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ABSTRACT 
 
Harsh environment acoustic emission and ultrasonic wave sensing applications often 
benefit from placing the sensor in a remote and more benign physical location by using 
waveguides to transmit elastic waves between the structural location under test and the 
transducer. Waveguides are normally designed to have high fidelity over broad frequency 
ranges to minimize distortion – often difficult to achieve in practice. This thesis reports 
on an examination of using nonlinear ball chain waveguides for the transmission of 
acoustic emission and ultrasonic waves for the monitoring of thermal protection systems 
undergoing severe heat loading, leading to ablation and similar processes.  Experiments 
test the nonlinear propagation of solitary, harmonic and mixed harmonic elastic waves 
through a copper tube filled with steel and elastomer balls and various other waveguides.  
Triangulation of pencil lead breaks occurs on a steel plate.  Data are collected concerning 
the usage of linear waveguides and a water-cooled linear waveguide.  Data are collected 
from a second water-cooled waveguide monitoring Atmospheric Reentry Materials in 
UVM’s Inductively-Coupled Plasma Torch Facility.   
 
The motion of the particles in the dimer waveguides is linearly modeled with a three ball 
and spring chain model and the results are compared per particle.  A theoretical nonlinear 
model is presented which is capable of exactly modeling the motion of the dimer chains.  
The shape of the waveform propagating through the dimer chain is modeled in a sonic 
vacuum.  Mechanical pulses of varying time widths and amplitudes are launched into one 
end of the ball chain waveguide and observed at the other end in both time and frequency 
domains. Similarly, harmonic and mixed harmonic mechanical loads are applied to one 
end of the waveguide.  Balls of different materials are analyzed and discriminated into 
categories. A copper tube packed with six steel particles, nine steel or marble particles 
and a longer copper tube packed with 17 steel particles are studied with a frequency 
sweep. The deformation experienced by a single steel particle in the dimer chain is 
approximated.  Steel ball waveguides and steel rods are fitted with piezoelectric sensors 
to monitor the force at different points inside the waveguide during testing.   
 
The corresponding frequency responses, including intermodulation products, are 
compared based on amplitude and preloads.  A nonlinear mechanical model describes the 
motion of the dimer chains in a vacuum.  Based on the results of these studies it is 
anticipated that a nonlinear waveguide will be designed, built, and tested as a possible 
replacement for the high-fidelity waveguides presently being used in an Inductively 
Coupled Plasma Torch facility for high heat flux thermal protection system testing.  The 
design is intended to accentuate acoustic emission signals of interest, while suppressing 
other forms of elastic wave noise. 
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CHAPTER ONE: INTRODUCTION 

1.1. Elastic Waves 

 The laws concerning strength of materials govern the mechanics of elastic waves 

in a steel rod.  The wave equations that govern the motion of a vibrating steel rod are 

interchangeable with the equations that govern the vibration of a long string, such as the 

D’Alembert solution [1].  The governing equation for a straight, long prismatic rod is 

shown below as equation 1.  

 

Equation 1: Governing wave equation for a long, straight prismatic rod 

 

 The coordinate x refers to a cross-section of the rod; the corresponding 

displacement is given by u(x,t); the rod experiences a dynamic stress field of σ(x,t); q(x,t) 

is a body force per unit of volume; A is the cross section of the rod [1]. Assuming the 

tensile stress and positive, the material is elastic, the rod is homogeneous, and that there 

are no body forces, equation one can be reduced to equation 2. 

 

Equation 2: The wave equation 

  

(1) 

 

 

 

(2) 
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The solution to this equation is the D’Alembert solution found as equation 3 on 

the following page. 

 

 

Equation 3: The D’Alembert solution 

 

 Elastic waves are deformational excitations that travel through media at some 

wave speed.  The P wave propagates through a continuum as a series of compressions 

with a wave speed of [K/ρ]1/2, where K is the bulk modulus and ρ is the density of the 

material.   The S wave is a secondary wave found in excited media due to shear with 

isotropic medium wave speed of [G/ρ]1/2.  For many materials the S wave speed is 

approximately one half of the P wave speed.  The Lamb waves are waves found in flat 

plates where the motion of the wave occurs within the plane defined by the direction of 

the wave and a perpendicular to the plate [1]. 

 

1.2. Dimer Chains 

Acoustic emission (AE) and ultrasonic wave sensing are based on elastic wave 

vibration transmission to monitor structural conditions.  One application with largely 

linear elastodynamic properties arises in testing the condition of structures operating in 

harsh environments, such as the evaluation of thermal protection systems (test sample 

material in figure 1, page 4) used in hypersonic spacecraft and aircraft [2].  Effective 

sensing often requires using waveguides to transmit the vibrations to a remote transducer.  

(3) 
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Most waveguides operate in a linear manner to transmit the waves with high fidelity over 

a broad frequency range.  An alternative to the linear waveguide is the nonlinear ball 

chain waveguide [2].  These waveguides transmit elastic waves with shapes, speeds and 

wavelengths that largely depend on the size and elastic properties of the balls.  It is 

possible that these nonlinear waveguides can be used to monitor thermal protection 

systems experiencing severe heat loading and ablation.   

In this thesis, a series of experiments and analyses of acoustic emissions and other 

elastic wave propagations through linear and nonlinear ball-chain waveguides is 

presented.  Flat plate waveguide test and copper tube waveguide tests examine behavior 

in largely linear contexts.  Experiments are used to investigate the nonlinear propagation 

of harmonic and mixed harmonic elastic waves through a stack of steel balls loosely held 

in place by a copper tube.  Wave propagation through stacks of balls of other materials is 

also investigated.  Mechanical pulses or strikers mechanically excite the waveguides in 

forms that can be analyzed in both time and frequency domains.  Frequency domain 

responses can be compared with respect to striker amplitudes and preloads.   

A nonlinear mechanical model describes the motion of the dimer chains while 

within a vacuum. The ultimate intention is to design waveguides to accentuate acoustic 

emission signals, while suppressing other elastic wave noise. 
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Figure 1: Test samples for monitoring material performance in a high temperature plasma stream![2] 
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CHAPTER TWO: FLAT PLATE WAVEGUIDE TESTS 

2.1. Steel Plate 

!

Figure 2: Four R15α sensors coupled to an aluminum plate in rectangular formation 

  

Pencil lead break testing is a standard method of elastic waves in solids that are 

similar to those produced by acoustic emissions events.  In a series of initial tests, pencil 

lead break tests were performed on a flat aluminum plate that acted as an elastic 

waveguide.  The purpose of the lead test is to become familiar with the PAC data 

acquisition unit, and to obtain baseline acoustical emissions data related to the breaking 

lead on a metal surface. 
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Four Physical Acoustic’s Corporation (PAC) R15α sensors are coupled to an 

aluminum plate (6” x 18”) with a silicone compound in the above formation.  The sensors 

are connected to a PAC PCI-2 board through a set of four PAC 20/40/60 preamplifiers 

(each set 40 dB); PAC AEWin software is prepared for an aluminum plate triangulation.  

Lead (actually graphite in a cylinder with 0.5 mm nominal diameter) from a mechanical 

pencil is broken in the center of the plate (marked by the arrow in figure 2).  The breaks 

register as events in the software; the events are comprised of collected sets of “hits".  A 

hit registers when the preamp output surpasses a predetermined threshold in the AEWin 

software [3].  
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2.1.1. Acoustic Classification Features  

Each hit can be classified by a set of 15 quantities defined in the software seen in table 1. 

