Oct-1, anti-

STAT5, anti-GR, and anti-β-actin (control) antibodies. A normal rabbit IgG (Ctrl Ab) 

was used in IP assays as an antibody-specificity control. Five percent of each whole cell 

lysate was stored before IP and was used as an input control. (B) IP assays with the anti-

Oct-1 antibody were also performed in primary MECs to examine the association of Oct-

1 with STAT5 and GR in response to HP stimulation. (C) A schematic view of the 

biotinylated oligonucleotides used in the DNA pull-down assay in (D). The Oct-1-

binding motif is printed in boldface for the BK_C_WT sequence. The mutated Oct-1-

binding site is underlined for the BK_C_MT sequence. (D) Nuclear extracts isolated from 

the HP-treated and HP-untreated HC11 cells were incubated with either the BK_C_WT 

(lanes 1 and 2) or BK_C_MT (lanes 3 and 4) biotinylated oligonucleotides. DNA-protein 

complexes were then captured using streptavidin-coated Dynabeads. The captured 

proteins were analyzed via Western blot analyses using the indicated antibodies. 

 

Fig. 2.7. Oct-1 facilitates STAT5 and GR binding at the β-casein promoter following HP 

stimulation. (A) A schematic view of the biotinylated oligonucleotides used in the DNA 
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pull-down assays in (B) and (C). BK_B_WT comprises a STAT5 binding site and two 

half GREs, which are indicated with boldface and underlined, respectively. (B and C) 

HC11 cells transfected with either Oct-1 siRNA #1 (B) or STAT5 siRNA (C) were 

treated either with or without HP, and nuclear extracts were then prepared for DNA pull-

down assays. The captured proteins were analyzed via Western blot analyses using the 

antibodies indicated on the right side of each panel. 

 

Fig. 2.8. Oct-1 synergistically interacts with STAT5 and GR in the HP-mediated 

induction of β-casein gene promoter activity. In 12-well plates, HC11 cells were 

transfected with a firefly luciferase reporter construct driven by the β-casein promoter; a 

Renilla luciferase control plasmid (phRL-CMV); and Oct-1, STAT5, and GR expression 

plasmids or various combinations of these plasmids, followed by HP treatment for 24 h. 

In all groups, the total amount of DNA transfected was balanced with the corresponding 

vector DNA on a molar basis. The relative luciferase activity levels are expressed as the 

mean values ± SE (n=10). Three independent experiments were carried out. *P<0.05, 

**P<0.01, and n.s. = no significant difference. 

 

Fig. 2.9. Impaired Oct-1-STAT5 interaction significantly diminishes HP-induced β-

casein gene promoter activity. (A) COS-7 cells were transfected with PrlR, Oct-1, and 

GR expression plasmids; a firefly luciferase reporter construct driven by the β-casein 

promoter; and a Renilla luciferase control plasmid (phRL-CMV) along with pcDNA3.1, 

mutated STAT5 (MT STAT5), or wild-type STAT5 (WT STAT5). Following HP 



90 
 

treatment for 24 h, the cells were lysed and the luciferase activity levels were analyzed. 

*P<0.05 and **P<0.01. (B) The cell lysates from (A) were used in IP analyses to 

examine the interactions of Oct-1 with STAT5 and GR. The immunoprecipitated proteins 

were analyzed via Western blot analyses using the antibodies indicated on the right side 

of the panel. (C) The transfected cells from (A) were also used in EMSA analyses to 

examine the binding activity of the mutated and wild-type forms of STAT5 using a 

biotinylated STAT5-binding-site-containing oligonucleotide probe corresponding to the 

β-casein gene promoter. Nuclear extracts isolated from pcDNA3.1-transfected cells were 

used as a negative control. In lanes 4-7, either the anti-STAT5 antibody or the normal 

rabbit IgG was added to verify the specific binding. 
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Fig. 2.1 
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Fig. 2.2 
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Fig. 2.3 
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Fig. 2.4 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



95 
 

Fig. 2.5 
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Fig. 2.6 
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Fig. 2.7 
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Fig. 2.8 
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Fig. 2.9 
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ABSTRACT 

Octamer-binding transcription factor-1 (Oct-1) is found to mediate lactogenic 

hormones (prolactin and glucocorticoids, HP)-induced β-casein gene expression in 

mammary alveolar secretory epithelial cells (MECs). The mammary gland also expresses 

Oct-2 isoform. In this study, we show that Oct-2 is also involved in HP-induced β-casein 

expression. Oct-2 endogenously binds to the β-casein promoter in MECs, and HP induce 

Oct-2 binding activity via mechanisms other than increasing Oct-2 expression or 

inducing Oct-2 translocation to the nucleus. Oct-2 transactivates HP-induced β-casein 

gene expression, and this function is exchangeable with Oct-1. In MECs, Oct-2 is found 

to physically interact with Oct-1 regardless of HP treatment. However, HP induce 

physical interactions of Oct-2 with both signal transducer and activator of transcription 5 

(STAT5) and glucocorticoid receptor (GR). These results provided biochemical evidence 

that Oct-2 may form a heteromer with Oct-1 in induction of β-casein gene expression by 

HP in MECs. 

 

Abbreviations: EGF, epidermal growth factor; EMSA, electrophoresis mobility shift 

assay; GAPDH, glyceraldehyde-3-phosphate dehydrogenase; GR, glucocorticoid receptor; 

HP, hydrocortisone (glucocorticoids) and prolactin; IP, immunoprecipitation; MEC, 

mammary alveolar secretory epithelial cell; Oct, octamer-binding transcription factor; 

PMSF, phenylmethylsulfonyl fluoride; POU, Pit-1, Oct, and Unc86; POUH, POU 

homeodomain; POUS, POU-specific domain; PrlR, prolactin receptor; qChIP, 

quantitative chromatin immunoprecipitation; qPCR, quantitative PCR; qRT-PCR, 
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quantitative reverse transcription PCR; snRNA, small nuclear RNA; STAT5, signal 

transducer and activator of transcription 5; TBP, TATA box-binding protein 

 

Keywords: Gene expression; Hormonal regulation; Milk protein; Octamer binding 

transcription factor; Transcriptional regulation 

 

INTRODUCTION 

β-Casein gene encodes one of the major milk proteins, and its expression has been 

widely used as a marker of functional differentiation of mammary alveolar secretory 

epithelial cells (MECs). Studies of the expression of β-casein and other milk protein 

genes have led to the discovery of the prolactin receptor (PrlR)/Janus kinase 2 

(JAK2)/signal transducer and activator of transcription 5 (STAT5) signaling pathway, 

which is implicated in normal mammary gland development, lactation, and breast 

tumorigenesis (Anderson et al., 2007, Furth et al., 2011 and Hennighausen and Robinson, 

2008). The transcription of the β-casein gene is controlled by modular promoter regions, 

termed blocks A, B, and C, which contain multiple binding sites for different 

transcription factors. Binding of transcription factors to these blocks either induces or 

suppresses β-casein gene expression, with varying combinations acting synergistically to 

stimulate or inhibit transcription (Rijnkels et al., 2010, Rosen et al., 1999 and Yoshimura 

and Oka, 1990). For example, the lactogenic hormone complex of prolactin and 

glucocorticoids (HP) respectively activate STAT5 and glucocorticoid receptor (GR) 

transcription factors. In turn, STAT5 and GR synergistically stimulate β-casein gene 
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expression through binding at A and B promoter blocks and protein–protein interactions 

between each other and other transcription factors (Lechner et al., 1997). 

Our previous studies showed that the octamer-binding transcription factor-1 (Oct-

1) binds to the block C at the β-casein gene promoter and also participates in HP-induced 

β-casein gene expression by forming a ternary protein complex with STAT5 and GR in 

MECs (Dong and Zhao, 2007a, Qian and Zhao, 2013 and Zhao et al., 2002). Oct-1 

belongs to a group of highly conserved transcription factors that specifically bind to the 

octamer motif (ATGCAAAT) and closely related sequences that are found in promoters 

and enhancers of a wide variety of both ubiquitously expressed and cell type-specific 

genes (Zhao, 2013). To date, eight genes that encode these Oct proteins, Oct-1, Oct-2, 

Oct-3/4, Oct-6, Oct-7, Oct-8, Oct-9, and Oct-11, have been cloned and characterized 

(Zhao, 2013). All Oct proteins contain a POU specific domain (POUS) in addition to a 

POU homeodomain (POUH), which is distantly related to the classic homeodomain 

encoded by homeobox genes (Kang et al., 2009). Except for the ubiquitous expression 

pattern of Oct-1, all other members of the Oct factors are thought to be expressed in a 

developmental stage-dependent or tissue-restricted manner. However, Oct-2, which is 

thought to be expressed only in B lymphocytes and neuronal cells and to be mainly 

involved in immunoglobulin gene expression, may also be ubiquitously expressed in a 

variety of tissues including the mammary gland (Dong and Zhao, 2007b). Oct-1 and Oct-

2 recognize their target sequences in an identical fashion, and their optimal recognition 

site is the canonical octamer motif (Herr and Cleary, 1995). Additionally, Oct-1 and Oct-

2 can cooperatively bind to the IgH promoter and form a heteromeric complex in vitro 
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(Herr and Cleary, 1995). These previous findings led to our hypothesis that Oct-2 is 

involved in lactogenic hormones-induced β-casein gene expression in MECs. 

 

MATERIALS AND METHODS 

Materials 

Prolactin (L6520), hydrocortisone (one of glucocorticoids, H6909), insulin 

(I0516), and murine epidermal growth factor (EGF, E4127) were obtained from Sigma 

(St. Louis, MO). Heat-inactivated fetal calf serum (1082-147), RPMI 1640 medium 

(31800-022), gentamicin (15750-060), antibiotic-antimycotic solution (15240-062), 

normal rabbit IgG (10500C), and Dynabeads® Protein A (100-01D) were purchased from 

Invitrogen (Carlsbad, CA). Charcoal-stripped horse serum (52-0745) was purchased from 

Cocalico Biologicals (Reams town, PA). The mouse Oct-2 (mOct-2/pcDNA3.1), Oct-1B 

(mOct-1B/pcDNA3.1), GR (mGR/pcDNA3.1), STAT5a (mSTAT5a/pcDNA3.1), and 

PrlR (mPrlR/pcDNA3.1) expression plasmids as well as the wild-type mouse β-casein 

promoter (−258/+7)/luciferase construct (LHRRWT/pGL3) have been described 

previously (Dong and Zhao, 2007a). The Renilla luciferase control plasmid (phRL-CMV) 

was purchased from Promega (Madison, WI). The anti-Oct-2 (sc-233), anti-Oct-4 (sc-

5279), anti-TATA box binding protein (TBP) (sc-273), anti-actin (sc-1615-R), anti-

STAT5 (sc-1081), and anti-GR (sc-1004) antibodies were purchased from Santa Cruz 

Biotechnologies (Santa Cruz, CA). The anti-Oct-1 (A310-610A) antibody was provided 

by Bethyl Laboratories (Montgomery, TX). 
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Animals 

All of the animal work and handling was carried out in accordance with 

institutional policies and federal guidelines and approved by the University of Vermont 

Instituitional Animal Care and Use Committee (IACUC). C57BL/6 mice were purchased 

from Jackson laboratory (Bar Harbor, ME). Mice were housed in air- and temperature-

controlled cage shelves on a 12 h light–dark cycle and were fed mouse chow (#5015, Lab 

Diet, St. Louis, MO) and water ad libitum. 

Cell culture, transfection, and luciferase assays 

The murine MEC line, HC11, was cultured as previously described (Qian and 

Zhao, 2013). HC11 Lux cells, which are HC11 cells stably transfected with a β-casein 

promoter/luciferase construct (p-344/-1βc-Lux), were obtained from Dr. Hynes (Friedrich 

Miescher Institute, Switzerland) (Wartmann et al., 1996) and cultured as described for 

HC11 cells. Primary mouse MECs were isolated following the procedures reported 

previously (Watkin and Streuli, 2002). Briefly, the mammary glands from mid-pregnant 

(10-12 d) mice were pooled, minced, and digested by collagenase. Next, the epithelial 

cells were enriched via centrifugation and cultured in complete growth medium (D-

MEM/F-12 supplemented with 10% fetal calf serum, 5 μg/ml bovine insulin, 10 ng/ml 

EGF, 1 μg/ml hydrocortisone, 1× antibiotic-antimycotic solution, and 50 μg/ml 

gentamicin). COS-7 cells were grown in D-MEM medium containing 10% fetal calf 

serum, 1× antibiotic–antimycotic solution, and 50 μg/ml gentamicin. 

