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Abstract
Widespread unexplained variations in clinical practices and patient outcomes, together with rapidly
growing availability of data, suggest major opportunities for improving the quality of medical care.
One way that healthcare practitioners try to do that is by participating in organized healthcare qual-
ity improvement collaboratives (QICs). In QICs, teams of practitioners from different hospitals
exchange information on clinical practices, with the aim of improving health outcomes at their own
institutions. However, what works in one hospital may not work in others with different local con-
texts, due to non-linear interactions among various demographics, treatments, and practices. I.e.,
the clinical landscape is a complex socio-technical system that is difficult to search. In this disser-
tation we develop methods for analysis and modeling of complex systems, and apply them to the
problem of healthcare improvement.

Searching clinical landscapes is a multi-objective dynamic problem, as hospitals simultaneously
optimize for multiple patient outcomes. We first discuss a general method we developed for finding
which changes in features may be associated with various changes in outcomes at different points
in time with different delays in affect. This method correctly inferred interactions on synthetic data,
however the complexity and incompleteness of the real hospital dataset available to us limited the
usefulness of this approach.

We then discuss an agent-based model (ABM) of QICs to show that teams comprising indi-
viduals from similar institutions outperform those from more diverse institutions, under nearly all
conditions, and that this advantage increases with the complexity of the landscape and the level
of noise in assessing performance. We present data from a network of real hospitals that provides
encouraging evidence of a high degree of similarity in clinical practices among hospitals working
together in QIC teams. Based on model outcomes, we propose a secure virtual collaboration system
that would allow hospitals to efficiently identify potentially better practices in use at other institu-
tions similar to theirs, without any institutions having to sacrifice the privacy of their own data.

To model the search for quality improvement in clinical fitness landscapes, we need benchmark
landscapes with tunable feature interactions. NK landscapes have been the classic benchmarks
for modeling landscapes with epistatic interactions, but the ruggedness is only tunable in discrete
jumps. Walsh polynomials are more finely tunable than NK landscapes, but are only defined on
binary alphabets and, in general, have unknown global maximum and minimum.

We define a different subset of interaction models that we dub as NM landscapes. NM land-
scapes are shown to have smoothly tunable ruggedness and difficulty and known location and value
of global maxima. With additional constraints, we can also determine the location and value of the
global minima. The proposed NM landscapes can be used with alphabets of any arity, from binary
to real-valued, without changing the complexity of the landscape. NM landscapes are thus useful
models for simulating clinical landscapes with binary or real decision variables and varying number
of interactions. NM landscapes permit proper normalization of fitnesses so that search results can
be fairly averaged over different random landscapes with the same parameters, and fairly compared
between landscapes with different parameters.

In future work we plan to use NM landscapes as benchmarks for testing various algorithms that
can discover epistatic interactions in real world datasets.
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Chapter 1

Introduction

1.1 Motivation, Scientific Questions and Background

Widespread unexplained variations in clinical practices and patient outcomes, together

with growing availability of data and computational power, suggest major opportunities

for improving the quality of healthcare. While all agree that there is a need for health-

care improvement, there are a range of views as to how this should be accomplished. In

2001 it was proposed that healthcare is an adaptive complex system and that a systems

approach could enable researchers and practitioners to properly model changes in health-

care due to evidence-based treatment and diagnoses by multidisciplinary care management

teams [32, 96, 97, 140]. According to [96], healthcare is a system with inherent non-

linearity, unpredictability, behavioral patterns and self-organization where agents and sys-

tems can adapt to local contingencies and interactions lead to continually emerging new

behaviors. Others have similarly described healthcare as a complex system with emer-

gent behavior [113] and a dynamic socio-technical system [24]. This is not a universally

accepted view in the healthcare community (e.g., see [104]). However, interest in using a
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systems approach for making decisions in healthcare is growing as the clinical environment

gets increasingly complex, as recognition of this complexity grows, and as diagnosis and

treatments become increasingly evidence-based [141]. For example, the World Health Or-

ganization now mandates “Understanding systems and the impact of complexity on patient

care” in their curriculum on patient safety [87]. There are many challenges associated with

studying complex systems as they are often highly coupled and high dimensional [94]. In

highly coupled systems recognizing failure as well as taking appropriate recovery actions

can be very hard, as they can often trigger multiple, unanticipated effects elsewhere in the

system.

Healthcare systems are heterogenous in terms of the reasons for various outcomes,

where the same goal can often be achieved in several ways. For example, in neonatal in-

tensive care a neonatologist can select different valid ventilation strategies to deal with the

same condition [124]. On the other hand, the price of error is very high in healthcare due to

the intrinsic vulnerability of patients and the value of of human life. For example, the mor-

tality rates of some planned clinical procedures regularly exceed 1%, which is much higher

than risks in other domains such as aviation or nuclear power [113]. Thus, in healthcare,

the search for improvement is not only about the efficacy of the final results, but also about

the safety of patients involved in trials leading up to discoveries of improved treatments

and practices.

Multi-institutional randomized controlled trials (RCTs) are considered to be the stan-

dard of evidence-based medicine. In this approach, trials are conducted within a group of

collaborating institutions and the entire healthcare community can learn from the published

outcomes, if the results are statistically determinate. However what works in one hospital

might not work in others due to differences in local contexts [142]. A limitation of the
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multi-institutional RCTs is that they often lack the ability to incorporate local contexts of

different hospitals and potential interactions among clinical practices due to the large num-

ber of patients and resources required for each study, despite numerous studies showing

that such interactions exist ( [8, 20, 90, 111, 121, 130]). In addition many RCTs are under-

powered leading to inconclusive results [111]. Therefore new methods are necessary for

determining when to adopt new practices, while taking into consideration the local con-

texts, relationships and interdependencies among clinical cultures, treatments, practices,

demographics and other varying attributes of hospitals.

As policymakers and health care leaders seek effective strategies for healthcare im-

provement, a new approach called quality improvement collaboratives (QICs) has become

increasingly popular. In QICs, multi-institutional teams share information to identify po-

tentially better practices that are subsequently evaluated in the local contexts of specific

institutions without strict statistical criteria for success. Several researchers have provided

definitions of QICs [3, 23, 64, 78, 89, 95, 123, 139]. These have been consolidated and

summarized by Nadeem et. al. [84], as follows:

“Our study defines QICs as organized, structured group learning initiatives in

which the organizers took the following steps: (1) convened multidisciplinary

teams representing different levels of the organization; (2) focused on improv-

ing specific provider practices or patient outcomes; (3) included training from

experts in a particular practice and/or the quality improvement methods; (4)

provided a model for improvement with measurable targets, data collection,

and feedback; (5) used multidisciplinary teams in active improvement pro-

cesses in which they implemented small tests of change or engaged in PDSA

activities; and (6) employed structured activities and opportunities for learning
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and cross-site communication (e.g., in-person learning sessions, phone calls,

email listserves)” [84, page 359].

The current evidence supporting the effectiveness QICs is positive but limited [119]. While

some evidence shows that QICs can change provider practices (for example, patient edu-

cation and medication management [14, 122, 146]), there is limited evidence for positive

patient outcomes as a result of QICs [4, 5, 7, 10, 49, 71, 78, 117, 119, 120]). Nine con-

trolled studies of QICs were examined in a systematic literature review [119], the majority

of which used matched controls or administrative data for comparison. Out of the nine

studies, two had positive effects on study outcomes (patient pain prevalence and infant

mortality rates), two studies found no differences, and the rest were mixed [119].

While the US federal and state governments make significant investments in QICs (e.g.,

see [84]), there is very little understanding of which aspects of these collaborative efforts

are linked to positive patient outcomes or positive professional development [78, 119, 123].

Furthermore, it is not clear what are the best mechanisms for implementing QICs. As more

information and data become available on QICs, researchers continue to look for evidence

for positive outcomes and ways for improvement of QIC implementations. However, there

is little theory to guide the search. In this dissertation we take two computational ap-

proaches for evaluating healthcare quality improvement strategies.

One computational approach examines previously documented data (on patient out-

comes, healthcare practices, social networks of multi-institutional teams seeking to im-

prove healthcare) and tries to use evolutionary data mining techniques for identifying in-

teresting patterns and inferring positive or negative trends. This approach depends on the

accuracy and completeness of data collection as well as the methods used for analysis. It is

designed for data rich environments, however much of the existing data was not collected
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with these analysis in mind and it is often not possible to capture all relevant information

(for example, how often healthcare professionals interact outside of formal hospital col-

laboration settings). One of the challenges in this kind of data analysis is that healthcare

is a dynamic system that evolves over time. There are domain specific solutions that can

address time series analysis for specific tasks ( [91], [147], [55]), but developing a general

tool that can find novel multivariate associations between features in time varying data for

arbitrary problems is an open challenge. Furthermore, there are many practices that hos-

pitals use and many patient outcomes that describe the overall well-being of the patients

(e.g., infection rate, prevalence of chronic lung disease rate, mortality, etc.). To identify

possible causations and correlations in the data, one should further account for delays be-

tween the time that a hospital adopts a new practice and resulting changes in the outcomes

become observable. While there is a lot of literature on data mining in time series data and

finding patterns (e.g., [22, 28, 30, 63]), to our knowledge there are no previous methods

that simultaneously account for the above mentioned factors.

The second computational approach we employ uses agent-based modeling (ABM) to

create models of healthcare practitioners’ collaborations. This approach allows researchers

to simulate different scenarios and to seek answers for questions that are very hard to an-

swer in real-world situations. The usefulness of an ABM approach depends heavily on the

expert knowledge used to construct models that reflect relevant characteristics of the real

world. Agent based modeling has been successfully applied in many fields for modeling

complex, heterogeneous and distributed systems with many interactions among the enti-

ties. Some applications of ABMs can be found in healthcare domain for problems such

as supporting expert’s decision-making or the coordination of the execution of healthcare

activities (e.g., [143], [1]).
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This dissertation uses ABMs that build off the work in [27]. In [27] the authors use

ABMs to explore potential advantages of QICs over RCTs under various conditions, where

agents represent different healthcare institutions. To model healthcare improvement in

complex environments with non-linear interactions between healthcare practices, the au-

thors use the metaphor of search on fitness landscapes, popular in the evolutionary compu-

tation literature [145]. In this context, healthcare is represented as a clinical fitness land-

scape where each hospital’s (i.,e. agent’s) location on the landscape is identified by binary

practices used in that hospital (i.e., features) and the height of the landscape at its location

in the landscape indicates the patient survival rate at that hospital (i.e., agent’s fitness). The

differences between hospitals are expressed by the Hamming distances separating them in

feature space. As agents seek practices that result in better outcomes they try to move uphill

in these landscapes. In [27] the authors use a parametric interaction model ( [80, 101–103])

for generating clinical fitness landscapes with randomly generated coefficients on main ef-

fects and on different numbers of 2-feature interactions. As the number of interactions

increases the landscapes become more rugged and presumably more difficult to search.