Rise time The interval from the initial threshold of signal to peak amplitude 

Count The number of times the signal crosses the threshold during the hit 

Energy The magnitude of energy of the entire hit 

Duration The time between the first and last threshold crossing of the hit 

Amplitude The peak voltage amplitude associated with the hit 

Average frequency The mean frequency of the hit 

RMS The root mean square value of the voltage signal across its duration 

Average signal level A logarithmic representation of the RMS value 

Counts-to-peak The counts before a maximum amplitude is reached during a hit 

Reverberation frequency The most persistent frequency across a hit 

Initiation frequency The initial frequency of a hit 

Signal strength An integral across the duration of the rectified signal 

Absolute energy Related to an integral of the voltage squared 

Frequency centroid The “weighted center” of a hit’s frequency spectrum 

Peak frequency The greatest frequency 

Table 1: Fifteen acoustic classification features [3] 

 

2.1.2. Acoustic Emissions Events 

The measured energy quantities depend on the associated gain of the 

preamplifiers and are comparable to one another when the gains are the same.  Events are 

a series of hits all related to the same incident.  A single lead test trial should ideally 
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register one event in the system with the possibility of multiple hits due to internal 

reflections [3]. 

 

Figure 3: Demonstration of a pencil lead test; note, hand is elevated from plate 

 

3.1.3. AEWin Triangulation of Acoustic Emissions (AE) Events 

The AEWin software is capable of triangulating events based on the 

characteristics of hits with predefined sensor locations, and plate characteristics.  Events 

are registered and displayed on a 2D scatter plot in respect to the locations of the four 

sensors and the dimensions of the plate.  Figure 3 displays the triangulation results of 

three lead breaks intentionally placed in the center of the plate. 

 

 

 

 

 



 9 

2.1.4. Centered Test 

 

 

Figure 4: Three lead breaks (red) centered on the plate (white) with four sensors (green) and one 

outlier 

 

The measurement of the center of the plate (estimated by connecting opposite 

corners) can be considered accurate to within about +/-1.02 mm from its actual center 

along its width and +/-3.05 mm from its actual center along its length with a 95% 

confidence (Appendix A1).  The accuracy of lead break with respect to the actual center 

can be considered the previous error, in addition to a 1.59 mm error in both directions 

(this additional error can be seen in the figure 3 from the last page: the tip of the 

mechanical pencil is slightly right of the “X” marking the supposed center); thus, the 

accuracy of the placement of a lead break can be considered to be within about +/-2.54 

mm from the actual center of the plate along its width and +/-4.57 mm from its actual 
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center along its length with a 95% confidence.  The accuracy of the placement of the 

sensors with respect to the actual center of the plate can be considered the error from 

Appendix A1 with an additional 3.18 mm error in both directions.  Thus, the sensors are 

likely placed within a range defined as +/-4.32 mm along the plate’s width and +/-6.35 

mm along its length from the calibrated placements in the software with a 95% 

confidence.  Both the error related to the location of the lead breaks and the error related 

to the placement of the sensors can help to account for the events triangulation slightly 

left of center in figure 4 (measured center left of actual center, lead breaks left of center, 

sensors positions skewed left). 
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Figure 5: Amplitude vs. time data for the three triangulated events in figure 4 

 

 Figure 5 represents the voltage amplitude of each of the four sensors against time, 

revealing three clear events.  The middle peak in the above figure is expanded bottom-

right; this event is the centermost event of the three events triangulated in figure 4.  The 

amplitude data are different for each of the sensors, directly related to the triangulation.  
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Amplitude data from sensors one and three are greater than that of sensors two and four; 

hence, the event is triangulated left of center (sensors one and three are the leftmost 

sensors if figure 4).  The center peak is zoomed in upon in figure 6. 

 

 

 

 

 

 

Figure 6: Expanded amplitude peak, second event from figure 5 

 

2.1.5. Corner Test 

In the following test pencil lead is broken four times, one time next to each of the 

four sensors used for triangulation.  The results are seen in figure 7 on the following 

page.  The hits again register slightly left of the predicted locations and a bit vertically 

above center as well.  This can be attributed to both the error associated with the accuracy 

96 

 

94 

 

92 

 

90 

Amplitude (dB) 

17.99         18            18.01      18.02  

Time (s) 
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of the lead breaks, the error between the actual positions of the sensors and their virtual 

configuration in the AEWin software. 

 

 

Figure 7: Four lead breaks in rectangular formation near the sensors 

 

 

2.2. Pencil Lead Test on Water-cooled Waveguide 

As an additional test, a lead is broken on the brass head of A water-cooled copper 

pipe waveguide (figure 8, next page) such waveguides are used in high temperature 

testing of materials.  The waveguide is tested in conjunction with the running water 

through the guide while two sensors register events at its tail.  The purpose of this test is 

to gain an understanding of how the acquisition will behave in the University of Vermont 

Inductively-Coupled Plasma Torch Laboratory.  The waveguide has to be water-cooled to 

withstand the high temperatures.  Thus, the sensors will not only monitor the excited 
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sample at the head of the guide, but also monitor the water through the guide.  More 

details on the construction of this waveguide appear in Chapter 3. 

 

 

 

Figure 8: The water-cooled waveguide firmly clamped to a granite counter with its water intake 

connected to a faucet and an “exhaust” tube down the drain 
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2.2.1. Section Results 

 

!

 

 

 

Figure 9: Two-sensor amplitude vs. time data, lead test on the water-cooled waveguide with running 

water 

!

The pencil lead is broken in ten second intervals for a total of five breaks across a 

minute.   The three trials at 10, 30, and 50 seconds clearly register with the sensors (the 3 

peaks in figure 9), while the trials at 20 and 40 are harder to distinguish.  The arrow in 

figure 9 likely indicates the break at 20 seconds; where the two sensors simultaneously 

both register similar amplitudes possibly indicates a greater event than the disarray 

associated with the water flow at time equal to 20 and 46.  The break at 40 seconds 

appears to be even less apparent, possibly related to the two steep peaks following the 

trough at 40 seconds; this could be due to a feeble break, weak lead, and/or an incorrect 

break angle; or perhaps the water flow is confounding the measurements by introducing 

large amounts of spurious acoustic noise or by more subtle fluid-elastic interactions that 

dampen the acoustic emissions of the pencil lead breaks. 

0        10               20           30       40                50               60

   Time (s) 

85 

65 

45 
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CHAPTER THREE: LINEAR WAVEGUIDE EXPERIMENTS 

3.1. Water-cooled Waveguide Experiment 

The water-cooled waveguide is designed to simulate the water-cooled waveguide 

in the plasma facility.  Water runs at various flow rates through the waveguide with 

sensors placed at different locations for monitoring the associated acoustic emissions of 

the systems.  The four sensors are placed in a variety of formations across several trials: 

two on either side of the brass T-connector, an additional two placed on either side of the 

brass housing comprising the waveguides head, four spaced evenly along the copper pipe 

(figure 10, next page), and three spaced evenly along the copper pipe (similar to figure 

10) with one sensor on the T-connector [3].   