The methods for the transfection and luciferase assay have been described 

previously (Qian and Zhao, 2013). In the Oct-1-overexpression studies, HC11 cells were 
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transfected with either 0.2 pmol of pcDNA3.1 or mOct-2/pcDNA3.1, 0.2 pmol of 

LHRRWT/pGL3, and 0.004 pmol of phRL-CMV using Lipofectamine 2000 (Invitrogen). 

In the siRNA transfection experiments, HC11 Lux cells were transfected with either 40 

pmol of an Oct-2 siRNA [siRNA #151207, Ambion (Austin, TX)], or a control siRNA 

(siRNA #4611, Ambion). In the plasmid and siRNA co-transfection experiment, HC11 

Lux cells were transfected with 0.1 pmol of plasmid (Oct-2 plasmid or pcDNA3.1) and 

20 pmol of siRNA (Oct-2 siRNA or control siRNA). For the co-transfection experiments 

in COS-7 cells, COS-7 cells were transfected with 0.05 pmol of the PrlR, Oct-1B, Oct-2, 

GR, or STAT5 expression plasmid or various combinations of these constructs along 

with 0.2 pmol of LHRRWT/pGL3 and 0.004 pmol of phRL-CMV. In all transfection 

experiments, the total molar amount of DNA was balanced using pcDNA3.1 or the 

control siRNA. After 10-12 h, the transfection medium was replaced with hormone 

medium containing 50 μg/ml gentamicin, 1 μg/ml hydrocortisone, 5 μg/ml bovine insulin, 

and 5 μg/ml sheep prolactin. Luciferase activities were examined after 24 h of hormone 

treatment. The Renilla luciferase control plasmid was used to normalize transfection 

efficiency. In HC11 Lux cells, the luciferase activity levels were normalized to protein 

concentrations. 

Western blotting 

Nuclear and cytoplasmic proteins were extracted as the method described by 

Schreiber et al. (1989). Whole cell protein lysates were prepared by adding NP40 lysis 

buffer (Invitrogen) consisting of 50 mM Tris, pH 7.4, 250 mM NaCl, 5 mM EDTA, 50 
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mM NaF, 1 mM Na3VO4, 1% NP40, and 0.02% NaN3 with freshly added protease 

inhibitor cocktail and PMSF. 

The protein concentrations were determined using the Microplate BCA Protein 

Assay Kit (Thermo Scientific, Rockford, IL). Equal amounts of protein from each 

treatment were analyzed via Western blotting with specific antibodies against Oct-1, Oct-

2, STAT5, GR, TBP, β-actin, and β-casein, as described previously (Zhao et al., 2002). 

Quantitative chromatin immunoprecipitation (ChIP) assay 

ChIP was performed as described previously by Kabotyanski et al. (2006) with a 

few modifications. Briefly, cells were incubated with 1% formaldehyde for 10 min at 

37 °C to cross-link proteins to DNA. Cell lysates were sonicated on ice to shear 

chromatin to an average DNA length of 200-1000 bp as verified by agarose gel 

electrophoresis. The sheared chromatin was pre-cleared with Protein A. Before 

performing the IP, 1% of the total sheared chromatin was saved as a total input control. 

Next, the sheared chromatin was incubated with either an anti-Oct-2 antibody or the 

normal rabbit IgG (2 μg, negative control) overnight at 4 °C with continual rotation. The 

cross-links of immunoprecipitated DNA-protein complexes were reversed, and the DNA 

was finally purified by phenol/chloroform extraction and ethanol precipitation. After 

purification, 2 µl of the final precipitated DNA was examined by quantitative real-time 

PCR using SsoFast EvaGreen supermix (Bio-Rad, Hercules, CA) with the forward primer 

5'-TAGAATTTCTTGGGAAAGAC-3' and the reverse primer 5'-

CTTTAGTGGAGGACAAGAGA-3' for the β-casein promoter. The PCR efficiency of 

the primers was verified and the IP data were normalized to the input DNA. 
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Quantitative reverse transcription PCR (qRT-PCR) 

RNA was isolated from HC11 cells using Trizol reagent (Invitrogen). Reverse 

transcription was performed using the SuperScript II reverse transcriptase (Invitrogen) 

per the manufacturer’s protocol. TaqMan gene expression assays were used to quantify 

the mRNA expression levels of Oct-2 [mm00448353_m1, Applied Biosystems (Foster 

City, CA)] and β-actin (Mm01205647_g1)]. The PCR reactions were performed in 

duplicate in a 10 μl volume containing 5 μl Universal PCR Master Mix (#4364338, 

Applied Biosystems), 0.5 μl TaqMan assay, and 4.5 μl diluted cDNA (50 ng reverse-

transcribed RNA). The relative expression levels of the target genes were normalized 

with the β-actin expression levels and calculated using the 2
−ΔΔCT

 method (Livak and 

Schmittgen, 2001). 

Immunoprecipitation (IP) 

IPs were carried out according to the instructions provided with the Relia 

BLOTTING® IP/Western Blotting Kit (Bethyl Laboratories). In general, 1 mg of cell 

extract was incubated overnight with 3 μg of anti-Oct-2 antibody at 4 °C with rotation. 

The immune complexes were captured using Dynabeads® Protein A and analyzed via 

Western blotting. 

Electrophoresis mobility shift assays (EMSAs) 

EMSAs were carried out as described previously (Zhao et al., 2002). The 

oligonucleotide used in EMSAs was the -69/-38 region (block C) of mouse β-casein gene 

promoter, 5'-ATCTTACAAACCACAAAATTAGCATGTCATTA-3' (Oct binding motif 
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is printed as boldface). Nuclear proteins (5 μg) from the mammary gland of late pregnant 

mice (17-19 d) or HeLa cells or in vitro translated Oct-1 or/and Oct-2 products (0.5-2 μl) 

were incubated for 30 min with the block C oligonucleotide probe, end labeled with [γ-

32
P] ATP. Nuclear extracts of HeLa cells were purchased from Santa Cruz Biotechnology. 

The mouse Oct-2 (mOct-2/pcDNA3.1) and Oct-1B (mOct-1B/pcDNA3.1) expression 

plasmids were transcribed and translated in vitro following the technical manual of the 

TNT quick coupled transcription/translation system (Promega). For the binding reactions 

with antibody, antibody was added to the binding reaction and incubated on ice for 30-60 

min before addition of labeled probe. Incubation was subsequently continued for an 

additional 20 min at room temperature. 

Immunofluorescence microscopy 

Immunofluorescence microscopy was performed as previously described (Dong 

and Zhao, 2007a). HC11 cells were grown on glass coverslips to confluency and then 

treated with or without 1 μg/ml hydrocortisone and 5 μg/ml prolactin for 30 min. The 

cells were subsequently fixed with 4% paraformaldehyde in PBS, pH 7.4 (Invitrogen) at 

room temperature for 20 min. Next, the cells were washed twice in PBS and 

permeabilized in 0.1% Triton X-100 in PBS (pH 7.4) with 0.5% BSA for 15 min at room 

temperature, followed by washing twice in PBS, pH 7.4 with 1% BSA for 10 min. The 

immunofluorescence staining of the cells was carried out using an anti-Oct-2 antibody (2 

μg/ml in PBS, pH 7.4 with 1% BSA) or normal rabbit IgG followed by an Alexa Fluor® 

568-conjugated secondary antibody (1:1000 dilution in PBS, pH 7.4 with 1% BSA). 
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Finally, the coverslips were washed and examined under a confocal microscope (Bio-Rad, 

Hercules, CA). 

Statistical analysis 

All statistical analyses were carried out using JMP statistical software (SAS, Cary, 

NC). The comparisons between two groups were performed using t-test. A one-way 

ANOVA test with Turkey’s post hoc analysis was performed when comparisons were 

performed between more than two groups. A P < 0.05 is declared as a significant 

difference. 

 

RESULTS 

Both Oct-1 and Oct-2 bind to the block C of the β-casein 

promoter, and the binding activity can be induced by HP 

The expression of Oct-2 in mouse MECs was confirmed by Western blotting (Fig. 

3.1A). To further confirm that Oct-2 binds to the β-casein gene promoter in vivo and to 

determine whether the binding activity is responsive to HP treatment as that of Oct-1 

(Qian and Zhao, 2013) in MECs, we performed ChIP assays in HC11 cells using the anti-

Oct-2 antibody at different time points after HP treatment. The primers were designed to 

amplify the β-casein gene proximal promoter, which contains the binding sites for Oct-2. 

The binding activity of Oct-2 to the β-casein gene promoter was relatively low in the 

absence of HP but increased dramatically at 30 min of HP treatment followed by an 

appreciable decrease at 3 and 24 h (Fig. 3.1B, left panel). Normal rabbit IgG (Ctrl AB), a 
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negative control, was unable to immunoprecipitate Oct-2-DNA complex (Fig. 3.1B, left 

panel). The right panel of Fig. 3.1B shows the quantitative effects of HP on Oct-2 binding 

activity on the β-casein gene proximal promoter as determined by qPCR. These results 

demonstrated that Oct-2 binds to the β-casein gene promoter in MECs and that this 

binding is regulated by HP. 

HP do not influence Oct-2 expression nor its subcellular 

localization in MECs 

HP may affect the binding of Oct-2 to the β-casein gene promoter by increasing 

either Oct-2 expression levels or Oct-2 amount in the nucleus. To test these possibilities, 

HC11 cells were cultured with or without HP for different time periods. Oct-2 mRNA 

and protein expression levels were then measured via qRT-PCR and Western blotting, 

respectively. As shown in Fig. 3.2A and B, the mRNA and protein levels of Oct-2 were 

not influenced by HP. The expression levels of β-casein gene and GAPDH gene were 

also examined as a positive or negative control, respectively. A significant HP-induction 

of β-casein mRNA expression was detected while the GAPDH mRNA expression was 

not affected by HP treatment (data not shown). 

Since previous results have showed that HP could induce the translocation of 

downstream signaling molecules, like STAT5 and GR, from the cytoplasm to the nucleus 

within minutes (Lechner et al., 1997), we investigated whether HP treatment affects Oct-

2 subcelluar localization. HC11 cells were treated with or without HP followed by 

immunofluorescence staining. As shown in Fig. 3.2C, Oct-2 was primarily localized in 

the nucleus regardless of HP treatment. 



112 
 

Oct-2 serves as a transcriptional activator of the β-casein gene 

expression 

To examine the effect of Oct-2 on HP-induced β-casein gene expression in MECs, 

we first examined the effects of Oct-2 over-expression on HP-induced β-casein gene 

promoter activity and endogenous β-casein gene expression in HC11 cells. HC11 cells 

were co-transfected with the β-casein gene promoter (-258/+7)/firefly luciferase reporter 

plasmid (LHRRWT/pGL3) and the Renilla luciferase reporter vector (phRL-CMV, a 

transfection control) along with either an Oct-2 expression plasmid or the empty vector 

pcDNA3.1, followed by HP treatment. Fig. 3.3A (left) shows that over-expression of 

Oct-2 further dramatically stimulated HP-induced β-casein gene promoter activity by 

~3.5 fold in comparison with the empty vector control group. Fig. 3.3A (right) 

demonstrates the over-expression of Oct-2 protein in Oct-2 plasmid-transfected cells. In 

addition, Oct-2 over-expression also resulted in a ~2.5-fold increase in the HP-induced 

endogenous β-casein gene expression in HC11 cells (Fig. 3.3B). 