In [27] the authors show that search strategies modeled after QICs result in better pa-

tient outcomes in nearly all possible scenarios compared to more traditional RCTs, due to a

combination of reduced sensitivity to sample size and the ability for QIC agents to respond

differently in different local contexts. While their studies showed empirically computa-

tional evidence that QICs are better than RCTs, they only used randomly formed teams of

fixed sizes for QICs and didn’t study in detail what features of QIC team formation result in

better outcomes. This topic is further explored in this dissertation. Interestingly, they found

that the advantage of QICs vs RCTs increases with an increasing number of interactions

between practices. As the number of interactions increases in the landscape, the ranges
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of fitness values in interaction models change, therefore it is impossible to compare these

landscapes based on raw fitnesses. In [27] authors thus use a logistic function to constrain

fitnesses to the open interval (0,1). However, this causes many suboptimal peaks to have

nearly identical fitnesses to the global optimum, which remained unknown.

One of the challenges in modeling complex problems like improvement in healthcare

landscapes is the need for good benchmark problems for testing search algorithms used

by ABMs. NK landscapes [62] have been the classic benchmarks for generating fitness

landscapes with epistatic interactions and tunable ruggedness. Both the size of the land-

scape and the number of its local “hills and valleys” can be varied using two parame-

ters: the number of binary features N and the maximum degree of epistatic interactions

among the features K + 1 [60]. NK landscapes have been used in many applications

(e.g., [2, 36, 82, 112, 129]) and widely studied in theory (e.g., [15, 53, 69, 92, 144]), as

they can generate landscapes with tunable ruggedness by varying K. The early versions

of NK landscapes only considered the smoothest (K = 0) and the most rugged (N = K)

landscapes [61]. There are many versions of NK models, but the classic NK model was

first published in [62]. According to [62], in an NK model the fitness is measured as the

sum of contributions from each individual feature or “state”, where the contribution of each

feature depends on K other features from N possible features. In classic NK models K

is fixed for all features, although in a generalized model it can vary (e.g., [68]). There

are also restricted NK models such as spatially embedded NK models where each fea-

ture’s contribution is restricted to be only a function of its immediate K spatial neighbors.

The problem of finding the location and value of the global optimum of unrestricted NK

landscapes with K > 1 is NP-complete [144] (although for restricted classes one can use

dynamic programming [144] [35] or approximation algorithms [144]). While NK land-
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scapes have been widely used as benchmark problems, they have some major limitations.

For example, one can not normalize fitness values due to unknown global optima, there-

fore it is inappropriate to compare results across different landscapes. Another limitation

of NK landscapes as benchmarks is that as K increases the ruggedness of the landscape

increases in large discrete jumps and it is impossible to incorporate individual interactions

among features at a finer level (e.g., see [15]), as is necessary for modeling interactions

in healthcare landscapes. Furthermore, NK landscapes have only been defined for binary

alphabets. Walsh polynomials ( [31, 59]) (defined in detail later in Chapter 4) overcome

some of these limitations. In particular, they provide a means for generating landscapes

with more smoothly tunable ruggedness. However, they are also only defined for binary

alphabets and have unknown global optima. Both NK landscapes and Walsh polynomi-

als are shown to be subsets of general parametric interaction models [15, 59]. Parametric

interaction models are easy to define on both discrete and real-valued alphabets, and the

interactions are transparent and easy to interpret (unlike in NK landscapes and Walsh poly-

nomials). However, finding the global optimum remains an NP-complete problem.

1.2 Outline of This Dissertation

This dissertation is organized as follows: In Chapter 2, we discuss real time series hospital

data, including data on social interactions aimed at improving healthcare. We introduce a

new method for exploratory analysis of large data sets with time-varying features, where

the aim is to automatically discover novel relationships between features (over some time

period) that are predictive of any of a number of time-varying outcomes (over some other

time period). In chapter 3, we build off the ABM of QICs introduced in [27] to study how

various aspects of team formation (e.g., team sizes, how often teams are reformed, amount
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of data shared among teams, etc.) affect the efficacy of learning. We show (among other

things) that teams comprising similar individuals outperform those with more diverse indi-

viduals under nearly all conditions, and that this advantage increases with the complexity

of the landscape and the level of noise in assessing performance. Examination of data from

a network of real hospitals provides encouraging evidence of a high degree of similarity in

clinical practices, especially within teams of hospitals engaging in QIC teams. However,

our model also suggests that groups of similar hospitals could benefit from larger teams

and more open sharing of details on clinical outcomes than is currently the norm. Thus,

we propose a secure virtual collaboration system that would allow hospitals to efficiently

identify potentially better practices in use at other institutions similar to theirs, without any

institutions having to sacrifice the privacy of their own data. In chapter 4, we introduce

a new class of benchmarks called NM landscapes, where M refers to the Maximum or-

der of epistatic interactions between N features. Like Walsh polynomials, NM landscapes

are much more smoothly tunable in ruggedness than NK landscapes. For all NM land-

scapes the location and the value of the global maximum is trivially known. For a subset of

NM landscapes the location and the value of the global minimum is also known, enabling

proper normalization of fitnesses. NM landscapes use a natural and transparent represen-

tation of epistasis and work with alphabets of any arity, from binary to real-valued. Thus

they are well-suited for modeling clinical fitness landscapes. In Chapter 5, we summarize

conclusion and propose future work.
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Chapter 2

Automated Discovery of Multivariate

Associations in Large Time-Varying data

sets: a Healthcare Network Application

Manukyan, N., Eppstein, M.J., Horbar, J.D., Leahy, K.A., Kenny, M.J., Mukherjee, S.,

and Rizzo, D.M. “Exploratory Analysis in Time-Varying data sets: a Healthcare Network

Application”, International Journal of Advanced Computer Science, 3(7), 2013.

2.1 Abstract

We introduce a new method for exploratory analysis of large data sets with time-varying

features, where the aim is to automatically discover novel relationships between features

(over some time period) that are predictive of any of a number of time-varying outcomes

(over some other time period). Using a genetic algorithm, we co-evolve (i) a subset of

predictive features, (ii) which attribute will be predicted, (iii) the time period over which

10



to assess the predictive features, and (iv) the time period over which to assess the predicted

attribute. After validating the method on 15 synthetic test problems, we used the approach

for exploratory analysis of a large healthcare network data set. We discovered a strong asso-

ciation, with 100% sensitivity, between hospital participation in multi-institutional quality

improvement collaboratives during or before 2002, and changes in the risk-adjusted rates of

mortality and morbidity observed after a 1-2 year lag. The results provide indirect evidence

that these quality improvement collaboratives may have had the desired effect of improv-

ing health care practices at participating hospitals. The proposed approach is a potentially

powerful and general tool for exploratory analysis of a wide range of time-series data sets.

2.2 Introduction

The rapid growth of technology has facilitated widespread collection and storage of vast

amounts of time-varying data (e.g. [6]). This data undoubtedly contains a wealth of poten-

tially valuable information regarding relationships between various time-varying features

and outcomes. However, the very size of these databases is an impediment to knowledge

discovery, creating a need for automated exploratory analysis tools. Over recent decades

the scientific community has expressed an increasing interest in knowledge discovery in

large databases [29], and some exciting progress has been made in this area. For exam-

ple, a new method for automated discovery of non-parametric associations between pairs

of variables was recently proposed and was shown to discover a wide range of functional

and non-functional associations [105]. However, it would be computationally prohibitive

to extend this method for discovering multivariate associations.

In general, large data sets include many features, only a few of which may interact,

potentially in very nonlinear ways, resulting in some association with other outcome fea-
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tures in the data. Thus, identifying the relevant features is a critical aspect of knowl-

edge discovery in large data sets. Evolutionary algorithms provide a particularly attrac-

tive approach for feature selection, because they require no pre-determination of the num-

ber of features in the optimal feature subset. Genetic algorithms (GAs), in particular,

have been widely and successfully applied for feature selection in a variety of problems

(e.g., [19], [70], [86], [100], [93]).

However, identifying the correct set of features is only part of the challenge in ex-

ploratory data analysis. For example, one may also need to identify which outcome(s)

those features are associated with. Indeed, many distinct complex relationships between

different feature subsets and different predicted outcomes may be present in the same data

set, waiting to be discovered. The problem is compounded with time-series data sets, where

there may be time-dependent aspects to the association. There are domain specific solu-

tions that can address this problem for specific tasks ( [91], [147], [55]), but developing a

general tool that can find novel multivariate associations between features in time varying

data for arbitrary problems is a much bigger challenge.

Our motivation in addressing this problem stems from a particular application in the

healthcare domain. The Vermont Oxford Network (VON) is a non-profit corporation dedi-

cated to the mission of improving the quality and safety of medical care for newborn infants

and their families through a coordinated program of research, education, and networking

of neonatal intensive care units (NICUs) at hospitals around the world. Since its incep-

tion in 1990, the VON has maintained databases with detailed information about hospital

characteristics, treatments, and outcomes for all of the very low birth weight (VLBW)

infants (birth weight under 1500 grams) treated at member hospitals around the world

(e.g. [45], [44], [11], [46], [43], [108], [109], [83], [148]). These data are used to quan-
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tify treatment practices and risk-adjusted morbidity & mortality for VLBW infants treated

at NICUs in the VON. While they account for only one percent of births, VLBW infants

account for half of infant deaths in the US each year [76]. A major and consistent finding

of previous VON database analysis is the dramatic variation in outcomes among NICUs,

even after adjusting for differences in case mix among units [44], [46], [43], [108], [109],

[83], [148]. Differences in hospitals and unit characteristics such as teaching status, vol-

ume or NICU level also fail to explain the large discrepancies in health outcomes [108]. We

hypothesize that differences in VON-sponsored activities designed to improve healthcare

practices may account for some of these unexplained discrepancies in patient outcomes

in VON member hospitals. Of particular interest are VON-sponsored team quality im-

provement collaboratives, in which interdisciplinary teams from multiple institutions work

together to identify, test, implement, and report on innovative evidence-based treatment

strategies [51], [50], [107], [48], [47], [98], [88]. In order to explore this hypothesis, we

have assembled a large database of VON-sponsored interactions among member hospi-

tals between 1995 and 2010. We seek to discover novel multivariate associations between

time-varying VON-sponsored hospital interactions and patient outcomes. Discovering such

relationships, if they exist, could potentially have widespread application to managing col-

laborative healthcare networks, such as the VON, that seek to innovate and spread quality

improvement practices between hospitals around the world.

In this paper we propose a genetic algorithm for co-evolving four important aspects of

exploratory multivariate time-series analysis: (i) a subset of features to be used as input

into some sort of statistical predictor (such as a classifier or regression analysis), (ii) which

attribute we can best predict from these features, (iii) a dividing year that partitions the

time-series, and (iv) a time lag to be added to the dividing year. Fitness is determined by
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seeing how well the values of the selected features before the dividing year can be used

to predict changes in the selected attribute after the dividing year + lag. In this proof-

of-concept study, we first validate the approach using synthetic data, and then apply the

method to a subset of the VON data.