 

Figure 10: Four sensors spaced evenly along the copper pipe of water-cooled waveguide  
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Inside the outer copper tubing of the waveguide is a smaller copper tube: water 

flows from the faucet, through an opaque hose, past brass connections, and down the 

smaller tube to the head of the waveguide.  The flow is then redirected by an angled spout 

in the brass housing at its head, and sent back down the outer copper tubing, contained by 

the brass fixture.  

Four flow rates are tested in rotation, five times each for approximately 20 

seconds a trial (the water’s flow rate is estimated before each trial.  Thus, the five trials 

within each of the four categorical divisions represent similar flows, but not of precisely 

the same conditions).  Twenty acquisitions from an adjacent two sensor T-connection 

configuration (figure 11) are converted into ASCII data and are interpreted with 

MATLAB.   

 

Figure 11: Two-sensor adjacent T-connection configuration, similar to the configuration that will be 

monitoring the waveguide in the plasma facility 
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3.1.1. Section Results 

The data are discriminated into four groups based on the median values of five 

characteristics (figure 14, page 21): energy, duration, average signal level, signal 

strength, and center frequency (detailed descriptions in table 1).  The data are presented 

in glyph plot formations, arranged into visual groups defined by table 3 (page 22) with 

one spoke per variable from table 1 in a radial configuration (figure 12, next page).  The 

trials are grouped using a multivariate measure of variance for the median value data in 

respect to the other trials [2]. 
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!

 

Figure 12: Glyph plot variable key [2] 
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Figure 13: Glyph plots of the median data from the trials 

 

Figure 13 depicts four different flow (table 2, next page) rates alternated after 

every fifth trial for twenty trials, alongside their corresponding Reynolds’s Number.  The 

Reynolds’s number is a dimensionless quantity that characterizes flow. 
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Flow Rate Reynold’s Number Categorical Label Trial Numbers 

Trickle 2.14  1, 5, 9, 13, 17 

Slow 33.3  2, 6, 10, 14, 18 

Moderate 66.6  3, 7, 11, 15, 19 

Full 114.9  4, 8, 12, 16, 20 

Table 2: Trial numbers, corresponding flow rates, and color labels per flow category 
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Figure 14: Grouped glyph plots, clustered by the color representing the most prevalent flow rate of 

the group, numerical and categorical labels carried from previous figure 

 

 

Table 3: Four discriminated groups of trials with the trials most frequent flow rate 

 

3.1.2. Linear Waveguide Testing Conclusion 

The classification of the flow rates is considered a success.  The “misclassified” 

trials (trials with a different color categorical label from their cluster identifier color) can 

be attributed to estimates and control of the different flow rates across the twenty trials 

(the rates were estimated by matching audible noise emitted from the faucet per setting, 

and confirmed with visual estimates from the “exhaust” of the flow, evaluating the flow 

against preceding trials).  The extended periods of turbulence due to the flow could have 

possibly throw off the sensors from a constant position altering the results per trial.  A 

more precise experiment could be to measure all similar flows simultaneously before 

altering the flow rate, include an actively monitored flow so the conditions repeat more 

precisely between trials, or a completely redesigned test-bed possibly including sensors 

embedded within the waveguide. 
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Groups one, two, and three exhibit higher frequency data while group 4 Group 

demonstrates higher energy and signal data.  For this reason group four is most distinct 

(energy and signal level are two of the five classification features) with four correctly 

classified trials, only failing trial 12 (misclassified by one group as a moderate flow with 

lesser energy and a shorter duration from the trials in group 4).  Trial one is the greatest 

outlier of this experiment: the first trickle flow trial is misclassified as a moderate flow, 

which is two groups away from the appropriate experimental category. 

The purpose of these experimental trial is twofold: to classify AE data based upon 

a categorical variable or grouping; to analyze an acoustical event occurring over the 

“noise” of the running water of the water-cooled waveguide. 

 

 

3.2. Uncooled Waveguide Experiments 

Two separate experiments are conducted with waveguide 2 (figure 15): an 

actuated graphite sample (seen in figure 16, next page) piezoelectric excitation test and a 

butane torch cork burn test [2]. 

 

 

Figure 15: Waveguide 2 with a graphite sample in the holder, right 
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An R15α sensor is inverted for actuation by running an amplified signal through 

the sensor’s BNC connection.  The sensor is placed directly against the graphite sample 

face and held firmly in place (figure 18, page 25).  A function generator is programmed 

to sweep a linear chirp signal (a sine wave with a linearly increasing frequency) from 50 

kHz to 550 kHz over a period of a half second following an external trigger.  Its output is 

split and linearly amplified: a scaled up version to power the inverted sensor and a second 

scaled version fed to the AEWin software through a PAC preamp (20 dB setting) as seen 

in figure 17 on the following page.  A second sensor is placed on the brass T-connection 

of the waveguide for AE monitoring (to the right in figure 19, page 26).  The TTL output 

of a second function generator is split, capable of simultaneously triggering both the chirp 

waveform and the software acquisition.  The software is programmed to acquire data 

across several periods of one second, matching the period of the chirp waveform; the 

acquisition is triggered and stopped by a user [2]. 

 

 

 

 

 

 

 

 

 

Figure 16: The graphite sample from figure 15 out of the holder 
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Figure 17: Two function generators on a housing with four linear amplifiers; top left is the chirp 

waveform generator; top right is the TTL trigger; bottom outside modules in the housing are the 

units used for the linear scaling of the waveform 

 

Figure 18: Actuated sensors placed firmly against the graphite sample 



 26 

 

 

Figure 19: Both sensors shown 

 

3.2.1. Results 

 

Figure 20: Left, the scaled chirp-waveform cycling twice in one second; right, the resulting AE signal 

from the second sensor 

 



 27 

 

 

Figure 21: Zoomed in versions of the waveforms, in the excited area directed by the arrow in figure 

20 

 

The voltage from the chirp waveform from figure 20 generator does not remain 

entirely constant; it fluctuates between approximately 500 mV to 550 mV, amplified at 

around twice the output of the chirp waveform generator.  It is clear in figure 20 that the 

waveguide experiences multiple periods of excitation across the cycle, with the largest 

pulse ramped up from the beginning of the sweep indicated by the arrow (zoomed in on 

in figure 21).  A similar excitation follows at about a fifth of the way through the cycle 

and of slightly lesser magnitude. The waveguide’s response to the excitation at the 

sample head becomes weaker past half way through the cycle; at higher frequencies of 

actuation no sort of significant resonance is present.  The second cycle yields quite 

similar response to the first. 
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3.3. Butane Torch Excitation Experiment – Uncooled Waveguide 

The cork from a Champagne bottle is whittled down to fit into the sample holder 

and fixed firmly to the uncooled waveguide.  The waveguide is positioned under a hood 

to collect the exhaust from the experiment seen in figure 22, next page.  A butane torch is 

held with a stand directly over the cork; two sensors are applied to the T-connection of 

the uncooled waveguide (figure 23, page 30).  The test is initiated: the torch is fired in 

hands-free mode, roasting the cork across a period of over a minute (figure 24, page 30); 

the test is rerun. 
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Figure 22: View down the uncooled waveguide, butane flame test 
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Figure 23: The butane torch is applied to cork sample while AEWin is collecting data 

 

 

Figure 24: Close up of the burning cork sample 



 31 

  

 

 

 

 

 

 

!

!

