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ABSTRACT 

 

City streets are the most widely distributed and heavily trafficked urban public 

spaces. As cities strive to improve livability in the built environment, it is important for 

planners and designers to have a concise understanding of what contributes to quality 

streetscapes. The proportions and scale of buildings and trees, which define the three-

dimensional extents of streetscapes, provide enduring, foundational skeletons. This thesis 

investigates how characteristics of such streetscape skeletons can be quantified and tested 

for appeal among human users. 

The first of two journal-style papers identifies a concise set of skeleton variables 

that urban design theorists have described as influential to streetscape appeal. It offers an 

automated GIS-based method for identifying and cataloging these skeleton variables, 

which are practical to measure using widely available spatial data. Such an approach 

allows measurement of tens of thousands of street segments precisely and efficiently, a 

dramatically larger sample than can be feasibly collected using the existing auditing 

techniques of planners and researchers. Further, this paper examines clustering patterns 

among skeleton variables for street segments throughout Boston, New York, and 

Baltimore, identifying four streetscape skeleton types that describe a ranking of enclosure 

from surrounding buildings—upright, compact, porous, and open. The types are 

identifiable in all three cities, demonstrating regional consistency in streetscape design. 

Moreover, the types are poorly associated with roadway functional classifications—

arterial, collector, and local—indicating that streetscapes are a distinct component of 

street design and must receive separate planning and design attention. 

The second paper assesses relationships between skeleton variables and 

crowdsourced judgments of streetscape visual appeal throughout New York City. 

Regression modeling indicates that streetscapes with greater tree canopy coverage, lined 

by a greater number of buildings, and with more upright cross-sections, are more visually 

appealing. Building and tree canopy geometry accounts for more than 40% of variability 

in perceived safety, which is used as an indicator of appeal. While unmeasured design 

details undoubtedly influence overall streetscape appeal, basic skeletal geometry may 

contribute important baseline conditions for appealing streetscapes that are enduring and 

can meet a broad variety of needs.
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 STREETSCAPE SKELETONS CHAPTER 1:

1.1 Introduction 

Streets are the most abundant and distributed urban public spaces. They are where 

much of the life of a city takes place. The designs of streets, and the three-dimensional 

built environments surrounding them, streetscapes, are undoubtedly consequential for 

urban livability. Streetscapes are the “outdoor rooms” one encounters when turning the 

corner, or stepping out the door into the street (Cullen, 1971). While streetscape design is 

influenced by myriad factors, the overall proportions and scale of these spaces are 

determined by geometry of buildings, and in some cases trees, which are the largest and 

most visually dominant objects in urban settings. Buildings and trees provide an enduring 

streetscape skeleton (outlined in Figure 1.1) onto which a skin of design details—

pavement markings, architectural styling, awnings, plantings, lighting, street furniture—

can be draped. 

 

Figure 1.1: A streetscape skeleton defines the space of a street. 
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There is broad consensus among urban design theorists that the proportions and 

scale of streetscapes strongly influence user appeal in terms of comfort, safety, and sense 

of place (Alexander et al., 1977; Dover & Massengale, 2013; A. B. Jacobs, 1993; Lynch, 

1960). Nonetheless, there is meager empirical evidence of design-appeal relationships in 

urban design literature. I see this gap as the result of inadequate techniques for efficient, 

precise, and replicable measurement of both the design of streetscapes and human 

perception of them. This thesis investigates strategies for making both types of 

measurements. It introduces a GIS-based method for measuring streetscape skeleton 

geometry, and presents a novel streetscape skeleton classification system generalizable 

across three cities in the northeastern United States. Further, it tests for relationships 

between skeleton variables and crowdsourced perceived safety data for hundreds of 

streetscapes throughout New York City. 

1.2 Thesis Structure 

The following three chapters consist of an overarching literature review and two 

research papers. Chapter 2 reviews existing methodological approaches for measuring 

built environment design and human appeal. First, it compares existing built environment 

measurement methods using field audits and GIS, assessing shortcomings of both to 

precisely and efficiently measure features at the scale of individual streetscapes. It goes 

on to call for a novel GIS-based method, making use of high resolution building footprint 

and tree canopy data that have recently made available in many cities, to provide precise 

and efficient measurements at the streetscape scale. Second, it investigates approaches to 

measuring the appeal of the built environment for human users. Traditional strategies 
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have limitations in spatial scale, precision, and measurement efficiency, similar to those 

faced by existing built environment measures. However, recently developed strategies to 

record crowdsourced perceptions using web-based tools may provide appeal 

measurements that are both spatially precise and efficient to collect over broad 

geographic extents. 

Chapter 3 introduces a novel method for measuring streetscape skeletons using 

GIS data and tools, and investigates how these variables cluster to define a streetscape 

skeleton typology that is generalizable between cities in the northeastern United States. 

First, it examines urban design literature to determine which skeleton variables are 

theoretically relevant to streetscape appeal and are feasible to measure using readily 

available GIS data. Second, it describes how skeleton variables for block-length street 

segments can be measured using an automated GIS-based process. Third, it measures 

these variables for nearly all surface street blocks in the cities of Baltimore, MD, New 

York, NY, and Boston, MA, and uses cluster analysis to identify streetscape skeleton 

types that are consistently distinguishable throughout the region. Finally, it demonstrates 

that streetscape skeleton types and the functional classifications, widely used for 

transportation planning, are unassociated with one another, indicating the importance of 

evaluating and planning streetscapes separately from the roadways running through them. 

Chapter 4 assesses the relationship between skeleton variables derived in the 

previous chapter and crowdsourced streetscape appeal judgments recently collected by 

researchers at the MIT Media Lab at over six hundred sites in New York City (Salesses, 

Schechtner, & Hidalgo, 2013). Regression models are used to identify three skeletal 
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variables that together predict 42% of variability in perceived safety, an indicator of 

visual appeal. The results demonstrate that a minimal set of skeleton variables, which 

may be straightforwardly measured and incorporated into design guidelines, may set 

important baseline conditions for appealing streetscapes across a variety of urban 

settings.  

1.3 Summary of Contributions 

This thesis makes several contributions to the interrelated disciplines of urban 

planning, transportation planning, urban design, and natural resource planning. 

Streetscape skeletons provide a succinct theoretical framework for identifying, 

measuring, and guiding the design of streetscapes, which occupy a spatial scale situated 

between the conventional domain of architects, who design microscale elements of 

buildings and landscapes—massing, fenestration, fixtures, materials—and planners who 

guide macroscale urban form—grid shape, connectivity, land use density, destination 

accessibility. Mesoscale streetscape skeleton design receives disproportionately little 

attention given its influence on the urban landscape. Identifying streetscape skeletons as 

relevant spatial entities, and providing them with a measureable set of characteristics, 

may hopefully encourage their thoughtful planning and design. 

This research also contributes a precise, replicable, and efficient GIS-based 

method for measuring streetscape skeletons which may allow them to be incorporated 

alongside macroscale urban form measures in future assessment of human behavior in 

built environments. Current analyses of walkability, for instance, are founded largely on 
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destination accessibility—e.g., the number of restaurants, cafes, grocery stores, or parks 

that are within walking distance of a given point. Such metrics describe the practicality of 

walking, but not its aesthetic enjoyment. If a restaurant is close by, but the route is along 

streetscapes that are vast and bland, would someone want to walk there? Incorporating 

streetscape skeleton variables into such analyses may produce more accurate indicators of 

walkability. 

Finally, by validating the visual appeal of streetscape enclosure, this thesis offers 

empirical support for development and design policies that incentivize more upright and 

compact streetscapes through infill construction, multistory buildings, minimal setbacks, 

and street tree planting. While the design sensibilities of expert planners and designers 

have promoted these types of streetscapes for centuries, pragmatic arguments for low 

density development that improves residential privacy and automobile mobility often 

overshadow less tangible aesthetic benefits that are distinguishing factors of notably 

livable places. An objective framework for measuring streetscape aesthetics and their 

effects is an important first step to including them in cost benefit analyses that drive 

contemporary development decision-making. This thesis provides a replicable and 

accessible method for make such objective measurements, and demonstrates the 

magnitude of influence that skeletal design has in making streetscapes appealing places.
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 STREETSCAPE MEASUREMENT IN REVIEW CHAPTER 2:

2.1 Introduction 

It is difficult to describe what a livable street looks like. Some visualize them 

according to examples of new urbanism, smart growth, form-based code, and other 

approaches to urban design that are functional, comfortable, and beautiful to live in 

(Miller, Witlox, & Tribby, 2013). Nonetheless, there is a struggle among researchers and 

practitioners to define discrete characteristics of livability. The Partnership for 

Sustainable Communities suggests that livable communities provide a high quality of life 

by offering access to transportation choices, location-efficient housing, access to 

employment, and mixed use development (USDOT, 2009). Within the context of an 

individual street, however, livability is substantially mediated by design aesthetics. The 

design of streets, and their contextual streetscapes, impact whether they are merely 

conduits for accessing distributed features of a livable community, or are livable spaces 

themselves (Campoli, 2012). Because streets are fundamental to the experience of 

everyday living—they are the most prolific public spaces in the developed landscape—it 

is important that we understand the attributes of street design that impact their aesthetic 

appeal, and in turn livability, for diverse users. While urban designers have theorized 

extensively about what makes streets appealing as spaces for living, there has been scarce 

experimental validation of these claims (Southworth, 2003). This may be due, in large 

part, to the difficulty of measuring streetscape design and its appeal for users at a spatial 

scale relevant to street-level experience, and lack of methods for efficiently assessing 

large samples of streets over broad geographic areas. 
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Urban design characteristics and variables adapted from Ewing & Handy (2009) 

Figure 2.1: Built environment scalar continuum. 

The built environment can be measured at many scales, all of which are important 

to the way people perceive aesthetic appeal and make decisions about its use (Figure 2.1). 

Urban form describes the macroscale built environment. It characterizes the overall 

layout of communities according to variables such as network connectivity, land use 

density, and land use diversity. Such measures are chiefly useful for describing 

accessibility—the practicality of traveling from one place to another. Urban design has 

practical contributions—space allocated to vehicle lanes and sidewalks affords these 

uses—but also provides aesthetic conditions that may affect complex and subconscious 

perceptions of appeal. Urban design variables are ambiguously defined; they are often 
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described in subjective terms—distinctiveness, focality, intricacy, spaciousness—rather 

than discrete measurements (Ewing & Handy, 2009). It is difficult to determine what 

about them is important to measure, or what the appropriate yardstick is for making such 

measurements. Nonetheless, there is good reason to believe they contribute to emotional 

responses, and thus user behavior, in ways that are unexplained by practical aspects of 

urban form. Urban design should not be avoided by planning researchers because it is 

difficult to describe succinctly and empirically. 

Within the realm of urban design, features can still be assessed at multiple scales. 

At the microscale extreme, design details such as architectural styling, building materials, 

and fixtures impact the visual texture of a streetscape. At a midpoint between macroscale 

urban form and microscale architectural design is the mesoscale massing and 

arrangement of buildings and trees which create “outdoor rooms” (Cullen, 1971). The 

proportions and scale of streetscapes are theoretically important to perceptions of shelter, 

orientation, and security. Urban design literature broadly references how enclosed 

streetscapes—contained, well-defined spaces with room-like proportions—are attractive 

for pedestrian users and social activity (Ewing & Clemente, 2013). Nonetheless, the field 

lacks a concise language for mesoscale design characteristics that contribute to 

streetscape enclosure. I propose a novel term, streetscape skeleton, to describe the 

elemental three-dimensional structure of streetscapes, distinct from surficial design 

elements such as materials and architectural styling. This thesis will explore how 

streetscape skeletons can be identified, measured, typified, and tested for association with 

aesthetic appeal, to assess the contribution of their design to urban livability. 
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Efficient and objective measurement of streetscape skeletons is a formidable 

challenge. Field audits are the dominant method for measuring urban design at a variety 

of scales (Brownson, Hoehner, Day, Forsyth, & Sallis, 2009). While there are well-

developed replicable methods for conducting audits and validating their accuracy, audits 

are impractical for collecting large samples because they are inherently expensive, 

logistically complex, and derive few economies of scale; auditing each additional street 

segment requires proportional time and organizational effort. As a result, audit data often 

have small sample sizes and limited capacity for assessment across large or multiple 

geographies. 

Researchers studying built environment effects on travel demand traditionally use 

GIS to measure characteristics of urban form (Ewing & Cervero, 2010). While these 

methods are technically efficient, replicable in many cities, and highly objective, the data 

they are typically based on do not offer scalar precision necessary for measuring urban 

design at the streetscape level. Nonetheless, they provide a useful model for development 

of GIS-based urban design measurement, and a framework for future research that 

investigates the joint implications of urban form and urban design for built environment 

livability. 

To assess how urban design impacts the livability of individual streetscapes, it is 

likewise important to have robust methods for measuring human perceptions of 

streetscape appeal. Researchers have examined the appeal of built environments 

according to diverse measures, including social interaction, transportation mode share, 

and home values. These strategies are also variously limited by constraints on collection 
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efficiency, spatial precision, and subjectivity. Measurements of appeal that are spatially 

precise, efficiently scalable, and draw on samples that are sufficiently large to establish 

consensus among subjective observations, are particularly advantageous for examining 

design-appeal associations across streetscapes in diverse geographies. Few such datasets, 

however, have been collected.  

The remainder of this chapter will consider the strengths and weaknesses of 

existing strategies for making design and appeal measurements, and how they might be 

improved upon. First, it will provide a detailed examination of audit and GIS methods for 

measuring streetscape design. Second, it will assess how researchers have measured built 

environment appeal. Throughout, it will discuss how measurement strategies that are 

spatially precise and computationally efficiently are ripe for development. 

2.2 Measuring Streetscape Design 

Systematically measuring urban design characteristics that account for the 

perceptions of street-level users is a formidable challenge for design and planning 

researchers. The most straightforward, and well-established strategy for measurement is 

to send human auditors into the field, where they record direct observations using an 

audit protocol. Dozens of audit tools have been developed to support academic and 

policymaking research, and they are often reused or modified as off-the-shelf methods for 

documenting streetscapes (Brownson et al., 2009). While audits present challenges, 

including huge expense and logistical effort, they are nonetheless attractive as a well-

documented strategy for collecting reliable urban design measurements.  
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Audits tend to be developed in the context of a particular topic. Many record 

urban design variables that are hypothesized to relate to either walking (Borst, Miedema, 

Devries, Graham, & van Dongen, 2008; Cerin, Saelens, Sallis, & Frank, 2006; Ewing, 

Clemente, Handy, Brownson, & Winston, 2005; Ewing, Handy, Brownson, Clemente, & 

Winston, 2006; Gallimore, Brown, & Werner, 2011; Guo & Loo, 2013; Park, 2008; 

Schlossberg, Weinstein Agrawal, & Irvin, 2007) or physical activity (Boarnet, Day, 

Alfonzo, Forsyth, & Oakes, 2006; Boarnet, Forsyth, Day, & Oakes, 2011; Clemente, 

Ewing, Handy, & Brownson, 2005; Day, Boarnet, Alfonzo, & Forsyth, 2006; T. Pikora, 

Giles-corti, Bull, Jamrozik, & Donovan, 2003; T. J. Pikora et al., 2002). A handful of 

studies use audits to examine how urban design relates to broader themes of livability 

(Forsyth, Jacobson, & Thering, 2010; Rundle, Bader, Richards, Neckerman, & Teitler, 

2011; Southworth, 2003). Audit instruments rarely constitute a statistically-validated list 

of variables related to walking, physical activity, or another behavior. Instead, audits are 

constructed around theoretical frameworks that combine expert knowledge and common 

sense to identify variables that are expedient to measure (Clifton, Livi Smith, & 

Rodriguez, 2007; Day et al., 2006; T. J. Pikora et al., 2002). Measurements useful for 

studying the broad topic of livability must distill a concise and generalized set of 

measures pertinent to the appeal of streetscapes for diverse users (Southworth, 2003). 