2.3 Methods

We propose a new method that uses a Genetic Algorithm (GA) to co-evolve the inputs and

output to a fitness function based on a statistical predictor, seeking causal associations in

large time-varying data sets with multiple input features and potential prediction attributes.

In this paper we focus on classification predictors, although one could easily employ other

types of predictors (such as multiple regression). For brevity, we refer to this method as

GAMET (Genetic Algorithm for Multivariate Exploration of Time-varying data).

In the general problem, the hypothesis is that there is some sort of causal relationship

between a set of features that affect the value of some outcome attribute over some time

period in the future. For example, we hypothesize that interactions between hospitals in the

Vermont Oxford Network (e.g., as evidenced by participation in multi-institutional team

quality improvement collaboratives, co-authored publications, case study presentations,

and attendance at annual meetings) can influence future health outcomes at these hospitals

(e.g., probability of patient death, infection, or other morbidity). However, even assuming

this causal influence is true, there are doubtless a number of other (non-VON related) in-

fluences that affect the healthcare outcomes at these hospitals (see Fig. 2.1, top). Thus, it is

not realistic to expect that we will be able to predict healthcare outcomes based on knowl-

edge of the VON interactions alone. Furthermore, the number of hospitals that actively

participate in the more intense types of VON interactions (such as team collaboratives and

14



co-authorship on scientific studies) is much smaller than the number of member hospitals

that don’t actively participate, so these classes are very imbalanced. Consequently, for this

application we seek to do the prediction in the opposite direction (see Fig. 2.1, bottom).

That is, given a knowledge of time-varying healthcare outcomes at various hospitals, can

we predict which hospitals actively participated in VON-sponsored interactions (even if we

cannot determine which hospitals did not actively participate)?

(a)

(b)

Figure 2.1: a) Hypothesis of causality. b) Inverted hypothesis tested by the classifier.

In a problem like this, where we hope to infer causal relationships, it is important to take

the time-varying nature of the data into account. For example, if a hospital participates in a

team collaborative designed to reduce infection rates, then one would hope to see infection

rates decrease at that hospital at some time in the future, although there may be a time

lag between when the collaborative activity took place and when measurable changes in
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Figure 2.2: Information is extracted and aggregated from the time-series data relative to
a dividing year (2004, in this example) and lag (2 years, in this example). Specifically,
we compute the change in average input feature values after the dividing year+lag, relative
to during or before the dividing year. These are used to try to classify the values of the
predicted output, averaged over all years during or prior to the dividing year. Here, the
terms “input” and “output” are relative to the classifier used in the inverted hypothesis (see
Fig. 2.1).

infection rate can be detected. We handle this time component by looking at the change in

health outcomes, averaged before and after a given points in time, relative to some “dividing

year” and possibly with an intervening time lag, and see if we can use this to predict the

presumed causal attribute (level of participation in VON-sponsored activities) before the

dividing year (as illustrated in Fig. 2.2 for a dividing year of 2004 and a time lag of 2

years).

Thus, we desire to co-estimate three types of information simultaneously: which fea-

tures to use as input to the classifier, what dividing year and lag to use in processing the

time-series data, and which attribute to try to predict. The binary chromosomes used in GA-

MET thus include genes associated with each of these three parts (see Fig. 2.3). For feature

selection, we are using binary flags that indicate whether the given feature is included in

the final features subset or not. To evolve the time series component we evolve the divid-
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ing year and lag, both of which are represented as gray-coded integers in the chromosome.

Finally, a gray-coded “participation index” specifying which single attribute (from a list of

potentially predicted attributes) is to be predicted.

Figure 2.3: Example GAMET chromosome for the VON data, allowing for up to 18 possi-
ble features, dividing year ∈{2002,...,2009}, lag∈{0,...,3} years, and one of four possible
attributes to predict (specified by a participation index).

To calculate the fitness of an individual, we first process the data for the included fea-

tures, using the dividing year and lag as described above (labeled as time series extraction

and aggregation in Fig. 2.4). We then pass these time-processed features as inputs to the

classifier, and compare the predicted classes to class outcomes of the attribute specified

by the participation index, averaged prior to the dividing year. The data is divided into

training and testing sets, using a parameter to control the percentage of the data used for

training (80% for our experiments). We use Latin hypercube sampling to ensure adequate

distribution of samples in the training and testing sets for this highly unbalanced classifi-

cation problem. After the training phase we evaluate the classifier performance using the

confusion matrix, which shows the number of correctly and incorrectly classified samples

in each class (see Fig. 2.4).

For our VON data set we are using two classes for all predicted outputs: a “positive”

(P ) classification means that we are predicting that a particular hospital participated in the

specified activity before the dividing year, whereas a “negative” (N ) classification means
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we are predicting the hospital didn’t participate in the specified activity. The fitness is

calculated using the following formula:

fitness =
FP

(FP + TN)
+

FN

(FN + TP )
+

(FP + FN)

2(TP + FP + TN + TP )
(2.1)

where FP is the number of false positives, TP is the number of true positives, FN

is the number of false negatives and TN is the number of true negatives. The first two

terms represent the proportion of samples in each class that were classified incorrectly,

whereas the last term is the proportion of the overall misclassified samples. This fitness

function thus takes into consideration both the overall prediction rate and the individual

class prediction rates (the latter is helpful for unbalanced classes). We would like to note

that there is some stochasticity involved in the calculation of the fitness function (due to the

Latin hypercube sampling and any stochasticity possibly associated with classifier), which

can result in slightly different fitness values being evaluated for the same chromosome on

different occasions.

We employ two different classifiers in this paper. For the synthetically generated data

set, we were able to use a naı̈ve Bayes quadratic discriminant analysis (DA) classifier.

However, because the VON data set violated so many assumptions of the DA, for this

application we used a non-parameter counterpropagation artificial neural network (CPNN)

classifier [40]. The overall architecture of the approach, illustrated for the VON data set, is

shown in Fig. 2.4, where the co-evolved entities are indicated in red.
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Table 2.1: GA parameters used in this study.

Parameter Value
Population Type bitstring
Population Size 500

Generations 100
Crossover Fcn scattered
Mutation Fcn {uniform, p = 0.04}

Crossover Fraction 0.8
Elite Count 1

Selection Fcn {tournament, size = 4}

Table 2.2: CPNN parameters used in this study.

Parameter Value
Learning rate 0.7

Bias 0.1
Mean Square Error to stop training 0.001

2.4 Experiments

2.4.1 Synthetic data

In order to test the capability of GAMET for co-evolving correct feature sets of varying

sizes, attribute to predict, year, and lag, we created synthetic data sets for 15 test problems,

as follows.

We first generated 5 random “true” combinations of dividing year (selected uniformly

from 2002..2009), lag (selected uniformly from 0..3 years), and index for the attribute to

predict (selected uniformly from 0..3). We next generated 15 random multivariate expres-

sion trees in 3 sets of varying levels of difficulty; 5 expressions contained 2 variables, 5
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Figure 2.4: Overall architecture of the approach, illustrated for use with the VON data set.
Items outlined in red are co-evolved by GAMET.

contained 3 variables, and 5 contained 8 variables. For each of these 15 test problems,

we generated a 300 × 100 matrix of uniformly distributed random real numbers in the

range (0,1), representing synthetic data for 300 cases, each with 100 feature variables (e.g.,

synthetic values for 100 heath outcomes at 300 hospitals). The expression trees were gener-

ated using a function set of {+,−, ∗, exp,<,>,==} and were constructed so as to return

binary class outcomes such that at most 2/3 of the outcomes had the same value. The

expression trees were generated using a terminal set comprising 100 distinct real-valued

variables (corresponding to the 100 feature columns in the synthetic data sets), as well as

integer constants {1,2,3}. Each set of 5 expression trees with the same number of vari-

ables was associated with the set of 5 combinations of year, lag, and index of the attribute

to be predicted, created as described above. The resulting specifications for these 15 test

problems are outlined in Table 2.4, column 2.

For each of the 15 random problems, we then created a synthetic 300 × 128 outcomes

matrix, where the 128 columns in this matrix correspond to all combinations of 4 possible

attributes to predict (e.g., synthetic values for participation in 4 types of VON-related in-
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teractions), 8 possible dividing years, and 4 possible lags. All 96 columns in the outcomes

matrix corresponding to the 3 incorrect attributes to predict (for all 8 dividing years and

all 4 possible lags) were initialized to uniform random binary class outcomes. However,

the remaining 32 columns associated with the correct attribute to predict (for all 8 dividing

years and all 4 lags), were initialized to the “true” predicted binary class outcomes associ-

ated with the 15 random problems. These “true” outcomes were calculated by evaluating

the expression trees using the columns from the synthetic data matrix corresponding to the

feature variables in the expression trees. Lastly, we added noise to 31 of these 32 columns,

proportional to the Hamming distance (H) between the 5-bit gray-coded sequences rep-

resenting their dividing years (3-bits) and lags (2-bits) and the 5-bit vector representing

the “true” dividing year and lag. Specifically, we overwrote 30 × H bits in each of these

columns with random binary values.

This algorithm thus creates a synthetic data set that has known associations between a

subset of feature vectors and one of the attributes to predict. By design this relationship

has a perfect association when the dividing year and the lag exactly match the “true” target

values, but the level of added random noise increases as the dividing year and lag get farther

from the target values, as one might expect to see in real time series data.

2.4.2 VON data set

VON-related interactions

We assimilated a large database of VON-facilitated interactions between hospitals for the

years 1995 through 2010. During this time, the VON network grew from around 100 hospi-

tals to 850 hospitals. Here, we report on four specific types of VON-sponsored interactions:

(i) participation in VON annual meetings; (ii) preparation of case studies that were pre-
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sented at VON meetings; (iii) participation in VON-sponsored team collaboratives, which

are 2-year long team projects where multidisciplinary quality improvement teams from

participating hospitals work together to identify and implement potentially better health

practices, and (iv) co-authorship on publications resulting from VON-related activities. It

should be noted that the level of participation in these four types of interactions is quite

variable, with many member hospitals not actively participating in any of these types of

VON-sponsored interactions. On average, in any given year only {53.2%, 11.5%, 8.3%,

and 21.5%} of all VON member hospitals participated in these four types of activities, re-

spectively. Thus, although we have quantitative information on the amount of participation

in each of these activities, for this preliminary study we have binarized the annual partici-

pation in these four types of interactions for each member hospital. Our initial goal is to see

if changes in health outcomes are associated with any level of participation, in any of these

types of VON-facilitated interactions. I.e., these four types of VON-sponsored interactions

comprise four potential “attributes to predict”, where the predicted values are the binary

classes representing participation or non-participation. After the creation of this database,

all identifying information was removed, to ensure member hospital privacy.

