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ABSTRACT 
 

Factory legacy pollutants are an increasing concern for waterways as old 
infrastructure begins to deteriorate and contaminate nearby environments.  The 
Fisherville Mill in Grafton, Massachusetts, USA, exemplifies this problem since it has 
now fallen into disrepair and is leaking Bunker C crude oil into the adjoining Blackstone 
River, a third order stream.  My research examines how effectively an ecologically 
engineered system (EES), consisting of anaerobic bacteria environments, fungal 
microcosms, and aquatic plant environments, can break down petroleum hydrocarbons 
(PH), specifically aliphatic and polycyclic aromatic hydrocarbons (PAH), in this river 
environment.   

I designed, built, and tested an ecologically engineered system that pumps 
polluted waters from a segment of the Blackstone River to a filtration station on land, 
before returning the water to the river upon remediation.  My testing protocol involved 
taking water samples before and after each filtration stage monthly from June through 
October 2012. Water samples were analyzed at the Brown University Superfund 
Research Lab using mass spectrometry to determine aliphatic and PAH concentrations. 

To evaluate system effectiveness, I hypothesized that aliphatic hydrocarbons and 
PAH post-filtration levels would be significantly lower (p<0.05) compared to the 
baseline.  A secondary hypothesis was that each treatment sampling point would have 
significantly different water aliphatic hydrocarbon and PAH levels, indicating sequential 
treatment as contaminates move through the EES.  My results showed that post-treatment 
aliphatic oil concentrations were significantly different from baseline concentrations 
(p=0.005), with an average reduction of 95.2%.  Post-treatment PAH concentrations were 
also significantly different from baseline concentrations (p=0.001), with an average 
reduction of 91%.   

I conclude that this EES provided effective treatment of Bunker C crude oil, even 
though some filtration stages did not achieve their intended objectives.  This type of 
filtration may be scaled, and therefore may be considered in larger remediation efforts 
regarding Bunker C crude oil. 
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CHAPTER 1: THE ROLE OF ECOLOGICAL SYSTEMS IN THE 

REMEDIATION OF BUNKER C CRUDE OIL.  A LITERATURE REVIEW. 

 

1.1 Introduction 

There is now considerable hydrocarbon pollution present in freshwater 

environments (U.S. EPA 2014) that is harmful to aquatic communities and human health 

(Canton and Wegman 1983, Kuhn et al. 1989, Nisbet and LaGoy 1992, Lilius et al. 1994, 

Bofetta et al. 1997, Dejmek et al. 2000). Hydrocarbon contamination is often recalcitrant 

in nature and needs applied restoration technologies for efficient cleanup (Sung et al. 

2003).  Ecologically engineered systems, an arrangement of ecological systems rather 

than man-made materials that have the ability to degrade contaminants, have proven 

effective in breaking down hydrocarbons and show promise in remediating wastewater, 

nutrient excesses, and factory waste (Todd and Josephson 1996).  Ecologically 

engineered systems (EES) can also breakdown newly synthesized contaminants such as 

endocrine disruptors and pharmaceutical waste (Snyder et al. 2004).  EES’s should be 

considered for hydrocarbon remediation because of their tolerance for a diversity of 

waste, as well as their proven ability to remediate hydrocarbons in the literature.  

 

1.2 Ecological Restoration as a Solution Forward 

Ecological remediation, the removal of pollutants from the environment using 

ecological systems, is one type of application incorporated into a larger vision that brings 

ecological services to the forefront of dealing with societal problems.  This vision more 

broadly involves the massive restructuring of our urban environment so that individual 
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buildings and structures can function like organisms, and open spaces can regenerate 

landscapes by providing recycling services for pollution (Todd 1994).  Each building 

might generate its own air purification through individual plant greenhouse circulation 

systems, as well as degrade waste generated on-site through ecological remediation 

methods. Canal filtration devices and building-specific waste degradation might be me 

more commonplace, so that every major structure is functioning to reduce water pollution 

levels to satisfy Federal EPA water standards (U.S. EPA 2014).  Examples existing today 

include ecologically engineered wastewater treatment technologies, applied in the Baima 

Canal, China, that aerate city canals while also decreasing harmful nutrient and chemical 

concentrations from daily waste disposal sites. One other project is the Four Seasons 

Hawaii Lagoon project that circulates water within a wetland system to reduce nutrient 

and chemical concentrations during runoff events (U.S. EPA 2001, John Todd Ecological 

Design 2014).  Incorporation of remediation services will be important in the 

management of polluted environmental sites, but also for the future stability of our water 

resources (Todd and Josephson 1996).   

As we consider more widespread utilization of ecological remediation practices, it 

is important to maintain connection to the field’s founding principles.  Foremost among 

these are symbiosis of organisms and the use of subecosystems when creating 

ecologically engineered systems.  Symbiosis is important because specific waste products 

of one organism can be the substrate of another, producing process chains that heighten 

the efficiency and speed of chemical breakdown or immobilization (Todd and Josephson 

1996).  An example of this is an inorganic carbon requirement of nitrifying bacteria that 

if not met slows the degradation of nitrogenous wastes and allows toxic levels of 
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ammonia build up (Todd and Josephson 1996).   Water characteristics such as pH and 

dissolved oxygen can also affect nutrient cycles, especially if they impact decomposition, 

in which microorganisms convert organic P to the soluble phosphate form required for 

plant uptake (Todd and Josephson 1996). These types of relationships should be 

considered when using ecological remediation practices.  

The use of subecosystems, particularly a photosynthetically driven system linked 

to an animal consumer system, is also important in creating a high-functioning EES to 

remediate nutrient and hydrocarbon pollution (Mitsch and Jorgenson 1989, Todd and 

Josephson 1996).  These principles help guide EESs to reduce chemical oxygen demand 

in water environments, ultimately leading to a healthier, oxygen-rich environment for 

organisms.  These principles also provide system resiliency by reducing total suspended 

solids, neutralizing acids, nitrifying high ammonia levels, and reducing the phosphorus 

load that can lead to algal blooms (Todd and Josephson 1996).  By following these 

principles of design, EES’s are provided more opportunity for effective remediation.   

Ecological remediation techniques also offer an opportunity to investigate how 

natural processes function and how water pollution concerns can be better addressed.  

Specifically, EES’s can give the opportunity to research nutrient uptake regimes and 

eutrophication reversal (Wang et al. 2009), heavy metal contamination, bioaccumulation 

and degradation of pollutants (Hashim et al. 2011), in both soil and water environments 

(Aprill and Sims 1990, Frick et al. 1998, Ceccanti et al. 2006).  These investigations 

could offer more information on how to quickly rebound damaged environments through 

contamination reduction and nutrient balancing.   

Ecological remediation experiments can also further our knowledge of how 
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organisms function under stress.  For example, bioremediation techniques are now 

beginning to demonstrate that certain microbial communities, specifically Pseudomonas, 

Bacillus, Corynebacterium, and Enterobacter species have a resistance to lead and 

cadmium while others do not (Roane and Kellogg 1996).  This adaptation could have 

been naturally selected for because of certain heavy metal environmental stressors. 

Further investigation is needed to understand why resistances evolve in only certain 

microbial communities.  As environmental remediation continues to use novel organisms 

and communities, we will discover new adaptations to harness for remediation purposes.  

 

1.3 Petroleum Hydrocarbons, Bunker C Crude Oil, as a Major Concern 

Factory legacy pollutants, specifically chemicals with long residual times, are 

becoming a larger concern for waterways as old storage infrastructure begins to 

deteriorate and leak contaminates to nearby environments.  There are now many 

hydrocarbon pollutants in freshwater environments (U.S. EPA 2014) that are harmful to 

aquatic communities and human health (Canton and Wegman 1983, Kuhn et al. 1989, 

Nisbet and LaGoy 1992, Lilius et al. 1994, Bofetta et al. 1997, Dejmek et al. 2000).  