The quantity and diversity of variables that can be measured by audits are one of 

their most attractive features. Of the twenty audit methodologies surveyed by Brownson 

et al. (2009), a handful collect fewer than ten measurements while several others collect 

well over one hundred. Researchers have an incentive to strike an efficient balance 
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between efficiency of data collection and the descriptive benefits of numerous, detailed 

observations. Popular methods, such as the Systematic Pedestrian and Cycling 

Environmental Scan (SPACES) and the Pedestrian Environment Data Scan (PEDS) 

collect thirty to forty measurements and take roughly three to five minutes to complete 

for each street segment (Clifton et al., 2007; T. J. Pikora et al., 2002). More lengthy 

audits generate more detailed data, but are accordingly more time intensive. For instance, 

the Irvine-Minnesota Inventory (IMI) collects one hundred and seventy-six 

measurements and requires between twelve and twenty minutes per street segment, but 

catalogues detailed architectural and urban design characteristics (Boarnet et al., 2006; 

Day et al., 2006). The expense of conducting an audit encourages measuring any variable 

that may be testable at a later date, but hampers the practicality of surveying a large 

sample of streets. Surveying entire communities is impractical, so researchers typically 

audit only a limited sample of street segments (Brownson et al., 2009). 

Human observers allow audits to account for variables that are subjective, 

nuanced, or otherwise impractical to evaluate from existing spatial datasets. The PEDS 

tool, for example, asks auditors to record sidewalk material along each segment, choosing 

among asphalt, concrete, paving bricks or flat stone, gravel, dirt or sand (Clifton et al., 

2007). Many municipalities lack any comprehensive inventory of sidewalk infrastructure; 

even if a GIS layer mapping sidewalk coverage exists it is unlikely to include detailed 

information on materials or geometry. Qualitative measurements can be included in 

audits to increase collection efficiency and produce concise results. Rather than 

independently recording myriad factors that influence the convenience of street crossing, 
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auditors using the Irvine-Minnesota Inventory judge whether it is “pretty/very 

convenient” or “not very [convenient]/inconvenient” to cross each street segment (Day et 

al., 2006). Human observers are singularly efficient at distilling complex observations 

into generalized conclusions. As GIS data availability expands to include more diverse 

features it is conceivable that a greater proportion of urban design variables will be 

practical to measure with automated methods, but audits will likely remain useful for 

collecting qualitative measurements.  

The glaring impediment to audits is that they require enormous resources to 

deploy. Researchers using audits must weigh the number and depth of measurements 

against the geographic extent and sample size of street segments they will survey, all 

while considering the practicality of recruiting auditors, training them, deploying them to 

the field, and managing data. Controlling observational consistency is additionally 

complicated when multiple auditors are deployed. A portion of streets are often audited 

by multiple observers to assess inter-observer reliability (Brownson et al., 2009), 

although studies sometimes forgo this convention due to lack of resources (Park, 2008). 

The audit process can be tedious and at times a practical impossibility (Southworth, 

2003). 

Because audits are resource intensive there is substantial impetus to increase 

efficiency of data collection. Several researchers have identified benefits of using 

handheld computers to collect audit data in the field (Brownson et al., 2009; Schlossberg 

et al., 2007). This improves the consistency of responses and eliminates the later task of 

entering data from paper forms. Other researchers have investigated how streetscape 
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images can be used to conduct audits remotely (Clarke, Ailshire, Melendez, Bader, & 

Morenoffa, 2011; Rundle et al., 2011). While this strategy reduces travel time and safety 

complications, it presents a unique set of challenges related to variability in resolution, 

date, and availability of photography, the inability to see sidewalk and building features 

around obstructions such as parked cars, and the difficulty of precisely judging distance 

and dimensions. Moreover, they require observations to be visual. In-person audits 

benefit from their ability to collect information about noise, temperature, wind, and other 

sensory perceptions. Studies that use computerized audit forms or remote streetscape 

imagery, but nonetheless require human observers to make judgments, do not 

substantially overcome the resource intensity inherent to traditional, in-person audits with 

hard copy forms. 

In contrast, other studies use GIS data and tools to make direct, automated 

measurements of built environment features according to their geometric relationships 

and tabular attributes. Studies using audit methods often partially draw on readily-

available GIS data to minimize auditing resources (Borst et al., 2008; Cerin et al., 2006; 

Forsyth et al., 2010; Guo & Loo, 2013; Park, 2008; T. Pikora et al., 2003; T. J. Pikora et 

al., 2002). Moreover, there is a distinct body of literature that exclusively uses GIS 

methods to measure the built environment for research on walking, physical activity, and 

broader livability indicators (Brownson et al., 2009). These methods provide a number of 

efficiency, scalability, and data consistency benefits, but shortcomings in availability of 

appropriately-scaled data have traditionally made them inadequate for measuring urban 

design at the streetscape scale. 
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Instead, GIS-based research on the built environment research is dominated by 

measurements of urban form, describing neighborhood-scale accessibility, popularly 

described as the Five Ds (Table 2.1) (Cervero & Kockelman, 1997; Ewing & Cervero, 

2010). The validity of this framework for explaining broad trends in travel behavior has 

been demonstrated by many studies—Ewing & Cervero (2010) compile the results of 

more than sixty papers with comparable methodologies and findings. Nonetheless, the 

Five Ds inadequately address how aesthetic perceptions of urban design among 

individual streetscapes may impact the experience of users and thus modal decision-

making and livability. A street may be pragmatic for walking according to these statistics, 

but attract little pedestrian activity if its streetscape is an uncomfortable place to spend 

time. It would be prudent to evaluate urban design measurements alongside the Five Ds 

to test whether their relative contributions to behavioral models. 

Table 2.1: The Five Ds of macroscale urban form 

Density Household/population density 

Job density 

Diversity Land use mix (entropy index) 

Design Intersection/street density 

Destination Accessibility Job accessibility by auto 

Job accessibility by transit 

Distance to transit Distance to nearest transit stop 

Adapted from Ewing & Cervero (2010) 
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A likely reason why urban design measurements have not been incorporated into 

GIS-based built environment literature is lack of readily available data at the appropriate 

scale. Urban form measures, based on widely available street centerline, land use, 

business location, and census data, are low hanging fruit for planning researchers who are 

accustomed to gleaning data from municipal governments and regional planning 

organizations who develop it for their own research and operational uses. The disciplines 

of architecture, engineering, and urban design, which are largely responsible for the 

design of streetscapes, have made comparatively little use of GIS. Detailed 

representations of streetscapes are often dispersed in myriad CAD drawings or other 

documents, and there has been little practical impetus to aggregate them into spatial 

databases. While some cities maintain datasets showing roadway characteristics such 

bicycle lanes and sidewalks, in many municipalities street centerlines and right-of-way 

boundaries offer the most precise spatial definition of streets, yet represent little about the 

aesthetic experience for street-level users. Broadened availability of spatial data 

representing features at the scale of urban design may provide the greatest catalyst for 

their inclusion in GIS-based built environment research. 

High resolution built environment data is increasingly available in major cities, 

and researchers have begun developing GIS-based measurements of urban design 

comparable to those derived from audits. A paper by Purciel et al. (2009) identifies GIS 

data in New York City that can be used to derive geometric or proxy measurements of 

urban design characteristics previously identified and measured by Ewing et al. (2006) 

using an audit protocol. Central to these sources are a tax database, which includes 
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detailed information about building height, and GIS data mapping building footprints. 

These can be combined to identify the size, shape, and arrangement of buildings along 

every street within the city. 

Purciel et al. (2009) break ground on the measurement possibilities afforded by 

GIS data, but their methods vary in robustness. According to Ewing et al. (2006), the 

length of sight lines and proportion of a street segment lined by building façades 

contribute importantly to sense of streetscape enclosure and human scale. Evaluated by 

an audit, these measurements are approximate and are influenced by the spatial 

relationships of buildings, trees, and terrain. Purciel et al. (2009) use a GIS to reproduce 

the audit protocol for measuring long sight lines by drawing perpendicular lines at 

regularly-spaced intervals from each curb and examining whether they are blocked by 

building footprints. These GIS measurements are validated by replicating them with 

audited measurements of several hundred New York City blocks (across all boroughs), to 

which they are compared for statistical correlation. The relatively low correlation of sight 

line measurements (r=0.16) may due, in large part, to the inability to account for terrain 

and trees with the GIS method—exit interviews with auditors described these as 

important to street-level observations (Purciel et al., 2009). Nonetheless, the sight line 

method provides a valuable example of how geometric relationships contributing to 

urban design can be systematically evaluated with a GIS. 

Other GIS methods used by Purciel et al. (2009) yield more statistically 

convincing correlations with audit measurements, but rely less on evaluation of 

geometry. To estimate the proportion of a street lined by building façades, discussed in 
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urban design literature as a street wall or block face, Purciel et al. use the ratio of building 

footprint area to total block area as a proxy, yielding moderate correlations (r=0.54-0.58) 

with audited estimations of street wall continuity. This method relies on the assumption 

that blocks with a greater proportion of building area will have more continuous street 

walls than those with vacant spaces, though it falls short of accounting for front and back 

yards that may occupy substantial block area without affecting the consistent alignment 

of street-facing façades. The authors concluded that measuring street walls based on the 

geometry of buildings was an unreasonable technical challenge. With advancements in 

GIS processing capacity, it is worthwhile to revisit this possibility for methodological 

advancement. 

More straightforward GIS measurements developed by Purciel et al. (2009), such 

as the number and height of buildings along a street segment, have much higher 

correlations with audited measures (r=0.95 and r=0.85 respectively) and indicate that GIS 

tools are a practical alternative to them. GIS methods may provide even greater precision 

than audits—it is difficult to judge the height of buildings, in terms of scalar units, from a 

street-level perspective—although such precision may be negligible to the perceptions of 

street-level users.  

The difficulty of validating GIS measures with observational audits underscores 

the ambiguity of urban design characteristics, and explains the scarcity of design research 

using quantitative methods. Further, it presents a key obstacle to accounting for urban 

design alongside widely available measures of urban form. With no standard definitions 

for qualities such as enclosure and human scale, it is difficult to measure them with the 
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consistency and precision necessary to include them in built environment models. 

Nonetheless, the ambiguity of streetscape design is no excuse to ignore its potentially 

large contribution to the perceptions and associated behavior of street users. Defining 

urban design in objective, geometric terms is necessary for developing GIS methods that 

can efficiently make widespread design measurements for association with measurements 

of streetscape appeal.  

2.3 Measuring Streetscape Appeal 

To assess how urban design contributes to livable streets, researchers need to 

measure perceptions of streetscape appeal among human users or observers. Planning 

literature draws on diverse measures of built environment appeal, including communality, 

transportation mode share, physical activity, and real estate prices. Recent research also 

uses internet-enabled crowdsourcing to measure spatial patterns in built environment 

appeal according happiness and aesthetic preference. Similar to design measurements, 

spatial precision and collection efficiency are important for appeal measurements that can 

be used to evaluate street livability experimentally. 

Classic planning literature discusses the appeal of built environments according to 

social interaction. Appleyard, Gerson, & Lintell (1981) define livable streets as those 

which encourage residents to commune with one another, identify the street as part of 

their home territory, and are aware of its environmental characteristics. These variables 

are difficult to measure—Appleyard and his colleagues conduct extensive interviews with 

residents of several dozen San Francisco blocks—yet the broadness of the definition aptly 
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describes livability as an ambiguous synthesis of social and environmental conditions that 

allow for fulfilled living. Jane Jacobs, drawing on her experience living in New York 

City, similarly describes the importance of built environments that encourage 

communality and sense of place (1961). She explains how “eyes on the street” make 

neighborhoods safe and welcome places to live. Streetscapes with design characteristics 

that allow observation of activity from upstairs windows and storefronts provide a safe 

venue for children to play and business to take place with informal supervision from the 

neighborhood at-large. Jacobs, like Appleyard, sees streets as appealing when they 

promote neighborly relationships, reducing the anonymity of unlawful activities and 

encouraging residents to take ownership of the streetscape beyond their individual 

properties. 

Research conducted by Biddulph (2012) similarly assesses streetscape appeal 

according to social activity and diversity of use. Using in-person observation and time 

lapse photography, Biddolph collects observations on the duration and types of activities 

people engage in on residential streets in the United Kingdom. These are demonstrative 

of methods used broadly by urban design research investigating the use and appeal of 

public spaces (Gehl, 2010). The activity data they collect is attached to precise spatial 

locations, allowing it to be related to specific urban design characteristics. Observational 

methods also allow nuanced behaviors and conditions to be recorded; for instance, 

Biddulph recognizes a temporal relationship between children playing and adults 

socializing in the street. Nonetheless, surveys of this type are incredibly time consuming 

and allow assessment of only small environmental samples—Biddulph (2012) studies 



 

21 

two communities—limiting the generalizability of results. Time lapse photography 

strengthens the experimental design of such research by providing a comprehensive 

account of activity within a particular spatial extent, but the practical limitations of 

recording and coding photography from multiple locations constrains examination to a 

small number of streets. 

Behavior remains a useful indicator of built environment appeal across broad 

geographic extents, and is expediently collected by surveys of physical activity and 

transportation mode share (Cerin et al., 2006; Cervero & Radisch, 1996; Chen, Gong, & 

Paaswell, 2007). Boarnet et al. (2011), for example, validate audit measures from the 

Irvine-Minnesota Inventory (IMI) by assessing walking data from 716 subjects who filled 

out physical activity questionnaires, kept travel diaries, and wore accelerometers as part 

of the Twin Cities Walking Study. Likewise, Chen et al. (2007) assess the effect of urban 

form measurements on mode choices recorded in 14,411 household travel diaries as part 

of a Household Travel Survey in New York City and northern New Jersey. Such 

behavioral surveys provide concrete indicators of mode suitability among large samples, 

but they are enormously resource-intensive to conduct. Many studies are consequently 

designed to use survey data that has already been collected by institutions with broader 

planning motivations. Such studies tend to use transportation decisions to indicate 

whether built environments are successful, without considering that use of these 

environments may be the only practical option for many people. Behavior may not 

reliably indicate environmental appeal if there are limited practical options for moving 

from one location to another. 
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Other studies survey user judgments of environmental perceptions such as 

attractiveness and safety. Gallimore et al. (2011) investigates how parents and children 

perceive routes to school, asking them to agree or disagree with survey questions on 

whether routes are impractical or unsafe. Guo and Loo (2013) similarly ask respondents 

to identify walking routes on maps and rate them on Likert scales. In both cases, 

respondents’ judgments are compared with environmental characteristics along a route’s 

entire length, yielding little capacity to distinguish the positive or negative contribution of 

block-scale characteristics. Several studies overcome this deficiency by asking 

respondents to identify attractive and unattractive street segments in their own 

neighborhoods (Adkins, Dill, Luhr, & Neal, 2012; Agrawal, Schlossberg, & Irvin, 2008; 

Borst et al., 2008). This method succeeds in providing high-resolution data on streetscape 

appeal that is separate from patterns of use. It is impractical, however, to collect data for 

large samples of users or streets with such an open-ended survey. 