VON health outcomes

The VON maintains an extensive database of over 200 types of annual health outcomes at

all member hospitals. In this preliminary study, we are focusing on only 18 risk-adjusted

measures (see table 2.3) over the period 2001 through 2010, representing the health out-

comes of over half a million VLBW infants. The risk adjusted outcome measures are

recorded as observed divided by expected values of the outcome, where expected values

vary with the number of patients at the hospital. These particular features were identified by
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VON staff as ones they thought had strong potential to have been impacted by VON-related

interactions, based on collaborative studies they had sponsored during this time period. I.e.,

we want to see if subsets of these 18 real-valued features can be used to classify individual

hospitals as participants or non-participants in any of the 4 types of VON-sponsored inter-

actions described in Section 2.4.2. The distribution of health outcomes in the real VON

data violates assumptions of normality and independence. Preliminary testing, using the

real VON health outcome features described in Section 2.4.2 with synthetically generated

known associations to class outcomes, confirmed that the parametric DA classifier was not

able to correctly classify known outcomes associated with these data, whereas the non-

parametric CPNN was. Thus, as mentioned previously, we used CPNN-based fitness in the

co-evolutionary method applied to the VON data. All hospital data was provided to us in a

completely anonymized manner, to ensure member hospital privacy.

2.4.3 Experimental design

For the 15 synthetic problems described in Section 2.4.1, we ran 10 replicates of the GA,

using the DA-based fitness function. For the actual VON data described in Section 2.4.2,

we ran 10 replicates of the GA, using the CPNN-based fitness function. Because both the

DA and the CPNN can still classify well even with a certain number of excess features given

as inputs, we subsequently intersected the feature sets of the best individuals resulting from

each of the 10 replicates. The results of these experiments are described in the following

section.
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Table 2.3: Health outcomes used as possible features in our analysis of the VON data.

# Description
1 Any Late Infection
2 Chronic Lung Disease
3 Chronic Lung Disease before 33 Weeks
4 Coagulase Negative Staph
5 Mortality
6 Mortality or Morbidity
7 Fungal Infection
8 Intraventricular Hemorrhage
9 Mortality Excluding Early Deaths
10 Bacterial Pathogen after Day 3
11 Necrotizing Enterocolitis
12 Necrotizing Enterocolitis, where occurred
13 Nosocomial Infection
14 Pneumothorax
15 Cystic Periventricular Leukomalacia
16 Retinopathy of Prematurity
17 Severe Intraventricular Hemorrhage
18 Severe Retinopathy of Prematurity
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2.5 Results

In all 10 replications of each of the fifteen 100-feature synthetic problems GAMET was

able to correctly identify the dividing year, lag, which attribute to predict (labeled ”output”),

and all of the 2, 3, or 8 true features (see table 2.4, compare columns 2 and 3), using the

DA-based fitness function.

Table 2.4: Experimental results on the 15 synthetic test problems. The forth column shows
the means and standard deviations of the number of features found by GAMET for the best
individuals from each of 10 runs, and the fifth column shows the number of excess features
in the intersections of these feature subsets from the 10 runs.

# True Found #Feat. Excess
year, lag, year, lag, mean± #features
output, output, std found

#features #true feat. in ∩
1 2002, 2, 3, 2 2002, 2, 3, 2 46±4 0
2 2003, 1, 1, 2 2003, 1, 1, 2 45±5 0
3 2007, 0, 2, 2 2007, 0, 2, 2 46±6 0
4 2005, 2, 4, 2 2005, 2, 4, 2 44±4 0
5 2004, 1, 3, 2 2004, 1, 3, 2 45±5 1
6 2002, 2, 3, 3 2002, 2, 3, 3 48±5 0
7 2003, 1, 1, 3 2003, 1, 1, 3 47±6 1
8 2007, 0, 2, 3 2007, 0, 2, 3 47±6 1
9 2005, 2, 4, 3 2005, 2, 4, 3 48±6 1

10 2004, 1, 3, 3 2004, 1, 3, 3 47±5 1
11 2002, 2, 3, 8 2002, 2, 3, 8 49±7 3
12 2003, 1, 1, 8 2003, 1, 1, 8 48±6 1
13 2007, 0, 2, 8 2007, 0, 2, 8 52±8 3
14 2005, 2, 4, 8 2005, 2, 4, 8 50±7 2
15 2004, 1, 3, 8 2004, 1, 3, 8 51±8 1

As the number of true features increased, the tendency of GAMET to return excess fea-

tures also increased (table 2.4, column 4), since the DA can accommodate excess features
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Table 2.5: Confusion matrix for the intersection of 10 best individuals for all 15 tests.

(but simply not give them much weight). However, the intersections of the feature sets in

the 10 replications contained relatively few excess features (table 2.4, column 5). When run

with features in the intersection of the 10 runs, all the 100 testing data points were correctly

classified (table 2.5). These results demonstrate that the system is able to co-evolve feature

subsets that include all the correct features (intersecting several of these sets removes ex-

cess features), the correct attribute to classify, the correct dividing year, and the correct lag

in synthetic time-series data with known relationships between input features and attribute

to classify.

On the VON data set, all 10 runs consistently returned a dividing year of 2002, and

discovered that participation in VON-sponsored team collaboratives was the attribute that

could most accurately be classified. In 7 of the 10 runs, the lag was determined to be 2

years, whereas in the remaining 3 runs the lag was determined to be 1 years. The health

outcome features selected as input to the CPNN-based fitness function were also relatively

consistent between the 10 runs (see Fig. 2.5). However, since the CPNN can do robust

predictions even when given a few excess inputs, we then searched for consensus in the

selected features between the different runs.
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Table 2.6: Confusion matrix for the best individual found by GAMET on the VON data.
Here, “participants” refers those hospitals who participated in VON-sponsored quality im-
provement collaboratives during or before to 2002.

In all cases, the CPNN was able to predict the “true positives” in the smaller class (par-

ticipants) with 100% accuracy (i.e., based on the selected health outcomes, the CPNN could

correctly predict which hospitals had participated in a VON-sponsored team collaborative

during or before the dividing year) (see table 2.6, column 1). However, the classifier was

not able to use the selected health outcomes to accurately predict the “true negatives” (hos-

pitals that didn’t participate in any VON-sponsored team collaboratives during or before

the dividing year) (see table 2.6, column 2). In other words, the identified classifier has

high sensitivity, but low specificity. We assessed the overall classification accuracy in pre-

diction participation in a VON-sponsored team collaborative, using health outcome feature

sets that included the top n ∈ {4, 8, 9, 11, 12, 13, 16} most consistently selected features,

based on the consensus features selected in {100%, 90%, 80%, 70%, 30%, 20%, 10%} of

the replicates, respectively (i.e., those features whose frequency bars are at or above the

horizontal dotted lines in Fig. 2.5), using a dividing year of 2002 and a lag of 2 years. We

report the resulting percentage accuracies to the right of Fig. 2.5. Four features (5, 6, 8, and

14) occurred in the selected features of all 10 replicates, but the highest prediction accuracy

(33%) was obtained when using the 9 features (2, 5, 6, 7, 8, 9, 10, 11, 12, 14, and 17) that

were found in at least 7 of the 10 replicates; this 9-feature set also coincides with the best
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single individual found in the 10 runs (Fig. 2.5, red asterisks). The confusion matrix for

this individual is shown in Table 2.6. Note that differences in these percent accuracies only

reflect the differences in the specificity of the classifier, since all had perfect sensitivity.

Conversely, we also found that the overall classification accuracy dropped dramatically to

only 16%-18% when predicting from any 3 of the top 4 features, indicating that all four of

these are important predictive features.
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Figure 2.5: Experimental results on the VON data set. The bars indicate the frequency with
which each of the individual features was selected in 10 GAMET trials. The red asterisks
near the top indicate the features selected in the single best individual. The percentages
to the right indicate overall classification accuracy of the CPNN from the consensus fea-
tures with frequencies at or above each of the horizontal dotted lines. Feature numbers
correspond to those shown in Table 2.3.

2.6 Discussion and Conclusions

In this paper, we introduce a method for exploratory analysis of large data sets with time-

varying features. Such data sets may contain information about many different potential

relationships between features and outcomes. The aim is to automatically discover novel
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relationships between features (over some time period) that are predictive of any of a num-

ber of time-varying outcomes (over a different time period), but where the specific features,

outcomes, and time periods are not known in advance. The application that motivated this

study concerns exploratory analysis of a large healthcare network data set, comprising var-

ious types of time-varying interactions between subsets of hospitals in the Vermont Oxford

Network (VON) and a variety of annual health outcomes at those hospitals.

The approach we take uses a Genetic Algorithm for Multivariate Exploration of Time-

varying data (GAMET), in which we co-evolve (i) a subset of health outcomes, (ii) one of

four types of VON-sponsored interactions to consider, (iii) the maximum “dividing” year

up to which we consider these VON-sponsored interactions, and (iv) how many years time

lag after the dividing year before which we assess changes in the health outcomes.

We first validated that GAMET was able to select the correct features, outcomes, di-

viding year, and lag in 15 synthetically designed problems with 2, 3, and 8 non-linearly

interacting features with known associations to a specific binary-valued attribute. For these

synthetic problems we assessed fitness based on the classification accuracy of a naı̈ve Bayes

quadratic discriminant analysis classifier.

We then conducted preliminary exploration of the actual VON data set with 18 potential

health outcome features, 4 types of VON-sponsored interactions, 8 possible dividing years,

and 4 possible lags, representing a search space of over 33 million possible combinations

of solutions. Due to the non-parametric nature of this actual data set, we assessed fitness

based on the classification accuracy of non-parametric counter-propagation artificial neural

network classifier. In addition, because the participation classes were highly unbalanced,

we used Latin hypercube sampling to determine how to subdivide the data into appropriate

training and testing sets.
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The strongest association so far discovered by GAMET in the VON data set was be-

tween participation in VON-sponsored team quality improvement collaboratives during or

before 2002, and changes in the risk-adjusted rates of mortality and morbidities including

intraventricular hemorrhage and pneumothorax (collapsed lung) that were observed after

2003 or 2004, relative to these rates during or before 2002. Using changes in only 4 health

outcomes selected by GAMET, we achieved 100% sensitivity in predicting which hospitals

had participated in these collaboratives in 2002 or earlier.

From a clinical standpoint, these results are interesting, because the team collaboratives

sponsored by the VON up through 2002 had included teams focussing on intraventricular

hemorrhage, chronic lung disease and ventilation, respiratory care and management, and

a number of healthcare practices designed to positively impact overall rates of morbidity

& mortality. Subsequent individual analysis of three of the four outcomes (risk adjusted

rates of mortality, morbidity & mortality, and intraventricular hemorrhage) showed a slight

average improvement in NICQ hospitals, while the fourth outcome (risk adjusted rate of

pneumothorax) showed slight average degradation in NICQ hospitals; however, there was

no statistically significant difference between changes in these outcomes for NICQ vs. non-

NICQ hospitals for any of these four outcomes (t-test, p > 0.79).

The identified lag of 1-2 years is a reasonable amount of time one would expect such

changes in health practices to be implemented, and the health impacts of these changes

observed, in the annually-updated health outcome records.