Bunker C crude oil (Bunker C) is a contaminant of specific interest due to its continued 

occurrence at many industrial sites active in the 20th century (U.S. EPA 2013).   

Bunker C is a high-viscosity residual oil, used in many factories at the turn of the 

20th century and still used for certain machinery in the textile industry, as well as factory 

heating and lighting (Fuel Oil 2013).  Bunker C is often considered the heaviest of oil 

types, and is good for heat generation since it consists of large hydrocarbon compounds 

that release high amounts of energy upon combustion (Fuel Oil 2013).  This oil contains 
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many types of petroleum hydrocarbons, including aliphatic and polycyclic aromatic 

hydrocarbons (PAH), which were found to be major pollutants in major catastrophic 

spills in Bemidji, Minnesota and the Gulf of Mexico (Delin et al. 1998, Robertson and 

Kaufman 2010). Bunker C should be examined thoroughly so that remediation strategies 

can be discovered for spill events such as these. 

Many different hydrocarbons make up Bunker C, and certain groups are more 

hazardous than others. PAHs are common groundwater contaminants, employed as water 

quality indicators because of their ubiquitous occurrence, recalcitrance and 

bioaccumulation potential.  Heavy exposure can cause increased risk of lung, skin, and 

bladder cancers and has also been found to affect fetal growth during pregnancy (Bofetta 

et al. 1997, Dejmek et al. 2000).  PAHs have also been found to effect the juvenile 

development of many aquatic organisms including rainbow trout and Daphnia magna 

among other organisms (McCann et al. 1975, Canton and Wegman 1983, Lilius et al. 

1994).  These contaminants require comprehensive remediation considerations because of 

the considerable harm they cause.   

PAHs are especially harmful compounds because they have low water solubility. 

This characteristic causes them to readily adsorb to sediments, often settling the pollutant 

near the bottom of the water column where degradation occurs slowly due to frequently 

low dissolved oxygen concentrations (Perelo 2010).  For this reason, remediation 

strategies for PAHs were examined thoroughly within the past several decades and will 

be highlighted below.  Generally, it was found that PAHs degrade readily in aerobic 

conditions with the help of bacteria, while an anoxic environment slows their breakdown 

(DeLaune et al. 1981).  Natural breakdown has also been found to occur through 
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volatilization, or photolysis (Haritash and Kaushik 2009).  PAHs and other hydrocarbons 

are also generally believed to be difficult to break down with the absence of oxygen 

because of resonance energy associated with their aromatic rings, and the strength of their 

C-H and C-C bonds (Widdel and Rabus 2001).  However, specific metabolites of 

anaerobic PAH degradation such as naphthyl-2-methylsuccinate indicate anaerobic 

degradation of 2-methylnaphthalene in situ (Rainer et al. 2004).  These types of 

environmental factors and byproducts of degradation should be considered in 

experimentation aimed at breaking down PAHs.   

 

1.4 Bioremediation 

Bioremediation, the microbial breakdown of compounds using chemical 

pathways, has the potential to play a much larger role in hydrocarbon remediation than it 

has to date (Haritash and Kaushik 2009).  Microorganisms in the bioremediation process 

transform compounds into non-hazardous forms with less input of chemicals, energy and 

time than traditional methods like dredging, capping, or natural attenuation (Haritash and 

Kaushik 2009, Perelo 2010).  The literature outlining bioremediation applications below 

is extensive and useful for targeting specific hydrocarbon compounds.  There is also the 

potential for new bioremediation strategies to include ‘unculturable’ microbial wealth, 

which has been estimated at 1,000 to 10,000 unknown prokaryotes per 1g of soil 

(Handelsman et al. 1998).   

Bioremediation applications often take advantage of cultured microorganism 

species to target a specific pollutant or utilize species that occur readily in our degraded 

environments (Löffler and Edwards 2006).  Anaerobic microbes, for example, can live in 
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heavily contaminated water that has turned anoxic (Lovley 2001).  These microbes have 

evolved chemical pathways for energy generation and growth using oxygen substitutes 

(Lovley 2001).  For example, microbes oxidize organic compounds to carbon dioxide and 

use electron acceptors such as nitrate, sulfate, or Fe3+ oxides (Lovley 2001).  Natural 

anaerobic microbe capabilities should be harnessed for more efficient clean up of 

contaminants in a variety of environments. 

Alternatively, aerobic degradation has other chemical pathways for hydrocarbon 

breakdown and energy generation.  Aerobic degradation is initiated by the introduction of 

oxygen atoms into the aromatic ring of these pollutants to produce cis-dihydrodiols and 

eventual breakdown of the structure (Chakraborty and Coates 2004).  We also now know 

that saturated alkanes, made up of C-H single bonds, are more susceptible to aerobic 

bacterial attack than unsaturated hydrocarbons such as alkenes or alkynes, which have C-

H double and triple bonds.  The straight long carbon chain structures found with many 

hydrocarbons also make them more prone to aerobic biodegradation because of the 

exposed nature of the molecule (Chakraborty and Coates 2004).   

Given the ubiquitous nature of bacteria to degrade hydrocarbons both aerobically 

and anaerobically, it is important to learn which of the numerous bacteria strains have 

been identified most effective at doing so (Gibson and Parales 2000).  Pseudomonas 

aeruginosa, Pseudomons fluoresens, Mycobacterium, Haemophilus, Rhodococcus, and 

Paenibacillus are some commonly known PAH-degrading bacteria, which have been 

studied extensively in lab environments (Haritash and Kaushik 2009).  Bacteria strains 

can also display wide versatility in bioremediation.  For example, Pseudomonas 

paucimobilis grown in fluoranthene was capable of degrading 80.0, 72.9, 31.5, 33.3, and 
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12.5% of pyrene, benzanthracene, chrysene, benzopyrene and benzofluoranthene 

respectively (Ye et al. 1995).    

Significant numbers of petroleum-degrading aerobic microorganism species were 

found petroleum-polluted soils examined by Chaillan et al. (2004).  Researchers collected 

and analyzed 33 species, eight bacteria, and twenty-one fungi in the process.  Bacterial 

strains belonged to the genera Gordonia, Brevibacterium, Aeromicrobium, Dietzia, 

Burkholderia and Mycobacterium.  Fungi belonged to Aspergillus, Penicillium, 

Fusarium, Amorphoteca, Neosartorya, Paecilomyces, Talaromyces and Graphium.  All 

of these strains were cultivated in a synthetic liquid media with crude oil, and use of the 

oil carbon for growth determined (Chaillan et al. 2004).  This research exemplifies the 

diversity that organisms possess, and also brings into question which combination of 

organisms would lead to a more efficient hydrocarbon remediation strategy.  This topic 

should be explored further with experimentation. 

 Many of these hydrocarbon-degrading anaerobes can now be cultured, and their 

breakdown pathways studied (Chakraborty and Coates 2004).  An example of newly 

identified pathways is the fumarate addition reaction used as the activation step for 

catabolic processes regarding monoaromatic hydrocarbon compounds.  It has also been 

found that the type of electron acceptor utilized, either aerobic or anaerobic, for 

compound degradation alters breakdown pathways (Chakraborty and Coates 2004).     

Cyanobacteria can also break down hydrocarbons in water environments, and are 

important to consider in ecological remediation research.  A recent study isolated five 

species with this capacity in Suez and Ismailia, Egypt (Ibraheem 2010): Phormidium, 

Nostoc, Anabaena, Aphanothece conferta, and Synecho-cystis aquatilis.  These species 
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were able to biodegrade two aliphatic compounds (n-octadecane and pyrene) and two 

aromatic compounds (phenanthrene and dibenzothiophene) very well.  For the two 

aliphatic compounds treated with A. conferta there was a 64% reduction of n-octadecane 

and a 78% reduction of pyrene.  Using S. aquatilis in treatment there was an 85% 

reduction in n-octadecane and a 90% reduction in pyrene (Ibraheem 2010).Cyanobacteria 

species should be considered for utilization in ecologically engineered systems. 