Figure 25: Charred cork 

 

3.3.1. Section Results 

A carbon based charred face remains, hardened by the flames of the torch (figure 

25).  Data are collected across seven trials.  Unfortunately, it seems the torch is barely 

powerful enough to trigger the threshold voltage of the software; events are registered but 

only directly following torch ignition, possibly due to an initial impulse, or a fresher cork 

face.  It was hard to get the torch to stay lit; the trial below represents hits from two 

ignitions of the torch, with the torch remaining lit for around only a second. 
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Figure 26: AE data from two ignitions of the butane torch, held directly overhead of the sample 

 

The three hits collected from the two ignitions in figure 26 provide further 

evidence that the torch is too weak to meet the threshold voltage since only one of the 

sensors registers for one of the ignitions (the other sensor not surpassing the threshold): 

amplitude vs. time, rise time vs. time, hits vs. amplitude, and hits vs. frequency centroid. 
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Figure 27: AE data from a trial where the torch is ignited and then moved over the head of the 

sample 

 

Figure 27 shows one hit from a trial where the torch was ignited and then moved 

the torch overhead of the sample, after charring the sample several times across a period 

of two or three minutes; the hit registers following the placement of the torch over the 

sample. 

 

3.3.2. Conclusion of Butane Torch Excitation Experiment for the Uncooled 

Waveguide 

The purpose of the butane torch test is to model something similar to the plasma 

torch waveguide interaction in the plasma lab facility.  The test is partially successful and 

could be repeated with a stronger torch, and/or a lower threshold voltage. 
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CHAPTER FOUR: INDUCTIVELY-COUPLED PLASMA TORCH LAB 

TESTING 

4.1. Test Setup and Procedure 

!

Figure 28: The data acquisiton cart 
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!

Figure 29: UVM’s Inductively Coupled Plasma ICP Torch 

 

Figure 30: Close up of sensor Placement, brass water-cooled waveguide in the ICP torch facility 



 36 

A graphite sample is held by the sample holder inside the plasma torch at the head 

of the water-cooled waveguide.  The waveguide can be seen bottom-right of figure 29 

and in figure 30.  Two sensors are placed on adjacent sides of the tail end of the 

waveguide (figure 30) and the facility is prepared for testing.  The torch is brought up to 

pressure with a vacuum pump system followed by the argon, which is ignited at 120 Torr.  

The torch is then brought to the desired composition of gasses and the pressure is leveled 

at 160 Torr.  The sample is inserted via waveguide with the drill seen far right in figure 

29.  Once inside the plasma stream the sample is left for a period of 5 minutes.  Seven 

successful trials with a single graphite sample and multiple plasma compositions are 

conducted with AE data collected for the duration of each trial with the cart in figure 28.  

Temperature data are also collected for the trials with initial and final sample mass 

collected per trial as well. 

 

 

4.2. Chapter Results 

 

Table 4: Graphite sample test data, plasma torch 
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From the data in table 4 is fairly clear that the graphite sample loses mass at a 

greater rate due to the nitrogen than the argon gas, with the greatest mass loss rate 

occurring during trial 5 with a hundred percent nitrogen composition.  The AE data 

presented in figures 31-36 on pages 37-40 depicts 5 of the 15 features collected and 

calculated by the AEWin software.  These features can be statistically analyzed across 

several acquisitions to help find trends and classify data [3]. 

 

 

 

 

 

 

 

 

 

 

Figure 31: Absolute energy (aj) vs time (s) 
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Figure 32: Hits vs time (s) in ICP test 

 

 

 

 

 

 

 

 

 

 

Figure 33: Hits vs amplitude (db) in ICP test 
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Figure 34: Amplitude vs time (s) in ICP test 

 

 

 

 

 

 

 

 

 

 

Figure 35: Rise time (µs) vs time (s) in ICP test 
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Figure 36: Hits vs frequency centroid (kHz) in ICP test 

!
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4.2.1. Data Analysis 

The data from the seven trials (figure 37) are classified into two groups: argon 

based and nitrogen based plasma (figure 38). 

 

Figure 37: Labeled glyph plots of the seven trials in the plasma facility; yellow, 10 SLMP Ar / 30 

SLMP N; orange, 40 SLMP N; green, 30 SLMP Ar / 10 SLMP N; cyan, 40 SLMP Ar 

 

Figure 38: Classified trials with group labels; orange, N based; blue, Ar based 
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Figure 39: Graphite sample 

!

The specific heat capacity or argon is 20.786 J·mol−1·K−1; for nitrogen it is 29.124 

J·mol−1·K−1.  The argon’s liquid density is 1.40 g·cm−3, and the liquid nitrogen density of 

0.808 g·cm−3. 

 

It appears that the pure argon-based trial is most energetic of the seven trials, with 

higher center frequencies and greater liquid density.  Trial one (10 Ar SLMP / 30 N 

SLMP) is the only misclassified trial, with a predominately Nitrogen based plasma 

stream falling into the Argon based classification group.  Trial one is also the least similar 

of the four 10 Ar SLMP / 30 N SLMP based trials with a similar initial frequency, and 

RMS as the other trials (features not part of classification), but lesser energy and higher 

center frequency (both classification features).  The center frequency of trial one is higher 
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than the four other nitrogen-based trials, and even higher than that of trial six with the 

higher argon composition.  Trial one is also similar to trial six, with a higher average 

frequency and a similar energy.  The argon based trials are dominated by a higher center 

frequency, with the purely argon trial dominating the energy category.  The graphite 

sample loses mass each trial; trail one could be considered an outlier of this experiment 

possibly because the sample was still fresh.  The graphite sample is similar to figure 39.  

Figure 40 is a photo of what is going on during the trials inside the plasma torch. 

 

 

Figure 40: Inside the plasma torch, excited graphite sample 

 

A MANOVA statistical analysis of the two classified groups is conducted in 

MATLAB [2].  The null hypothesis that the means of the two groups are the same 

multivariate vector of n feature dimension is served by a p-value of 0.0043.  Only the five 

features used for classification (page 18) are analyzed with MANOVA.  It is common to 
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declare a result significant if its p-value is less than 0.01.  Thus, the null hypothesis can 

be rejected with a 95% confidence, leaving the possibility that the means could still be 

related linearly; the means thus lie in a 2-dimensional space [4].   

The MANOVA analysis strengthens the validity of the classification; the low p-

value indicates independence between the means of the two groups, rejecting the null 

hypothesis of all the trials in one group, and supporting this reasonable classification of 

two groups.  The two groups can be considered a useful representation of the data.  A 

MANOVA analysis can also be used to test the validity of three groups of data (or more) 

[4]. 
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CHAPTER FIVE: WAVEGUIDE THEORY OF OPERATION 

5.1. Linear Elastic Ball Model 

! The motion of the steel ball waveguide can be modeled using a lumped-mass one-

dimensional chain system of linear springs and balls.  For illustrative purposes figure 41 

shows three balls are joined by springs and connected to a fixture as shown below. 

 

 

Figure 41: A one-dimensional three ball and spring linear system 

  

Each ball has a mass m.  Each spring has a spring constant k.  For illustration 

purposes, in this particular model (figure 42, next page), the coefficient k/m is equal to 

one.  The velocity of the striker in the model is 0.7 in/s, a velocity chosen so the motion 

of the balls doesn’t max out the springs. 
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Figure 42: The positions of seven balls in an excited linear spring-ball chain model vs. time 

 

The wave speed in this model is calculated to be approximately 0.78 inches per 

second, closely matching the velocity of the striker.  The wave speed is calculated as the 

slope of the line connecting the maxima of balls one and six.  The purpose of these 

simulations is to closely model the motion of a steel ball dimer chain using a linear 

system of springs and balls.  The above model, while simple due to its linear nature can 

be considered a good prediction of the motion experienced by a steel ball dimer chain.  