Our results on the VON data had relatively low specificity, however. The best individual

returned by GAMET was still only able to achieve an overall classification accuracy of

33%, because the classifier was not able to accurately predict which hospitals had not

participated in VON-sponsored interactions during or before 2002, based on the changes in
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health outcomes after 2003 or 2004. This result is actually to be expected, because there are

many changes in healthcare practices at VON member hospitals that were independent of

participation in VON-sponsored activities (and are consequently not in our database) that

are expected to contribute to changes in health outcomes.

Having established proof-of-concept for the method, we now plan to apply GAMET to

a more complete set of health outcome features and VON-sponsored interactions aimed at

stimulating improvements in healthcare practices. We will then more closely examine the

specific nature of the relationships embedded in the associations discovered by GAMET.

For example, we intend to use genetic programming (GP) for symbolic regression, using

GAMET-selected features as variables in the GP terminal set (much as in [19]).

We can also envision many ways in which to improve the GAMET algorithm itself.

For example, since the two types of classifiers employed here (the DA and the CPNN)

can be trained to ignore excess features, the features selected by GAMET also contained

excess features. Consequently, we applied a post-processing step to further reduce the fi-

nal feature sets, by looking for features common to the selected feature sets from different

GAMET replicates. Others have reported promising results in GA-based feature selection

by actually embedding set intersection directly into the crossover operator [66], [19]. Al-

though we found that strict set intersection was too aggressive in reducing features in the

VON application, we plan to explore whether a probabilistic application of a “softer” form

of multi-set intersection (i.e., including all elements that occur in a certain percentage of

parents) in multi-parent crossover could help improve feature selection in GAMET, and

therefore preclude the need for the post-processing of multiple replicates, as done here. In

addition, the current version of GAMET only allows for the evolution of a single dividing
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year. We plan to explore whether it may prove more powerful to apply the evolved lag di-

rectly to the hospital-specific years of participation for selected types of VON interactions.

Although the proposed method was originally developed for analysis of the VON

healthcare network data set described here, the GAMET approach is a potentially pow-

erful and general tool for exploratory analysis of a wide range of time-series data sets.

Future work will include the application of GAMET to time-vary problems in a variety of

other domains (such as those in [6]).
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Chapter 3

Team Learning for Healthcare Quality

Improvement

Manukyan, N., Eppstein, M.J., and Horbar. J. “Team Learning for Healthcare Quality

Improvement”, IEEE Access, 1:545-557, 2013.

3.1 Abstract

In organized healthcare quality improvement collaboratives (QICs), teams of practitioners

from different hospitals exchange information on clinical practices, with the aim of improv-

ing health outcomes at their own institutions. However, what works in one hospital may

not work in others with different local contexts, due to non-linear interactions among var-

ious demographics, treatments, and practices. In previous studies of collaborations where

the goal is collective problem solving, teams of diverse individuals have been shown to

outperform teams of similar individuals. However, when the purpose of collaboration is

knowledge diffusion in complex environments, it is not clear whether team diversity will
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help or hinder effective learning. In this study, we first use an agent-based model of QICs

to show that teams comprising similar individuals outperform those with more diverse in-

dividuals under nearly all conditions, and that this advantage increases with the complexity

of the landscape and the level of noise in assessing performance. Examination of data from

a network of real hospitals provides encouraging evidence of a high degree of similarity in

clinical practices, especially within teams of hospitals engaging in QIC teams. However,

our model also suggests that groups of similar hospitals could benefit from larger teams

and more open sharing of details on clinical outcomes than is currently the norm. To fa-

cilitate this, we propose a secure virtual collaboration system that would allow hospitals to

efficiently identify potentially better practices in use at other institutions similar to theirs,

without any institutions having to sacrifice the privacy of their own data. Our results may

also have implications for other types of data-driven diffusive learning, such as in per-

sonalized medicine and evolutionary search in noisy, complex combinatorial optimization

problems.

3.2 Introduction

Much research has focused on studying team collaboration for joint problem solving

[17, 67, 72, 75, 99, 114, 131, 138]. In this context, diverse teams have been shown to

offer some advantage. For example, in [41] the authors show that groups of diverse prob-

lem solvers can outperform more homogeneous groups of higher-ability problem solvers,

because diverse individuals bring different perspectives and heuristics that aid in the cre-

ativity of the collective intelligence. Similarly, in [39] the authors show that teams with

higher numbers of newcomers perform better because newcomers add to the diversity of

the team. On the other hand, in personalized recommendation systems with collaborative
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filtering, historical data of users with similar preferences are used for making personalized

recommendations [33, 34]. However, when the purpose of team collaboration is knowledge

diffusion in complex environments, rather than collective problem solving or inference of

preferences, it is not clear whether diverse teams help or hinder performance improvement

of the individual team members.

Many clinicians are now participating in organized quality improvement collaboratives

(QICs), in which teams of practitioners from different healthcare organizations exchange

information on selected clinical practices and outcomes. Nonprofit institutions such as the

Vermont Oxford Network (VON) [42, 52] act as facilitators for these QICs. Team members

identify potentially better practices in use at teammates’ institutions and then try them out

in the local context of their home institutions [12, 49]. In this type of collaborative envi-

ronment, the goal is for all hospitals to improve their own performance by learning from

the experiences of others in their teams. However, what works in one hospital might not

work in others with different local contexts, due to non-linear interactions among various

treatments and practices. Indeed, it is becoming increasingly recognized that such complex

interactions are not uncommon in healthcare [18, 37, 54, 56, 106]. While there is positive

but limited evidence that QICs can result in improved quality of care [84, 119], it is not

clear which factors contribute to the effectiveness of teamwork in QICs [85, 118, 126].

The primary goal of this contribution is to advance our understanding of how different

strategies of team formation are likely to affect quality improvement in healthcare through

information sharing and learning.

In [27], we developed an agent-based model (ABM) where agents represent healthcare

institutions searching for combinations of clinical practices that improve the health out-

comes of their patients. In that work, we showed that simulated multi-institutional QICs
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often perform better than simulated randomized controlled trials, due to a combination of

greater statistical power and more context-dependent evaluation of practices, especially in

noisy, complex environments with multiple interactions between clinical practices. We

also showed that search was improved when the hospitals were “clustered” (rather than

uniformly randomly “scattered”) in the landscape of clinical practices, and argued that real

hospitals were more likely to be clustered based on their long history of information shar-

ing. Interestingly, we found that initially clustered agents actually became more diverse

after searching together through repeated QICs. However, in [27], team members were

randomly selected for each set of trials, team sizes were held constant, no data on real

hospitals was provided to support the assumption regarding clustering, and no explanation

was provided for why populations of clustered agents became increasingly diverse as their

fitness improved.

Here, we use a similar ABM to study the interacting impacts of various aspects of team

formation on individual performance improvement and diversity in QIC teams. We per-

formed a preliminary analysis of real data from hospitals participating in QICs showing

that these hospitals are, indeed, clustered. Based on this, we developed a new method

for clustered initialization of synthetic agents, such that the distribution of distances be-

tween agent attributes resembles the observed hospital distribution. We also developed an

O(n log n) approximation algorithm to theNP -hard problem of creating equal-sized teams

of n individuals, each team with maximum within-team similarity. We then assessed the

sensitivity of performance improvement to a variety of factors, including (i) within-team

diversity, (ii) frequency of team reformation, (iii) clustered vs. scattered initial popula-

tions, and (iv) how often hospitals should wait before being allowed to reevaluate the same

practice. The impacts of these factors are studied under a variety of scenarios, with vary-
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ing degrees of noise in fitness evaluation and number of two-feature interactions between

practices. Finally, we analyzed a larger set of hospital data to try to assess how the charac-

teristics of real QICs relate to those found to be best in our ABM. Based on our study, we

propose potential ways to facilitate learning in healthcare environments and other domains.

This paper is organized as follows: In Section 3.3, we describe the methods used in the

ABM portion of the study. In Section 3.4, we show the results of the ABM portion of the

study. Section 3.5 discusses data curation and analysis of real hospital data. In Section 3.6,

we show the results of the real hospital data analysis. Finally, in Sections 3.7 and Section

3.8 we provide discussion and conclusions.

3.3 Methods

3.3.1 Modeling the Problem

We use the same clinical fitness landscape model as used in [27], where hospitals are mod-

eled as agents trying to find sets of clinical practices that improve health outcomes for

their patient population. The probability of patient survival Pr(sx) (or some other desired

outcome) at a given healthcare institution is simulated with a high dimensional logistic

function as follows:

Pr(sx) =

(
1 + exp

(
−
(
β0 +

N∑
i=1

βixi +

(N−1)∑
i=1

N∑
j=i+1

γijxixj +H

)))−1

(3.1)

where x is a vector of N binary features (xi ∈ {−1, 1}), each representing the presence

or absence of the use of a specific practice, intervention, or other modifiable characteristic

of the institution. Coefficients βi and γij are randomly drawn from a normal distribution
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with a mean of 0 and standard deviation of L−0.5, where L is the total nuber of non-zero

terms in the model. As in [27] we restrict our landscapes to those with an average fitness of

0.5 (β0 = 0), include non-zero coefficients (βi) for all main effects, and only model up to

two-feature interactions (γij); i.e., potential higher order interactions (H) are always set to

zero. In a noise-free environment we calculate the probability of patient survival using Eq.

(1). To model heterogeneity in patient-level responses we use Bernoulli trials with survival

probability given by Eq. (1). Thus, trials with fewer patients have higher levels of noise in

the fitness function, due to stochastic effects. In the remainder of this manuscript, we use

the terms “agent” and “individual” to mean an abstraction of a healthcare institution.

3.3.2 Population Initialization

In [27] we compared search strategies starting from initially scattered or clustered initial

populations of agents on landscapes of simulated clinical practices, and argued that the

latter was more realistic. In the first case, uniformly scattered populations of M agents

were created with N randomly generated binary features. The expected median pairwise

normalized Hamming distances (nHDs) in scattered populations is 0.5. However, with

no real data to guide us at the time, the clustered populations in [27] were generated by

simply starting with a population of identical copies of a random individual and perturbing

random features until the desired median nHD of 0.1 was achieved, resulting in an N -

dimensional roughly spheroidal cluster of binary vectors. For the current study, we first

analyzed self-reported data from a VON survey on 93 binarized practice values from 51

VON hospitals, each participating in at least one of 7 VON-sponsored QIC teams that met

in September 2003. These data showed a median pairwise nHD of only 0.34, ranging from

0 to 0.73 (Fig. 3.1a). Although these observations are limited, they do support the notion
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that hospitals are clustered rather than scattered in the feature space, although not to the

degree modeled in [27]. We used this data to guide the development of a new algorithm

for clustered population initialization that we refer to as MakeSnakingCluster, which

can generate clustered distributions more similar to that of the observed hospitals. As in

[27], we compare search results between populations with initially clustered and scattered

distributions. (Note: in section 3.5 we show additional analysis of a larger data set of 20

real-valued clinical practices that further supports the notion of clustered hospitals.)