 

1.5 Mycoremediation 

The white rot fungi (WRF) group, including litter-decomposing fungi capable of 

extensive aerobic lignin depolymerization, also degrades hydrocarbons in soil 

environments through cometabolism (Cabana et al. 2007).  It secretes unique lignin-

modifying enzymes (LMEs), that are quite reactive and nonspecific, that allow them to 

oxidize and degrade a larger range of compounds difficult for bacteria to handle, 

including dyes, PAHs, PCBs, phenols, and pesticides (Cabana et al.2007).  Its 

filamentous growth structure also offers a unique and beneficial way of reaching 

pollutants that may be inaccessible to bacteria (Reddy 1995).  This unique set of 

capabilities should be incorporated into EES design and remediation efforts when 

contaminants are hard to reach. 

To further examine how WRF mycoremediation occurs, it is important to 

understand when LMEs are produced during fungal lifecycles. WRFs produce LMEs 

during their secondary metabolism since lignin oxidation provides no net energy to the 

fungus.  Low levels of limiting nutrients such as carbon or nitrogen in the soil 

environments prompt increased synthesis and secretion of these enzymes so that 
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mushrooms can gather more nutrients for growth and survival.  LMEs specifically 

include lignin peroxidases (LiP), manganese-dependent peroxidases (MnP), and laccases.  

These are the essential LMEs while a suite of other enzymes complement the degradation 

process (Cabana et al. 2007).  Auxiliary enzymes include glyoxal oxidase and superoxide 

dismutase, which aid in the breakdown process and ultimately the nutritional needs of the 

fungi (Leonowicz et al. 1999). While the WRF group secretes these enzymes for 

degradation purposes, the amount of enzymatic activity also varies based on species and 

environmental conditions such as pH and temperature (Hatakka 1994, Leung and 

Pointing 2002, Maganhotto de Souza Silva et al. 2005).  Production of Lip and MnP are 

optimal when there is high oxygen partial pressure, but suppressed when organisms are 

agitated.  However, laccase production increases with agitation of the mycelia organisms 

(Cabana et al. 2007).  These environmental disturbances should be considered when 

employing WRF enzymes for degradation. WRF are capable of PAH mineralization, at 

rates of mineralization correlating with the intensity of production of LMEs (Sack et al. 

1997).  Besides hydrocarbons, these LMEs can also breakdown pesticides, 

polychlorinated biphenyls, polycyclic aromatic hydrocarbons, bleach plant effluent, 

synthetic dyes, synthetic polymers, and wood preservatives (Pointing 2001).  LMEs are 

unique enzymes to the WRF group and should be examined further. 

WRF can behave differently when put into competitive environments. For 

example, laccase activity can be increased when mushroom species come in contact with 

other WRF species, bacteria, or yeasts.  In cultures of Trametes versicolor and Pleurotus 

ostreatus in sterile soil, there was a significant 2-25 fold increase of laccase activity after 

the introduction of soil fungi, or bacteria (Baldrian 2004).  When Trichoderma harzianum 
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was added to cultures of Trametes versicolor, laccase enzymatic activity increased 40 

fold (Baldrian 2004).  This type of intergroup competition between WRF species, or with 

bacteria and yeast, should be incorporated into remediation management plans when 

WRF groups are involved.   

Many types of fungi are now also known to breakdown and oxidize PAHs.  It was 

found that a whole diversity of fungi including Aspergillus ochraceus, Cunninghamella 

elegans, Phanerochaete chrysosporium, Saccharomyces cerevisiae, and Syncephalastrum 

racemosum, can oxidize PAHs (specifically anthracene, benz[a]anthracene, 

benzo[a]pyrene, fluoranthene, fluorene, naphthalene, phenanthrene, pyrene) (Sutherland 

1992).  Several of these taxa including Phanerochaete chrysosporium (Bumpus 1989), 

Pleurotus sp.  (Bezalel et al. 1996), and Trametes versicolor (Morgan et al. 1991) carried 

out PAH degradation in soil not just in culture.  It was also found in one study that 

Trametes versicolor reduced hydrocarbon concentrations from 32 g/kg to 7 g/kg within 

12 months in soil microcosms (Yateem et al. 1998).  The effectiveness of these fungi 

species should be noted and utilized in future hydrocarbon remediation efforts. 

 White rot fungi have also demonstrated the ability to breakdown hydrocarbons in 

marsh conditions.  Among 40 fungal species isolated in wetlands contaminated with 

PAH, 33 species showed an ability to degrade fluoranthene (60–99%), albeit only two 

species were able to degrade anthracene by more than 70% (Giraud et al. 2001).  

Mushroom species effective in doing so included Absidia cylindrospora, Mucor hiemalis, 

Aspergillus fumigatus, Cladosporium cladosporoides, Fusarium solani, and Trichoderma 

viride (Haritash and Kaushik 2009).  These species should be considered when 

remediating in water or marsh conditions. 
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1.6 Phytoremediation 

Phytoremediation is the process in which plants are used to remove pollutants 

from an environment to render them harmless (Haritash and Kaushik 2009).  Plants 

usually remove pollutants by storing them in their plant roots or foliage.  This is a 

particularly effective strategy where there are large areas of surface contamination 

(Shimp et al. 1993).  There are also microorganisms associated with the plant 

rhizosphere, such as the genera Pseudomonas, Arthobacter, and Micrococcus, that are 

known to biodegrade a wide variety of contaminants including hydrocarbons (Shimp et 

al. 1993).  

 Certain terrestrial grass species show a significant effectiveness in remediating 

harmful hydrocarbons in soil environments (Aprill and Sims 1990, Reilley et al. 1996, 

Haritash and Kaushik 2009).  Several grass species degrade PAHs, such as Agropyron 

smithii, Bouteloua gracilis, Cyanodon dactylon, Elymus Canadensis, Festuca 

arundinacea, Festuca rubra, and Melilotus officinalis (McCutcheon and Schnoor 2003).  

Grasses and legumes also have the potential to remediate hydrocarbon contamination in 

soils. When alfalfa and three grasses, tall fescue, sudangrass, and switchgrass, were 

planted in PAH contaminated soils, these plants’ associated rhizospheres broke down 

pyrene and anthracene 30-40% more than soils that were left unplanted (Reilley et al. 

1996).  Prairie grasses are thought to make a superior vehicle for this kind of remediation 

because of their fibrous root systems, which have a high root surface area (Aprill and 

Sims 1990).   

Aquatic plants can also break down hydrocarbons in water environments.  

Aquatic plants, Typha spp. and Scirpus lacustris, were used in a macrophyte-based 
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wetlands to treat PAHs, with removal rates for phenanthrene of up to 99.9% (Machate 

1997).  Using these plants as biological filters, while also employing their beneficial 

rhizosphere properties, is a favored way to remediate hydrocarbon pollution (Haritash 

and Kaushik 2009).   

Plants are also known for removing nutrients and polishing residual biochemical 

oxygen demand from wastewater treatment plant effluents.  They may also remove 

emerging organic pollutants such as pharmaceutical and personal care products with over 

90% efficiency (Matamoros et al. 2008).  It was even found that many types of plants 

could handle heavy strength waste from dairy factories.  Researchers found that plants 

reduced the dairy waste PO4-P by 41%, TN by 79%, and NH4-N by 70% (Morgan and 

Martin 2008).  While certain plants are effective at removing hydrocarbons, species 

should also be considered effective at removing other contaminants simultaneously.   