To further confirm the transactivator role of Oct-2 in the HP induction of β-casein 

gene expression, an Oct-2 siRNA was employed to knockdown Oct-2 expression in 

HC11 Lux cells, which are stably transfected with a luciferase reporter flanked with the 

β-casein gene proximal promoter at the 5' end. The Oct-2 siRNA resulted in an 

appreciable decrease in the amount of Oct-2 protein in HC11 Lux cells (Fig. 3.3C, right) 

and meanwhile significantly inhibited the HP-induced β-casein gene promoter activity by 

~60% compared with the cells transfected with a control siRNA (Fig. 3.3C, left). Oct-2 

knockdown also led to a ~80% inhibition in the HP-induced endogenous β-casein gene 



113 
 

expression (Fig. 3.3D). Finally, co-transfection of the Oct-2 expression plasmid along 

with the Oct-2 siRNA in HC11 Lux cells rescued the inhibitory effect of Oct-2 siRNA 

(Fig. 3.3E). Therefore, these results clearly indicated that Oct-2 serves as a transactivator 

in HP-induced β-casein gene expression. 

Oct-2 interacts with Oct-1 in mammary epithelial cells, and 

this interaction does not depend on HP 

To examine if there is an interaction between Oct-2 and Oct-1, co-IPs were 

performed. Nuclear protein samples were prepared from HP-treated and -untreated HC11 

cells transfected with both Oct-1 and Oct-2 plasmids and then immunoprecipitated with 

an anti-Oct-2 antibody. As shown in Fig. 3.4A, lanes 5 and 6, the anti-Oct-2 antibody co-

immunoprecipitated Oct-1 regardless of HP treatment, while the normal rabbit IgG (Ctrl 

AB) failed to co-immunoprecipitate Oct-1 (Fig. 3.4A, lane 4). 

To examine the effects of interaction between Oct-2 and Oct-1 on HP-induction 

of β-casein gene expression, co-transfection experiments were performed in HC11 cells 

with Oct-1 and Oct-2 expression plasmids. As shown in Fig. 3.4B, transfection with 

either Oct-1 or Oct-2 plasmid significantly induced the β-casein gene promoter activity, 

but co-transfection of both plasmids together did not further increase the promoter 

activity. In addition, it appeared that Oct-2 had a more potent effect than Oct-1. Co-

transfection with Oct-1 and Oct-2 siRNAs showed the similar, but inhibitive effects in 

HC11 Lux cells (Fig. 3.4C).  
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Oct-2 synergistically interacts with both STAT5 and GR in 

HP-induction of β-casein promoter activity 

Induction of β-casein transcription by HP in the mammary gland is mediated 

through the synergistic interaction of GR and STAT5. To test whether Oct-2 can 

functionally interact with these two factors, COS-7 cells were reconstituted to be 

lactogenic hormone-responsive by co-transfection with the Oct-2, STAT5, or GR 

expression plasmids or various combinations of these plasmids along with PrlR 

expression plasmid, β-casein promoter/firefly luciferase construct, and Renilla luciferase 

control plasmid, followed by HP treatment. As shown in Fig. 3.5A, HP induction of β-

casein promoter activity was low when the individual plasmids were transfected. When 

two of the Oct-2, STAT5, and GR plasmids were co-transfected, however, HP induction 

of the promoter activity increased significantly (Fig. 3.5A, groups 4, 5, and 6), and the 

highest promoter activity was achieved only in the presence of all three plasmids (Fig. 

3.5A, group 7). To examine whether Oct-2 and Oct-1 synergistically interact in the 

presence of STAT5 and GR, the expression plasmids of STAT5 and GR were co-

transfected with the Oct-1 or Oct-2 plasmid or both. As shown in Fig. 3.5B, either Oct-2 

or Oct-1 showed synergistic activation with GR and STAT5, however, co-transfection of 

both plasmids did not further increase the promoter activity, consistent with the results 

reported in Fig. 3.4B and C. 

To test whether Oct-2 physically interacts with GR and STAT5, nuclear extracts 

prepared from HP-treated or -untreated HC11 cells were immunoprecipiated with an anti-

Oct-2 antibody. As shown in Fig. 3.5C, the anti-Oct-2 antibody co-immunoprecipitated 
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STAT5 and GR in the cells treated with HP for 30 min (Fig. 3.5C, the third and fourth gel, 

lane 3), whereas STAT5 and GR were not associated with Oct-2 in the absence of HP 

(Fig. 3.5C, the third and fourth gel, lane 2). Oct-1 and Oct-2 were associated together 

independent of HP treatment (Fig. 3.5C, the first and second gel, lanes 2 and 3), 

consistent with the data in Fig. 3.4A. As expected, normal rabbit IgG (Ctrl Ab) did not 

co-immunoprecipitate Oct-1, Oct-2, STAT5, and GR. These results demonstrated that HP 

induced the physical interactions of Oct-2 with STAT5 and GR.  

 

DISCUSSION 

Oct-2 has been considered to be B cell- and neuronal cell-specific (Latchman, 

1996). This study provided further evidence to support our previous finding that Oct-2 is 

also expressed in mouse mammary gland (Dong and Zhao, 2007b). These evidence 

include the Western blotting and immunofluorescence staining of Oct-2 in mammary 

epithelial cells (Figs. 3.1A and 3.2C). Furthermore, this study provided functional 

evidence of Oct-2 and its interactions with other proteins in MECs. 

In this study, we demonstrated that, like its counterpart Oct-1 (Qian and Zhao, 

2013), Oct-2 is involved in the hormonal induction of β-casein gene expression by HP in 

mouse MECs. This involvement is supported by two lines of evidence: 1) The 

endogenous binding of Oct-2 on β-casein promoter was showed by our ChIP assay, and 

this binding activity was induced by HP (Fig. 3.1B); and 2) Overexpression of Oct-2 (Fig. 

3.3A and B) or knockdown of endogenous Oct-2 expression (Fig. 3.3C and D) 
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dramatically increased or inhibited β-casein promoter activity and endogenous β-casein 

expression, respectively. 

The physical interaction between Oct-1 and Oct-2 is supported by our IP results 

(Figs. 3.4A and 3.5C). These two proteins could be co-immunoprecipitated together, and 

this association was independent of HP treatment. These results correlate well with 

previous published results, which showed that Oct-1 and Oct-2 form cooperative homo- 

or heterodimer on a regulatory site in immunoglobulin heavy-chain (IgH) promoters 

(Herr and Cleary, 1995), and the formation of the homo-or hetero-dimer is mediated by 

both POU homeodomain and specific domain (Verrijzer et al., 1992). However, the 

interaction between Oct-1 and Oct-2 does not synergistically stimulate HP-induced β-

casein gene expression because the effects of over-expression or knockdown of both Oct-

1 and Oct-2 together on the β-casein promoter activity were not more than the sum of the 

over-expression or knockdown of individual factors (Figs. 3.4B, C and 3.5B). It appears 

that Oct-2 and Oct-1 are functionally interchangeable in the regulation of β-casein gene. 

This observation is consistent with previous studies in Oct-1 or Oct-2 knockout mice in 

which Oct-1 and Oct-2 operate redundantly in regulating B cell development and IgG 

transcription (Wang et al., 2004). Aside from IgG gene, U2 snRNA (Ström et al., 1996; 

Tanaka and Herr, 1990), U6 snRNA (Murphy et al., 1992), and H2B genes (Hinkley and 

Perry, 1992) are also regulated by both Oct-1 and Oct-2 interchangeably. 

 Additionally, this study showed that like Oct-1 (Qian and Zhao, 2013), Oct-2 is 

also induced by HP to physically interact with both STAT5 and GR (Fig. 3.5C), and the 

interactions of Oct-2 with these two factors together play a synergistic role in the process 
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of HP-induction of β-casein gene expression (Fig. 3.5A). STAT5 and GR are the 

essential downstream signaling molecules of prolactin and glucocorticoids, respectively 

(Lechner et al., 1997a, 1997b). It is well established that synergistic interaction between 

these two factors mediates induction of β-casein gene expression by HP (Rijnkels et al., 

2010; Rosen et al., 1999). Because we have shown that Oct-1 physically interacts with 

STAT5 and GR on the β-casein promoter in our previous study (Qian and Zhao, 2013) 

and this study showed the physical interaction of Oct-2 with Oct-1 on the same promoter, 

these four factors may form a hetero-complex together in HP-induced β-casein 

expression. 

In this study, Oct-2 binding to block C of the β-casein promoter was induced by 

HP in mammary epithelial cells (Fig. 3.1B). This induction did not result from the 

stimulation of Oct-2 expression or the induction of Oct-2 nuclear translocation by HP 

(Fig. 3.2). One of the possible mechanisms for this induction may be the recruitment of 

Oct-2 to the DNA via its interactions with Oct-1, STAT5, and GR because HP induces 

Oct-1, STAT5, and GR binding to the β-casein promoter (Kabotyanski et al., 2006; Qian 

and Zhao, 2013). Another possible mechanism is that HP may induce post-translational 

modifications of Oct-2, such as phosphorylation, glycosylation, and sumoylation. These 

modifications may enhance its DNA binding activity. For example, phosphorylation of 

Oct-2 by protein kinase A, protein kinase C, and casein kinase 2 in vitro regulates its 

DNA binding specificity (Grenfell et al, 1996); alternative phosphorylation and 

glycosylation of several residues of Oct-2 are involved in differential binding behaviors 

of Oct-2 to the octamer motif (Ahmad et al., 2006). 
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In summary, results from this study showed for the first time that the lactogenic 

hormones, prolaction and glucocorticoids, induce physical interactions of Oct-2 with Oct-

1, STAT5 and GR in activation of β-casein gene expression in mouse MECs. 
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FIGURE LEGENDS 

Fig. 3.1. Both Oct-1 and Oct-2 bind to the block C region of the β-casein promoter and 

the binding activity of Oct-2 can be induced by prolactin and hydrocortisone (HP) in 

mammary epithelial cells. (A) Western blotting analysis of Oct-2 and TATA-binding 

protein (TBP) expression in nuclear extracts of HC11 cells and primary mouse mammary 

epithelial cells (PMEC). PC= positive control (in vitro translated Oct-2). (B) Chromatin 

immunoprecipitation (ChIP) analyses of Oct-2 binding activity at the β-casein promoter 

in HC11 cells treated with or without HP for indicated time periods using either an anti-

Oct-2 antibody or normal rabbit IgG (Ctrl AB) (left panel). The quantitative data obtained 

by quantitative PCR (right panel) represent the mean of three independent experiments ± 

SE. Bars with different letters are significantly different (P< 0.05). 

 

Fig. 3.2. Effects of prolactin and hydrocortisone (HP) treatment on Oct-2 expression and 

subcellular localization in HC11 cells. (A and B) Quantitative reverse transcription PCR 

(qRT-PCR) analysis of Oct-2 mRNA expression (A) and Western blotting analysis of 

Oct-2 protein expression (B) in HC11 cells treated with or without HP  for 48 h. The data 

represent the mean of three independent experiments ± SE. (C) Immunofluorescence 

staining of Oct-2 in HC11cells treated with or without HP for 30 min. 

 

Fig. 3.3. Oct-2 functions as a transactivator in hormonal induction of β-casein gene 

expression by prolactin and hydrocortisone (HP). (A) Relative luciferase activity of β-

casein promoter luciferase construct (right) and Western blotting analysis of Oct-2 and β-
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actin proteins in HC11 cells treated with HP for 24 h and transiently transfected with an 

Oct-2 expression plasmid or pcDNA3.1 vector plasmid. (B and D) Western blotting 

analyses of the endogenous expression of β-casein and β-actin proteins as well as Oct-2 

protein levels in HC11 cells treated with HP and transiently transfected with an Oct-2 

expression plasmid (B) or an Oct-2 siRNA (D) in comparisons with the pcDNA3.1 vector 

plasmid or a control siRNA (Ctrl) (left). The relative intensities of endogenous β-casein 

expression in these cells were quantified and showed (right). (C) Relative luciferase 

activity of β-casein promoter luciferase construct (left) and Western blotting analysis of 

Oct-2 and β-actin proteins in HC11 Lux cells treated with HP and transiently transfected 

with an Oct-2 siRNA or a control siRNA (Ctrl) (right). (E) Relative luciferase activity of 

β-casein promoter luciferase construct in HC11 cells treated with HP and transiently 

transfected with an Oct-2 siRNA, Oct-2 expression plasmid or their combination. The 

data represent the mean of three independent experiments ± SE. Bars with different 

letters or with “*” are significantly different (P< 0.05). 