Different choices of the k/m ratio will produce different wave speeds. 

 

 

Time (s) 

Position (in) 
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5.2. Hertz Law for Nonlinear Interaction 

The model and results presented in section 5.1 assume linear elastic interactions 

between the balls.  However, it is well known that elastic bodies, such as spheres, in 

contact exhibit nonlinear interactions.  The Hertz theory of contact elasticity is an 

accepted model for these nonlinear interactions.  The theory for nonlinear solitary waves 

traveling through a dimer chain is based upon Hertz’s law, equations 7 and 8.  This law 

defines the interaction between two particles as [5]: 

 

 

Equations 7 and 8: Hertz Law 

 

F is the compression force experienced between the particles, δ is the least 

difference between particle centers, A is a coefficient, a is the diameter of the beads in the 

chain, ! is the Poisson’s ratio of the beads, and E is the Young’s Modulus of their 

material.   In this model the Young’s modulus of the steel particles is approximated as 

200 GPA and the Poisson’s ratio is approximated as 0.3.  

 

(7) 

 

 

 

(8) 
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The nonlinear contact interaction experienced between the beads is the catalyst 

for the formation of propagating solitary waves.  It has been found in a certain 

experiment that when the wavelength of the propagating wave is much larger than the 

particle diameters the speed of the waves depends on the dynamic strain, defined by the 

dynamic force between the particles [5]. 

 

5.2.1. Modified Model for Hertzian Interaction 

The theoretical acceleration experienced at a jth particle center can be calculated 

with the modified model for Hertzian interaction, equations 9-13 on this page and the 

next. 

!

Equations 9 and 10: Modified model for Hertzian interaction [6] 

!

R! is the radius of the jth particle; vj is the Poisson’s ratio of the jth particle; Ej is 

the Young’s Modulus of the jth particle.  If the configuration of the chain is verticle, the 

acceleration of gravity g is 9.81 m/s2.  The mass mj of each of the steel balls is 0.0163 kg.  

(9) 

 

 

 

 

(10) 
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The particle material in the waveguide consists of all steel balls with Young’s Moduli of 

200 GPA, Poisson’s ratio of 0.30, and radii of 16 mm: 

 

Equations 11, 12, and 13: Modified model for Hertzian interaction [6] 

 

 The equilibrium positions of the three particles in a vertically oriented dimer 

chain are calculated with equation 14.  Boundary conditions arise at the ends of the chain.  

The displacement of the wall (uk+1
st  particle) is zero.  The initial positions of the three 

particles are found to be 6.33 m, 4.96 m, and 2.82 m respectively: 

 

Equation 14: Static equilibrium displacements of some kth particle in a dimer chain model [6] 

 

(11) 

 

(12) 

 

(13) 

 

 

 

(14) 
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The solution to this system of equations is calculated with Mathematica software 

(figure 43).  The three particles are modeled with initial velocities -1 m/s, zero and zero 

respectively. 

 

 

 

Figure 43: The positions of balls one (blue), two (red), and three (green) in the nonlinear model vs. 

time 

 

The wave speed in the above simulation is approximately 48 mm/s. 

Time (s) 

Position (m) 
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5.3. Wave Velocity Approximation 

The velocity of the wave traveling through the dimer chain can be approximated 

with equation 15 [5]: 

!

Equations 15: Wave Velocity in a Dimer Chain 

 

E is the Young’s modulus of the particles, a is the diameter of the particles, ! is 

the density of the material, ν is poison’s ratio of the material, and Fm is the maximum 

applied contact force between the particles.  For a steel ball waveguide experiencing a 

peak force of 0.452 mN the wave speed is 63.5 m/s.  This force is an estimation of the 

peak force applied with a 1 volt striker amplitude at 174 kHz. 

The shapes of these waves can be modeled by equations 16 and 17 [3]:  

 

(15) 
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!

Equations 16 and 17: Wave Shape in a Dimer Chain 

 

x is the axis of wave propagation; ! represents the shape of the wave within five 

particle diameters from the origin.  The shape depicted in figure 44 spans almost exactly 

5 balls of 5/8” diameter.  It takes five or more balls to completely experience this motion. 

 

Figure 44: Shape of the wave inside a chain vs. axis of wave propagation

(16) 

 

 

 

(17) 
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5.4. Reciprocal Approximation 

The frequency of the highly nonlinear solitary wave in the waveguide can be 

approximated as the reciprocal of the time duration for the wave to travel from transducer 

to transducer (equation 18).  This representation is for linear waves.  A transducer (PAC 

R15α) vibrating at 10 kHz with amplitude of 1 V is coupled to a seven-ball waveguide 

positioned vertically.  The duration of travel from one transducer to the other is 

calculated as 398 ms. 

!

Equation 18: Reciprocal Approximation 

 

The resulting frequency based upon the above equation is 1.26 Hz.  This 

difference between the striker frequency and the above frequency is probably due to the 

non-linear properties of the waveguide. 

 
 

(18) 
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CHAPTER SIX: NONLINEAR WAVEGUIDE DISCRIMINATION 

6.1. Test Setup and Procedure 

This chapter describes the results of a series of tests that were designed to 

measure and discriminate the behavior of ball-chain waveguides of various constructions.  

Copper waveguides filled with steel balls are used to study the wave propagation of a 

linear sine wave chirp waveform.  A straight copper pipe is filled with 33 steel balls and 

secured horizontally with respect to the ground.  Two transducers at either end of the 

waveguide hold the balls in place with a negligible static force along the one-dimensional 

axis of the chain.  A striker transducer is used to excite the balls with the linear chirp 

waveform while a second transducer is used to collect acoustic emissions data at the 

opposite end of the chain.  The waves propagating through the chain of balls are known 

as highly nonlinear solitary waves (HNSW) [3].   

Balls of five different materials are incorporated into this experiment: steel, nitrile 

rubber, neoprene, cork, and marble; the balls are all of 5/8” in diameter matching the 

diameter of the copper tube waveguide.  The effects of the two types of rubber, cork, and 

marble balls with respect to the propagating waveform through the particle chain are 

investigated by inserting one of each type in between steel balls, one at a time, at the 

center of the waveguide.  Material properties for these balls can be found in table 5 on the 

following page.   
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Ball Type Young’s Modulus (Gpa) Damping Ratio 

Steel 200 – 216  0.001 – 0.002  

Nitrile 0.0015 – 0.0025 ~0.05 

Cork 0.013 – 0.05 0.05 – 0.06  

Neoprene 0.0007 – 0.002 ~0.05 

Marble 64 - 110  

 

Table 5: Young’s modulus and damping ratio for the five materials [7] [8] 

 