Plants often can remediate water pollution in much colder climates than 

microorganisms.  Phytoremediation was examined with two cold-hardy plants, Arctared 

red fescue and annual ryegrass, planted together in soil contaminated with crude oil 

(Reynolds and Wolf 1999).  Results indicated that plots with the two species had 

significantly lower concentrations of total petroleum hydrocarbons compared with 

unplanted controls.  The initial oil concentration for planted treatments and controls was 

approximately 6200 mg of total petroleum hydrocarbons (TPH)/kg soil.  After 640 days, 

the two species planted on crude oil contaminated soil contained 1400 mg TPH/kg soil or 

77% less than initially while the unplanted control contained 2500 mg TPH/ kg soil, 60% 

less than before (Reynolds and Wolf 1999).  This shows that many natural degradation 

processes are occurring in soil but that by adding certain plant species, the recovery 
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period can be hastened.  Another example of cold climate remediation involved an 

engineered wastewater treatment project designed for operation in Sweden and 

constructed in 1989.  After 4 years of operation, results showed that the wastewater from 

34 people has been treated in an effective manner. The nutrient uptake in the aquaculture 

included 10% of the nitrogen and 8% of the phosphorus in the total wastewater flow 

(Guterstam 1996).  Plant systems seem ideal for nutrient and hydrocarbon remediation 

with their flexibility and tolerance of extreme environments.  This information analyzed 

in laboratory and field experiments should make phytoremediation a consideration when 

remediating hydrocarbon-polluted sites. 
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CHAPTER 2: ECOLOGICAL REMEDIATION USING BACTERIAL, FUNGAL, 

AND PLANT MICROCOSMS: AN EFFECTIVE SOLUTION FOR BUNKER C 

CRUDE OIL CONTAMINATION IN WATERWAYS 

 

2.1 ABSTRACT 

Factory legacy pollutants are an increasing concern for waterways as old 

infrastructure deteriorates and contaminates nearby environments.  The Fisherville Mill 

in Grafton, Massachusetts, USA exemplifies this problem since it has now fallen into 

disrepair and is leaking Bunker C crude oil into the adjoining Blackstone River, a third 

order stream.  Our research examines how effectively an ecologically engineered system 

(EES), consisting of anaerobic bacteria environments, fungal microcosms, and aquatic 

plant environments, can break down petroleum hydrocarbons, specifically aliphatic and 

polycyclic aromatic hydrocarbons (PAH), in this river environment.   

 Our testing protocol involved taking water samples before and after each filtration 

stage monthly from June through October 2012. Water samples were analyzed at the 

Brown University Superfund Research Lab using mass spectrometry to determine 

aliphatic and PAH concentrations. 

 Post-treatment aliphatic oil concentrations were significantly different from 

baseline concentrations (p=0.005), with an average reduction of 95.2%.  Post-treatment 

PAH concentrations were also significantly different from baseline concentrations 

(p=0.001), with an average reduction of 91%.  We conclude that this EES provided 

effective treatment for Bunker C crude oil, even though some filtration stages did not 

achieve their intended objectives.  This type of filtration arrangement might be scaled up 

for use in larger remediation efforts regarding Bunker C crude oil. 
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2.3 INTRODUCTION 

Factory legacy pollutants, specifically chemicals with long residual time, are an 

increasing concern for waterways as old containment infrastructure deteriorates. There is 

now considerable hydrocarbon pollution present in freshwater environments (U.S.  EPA 

2014), which are harmful to aquatic communities and human health (Canton and 

Wegman 1983, Kuhn et al. 1989, Nisbet and LaGoy 1992, Lilius et al. 1994, Bofetta et 

al. 1997, Dejmek et al. 2000).   

The Fisherville Mill in Grafton, MA, USA is one example, having fallen into 

disrepair after several decades of disuse, releasing thousands of gallons of Bunker C 

crude oil (Bunker C) into the Blackstone River, a third order stream. Our research 

examines how effectively an ecologically engineered system (EES), consisting of 

anaerobic bacteria environments, fungal microcosms, and aquatic plant environments, 

can break down petroleum hydrocarbons (PH), specifically aliphatic and polycyclic 

aromatic hydrocarbons (PAH), in this river environment.  This research builds upon 

several previous field experiments that effectively treated hydrocarbons through 

bioremediation (Giraud et al. 2001), mycoremediation (Bezalel et al. 1996, Yateem et al. 

1998), and phytoremediation (Machate et al. 1997, Frick et al. 1998). In our study, this 

question is specifically addressed on a small scale (i.e. 1000 gallons treated per day). The 

objective is to inform development of larger projects (i.e. 100,000 gallons treated per 

day) in similarly polluted waterways.  

 

2.3.1 Bunker C, Petroleum Hydrocarbons, and Consequences 

In this study we build upon previous research to explore the potential for 
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bioremediation (the microbial breakdown of compounds using chemical pathways), 

mycoremediation (the degradation of contaminants using mushrooms), and 

phytoremediation (the process in which plants are used to remove pollutants from an 

environment), to breakdown Bunker C in a water environment. Bunker C is a highly 

viscous residual oil that contains many types of petroleum hydrocarbons (PH), including 

aliphatic hydrocarbons and polycyclic aromatic hydrocarbons (PAHs). These types of 

petroleum hydrocarbons are common groundwater contaminants, employed as water 

quality indicators because of their ubiquitous occurrence, recalcitrance, and 

bioaccumulation potential. Heavy exposure to hydrocarbons can cause increased risk of 

lung, skin, and bladder cancer and affects fetal growth during pregnancy (Bofetta et al. 

1997, Dejmek et al. 2000).  PAHs also affect the juvenile development of many aquatic 

organisms including rainbow trout and Daphnia Magna (McCann 1975, Canton and 

Wegman 1983, Lilius et al. 1994).  Bunker C requires thorough remediation because it is 

so severely harmful. It is important to consider new comprehensive approaches to 

remediate Bunker C, as it becomes a more common contaminant in waterways.  

 

2.3.2 Bioremediation 

Bioremediation, the microbial breakdown of compounds using chemical 

pathways, has the potential to play a significant role in Bunker C remediation (Haritash 

and Kaushik 2009).  This type of remediation was important to consider for our EES 

because microorganisms transform compounds into non-hazardous forms with less input 

of chemicals, energy and time than such conventional methods as dredging or capping 

(Haritash and Kaushik 2009).  These traditional methods were also not considered 
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because of the widespread nature of the contamination plume, making it difficult to stop 

flow from the source. 

Bioremediation also carries the additional advantage of employing 

microorganisms that are highly tolerant of degraded environments (Löffler and Edwards 

2006).  Heavily contaminated water sources, such as the Blackstone River, often become 

oxygen depleted permitting the survival of only anaerobic microbes (Lovley 2001). Our 

EES design takes into account the presence of these anaerobic microbial communities in 

the Blackstone River, providing them abundant artificial habitat for colonization and thus 

utilization as a filter.   

Many bacteria species capable of remediating hydrocarbons have now been 

identified (Gibson 2000).  Commonly studied PAH-degrading bacteria include 

Pseudomonas aeruginosa, Pseudomons fluoresens, Mycobacterium, Haemophilus, 

Rhodococcus, Paenibacillus (Haritash and Kaushik 2009).  Each bacteria species can also 

display a wide versatility in degrading PAHs.  For example, Pseudomonas paucimobilis 

grown in fluoranthene was capable of degrading 80.0, 72.9, 31.5, 33.3, and 12.5% of 

pyrene, benzanthracene, chrysene, benzopyrene and benzofluoranthene, respectively (Ye 

et al. 1995).  This analysis indicates that certain bacteria species are effective at breaking 

down a range of hydrocarbons in anaerobic soil and water environments effectively, 

making bioremediation a suitable candidate for tackling Bunker C that is made up of 

several dozen hydrocarbons. Our study goes beyond consideration of individual species 

effectiveness to look at how native bacterial communities can be encouraged to colonize 

in-situ filters. 
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2.3.3 Mycoremediation 

The white rot fungi (WRF) group, more generally including litter-decomposing 

mushrooms capable of secreting lignin-modifying enzymes (LMEs), has been found to 

degrade hydrocarbons in soil environments and is thus an important group to consider for 

Bunker C remediation in an EES (Cabana et al. 2007). Many types of fungi are now 

known to breakdown and oxidize PAHs including Aspergillus ochraceus, 

Cunninghamella elegans, Phanerochaete chrysosporium, Saccharomyces cerevisiae, and 

Syncephalastrum racemosum.  Among the PAHs oxidized are anthracene, 

benz[a]anthracene, benzo[a]pyrene, fluoranthene, fluorene, naphthalene, phenanthrene, 

pyrene (Sutherland 1992).  Several taxa including P. chrysosporium (Bumpus 1989), 

Pleurotus sp. (Bezalel et al. 1996), and Trametes versicolor (Morgan et al. 1991) also 

degrade PAHs using secreted LMEs.   