 

Fig. 3.4. Interaction of Oct-2 with Oct-1. (A) The interaction between Oct-1 and Oct-2 in 

HC11 cells was examined by immunocoprecipitations. TBP = TATA-binding protein 

(loading control). (B and C) The effects of co-transfection of Oct-1 and Oct-2 expression 

plasmids in HC11 cells (B) or siRNAs in HC11 Lux cells (C) on the induction of the β-

casein gene promoter activity by prolactin and hydrocortisone (HP). The bottom panels 

are Western blotting analyses of Oct-2 levels in cells transfected with Oct-2 expression 
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plasmid (B) or Oct-2 siRNA (C). The data represent the mean of three independent 

experiments ± SE. Bars with different letters are significantly different (P< 0.05). 

 

Fig. 3.5. Interactions of Oct-2 with STAT5 and GR in the induction of β-casein gene 

promoter activity by prolactin and hydrocortisone (HP). (A and B) Relative luciferase 

activity of β-casein promoter luciferase construct in COS-7 cells treated with HP for 24 h 

and transiently transfected with Oct-1, Oct-2, STAT5, or GR expression plasmid or 

various combinations of these constructs along with prolactin receptor plasmid. The data 

represent the mean of three independent experiments ± SE. Bars with different letters are 

significantly different (P < 0.05). (C) Co-immunoprecipitations of Oct-2 with Oct-1, 

STAT5, and GR in HC11 cells treated either with or without HP for 30 min. Normal 

rabbit IgG (Ctrl Ab) was used as an antibody-specificity control. 
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Fig. 3.1 
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Fig. 3.2 
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Fig. 3.3 
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Fig. 3.4 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

B 

 

 

C 

 

 

 



128 
 

Fig. 3.5 
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ABSTRACT 

There is a steady increasing demand for insulin worldwide. Current insulin 

manufacturing capacities can barely meet this increasing demand. The purpose of this 

study was to test the feasibility of producing human proinsulin in the milk of transgenic 

animals. Four lines of transgenic mice harboring a human insulin cDNA with expression 

driven by the goat β-casein gene promoter were generated. The expression level of 

human proinsulin in transgenic milk was as high as 8.1 µg/µl at mid-lactation. The 

expression of the transgene was only detected in the mammary gland during lactation, 

with higher levels at mid-lactation and lower levels at early and late lactation. The blood 

glucose and insulin levels and the major milk compositions were unchanged. The mature 

insulin derived from the milk proinsulin retained its biological activity. In conclusion, our 

study provides supporting evidence to explore the production of high levels of human 

proinsulin in the milk of dairy animals. 

 

Keywords: Bioreactor; Dairy pharming; Milk; Recombinant human insulin; Transgenic 

mouse 

 

INTRODUCTION 

Diabetes is a disease characterized by high blood sugar (glucose) levels, which 

can lead to a number of serious complications, including heart disease, stroke, kidney 

failure, blindness, nerve damage and foot problem
1, 2

. The number of people diagnosed 

with diabetes has continued to increase worldwide [366 million people had diabetes in 
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2011; by 2030 this number is projected to rise to 552 million according to the 

International Diabetes Federation (http://www.idf.org/media-events/press-

releases/2011/diabetes-atlas-5th-edition), 2013]. Diabetes occurs either when the 

pancreas does not produce enough insulin (Type I) or when the body cannot effectively 

use the insulin it produces (Type II)
2, 3

. Insulin is used clinically to treat both Type I and 

Type II diabetes
4, 5

. In humans in vivo, the single insulin gene (INS) is first transcribed 

and translated to a single chain precursor called preproinsulin [(110 amino acids (aa)] in 

the β-cells of the islets of Langerhans in the pancreas
6
. The signal peptide (the first 23-24 

aa at the N-terminus) is removed during insertion into the endoplasmic reticulum, 

resulting in proinsulin (86 aa, ~9.5 kDa). Proinsulin consists of three domains: an amino-

terminal B chain (30 aa, ~3.4 kDa), a carboxy-terminal A chain (21 aa, ~2.4 kDa), and a 

connecting C chain (34 aa, ~3.0 kDa)
6, 7

. Within the endoplasmic reticulum, proinsulin is 

cut by neuroendocrine-cell-specific prohormone convertases (PC1 and PC2) to excise the 

C chain. The remaining B- and A-chains are bound together by disulfide bonds, resulting 

in the mature form of insulin (~5.8 kDa)
6-8

.  

Currently, biosynthetic human insulin is manufactured for widespread clinical use 

employing recombinant DNA technology
9
. In early days, A chain and B chain of human 

insulin are produced in separate bacterial strains, and, after separate purification, they are 

joined by air oxidation
10

. At present, clinical insulin and its analogs are primarily 

produced in yeast as the inactive precursor, proinsulin, which must then undergo 

enzymatic cleavage of the C chain using trypsin and carboxypeptidase B to obtain full 

potency
8, 9, 11

. However, both bacteria and yeast have inherent limitations in productivity 
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and secretion efficiency for the production of high-volume therapeutic insulin
12

. 

Additionally, the International Diabetes Federation predicts that worldwide, by 2030, one 

in ten people will suffer from diabetes, giving rise to a large demand for insulin, which is 

expected to grow from US$12B in 2011 to more than US$32B by 2018
13

. Current insulin 

production methods are insufficient to meet this rapidly increasing demand. 

The production of biopharmaceutical proteins in the mammary glands of 

genetically modified dairy animals (“dairy pharming”) is currently under extensive 

exploration because it promises to provide high-quality therapeutic medicine for humans 

at an acceptable cost
14

. The overall objective of this study was to test the technical and 

health feasibility of producing human proinsulin in the milk of transgenic mice and 

provide a foundation for the potential scale-up of human proinsulin production in the 

milk of transgenic dairy animals. 

 

MATERIALS AND METHODS 

Generation of transgenic mice that express human proinsulin 

in milk 

This study was approved by the University of Vermont Animal Care and Use 

Committee, and all of the animal work and handling was carried out in accordance with 

institutional polices and federal guidelines. Full-length human INS cDNA was amplified 

by PCR from the plasmid PCMV6-XL5-INS-cDNA (Origene, Rockville, MD) using the 

primers pCMV-INS-F and pCMV-INS-R (Table 4.1). The PCR product (495 bp) was 
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cloned into a commercial mammary gland expression vector (pBC1, Invitrogen, Grand 

Island, NY) at the Xho I site to generate the pBC1-INS plasmid via blunt cloning using 

the Quick Blunting and Quick Ligation Kit (New England Biolabs, Ipswich, MA) (Fig. 

4.1A). The pBC1-INS plasmid was digested with the restriction enzymes Not I and Sal I 

to release a 16.3 kb linear DNA fragment that contained human insulin cDNA flanked by 

the goat β-casein gene promoter and 3' and 5' untranslated sequences (Fig. 4.1A). The 

released transgene DNA fragment was then purified by agarose gel electrophoresis and 

electro-elution before being microinjected into the pronuclei of fertilized C57BL/6 

oocytes to generate transgenic mice at the Transgenic Mouse Facility of the University of 

Vermont following standard procedures. The mice were maintained on a C57BL/6 

background. 

Screening of transgenic animals by PCR 

Genomic DNA was isolated from the tail tips of 2- to 3-week-old mice. The 

identification of transgenic mice carrying the pBC1-INS transgene construct was carried 

out by PCR with two pairs of primers: Pr1F, Pr1R, Pr2F, and Pr2R (Table 4.1). Primers 

Pr1F and Pr1R were complementary to the 5'-flanking sequence of the goat β-casein gene 

and to the human INS cDNA, respectively, whereas Pr2F and Pr2R were complementary 

to the human INS cDNA and the 3'-flanking sequence of the goat β-casein gene, 

respectively (Fig. 4.1A). To verify that the same amount of genomic DNA was used in 

each PCR reaction, mouse β-actin genome DNA was also amplified with mβActin-F1 

and mβActin-F1 (Table 4.1). The PCR conditions were as follows: an initial denaturation 

at 95°C for 5 min followed by 30 cycles of 95°C for 30 s, 55°C for 30 s, and 68°C for 1 



134 
 

min. The final PCR products were visualized by electrophoresis in a 3% agarose gel in 

Tris-acetate-EDTA (TAE, 40 mM Tris, 20 mM acetate, and 1 mM EDTA, pH 7.6) buffer. 

Evaluation of the transgene copy number by real-time PCR 

(qPCR) 

The transgene copy number in the transgenic mice was determined by qPCR as 

described previously
15

 with primers designed for a single copy control gene (lymphotoxin 

B gene: Ltb) and the pBC1-INS transgene. The primer sequences for Ltb have been 

described previously
15

, and the primer sequences for the pBC1-INS were pBC1-INS-F 

and pBC1-INS-R (Table 4.1). The PCR products for Ltb were linked to those of pBC1-

INS, and the resulting Ltb-pBC1-INS DNA fragment was cloned into the pCR-Blunt II-

TOPO vector (Invitrogen) and transformed to TOP10 Competent Cells (Invitrogen). 

Subsequently, the Ltb-pBC1-INS plasmid was isolated and used as a calibration sample 

with a known pBC1-INS/Ltb ratio (1:1). qPCR assays were performed on a CFX96 Real-

Time PCR system (Bio-Rad, Hercules, CA) using a 20 µl reaction mixture containing 10 

µl SsoFast EvaGreen supermix (Bio-Rad), 500 nM forward and reverse primers, and 20 

ng of genomic DNA. The PCR cycling conditions were as follows: one cycle at 98°C for 

2 min and 40 cycles of 98°C for 5 s and 65°C for 5 s. Using the 2
-ΔΔCt

 method
27

, the 

relative copy number of the transgene was determined with respect to the calibration 

sample. 

Blood glucose level measurement 
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Blood was obtained by nicking the lateral tail vein using a sterile scalpel blade 

and immediately measured with a FreeStyle Lite Blood Glucose Monitoring System 

(FreeStyle, Alameda, CA). The measurements were carried out at 9 to 10 am, and no pre-

fasting was performed. 

Western blotting 

Mammary gland tissues were collected from transgenic mice at pre-pregnancy, 

pregnancy (pregnant for 16-18 d), mid-lactation (lactating for 10-12 d), and involution (5 

d after lactation) time points. The total protein was extracted from mammary gland tissue 

that had been homogenized in NP40 lysis buffer [50 mM Tris (pH 7.4), 250 mM NaCl, 5 

mM EDTA, 50 mM NaF, 1 mM Na3VO4, 1% Nonidet P40, proteinase inhibitor cocktail 

(Sigma, St. Louis, MO), and 0.5 mM phenylmethylsulfonyl fluoride (PMSF)] using a 

Dounce homogenizer. The homogenate was then vigorously rocked at 4°C for 30 min, 

followed by a 10 min centrifugation at 4°C. The supernatant was saved, and the protein 

concentrations were determined using the Microplate BCA Protein Assay Kit (Thermo 

Scientific, Rockford, IL). The protein extracts were boiled for 5 min in 1 × Laemmli 

sample buffer [62.5 mM Tris-Cl (pH 6.8), 2.5% SDS, 0.002% bromophenol blue, 10% 

glycerol, and 710 mM β-mercaptoethanol]. Equal amounts of protein from each 

developmental stage were then analyzed via Western blotting with specific antibodies 

against human proinsulin (Abcam, Cambridge, MA), as described previously
28

. 

Milk and blood sample collection and ELISA 

Milk samples from the transgenic mice and non-transgenic mice were collected 

during early (3-5 d), middle (9-11 d), and late (15-17 d) lactation using a Medela 
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Freestyle pump (McHenry, IL). Just prior to milking, 5 I.U. of oxytocin was injected 

intraperitoneally to the mice. The milk samples were defatted by centrifugation at 4°C for 

15 min at 10,000 g. The resulting skim milk was diluted one million fold, and the human 

proinsulin concentrations were then determined with a Human Insulin ELISA Kit 

(RAB0327) from Sigma according to the manufacturer’s instructions. Tail blood samples 

(40 µl) were drained into heparinized microhematocrit capillary tubes (Fisher Scientific, 

Pittsburgh, PA), transferred to centrifuge tubes, and centrifuged at 4°C and 2,000 g for 10 

min. The resulting supernatant (plasma) was saved and used for ELISA analysis. Two 

different ELISA kits were used: 1) a Human Insulin ELISA Kit (RAB0327, Sigma), 

which is specifically used to measure human insulin and proinsulin; and 2) a mouse 

Ultrasensitive Insulin ELISA kit (80-INSMSU-E10, Alpco, Salem, NH), which has 147% 

and 0.27% cross-reactivity against human insulin and proinsulin, respectively. 