The MakeSnakingCluster algorithm for binary-featured landscapes works as fol-

lows. There are two tunable parameters that control the resulting distribution; d is a speci-

fied Hamming distance (HD), and K is an integer between 1 and M − 1, where M is the

number of agents. First we create a random individual with N binary features as the core

individual. Then we create K individuals that are d HD away from the core individual by

flipping d randomly selected bits of each of K copies of the core individual. We next pick

one of these K generated individuals as the core individual for the next step and repeat the

process. The algorithm terminates when M individuals have been generated (if M is not

evenly divisible by K the last iteration is terminated early).

Although we define and use the algorithm above for binary-featured landscapes, it can

be generalized to work for landscapes with real-valued features by replacing the HDs with

Euclidean distances (EDs). In Fig. 3.2 we illustrate an example population generated

by the MakeSnakingCluster algorithm in a 2-dimensional real-valued feature space,

since this is easier to visualize than an N -dimensional binary space. Notice that the

MakeSnakingCluster algorithm generates a non-spheroidal cluster of individuals that

tends to snake through the landscape, hence the name.
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Figure 3.1: Representative histograms of proportions of pairwise nHDs of M = 51
agents, each with N = 93 features, for a) a dataset of real hospitals with binarized prac-
tices as features, b) clustered synthetic random agents with binary features, generated by
MakeSnakingCluster with K = 10 and d = 13, c) scattered synthetic random agents
with binary features.
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Figure 3.2: a) Illustration of one instance of a population created with the
MakeSnakingCluster algorithm in 2-D real-valued feature space (M = 50, K = 10
and d = 13), where numbered open circles represent core individuals in each step.
b) Illustration of the population shown in a, divided into T = 5 teams picked by the
PickSimilarTeams algorithm, where each team is shown by a unique color and shape
combination.

We compare the distribution of all pairwise HDs of the single instance of hospital data

described above with that of a single instance of a clustered population generated by the

MakeSnakingCluster algorithm to create M = 51 individuals with N = 93 features,

where we tuned K = 10 and d = 13 to achieve a median pairwise nHD (Fig. 3.1b)

that is close to that of the real hospital data (Fig. 3.1a). For the remainder of our ABM

simulations, we used K = 10 and d = 13 to generate random clustered populations. Note

that the distribution of one instance of a scattered population with the same N and M (Fig.

3.1c) is very different from that of the real hospitals.
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3.3.3 Team Structure

One potentially important influence on team learning is the team construction mechanism;

i.e., deciding which agents should be in the same teams. In our ABM we compare ran-

domly formed teams (as used in [27]) to teams formed by the principal of homophily, in

which similar agents are grouped together. Since picking equal-sized teams with maxi-

mum within-team similarity is an NP -hard problem, we devised the following O(n log n)

approximation algorithm we call PickSimilarTeams.

To place M agents into T teams of MT homophilous agents (where MT = dM
T
e), we

first calculate all the pairwise HDs in the population. Then for each agent we calculate the

mean of the HDs between the agent and its most similarMT−1 neighbors in the population.

The first team is selected to be the agent with the smallest calculated mean HD to itsMT−1

closest neighbors. We then remove the individuals that were assigned to this team from the

available population and repeat the process for the remaining population until we have T

teams. (Note that the first team picked by this approximation algorithm will have maximum

within-team similarity, but that teams picked later may have lower within-team simiilarity,

so the resulting teams are not necessarily optimally homophilous.)

A visual illustration of the PickSimilarTeams algorithm is shown in Fig. 3.2b, where

the algorithm has divided the population of M = 50 individuals shown in Fig. 3.2a into T

= 5 teams, with MT = 10 individuals in each team.

3.3.4 Team Learning

We use the team learning algorithm described in [27], with minor modifications. In each

generation, each agent selects one feature that has the highest difference between the aver-
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age feature value of its teammates that have higher and lower fitnesses than the agent, and

such that the selected feature of the agent is different from the majority feature value of

the fitter teammates. The agent then flips the bit for this feature and tries this new feature

combination (calculates the fitness) in its local context and, if it is better than the previous

feature combination, it adopts the new feature value. Unlike in [27], where the most fit

member of each team does no exploration, in this study the fittest individual in each team

selects the feature that has the smallest difference between the agent’s feature value and the

average of all other teammates’ feature values, tries the complement of its feature value,

and adopts it if better. Agents are not allowed to retry the same features within tabu trial

steps. In [27] we used tabu = 1, but in this study we experiment with a range of tabu

values.

The feature selection strategy we describe above can mitigate the effects of noise in

fitness evaluation (as does the approach in [21]), while also providing agent-specific cus-

tomized recommendations for change based on where each agent’s fitness lies relative to

the others in its team.

3.3.5 Simulations

In all simulations reported here, we assessed the impact and interactions of different factors

on performance improvement through team learning for M = 100 agents (representing

hospitals), each with N = 100 binary-valued features (representing clinical practices).

Specifically, we varied the initial population type, the team formation mechanism, team

size (MT ), the number of trial steps between team reformation, the amount of noise in

fitness evaluation, the number of two-feature interactions included in the fitness function

(Eq. (1)), and the length of the tabu period, as shown in Table 3.1. Unless otherwise
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specified, we used the default values of MT = 10, with team reformation after each trial

step, and tabu = 5 (default values are shown in bold in Table 3.1).

Table 3.1: Factors varied in the ABM simulations.

Factor Values Studied
Initial Population Type {Clustered, Scattered}

Team Formation Mechanism {Homophilous, Random}
Team Size (MT ) {1, 2, 4, 5, 10, 20, 25, 50, 100}

Steps between Team Reformation {1, 4, 6, 10, 20, 50,∞ }
Noise in Fitness Evaluation {None, Low, High}

(corresponding # patients per trial) {(∞), (320), (40) }
two-feature interactions {0, 495, 2475}

(% possible two-feature interactions) {(0%), (10%), (50%)}
tabu {2, 5, 10} steps

Note that the degree of clustering in the initial population and whether teams are se-

lected randomly or homophilously both affect the initial degree of within-team similarity,

as shown in Table 3.2. We define “within-population nHD” as the mean of all pairwise nor-

malized Hamming distances (nHDs) in the entire population (normalized by dividing by

N ). We define “within-team nHD” as the mean of the mean of the pairwise nHDs within

each team. The abbreviations shown in Table 3.2 are used to label subsequent plots.

Other factors also interact to affect the changing degree of within-team similarity during

the search process. For example, team reformation can either increase or decrease within-

team similarity based on whether teams are formed homophilously or randomly. Noise

and landscape complexity tend to increase inter-agent diversity as learning progresses, due

to stochastic effects and the presence of multiple peaks in the landscape due to feature

interactions, respectively.
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Table 3.2: Average nHDs in 100 instances of initial populations and teams, for each of the
four combinations of initial population type and team formation mechanism. Lower nHDs
mean greater similarity.

Init Team Within-Team Within-Pop.
Abbr. Population Formation nHD nHD
CH Clustered Homophilous 0.21 0.35
CR Clustered Random 0.33 0.35
SH Scattered Homophilous 0.47 0.50
SR Scattered Random 0.50 0.50

We generated 100 random landscapes for each specified number of two-feature interac-

tions using Eq. (1) and generated one clustered and one scattered initial population for each

landscape. All experiments with a given combination of parameter settings were averaged

over the performances on these same 100 landscapes, starting from the same scattered or

clustered populations, for 100 trial steps.

3.3.6 Statistical Comparisons

Pairs of experiments that differed in only one parameter were statistically compared as

follows. We integrated each fitness curve over all 100 trial steps, for each of the 100 ran-

dom landscapes with the specified number of two-feature interactions. We compared these

integrated values using 2-tailed paired t-tests to asses for statistically signficant differences.

3.4 Results

Team search consistently significantly outperformed random search (p < 0.01, Fig. 3.3),

consistent with [27], although in that study only randomly formed teams were stud-

ied. When averaged over 100 random landscapes, the performance of individual random
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Figure 3.3: Mean probability of patient survival on 100 random landscapes at each of 100
trial steps, using 40 patients per trial on landscapes with a) 0, b) 495, and c) 2475 two-
feature interactions.
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searchers was statistically indistinguishable whether started from initially scattered or ini-

tially clustered populations, so we only show one of these curves in Fig. 3. This finding

indicates that there is no inherent fitness advantage conferred by either of these two types

of population initializations.

Our results also show that, at least when fitness evaluation is noisy (as is to be expected

when hospitals try out a new practice on a relatively few patients in their own institution)

the more internally similar the teams were, the better they performed (Fig. 3.3, with 40

patients per trial). Note that the order of performance from highest to lowest fitness shown

in Fig. 3.3 matches with the order of initial within-team similarity shown in Table 3.2, with

performance order being CH > CR > SH > SR (each relation significant at the p < 0.01

level). This implies that agents are more effectively learning from teammates that have

similar local contexts, and it can be seen that the relative advantage of less diverse teams

increases as the complexity of the landscape increases (compare Fig. 3.3a,b,c).

In [27], teams were reformed between every trial step. To understand the impact of

frequency of team reformation in simulated collaborations, we varied the frequency with

which teams were reformed. In general, our results show that team search is relatively

insensitive to the frequency of team reformation, especially when starting from clustered

landscapes (Fig. 3.4). Homophilous teams of clustered agents (Fig. 3.4, black lines)

were the least sensitive to frequency of team reformation, because there is relatively lit-

tle switching of agents between teams even after they are reformed. This combination

also consistently outperformed the strategies with more diverse teams, both for different

levels of noise (compare Fig. 3.4a,c with no noise to 3.4b,d with high noise) and land-

scape complexity (compare Fig. 3.4a,b with no two-feature interactions to 3.4c,d with

2475 two-feature interactions). One apparent anomaly in these results occurs on complex
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Figure 3.4: Mean probability of patient survival over 100 trial steps, averaged over 100
random landscapes, shown as a function of the frequency of team reformation. a) No
two-feature interactions in the fitness landscapes and no noise in trials, b) No two-feature
interactions in the fitness landscapes and noise in trials (40 patients per trial), c) 2475 two-
feature interactions in the fitness landscapes and no noise in trials, and d) 2475 two-feature
interactions in the fitness landscapes and noise in trials (40 patients per trial).
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landscapes with no noise (Fig. 3.4c). Here, we observe a qualitative switch in the relative

performance between the SH and CR combinations as the number of trial steps between

team formation increases. Closer examination revealed that this occurs because frequent

homophilous team reformation actually enables initially scattered populations to become

highly clustered as agents converge towards each other in noise-free learning, ultimately

achieving lower within-team nHDs than those that start initially clustered but are subject

to frequent random team reformation. When fitness evaluation is noisy and landscapes are

complex, there is actually a small but detectable increase in the performance of randomly

formed teams as the number of trial steps between team reformations increases above 20

(Fig. 3.4d), since team members that stick together longer finally begin to converge towards

each other, thereby promoting learning from more similar teammates.