Real estate prices provide yet another lens through which to investigate built 

environment appeal. Hedonic price modeling allows researchers to identify the 

contribution of location attributes to the transaction price of real estate, particularly 

residential units. Multiple linear regression is used to control for myriad variables that 

contribute to the land and improvement value of each property, such as parcel size, 

number of rooms, and construction materials. Additional variables, such as proximity to 

the downtown or a natural amenity, can be modeled to test their effect on home prices, all 

else held constant. Assuming homes in the places with greater appeal have added value, 

this method can be used to distinguish specific built environment effects. 
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A number of studies use hedonic modeling to evaluate urban form preferences, 

generally indicating that homebuyers value low density areas that are prototypical of 

suburban landscapes (Matthews & Turnbull, 2007). Green, Edwards, and Wu (2009) test 

the relationship between housing prices and walkability ratings from walkscore.com, 

which are calculated based on standard urban form variables such as population density, 

network connectivity, and destination accessibility, in Gresham, Oregon; the Walk Score 

algorithm does not include urban design variables. In neighborhoods where Walk Scores 

have any statistically significant correlation with home prices, the relationship is strongly 

negative. Song and Knapp (2003) similarly find that homebuyers in Portland, Oregon 

prefer neighborhoods with low residential density and predominantly single-family 

residential land uses. However, they identify that homes in neighborhoods with 

internally-connected street networks, small blocks, and pedestrian access to commercial 

uses command slightly higher prices. The ambiguity of these results is shared by 

Matthews and Turnbull (2007), who identify that pedestrian access to retail locations 

raises property values within a distance of approximately 1,400 feet, but the effect is 

negligible at greater distances. The inconsistent results of these studies may be due, in 

part, to variability in urban design that is not accounted for by models relying exclusively 

on measurements of urban form. 

A handful of studies evaluate the value of urban design using hedonic methods. 

Gao and Asami (2007) use an environmental audit to make several dozen measurements, 

many of them qualitative, of streets in Tokyo and Kitakyushu, Japan. These 

measurements are consolidated using a principal component analysis to derive aggregate 
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urban design characteristics. Compatibility describes continuity of external walls, 

conformity of colors and materials, compatibility of building styles, and beauty of 

skylines formed by buildings; greenery describes the presence and continuity of trees and 

other vegetation. Hedonic models reveal that both characteristics have significant and 

positive relationships with home values. This is consistent with studies from the 

Minneapolis and Baltimore regions that indicate positive relationships between urban 

green spaces and home prices (Sander & Haight, 2012; Troy & Grove, 2008). However, 

street width appears to be valued much differently in Japan than in the United States. 

Fullerton & Villalobos (2011) identify a negative correlation between street width and 

home values in El Paso, Texas, while Gao & Asami (2007) identify the opposite 

relationship. They explain that narrow streets and dead ends are considered a fire hazard 

in Japanese cities. Both characteristics are correlated with lower home prices. 

Conversely, narrower local streets in El Paso are correlated with higher home prices, 

likely because they provide intimate streetscapes compared with arterial highways. This 

disparity demonstrates that cultural and environmental context invariably affects nearly 

any design preference. 

Traditional strategies for measuring built environment appeal prioritize either 

spatial precision or the practicality of collecting large and geographically diverse 

samples. Innovative strategies for internet-enabled data collection may facilitate both 

simultaneously. Mitchell et al. (2013) and Frank et al. (2013) identify spatial patterns in 

happiness scores derived from textual analysis of geolocated Twitter messages. Such 

happiness measurements, joined to spatially coincident streets, may be useful for 
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assessing how urban design impacts user appeal. The spatial density and geographic 

ubiquity of this data make it particularly advantageous for assessing large samples of 

streets across multiple cities. Mitchell et al. (2013) draw on a database of roughly 10 

million geotagged messages collected in every state throughout 2011. In downtown areas 

of large cities there are hundreds of happiness observations per block, while in other 

areas the density is substantially lower. Such a dataset is certainly biased against places 

with lower appeal because people are less likely to visit or tweet from them. Moreover, it 

is unlikely that streetscape design weighs heavily on the happiness of any individual 

message. Nonetheless, there is a possibility that thousands of messages, each influenced 

slightly by the setting where they are written, may indicate that design contributes 

fractionally to the aggregate happiness of their authors. 

Another large dataset, developed by researchers at the MIT Media Lab, draws on 

crowdsourced judgments of streetscape scenes to measure urban perception (Salesses et 

al., 2013). Visitors to the their website (http://pulse.media.mit.edu/) are presented with 

pairs of streetscape images and asked to rank them based on questions such as, “Which 

place looks safer?,” “Which place looks more unique?,” or “Which place looks more 

upper class?” Large numbers of rankings are used to calculate scores for more than 4,000 

streetscapes randomly located across four cities in the United States and Austria. While 

Selesses and his colleagues use these scores to examine urban inequality, they could 

easily be paired with design measurements for each streetscape to examine the 

generalizability of design-appeal relationships within and across cities. Similar to the 

earlier critique of remote streetscape auditing, this process is limited to visual perception 



 

26 

within a limited view, and may not adequately represent other sensory experience (e.g., 

temperature, noise, smell) or temporal variability in streetscape aesthetics. Nonetheless, it 

provides spatially precise measurements of appeal that are related specifically to 

aesthetics and are randomly distributed across large extents, making it one of the best 

available options for experimentally assessing which design factors affect streetscape 

appeal. 

2.4  Conclusions 

There is ample room for development of methods to efficiently measure both the 

design and appeal of urban streetscapes. Existing urban design research relies on resource 

intensive field audits to measure design variables as they are experienced by street-level 

users. GIS methods, while they are well-developed for studying urban form, have tended 

to be inadequate for representing features at the scale of urban design. More objective 

definitions for urban design variables, and continued development of GIS methods to 

measure them, would improve the availability and consistency of streetscape design data, 

encouraging more researchers to include it in models of perceived livability and behavior. 

It is unfortunate that such an influential aspect of the urban experience has been 

inadequately assessed by quantitative research for so long. Nonetheless, it is encouraging 

that new methods and data put efficient measurement of streetscape design within reach. 

Innovative strategies for measuring built environment appeal are similarly ripe for 

development. Studies investigating the appeal of individual streetscapes traditionally use 

extensive interviews or surveys to document user perceptions or behavior. These methods 
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are tedious and resource intensive, making it impractical to collect large numbers of 

observations in multiple geographies. Internet-enabled crowdsourcing and assessment of 

social media represent innovative strategies for collecting large and spatially dispersed 

measurements of environmental appeal. With the rapidly expanding capabilities of big 

data analysis, and expansion of geocoded social media, it is likely that such methods will 

play an increasing role in urban planning research. 

Pairing streetscape design and appeal measurements to assess what constitutes a 

livable street would provide an influential empirical base for development policy. By 

demonstrating general relationships between design characteristics and appeal, cities 

could assess development plans according to the design of entire streetscapes rather than 

individual buildings. Identifying the influence of specific design factors might also steer 

planning priorities. If street wall continuity were, for example, found to be particularly 

influential for perceptions of appeal, a city might incentivize infill development and more 

aggressively regulate shallow setbacks. If tree canopy were demonstrated to be useful for 

defining streetscapes in lieu of enclosing buildings, cities might further prioritize planting 

and maintenance of street trees as a cost-effective fix for wide and ill-defined streets. By 

concretely investigating how visual appeal varies with the design of streetscapes, design 

policy can be driven by evidence of public opinion. While it is unreasonable to suggest 

that livable design would proliferate on a short timescale or through comprehensive 

renovation, it might be gradually incorporated into to existing streetscapes. However 

design contributes to the making of a livable streetscape, it can serve as the model for 

built environment visioning and remediation.  
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 STREETSCAPE SKELETON MEASUREMENT AND TYPOLOGY CHAPTER 3:

3.1 Introduction 

Urban streets can be interpreted as a synthesis of two main components: roadways 

and streetscapes. Roadways are infrastructure for linear travel, often in motor vehicles, 

but also by non-motorized users such as pedestrians and bicyclists. They are engineered 

to be functional for safe and efficient travel. Streetscapes are the three-dimensional 

outdoor spaces surrounding roadways, outlined on either side by buildings that form 

“streetscape skeletons.” The overall designs of streetscapes are undeniably affected by 

myriad design details—building materials, architectural styling, plantings, street 

furniture—but the elemental proportions and scale of streetscape skeletons are broadly 

regarded by urban design theorists as important to comfort and social productivity for 

human users (Alexander et al., 1977; Cullen, 1971; Gehl, 2010; A. B. Jacobs, 1993; J. 

Jacobs, 1961). Even so, planners often simplistically identify streets in terms of roadway 

design for motor vehicles according to functional classifications—arterial, collector, and 

local—established by the Federal Highway Administration (FHWA) (Dover & 

Massengale, 2013). A complementary typology based on streetscape design may be 

useful for livability planning. 

This study presents a novel approach for measuring streetscape skeletons and an 

empirically-grounded streetscape skeleton typology—upright, compact, porous, and 

open—that is distinct from roadway functional classes and is generalizable across three 

cities in the northeast United States: Boston, New York, and Baltimore. Streetscape 

skeleton types were identified using a multistage process. First, urban design and 
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planning literature were reviewed to determine which skeleton variables were 

theoretically important to the way non-motorized users, particularly pedestrians, judge 

the safety, comfort and attractiveness of streetscapes. Second, a novel GIS-based method 

was developed to efficiently and consistently measure twelve spatial variables based on 

existing building and street geometry data. Third, cluster analyses were used to identify 

four streetscape skeleton types with consistent measurements across the three study cities. 

Finally, the types were examined for internal patterns and association with functional 

classes, demonstrating that the designs of streetscape skeletons were independent from 

the function of roadways throughout the three study cities.   

3.2 Streetscape Skeletons in Theory 

Which streetscape skeleton variables are relevant to user appeal, and tangibly 

measureable, is a formidable question for which there are many recommendations but 

few definitive answers. Ewing & Handy (2009) identify “urban design qualities” and 

constituent physical characteristics that, according to urban design literature and the 

opinions of an expert panel, contribute to walkability. Their research is the basis from 

which Purciel et al. (2009) operationalize streetscape measures using a variety of GIS 

data sources, and from which I identified measures based solely on GIS building 

geometry (Table 3.1). 
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Table 3.1: Skeleton variables measurable with various GIS and perceptual methods 

 Method #1: 

GIS Geometric 

(Skeleton Variables) 

Method #2: 

GIS Geometric 

& Proxy 

Method #3: 

Perceptual 

Field Audit 

Literature 

Source 
This study Purciel et al., 2009 Ewing and collaborators

a
 

Variables 

measured 

similarly 
across the 

methods 

Street wall continuity Proportion of block area 

within buildings 

(as proxy) 

Proportion of street wall 

Height (average 

of building heights) 

Average height of 

primary building in each 

adjoining parcel 

Estimated building height 

Buildings per length Count of buildings Count of buildings 

Variables 

Measured 

distinctly 

by each 

method  

Width (between buildings 

across the street) 

 

Cross-sectional proportion 

 

Length (of centerline) 

 

Variability in height 

 

Variability in width 

 

Sinuosity (of centerline) 

GIS simulation of 

horizontal sight lines 

based on building 

footprints 

Number of 

long sight lines 

 

Proportion of sky visible 

a
 Clemente, Ewing, Handy, & Brownson, 2005; Ewing, Clemente, Handy, Brownson, & Winston, 2005; 

Ewing, Handy, Brownson, Clemente, & Winston, 2006; Ewing & Clemente, 2013; Ewing & Handy, 

2009 

 

Measurement of streetscape skeletons using GIS poses benefits of efficiency and 

consistency against limitations on spatial scale and measurement diversity. A chief 

limitation of GIS methods is exclusion of microscale design characteristics—materials, 

architectural styling, ornamentation, fixtures, cleanliness—activity, and non-visual 

sensations that contribute in important and nuanced ways to user experience. Such 

microscale elements may be considered the “skin” of a streetscape. Field audits are 

advantaged in capturing these characteristics (Clifton et al., 2007). 
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Streetscape “skeletons,” based on more macroscale characteristics such as the 

dimensions and arrangement of buildings, have greater potential to be measured with a 

GIS because they are based on common data inputs and evaluation of geometric 

relationships for which GIS tools are well-suited. The relationship between skeleton and 

skin is analogous to that between a wireframe drawing and an architectural rendering. 

The former supplies the spatial structure for a scene, defining the size and shape of space; 

the latter embellishes with visual texture, making it come alive. The boundary between 

skeleton and skin is undoubtedly nebulous. While characteristics at scalar extremes, such 

as building height and siding material, clearly contribute to streetscape appeal, 

characteristics between these scales, such as lamp posts, street furniture, awnings, or 

vegetation, also contribute. On one hand, these objects define important subspaces within 

streetscapes. Alternatively, they simply embellish the broader streetscape already defined 

by buildings that dwarf them in size. For the purposes of this chapter, streetscape 

skeletons are interpreted as the product of the size and arrangement of buildings, the 

largest and most visually dominate objects in most urban streetscapes. The following 

chapter additionally accounts for street trees, which provide a similar scale of spatial 

definition, including roof-like enclosure provided by overhanging canopy (Arnold, 1993). 

While the effects of trees are important, trees are not as ubiquitous in urban settings as 

buildings. Moreover, tree data are not so consistently available. As such, trees were not 

included in this chapter’s multi-city analysis. 

Skeletal dimensions and arrangement of buildings are chiefly responsible for 

creating the sense of enclosure—aligned façades and cornices that create a room-like 
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feeling in the street (Ewing & Handy, 2009)—revered by urban design theorists. 

Alexander et al. (1977) emphasize the power of negative space between buildings, 

especially when the space has clear shape and definite edges, to instill a sense of place 

and position for occupants. Enclosure provides streetscapes with spatial identity, allowing 

them to be described as interior entities, e.g., “I am outside IT, I am entering IT, I am in 

the middle of IT” (Cullen, 1971). Enclosed streetscapes are esteemed as safe-feeling, 

memorable (A. B. Jacobs, 1993), and preferred by pedestrians compared with more open 

corridors (Moniruzzaman & Páez, 2012; Nasar, 1987). 

The arrangement of buildings along either side of a streetscape has been the most 

fundamental pattern of urban design throughout millennia of development. Resulting 

enclosure may be the sensation which, from the ground, most visibly separates country 

and city (Cullen, 1971). In this way, enclosure may be essential to the “imageability”—

visual memory—of cities and places within them (Lynch, 1960). Enclosure also 

compresses the streetscape, bringing stimuli closer to users and intensifying the effects of 

visual complexity. Enclosed streetscapes are esteemed as safe-feeling, memorable (A. B. 

Jacobs, 1993), and preferred by pedestrians compared with more open corridors 

(Moniruzzaman & Páez, 2012; Nasar, 1987).  