The ability of white rot fungi to breakdown hydrocarbons in water and marsh 

conditions also has been demonstrated.  Among 40 fungal species isolated from wetlands 

contaminated by PAH, 33 showed an ability to degrade fluoranthene (60–99%), although 

only two degraded anthracene by more than 70% (Giraud et al. 2001).  Several 

mushroom species capable of degrading hydrocarbons include Absidia cylindrospora, 

Mucor hiemalis, Aspergillus fumigatus, Cladosporium cladosporoides, Fusarium solani, 

and Trichoderma viride (Haritash and Kaushik 2009).  These studies were considered 

when selecting fungal microcosm filters.  Our species utilized as fungal microcosm filters 

in our EES included Irpex lacteus (milk-white toothed polypore), Pleurotus ostreatus 

(oyster), Stropharia rugosoannulata (garden giant) and Trametes versicolor (turkey tail).  

Enzyme secretion regimes for the WRF group are also important to consider for 
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optimizing remediation capabilities. Standard LMEs secreted include lignin peroxidases, 

manganese-dependent peroxidases, and laccases (Cabana et al. 2007).  While the WRF 

group secretes these enzymes for degradation purposes, the amount of enzymatic activity 

also varies based on species and environmental conditions, responding poorly when pH 

or temperature are extreme (Maganhotto de Souza Silva et al. 2005, Hatakka 1994, 

Leung and Pointing 2002).  These environmental requirements were considered when 

arranging our fungal microcosm layout and growth regime. Our study will take the 

knowledge gained about PAH degradation and enzyme activity, and arrange fungal 

microcosms in a way that permits testing of their usefulness as drip filters. The 

effectiveness of WRF in complete aquatic environments is still unknown, and this 

arrangement will determine that capability.   

 

2.3.4 Phytoremediation 

Plant species are also important to consider when developing an EES to break 

down Bunker C.  Phytoremediation is the process in which plants are used to remove 

pollutants from an environment to render them harmless by storing the compounds in 

roots or foliage (Haritash and Kaushik 2009).  This is a particularly effective strategy 

where surface contamination covers a large area (Shimp et al. 1993, Frick et al. 1998).  

There are also microorganisms associated with the plant rhizosphere, such as 

Pseudomonas, Arthobacter, and Micrococcus, known to biodegrade a wide variety of 

contaminants including hydrocarbons (Shimp et al. 1993).  

 Plant communities, grasses and legumes, can remediate harmful pollutants 

including hydrocarbons, with particular effectiveness in soil environments (Reilley et al. 



	  

 28 

1996, Aprill and Sims 1990, Haritash and Kaushik 2009).  Several grass species, 

including Agropyron smithii, Bouteloua gracilis, Cyanodon dactylon, Elymus 

Canadensis, Festuca arundinacea, Festuca rubra, and Melilotus officinalis degrade 

PAHs (McCutcheon and Schnoor 2003). Alfalfa and three grasses: tall fescue, 

sudangrass, and switchgrass, planted in PAH contaminated soils, were effective in 

breaking down pyrene and anthracene 30-40% more than soils that were left unplanted 

(Reilley et al. 1996).  Prairie grasses are thought to make a superior vehicle for this kind 

of remediation because of their fibrous root systems, which can have a high surface area 

(Aprill and Sims 1990). This research was considered when selecting local grass species 

for phytoremediation purposes in our EES. 

Aquatic plants have also been shown to break down hydrocarbons in water 

environments.  For example, Typha and Scirpus lacustris have been used to treat PAHs, 

with success in reducing phenanthrene by up to 99.9% (Machate 1997).  Using these 

plants as biological filters, while also encouraging chemical processes associated with 

their root zones may be an effective strategy to reduce hydrocarbon pollution at vegetated 

sites (Haritash and Kaushik 2009).  This research was incorporated into our EES. We 

planted Typha (cattail), Scirpus lacustris (bulrush), Medicago sativa (alfalfa), Festuca 

arundinacea (tall fescue), and Panicum virgatum (switchgrass). 

 Many species of bacteria, mushrooms, and plants have the ability breakdown 

hydrocarbons.  In this study we investigate how these three types of ecological techniques 

based on specific biological groups can be incorporated into an EES to most effectively 

breakdown Bunker C pollution in the Grafton Canal, MA, USA. We hypothesized that an 

EES with anaerobic bacteria environments, fungal microcosms, and aquatic plant 
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environments will effectively sustain the break down of PHs, specifically aliphatic 

hydrocarbons and PAHs over a period of several months.  A secondary hypothesis was 

that each treatment contributed to pollutant degradation. Thus we expected statistically 

significant aliphatic hydrocarbons and PAH decrease along the post-treatment sampling 

points.  

   

2.4 METHODS 

 
2.4.1 Site History and Layout 

Our study site is located at the former historic Fisherville Mill in South Grafton, 

Massachusetts and is immediately down river of the confluence of the Quinsigamond and 

Blackstone Rivers (42.177355, -71.689998).  The Blackstone River flows for 48 miles 

from Worcester, Massachusetts to Providence, Rhode Island (Figure 1).  The Blackstone 

River corridor is known as the birthplace of the American Industrial Revolution, and is a 

river of national significance, as evidenced by the designations of the John H. Chafee 

Blackstone River Valley National Heritage Corridor, an American Heritage River and 

Urban River Restoration Initiative Pilot.  Water quality in the Blackstone River continues 

to be impaired because of legacy structures and pollutants associated with the rivers 

industrialized history and lack of cleanup.  The entire length of the Blackstone River in 

Massachusetts is on the state's list of impaired waters. Our remediation site and EES are 

on land near the Fisherville Mill, which has now burned down. This gives us direct water 

access to the Bunker C pollution source buried in holding tanks that were associated with 

the Mill, since tanks have not been removed or altered beyond initial damages.  
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2.4.2 Overview of Ecologically Engineered System 

There are three general components to the EES we tested (Figure 2).  First, 

contaminated water from the canal is drawn through four anaerobic microbial filters 

(‘Bottom Filters’).  The Bottom Filters were placed near the middle of the canal one foot 

above the canal bottom and drew between 500 to 1000 gallons of water per day. They 

specifically consisted of PVC piping (8 inches wide, 250 feet long) filled with quarter 

inch gravel and sand.  The gravel and sand environment promoted anaerobic bacteria 

colonization of this area as the Bottom Filters pumped in bacteria and water from the 

anoxic environment in the canal.  This filter arrangement also prevented canal debris 

from entering the system.  This treatment was first in our EES because bacteria have 

displayed the strongest capabilities in degrading hydrocarbons in the literature, and thus 

were most suitable to encounter the highest concentrations of Bunker C.  Our constructed 

piping system also provided a suitable bacteria environment that our other treatments 

could not exist in. 

The water was then pumped to the Eco-Machine (John Todd Ecological Design 

2014), a patented living technologies system consisting of two sub-components: fungal 

microcosm filters (‘Myco-Reactors’) and an aquatic plant environment (‘Aquatic Cells’).  