RT-PCR and qRT-PCR 

Total RNA was isolated from various tissues (mammary gland, kidney, spleen, 

lung, thymus, salivary gland, ovary, liver, blood, muscle, and heart) of the transgenic and 

non-transgenic mice using Trizol reagent (Invitrogen) and digested by RNase-free DNase 

I (Invitrogen). A total of 5 µg of each DNase I-treated RNA sample was used to 

synthesize the first-strand cDNA using the Reverse SuperScript II reverse transcriptase 

(Invitrogen) and oligo (dT) primer per the manufacturer's protocol. The primers for 

amplification of the human proinsulin transcript were ProINS-F and ProINS-R (Table 

4.1). The primers for mouse β-actin were mβActin-F2 and mβActin-R2 (Table 4.1). An 

initial reaction of 5 min at 95°C was followed by 32 cycles (28 cycles for β-actin) of 30 s 
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denaturation at 95°C, 30 s of annealing at 62°C, and 1 min of extension at 68°C. A total 

of 10 µl of each PCR reaction was resolved on 1% agarose gels via electrophoresis. For 

qRT-PCR, the reactions were performed in duplicate in a 20-µl volume containing 10 µl 

of SsoFast EvaGreen Supermix (Bio-Rad), 500 nM forward and reverse primers (1 µl 

each), and 8 µl of diluted cDNA (corresponding to 25 ng of reverse-transcribed total 

RNA). The relative expression of the transgene was normalized to β-actin and calculated 

by the 2
-ΔΔCt

 method
28

. 

Milk composition analyses 

The milk samples were diluted 5-fold with distilled water. The milk 

triacylglyceride concentration was measured by a Colorimetric Assay Kit provided by 

Cayman Chemical (Ann Arbor, MI), and the milk protein concentration was measured 

using a BCA Protein Assay Kit provided by Pierce (Rockford, IL). 

Conversion of proinsulin to mature insulin 

The conversion of the proinsulin in the transgenic milk to insulin was carried out 

by proteolysis using trypsin (Roche, Indianapolis, IN) and carboxypeptidase B (Roche), 

as described previously
29

. Specifically, wild-type (WT) milk and transgenic milk were 

digested with trypsin and carboxypeptidase B with proinsulin to enzyme ratios of 300:1 

(w/w) and 600:1 (w/w), respectively. The amount of transgenic milk added to the 

reaction was calculated based on the proinsulin concentration determined by ELISA, and 

WT milk containing the same amount of protein as the transgenic milk was used. The 

digestion was carried out in a buffer (pH 7.5) with 0.1 M Tris-HCl and 1 mM MgCl2 at 

37°C for 1 h.  



138 
 

Assay of insulin receptor autophosphorylation 

Assays for the autocatalytic activity of the insulin receptor were performed as 

described
30, 31

. Chinese hamster ovary (CHO) cells were maintained in Ham’s F-12 

medium supplemented with 10% fetal bovine serum plus 100 units/ml of penicillin, 100 

µg/ml of streptomycin, and 25 µg/ml of Fungizone. Before transfection, CHO cells were 

seeded at 0.1×10
6
 cells/well in 12-well plates and grown in a humidified incubator at 

37°C and 5% CO2 overnight to 70-80% confluence. Then, the cells were transfected with 

1.25 µg/well of human insulin receptor expression plasmid (#24049, Addgene, 

Cambridge MA) using Lipofectamine (Invitrogen) according to the manufacturer’s 

instructions. After transfection, the cells were made quiescent by serum starvation for 12 

h, then treated with 1 µM commercial insulin (Sigma), with digested and undigested 

transgenic milk (with equivalent insulin concentration as the commercial insulin used), as 

well as with digested and undigested WT milk samples (with the same protein 

concentration as the transgenic milk used) for 1 h. The CHO cells were then lysed in 50 

mM Tris (pH 7.4) containing 130 mM NaCl, 5 mM EDTA, 1.0% Nonidet P-40, 1 × 

proteinase inhibitor cocktail (Sigma), 100 mM NaF, 50 mM β-glycerophosphate, and 100 

μM Na3VO4. Equal amounts of cell lysates (20 µg of protein) were applied to 96-well 

ELISA and analyzed for tyrosine phosphorylation of the insulin receptor using the 

Phospho-IR ELISA Kit (Millipore, Billerica, MA).  

Statistical analysis 

All statistical analyses were carried out using JMP statistical software (SAS, Cary, 

NC). The comparisons between two groups were performed using the t-test, and the 
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comparisons between more than two groups were analyzed with one-way ANOVA 

followed by post hoc Dunnett's multiple comparison test. 

 

RESULTS 

Generation and characterization of the transgenic mice 

To generate transgenic mice expressing human proinsulin in milk, we inserted the 

full-length human insulin cDNA into the mammary gland-specific expression vector 

pBC1, in which the human insulin cDNA is controlled by the goat β-casein promoter and 

flanked by the 5' and 3' untranslated sequences of the goat β-casein gene (Fig. 4.1A). The 

transgene was linearized from the vector and injected into the fertilized mouse eggs, 

which were then transferred into recipients. Thirty pups were obtained. Among them, one 

male (#24) and 3 female (#5, #12, and #15) transgenic founders were identified (Fig. 

4.1B and C). The four transgenic founders were mated with wild type mice, and all of 

them transmitted the transgenes to their offspring. A total of 16 F1 transgenic mice were 

identified among the 36 offspring.  

We used a qPCR technique to estimate the copy number of the transgene in each 

line of the transgenic mice
15

. The results indicated that the transgene copy numbers in the 

founders were different, ranging from 7 to 20. Additionally, transgene loss was observed 

when comparing the transgene copy numbers between the founders and their offspring, in 

agreement with previously published results
16-18 

(Table 4.2).  

Expression of human proinsulin in transgenic mouse tissues 
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To examine the stage-specific expression of human insulin in the mammary gland 

of the transgenic mice, mammary gland tissues were collected at the pre-pregnancy, 

pregnancy (pregnant for 16-18 d), lactation (lactating for 10-12 d), and involution (5 d 

after lactation) stages and analyzed for human insulin mRNA by qRT-PCR. As shown in 

Fig. 4.2A (upper panel), the expression of the human proinsulin transcript increased 

approximately 40-fold at the late pregnant stage compared to the virgin stage, reaching a 

peak (~100-fold) at mid-lactation, and became undetectable at the involution stage. This 

expression pattern is consistent with the endogenous mRNA expression profile of mouse 

β-casein (Fig. 4.2A, bottom panel), a major milk protein
19

. In addition, the developmental 

expression profiles of human proinsulin protein and endogenous mouse β-casein protein 

in the mammary glands of the transgenic mice were similar to those of their mRNAs (Fig. 

4.2B). 

To examine the mammary tissue-specific expression of human insulin in the 

transgenic mice, the kidney, spleen, lung, thymus, salivary gland, ovary, liver, blood, 

muscle, heart, and mammary glands were collected from the transgenic founders (#5, #12, 

and #15) at the lactation stage and analyzed for the expression of human insulin mRNA 

by RT-PCR. As shown in Fig. 4.2C, the human proinsulin transcripts were found only in 

the mammary gland but not in the other tested tissues of the transgenic mice, except that 

weak expression was observed in the blood sample of #12. In addition, no human insulin 

mRNA was detected in the mammary gland of the non-transgenic litter mates.   

Expression of human proinsulin in the milk of transgenic mice 
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To examine the presence of human proinsulin in the milk of the transgenic mice, 

Western blot analysis was performed using an antibody specific for human proinsulin 

(Fig. 4.3A). As shown in Fig. 4.3A, milk samples from #5 (F0), #12 (F0), #15 (F0), and 

#5's F1 offspring, #5_1 and #5_2, showed a strong band of human proinsulin at 

approximately 9.5 kDa, as observed in a commercial recombinant human proinsulin 

positive control (lanes 1, 2, 3, and 8). Western blotting also showed that the 

concentrations of human proinsulin in the milk of #5 and its F1 offspring ranged from 1.0 

to 3.0 µg/µl based on the amounts of recombinant human proinsulin applied in lanes 1 to 

3. No proinsulin band was detected in the milk of the wild-type mice (lanes 7 and 9). 

To quantitatively measure the human proinsulin expression levels in the milk of 

all the transgenic founder mice and their F1 females at different lactation stages, milk 

samples were collected at early (3-5 d), mid- (9-11 d), and late (15-17 d) lactation stages 

and analyzed for human proinsulin by ELISA. As shown in Fig. 4.3B, the concentrations 

of human proinsulin in the transgenic milk samples were relatively low at early lactation 

in all lines but increased at mid-lactation, followed by a decrease at late lactation, except 

in #12, where the milk at late lactation had the highest level of human proinsulin. Table 

4.2 lists the proinsulin concentrations (ranging from 1.4 to 8.1 µg/µl) in the milk samples 

of the transgenic mice at mid-lactation. The milk proinsulin concentrations of #5, #5_1, 

and #5_2 were 1.4, 1.2, and 2.0 µg/µl, respectively, which correlated well with their 

concentration range determined by the titration in Western blotting (Fig. 4.3A). Human 

proinsulin was not detectable in the milk samples from the non-transgenic littermates by 
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ELISA. Notably, the human proinsulin concentrations in the transgenic milk were not 

correlated with the transgene copy number (r=0.39, P=0.71).  

Blood metabolic profiles of the transgenic mice 

To test whether human proinsulin was secreted into the blood streams of the 

transgenic mice, we first measured the blood levels of human insulin in the transgenic 

mice (3 founders and 6 offspring) at mid-lactation using an ELISA kit (RAB0327, Sigma) 

specific for human insulin and proinsulin. No human proinsulin or insulin was detected in 

the blood samples from either the transgenic or the non-transgenic animals. We also used 

another mouse Ultrasensitive Insulin ELISA kit (Alpco, 80-INSMSU-E10), which has 

147% and 0.27% cross-reactivity to human insulin and proinsulin, respectively, in our 

assay. No differences in blood insulin levels were observed between the transgenic and 

non-transgenic mice (Fig. 4.4A), and the detected insulin levels were approximately 5.6 

ng/ml for both the transgenic and non-transgenic mice, consistent with the normal 

physiological plasma insulin levels in a previous study
20

. 

In addition, the blood glucose levels in these animals were also measured with a 

glucose meter. No differences in the plasma glucose levels were observed between the 

transgenic and non-transgenic mice, and the average glucose level was approximately 

110 mg/dl for both the transgenic and non-transgenic mice (Fig. 4.4B). 

Major milk compositions in the transgenic mice 

Milk samples collected from the transgenic mice at the early, mid-, and late 

lactation stages were analyzed for their triacylglyceride and total protein levels. In 
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comparison with the milk samples from the WT mice, no significant differences were 

observed for these compositions at any stages (Table 4.3).  

Bioactivity of proinsulin in transgenic milk 

The proinsulin in the transgenic milk was converted to mature insulin via in vitro 

enzymatic digestion with trypsin and carboxypeptidase B. The digested transgenic milk 

was used to treat CHO cells that over-expressed the human insulin receptor, and then the 

tyrosine phosphorylation of the insulin receptor in the CHO cells was measured. 

Commercial insulin, digested non-transgenic milk, and undigested transgenic milk were 

used as controls. As observed in Fig. 4.5, both commercial insulin and the digested 

transgenic milk could phosphorylate the insulin receptor, whereas the undigested 

transgenic milk and the digested and undigested non-transgenic milk did not show any 

detectable activity. 