Thus, the act of team reformation can have different influences on learning rate, de-

pending on the direction and degree of its influence on within-team similarity. To illustrate

this, consider a complex landscape (2475 two-feature interactions) and an initially scat-

tered population, with teams formed prior to the initial trial and then not reformed again

until trial step 50. After 50 steps of noise-free learning within the same teams of 10 agents,

learning stagnates (Fig. 3.5a, black line before reformation at trial step 50); at this point,

reformation into more homophilous teams causes an abrupt drop in within-team nHD (Fig.

3.5b, black line at 50 trial steps) with a consequent jump in the rate of fitness improvement

(Fig. 3.5a, black line after reformation at trial step 50). On the other hand, when fitness

evaluation is noisy it takes longer for team members to converge, so learning is slower (Fig.

3.5a, red line before reformation at trial step 50) and within-team nHD is still high even

after 50 trials steps in the same team; at this point, a random reshuffling of team members
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causes an abrupt rise in within-team nHD (Fig. 3.5b, red line at trial step 50) and the rate

of learning decreases even more (Fig. 3.5a, red line after reformation at trial step 50).
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Figure 3.5: The effect of a single team reformation at trial step 50, starting from an initially
scattered population on a complex landscape with 2475 two-feature interactions when fit-
ness evaluation is noise-free and the team reformation is homophilous (black lines) or when
fitness evaluation is noisy (only 40 patients per trial) and team reformation is random (red
lines). a) Mean probability of patient survival on 100 random landscapes; b) within-team
nHD.

Intuitively, one would think that agents learning by diffusion of knowledge would be-

come more similar over time, and this does occur in initially scattered populations (who

start at maximum diversity). However, in [27] we reported that the within-population sim-

ilarity of clustered populations actually decreases through team learning, even as fitness

continues to improve. To understand this seemingly counter-intuitive finding, we took a

closer look at how within-team similarity (Fig. 3.6) and within-population similarity (Fig.

3.7) change during the learning process, for a single clustered initial population searching

a simple landscape (no feature interactions), using homophilous team formation after each

of 500 trial steps, with varying degrees of noise in the fitness function.
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Figure 3.6: Within-team nHD for each of the ten teams (colored lines) over 500 trial
steps starting from the same populations shown in Fig. 3.7. Since teams are reformed
homophilously after each trial step, each colored line does not necessarily represent the
same set of ten agents in different trial steps. The level of noise in fitness evaluation varies
between the three panels: a) no noise, b) low noise, with 320 patients per trial, and c) high
noise, with only 40 patients per trial.
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Figure 3.7: Within-population nHD for one initially clustered population over 500 trial
steps on a landscape with no feature interactions, with homophilous team reformation after
each trial step. The level of noise in fitness evaluation varies between the three lines, as
indicated.

When there is no noise, each of the ten teams converged to a single vector (Fig. 3.6a),

so that subsequent homophilous team selection resulted in no switching of agents between

teams and further learning ceased. Further examination showed that these ten teams actu-

ally converged on nine different but similar vectors (all with excellent, although not identi-

cal, fitnesses), accounting for the small non-zero within-population nHD in the noise-free

case (Fig. 3.7).

As the level of noise increases, stochastic effects prevent convergence. At low noise,

the within-population nHD initially increases and then slowly decreases (Fig. 3.7) because

as learning progresses the most similar teams tend to stay together (Fig. 3.6b, lower lines)

which offsets the fact that stochastic effects cause the less homophilous teams to experience

more mixing, causing within-team nHDs to rise and then plateau (Fig. 3.6b, upper lines).

However, at high noise levels the within-population nHD steadily increases (Fig. 3.7).
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This occurs because stochastic effects introduce diversity that results in frequent switching

of agents between teams, with a consequent rise in within-team nHDs (Fig. 3.6c), even

as fitnesses increase through the learning process (recall Fig. 3.3a, CH line). The high

fitnesses of all these diverse individuals is indicative of the fact that, even with no fea-

ture interactions, the variability in feature coefficients and the logistic compression of the

landscape model (Eq. (1)) result in many excellent solutions, even though in this simple

landscape there is only a single optimum.
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Figure 3.8: Mean probability of patent survival (averaged over 100 trial steps and 100
random landscapes, each with 495 two-feature interactions), shown as a function of the
number of patients in each trial. Note that increasing the number of cases decreases the
noise in the fitness function. The fitness in the no noise case is computed using Eq. (1)
directly rather than using Bernoulli trials, and therefore represents the asymptotic value for
an infinite number of patients.

To further investigate the affects of noise in trials, we looked at the mean probability of

survival (averaged over 100 agents and 100 random landscapes) as a function of the number

of patients per trial (Fig. 3.8). Not surprisingly, learning became easier as noise decreased.

What we found more interesting is that the advantage of homophilous teams over random
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Figure 3.9: Mean Probability of survival on 100 random landscapes with 495 two-feature
interactions as a function of the number of trial steps between team reformation. From top
to bottom tabu is 2, 5 and 10, respectively. From left to right is noise-free or high noise (40
patients per trial), respectively. 66



teams was increasingly pronounced with higher noise (fewer patients per trial), especially

when starting from clustered initial populations (Fig. 3.8, compare the magnitudes of the

double black arrows).

To learn most effectively when there are feature interactions affecting fitness and there

is noise in trial outcomes, hospitals may have to reevaluate previously tested features

as their local contexts change through the act of learning. In [27], we allowed fea-

tures to be reevaluated after waiting only one trial step (tabu = 1). Here, we examined

tabu ∈ {2, 5, 10} to test the sensitivity of performance improvement to the minimum num-

ber of trail steps each hospital was forced to wait before reevaluating the same feature on

landscapes with intermediate complexity (495 two-feature interactions) (Fig. 3.9).

Our results show that, when fitness evaluation is noise-free, higher tabu values result

in a higher average probability of survival and reduced sensitivity to the frequency of team

reformation (Fig. 3.9, left panels), because higher tabu values force exploration of more

features. When fitness is noisy, the same trends are qualitatively true but the sensitivity to

tabu is markedly reduced (Fig. 3.9, right panels). When there is no noise, a low tabu value,

and frequent reformation of teams, the homophilous teams of clustered agents (CH) are ac-

tually outperformed by the more diverse teams (Fig. 3.9a). Further exploration showed

that this occurs because the CH teams become “locked in” and stagnate after about 50 trial

steps as they continually retry features that look promising but aren’t, and the homophilous

team reformation means that agents no longer switch teams and learning ceases. On the

other hand, under these conditions the greater mixing due to random reformation actually

promotes more exploration by preventing agents from continually retrying the same fea-

tures, even though the tabu is low and fitness is noise-free. When teams are never or rarely

reformed and tabu is low, however, the more diverse teams also stagnate and performance
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rapidly drops off, even lagging behind their counterparts with noisy fitness (compare right-

most values of Fig. 3.9a,b). In this case, the stochasticity introduced by noise actually

promotes learning by preventing stagnation within teams.

Another important influence on team learning is the team size. In Fig. 3.10, we show

the effects of partitioning the 100 agents into equal-size teams of a variety of sizes, starting

from clustered initial populations on landscapes with 495 two-feature interactions. In gen-

eral, the performance of agents was better for larger teams in these clustered populations,

although the performance of homophilous teams does begin to drop very slightly for a sin-

gle team of 100 agents (Fig. 3.10). For very small teams (teams of size 2 for homophilous

teams, or teams up to size 4 for random teams), team search was actually outperformed by

random search (Fig. 3.10), because there are too few teammates to learn from and explo-

ration is therefore constrained. Homophilous teams consistently outperformed randomly

formed teams and were less sensitive to team size.

Our finding that factors that increase within-team similarity promote robust team learn-

ing motivated us to try to answer the following three questions regarding real hospitals

that are trying to improve clinical outcomes by working collaboratively to share informa-

tion about clinical practices via VON-sponsored activities: (1) How clustered is the entire

population of hospitals that comprise the VON network? (2) How clustered is the subpop-

ulation of VON hospitals that actively participate in team learning through QICs? (3) Is

the within-team similarity of VON QIC teams as high as possible, given the participating

hospitals? Although the VON data shown in Fig. 3.1a provide encouraging preliminary ev-

idence that the VON hospitals participating in QIC teams are clustered with regard to these

clinical practices (question 2), the data on these 93 binarized clinical practices were only

available for 51 hospitals that had completed a survey in 2003. Thus, we looked for fur-
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Figure 3.10: Mean fitnesses on 100 random landscapes with 495 two-feature interactions
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team members have regarding their teammates’ fitnesses. The horizontal line denotes the
performance of random searchers.

ther evidence of clustering and within-team similarity in a larger data set of VON hospital

information that includes more hospitals over a longer time span.

3.5 Data curation and analysis for Vermont Oxford Net-

work hospitals

We report on two kinds of collaborations supported by the VON: (i) VON membership,

which includes participation in annual meetings with seminars and posters on the effec-

tiveness of various clinical practices, email listsserves, and access to a variety of shared

information posted on the web, and (ii) neonatal intensive care QICs, referred to as NICQs.

NICQs are extended collaborations among hospitals (meeting 2 times/year over 2-3 years),
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where practitioners from different hospitals are grouped into teams of 3-16 members and

share results of case studies conducted at their home institutions. Based on this, different

team members select what appear to be potentially better practices and try them out in their

own institutions. Some hospitals chose to participate in multiple focus groups in the same

NICQ, and a few joined later or dropped out early over the course of a given multi-year

collaborative.

The VON has maintained extensive records regarding hospital member characteristics

and participation in VON-related activities since its inception in 1990, including participa-

tion in NICQs. However, many of those records were only on paper, some were in disparate

databases, there are many instances of missing data, and much of the data is confiden-

tial. For the purposes of this study, we curated and analyzed a subset of data reported by

VON member hospitals in the time period of 1990 - 2010 and VON records of six multi-

year NICQs (each comprising multiple teams), which were held in the following years:

1995-1998, 1999-2001, 2002-2004, 2005-2006, 2007-2008, and 2009-2010. We manually

scanned the archives to identify which hospitals participated in which focus groups of these

NICQs; we considered a hospital to be in a focus group if there was at least one healthcare

practitioner from that hospital in that focus group. Limited hospital-level data on clinical

practices was provided by VON for use in this study, and was de-identified to protect the

confidentiality of patients and hospitals. The protocol for this research was submitted by

the Committees on Human Research at the University of Vermont and determined to be

exempt from formal Committee review and approval.

In collaboration with VON staff, we selected 20 of these clinical practices (see Table

3.3) that we thought might conceivably relate to various problems tackled by NICQ focus
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groups. Each of these practices are reported as the proportion of patients receiving the

practice (or treatment), and hence are real-valued numbers between 0 and 1.

Table 3.3: Health practices used as features in our analysis of the VON data. All prac-
tices are reported as proportions of patients in each hospital that received those practices
(treatments).