Contaminated water was first dispersed in the Myco-Reactors, which have different 

mycelia species that produce lignin-modifying enzymes capable of degrading 

hydrocarbons.  The mycelia species used in the Myco-Reactors included Irpex lacteus 

(milk-white toothed polypore), Pleurotus ostreatus (oyster), Stropharia rugosoannulata 

(garden giant) and Trametes versicolor (turkey tail).  Irpex lacteus, and Pleurotus 

ostreatus were chosen for their ability to break down PAHs in water (Haritash and 
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Kaushik 2009), Trametes versicolor for its ability to breakdown PAHs in soils (Morgan 

et al. 1991, Yateem et al. 1998), and Stropharia rugosoannulata for its ability to thrive at 

warmer temperatures, such as those in a greenhouse environment.  These mushroom 

species were grown on a wood chip medium, and placed in separate containers.  Canal 

water entered these containers from above with a drip nozzle, passed through the filter 

media, and was collected below before being pumped to the Aquatic Cell treatment.  

These containers were covered at all times, and shaded to reduce the mycelia medium 

temperature to approximately 85°F.  This treatment was second in our EES because these 

mushroom species have shown capabilities to degrade hydrocarbons more effectively 

than our selected plant species, and thus were more suitable to encounter higher Bunker 

C concentrations. 

The water then encountered the Aquatic Cells treatment, a series of six 700-gallon 

tanks with plant species including Typha (cattail), Scirpus lacustris (bulrush), Medicago 

sativa (alfalfa), Festuca arundinacea (tall fescue), and Panicum virgatum (switchgrass).  

These tanks were connected together with level tubing, so as water was pumped into the 

first tank, water was sequentially forced to move through all six tanks and back out into 

the canal.  Since the water moved through the EES in this fashion, the pumping in of 500 

to 1000 gallons of water per day meant that this same amount was also exiting the system 

per day. Each tank area was divided in half, with one side planted with the previously 

mentioned species on a floating material so that plant roots were in contact with the 

water, and the other half left unplanted and open. All tanks were aerated and the Aquatic 

Cells experienced a normal fluctuation of summer temperatures from 70°F to 100°F. The 

contaminated water interacted with these plant species and their rhizosphere networks for 
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phytoremediation and bioremediation purposes. The Aquatic Cells were placed as our 

third treatment because of their intermediate ability to degrade hydrocarbons.  

After treatment in the Eco-Machine, water was dispersed on a floating raft system 

(‘Canal Restorer’) planted with native plant species with established root systems in the 

water column.  Predominate species included Typha and Scirpus lacustris, as well as 

added mycelia media.  This Canal Restorer was put in place to provide further 

phytoremediation and mycoremediation treatment in the river. 

 

2.4.3 Water Sampling Protocol 

To verify the performance of this EES, we took water samples for analysis of 

aliphatic and PAH from five locations on-site monthly from June to October 2012.  Point 

#1 (Baseline) was the baseline variable in this experiment since it was upstream of the 

study site, with no contact to filtered water.  Point #2 (Intake) was the water intake for the 

filtration system and is different from Point #1 because it is downstream of the canal 

restorer treatment.  Point #3 Post-Bacteria, #4 Post-Mushroom, and #5 Post-Plants were 

sampling points taken after each respective treatment (Figure 3).  We took samples over 

this extended time period to determine the average effectiveness of EES treatments, 

rather than looking at individual sampling differences. Long-term averages were also 

analyzed because of sample size limitations and lack of replication. 

No sampling was conducted within 24 hours of a precipitation event above 0.25 

inches of rainfall.  Since there was a small sample size with this study, we used a time 

composite sampling method, in which each sample was composed of four discrete 

aliquots collected within a 30-minute interval. Tyvec suits and nitrile gloves were used to 
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collect all samples.  We collected samples south to north, so that there was no sampling 

interference within the canal or EES.  Once samples were collected, they were preserved 

with additions of hydrochloric acid to reduce the pH below 2.  Samples were then 

delivered to the Brown University’s Superfund Research Program (B.U.S.R.) Lab and 

processed using mass spectrometry to determine aliphatic and PAH concentrations. 

 

2.4.4 Analytical Methods 

The B.U.S.R. lab aliphatic hydrocarbon and PAH analysis was performed using 

Mass DEP’s Method for the Determination of Extractable Petroleum Hydrocarbons 

(MDEC 2004). This analysis initially yielded a total petroleum hydrocarbon (TPH) 

measure reported as a single concentration value (#/L), before providing separate values 

for into aliphatic and PAH concentrations. Non-petroleum hydrocarbons were present in 

these TPH analyses and were listed as “unresolved complex mixture” (UCM) within the 

aliphatic measurement (B.U.S.R. Lab 2012, Figure 4).  

We compared aliphatic and PAH concentrations among treatments using IBM 

SPSS statistics software Version 21 for analysis of covariance.  Data were first log 

transformed due to unequal variances among the treatments.  In subsequent analysis 

treatments were the group and number of days since the start of this experiment (June 15) 

the covariate.  Means of treatments were compared in pairs using a confidence interval of 

95%. We also tested normality of the residuals of the analysis of covariance. The 

Kolmogorov-Smirnov test was not significant, thus normality is assumed for both 

aliphatic hydrocarbon and PAH data. None of the calculated p-values were corrected, 

because of the limited number of data points.  
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2.5 RESULTS 

Aliphatic hydrocarbon concentrations recorded throughout four months of testing 

show significant reductions when comparing EES treatments to the baseline (Figure 5).  

There is a one to two order of magnitude reduction in aliphatic hydrocarbon levels when 

post-treatment samples are compared to the study baseline, Point #1 (Baseline).  

Specifically Points #3 (Post-Bacteria), #4 (Post-Mushrooms) and #5 (Post-Plants) had oil 

concentrations lower than the baseline by 95.8, 96, and 95.2%, respectively.  The average 

overall treatment reduction over the test period was 95.8%. When looking at the average 

additive effect of each treatment, Points #3 (Post-Bacteria) reduced aliphatic 

hydrocarbons from the baseline by 95.8%. Point #4 (Post-Mushrooms) reduced 

hydrocarbons from Point #3 by 5.2%, and #5 (Post-Plants) increased hydrocarbons from 

Point #4 by 22.4% (Figure 5). 

Point #3 (Post-Bacteria) aliphatic levels were significantly different from those of 

Point #1 (Baseline) (p=0.043) (Table 2).  This also was the case for Point #4 (Post-

Mushrooms), p=0.001, and Point #5 (Post-Plants), p=0.005.  All of these significant 

reductions indicate that Hypothesis #1 is supported.   

There were also reductions following the treatments relative to Point #2 (Intake).  

The specific levels of significance were for Point #3 (Post-Bacteria) p=0.008 (Table 2) 

for Point #4 (Post-Mushroom), p <0.001, and for Point #5 (Post-Plant filter), p=0.001. 

While the different treatments lowered the Point #2 (Intake) hydrocarbon level further 

than the Point #1 (Baseline) level, Points #1 and #2 were not significantly different from 

one another (Table 2).   

We did not find significant differences between the bacteria, mushroom and plant 
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treatments (Table 2).  Point #3 (Post-Bacteria) and Point #5 (Post-Plant) treatments 

reduced aliphatic hydrocarbon levels similarly (p=0.670), while Point #4 (Post-

Mushrooms) and Point #5 (Post-Plants) were less comparable (p=0.407).  Post-

Mushrooms and Post-Bacteria treatments were most different in level of pollutant 

reduction (p=0.283). Therefore, treatments did not break down aliphatic hydrocarbons to 

a significantly different extent, in contradiction to hypothesis #2.  

 PAH hydrocarbon concentrations recorded throughout four months of testing 

show significant one to two order of magnitude reductions on EES treatment relative to 

the baseline (Figure 6). Specifically the average levels of reduction Post-Bacteria, Post-

Mushrooms, and Post-Plants were 82.8, 94.3% and 91%, respectively. The average 

overall treatment reduction was 89.4%. However, when looking at individual reductions 

over time, there is a decrease in reduction in the final two sampling periods. When 

looking at the average additive effect of each treatment, Points #3 (Post-Bacteria) 

reduced PAHs from the baseline by 82.8%. Point #4 (Post-Mushrooms) reduced 

hydrocarbons from Point #3 by 67.1%, and #5 (Post-Plants) increased hydrocarbons from 

Point #4 by 58.4% (Figure 6). 