The linear chirp waveform sweeps from 50 to 550 Hz every half a second with an 

amplitude of 250 mV.  This signal is linearly amplified by a gain of +19.99 dB through a 

scaling amplifier (Stanford Research Systems (SRS) SIM983 scaling amplifier) and fed 

to the transducer (PAC R15α) acting as an actuator.  The signal is also split, amplified by 

a gain of +0.20 dB through a second scaling amplifier and fed to the PAC PCI-2 board 

for data acquisition.  The chirp waveform is collected by a preamplifier (20/40/60 PAC 

preamplifier) and triggers a second transducer to report acoustic emissions data to the 

acquisition unit.  The frictional forces of the transducer setup hold the chain of balls 

together (figure 45). 
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Figure 45: The experimental setup with actuating transducer, left; and sensing transducer, right 

 

25 trials are acquired with the acoustic emissions acquisition unit.  Of the 25 

trials, ten are incorporated in a training matrix used to classify the other 15 trials to 

investigate the difference in the acoustic properties of the balls.  The PAC data 

acquisition unit with the AEWin software collects fifteen acoustic classification features 

detailed in table one. 
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6.2. Chapter Results 

 

The results for the all steel ball trial display a portion of the sine chirp waveform 

and the sensing transducer’s response with corresponding power vs. frequency plots 

(figure 46).  The voltage of the sine wave chirp is ~5 volts.  The voltage amplitude of the 

sensing transducer is approximately 0.4% of the voltage amplitude of the sine wave chirp 

at ~20 mV.  This is possibly due to energy dissipation and frictional losses or weak 

contact between the balls.  The dominant frequency of the response of the sensing is 

greater than that of the chirp waveform; the power at its peak power frequency is 

approximately 10000 times less at a difference of ~55 dB.   

 

 

Figure 46: Voltage vs. time graphs for a portion of the chirp waveform <1> and the sensing 

transducer <2> with corresponding power vs. frequency graphs for the all steel ball trial 
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Waveform streaming of the chirp waveform (figures 47-51, pages 58-60) 

alongside the output of this sensing transducers output reveals similar results across the 

trials with different peak amplitudes and different damping characteristics per ball type. 

 

Figure 47: Resulting output voltage of the receiving transducer across a one second period for the all 

steel ball trial 
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Figure 48: Resulting output voltage across a one second period for the rubber ball trial 
 
 

 
 

Figure 49: Resulting output voltage across a one second period for the cork ball trial 
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Figure 50: Resulting output voltage across a one second period for the neoprene ball trial 
 
 

 
 

Figure 51: Resulting output voltage across a one second period for the marble ball trial 
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These results can be compared to a similar trial of an L-shaped waveguide with a 

graphite sample head and no particle chain (figure 52).  The results appear to be less 

grouped but of similar shapes and magnitudes with a stronger second group as opposed to 

the small second group seen in the previous figures.  The second group is probably due to 

reflected waves between the transducers. 

 

 

Figure 52: Resulting output voltage across a one second period for an L-shaped waveguide with a 

graphite sample head without a ball chain 

 

 

 

Group 1 
Group 2 
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6.3. Trial Discrimination and Analysis 

The trials are discriminated by the same five key elements: energy, rise time, 

absolute energy, center frequency, and signal strength.  The results are arranged in glyph 

plots featuring the 15 acoustic characteristics in table one and grouped by class [2].  The 

five key elements are spokes three, five, eight, seven, and nine on the glyph plot in figure 

12, page 19. 

 

 

Figure 53: Glyph plots of the 15 trials for discrimination with their actual trial type 
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The above glyph plots in figure 53 are from the 15 trials for discrimination 

outlined with their actual types.  The glyphs in figure 54 (next page) are the same as 

above but classified into groups; the discriminated groups are highlighted and the group 

type is distinguished by the same color code as used to distinguish the actual trial types. 

 

 

 

Figure 54: The 15 trials discriminated into groups based upon five acoustic characteristics acquired 

by the sensing transducer with grouping key 
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The trials appear to be successfully discriminated with 87% accuracy; the only 

misclassified trials are eight and 12.  Trial eight is classified in the nitrile group due to its 

similar rise time; trial 12 is classified in the steel group due to its similar rise time and 

frequency centroid.  The glyph plots of the trials used for the training matrix are in figure 

55.  

  

 

Figure 55: Glyph plots of the training matrix from which 5 characteristics are used for 

discrimination with grouping key 

 

6.4. Conclusion of the Nonlinear Waveguide Discrimination 
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The different types of balls all exhibit different types of effects upon the HNSWs.  

The glyphs in the training group seem to match the glyphs in the corresponding 

discriminated groupings with about 87% accuracy.  It is noted that for the cork trials in 

the training set, the glyphs appear to be of greater magnitude than the cork trials in the 

discrimination set.  The accuracy of the classifier points to the fact that there may have 

been outliers; in particular, group 12 is dissimilar from the other neoprene glyphs.   

 

6.5. Waveguide Comparison 

A similar test is run on a shorter steel ball waveguide with 17 balls and on a 

second steel rod waveguide of the same size.  Two transducers are again placed at either 

end of the vertically situated guides (figure 56, next page).  A striker transducer excites 

the waveguides via a sinusoidal wave voltage waveform while a second transducer is 

used to collect acoustic emissions data at the opposite end of the guides.  Nine different 

scenarios are trialed on each waveguide featuring frequencies of 50 to 150 kHz and 

voltages from 2.5 to 7.5 volts.  The different scenarios are compared via Fourier 

transform.  A scenario excited at 150 kHz and 2.5 volts is represented on the following 

pages for both waveguides.  
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Figure 56: Steel Ball Waveguide Experiment 
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Figure 57: Fourier transform of the excitation waveform for the striker 

 

 

Figure 58: Fourier transform of the response from the steel ball waveguide 
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Figure 57 is a Fourier transform of the striker transducer.  Multiple frequency 

peaks found at approximately 150, 600, and 750 kHz can be seen in figures 58.  The blip 

next to the center peak in figure 58 is possibly a harmonic distortion.  Harmonic 

distortions are overtones found at integer multiples of the natural frequency that represent 

nonlinearities found in acoustic emissions. 

 

 

Figure 59: Fourier transform of the response of the steel rod waveguide 

 

In figure 59, three frequency peaks are apparent at 150, 300, and 600 kHz.  

 

 

Frequency!(kHz)!Frequency!(kHz)!

FFT!
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Steel ball waveguides are proposed as a part of a non-destructive testing method 

where a transducer is used to both excite and monitor a material.  The study suggests the 

HSNW are proficient information carriers of multiple variables and the waves are largely 

dependent on the elastic modulus and geometry of the material monitored.  This type of 

waveguide could possibly be in the future of TPS sample monitoring.  The Fourier 

transform below represents a steel ball waveguide monitoring a graphite TPS sample 

excited by an adjacent striker, under the same conditions as above.  The frequency of 

response is a product of the material properties of the sample and the characteristics of 

the waveguide.  

 

 

Figure 60: Fourier transform of the response of the steel ball waveguide with sample 
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In figure 60, the frequency peaks at 600 kHz and at 750 kHz represent the 

acoustic emissions of the steel ball waveguide monitoring the graphite sample.  The 

frequency peaks occur at integer multiples of the excitation frequency.  TPS sample 

properties and conditions can then be determined based upon this information. 