In urban settings, measurements of the massing and arrangements of buildings are 

useful for representing fundamental aspects of streetscape enclosure. Ewing & Handy 

(2009) measure enclosure based on street wall continuity, sight lines, and sky visibility; 

these are, in large part, measures of the space between buildings. While they are 

straightforward for field auditors to estimate, such measures are difficult to replicate with 
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a GIS. Purciel et al. (2009) attempt literal GIS operationalization with variable success. A 

more pragmatic approach is to measure the aggregate proportions and scale of buildings 

surrounding a streetscape, which affect visibility upward and to the sides. Enclosure is 

often described on the basis of cross-sectional proportion, the ratio of building height to 

across-the-street width. Ewing & Handy (2009) catalogue recommendations of minimum 

height to width proportions ranging from 2:3 to 1:6. While there is no theoretical or 

scientific consensus on which proportion is most appealing, it is clearly an important 

measure to evaluate. However, because such proportions provide only a snapshot of 

enclosure along a specific cross-section, or an average of multiple cross-sections, 

measures of variability in height and width may also be important for describing 

enclosure along the length of a block. 

While enclosure speaks to the proportions of a streetscape it does not account for 

scale. The term human scale is commonly used in urban design literature, although there 

are few definitive interpretations of its boundaries (Alexander et al., 1977). Sense of scale 

can be conveyed by embellishments, such as furniture, planters, and ornamentation, or by 

the size of encompassing structures and spaces. The latter are more realistically measured 

using GIS methods. Theorists also discuss scale in the context of speed; a large street 

may feel appropriate when moving fast in a car, but uncomfortably vast for a pedestrian 

(Ewing & Handy, 2009). Human scale generally refers to an appealing scale for users on 

foot. 

The height of surrounding buildings is a common metric of streetscape scale. 

Authors surveyed by Ewing & Handy (2009) recommend between three and six stories as 
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a maximum building height, or “stepbacks” after the first several stories, to preserve 

human scale from a street-level perspective. The width of buildings also theoretically 

contributes to perceptions of scale. A street wall occupied by a single, long façade is less 

likely to feel human scale than a row of narrower individual buildings, or even diverse 

façades in a contiguous row. 

Several authors prescribe human scale streetscapes, including some specific 

dimensions, based on limits of perception and social interaction. Jane Jacobs (1961) 

discusses how low buildings, from which neighbors can keep “eyes on the street” even 

from upper floors, promote communality and neighborhood safety. Alexander et al. 

(1977) claim that 70 feet (21.3 m) is the maximum distance for both facial recognition 

and conversation using a loud voice. Allan Jacobs (1993) defines specific architectural 

dimensions as “intimate scale:” buildings that are 21 feet (6.4 m) high with a maximum 

of 24 feet (7.3 m) of frontage, separated by 48 feet (14.6 m) across the street. Blumenfeld 

(1971) recommends more liberal maximums of 30 feet (9.1 m) high, 36 feet (11 m) of 

frontage, and 72 feet (22 m) across the street. 

While traffic engineers and planners often define street width as the distance 

between curbs or the width of the right-of-way, urban designers are concerned with the 

width between opposing building façades. This is the width of the visual field for a street-

level user. Because land ownership conventions and setback definitions are inconsistent 

between cities—parcels in some cities extend through rights-of-way to street centerlines, 

while land for streets in other cities is owned municipally; setbacks can be defined from 
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centerlines, curb lines, or parcel boundaries—building-to-building width is a more 

general measure with equivalent meaning in any setting. 

Streetscape proportions and scale also contribute to what Ewing & Handy (2009) 

describe as transparency—whether spaces and activity beyond the street wall can be 

viewed, or at least imagined—and complexity—the variety of sensory stimuli provided by 

a streetscape. Both are heavily affected by micro-scale details such as window 

arrangement, architectural decoration, signs, and street objects that are not yet 

consistently recorded in spatial data. Nonetheless, street wall continuity, which is readily 

measurable with building footprints, indicates transparency between and behind 

buildings. Architectural variety or repeating patterns add visual texture, so the number of 

buildings per length of street is a useful measure of complexity (A. Jacobs & Appleyard, 

1987).  

Urban design literature suggests that the elemental geometry of buildings reveals 

much about a streetscape’s potential appeal. Variables such as width, height, cross-

sectional proportion, street wall continuity, and buildings per length have great potential 

to be measured with commonly available GIS data and tools. Replicable and efficient 

GIS processing allows assessment of large, geographically-dispersed samples of 

streetscapes that would be impractical to survey using traditional field audits. 

3.3 Methods 

A novel GIS-based method was used to measure a suite of skeleton variables 

based on building geometry along block-length urban streetscapes. Cluster analyses were 
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then used to examine whether there were strong patterns among the variables 

representative of discrete skeleton types, whether the patterns were consistent throughout 

the study cities, and whether they were related to functional classes traditionally used to 

characterize streets. The unit for all analyses was the block-length street segment and the 

streetscape surrounding it, with a spatial extent spanning lengthwise along the centerline 

between adjacent intersections and widthwise between the street-facing façades of 

building to either side. The GIS-method “searched” for buildings up to forty meters from 

each segment’s centerline. When no buildings bounded one side of a streetscape, such as 

along a park or waterfront, its width extended forty meters from the centerline in that 

direction plus any additional distance from the centerline to façades of buildings on the 

opposite side. Because the streetscape skeleton concept emphasizes how space is defined 

by vertical objects that provide enclosure by blocking sight lines, horizontal boundaries 

such as curbs, traffic lanes, sidewalks, and medians were not accounted for. Segments 

that were longer than five hundred meters, shorter than twenty meters, had no buildings 

within forty meters of the centerline, or had special characteristics were excluded from 

analysis. Sections 3.3.2 (Data) and 3.3.3 (GIS-Based Streetscape Measurement) provide 

more detailed descriptions of how street segments were identified and measured. 

Because streetscape enclosure provided by buildings is a primarily an urban 

phenomena, this study assessed streetscapes within the municipal boundaries of three 

large cities in the northeastern United States: Boston, MA, New York, NY, and 

Baltimore, MD. The streetscape skeleton concept is contingent on the potential for 

streetscapes to be identified as discrete, three-dimensional spaces that can experienced, 
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more or less, from a single vantage point within them. It is best suited to urban contexts 

where blocks are relatively short and straight, and buildings are sufficiently dense so that 

fields of view include multiple buildings, whose spatial relationships to one another 

define the shapes of outdoor spaces. The environments of rural roads, with more distance 

between intersections, more curvilinear paths, and little development along them, are 

more nebulous to define and more likely enclosed by trees rather than buildings. While 

rural and suburban settings offer a promising direction for development of further 

measurement techniques and research, the present study focuses on the high-density core 

and medium-density peripheral neighborhoods of major cities, where streetscapes are 

most intelligible as a unit of analysis. 

3.3.1 Study Cities 

Boston, New York, and Baltimore provided an opportunity to assess the regional 

consistency of streetscape skeletons using spatial data that were publicly available and of 

comparable quality (Figure 3.1). Each of the cities contains a variety of land uses and 

development densities within municipal boundaries. All three include downtown areas 

with many buildings upward of 100 meters tall, as well as outlying residential and 

commercial areas with smaller buildings and lower densities. The development histories 

of the three cities are similar, with 17
th

 and 18
th

 century settlement beginning in what are 

now downtown areas close to natural harbors. Development in the 19
th

 and early 20
th

 

centuries greatly expanded each city’s residential neighborhoods, while the late 20
th

 

century fostered continued expansion of medium-density development in peripheral areas 

along with high-rises and superblock development associated with “urban renewal” in 
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and around their downtowns. Redevelopment has been substantially more active in 

Boston and New York than in Baltimore, which has been losing population since its peak 

in the 1950s. All three cities have variously-sized gridiron street networks interspersed 

with more angular or curvilinear networks that predate the grids or were developed in the 

early 20
th

 century. 
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Figure 3.1: Study extents in Boston, New York, and Baltimore. 
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While the cities have similar development trajectories, they have enormously 

different spatial, population, and development scales (Table 3.2). New York is by far the 

largest, with a population roughly thirteen times that of Boston or Baltimore, and a land 

area several times larger. New York also has the densest development, with twenty 

percent of its land area covered by buildings compared with eighteen percent in Boston 

and fifteen in Baltimore. Lower and Midtown Manhattan, New York’s downtown core, 

are home to a large number of skyscrapers that form a signature skyline. Both Boston and 

Baltimore also have skyscrapers in their downtowns, though fewer and less extreme in 

height. 

Table 3.2: Study city overview 

City 

Land 

Area Population 

Population 

Density 

Public 

Roadways 

Number 

of 

Buildings 

Proportion 

of Land 

Area in 

Buildings 

Buildings 

Over 100 

Meters 

Tall 

 sq km  pop/sq km km    

Boston 125 636,500 5,092 1,890 129,400 18% 107 

New York  780 8,273,100 10,607 45,500 1,080,500 20% 640 

Baltimore 210 621,300 2,959 3,672 258,775 15% 22 

 

Importantly, this study included only streets and buildings within the municipal 

boundaries of each city, not adjacent municipalities that belong to their larger 

metropolitan areas. While further research should examine streetscapes in these suburban 

contexts, varying availability and precision of building geometry data made it prudent for 

this study to focus on the political boundaries where consistently high quality data were 

available for each city. 
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3.3.2 Data 

Spatial data inputs for measurement of streetscape skeleton variables in all three 

cities were publicly-available through internet data portals or municipal agencies (Table 

3.3; City of Baltimore, 2013; City of Boston, 2013; City of New York, 2013). Street 

centerlines from municipal sources, which were deemed to be the most geometrically 

precise of available options, were used as the geometric basis for street segments. 

Centerlines from ESRI StreetMap (ESRI, 2012), with associated Census Feature Class 

Codes (CFCCs), were used assign functional classes— arterial, collector or local—to 

municipal centerlines. StreetMap centerlines were joined to the nearest municipal 

centerline within twenty meters; municipal centerlines greater than twenty meters from 

an ESRI centerline were excluded from analysis. Original CFCC classifications were 

recoded so that primary highways with limited access (A1) and primary roads without 

limited access (A2) were considered arterial, secondary and connecting roads (A3) were 

considered collector, and local, neighborhood, and rural roads (A4) were considered local 

(Figure 3.2). Segments originally classified as vehicular trails (A5), roads with special 

characteristics (A6), and other roads (A7) were excluded from the analysis. 

Table 3.3: Data sources 

  Street Centerline Building Footprint 

Role City Source Year Source Year 
      

Geometry 

Boston Boston DoIT 2011 Boston DoIT 2002 

New York NYC Open Data 2012 NYC Open Data 2011 

Baltimore Open Baltimore 2008 Open Baltimore 2008 
      

Functional Class 

Attributes 
All Cities ESRI StreetMap 2012   
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Figure 3.2: Spatial distribution of street segment functional classes in each study city. 
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Precise building footprints, originally derived through manual tracing of roof 

outlines from aerial photography and corrected to represent ground positions using 

stereoscopy, were publicly available from municipal sources in each city. The quality of 

building height estimates, which were included as a tabular attribute associated with each 

footprint, varied between cities based on the technology used to derive them. Height data 

for Boston were derived from LiDAR, while data for Baltimore and New York were 

derived primarily from stereoscopy. 

Street centerline datasets, principally designed to facilitate transportation network 

analysis, included redundant centerlines along many divided-lane streets in order to 

model network flows more realistically. Complex intersections were often represented by 

many line segments tracing the potential paths of motor vehicle traffic. Because the 

method for measuring skeletal variables assessed the geometry of streetscapes, not their 

traffic function, centerline geometry were preprocessed to better approximate the 

assumption of a single, continuous centerline running parallel to the curb and in the 

approximate center of each street segment. 

To produce centerline segments that were split at intersections, but continuous 

between them, original centerline data were dissolved by street name, removing mid-

block splits. Intersections were identified wherever centerlines crossed or at least three 

centerlines converged. Because the GIS method used spatial extents to distinguish 

between segments, 0.5 meters were erased from the end of each segment to separate them 

slightly, yielding block-length centerline segments separated by at least one meter. 

Segments less than twenty meters long, which included most fragmented segments in and 



 

49 

around complex intersections, were excluded. Our visual inspection of segment geometry 

detected no areas where regular block spacing was less than twenty meters; thus, the 

basic structure of the street network was maintained. Segments greater than five hundred 

meters long, of which there were few, were also excluded on the basis of being 

unrepresentative of an urban setting and too long for users to interpret as a single, 

cohesive segment. 

Attribute selection and a systematic visual inspection on an aerial photography 

base map were used to identify dual centerlines and alleys, ramps, and streets without 

names. Because naming conventions were often unreliable, as were type attributes 

associated with centerline datasets, segments on expressways, ramps, bridges, and tunnels 

were visually identified and excluded. Redundant centerlines—second, third, and fourth 

centerlines on a single right-of-way—were also excluded. In most cases the remaining 

centerline was not centered in the right-of-way. However, because the measurement 

method described below works independently on either side of a segment, this did not 

affect edge detection or overall street width measurement. All told, 12,111 kilometers of 

street centerline were prepared for analysis, constituting approximately 65% of all public 

roadway centerline distance across the three cities. 

3.3.3 GIS-Based Streetscape Measurement 

A geographic information system (GIS) provided an efficient and replicable 

approach for measuring streetscape skeleton variables. The measurement method 

developed for this study used a combination of GIS tools and database queries in a three-
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stage sequence to (1) examine the distance of buildings to either side of a street 

centerline, (2) define edges which approximate the extent of a streetscape to either side, 

and (3) measure twelve skeleton variables within this extent (Table 3.4; Figure 3.3). Each 

variable was measured for each block-length street segment. 

Table 3.4: Twelve streetscape skeleton variables based on building geometry 

 Streetscape Skeleton Variable Spatial Definition 

1 Width Distance between edges (building-to-building) across the street 

2 Length Centerline distance between intersections 

  

3 

4 

Height, 

    higher side 

    lower side 

Average building height on the…  

    higher side of the street 

    lower side of the street 

  

5 

6 

Cross-sectional proportion, 

    based on higher side 

    based on lower side 

Full width (building-to-building)/Height on the… 

    higher side of the street 

    lower side of the street 

  

7 

8 

Street wall continuity, 

    more continuous side 

    less continuous side 

Proportion of edge intersecting buildings on the… 

    more continuous side of the street 

    less continuous side of the street 

9 Buildings per length Count of buildings on both sides/length 

10 Variability in height Standard deviation of average building height on both sides 

11 Variability in width Proportion of street area intersecting building area 

12 Sinuosity Centerline length/straight line distance between segment ends 
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Figure 3.3: Multistage method for skeleton variable measurement. 

 

Automatically identifying streetscape extents presented both a theoretical and 

technical challenge. Humans are efficient at interpreting complex geometric 

arrangements, such as streets lined by buildings with alleys, yards, and vacant lots 

between them, as discrete spaces with fuzzy edges (Stamps, 2009). Such fuzzy edges 

were difficult to identify algorithmically. Topological definitions of interiority were 

unusable because street walls may be riddled with gaps between buildings and at 

intersections (Figure 3.4, A). An automated method had to emulate edge detection from a 

street-level perspective, by identifying façade alignment at a predominant setback (Figure 

3.4, B), to define crisp, albeit approximate, streetscape edges (Figure 3.4, C). 
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Figure 3.4: Edge detection from overhead and street-level perspectives. 
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The GIS-based method identified edges along each side of each street centerline 

segment using an ArcGIS geoprocessing model and SQL queries in Microsoft Access. 