 

DISCUSSION 

The mammary gland-specific expression vector pBC1 was used in this study to 

generate the transgene construct for producing transgenic mice that expressed human 

proinsulin in milk. In the construct, the full-length human insulin cDNA was flanked by 

the 2×β-globin insulator, the goat β-casein promoter and the untranslated exons E1 and 

E2 in the 5' region, and the untranslated goat β-casein exons E7, E8, and E9 and the 3' 

genomic DNA sequence in the 3' region. β-Casein is one of the major milk proteins and 

accounts for approximately 28% of the total milk protein in mice
21

 and 37% in goats
22

. 
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Thus, the β-casein promoter has been widely used to drive the high level expression of 

foreign transgenes in the mammary gland
23

. The other untranslated sequences of the β-

casein genes in the construct are considered to enhance the stability of the mRNA of the 

transgene in the mammary gland. The effectiveness of this vector and the goat gene 

sequences in mouse were confirmed in our study by the high levels of human proinsulin 

in the milk of all transgenic mouse lines. In addition, our study also confirmed the 

mammary-specific and lactation stage-specific expression of the transgene. The 

expression of human proinsulin followed the profile of endogenous β-casein in the 

transgenic mice. Although our RT-PCR results indicated that there was a weak band for 

the human proinsulin transcript expressed in the blood sample of one of the transgenic 

mice (#12, Fig. 4.2C), we could not detect any human proinsulin protein in the blood of 

the other animals by ELISA. Thus, the transcript in the blood sample from #12 might be a 

result of RNA sample contamination. It is important to note that our sequencing analysis 

discovered that the goat β-casein promoter sequence in pBC1 misses 31 bp of the block B 

sequence of the β-casein proximal promoter (data not shown). This block B sequence has 

been well-identified to contain the binding sites for the signal transducer and activator of 

transcription 5 (STAT5) and for the glucocorticoid receptor; it is also essential for the 

induction of β-casein proximal promoter activity by the lactogenic hormones prolactin 

and glucocorticoids in in vitro analyses
24, 25

. Our study indicated that the block B 

sequence may not be as important in a genomic context as in in vitro analysis of the 

proximal promoter.   



145 
 

Transgene loss during animal passage is a common phenomenon
16-18

. In this study, 

only approximately half of the transgene copies were transmitted from the transgenic 

founders to their offspring. Transgenes are exogenous fragments of DNA that are 

introduced into the genome at random sites, and they are usually concatamerized into a 

tandem array
16

. Due to a lack of balancing transgenes on the paired chromosome during 

meiosis, transgenes may become unstable and rearrange, perhaps gradually, causing copy 

number loss from generation to generation
16-18

. 

Several lines of evidence indicated that the form of insulin in the transgenic milk 

was proinsulin rather than mature insulin. First, the proinsulin detected in the milk by 

Western blotting showed the same size as the commercial proinsulin product (Fig. 4.3A). 

Second, no insulin bioactivity was detected in the transgenic milk without enzymatic 

digestion, even though the concentration of insulin product in the transgenic milk was 

high, whereas following endopeptidase digestion of the transgenic milk, insulin 

bioactivity was detected (Fig. 4.5). These results indicated that the mammary gland could 

not process the maturation of insulin during the secretion process as the pancreas does. 

The mammary gland may not express PC1 and PC2, the enzymes required to release 

peptide C from proinsulin. However, the mammary gland can recognize the insulin signal 

peptide and secrete the proinsulin protein into milk. The insulin bioactivity detected in 

the enzymatically digested and renatured transgenic milk may also suggest that the 

mammary gland is able to carry out the correct post-translational modifications of insulin 

to retain its bioactivity.      
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The global insulin market is expected to triple by 2018, and current insulin 

production practices will face rising difficulty in meeting this rapidly rising demand
13

. 

Currently, almost all clinical insulin is the recombinant protein or “analog” produced in 

yeast. The secretion level of recombinant proteins in yeast is still at the magnitude of 

mg/L (approximately 80 mg/L for human proinsulin)
13, 17

. To meet the increasing demand 

for human insulin, our study confirmed that it may be feasible to produce high amounts 

of human proinsulin in the milk of transgenic animals, an emerging biotechnology called 

“dairy pharming”. In this study, the concentrations of human proinsulin in transgenic 

milk samples collected at mid-lactation ranged from 1.2 to 8.1 µg/µl. Even if the lowest 

level of human proinsulin (1.2 µg/µl) were expressed in the milk of transgenic goats or 

cows, the average production by goat (3 kg milk/day) or cow (40 kg milk/day) would 

produce 3 g or 48 g of proinsulin per day or 0.9 and 13 kg per 9 month lactation, 

respectively. This rate of production would provide an unlimited human insulin supply to 

treat diabetes using a limited number of animals.   

The expression levels of recombinant human proinsulin in the transgenic milk 

were shown to range from 1.2 to 8.1 µg/µl (Table 4.2). The expression levels determined 

by ELISA were in agreement with those titrated by Western blotting. However, the 

expression levels were not correlated with the transgene copy numbers, suggesting that 

the expression was still position dependent, although the pBC1 vector was intentionally 

designed to minimize the position effect of the transgene by incorporating a segment of 

insulating sequences, namely, the chicken β-globin insulator (Fig. 4.1A)
26

.  



147 
 

No apparent health side effects were observed in the transgenic mice. No human 

proinsulin was detected in the blood of these animals, and the animals had normal blood 

insulin and glucose levels. In addition, the total levels of milk protein and triacylglycerol 

were unchanged in these animals.   

In conclusion, we successfully generated transgenic mice expressing high levels 

of human proinsulin in their milk. Our results suggest that it is feasible to produce large 

amounts of human proinsulin in the milk of dairy animals, such as dairy goats and cows. 
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Table 4.1. Sequences of primers used in this study. 

 

Forward Sequence (5'-3') Reverse Sequence (5'-3') 

pCMV-

INS-F 

GGCCGCGAATTCG

GCCATT 
pCMV-

INS-R 

TTGTTGGTTCAAGGGCT

TTATTC 

mβActin-

F1 

TAGACTTCGAGCA

GGAGATG 
mβActin-

R1 

CCACCAGACAGCACTG

TGTT 

Pr1F ACCAGGGATCAAA

CCTGCAC 
Pr1R ACGCTTCTGCAGGGAC

CCCT 

Pr2F TTGTGAACCAACA

CCTGTGC 
Pr2R TGCTGAGAATCATTAA

TCTCAGC 

ProINS-F CAACACCTGTGCG

GCTCACA 
ProINS-R CACAATGCCACGCTTCT

GCA 

mβActin-

F2 

TAGACTTCGAGCA

GGAGATG 
mβActin-

R2 

CCACCAGACAGCACTG

TGTT 

mCSN2-

F 

AGAGGATGTGCTC

CAGGCTA 
mCSN2-R TAAGGAGGGGCATCTG

TTTG 

pBC1-

INS-F 

CAGGAATCGCGGA

TCCTC 
pBC1-INS-

R 

CCATGGCAGAAGGACA

GTGAT 
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Table 4.2. Transgene copy numbers and human proinsulin expression levels in milk 

of multiple lines of transgenic mice 

 

Line F0 

(gender
a
) 

Offspring F1 

(gender
a
) 

Transgene 

copy number 

Expression 

level in milk
b
 

(µg/µl) 

 

5 (F)  13 1.4 

 5_1 (F) 7 1.2 

 5_2 (F) 6 2.0 

12 (F)  20 7.8 

 12_1 (F) 10 7.2 

 12_2 (F) 6 8.1 

15 (F)  7 4.1 

 15_1 (F) 5 2.1 

 15_2 (F) 3 1.6 

24 (M)  9 NA 

 24_1 (F) 5 5.7 

 
a
F=female, M=male. 

b
Milk samples were collected at mid-lactation, and the 

concentration of human proinsulin was quantified by ELISA. 

 

 

 

 

 

 

 

 

 

 

 



150 
 

Table 4.3. Total protein and triglyceride levels of milk from transgenic and wild-

type mice during different lactation stages  

 

  Transgenic 

 (n=6) 
Wild-type  
(n=6) 

P value 

(t test) 

Protein  
(g/L) 

Early lactation 102.5 ± 5.1 100.8 ± 6.4  0.541 

Mid-lactation 109.0 ± 8.4 106.9 ± 8.9  0.636 

Late Lactation 99.2 ± 4.5 97.5 ± 7.6  0.483 

Triglycerides 
(g/L) 

Early lactation 335.7 ± 39.5 345.8 ±42.1 0.604 

Mid-lactation 320.6 ± 33.1 309.1 ± 30.0 0.538 

Late Lactation 301.9 ± 30.9 290.8 ± 23.1 0.371 
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FIGURE LEGENDS 

Fig. 4.1. Transgene construction and the identification of transgenic mice. (A) Schematic 

representation of the transgene construction. The full length of insulin cDNA in the 

pCMV6-XL5-INS-cDNA was amplified by PCR and inserted into the pBC1 vector at the 

Xho I site, generating the pBC1-INS construct. Before microinjection, the pBC1-INS 

construct was excised with Sal I and Not I. From left to right, the linearized pBC1-INS 

comprises the 2×β-globin insulator; the goat β-casein promoter and untranslated exons E1 

and E2; human insulin cDNA; untranslated goat β-casein exons E7, E8, and E9; and 3' 

genomic DNA. Pr1F, Pr1R, Pr2F, and Pr2R primers were used in PCR for the 

identification of the transgenic mice. (B&C) Identification of the transgenic mice by PCR 

using the Pr1 primer pair (B) and Pr2 primer pair (C). Non-transgenic wild-type (WT) 

mouse DNA was used as a negative control, and the DNA used for microinjection served 

as a positive control. β-Actin was amplified to show the same amount of DNA used in 

each genomic DNA sample. 

 

Fig. 4.2. Expression of the human insulin transgene in transgenic mouse tissues. (A) 

qRT-PCR analysis of human proinsulin transcripts in the mammary gland tissues of 

transgenic F1 mice at the virgin (NP), pregnancy (P), lactation (L), and involution (I) 

stages (upper panel). β-Actin was used as an internal control. Three mice in each stage 

were included for the analysis. The data are expressed as the mean ± SE.***, P < 0.001 

when compared to the NP group. The endogenous β-casein gene expression was 

measured as a positive control (bottom panel). (B) Western blot analysis of the protein 
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expression of human proinsulin and endogenous β-casein in mammary gland tissues at 

the different developmental stages depicted in (A). The same amount of protein was 

applied in each lane, and each lane used the mammary tissue sample pooled from three 

transgenic mice at the same stage. β-Actin was used as a loading control. (C) RT-PCR 

analysis of human proinsulin transcripts in various tissues of transgenic females #5, #12, 

and #15 at the mid-lactation stage. 1, mammary gland; 2, kidney, 3, spleen; 4, lung; 5, 

thymus; 6, salivary gland; 7, ovary; 8; liver, 9, blood; 10, muscle; 11, heart; 12, 

mammary gland from non-transgenic mice; 13, ddH20. β-Actin was used as a loading 

control. 

 

Fig. 4.3. Detection of human proinsulin in the milk of transgenic mice. (A) Western blot 

analysis of human proinsulin in milk samples from transgenic mice. Commercial 

recombinant human proinsulin at concentrations of 0.5, 1.0, and 3 µg/µl (lanes 1-3, 

respectively) was used as a positive control (PC). Lanes 4, 5, and 6 are milk samples 

from transgenic founder #5 and its F1 offspring, #5_1 and #5_2, respectively. Lanes 10 to 

12 are the milk of #15, #12, and #5, respectively. Milk from wild-type (WT) mouse 

(lanes 7 & 9) was used as a negative control. The same volume of milk samples was 

loaded in each well. (B) Expression profiles of human proinsulin in the milk of transgenic 

mice throughout lactation. Milk samples from three transgenic lines were collected at 

early, mid-, and late lactation and measured for human proinsulin concentrations by 

ELISA. The presence of proinsulin was barely detectable in the corresponding transgenic 

littermates (negative controls). 
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Fig. 4.4. Blood insulin and glucose levels in transgenic mice at mid-lactation. (A) Blood 

insulin concentrations in transgenic (T) and non-transgenic (NT) mice at mid-lactation as 

analyzed by ELISA. (B) Blood glucose concentrations in transgenic (T) and non-

transgenic (NT) mice at mid-lactation. Nine transgenic-positive mice and nine transgenic-

negative littermates in 3 transgenic lines were analyzed. The data are expressed as mean 

± SE. 