The absolute mean energy response of the steel ball waveguide is 9.9e-19 J.  The 

absolute mean energy of the response of the steel rod waveguide is 5.11e-16 J.  The steel 

rod waveguide propagates waves at 50,000 strength of the steel ball waveguide.  The 

steel ball guide propagates waves with a gain of -25.4 dB compared to the striker and the 

steel rod waveguide propagates waves with a gain of 22.6 dB, in the 150 kHz frequency. 
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CHAPTER SEVEN: FREQUNECY SWEEPS AND PULSES 

7.1. Function Generator Sweep 

Frequency sweeps are conducted on the three waveguides using the Agilent 

33250A function generator, the Stanford Research Systems SIM983 scaling amplifier, the 

PAC PCI-2 board, and AEwin software.  A function generator sweeps from 1 µHz to 500 

kHz at 100 mV; the signal is fed through a scaling amplifier to create a one-volt striker 

amplitude.  A PAC R15α sensor is used as the striker while a second sensor collects data. 

Two steel ball waveguides of different lengths (nine balls and 17 balls), and a nine 

particle marble waveguide are examined.  The resulting Fourier Transforms demonstrate 

that the steel particle waveguides of lengths nine and 17 balls produce essentially 

identical harmonics with the only significant variations being in the peak amplitudes.   

 

 

Figure 61: 1 µHz to 500 kHz Sweep for the nine steel ball waveguide 

~12.8 kHz 

~174.3 kHz 
~257.6 kHz 

~395.0 kHz 

~329.0 kHz 
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Figure 62: 1 µHz to 500 kHz Sweep for the 17 steel ball waveguide 

 

 

Figure 63: 1 µHz to 500 kHz Sweep for the nine marble ball waveguide 
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7.1.1. Section Results 

The new length waveguide reveals the same harmonics at lesser amplitudes.  The 

peak amplitude exhibited by the 9 steel ball waveguide at the 173.4 kHz harmonic (figure 

61) is approximately 2.5 times greater than the peak amplitude demonstrated by the 17 

steel ball guide at this harmonic (figure 62).  The peak amplitude at the 257.5 kHz 

harmonic exhibited by the nine steel ball waveguide is approximately an order of 

magnitude greater than the absolute value of the same diminished peak amplitude 

exhibited by the larger guide.  Changing the particle material from steel to marble (figure 

63) produces a different frequency spectrum of lesser amplitudes. 

 

A low frequency response blip is apparent at 15.2 kHz for the nine steel ball guide 

and 12.8 kHz for the 17 steel ball guide; these low frequency response blips are lesser 

than the neighboring higher frequency peaks at merely 37 mV; the lower frequency 

visible responses of the waveguides are possibly evidence of the slow moving wave 

characteristic to these guides.  The remaining frequency spectrum seems to again behave 

independently of waveguide length, at least for these two practical sized waveguides.  

The only difference in the spectra is the diminished amplitudes at the peaks product of 

increased waveguide length due to greater frictional losses of the longer waveguide.  

Shorter waveguides seem to produce greater amplitude frequency spectra. 
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7.2. Frequency Sweeps Under Precompression 

The same experiment from 7.1 is conducted with a six-ball waveguide in the 

vertical position and under precompression to investigate the first frequency blip, results 

in figures 64 (below) and 65 (next page). 

 

 

Figure 64: 1 µHz to 500 kHz Sweep for the six steel ball waveguide with 1.28 kg precompression 
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Figure 65: 1 µHz to 500 kHz Sweep for the six steel ball waveguide with 3.28 kg precompression 

7.2.1. Section Results 

 When changing the length of a waveguide, particle material, or by adding 

precompression to a waveguide, the first frequency blip visible in the sweeps from this 

chapter changes in frequency and amplitude.  Adding precompression to a waveguide 

increases the frequency and amplitude of the slow moving solitary wave characteristic to 

these waveguides. 

 

7.3. Variation in Pulse Width 

A nine steel ball copper tube waveguide is positioned vertically with one 

transducer at either end.  The function generator and scaling amplifier are used to power a 

“striker” that creates an acoustic pulse with piezoelectrics.  The width of this pulse is 

Frequency (Hz) 

Amplitude (V) 

~15.14 kHz 
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varied while the second sensing transducer acquires a signal.  The frequency of the pulse 

is aligned with the first harmonic of the waveguide at approximately 173.24 kHz.  The 

pulse width is varied from four microseconds to one microsecond.  A Fourier transform 

of each of the four variations are found in figures 66-69 below and on the following page.  

The four frequency spectra all appear to bear similar frequency peaks with greater 

amplitudes corresponding to larger pulse widths.  There are slight differences noticeable 

between the spectra in the ranges from 200 to 250 kHz and from 450 to 750 kHz.  

 

 

66: pulse with four-microsecond width 

 

Figure 67: pulse with three-microsecond width 
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Figure 68: pulse with two-microsecond width 

 

Figure 69: pulse with one-microsecond width 

 

7.3.1. Section Results  

A shorter pulse can better excite higher frequency in a steel ball waveguide.  

Shorter pulses also create more peak frequencies visible in the power spectrum above 

(figure 69) from the response a steel ball waveguide.  With a shorter pulse the peak 

frequencies in the power spectrum become more apparent. 
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CHAPTER EIGHT: DEFORMATION 

8.1. Deformation of a single steel ball 

This chapter portrays the deformation experienced by a steel ball lodged in 

between two granite surfaces such as the steel balls in a steel ball waveguide.  This is a 

depiction of what exactly is happening to the steel balls inside of the steel ball waveguide 

as a wave is propagating.  This also serves as a depiction of what the steel balls 

experience as the waveguide is put into a precompression. 

 

The deformation of a single steel ball lodged in between two granite faces is 

calculated using COMSOL.  One of the faces is held fixed while a small force is applied 

to the second face pinching the ball in between the two.  In this simulation the applied 

force is 0.452 mN, an estimate of the peak force applied to the ball by the striking 

transducer.  The following figure approximates the peak displacement experienced by 

one of the steel balls in a waveguide upon enduring sinusoidal excitations via transducer 

of one volt at 174 kHz.  The maximum displacement location occurs furthest from the 

contact points with the granite with a peak maximum displacement of 2.313 µm (figure 

70, next page). 
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Figure 70: Peak deformation gradient of a steel ball during sinusoidal excitation 

 

Peak maximum 
displacement 
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CHAPTER NINE: FORCE SENSOR EXPERIMENTS 

9.1. Steel Ball Waveguide 

9.1.1. Test Setup 

 An experimental test bed was developed to assess the performance of a ball chain 

waveguide with the ultimate goal being to ascertain and eventually fine tune the 

capabilities for acoustic emission testing with thermal protection systems.  Elastodynamic 

waves are transmitted through a steel ball waveguide placed between transducers in a test 

set up; the wave is monitored at two different points using custom fabricated 5/8” 

diameter balls containing embedded piezoelectric elements [9].  Upon initial testing it 

was determined that the piezoelectric sensors are not sensitive enough to pick up the 

motion of the piezoelectric transducer and thus a striker ball is used to excite the chain in 

order to report motion at the sensor locations.  The six-ball dimer chain is positioned 

vertically in a stand and accompanied by a loading ram that provides axial 

precompression.  A piezoelectric disc sensor is placed in the center of the six balls inside 

the copper tube waveguide with an orifice in the wall allowing the signal of the sensor to 

be measured by a data acquisition unit.  A second sensor is fixed within a steel ball and 

placed at the end of the waveguide (figure 71).  Liquid tape is used to cover the sensors 

so they do not break during testing and to seal the second sensor within the steel ball. 
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Figure 71: Close up of a piezoelectric sensor fixed within a steel ball 
 