The GIS model drew flat-ended, single-sided buffers at a progressively larger distance 

(d), between one meter and forty meters at one-meter intervals, to either side of each 

centerline segment, calculating the area of each buffer, A1,d (Figure 3.5, A). Next, the 

model subtracted building footprints from the buffers and calculated the non-building 

areas, A2,d (Figure 3.5, B). The ratio A1,d : A2,d was calculated for each buffer distance, 

along with the difference in area ratios between each buffer and its sequentially larger 

neighbor, A1,d : A2,d - A1,d+1 : A2,d+1. A series of SQL queries identified where this ratio 

difference was maximized, indicating the distance, d, at which buildings most abruptly 

intersected the buffers and an edge would likely be perceived by street-level users (Figure 

3.5, C). 
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Figure 3.5: GIS-based streetscape edge detection using sequential buffers. 

(Continued on next page) 
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Figure 3.5: (Continued from previous page) 

The street width method could theoretically have drawn and assessed buffers ad 

infinitum to either side. A reasonable limit for analysis was forty meters from each 

centerline, resulting in eighty meters of total potential width. To our knowledge, the 

widest street corridor in the study cities that was lined by buildings with a consistent 

setback was Eastern Parkway in Brooklyn, New York, which has a building-to-building 

width of approximately eighty meters along twelve consecutive blocks. Assessing forty 

meters from each side of the centerline suitably described the Eastern Parkway street 

wall. Measuring width up to eighty meters also adequately distinguished between human-

scale streets with a maximum width of approximately twenty meters, and those that were 

wider and likely dedicated to motor-vehicle movement (Alexander et al., 1977; 
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Blumenfeld, 1971; A. B. Jacobs, 1993). Finally, measuring forty meters to either side 

provided a reasonable balance of analysis extent, resolution, and processing efficiency, 

requiring approximately three hours for each batch of 10,000 street segments. Segments 

with no buildings within forty meters of the centerline were excluded from analysis. 

Once streetscape edges were identified, streetscape skeleton variables were 

straightforwardly measured based on the geometry of centerlines, edges, and the 

buildings intersecting them. Because the GIS-based method identified edges only at one-

meter intervals from the centerline, buildings were considered to intersect a street edge if 

they were up to one meter away. Width was the distance between opposing edges (Figure 

3.6, A). Length was the centerline distance between segment ends (Figure 3.6, B). 

Because development along a street may have been biased to one side, such as a street 

along the edge of a park or water body, measurements based on height and street wall 

continuity were broken into two variables. Height was the average height of buildings 

along either edge, reported for both the higher and lower sides (Figure 3.6, C). Cross-

sectional proportion was the ratio of average building height to overall width, reported 

based on the heights for both the higher and lower sides (Figure 3.6, D). Street wall 

continuity was the proportion of each edge that intersected a building, reported for both 

the more continuous and less continuous sides (Figure 3.6, E). Buildings per length was 

the count of buildings on both sides standardized by length (Figure 3.6, F). Variability in 

height is the standard deviation of heights among buildings along both edges (Figure 3.6, 

G). Variability in width was the proportion of area between edges occupied by buildings 
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protruding into it (Figure 3.6, H). Sinuosity was the ratio of centerline length to straight 

line distance between the ends of segment. 

Streetscape skeleton variables were measured for a total of 122,216 street 

segments across the three study cities (Table 3.5). Fourteen batches consisting of no more 

than 10,000 segments each were measured on a desktop workstation over approximately 

thirty-five hours of total processing time. The resulting variables were all positive and 

continuous. Width, length, height, and variability in height, produced linear 

measurements with units in meters. All other variables were proportions. Width and the 

street wall continuity variables were the most normally distributed. Nine variables were 

skewed with tails to the right. Such distributions indicated a high degree of within-

variable homogeneity. To best satisfy the assumption of normality implicit in cluster 

analysis, these variables were square root transformed prior to analysis. Square root 

transformations retained values of 0 and 1 that were helpful for interpretation of 

proportions. 
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Figure 3.6: Skeleton variable geometry. 
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3.3.4 Cluster Analysis 

Cluster analysis was used to identify multivariate patterns of similarity and 

difference among streetscapes and guide the development of streetscape skeleton types. A 

multistage process explored which variables were important to include in clustering, 

assessed the appropriate number of clusters, determined a final clustering result, assigned 

each street segment in the sample to a cluster, and interpreted the average characteristics 

of each cluster. 

Following LaMondia & Aultman-Hall (2014) and Tkaczynski et al. (2010), I used 

a two-step cluster analysis implemented in IMB SPSS Statistics 21. The two-step method 

was ideally suited for a large dataset that would be prohibitively memory-intensive for 

traditional hierarchical algorithms and for which there were an unknown number of 

clusters. It pre-clustered records by sorting them sequentially into a tree structure based 

on similarity with other records. The initial branching divided records into groups of 

similar values for one variable. The next branching further divided into subgroups of 

similar values for the next variable. Because records were sorted sequentially, results 

were affected by record input order. Norusis (2008) recommended that records be 

randomized prior to analysis; multiple runs with randomized orders can be used to refine 

results. 

Once branching was completed for all variables, the preclusters and their means 

for each variable were entered into a single linkage (nearest neighbor) hierarchical 

clustering algorithm that iteratively joined clusters to minimize distance within them and 
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maximize distance between them. Distance was defined as the log-likelihood of a joint 

cluster, defined as: 

  (   )                Equation 3.1 

where <m,n> was the potential joint cluster consisting of clusters m and n. 

The position of each cluster was calculated as: 

       (∑
 

 
    ( ̂ 

   ̂  
 )

 

   

) Equation 3.2 

where    was the number of records in cluster  ,  ̂ 
  was the estimated variance of each 

variable  , and   was the number of variables (LaMondia & Aultman-Hall, 2014). The 

method assumed that variables were normally distributed and that both variables and 

records were independent from one another, though Norusis (2008) claimed that the 

method was reasonably effective when these assumptions were not satisfied. 

Two metrics were used to appraise clustering fit and the appropriate number of 

identifiable clusters. Clustering solutions were compared for fit using the Bayesian 

Information Criterion (BIC). Fraley & Raftery (1998) and Norusis (2008) recommend 

selecting the number of clusters at which the magnitude of BIC changes most 

dramatically to a small value, and where change is minimal thereafter—essentially, the 

inflection point of an exponentially diminishing curve. Because clusters in real-world 

data are rarely clearly defined, BIC comparison indicates only an approximation of the 

reasonable number of clusters and must be substantiated by theoretical meaningfulness. 
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Cluster fit was also assessed using the silhouette coefficient of cohesion and 

separation, which, for each record, evaluates the ratio of mean distance of points in the 

same cluster to the mean distance of points in the next closest cluster. The mean of 

silhouette coefficients among records summarized the overall cohesion, or similarity, of 

streetscape records within a clustering solution, and their separation, or difference, from 

the records in other clusters. The coefficient had a theoretical range from 0 to 1 (although 

negative values might have been achieved if there were no clustering tendencies within 

the data). Kaufman & Rousseeuw (1990) suggested that average silhouette coefficients 

between 0.5 and 1.0 indicated good cluster quality. 

All streetscape skeleton variables were initially entered into the clustering 

algorithm. Variables were removed one at a time, and cluster fit was assessed for each of 

the results. The process demonstrated that clusters derived from two variables—cross-

sectional proportion based on the higher side and street wall continuity on the more 

continuous side—were similar in size, number, and silhouette to those including 

additional variables. This finding was consistent with the assumption that clustering 

would be most effective when included variables were independent. 

Principal component analysis (PCA) was used to visualize the relationships 

between variables and determine which were sufficiently independent to use for 

clustering (Figure 3.7). Cross-sectional proportion based on the high side and street wall 

continuity on the more continuous side were two of the most orthogonal in the first two 

principal components, indicating their relative independence. They were also two of the 

most heavily weighted. Additionally, cross-sectional proportion and street wall continuity 
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were composite variables, allowing them to represent the height, width, and length 

variables from which they were constructed. 

 

Figure 3.7: Obliquely rotated principal component loadings of skeleton variables. 

 

To assess the number of clusters appropriately identifiable among the data, ten 

clustering runs were examined for best-fit according to the BIC-based method described 

above. Each run used a randomly generated record order. Across the ten runs, the modal 

number of clusters for each city was four. The minimum number of clusters generated in 
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a given run was two and the maximum was ten. Silhouette coefficients for four-cluster 

solutions were consistently 0.5. 

Joint distributions of cross-sectional proportion and street wall continuity were 

evaluated to confirm the validity and reasonableness of a generalized four-cluster 

solution (Figure 3.8). A large portion of records were located around the mean values for 

both variables, although closer inspection revealed a bimodal distribution in proportion of 

street wall resulting in two central clusters. Lower values of both variables formed a 

sparser third cluster. The long tail of cross-sectional proportion formed an even sparser 

fourth cluster that was identifiable based its separation from the density of other clusters 

rather than its internal cohesion. 

To identify final clusters, and assign a cluster type to each street segment, two-

step clustering was repeated using the same ten randomly generated record orders while 

specifying a four-cluster solution. Because the clusters were not output from the 

algorithm with consistent identifiers, their centroids were plotted to identify similarity in 

their positions across iterations (Figure 3.8). The plots revealed consistent centroid 

estimates across the cities, forming a general typology. Each street segment record was 

assigned the modal type identified by the ten clustering iterations. Mean variation ratios 

for cluster assignment, which indicated the proportion of assignments inconsistent with 

the mode, were 0.09 for Boston, 0.15 for New York, and 0.10 for Baltimore, 

demonstrating high consistency in cluster assignment across all three cities, but least 

consistency in New York. This was likely due to New York’s relatively larger sample of 

streetscapes with less variability among skeleton measurements. 
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Figure 3.8: Joint distributions of cross-sectional proportion and street wall continuity. 
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Two sensitivity analyses were conducted to assess the stability of clustering 

results given alternate parameters. The first evaluated the effect on the number of 

identified clusters from incorporating a third variable, width, a measurement of 

streetscape scale rather than proportion. Three-variable clustering solutions had similar 

cross-sectional proportion and street wall continuity characteristics to those previously 

identified, with L-shaped distributions of cluster centroids similar to those in Figure 3.8. 

Three-variable clusters solutions were, however, less consistent across cities and less 

cohesive than those previously identified. The appropriate number of three-variable 

clusters, according to BIC values, was three in Baltimore and five in New York and 

Boston, with an average silhouette coefficient of 0.43. The addition of width did not 

substantially change the arrangement of clusters and produced slightly less definitive 

results than two-variable cluster solutions. 

The second sensitivity analysis examined the effect of constraining two-variable 

clustering to either three or five clusters. When specifying three clusters, streetscapes 

with the lowest cross-sectional proportion and street wall continuity merged into a single 

cluster. The average silhouette coefficient was 0.49. Five-cluster solutions indicated a 

new, though inconsistently-centered cluster with square cross-sectional proportion—

roughly equivalent height and width—moderate street wall continuity and an average 

silhouette coefficient of 0.44. Neither variation offered a superior silhouette or 

contrasting cluster arrangement to the four-cluster solution. Both sensitivity analyses 

indicated that clustering solutions were relatively stable to modifications in clustering 

parameters. 
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3.4 Results & Discussion 

3.4.1 Four Streetscape Skeleton Types 

Four streetscape skeleton types, identified by separate cluster analyses of 

streetscape skeleton variables in Boston, New York, and Baltimore, describe a ranking of 

streetscape skeleton enclosure that is generalizable across the study cities (Table 3.6; 

Figure 3.9). I have assigned names to the types based simple descriptors of their 

geometry: upright, compact, porous, and open. 
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Figure 3.9: Isometric illustrations of streetscape skeleton types. 
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Upright streetscapes are highly enclosed by nearly continuous street walls and 

cross-sectional proportions far larger than the other types. These streets are likely to be 

the narrowest in a city, have some of the tallest buildings, and have relatively few 

buildings per length. This type includes streets between high-rises, and also includes 

narrow lanes between shorter buildings which have similar cross-sectional proportions. 

Compact describes streetscapes with enclosure derived from street wall continuity 

rather than cross-sectional proportion. They have the most continuous street walls of any 

type, and are also likely to have the greatest number of buildings per length. A block 

lined by rowhouses exemplifies the compact type. 

Porous streets also derive enclosure from their street walls, but have less street 

wall continuity. Nonetheless, porous street walls may appear to be relatively continuous 

from a street-level perspective. Porous streets have fewer and shorter buildings than 

compact streets. They are typified by blocks lined by single-family homes. 

Open streets are the least enclosed, widest, and are lined by the fewest buildings. 

They have stout cross-sectional proportions and have relatively discontinuous street 

walls, with buildings fronting roughly a quarter of the most continuous side. They are 

exemplified by commercial or industrial blocks with parking lots or other open space 

between buildings. 

It is important to reiterate that the skeleton types, as defined here, are 

characterized by the most developed side of a streetscape—the side with the tallest 

buildings and most continuous street wall. A streetscape such as Central Park West in 
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Manhattan, New York, which has tall buildings along one side but open parkland along 

the other, is classified as upright. Classifying streets according to their most developed 

side emphasizes potential for even a single street wall to create partial enclosure. 

Differences in the degree of enclosure between one- and two-sided streetscapes are 

accounted for by contrasting widths and associated cross-sectional proportions. Without 

buildings to delineate an edge along one side, the width of a streetscape will be very large 

(the forty-meter maximum search distance to one side the centerline, plus any additional 

distance to the façade-based edge on the other side), resulting in a much smaller cross-

sectional proportion than a comparable two-sided streetscape. 

Streetscape skeleton types follow a consistent spatial pattern between cities 

(Figure 3.10). Upright segments, which are highly enclosed, are concentrated in 

downtown areas. Compact and porous segments are organized in concentric rings around 

the downtowns. The gradient between them may be either gradual or patchy, suggesting 

that they have similar land use and development roots. Some outlying neighborhoods are 

dominated by open streetscapes. For the most part, though, open streetscapes are 

distributed along specific corridors or in relatively undeveloped areas without rectilinear 

street grids. The overarching core-and-periphery pattern of the types indicates that they 

are a rough proxy for built environment density, which is broadly understood to follow a 

similar concentric gradient. Nonetheless, many areas dominated by a single type also 

include scattered anomalies. Such streetscape heterogeneity is potentially important to the 

experience of street users, but is left unrevealed by conventional density measures 

(Figure 3.11). 
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Figure 3.10: Spatial distribution of streetscape skeleton types within the study cities. 
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Figure 3.11: Heterogeneous streetscape skeleton types in Telegraph Hill, Boston. 