 

Fig. 4.5. Insulin receptor autophosphorylation in CHO cells treated with enzymatically 

digested transgenic milk. The proinsulin (100 µg) in transgenic milk was converted to 

mature insulin via in vitro enzymatic digestion with trypsin and carboxypeptidase B 

(DTM) and then used to treat CHO cells that over-expressed the human insulin receptor. 

After 1 h of treatment, the cells were lysed, and 20 µg of protein lysate was used in 

ELISA assays for tyrosine phosphorylation. Commercial insulin (PC), undigested 

transgenic milk (UTM), and digested (DWD) and undigested (UWD) non-transgenic 

milk were used as controls. Three experiments were repeated, and representative results 

are shown here. In the first two experiments, the transgenic milk samples from #5 (F0) 

and its offspring, #5_1(F1) and #5_2 (F1), were combined to obtain 100 µg of proinsulin. 

In the third experiment, the transgenic milk samples from #12 (F0) and its offspring,  

#12_1 (F1), were combined. 
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Fig. 4.1 
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Fig. 4.2 
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Fig. 4.3 
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Fig. 4.4 
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Fig. 4.5 
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Chapter 5 General discussion 

 

OCT-1 AND OCT-2 ARE INVOLVED IN THE INDUCTION 

OF β-CASEIN GENE EXPRESSION BY LACTOGENIC 

HORMONES 

Lactogenic hormones, HP, synergistically induce mammary-specific β-casein 

gene expression. The sequence alignment of the 5ʹ flanking sequences of human, rat, cow, 

sheep, and goat β-casein gene reveals two evolutionarily conserved regions, the proximal 

promoter and the distal enhancer (Rijnkels et al., 2003; Winklehner-Jennewein et al., 

1998). These two regions contain composite binding sites for different transcription 

factors, including STAT5, GR, C/EBPβ, and YY-1 (Rosen et al., 1999). The importance 

of these transcription factors in regulating β-casein gene expression has been established 

by studies using transient transfection experiments and transgenic and knockout mouse 

models (Rosen et al., 1999). Because none of these transcription factors is mammary-

specific, mammary-specific β-casein gene expression is believed to be dependent on the 

combinatorial protein-protein interactions among these transcription factors and on their 

binding at the composite regulatory elements present in both the proximal promoter and 

the enhancer in response to lactogenic hormones. A previous study using chromatin 

immunoprecipitation has shown that signaling transduction pathways regulated by 

lactogenic hormones induce similar kinetics of assembly and disassembly of different 
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transcription factors, the coactivator p300, histone modifiers, and RNA polymerase II at 

the proximal promoter and at the distal enhancer of the β-casein gene (Kabotyanski et al., 

2006). This result suggests that these two regulatory regions may interact with one 

another through chromatin looping. Later, Kabotyanski and colleagues confirmed this 

hypothesis using a chromosome conformation capture assay. These researchers found 

that lactogenic hormones induce the physical interaction between the β-casein gene 

proximal promoter and the distal enhancer (Kabotyanski et al., 2009) and that withdrawal 

of lactogenic hormones results in disruption of this interaction, accompanied by a 

decrease in β-casein gene expression (Rijnkels et al., 2010). 

Based on the previous results, a working model has been proposed to elucidate 

how the signaling pathways regulated by lactogenic hormones are integrated to activate 

β-casein expression (Rijnkels et al., 2012). In this model, YY-1 binds to the proximal 

promoter of the β-casein gene in the absence of lactogenic hormones and forms a 

repressive complex by recruiting histone deacetylase 3 (HDAC3) and LIP (inhibitory 

isoform of C/EBPβ) (Bauknecht et al., 1996; Meier and Groner, 1994; Yang et al., 1996; 

Yang et al., 1997), promoting a transcriptionally negative chromatin in association with 

deacetylated histone H3 (Kabotyanski et al., 2006) and dimethylated lysine 9 of histone 

H3 (H3K9) (Buser et al., 2011). Deacetylated H3 is possibly promoted by HDAC3 

(Kabotyanski et al., 2009), although the mechanism by which dimethylated H3K9 is 

maintained is unknown. After stimulation with lactogenic hormones, the transcription 

factors STAT5, GR, and LAP (activating isoform of C/EBPβ) rapidly bind to their 

respective binding sites at the β-casein gene proximal promoter and distal enhancer 
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(Kabotyanski et al., 2006), displace the repressive complex, and, subsequently, recruit 

nuclear co-activator p300 via a protein-protein interaction (Mink et al., 1997; Pfitzner et 

al., 1998). The recruited coactivator p300 facilitates histone H3 acetylation, thus relaxing 

the chromatin structure at the β-casein cis-regulatory regions through its intrinsic histone 

acetyltransferase (HAT) activity. Lactogenic hormones also promote open chromatin 

structure by inducing H3K9 demethylation via undiscovered mechanisms. Interactions 

among these activated transcription factors and the co-activator result in physical contact 

between the proximal promoter and the distal enhancer through DNA looping, which 

facilitates the recruitment of the preinitiation complex and β-casein transcription 

(Kabotyanski et al., 2009). 

In this study, we report that Oct-1 and Oct-2 are also the downstream signaling 

molecules of lactogenic hormones in mammary epithelial cells. Although either Oct-1 or 

Oct-2 constitutively binds to and induces the basal activity of β-casein gene promoter 

without the treatment of lactogenic hormones (Dong and Zhao, 2007a; Zhao et al., 2002; 

Zhao et al., 2004), lactogenic hormones further increase their binding to the promoter 

(Qian and Zhao, 2013, 2014). Our transfection experiments indicated that Oct-1 and Oct-

2 function as  transactivators in lactogenic hormones-regulated β-casein gene expression 

in mammary epithelial cells (Qian and Zhao, 2013, 2014). Oct-1 has recently been shown 

to interact with and to facilitate the binding of Runx2, which is a transcription factor with 

the binding site adjacent to octamer motif at the β-casein gene promoter. Additionally, 

overexpression of Oct-1 and Runx2 together leads to a higher basal β-casein gene 

promoter than does that of either protein alone (Inman et al., 2005). In this study, we 
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demonstrated that lactogenic hormones induce physical interactions of either Oct-1 or 

Oct-2 or both with both STAT5 and GR and increase β-casein gene promoter activity 

(Qian and Zhao, 2013, 2014). In addition, we showed that Oct-1 facilitates the binding of 

both STAT5 and GR at the β-casein gene promoter, similar to the effect of Oct-1 on 

Runx2 binding (Qian and Zhao, 2013). Progesterone is a reproductive hormone that 

inhibits β-casein gene expression by inducing the binding of the progesterone receptor 

(PR) at the β-casein promoter (Buser et al., 2007; Buser et al., 2011). Oct-1 binding 

activity at the β-casein gene promoter can be induced by progesterone in the mammary 

gland of virgin mice (Zhao et al., 2002). Coincidentally, progesterone has also been 

shown to recruit unphosphorylated (unactivated) STAT5 to the β-casein promoter, 

potentially contributing to the inhibition of β-casein by progesterone (Buser et al., 2007). 

Because Oct-1 can interact with the PR (Préfontaine et al., 1999), Oct-1 may also play a 

role in the inhibition of β-casein gene expression by interacting with other transcription 

factors, such as PR. Collectively, we expand Rijnkels’s model (Rijnkels et al., 2012) and 

propose a working model of the involvements of Oct-1 and Oct-2 in regulating β-casein 

gene expression (Fig. 5.1). Depending on upstream signaling, Oct-1 and Oct-2 can act as 

either a transactivator or a repressor and switch β-casein gene expression between the 

inducible or repressive states in mammary epithelial cells as follow: 1) In the quiescent 

state, Oct-1 and possibly Oct-2 promote an inhibitory state for the β-casein gene by 

interactions with YY1, LIP, and HDAC3. 2) Following progesterone treatment, PR joins 

in and stabilizes the repressive complex, further inhibiting β-casein gene expression. 3) 

Following lactogenic hormones treatment, however, Oct-1 and Oct-2 switch the β-casein 
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gene to a permissive state and interact with STAT5, GR, LAP, and Runx2, promoting 

pre-initiation complex formation and inducing β-casein gene expression. 

Supporting this hypothesis, previous studies have shown that Oct-1 and other Oct 

proteins serve as switchable regulators in controlling their target gene expression. 

Depending on upstream signaling, the Oct protein-targeted genes can either be rapidly 

induced or become stably repressed. One excellent example is the role of Oct-1 in 

regulating the interleukin 2 gene in CD4 T lymphocytes (Shakya et al., 2011). In naïve T 

lymphocytes, Oct-1 recruits the Mi-2/NuRD chromatin-remodeling complex to the 

interleukin 2 gene, inducing heavy methylation at the CpG site proximal to the 

transcription start site and, in turn, mediating gene repression. In contrast, upon T 

lymphocyte activation, Oct-1 loses its ability to associate with Mi-2/NuRD, instead 

indirectly or directly recruiting Jmjd1a/KDM3A histone demethylase to the interleukin 2 

gene and, in turn, blocking gene repression by opposing inhibitory histone methylation 

(Shakya et al., 2011). The switch of the interleukin 2 gene from a repressive to a 

permissive state is regulated by the MAPK signaling pathway (Shakya et al., 2011). Oct-

1 may have a similar function in regulating the MMTV promoter (Åstrand et al., 2009) 

and Polr2a, Ahcy, and Cdx2 genes (Shakya et al., 2011). Oct-4, which is another member 

of the Oct family, also has a bi-potential function in regulating target genes involved in 

embryonic stem cell (ESC) development, such as Hoxa5, Otx2, Pou4f1, Hoxc6, and Pax6 

(Bernstein et al., 2006; Chen et al., 2008). Further investigation is required to determine 

whether Oct-1 and Oct-2 have this bi-potential or switchable role in β-casein gene 

regulation in response to hormonal treatments. Specifically, the presence of Oct-
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interacting co-factors and the chromatin status of the β-casein gene promoter must be 

investigated under different hormonal treatments. One possibility is that Oct-1 and Oct-2 

may recruit histone-lysine N-methyltransferase SETDB1 (Yeap et al., 2009; Yuan et al., 

2009), which was found to be associated with Oct-4, to promote the observed formation 

of dimethylated H3K9 at the β-casein proximal promoter in the absence of lactogenic 

hormones (Buser et al., 2011). However, after lactogenic hormones treatment, Oct-1 and 

Oct-2 may recruit Jmjd1a/KDM3A histone demethylase to the β-casein gene, in turn, 

removing inhibitory histone methylation. 

The following question is how Oct proteins respond to upstream signals and to 

hormones and interact with other proteins to regulate their target gene transcription. 

Previous studies have revealed that Oct proteins can integrate various upstream signals, 

which precisely regulate Oct proteins at multiple levels, including expression level 

(Karwacki-Neisius et al., 2013; Nichols et al., 1998), localization (Malhas et al., 2009; 

Tolkunova et al., 2007; Wang et al., 2009), and activity (Shakya et al., 2011). Most Oct 

proteins are subjected to post-transcriptional modifications, including phosphorylation 

(Lin et al., 2012; Nieto et al., 2007; Pevzner et al., 2000; Schild-Poulter et al., 2007; Segil 

et al., 1991; Tanaka and Herr, 1990), O-GlcNAcylation (Jang et al., 2012; Kang et al., 

2013; Webster et al., 2009), SUMOylation (Wei et al., 2007; Zhang et al., 2007), and 

ubiquitylation (Kang et al., 2011; Xu et al., 2004). These post-transcriptional 

modifications are most likely responsible for many of Oct protein changes in protein 

stability, localization, and activity (Kang et al., 2013; Nieto et al., 2007; Schild-Poulter et 

al., 2007; Segil et al., 1991; Wang et al., 2009; Wei et al., 2007). In this study, we report 
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that the binding activities of both Oct-1 and Oct-2 to the β-casein promoter can be 

induced by lactogenic hormones and that this induction was not mediated by either 

increasing their expression or inducing their translocation to the nucleus. Therefore, 

lactogenic hormones most likely enhance Oct-1 and Oct-2 DNA-binding activity via 

mechanisms of post-translational modification. These post-translational modifications, 

particularly phosphorylation, may also be able to mediate the assembly of multiprotein 

transcriptional regulatory complexes (Holmberg et al., 2002; Whitmarsh and Davis, 

2000). 