 

 

A steel ball is dropped from two locations upon the head of the precompression 

component (figure 72); the ball is dropped from approximately 100 mm above the unit 

and 200 mm above the unit.  The trials are compared and resulting Fourier transforms of 

the two sensors are analyzed. 
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Figure 72: Close up of the testing rig with sensor labels 

 

9.1.2 Section Results 

 

Figure 73: Results of the low drop test from piezoelectric sensor 1 
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Figure 74: Results of the low drop test from piezoelectric sensor 2 

 

 
Figure 75: Results of the high drop test from piezoelectric sensor 1 
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Figure 76: Results of the high drop test from piezoelectric sensor 2 

 
 
 

 

 

 

 

!
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Figure 77: Side by side comparison of the trigger time of sensor 1 and sensor 2 from the low drop test 
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Results can be seen in figures 73-77.  The mean peak voltage of the two sensors 

from the high drop test is greater than the mean peak voltage of the two sensor from the 

low drop test indicating that the tests where successful.  During the test the dropped ball 

bounces upon the drop site, which is visible in the voltage vs. time plots from both 

sensors in both trials.  The Fourier transforms from both sensors in both trials are all 

fairly similar with dominant frequency peaks at 50, 120, 220, and 370 Hz.   

 

9.1.3. Analysis 

Sensor one is triggered slightly before sensor two; this is unnoticeable in the plots 

due to the small interval of time between the triggers.  The trigger time difference 

between sensor one and sensor two for the low drop test is approximately 25 µs. The 

trigger time difference between sensor one and sensor two for the high drop test is the 

same. The wave speeds of the two waves can be calculated with equation 19: 

 

Equation 19: Wave speed 

The distance between the two sensors is approximately 3.96 cm.  The wave speed 

of the wave from the low drop test is calculated to be approximately 158.5 m/s; the wave 

speed of the wave from the high drop test is equivalent.  The force sensors are calibrated 

and measure 171 g/V.  With this calculation applied to equation 15, the theoretical wave 

velocity of the low drop test is 228.0 m/s and the theoretical velocity of the high drop test 

(19) 
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is calculated to be the same.  Similarly a pencil lead test is performed upon the six-ball 

waveguide with only one central sensor.  The force sensor results appear in figure 78.   

 

 

Figure 78: Results of the pencil lead test with one central sensor 

 

 

9.2. Steel Rod Waveguide 

9.2.1. Test Setup 

Two piezoelectric disc sensors are placed in a steel rod waveguide the same 

length as the steel ball waveguide from 9.1.  Liquid tape is again used to cover the 

sensors so they do not break during testing.  The waveguide is placed in the same test-bed 

from 9.1 (figure 79, next page). 
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A steel ball is again dropped from the same two locations upon the head of the 

precompression component as from 9.1. The trials are again compared and resulting 

Fourier transforms of the two sensors are analyzed. 

 

 

Figure 79: Close up of the steel rod in the testing rig 
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9.2.2. Section Results 

 

Figure 80: Results of the low drop test from piezoelectric sensor 1 

 

Figure 81: Results of the low drop test from piezoelectric sensor 2 
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Figure 82: Results of the high drop test from piezoelectric sensor 1 

 

Figure 83: Results of the high drop test from piezoelectric sensor 2 
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9.2.3. Analysis 

Results appear in figures 81-84.  Sensor one is triggered slightly before sensor 

two.  The trigger time difference between sensor one and sensor two for the low drop test 

is approximately 2.5 µs. The trigger time difference between sensor one and sensor two 

for the high drop test is the same. The wave speeds of the two waves can be calculated 

with equation 17 from section 9.1. 

 

The distance between the two sensors is approximately 3.96 cm.  The wave speed 

of the wave from the low drop test is calculated to be approximately 1585 m/s; the wave 

speed of the wave from the high drop test is equivalent.  These results can be repeated 

with wave speed dependent upon amplitude. 

9.3. Comparison 

The sensors in the ball and steel rod waveguides are located in the same relative 

locations so the waveguide can be compared.  The resulting peak voltages at sensor one 

for the low drop tests are nearly identical, but the resulting peak voltages at sensor two 

are different.  The peak voltage from the steel ball high drop test at sensor two is 0.75 V 

while the peak voltage from the steel rod low drop test is only 0.5 V.   A comparison of 

the high drop tests reveals similar results.  The power amplitude spectrum for the steel 

ball waveguide drop tests is more compact and of greater amplitude than that of the steel 

rod tests with a frequency peak at around 170 Hz.  With this being said it is also apparent 

from the results in 9.1.3 and 9.2.3 that the steel rod waveguide seems to transmit 

vibration at a high velocity than the steel ball waveguide by about a factor of ten. 
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CHPATER TEN: WAVEGUIDE ACTUATION 

10.1. Steel Rod 

10.1.1. Test Setup 

 The steel rod fitted with two piezoelectric discs from 9.2 is secured in the same 

test-bed from figure 83.  The sensors are actuated with the HP 33120A function generator 

from at 100 mV with a 100 kHz sine wave signal.  The two signals excite the steel rod 

and AE data is collected at each end by two PAC sensors. 

10.1.2. Section Results 

 

Figure 84: Resulting signal at PAC Sensor 1 

 

Figure 85: Resulting Fourier Transform of the signal in figure 84 
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Figure 86: Resulting signal at PAC Sensor 2 

 

Figure 87: Resulting Fourier Transform of the signal in figure 86 

 

Results appear in figures 84-87.  The signal experienced by the first sensor is 

stronger than that experienced by the second presumably due to the testing rig damping 

the vibration experienced at the bottom end of the rod.  Three peak frequencies occur 

around the 100 kHz frequency peak highlighted with arrows in figure 87. 
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CHAPTER ELEVEN: CONCLUSION 

11.1. Final Comments 

 Steel ball nonlinear waveguide was fabricated for acoustic emissions testing.  

Steel balls were successfully modified with inline piezoelectric elements to sense 

elastodynamic waves.  The result of pencil lead break tests reveal that the waveguide is 

sensitive to acoustic emission type waves.  Small harmonic elastic waves do not 

propagate well through the waveguide, except at specific frequencies.  A plasma lab AE 

acquisition could potentially exemplify the quality of these nonlinear waveguides. 

The plasma torch trials, AE acquisition, and plasma composition classification 

can be considered a success; a MANOVA statistical analysis indicates a fair significance 

of the grouping [2].  The overall success of the classification points to the fact that we can 

someday classify AE data from different samples and from trials of differing plasma 

composition based on a database of past trials, immediately gaining statistical 

information of the trial with respect to a current database.   

For future experimentation testing will commence for phenolic-impregnated 

carbon ablator (PICA) samples and silicon impregnated reusable ceramic ablator 

(SIRCA) samples with room for further sample experimentation [2].  Iterating through 

numerous different compositions of plasma and samples in sample plasma lab AE 

acquisition tests can help create an AE training data matrix for all samples.  Current data 

can then be statistically compared to this matrix consisting of previous trials. 

Future directions for research include using the nonlinear waveguide in high heat 

flux thermal protection system testing at UVM’s Inductively Coupled Plasma Torch 

facility. 
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APPENDIX A: CALCULATIONS 
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