 

The streetscape skeleton typology provides a framework for recognizing 

consistent patterns in the physical characteristics of block-level segments. While the four 

types do not account for streetscape design intricacies, they provide an accessible 

framework for identifying streetscapes in elemental terms. 
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3.4.2 Streetscape Skeleton ≠ Roadway Function 

At first thought, functional classes describing the design of roadways for motor 

vehicles may be equated to the design of streetscape skeletons. Arterial streets are often 

imagined to be wide and open, while local streets are narrower and lined by houses or 

shops. Cross tabulation of functional classes and streetscape skeleton types, however, 

reveals that they are poor proxies for one another (Table 3.7). Functional classes are 

distributed more-or-less evenly among streetscape skeleton types. Pearson Chi-Square 

and Gamma statistics indicate a 99.9% probability of nominal and ordinal independence 

for each city and for combined cities, except for the Gamma statistic in Baltimore, which 

indicates a 93.5% probably of ordinal independence. 
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Table 3.7: Cross tabulation of streetscape skeleton types and functional classes 

Streetscape 

Skeleton 

Type 

 Functional Class 

City Arterial Collector Local  All 

  Count (% within each city) 

Upright 

Boston 

New York 

Baltimore 

All Cities 

27 (2.5%) 

275 (3.8%) 

12 (0.8%) 

314 (3.2%) 

227 (21.0%) 

1,779 (24.4%) 

205 (13.0%) 

2,211 (22.2%) 

827 (76.5%) 

5,245 (71.9%) 

1,359 (86.2%) 

7,431 (74.6%) 

 

1081 

7,299 

1,576 

9,956 

Compact 

Boston 

New York 

Baltimore 

All Cities 

162 (5.3%) 

651 (2.5%) 

278 (2.8%) 

1,091 (2.8%) 

1,078 (35.0%) 

6,069 (23.1%) 

1,307 (13.3%) 

8,454 (21.6%) 

1,840 (59.7%) 

19,578 (74.4%) 

8,226 (83.8%) 

29,644 (75.6%) 

 

3,080 

26,298 

9,811 

39,189 

Porous 

Boston 

New York 

Baltimore 

All Cities 

80 (1.2%) 

353 (1.0%) 

147 (1.6%) 

580 (1.1%) 

1,187 (18.4%) 

5,074 (13.7%) 

1,042 (11.5%) 

7,303 (13.9%) 

5,174 (80.3%) 

31,522 (85.3%) 

7,908 (86.9%) 

44,604 (85.0%) 

 

6,441 

36,949 

9,097 

52,487 

Open 

Boston 

New York 

Baltimore 

All Cities 

58 (2.1%) 

325 (2.6%) 

103 (2.0%) 

486 (2.4%) 

832 (29.6%) 

3,471 (27.4%) 

849 (16.6%) 

5,152 (25.0%) 

1,917 (68.3%) 

8,853 (70.0%) 

41,76 (81.4%) 

14,946 (72.6%) 

 

2,807 

12,649 

5,128 

20,584 

All 

Boston 

New York 

Baltimore 

All Cities 

327 (2.4%) 

1,604 (1.9%) 

540 (2.1%) 

2,471 (2.0%) 

3,324 (24.8%) 

16,393 (19.7%) 

3,403 (13.3%) 

23,120 (18.9%) 

9,758 (72.8%) 

65,198 (78.4%) 

21,669 (84.6%) 

96,625 (79.1%) 

 

13,409 

83,195 

25,612 

122,216 

 

Independence between functional classes and skeleton types may be due to 

streetscape design patterns that are organized by neighborhoods instead corridors. While 

arterial streets often have design histories as major avenues and are somewhat wider than 

local streets, they have street wall continuity similar to their surrounding neighborhoods. 

Thus, arterial streets like Commonwealth Avenue in Boston, Broadway in Manhattan, 

and Orleans Street in Baltimore, have the streetscape skeletons similar to their local cross 

streets. The skeletons of collector streets may be even less distinguishable from those of 

local streets because they serve a mid-level functional role that is specific to the 

automobile age. Thus, streets that now serve as collectors may have originally been 
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planned and developed as local, low-traffic streets, and only recently retrofitted to 

accommodate heavier traffic loads. The result may be streets with contradictory 

streetscape and roadway design, such as those with high traffic and narrow setbacks in 

San Francisco, considered “unlivable” by Appleyard, et al. (1981). 

Independence between streetscape skeleton types and functional classes may also 

be reinforced by block-by-block variability in streetscape design along corridors. 

Functional classification tends to be consistent along corridors over which it is feasible to 

install consistent roadway infrastructure, often under the guidance of a single 

transportation agency. Design of streetscapes, in contrast, is a piecemeal process directed 

by myriad public agencies, financial institutions, designers, and landowners. While there 

is a dominant streetscape skeleton type in most areas, heterogeneity is introduced by 

vacant lots, particularly tall buildings, or other development anomalies. There is far less 

linear consistency in streetscape skeletons than roadway functionality. 

3.5 Conclusion 

Streetscape skeletons contribute importantly to the utility of urban streets as 

public spaces, yet planners often simplistically assess streets by the functionality of their 

roadways. This paper demonstrates the potential for a complementary streetscape 

skeleton typology by using a GIS-based method to efficiently measure streetscape 

skeleton factors across more than one hundred thousand street segments in three cities, 

and applying cluster analysis to identify consistent patterns among key skeleton variables. 

The resulting types—upright, compact, porous, and open—provide an accessible 
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framework for discriminating between streetscapes on the basis of elemental geometry. 

Moreover, the types are categorically distinct from roadway functional classes, indicating 

the importance of interpreting streets as a combined function of roadway and streetscape 

design. 

Measurement of streetscape skeletons using a GIS-based method is replicable and 

efficient compared with often-subjective and resource-intensive field auditing. The 

method is, to our knowledge, the first of its kind to define the boundaries of streetscapes 

based on consistency of building setbacks, approximating the way users interpret 

streetscapes from street-level perspectives. While field audits may permit nuanced 

interpretation of streetscape geometry and huge diversity of measurements, including 

microscale features such as materials and styling, they also allow for variability of 

interpretation and are resource-intensive to deploy. The GIS-based method evaluates 

segments consistently and efficiently. Minimal data inputs allow the method to be applied 

across multiple cities with comparable results. Skeletal variables, which are based on 

measurements widely understood and discussed by designers and planners, may also 

transfer directly into design specifications and policies. With objective terms for 

streetscape design that parallel the clarity of functional classes, planners will have greater 

capacity to plan streets that perform as public spaces as well as transportation conduits. 
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 EFFECTS OF SKELETAL DESIGN ON STREETSCAPE VISUAL CHAPTER 4:

APPEAL 

4.1 Introduction 

Planners and designers recommend countless strategies for improving the design 

quality of urban streetscapes. It is easy to get lost in the details. Ewing and Clemente 

(2013), for example, identify the importance of more than one hundred variables—

windows, pavement condition, building colors, signage—contributing to the sensory 

experience of urban design. The National Association of City Transportation Officials 

(2013) present an extensive inventory of design strategies—cycle tracks, bus bulbs, 

bollards, pocket parks—to improve multimodal street safety and livability. Design details 

like these are undeniably important for optimizing the quality of streetscapes, but the 

skeleton of a streetscape, delineated by the massing of surrounding buildings and trees, 

provides spatial proportions that are elemental to perception of streetscapes as appealing 

public spaces. This study investigates the contribution of skeletal variables to visual 

perception of safety, an indicator of appeal, showing that the size and arrangement of 

buildings and trees within streetscapes provide baseline conditions contributing to a 

comfortable and inviting public realm. 

The skeleton of a streetscape defines its three-dimensional space and introduces 

inherent visual complexity; both aspects contribute to visual appeal. Buildings are the 

most visually dominant objects framing streetscapes in an urban context. Aligned façades 

form walls along either side, providing enclosure that urban design theorists associate 

with sense of place and urban imageability (Alexander et al., 1977; Cullen, 1971; Lynch, 
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1960). Variations in the designs of façades foster repeating patterns and stylistic variation 

that provide visual interest in a streetscape. Trees, also visually dominant in many 

streetscapes, contribute additional enclosure and visual complexity (Arnold, 1993; A. B. 

Jacobs, 1993). Together, buildings and trees provide a skeleton (outlined in Figure 4.1) 

onto which a skin of design details—architectural styling, sidewalks, travel lanes, 

streetlights, and other fixtures—can be fitted to produce an extraordinary urban space. A 

well-proportioned skeleton may provide enduring bones for many generations of skin-

level retrofit. 

 

Figure 4.1: A streetscape skeleton defined by the massing of buildings and trees. 

While the importance of skeletal factors for streetscape appeal is espoused by 

urban design theorists, the literature offers little direct empirical evidence of their 

relationship. Traditionally, it has been difficult to collect precise and consistent 

measurements of the built environment and human perceptions among a sample of 

streetscapes sufficiently large for making statistical inferences. Novel automated methods 

for measuring skeletal variables, and recording human perceptions in the same locations, 

now make it feasible to evaluate their relationships. This study applies a GIS-based 
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method to measure streetscape skeletons based on building and tree canopy geometry at 

the spatial resolution of city blocks. Skeletal variables are measured along more than six 

hundred New York City blocks where visual appeal measurements were previously 

collected using a crowdsourcing technique by researchers at the Massachusetts Institute 

of Technology (Salesses et al., 2013). Multivariate regression models demonstrate that a 

handful of skeleton measurements are powerful predictors of streetscape visual appeal, 

and those streetscapes more greatly enclosed by buildings and trees are more appealing 

spaces.  

4.2 Background 

Seminal urban design theorists draw concise logical arguments for how enclosure 

is important to the spatial definition and attractiveness of streetscapes, but offer little 

empirical evidence of these associations. Enclosure is what gives a streetscape a 

recognizable interior, allowing someone to be outside it, entering it, or in the middle of it 

(Cullen, 1971). Such spatial definition is important for sense of place within streets, 

making them spaces to be rather than vectors to pass through. Enclosing building façades 

form “street walls,” offering shade and protection from wind and rain, and a secure edge 

from which to observe goings on (A. B. Jacobs, 1993). Street walls delineate the extents 

of outdoor rooms, whose ceilings are defined by the height of aligned cornices of 

surrounding buildings (Alexander et al., 1977). Enclosure also contributes importantly to 

urban imageability, sense of spatial awareness and orientation, useful for distinguishing 

streets and neighborhoods from one another (Lynch, 1960). A person traveling the length 

of Manhattan, for example, may know where they are—the Financial District, Greenwich 
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Village, Midtown, Uptown, Harlem—simply by the shape and size of the streetscapes 

surrounding them. 

Tree canopy provides additional enclosure by forming a partial roof while 

subdividing large streetscapes into more compact spaces. Trees may compensate for lack 

of enclosure where buildings are nonexistent or widely spaced (Arnold, 1993). Paris’s 

tree-lined Champs-Élysées, parts of which are enormously wide between buildings, 

demonstrates how well-arranged trees can provide a degree of enclosure all on their own 

(A. B. Jacobs, 1993). Trees, especially large ones, also provide visual complexity in the 

organic structure of their branching, colors of their bark and leaves, filtered light and 

shadows they cast on surrounding surfaces, and their constant, subtle movement (Arnold, 

1993). Street trees also substantially affect microclimate, which likely has an important 

effect on perception of streetscapes as appealing places. In an era when buildings are 

often planned with lifespans of 100 years or less, mature trees can play a similarly 

enduring role in shaping and adding visual character to streetscapes. 

Social benefits of enclosed streetscapes may also contribute to their appeal, 

though arguments for these relationships are mostly logical and rhetorical rather than 

empirically tested. Alexander et al. (1977) suggest that smaller, more defined streetscapes 

will attract social and economic activity more readily than those that are large and 

ambiguously shaped. Wide setbacks, originally intended to provide streetscapes with 

light and air, also make them feel vast and discourage interaction between the public 

realm of the street and private land uses to either side (Dover & Massengale, 2013; 

Montgomery, 2013). Streetscapes designed to foster social vitality must be small and 
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enclosed enough to bring people together. Appleyard et al.’s (1981) seminal study of 

street livability focuses primarily on traffic volume, but the most socially active, livable 

streets he identifies in San Francisco are also relatively narrow. Jane Jacobs (1961) 

similarly identifies the social and safety advantages of narrow streetscapes lined by low-

rise buildings in the Greenwich Village neighborhood of New York City, where 

neighbors and shopkeepers keep “eyes on the street” from their front windows. She 

critiques streetscapes amidst modern public housing projects as too tall and vast for social 

accountability. The structure of a community, Jacobs argues, is implicitly directed by its 

built environment. Alexander et al. (1977) suggest that buildings be no more than four 

stories tall to allow interaction between the uppermost floors and the street. Blumenfield 

(1971) proposes a limit on building-to-building streetscape width of 72 feet, the 

maximum distance at which faces are recognizable; 48 feet is recommended as the 

distance where expressions are detectable and communication is feasible with loud 

voices. Optimal dimensions, however, have not been tested against social outcomes using 

a rigorous methodology. 

Recent planning and public health literature uses more empirical strategies to 

evaluate the appeal of streetscapes, mostly for walking. Several studies by Ewing identify 

a framework of urban design qualities important to pedestrians according to expert 

panels: imageability, enclosure, human scale, transparency, and complexity (Ewing et al., 

2005; Ewing & Clemente, 2013; Ewing & Handy, 2009). These qualities are heavily 

affected by skeletal proportions, though Ewing and his colleagues measure them 

somewhat indirectly by estimating the length of sight lines and proportion of sky visible 
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ahead. They estimate other skeletal variables in more direct terms—building height, 

number of buildings and proportion of street wall along either side—inspiring several of 

the measurements operationalized in Chapter 3, and used to measure streetscapes in this 

study.  

A handful of studies identify quantitative relationships between skeletal variables 

and walking behavior or pedestrian environment appeal. Moniruzzaman & Páez (2012) 

find that smaller setbacks and taller buildings are consistent with greater pedestrian mode 

share in Hamilton, Ontario. Nasar (1987) finds that lay pedestrians and design experts in 

Columbus, Ohio both rate street scenes more highly when they are more enclosed, have 

more unity of form, and are more vegetated. He recommends conversion of alleyways 

and other enclosed places to pedestrian use. Pikora et al. (2003) identify street trees and 

width as important variables of route preference for recreation, but not for transport. 

Skeletal streetscape design may not be imperative for walking, but it has potential to 

encourage it by improving enjoyment. 

 Macroscale built environment measures, such as density, are more commonly 

studied using quantitative methods. Saelens et al. (2003) review the consistent 

relationship between built environment density, street connectivity, and walking behavior 

identified by transportation, urban design, and planning literature. Ewing and Cervero 

(2010) similarly review how effects of the 5Ds—density, diversity, design, destination 

accessibility, and distance to transit—on vehicle use and travel distances are replicated by 

over 50 studies. While density and connectivity imprecisely represent the streetscapes of 

individual blocks, they generally translate into taller, narrower, and shorter streetscapes. 
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The dominance of macroscale data in built environment research demonstrates the 

challenges of acquiring reliable streetscape-scale measurements. Audit instruments are 

the most common strategy for recording skeletal data, often with subjective measures that 

are efficient for human auditors to judge. The Pedestrian Environment Data Scan 

(PEDS), for example, asks auditors to rate the enclosure of a streetscape as low, medium, 

or high (Clifton et al., 2007). Moniruzzaman & Páez (2012), using data collected with 

PEDS, make the incongruous conclusion that that smaller setbacks and taller buildings 

are consistent with greater walkability, while enclosure is not. Such results are likely 

affected by limitations in the specificity and consistency of audited data. 