The results from this study indicate that Oct-2 interacts with Oct-1 regardless of 

HP treatment, but that the interaction between Oct-1 and Oct-2 does not synergistically 

stimulate β-casein gene expression in response to lactogenic hormones. Oct-1 and Oct-2 

appear to be functionally redundant in the hormonal regulation of the β-casein gene. This 

observation is consistent with previous studies in Oct-1 and Oct-2 knockout mice in 

which Oct-1 and Oct-2 operate redundantly in regulating B cell development and IgG 

transcription (Wang et al., 2004). These data also imply that Oct-1 and Oct-2 may form 

heteromers at the β-casein gene promoter. This possibility is supported by the fact that 

Oct proteins interact not only with various transcription factors and co-activators (Kang 

et al., 2009b), but also with themselves to form homo/hetero-dimers or even higher-order 

complexes (Nieto et al., 2007; Reményi et al., 2001; Verrijzer et al., 1992). 

 

THE MAMMARY GLAND AS A BIOREACTOR 
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Proteins are the building blocks of life. Some proteins, called enzymes, catalyze 

metabolic reactions, and some proteins are involved in the process of cell signaling, 

whereas other proteins serve structural functions. Malfunctions or deficiencies of certain 

proteins cause life-threatening diseases. With the aid of genetic engineering, 

pharmaceutical companies now produce these proteins in a recombinant way to save 

people’s lives. To produce a recombinant protein, a transgene construct containing a 

protein-of-interest-coding DNA sequence must be generated first. Then, the recombinant 

protein is produced in a chosen expression system. Commonly used protein expression 

systems include bacteria, yeasts, insects, mammalian cells, transgenic plants, and 

transgenic animals (Wang et al., 2013). Of these systems, transgenic animals are 

currently under extensive exploration, and different transgenic animals have been 

generated to produce recombinant proteins secreted into a specific fluid, such as milk, 

blood, urine, plasma, and egg white (Wang et al., 2013). Thus far, producing foreign 

proteins in the mammary glands of transgenic animals seems to be best approach. This 

approach, which is also known as a mammary bioreactor system, is superior to producing 

recombinant proteins in other body fluids of transgenic animals and in other expression 

systems in one or more aspects. For example, compared with producing a recombinant 

protein in blood, expressing of recombinant proteins in milk does not compromise the 

host animal’s own health and survival, and extracting the recombinant proteins from milk 

does not involve animal sacrifice (Clark, 1998; Montesino and Toledo, 2006). The 

mammary bioreactor system offers better approach than other expression systems 
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because of its scalability, its ability to perform post-translational modifications, and its 

ease of milk harvest (Clark, 1998; Montesino and Toledo, 2006). 

Because the incidence of diabetes is rapidly increasing worldwide, the global 

insulin market is expected to triple by 2018 (Nielsen, 2013). The current insulin 

production practices will face difficulty in meeting this rapidly rising demand. Using a 

mammary bioreactor system to produce human insulin is an attractive approach to meet 

this demand. In this study, we successfully generated transgenic mice expressing high 

levels of human proinsulin (1.2-8.1 µg/µl) in their milk. In addition, our study also 

confirmed the mammary-specific and lactation stage-specific expression of the human 

insulin transgene and demonstrated that the transgenic animals had no apparent health 

defects. These results suggest that producing much human proinsulin in the milk of dairy 

animals, such as dairy goats and cows, is feasible. If a transgenic cow produces 1 g of 

insulin per liter of milk, which is an extremely safe target based on our study in 

transgenic mice, then this transgenic cow would produce 10 kg insulin per year with an 

average annual milk production of 10,000 kg. A ton of insulin can be produced by 

approximately 100 cows. If we can make this possibility a reality, then this approach will 

greatly relieve the urgent demand for insulin worldwide. 

However, producing transgenic dairy animals is not as simple as producing 

transgenic mice. At this time, the cost of producing transgenic farm animals remains 

extremely high, and the efficiency is low (Houdebine, 2009). Producing a transgenic farm 

animal has been estimated to cost hundreds of thousands of dollars, without any 

guarantee of success (Houdebine, 2009). Many efforts have already been or can be made 
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to improve the efficiency and to reduce the cost of producing transgenic dairy animals. 

The primary barrier for transgenic animal production remains identifying more efficient 

systems of transgene delivery. To ensure that the transgene is present in every cell in the 

animal’s body, all genetic-engineering techniques attempt to introduce the transgene at 

the time of fertilization or at the earliest stage of embryo development. Although 

pronuclear microinjection has been used for more than two decades, the inherent 

inefficiency of transgene delivery, variable transgene expression patterns, and uncertain 

transmission through generations preclude the wide-spread application of this technology 

(Niemann and Kues, 2007; Thomson et al., 2003). In recent years, several alternatives to 

pronuclear microinjection have been developed to improve transgene-delivery efficiency 

for generating transgenic dairy animals, including injection or infection of oocytes and/or 

embryos by lentiviral vectors (Hofmann et al., 2003), by sperm-mediated DNA transfer 

(Smith and Spadafora, 2005), and by transfection of cultured differentiated cells 

combined with somatic cell nuclear transfer (Samiec and Skrzyszowska, 2011). In 

addition, a great savings can be achieved if the transgene-delivered embryos can be 

subject to screening for transgene incorporation, gene construct number, transgene copy 

number, and transgene chromosome integration sites before embryo implantation in 

recipient animals (Samiec and Skrzyszowska, 2011). These selections ensure that nearly 

all the produced progeny will be transgenic. Moreover, the number of male transgenic 

animals can be greatly reduced if only X chromosome-containing embryos are used for 

implantation. For instance, for the method of sperm-mediated DNA transfer, sperm 

sexing for X and Y chromosomes can be performed to ensure only X chromosome sperm 
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are used in the artificial fertilization. Sperm sexing has been used commercially to 

produce sexed offspring with ~90% accuracy (Seidel, 2009). 

In conclusion, the biochemical and molecular information generated by this study 

defines a novel mechanism of how Oct factors are involved in mediating lactogenic 

hormone-regulated tissue-specific gene expression. Our exploration of mammary gland 

bioreactor with the transgenic mice model indicates that it may be feasible to apply our 

transgene construct (pBC1-INS-cDNA) to produce recombinant human proinsulin in the 

milk of dairy animals, such as dairy cows and goats, in industrial scale. 
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FIGURE LEGENDS 

Fig. 5.1. A working model illustrating the hormonal regulation of β-casein gene 

transcription in mammary epithelial cells. This model was developed from Rijnkels’s 

new model (Rijnkels et al., 2012). In the absence of hormones, Yin Yang 1 (YY-1) binds 

to the β-casein proximal promoter and presumably forms a repressive complex by 

recruiting histone deacetylase 3 (HDAC3) and liver-enriched transcriptional inhibitory 

protein (LIP, a dominant negative isoform of CAAT/enhancer binding protein β, C/EBP 

β), resulting in the formation of a negative histone marker, deacetylated histone H3, at the 

proximal promoter of the β-casein gene (Kabotyanski et al., 2009). Oct-1 and/or Oct-2 

may bind to the octamer motif at the β-casein gene proximal promoter as a monomer or 

even as a high-order complex, such as a heterodimer or as a homodimer. Oct(s) may 

recruit its cofactors, possibly histone-lysine N-methyltransferase SETDB1, leading to the 

formation of dimethylated lysine 9 of histone H3 (H3K9). After progesterone (PG) 

treatment, the progesterone receptor (PR) binds to half glucocorticoid response element 

(½ GRE) at the β-casein gene promoter (Buser et al., 2007). In turn, the bound PR may 

further stabilize the repressive complex at the β-casein gene promoter by enhancing Oct(s) 

binding and by recruiting the unactivated (unphosphorylated) signal transducer and 

transcription activator 5 (STAT5). When the mammary epithelial cells are treated with 

prolactin (PRL) and glucocorticoids (GC), Oct(s) may be activated by post-translational 

modification and switch to function as a transactivator. Activated Oct-1 may recruit its 

coactivator, such as Jmjd1a/KDM3A histone demethylase, to the β-casein gene, in turn 

removing inhibitory histone methylation. PRL and GC result in STAT5, glucocorticoid 
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receptor (GR), and C/EBP β (positive isoform) rapidly binding to their respective 

response elements within β-casein regulatory regions, recruiting p300 through protein-

protein interactions and, in turn, facilitating histone acetylation (Kabotyanski et al., 2009). 

Additionally, the interactions of Oct-1 with STAT5 and GR can stabilize the binding of 

STAT5 and GR to the β-casein promoter (Qian and Zhao, 2013). Interactions between the 

promoter and enhancer, which are mediated through these transcription factors and co-

activators, enable DNA looping. The formation of the active chromatin loop between 

distant regulatory elements facilitates binding of the basal transcriptional machinery to 

the DNA template and initiates transcription. 
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Fig. 5.1 
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Abbreviations 

 
BCE-1, bovine casein enhancer element; 

BCM-7, beta-casomorphin-7; 

BM, basement membrane; 

C/EBPβ, CAAT/enhancer binding protein β; 

ChIP, chromatin immunoprecipitation; 

ChIP-chip, chromatin immunoprecipitation (ChIP) followed by microarrays; 

ChIP-seq, immunoprecipitation (ChIP) followed by DNA sequencing; 

CHO, Chinese hamster ovary; 

DTT, dithiothreitol;  

ECM, extracellular matrix; 

EGF, epidermal growth factor;  

Elf5, E74-like factor 5; 

EMSA, electrophoresis mobility shift assay;  

ESC, embryonic stem cell; 

Ets, E26 transformation-specific; 

FDA, Food and Drug Administration; 

GAPDH, glyceraldehydes-3-phosphate dehydrogenase;  

GCs, glucocorticoids; 

GH, growth hormone; 

GHR, growth hormone receptor; 

GR, glucocorticoid receptor;  
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GRE, glucocorticoid response elements;  

1/2 GRE, half glucocorticoid response element; 

H3Ac, histone H3 acetylation; 

HAT, histone acetyltransferase; 

HEC, hyperinsulinemic-euglycemic clamp; 

HDAC3, histone deacetylase 3; 

H3K9, lysine 9 of histone H3; 

HP, hydrocortisone (glucocorticoids) and prolactin;  

HTH, helix-turn-helix; 

IGF-1, insulin-like growth factor-1; 

IP, immunoprecipitation;  

INS, insulin; 

JAK2, Janus kinase 2; 

LAP, liver-enriched transcriptional activator proteins; 

LIP, liver-enriched transcriptional inhibitory protein; 

MBDs, methyl-CpG-binding domain proteins; 

MECs, mammary epithelial cells;  

MEC, mammary alveolar secretory epithelial cell;  

MMTV, mouse mammary tumor virus; 

mTOR, mammalian target of rapamycin; 

NF-1, nuclear factor 1; 

OCA-S, Oct-1 coactivator in S phase; 
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Oct, octamer-binding transcription factor;  

Oct-1, octamer-binding transcription factor-1;  

PC, prohormone convertase; 

PG, progesterone; 

PI3K, phosphoinositide 3-kinase; 

PMSF, phenylmethylsulfonyl fluoride;  

POU, Pit-1, Oct, and Unc-86;  

POUH, POU homeodomain;  

POUS, POU-specific domain;  

PR, progesterone receptor; 

PRL, prolactin; 

PrlR, prolactin receptor; 

PRLR, prolactin receptor;   

qChIP, quantitative chromatin immunoprecipitation;  

qPCR, quantitative PCR;  

qRT-PCR, quantitative reverse transcription PCR;  

Runx2, runt-related transcription factor 2; 

snRNA, small nuclear RNA;  

SH2, Src homology 2; 

Sp1, specificity protein 1; 

STAT5, signal transducer and activator of transcription 5;  

SWI/SNF, Switch/Sucrose nonfermentable; 



178 
 

TAE, Tris-acetate-EDTA; 

TBP, TATA box-binding protein; 

TGFβ, transforming growth factor-β;  

TSS, transcription start site; 

WAP, whey acidic protein; 

WT, wild-type; 

YY-1, Yin Yang 1; 
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