Post-Bacteria PAH levels were significantly different from Point #1 (Baseline) 

(p=0.014). Post-Mushrooms PAH levels were also significantly different from the 

baseline (p=<0.001), as were Post-Plants PAH levels (p=0.001) (Table 3).  All of these 

significant reductions support Hypothesis #1.  

There were also pollutant reductions within the EES at Point #2 (Intake).  Point 

#3 (Post-Bacteria) PAH levels differed from those of the intake at a significance level of 

p=0.004 (Table 3).  Post-Mushrooms and Post-Plants filter aliphatic levels differed from 
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those of the intake at significance levels of p <0.001.  While the different treatments 

lowered the Point #2 (Intake) hydrocarbon level further than the Point #1 (Baseline) 

hydrocarbon level, these two canal stations were not significantly different from one 

another in their aliphatic levels (Table 3).   

When comparing treatment options against one another, there were no significant 

differences between the bacteria, mushroom and plant filter phases with regard to 

pollutant concentrations (Table 3).  PAH concentrations were most similar between Point 

#3 (Post-Bacteria) and Point #5 (Post-Plants) (p=0.617), and Point #4 (Post-Mushrooms) 

and Point #5 (Post-Plants) (p=0.420).  Post-Bacteria and Post-Mushrooms PAH 

concentrations were wider apart, but still not significantly different (p=0.259). These 

results fail to support hypothesis #2.  

 

2.6 DISCUSSION 

We conclude from our results that the EES at the Blackstone River study site has 

a very strong influence on hydrocarbon concentrations.  The sequence of anaerobic 

bacteria environments, fungal microcosms, and aquatic plant environments reduced both 

aliphatic and PAHs concentrations by 82-96%. Hydrocarbon reductions relative to our 

baseline were significant for all treatments, supporting our hypothesis #1.  The 

breakdown levels measured are consistent with microbial remediation results reported by 

others.  For example, Pseudomonas paucimobilis grown in fluoranthene, a commonly 

tested PAH, degraded 80.0, 72.9, 31.5, 33.3, and 12.5% of the pyrene, benzanthracene, 

chrysene, benzopyrene and benzofluoranthene it was exposed to, respectively (Ye et al. 

1995).  Our results may also suggest similar findings with the mushroom degradation of 
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hydrocarbons reported by Giraud et al. (2001), who found that 33 species degraded 

fluoranthene by 60-99%.  This can be easily seen in our study with the Myco-Reactors 

reducing PAH concentrations by 67.1%. This could also be the case for aliphatic 

hydrocarbons, despite reductions of only 5.2% overall, because of large divergences 

between Post-Bacteria and Post-Mushroom treatments in the final two sampling points of 

our analysis which yielded a 53.2% reduction on average. Other experiments have shown 

that plants used in this study, Typha and Scirpus lacustris, can remove PAHs with 

efficiencies as high as 99.9% (Machate 1997). Our EES incorporated several of these 

previously studied species, and while our Aquatic Cell system kept hydrocarbon 

concentrations at a low level significantly different from the baseline, they did not 

contribute to further reductions beyond the Post-Mushroom treatment. The average 

hydrocarbon concentrations found at Point #5 (Post-Plants) actually increased by 22.4% 

for aliphatics and 58.4% for PAHs. This point will be discussed further below. 

Our study suggests that integrating bioremediation, and mycoremediation into a 

combined EES is a highly effective solution for remediation of Bunker C contamination.  

Indeed 82-96% of the aliphatic and PAH compounds present at the test site were removed 

over a four month period on average.  The EES also reduced the concentrations of all of 

the several dozen hydrocarbons analyzed.  This conclusion suggests than an EES with 

multiple remediation techniques can be versatile in breaking down a variety hydrocarbon 

compounds.   

We didn’t, however, find a significant difference between the three treatment 

stages (Point #3 (Post-Bacteria), Point #4 (Post-Mushrooms), and Point #5 (Post-Plants)) 

in either aliphatic or PAH analysis, failing to support the hypothesis that suspected 
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significant sequential treatment.  These results could be attributed to the initial bacteria 

filter removing a majority of the hydrocarbons from the water, leaving little pollution for 

the other two filters to reduce (Figure 5, 6). This is likely given that several genera 

including Gordonia, Brevibacterium, Aeromicrobium, Dietzia, Burkholderia and 

Mycobacterium were able to exclusively use crude oil as an energy source (Chaillan et al. 

2004).  An alternative explanation would be that while the fungal microcosms are 

providing hydrocarbon reductions, 5.2% reduction of aliphatics and 67.1% reduction of 

PAHs beyond Point #3, they are more efficient at removing hydrocarbons in a dryer 

environment. This conclusion is consistent with data on P. chrysosporium (Bumpus 

1989), Pleurotus sp. (Bezalel et al. 1996), and Trametes versicolor (Morgan et al. 1991) 

in soil environments. Temperature may also have impacted fungal microcosm function 

during certain days of the summer, when temperatures exceeded 100°F, since enzymatic 

activity in WRF species drops rapidly in extreme temperature (Maganhotto de Souza 

Silva et al. 2005, Hatakka 1994, Leung and Pointing 2002). Nevertheless, our mushroom 

treatment did further reduce hydrocarbon concentrations and do provide some beneficial 

effect. This benefit could have possibly been significant if testing continued beyond our 

four month scope, as there was a large divergence between Post-Bacteria and Post-

Mushroom aliphatic concentrations during the final two sampling periods.  

Another interesting relationship occurred between treatment stations.  When 

hydrocarbon concentrations were compared between treatments, it was found that these 

were decreased at Point #3 (Post-Bacteria) and Point #4 (Post-Mushrooms), but increased 

at Point #5 (Post-Plants).  We infer from these results that this could be due to excess 

adsorption of hydrocarbons onto the plant root systems or the hyperaccumulation of 
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hydrocarbons that are difficult to degrade in the EES.  Evapotranspiration could have also 

played a role by decreasing the water volume and thus increasing hydrocarbon 

concentrations, since tanks were half exposed to the greenhouse environment. As a result 

of the Post-Mushroom treatment, the water entering the Aquatic Cells also had a lower 

pH around 5, and this could have contributed to the poor remediation of hydrocarbons. 

This observation could warrant individual treatment studies, so as to determine the true 

effectiveness of each treatment phase. PAH concentrations also increased at all sampling 

locations during the testing period.  This could be due to increased temperature at the 

study site, causing Bunker C pollution to leak more quickly from its source.  

	  

2.7 CONCLUSIONS AND RECOMMENDATIONS  

 Our EES design combining the practices of bioremediation, mycoremediation, 

and phytoremediation, demonstrated effectiveness in removing aliphatic hydrocarbons 

and PAHs on a small scale through several months of testing.  While it is difficult to 

differentiate between how the treatment phases truly function individually, this EES 

degraded Bunker C effectively as a whole.   

 Our results are sufficiently robust to suggest that a system with bioremediation 

and mycoremediation could be scaled up to treat much higher volumes of contaminated 

water (100,000 gallons treated per day) but further verification will be required at this 

scale of application. Installing a larger system like this would require a significant 

amount of space adjacent to pollution sites, so that Bottom Filters and Myco-Reactors 

could be adequately installed. However, this type of system would only work well for a 

water contamination event, since it would be difficult to remediate river sediments or soil 
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with this filter arrangement. We recommend continued research and development of 

ecologically engineered systems based on the encouraging results from our system at 

Grafton, MA. For future utilization and efficiency of this system, it will be important to 

determine the bacteria taxonomic classes present in our anaerobic bacteria filter. This 

knowledge could highlight if certain bacteria should be supplemented or added to this 

filter environment. Some species of interest to add could include Pseudomonas 

aeruginosa, Pseudomons fluoresens, Mycobacterium, Haemophilus, Rhodococcus, and 

Paenibacillus for their success in degrading hydrocarbons in soil environments (Haritash 

and Kaushik 2009).  More mushroom species could also be considered for fungal 

microcosm filtration in the EES. These species include Aspergillus ochraceus, 

Cunninghamella elegans, Phanerochaete chrysosporium, Saccharomyces cerevisiae, and 

Syncephalastrum racemosum (Sutherland 1992).  Other wetland-tolerant mushrooms 

species include Absidia cylindrospora, Mucor hiemalis, Aspergillus fumigatus, 

Cladosporium cladosporoides, and Fusarium solani (Haritash and Kaushik 2009).   