Some researchers question whether it is valuable to focus on the visual appeal of 

streetscapes in lieu of more practical concerns about safe infrastructure and destination 

accessibility. These arguments, however, may be largely founded on the relative 

convenience of quantifiably measuring infrastructure and accessibility. Alfonzo (2005) 

places walking environment “pleasurability” at the bottom of her hierarchy of walking 

needs, below feasibility, accessibility, safety, and comfort. Arguably, the boundaries 

between these needs are highly ambiguous and codependent on a number of built 

environment variables. Nonetheless, it is reasonable to assume that sidewalks and 

destinations are more elemental to a pedestrian’s decision making than attractive scenery. 

Boarnet et al. (2011) endorse this hierarchy, determining that availability of sidewalks, 

destinations, and safety from traffic significantly affect walking behavior among 

neighborhoods in Minneapolis and Saint Paul, Minnesota, while natural and architectural 

aesthetics do not. Southworth (2003) argues that, because practical infrastructure is 
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prioritized over aesthetic design, environmental satisfaction is often reserved for the elite. 

However, skeletal variables consistent with visual appeal, such as street trees and 

narrower width, may actually improve roadway safety in urban settings by lowering 

vehicle speeds (Ewing & Dumbaugh, 2009). Potential for skeleton aesthetics to provide 

co-benefits of safety should not be ignored. Walking will only be widely embraced when 

it is viewed as a safe and comfortable alternative to other modes. 

With advancements in tools for measuring both the physical and perceived 

qualities of streetscapes, associations between skeletal design and human appeal are ripe 

for investigation. Block-level skeleton variables are now measureable with precision, 

replicability, and efficiency that was previously attainable only for macroscale built 

environment measures—density, grid connectivity, and destination accessibility. 

Moreover, crowdsourced judgments provide a replicable and large-sample approach for 

quantifying the appeal of streetscapes in aesthetic rather than practical terms (Salesses et 

al., 2013). Combining these measurements provides us with an opportunity to validate 

relationships between skeletal design and visual appeal with unprecedented spatial 

resolution, sample size, and objectivity. 

4.3 Methods 

4.3.1 Study Area 

New York City, which offered a nexus of high resolution spatial and perceptual 

data, was an opportune study area for examining associations between streetscape 

skeletons and appeal. The City boasts more than 750 square kilometers of land area and 
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45,000 km of public roadways under the jurisdiction of a single municipal government 

which publishes high quality building, tree canopy, and street centerline geometry data, 

allowing us to measure streetscape skeleton variables throughout the entire extent of the 

city. Visual appeal scores of streetscape images, collected by researchers at the MIT 

Media Lab using an internet-based survey called Place Pulse, were available for more 

than six hundred sites throughout the city (Figure 4.2; Salesses et al., 2013). These data 

were merged to investigate how scores for the images were affected by skeleton design 

on the blocks where they were taken. 

 

Figure 4.2: Place Pulse image sites in Manhattan, Brooklyn, and Queens, New York. 
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New York City is particularly conducive to examining the effects of streetscape 

design because it contains substantial built environment heterogeneity. Development 

ranges in style and density between residential areas dominated by one and two story 

detached homes, mixed use low-rise neighborhoods, and city blocks bounded by high-

rises that are dozens of stories tall. Most parts of the City are platted on gridiron street 

networks with blocks longer in one dimension than the other, making the distribution of 

blocks lengths somewhat bimodal, though a broad range of other lengths and curvilinear 

networks are also represented. The City is divided into five boroughs, three of which are 

represented in this study. Manhattan, home to the oldest and densest development, with 

hundreds of high-rise buildings, is an elongated island along the northwestern side of the 

City. East of it are Brooklyn and Queens, which have dense downtown areas with high-

rises on their western sides and large areas of low-rise residential and mixed use 

development to the east. Low-density industrial sites, airports, and natural areas line 

much of their southern shores. The broader Metropolitan New York City area includes 

outlying suburbs in New York, New Jersey, and Connecticut, and Pennsylvania with a 

population of more than 23 million and a combined area of nearly 7,000 square 

kilometers. New York City represents only its most urban portion. As such, this study 

does not account for the full range of suburban environments which have a unique set of 

design characteristics.  

The built environment of New York City was heavily influenced by extensive 

early and mid-20
th

 century development of low-rise mixed use blocks and high-rises in 

commercial centers. The city was an early and prolific adopter of the skyscraper, and is 
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now home to more than 600 buildings greater than 100 meters tall. Because much of New 

York City was developed before the widespread use of cars, it is dense and vertically 

oriented. As such, it is not representative of more recently developed cities, especially 

those in the southern and western United States, whose urban forms are more horizontal, 

or smaller cities that lack pressure for such density. Nonetheless, the diversity of the built 

environment across the City allows analogies to be drawn between its block-level 

streetscapes and those in many urban contexts. 

4.3.2 Data 

Skeletal streetscape measurements were derived from publicly available building 

footprint, tree canopy, and street centerline data processed using a GIS-based method 

presented in Chapter 3. The method evaluated skeletal dimensions of streetscapes along 

block-length street centerline segments. For each segment, the method first identified 

streetscape edges defined by alignment of building façades along either side. While some 

streets may be discretely bounded by continuous façades, streets may also be loosely 

bounded by buildings with a variety of setbacks and spaces between them. From an 

overhead view, the edges of such streets may be difficult to define precisely (Figure 4.3, 

A), but from a street-level perspective, edges may be readily perceived where façades 

align at predominant setbacks (Figure 4.3, B). To mimic street-level edge perception, the 

method used an iterative process to draw approximate edges at the setback distances 

where façades aligned most consistently along either side (Figure 4.3, C). These edges 

defined the horizontal extent of each streetscape, while the heights of adjacent buildings 

defined its vertical extent. 
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Figure 4.3: Streetscape edge detection from ground level and overhead perspectives. 
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Seven skeletal variables were measured for each sampled streetscape: width, 

length, height, cross-sectional proportion, street wall continuity, buildings per length, 

and tree canopy coverage. Width was the distance between opposing edges (Figure 4.4, 

A). In contrast with conventional width measures of the distance between curbs or right-

of-way boundaries, width, in this study, was the distance between building façades on 

opposing sides of the street. This described the width of the space a street-level user 

would perceive. Length was the centerline distance between segment ends (Figure 4.4, 

B). Height was the average height of buildings along the single edge, out of the two edges 

along each segment, with the taller average height (Figure 4.4, C). Cross-sectional 

proportion, the quotient of height divided by width, described the interaction of these 

dimensions (Figure 4.4, D). Narrow streets lined by tall buildings had large cross-

sectional proportions, creating upright and highly-enclosed streetscapes, while wide 

streets lined by short buildings had small cross-sectional proportions, manifesting in 

shallow streetscapes with minimal enclosure. Street wall continuity was the proportion of 

an edge that intersected a façade and thus formed a street wall (Figure 4.4, E). For each 

segment, street wall continuity was reported only for the more continuous of the two 

sides. Buildings per length was the count of buildings along both sides of a segment per 

length of centerline (Figure 4.4, D). Tree canopy coverage was the proportion of area 

between edges that was covered by tree canopy (Figure 4.4, F). 
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Figure 4.4: Skeletal variable geometry. 
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Spatial data inputs for measuring skeletal variables were publicly available from 

the NYC Open Data web portal (City of New York, 2013) and were the most current 

available in November, 2013. Building footprint data were derived photogrammetrically 

from high resolution aerial photography, and included a building height attribute. High 

resolution tree canopy were derived by the University of Vermont Spatial Analysis Lab 

from aerial photography and aerial light detection and ranging (LiDAR) data using an 

automated method with manual quality control. The resulting tree canopy map, at one 

meter resolution, accurately represented the presence of even small street trees among tall 

buildings (Locke et al., 2010). Raw street centerline data were manually edited prior to 

analysis to remove dual centerlines along street segments with medians. Centerlines 

closest to the right-of-way center were maintained as the starting point for iterative edge 

detection to both sides of each segment. 

Streetscape perception data were acquired from researchers at the MIT Media Lab 

who developed an online interface, Place Pulse, for gathering crowdsourced responses to 

questions about the visual appeal of streetscape images (Salesses et al., 2013; 

http://pulse.media.mit.edu/). The interface presented respondents with randomized pairs 

of images and asked them to indicate a preference according to one of three randomly 

displayed questions: “Which place looks safer?”, “Which place looks more upper class?”, 

and “Which place looks more unique?” (Figure 4.5). Each image was scored on a fixed 

scale according to its likelihood of being preferred in a random pairing. Images that were 

never preferred received a score of 0; those always preferred originally received a score 

of 10. These scores were rescaled between 0 and 1. 
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Among scores for each of the three Place Pulse questions, perceived safety was 

considered the best indicator of streetscape appeal. Scores for perceived safety were 

highly correlated with those for “upper classness” (r = 0.89). “Uniqueness” was relatively 

uncorrelated with both other scores (r < 0.27). Moreover, uniqueness does not necessarily 

imply sensory appeal, but rather contrast from the norm. Such contrast may be attractive 

in the best of cases, but detractive in many others. As such, perceived safety scores were 

used as a single proxy for streetscape visual appeal.  

The full dataset included scores for 4,136 images collected at semi-randomly 

distributed points within the core cities of New York and Boston in the United States and 

Linz and Salzburg in Austria. A total of 208,738 decisions were collected, each 

expressing a positive vote for one image and negative vote for another. As such, each 

score was based on approximately 34 votes. A total of 7,872 unique respondents from 91 

countries, geolocated by IP address, contributed to the sample. More than 97% of 

respondents self-reported age and gender, with 76% identifying as male and 21% as 

female; the median age was 28 years. Safety perceptions may have been biased by the 

largely young-adult male composition of the self-selected respondents. However, the 

sample may be considered reliable because perceived safety was judged in relative rather 

than absolute terms. For example, when asked which of two streetscapes looks safer, a 

young-adult man and an elderly woman may identify the same safer streetscape, yielding 

the same result, even if the former feels both would be safe enough to visit while the 

latter considers neither adequately safe. Moreover, because young-adult men may be less 
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sensitive to perceived risk than the general population, their judgments may be a 

conservative measure. 

 
(http://pulse.media.mit.edu/) 

Figure 4.5: Screenshot of the Place Pulse website. 

A subset of the Place Pulse dataset were evaluated, including scores for 1,222 

streetscape images in the New York City boroughs of Manhattan, Brooklyn, and Queens. 

The average score among these images was 0.45 and the maximum was 0.8, out of a 

potential “perfect” score of 1. Each image site was geolocated by the latitude and 

longitude of its camera position. Many images shared approximately the same location, 

with two images taken in opposite different directions; in some cases more than one 

image was located along the same street segment. Image records within 20 meters of each 

other were combined into a single image site with an averaged perceptual score; 

approximately 91% of sites represented the average of two or more image scores. Sites 

were joined spatially to centerline segments, which included skeletal measurement 

attributes, within a 20-meter range. Images within 20 meters of more than one street 

segment, such as those at intersections, were omitted from analysis. This yielded a total 
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sample of 635 image sites paired with unique street segments on which skeletal variables 

were measured. 

Two control variables were also joined to each image site to account for potential 

effects of local economic conditions and contextual urban form on visual appeal. Income 

statistics were calculated from five-year estimates for median annual household income 

by block group from the 2012 American Community Survey (U.S. Census Bureau, 2012). 

Because many image sites were located on streets that form boundaries between block 

groups, sites were assigned the average of median household incomes among block 

groups within 50 meters of their centroids. Walk Scores, which summarize the 

accessibility of retail, entertainment, natural, and other amenities within walking distance 

of a particular location, as well as the network connectivity of the surrounding street grid, 

were also collected for each image site. Walk Scores were obtained by manually entering 

latitude and longitude coordinates for the centroid of each image site into the search tool 

at the Walk Score website (www.walkscore.com). While the Walk Score algorithm is 

proprietary, scores have been validated by several independent studies as an effective 

metric for destination accessibility (Carr, Dunsiger, & Marcus, 2010; Duncan, Aldstadt, 

Whalen, Melly, & Gortmaker, 2011; Manaugh & El-Geneidy, 2011). 

Descriptive statistics and bivariate correlations between perceived safety scores 

and both the skeletal and control variables, all of which are continuous, are presented in 

Table 4.1. Nearly all correlations were positive and significant at 99% probability, except 

the correlation with width, which was weakly negative, indicating that narrower 

streetscapes were perceived as safer, though the relationship was not statistically 
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significant. Tree canopy coverage had the strongest relationship with perceived safety 

(Figure 4.6). The strengths of relationships with other variables are well demonstrated by 

comparing them among sites with the highest and lowest safety scores. Figure 4.7 graphs 

these means and 95% confidence intervals across each variable, broken out by sites with 

safety scores in the top 20% (grey) and bottom 20% (white). Sites perceived as safest had 

significantly taller buildings, longer block length, larger cross-sectional proportions, more 

buildings, greater tree canopy, higher walk score, and greater income. Those perceived as 

safest also had marginally greater street wall continuity and were slightly narrower, 

though these differences were not statistically significant. 

Table 4.1: Descriptive statistics and correlations with perceived safety scores 

Variable Min Mean Max 

Standard  

Deviation 

Correlation with 

Perceived Safety 

Score 

Perceived safety score † 0.05 0.45 0.80 0.13  

Width (meters) 16 29 79 11 -0.05 

Length (meters) 40 178 468 72 0.18* 

Height (meters) 4 18 289 26 0.15* 

Cross-sectional proportion 0.05 0.69 12.03 1.03 0.16* 

Street wall continuity 0.02 0.70 1.00 0.16 0.12* 

Buildings per 100 m length 0.0 2.1 11.4 2.1 0.26* 

Tree canopy coverage 0.00 0.08 0.67 0.10 0.40* 

Walk Score ‡ 42 86 100 10 0.23* 

Median household income $10,900 $61,800 $250,000 $32,200 0.31* 

* Correlation significant at 99% probability (2-tailed) 

† Salesses et al., 2013 

‡ www.walkscore.com 
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Figure 4.6: Relationship between tree canopy coverage and perceived safety score. 

 

Figure 4.7: Response variable means among sites with high and low perceived safety. 
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4.3.3 Statistical Modeling 

Both ordinary least squares (OLS) and logistic regression models were used to 

examine the multiple effects of streetscape skeletal measures on perceived safety while 

controlling for household income and Walk Scores. Results of ordinary least squares 

were more straightforward to interpret, but the bounded range of perceived safety scores 

between 0 and 1 violated the assumption of the response variables being infinitely 

continuous. In practice, OLS regression produced reasonable safety score estimates 

because the distribution of scores was highly normal, with 98% of records falling 

between 0.2 and 0.8. Following Grove et al. (2006) and Zhao, Chen, & Schaffner (2001), 

logistic regression was used to estimate an alternative model predicting the probability of 

fixed-range responses between 0 and 1. Similarity in parameter magnitudes and signs 

between the two types of models reinforced our confidence in their results. 

Linear regressions were weighted to account for heteroskedasticity introduced by 

variety in the number of images contributing to averaged safety scores at each site. 

Because each image had approximately the same number of votes contributing to its 

score, the averages of two, three, or four images were based on larger samples of votes, 

theoretically resulting in less error compared to sites with only one image. As such, 

weights were applied according to the number of images contributing to a safety score. 

The weighted linear regression model was defined as: 

 

     (∑         

 

   

) 
Equation 4.1 
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where yi is the safety score of each site i, wi is the number of contributing images, K is the 

count of predictor variables (with index j), and           is the linear combination of 

the predictor variable x, coefficient estimate β, and residual ε, for each modeled predictor. 

Coefficients were estimated by minimizing the sums of squared distances between 

observed and predicted safety scores using the Linear Regression tool in IBM SPSS 

Statistics Version 22. 

Because safety scores represent the probability of each image being preferred in a 

random pairing, logistic regression was used to estimate the probability of such a 

preference. This was operationalized using a generalized linear model (GLM) with a 

binomial distribution and a logit link function. The effective response variable was the 

proportion of preference events to number of trials, but the SPSS GLM tool accepted 

only integer values for events and trials. Raw events and trials data were not made 

available by Salesses et al. (2013), so event counts were approximated by multiplying the 

safety score of each site, yi, by the number of images contributing to it, wi, and the 

average votes per image, 34. Trials were approximated as the product of images at each 

site and the average votes per image, 34. Both events and trials were rounded to the 

nearest integer prior to modeling. The general logistic regression model was defined as: 
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with variable definitions equivalent to those of the OLS model described above. 

Coefficients were estimated by maximizing the likelihood of agreement between 

observed and predicted event/trial proportions for each image site. 

Skeletal variables with distributions skewed to the right were transformed prior to 

modeling to better approximate normal distributions. Height, cross-sectional proportion, 

and buildings per length included no zero values and were natural log transformed to 

correct for highly skewed distributions. Tree canopy coverage, which was comparatively 

less skewed and included zero values, was square root transformed. 

Linear and logistic regression models were developed independently using an 

iterative process. Initially, all predictors were entered into each model; those with 

coefficients significant at less than 95% probability were sequentially removed until all 

coefficients were significant. The significance and sign of coefficients for the width 

variable, although never large in magnitude, fluctuated substantially based on the 

combination of predictors included in the model. Due to this inconsistency, width was 

excluded from both final models. Coefficients for height and street wall continuity were 

consistently insignificant in both models. The insignificance of height may be explained 

by its strong correlation with cross-sectional proportion (r = 0.91); the inclusion of both 

predictors would have challenged the assumption of predictor independence inherent in 

both OLS and logistic regression. Multicollinearity within the final models was not 

considered problematic; the maximum variance inflation factor (VIF) among predictor 

variables was 1.9. O’Brien (2007) cautions against VIF values greater than 10 in 

regression modeling. 
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4.4 Results and Discussion 

Several skeletal variables were strongly related to streetscape visual appeal as 

measured by perceived safety. The full linear regression model, including controls for 

amenity accessibility and affluence, accounted for more than 46% of variability in 

perceived safety scores (Table 2). When only skeletal variables were modeled—length, 

cross-sectional proportion, buildings per unit length, and tree canopy coverage—they 

accounted for 42% of variability in perceived safety. Tree canopy alone accounted for 

approximately 22% of variability. These effects were similar in the full models (Table 

4.2; Table 4.3). Percentage increases in cross-sectional proportion and buildings per 

length, due to their logarithmic transformation, were estimated to increase perceived 

safety scores by approximately 0.05 and 0.02 respectively according to the linear 

regression model. The same model estimates that every square increase in tree canopy 

coverage, due to its square root transformation, increased perceived safety by 0.34. 

Because the predictor variables had extremely different variances, however, their effects 

were most readily comparable by standardizing them with variances of one and means of 

zero. Across both models, standardized coefficients for tree canopy coverage had the 

greatest magnitude, followed by buildings per length and cross-sectional proportion. 

The effects of Walk Score and median household income were relatively minor, 

although still significant contributors to perceived safety. Length had the least effect, 

which is unsurprising given the difficulty of judging block length from a street-level 

perspective. The effect of length may have been due largely to correlations, albeit weak, 

between length and other key predictors. Longer street segments tended to have more 
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buildings per length (r = 0.16) and greater tree canopy coverage (r = 0.14). Intersections, 

which may have been more visible from shorter blocks than longer ones, may have 

detracted from perceived safety by offering less enclosure and implying greater potential 

for vehicle interaction. In general, more enclosed streetscapes, with greater cross-

sectional proportions and tree canopy creating a room-like space, were preferred.  

More buildings per length may have also contributed to sense of enclosure by 

increasing diversity in height, setback, and architectural style that visually partitions 

streetscapes into distinct sub-spaces. The visual complexity of streetscapes with greater 

buildings per length and tree canopy may have also improved their appeal. The presence 

of numerous buildings increase potential for variation in style and mass that improves 

visual interest in a streetscape (Alexander et al., 1977; Cavalcante et al., 2014; Ewing & 

Handy, 2009). The important contribution of trees to perceptions of safety is consistent 

with the negative relationship between street trees and crime rates identified by Troy, 

Grove, & O’Neil-Dunne (2012). Trees may be an efficient strategy, relative to 

construction of new buildings, for providing an enclosed streetscape that is both 

perceptually and statistically safer. 
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Table 4.2: Final linear regression model 

Response Variable: Perceived safety core †  

Predictor Variable Coefficient Standardized Coefficient t-Value 

Length 0.0001 0.074  2.475* 

Cross-sectional proportion (LN) 0.045 0.258  6.381* 

Buildings per 100 m length (LN) 0.024 0.316  9.932* 

Tree Canopy Coverage (SQRT) 0.340 0.459  15.024* 

Walk Score 0.001 0.114  3.138* 

Median household income (in $10,000s) 0.008 0.205  6.592* 

Constant 0.219  4.922* 

N = 635 

F (6, 628) = 89.9* 

R
2
 = 0.46 

* Significant at 99% probability 

† Salesses et al., 2013 

 

Table 4.3: Final logistic regression model 

Response Variable: Perceived safety score † 

Predictor Variable Coefficient Standardized Coefficient 

Wald 

Chi-Square 

Length 0.001 0.039  14.354* 

Cross-sectional proportion (LN) 0.194 0.143  105.934* 

Buildings per 100 m length (LN) 0.103 0.178  242.845* 

Tree Canopy Coverage (SQRT) 1.413 0.242  530.169* 

Walk Score 0.006 0.063  23.605* 

Median household income (in $10,000s) 0.033 0.105  96.515* 

Constant -1.149  91.815* 

N = 635 

Log Likelihood = -2,210.419 

McFadden Pseudo R
2
 = 0.22 

* Significant at 99.9% probability 

† Salesses et al., 2013 

 

A notably insignificant skeletal variable was street wall continuity, which 

theoretically contributes to enclosure. It had no significant effect when added to either 
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model (OLS: P = 0.46; Logistic: P = 0.163), though it was significantly correlated with 

perceived safety in a bivariate context (r = 0.12, P < 0.01). Streetscapes with more 

continuous street walls tended to have greater cross-sectional proportions (r = 0.21), 

buildings per length (r = 0.35) and Walk Scores (r = 0.26), so the effect of street wall 

continuity may have simply been accounted for by these other predictors. It may have 

also been insignificant if small street wall gaps were indistinguishable in images focused 

lengthwise along streetscapes (Figure 3, B). Only large, foreground gaps—empty lots, 

parking lots, gas stations—would have been detectable from this perspective. Street walls 

in the sample were largely continuous, with an average of 70% continuity over the length 

of a block, likely owing to high land values and development pressure in New York City. 

The insignificant effect of street wall continuity and the substantial positive effect cross-

sectional proportion indicates that side yards in spaces between buildings may be 

favorable to front yards in large setbacks that widen streetscapes and reduce cross-

sectional proportions (Figure 4.8). An extension of this study drawing on an expanded 

sample of streetscapes from other cities, ideally with greater heterogeneity in street wall 

continuity, would be useful for confirming its neutral effect. 
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Figure 4.8: Small setbacks with side yards versus large setbacks with front yards. 

Neither model included width or height terms, indicating no difference in appeal 

among streetscapes based on scale. Because cross-sectional proportion is not dependent 

on scale, a tall, wide street with a large, upright cross-sectional proportion is likely to 

have the same appeal as a short, narrow street with a similar cross-section (Figure 4.9). 

However, because tall buildings are only economically feasible in the most central places, 

the vast majority of streets, which are lined by low buildings, must be narrow to maintain 

an appealingly upright cross-section. Allan Jacobs (1993) succinctly articulates this 

interaction, noting that “The wider a street gets, the more mass or height it takes to define 
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it, until at some point the width can be so great that real street definition … stops, 

regardless of height” (p. 277). 

 

Figure 4.9: Contrasting streetscape scales with equivalent cross-sectional proportions. 

While Jacobs insinuates a maximum streetscape scale at which spatial definition 

diminishes no matter what its proportions, this study revealed only linear relationships. 

Neither model produced better fit when terms were squared to allow parabolic 

association. Nonetheless, the existence of optimal streetscape scale or proportions seems 

logical. While New York City is a convenient setting for testing the extremes of height 

and cross-sectional proportion, it does not adequately represent extremely wide 
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streetscapes, like those on the fringe of sprawling cities such as Los Angeles and Atlanta, 

or extremely narrow streetscapes in historic European and Asian cities. Extending this 

study to sample more diverse built environments may demonstrate optimum points in 

skeletal variables, while also investigating how appeal varies by regional and 

international context. Streetscapes in northeastern U.S. cities may have very different 

optimums than those in the southwestern U.S., where certain architectural styles and 

vegetation might signal the appeal of wide, unenclosed streetscapes with minimal tree 

canopy. 

Compared with skeletal variables, Walk Score and median household income had 

relatively small effects on streetscape appeal, notably indicating that destination 

accessibility and affluence play only partial roles in determining livability. Residential 

neighborhoods with few nearby commercial destinations may offer exceptionally 

appealing streetscapes, with well-proportioned cross-sections, many individual buildings, 

and abundant trees. Likewise, dense commercial clusters such as strip malls may offer 

high accessibility but poor aesthetic appeal. Accessibility and visual appeal are both 

important for livable communities, but they are distinct qualities. 

The relatively weak effect of median household income suggests that skeletal 

proportions may have a greater effect on streetscape appeal than design details—building 

materials, fixtures, architectural styling— that may be more directly affected by 

affluence. It is also possible that subtle but important cues of affluence—brass door 

knobs or gas street lights, for example—were not detectable in the low resolution images 

judged by Place Pulse respondents. Whatever the cause, the relatively minor effect of 
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income indicates that streetscape skeletons, and associated visual appeal, may transcend 

socioeconomic barriers. 

Statistical effects do not implicate causation, but it is reasonable to suggest, 

because of the temporal precedence of built environment construction, that observed 

variation in streetscape appeal is a consequence of skeletal variables rather than the 

inverse. Buildings and trees take decades, if not hundreds of years to develop. They have 

a durable presence in urban fabric. The appeal of a streetscape may certainly affect 

forthcoming design decisions; an esteemed streetscape may attract more investment, 

resulting in design improvements through time. However, the Place Pulse survey asked 

respondents to judge streets at a snapshot in time, from an outside perspective, with no 

awareness of the development trajectory or contextual setting, and in comparison to 

images from multiple cities in both the United States and Austria. Thus, the Place Pulse 

scores indicate the role of visual cues alone, rather than chronological or contextual 

knowledge, in perceiving streetscapes as appealing.  

4.5 Conclusion 

The skeletal proportions of streetscapes across New York City have an impressive 

effect on their appeal. In general, streetscapes with the greatest enclosure, fostered by 

substantial tree canopy, many individual buildings, and large cross-sectional proportions, 

are the most visually appealing (Figure 4.10). Tree canopy offers the strongest positive 

effect. Importantly, Walk Score is far less predictive of appealing streetscapes than 

skeletal variables, indicating a clear distinction between the block-scale design of 
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streetscapes and neighborhood-scale destination accessibility. Both are likely important 

to urban livability, but neither serves as an adequate proxy for the other. Neighborhood 

affluence also has a relatively minor effect on streetscape appeal. This suggests the 

aesthetic importance of skeletal variables, which are fairly consistent across low and high 

income areas, compared with design details—building materials, architectural 

ornamentation, fixtures—that may be higher quality in more affluent areas. Enclosing 

buildings and trees provide baseline visual appeal, even in less affluent places. 

 

Figure 4.10: Illustrations of streetscapes with high and low visual appeal. 

Appeal is not affected by several skeletal variables. Enclosure provided by street 

wall continuity has no significant effect on appeal when other variables are accounted for. 

Such neutrality suggests that spacing between buildings for side yards may be preferable 
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to setbacks for front yards that widen a streetscape and reduce its cross-sectional 

proportion. Streetscape width and height also do not have a substantial effect. However, 

since tall streetscapes are only economically feasible in the densest places, appeal of 

more narrow streetscapes is implied by appeal of larger cross-sectional proportions. 

While skeletal enclosure provided by building massing and street trees is neither 

fast nor inexpensive to modify, it can be developed incrementally and incentivized by 

straightforward policy. Enhancing streetscape enclosure provides further rationale for 

existing tree planting agendas in many cities. Enclosure provided by buildings is also 

encouraged by market feedbacks in development. Infill improves both centrality and 

aesthetics, attracting additional infill. Many cities already incentivize such growth 

through strategies to strengthen downtown areas. Moreover, skeletal measures offer an 

intelligible language, akin to setback and building envelope regulations, for guiding 

productive development while allowing stylistic design freedom. Well-enclosed 

streetscape skeletons are a long-term investment, but may grow naturally over time into 

one of a city’s most enduring assets. 

Research on the social implications of built environments is accelerating quickly 

as the global population urbanizes and simultaneously aspires to higher quality of life. 

Nonetheless, methods for measuring the intricacies of urban design, human perceptions, 

and behavioral responses, remain in their infancy. This study demonstrates the 

application of novel strategies for capturing built environment measurements. GIS data 

and tools can be used for automated measurement of streetscape design. Perceptions of 

now-ubiquitous streetscape imagery can be efficiently drawn from thousands of 
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respondents using crowdsourcing technology. Such automated techniques for capturing 

both types of data represent a frontier of research that will draw on ever-larger and more 

diverse samples. Future studies should sample additional cities to investigate differences 

in streetscape design throughout the world and in variously sized cities. It will be 

particularly valuable to determine whether streetscape-appeal relationships are universal, 

or have cultural variability and should thus be designed and incentivized differently 

between cities. Finally, it will be important to investigate how roadway engineering 

contributes to streetscape appeal. This study has purposefully concentrated on the vertical 

design of streetscapes that surround roadways, but the horizontal layout of sidewalks, 

multimodal infrastructure, traffic lanes, and vehicular traffic itself, have an enormous 

effect on how streets are perceived and used (Appleyard et al., 1981). Research on the 

design of streetscapes and roadways must be merged to design whole streets that are 

comfortable and attractive. Nonetheless, researchers should strive to provide frameworks 

that are not overly comprehensive, leaving details to the discretion of architects, urban 

designers, and transportation engineers who can make context-sensitive choices. A single 

detailed recipe for livable streets would be overwhelmingly complex, stifling creativity in 

detailed design that contributes importantly to appeal of streets as subtly unique places. 
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