At this stage of research, it is not certain how these living technologies are each 

influencing the overall hydrocarbons levels in the Blackstone River on a larger scale.  

Early evidence suggests that there is a beneficial effect occurring downstream, but data 

collected over a relatively long period of time (possibly several years) will be necessary 

to confirm these impacts.  It is expected that over time this EES will act as an ecological 

chemostat, contributing to beneficial chemical composition of the water for optimal 

growth of organisms that remediate pollution problems present.  
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2.9 TABLES 
 
Table 1.  Summary of hydrocarbon types and terminology 
 

Acronym for Hydrocarbon Type Hydrocarbon Type 

EPH Extracted Petroleum Hydrocarbons 

TPH Total Petroleum Hydrocarbons  

PAH Polycyclic Aromatic Hydrocarbons 
 
UCM Unresolved Complex Mixture 
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Table 2. Analysis of covariance for all aliphatic hydrocarbon oil testing points 
 

  #1 Baseline #2 Intake 
#3 Post-
Bacteria 

#4 Post-
Mushrooms 

#5 Post-
Plants 

#1 Baseline   0.365 0.043* 0.001* 0.005* 

#2 Intake 0.365   0.008* 0.000* 0.001* 

#3 Post-Bacteria 0.043* 0.008*   0.283 0.670 

#4 Post-Mushrooms 0.001* 0.000* 0.283   0.407 

#5 Post-Plants 0.005* 0.001* 0.670 0.407   
 
*Significance at 95% confidence interval 
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Table 3.  Analysis of covariance for all PAH oil testing points 
 

  #1 Baseline #2 Intake #3 Post-
Bacteria 

#4 Post-
Mushrooms 

#5 Post-
Plants 

#1 Baseline   0.503 0.014* 0.000* 0.001* 

#2 Intake 0.503   0.004* 0.000* 0.000* 

#3 Post-Bacteria 0.014* 0.004*   0.259 0.617 

#4 Post-Mushrooms 0.000* 0.000* 0.259   0.420 

#5 Post-Plants 0.001* 0.000* 0.617 0.420   
 
*Significance at 95% confidence interval 
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2.10 FIGURES 
 

Figure 1. Bunker C remediation study site in Grafton, MA, USA 

 This map indicates the Bunker C remediation study site in Grafton, MA, USA. 
This map also demonstrates the important location of Grafton, MA at the headwaters of 
the Blackstone River Watershed and National Heritage Corridor. 
 
Figure 2.  Diagram of water flow through the ecologically engineered system  

 This flow diagram shows how contaminated water from the Blackstone River is 
circulated through the EES to filter out Bunker C crude oil.  Water originally comes from 
the canal through two anaerobic bacteria filters (Bottom Filters), which then enters a 
manifold before being sent to the fungal microcosm filters (Myco-Reactors) or back out 
to the canal via the Canal Restorer, a combination of plant and mushroom media on a 
floating apparatus.  Once the remaining water has gone through the Myco-Reactors, it is 
circulated through a myco-sump and then to six aquatic plant environments (Aquatic 
Cells) for further treatment.  After the Aquatic Cell stage, water is returned to the canal 
via the Canal Restorer.   
 
Figure 3.  Water sampling locations in ecologically engineered system 

 This schematic visually represents how the EES is set up in Grafton, MA, USA.  
Each number marker represents a point that was sampled every month over a four-month 
interval.  Sampling point 1 is labeled as Point #1 (Baseline), 2 is labeled as Point #2 
(Intake), 3 is labeled as Point #3 (Post-Bacteria) Filter, 4 is labeled as Point #4 (Post-
Mushroom) Filter, and 5 is labeled as Point #5 (Post-Plants) Filter.  This schematic also 
visualizes the real life scale of this EES.   
 
Figure 4.  Relationship of total petroleum hydrocarbons, EPH, and PAH 

 This figure displays the step-by-step process through which the B.U.S.R.  Lab 
extracts aliphatic hydrocarbons and polycyclic aromatic hydrocarbons (PAH) from water 
samples that are given to them for processing.  Canal water is collected and a solvent is 
first added to the liquid.  Extraction then takes place, taking out all petroleum 
hydrocarbons from this liquid, yielding total petroleum hydrocarbons (TPH).  This 
extraction is then further divided into two different types of hydrocarbons, aliphatics 
including an unresolved complex mixture (UCM), and PAH. These two concentrations 
are then determined through mass spectrometry analysis. 
 
Figure 5.  Aliphatic hydrocarbon levels within the ecologically engineered study site 

 This figure displays water aliphatic hydrocarbons concentrations over a four-
month sampling period.  The hydrocarbon concentration scale is logarithmic due to the 
large reduction in concentration from before and after filtration.  Five sampling points are 
displayed for comparison.  Point #1 (Baseline), while Point #2 (Intake) is further 
downstream at the EES intake point.  There is a one to two order reduction in 
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hydrocarbons during the filtration process occurring at Points #3, #4, and #5.  Point #3 
(Post-Bacteria) aliphatic levels were significantly different from Point #1 (Baseline) 
(p=0.043) (Table 2).  Point #4 (Post-Mushrooms) aliphatic levels were also significantly 
different from the baseline (p=0.001) as well as in the case with Point #5 (Post-Plants) 
filter (p=0.005).  All of these significant reductions indicate that Hypothesis #1 is 
supported.  Specifically Points #3 (Post-Bacteria), #4 (Post-Mushrooms) and #5 (Post-
Plants) had oil concentrations lower than the baseline by 95.8, 96 and 95.2%, 
respectively.  The average overall treatment reduction over the test period was 95.8%. 
When looking at the average additive effect of each treatment, Points #3 (Post-Bacteria) 
reduced aliphatic hydrocarbons from the baseline by 95.8%. Point #4 (Post-Mushrooms) 
reduced hydrocarbons from Point #3 by 5.2%, and #5 (Post-Plants) increased 
hydrocarbons from Point #4 by 22.4%. 
 
Figure 6.  PAH levels throughout ecologically engineered study site 

 This figure displays water PAH hydrocarbons concentrations over the four-month 
sampling period.  The hydrocarbon concentration scale is logarithmic due to the large 
reduction in concentration from before and after filtration.  Five sampling points are 
displayed for comparison.  Point #1 (Baseline), while Point #2 (Intake) is further 
downstream at the EES intake point.  There is a one to two order reduction in 
hydrocarbons during the filtration process occurring at Points #3, #4, and #5.  Post-
Bacteria PAH levels were significantly different from Point #1 (Baseline) (p=0.014). 
Post-Mushrooms and Post-Plants PAH levels were also significantly different from the 
baseline (p=<0.001, p=0.001) (Table 3).  All of these significant reductions support 
Hypothesis #1.  When comparing the average baseline oil level to average of each 
treatment, Post-Bacteria was reduced 82.8%, Post-Mushrooms reduced 94.3%, and Post-
Plants reduced 91%. The average overall treatment reduction over the testing period was 
89.4%. When looking at the average additive effect of each treatment, Points #3 (Post-
Bacteria) reduced PAHs from the baseline by 82.8%. Point #4 (Post-Mushrooms) 
reduced hydrocarbons from Point #3 by 67.1%, and #5 (Post-Plants) increased 
hydrocarbons from Point #4 by 58.4%. 
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Figure 6.  
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