# Description
1 Prenatal Care
2 Antenatal Steroids
3 Vaginal Delivery
4 Oxygen during initial resuscitation
5 Face mask ventilation during initial resuscitation
6 Endotracheal tube during initial resuscitation
7 Epinephrine during initial resuscitation
8 Cardiac compressions during initial resuscitation
9 Cranial imaging on/before day 28

10 Oxygen After Initial resuscitation
11 Conventional ventilation after initial resuscitation
12 High frequency ventilation after initial resuscitation
13 Nasal CPAP after initial resuscitation
14 Surfactant at any time
15 Steroids for Chronic Lang Disease
16 Indomethacin for any reason
17 Retinopathy of Prematurity Surgery
18 Necrotizing Enterocolitis Surgery
19 Other Minor Surgery
20 Any Major Surgery

The number of hospitals in the VON grew from about 50 hospitals in 1990 to more than

800 hospitals in 2010 (see Fig. 3.11a). Starting in 1995, a small subset of these participated

in NICQs (Fig. 3.11a, black). Of the remainder, some had missing data (Fig. 3.11a, dark

red) and were thus excluded from this study. A more detailed histogram of hospitals that

participated in NICQs is shown in Fig. 3.11b, where each color indicates the year that a
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given hospital first joined a NICQ focus group. Over this period, the NICQ subpopulation

grew from 10 to over 50 hospitals, with a relatively low dropout rate, as evidenced by the

roughly parallel bands of color in Fig. 3.11b.

Some important differences between the real NICQ teams and the teams in our ABM

are that, in the real NICQs, different teams are studying different topics impacting a variety

of clinical outcomes (so there is no single health outcome available to measure the impacts

of team learning), team sizes vary, the set of hospitals participating in NICQ teams changes

over time, and we only have data on real-valued rates of certain clinical practices that are

routinely collected by the VON. Furthermore, there is a wide degree of variation in patient

demographics and other unchangeable characteristics among VON hospitals that impact

clinical outcomes. These sorts of complications have made it difficult for researchers to

find direct evidence that QICs have directly improved health outcomes [84, 119]. Nonethe-

less, we can use the VON data to assess clustering among the clinical practices for which

we have information. To assess the distance between two hospitals in a given year, we

computed normalized Euclidean distances (nEDs) between the real-valued practice rates

reported for the 20 practices shown in Table 3.3, normalized by dividing by the maximum

possible Euclidean distance between 20 practices (4.47). Within-population nED is defined

as the mean of all pairwise nEDs in a population (or specified subpopulation) of hospitals

in a given year, and within-team nED is defined as the mean of the mean of all pairwise

nEDs within each focus group in a given year. Using these measures, a uniformly scattered

population will have a within-population nED of about 0.4. Thus, in the following results,

nED ranges from 0 (maximum similarity) to 0.4 (maximum diversity).
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Figure 3.11: a) Number of the hospitals in the VON network from 1990 till 2010 that either
participated in NICQ collaboratives (dark blue), have complete records but didn’t partic-
ipate in NICQs (light blue), or didn’t participate in NICQs and have incomplete records
(dark red). b) More detailed view of the number of hospitals in NICQ collaboratives from
1995 till 2010. Each color represents the years that each given hospital first joined a NICQ
focus group. X-axis labels only show the starting years of the six multi-year NICQ collab-
oratives. 73



3.6 Results for hospitals in VON

Within-population nEDs for the entire VON network, as well as for the subpopulations of

NICQ hospitals and non-NICQ hospitals, are shown in Fig. 3.12a, for the 5 NICQs starting

in 1999 through 2009 (with connected dots denoting years of a given NICQ). These results

show that the hospitals in the VON are quite clustered with respect to these 20 practices

(all values are less than half the maximum possible nED of 0.4), and that those who chose

to participate in NICQ collaboratives are even more clustered than the rest of the VON.
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Figure 3.12: a) Mean pairwise within subpopulation normalized Euclidean Distances
(nEDs) (i.e., subpopulation closeness) in the NICQ and non-NICQ subpopulations, where
nEDs are calculated for either 20 practices or 15 outcomes. b) Average of the mean pair-
wise normalized within team EDs for either randomly formed teams, real NICQ teams or
homophilous teams (picked by PickSimilar algorithm). Euclidean Distances between in-
dividuals are calculated for either 20 practices or 15 outcomes. X-axis labels only show the
starting years of 5 NICQ collaboratives in 1999-2010.

With the exception of the 1999 NICQ, the within-team nEDs of NICQ hospitals (Fig.

3.12b, black lines) were within one standard deviation of the nEDs of 100 randomly

formed teams of the same sizes drawn from the real NICQ subpopulation in each year
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(Fig. 3.12b, red lines, with error bars indicating ± one standard deviation) and were more

diverse than homophilous teams selected from the same NICQ subpopulation using the

PickSimilarTeams algorithm (see Fig. 3.12b, green lines), indicating that even greater

within-team similarity is possible.

There is also a small but statistically significant increase in both the within-population

(p < 0.001) and within-team (p < 0.05) diversity over the years studied (Fig. 3.12). The

fact that the network is growing over these years (Fig. 3.11a) undoubtedly contributes

to these increases in diversity, so it is not possible to ascertain whether any of this is at-

tributable to the collaborative learning processes themselves, as occurred when there was

noise in the fitness evaluation in the ABM.

3.7 Discussion

The aim of this study was to try to gain insight into which factors enhance team learning in

environments where the goal is knowledge diffusion, rather than knowledge creation. We

used an ABM to examine the sensitivity of quality improvement at individual simulated

hospitals to different team collaboration scenarios. The results of the ABM show that learn-

ing in teams through collaborative diffusion of knowledge is most effective, and most robust

to a variety of external influences, when within-team similarity is high. This contrasts with

previous findings that diverse teams improve collaborative problem-solving [41], [39].

We examined several factors that contribute to within-team similarity, most notably the

degree of clustering in feature space of the initial population and the type of team formation

strategy. A homophilous team formation strategy continually ensures that within-team sim-

ilarity remains as high as possible, even when other factors exert pressure in the opposite

direction. Because of this, homophilous team formation has several advantages for team
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learning through diffusion of knowledge, especially when agents are clustered in complex

landscapes and fitness evaluation is noisy, as is likely to be the case in healthcare institu-

tions. Under a wide range of scenarios studied, homophilous team formation in clustered

populations was the top performer, with the exception of a single unrealistic scenario (Fig.

3.9a, with noise free fitness). Furthermore, the performance of homophilous teams proved

to be less sensitive to a variety of factors, including the complexity of the landscape, the

level of noise, the size of the team, the frequency of team reformation, and the tabu time

before agents were allowed to reevaluate a feature. The consistent nature of this finding

suggests that homophilous teams may be beneficial in real world collaborative learning en-

vironments, like healthcare QICs, where the emphasis is on knowledge diffusion (rather

than knowledge creation).

Despite long-standing recognition of the existence of widespread variations in clini-

cal practices ( [136], [77], [137]), we previously [27] postulated that real hospitals would

exhibit a high degree of clustering in this landscape of clinical practices. In this work,

examination of a snapshot of 93 binarized clinical practices in 51 real hospitals partici-

pating in QICs confirmed that they were highly clustered with respect to these practices.

An analysis of a larger data set of 20 different real-valued practices, over 11 years in a

growing network of collaborating hospitals ultimately comprising more than 800 hospitals,

also revealed a high degree of clustering, with those hospitals actively participating in team

learning through QICs even more tightly clustered than the population at large.

While our examination of within-team similarity in real QIC teams did not show ev-

idence of homophilous team formation, the high degree of clustering within the clinical

practices studied implies that even randomly formed teams from this population of hos-

pitals will have a high degree of within-team similarity, with respect to these practices.
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Currently, real VON QIC teams (focus groups) are largely self-organized with respect to

interest in exploring the various topical areas, although in some cases VON staff do split up

large teams or otherwise influence team membership. Since there does appear to be room

for slightly greater within-team similarity in VON focus groups, it may be advisable for

VON staff to actively encourage more similar hospitals to group together, especially with

respect to externally controlled features that are likely to influence local contexts of care

and patient outcomes, such as patient demographics, hospital size, and geographical cul-

tures. This may become increasingly important as more hospitals join the VON and elect

to participate in QICs, resulting in an increasingly diverse population.

In the healthcare domain, detailed data on clinical practices and patient outcomes is

already collected and maintained securely by organizations such as the VON, but this in-

formation is not shared publicly. However, unless teammates have detailed knowledge

about the clinical practices and fitnesses of their teammates, the feature selection mech-

anism used in team search will essentially degenerate to random search. Our simulation

results also showed that larger teams of already clustered agents performed better than

smaller teams, since more information was available to learn from. These results suggest

that, in an ideal world, one would have similar hospitals collaborate in large teams and

have open access to all data about each other, in order to derive optimal benefits from the

collaboration. However in the real world, the maximum number of individuals in QIC

teams is limited both by organizational costs related to team assembly into a collaborative

environment and by the number of individuals that can effectively work together in that en-

vironment, and real hospitals have significant privacy concerns regarding sharing detailed

data on practices and outcomes. Furthermore, hospitals who already have excellent health

outcomes of a particular type are less likely to join a focus group that is studying ways to
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improve that health outcome, potentially limiting the maximum fitness within a given team

with respect to their primary outcome of interest.

Thus, our inferred optimal learning strategy is in conflict with the realities of team

learning in real healthcare QICs in a variety of ways. One possible way to mitigate these

conflicts would be through a Virtual Collaboration System (VCS) that would allow hos-

pitals to efficiently identify potentially better practices in use at other institutions similar

to theirs, without any hospitals having to sacrifice the privacy of their own institutional

data. Suppose that a given hospital queries such a VCS for possible ways to improve its

performance with regard to a specific type of health outcome. The VCS could compare the

clinical practices and other characteristics of the hospital to those in the database to identify

a large virtual team of similar institutions, compare the specific health outcome of interest

to identify which virtual team members are better or worse performers with regard to that

outcome, and could then make intelligent customized recommendations of potentially bet-

ter practices to the hospital, using an algorithm similar to the feature selection algorithm

described in Section 3.3.4. Hospitals identified as successfully employing a clinical prac-

tice that may be beneficial to another institution could be confidentially contacted to see

if they would be willing to host a visit from the inquiring hospital to share more about

the details of this practice. However, since such a VCS would not require physical assem-

bly of actual teams, it would reduce the time and other costs associated with collaborative

learning, relative to current healthcare QICs. Hospitals would be required to share detailed

information on their practices and outcomes to be able to use the VCS, but would be in-

centivized to do so by being able to benefit from the collective knowledge. In fact, many

healthcare organizations are already providing similar confidential data to organizations
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like the VON for internal analysis, so with the infrastructure already in place extending this

with a recommendation system would not be particularly onerous.

Our findings may also prove useful in other application domains, such as in collabo-

rations designed to share best practices within franchises of a business, each with slightly

different local contexts. In addition, with the growing availability of genomic data and elec-

tronic medical records, there has been increasing interest in the potential for personalized

medicine [58, 115, 133]. It is conceivable that large databases of human DNA sequences

and other relevant patient-specific attributes, health conditions, treatments, and outcomes,

could be queried using an approach similar to that proposed here for virtual QICs, to sug-

gest promising personalized treatments.

Finally, we also believe that these findings may provide useful guidance in designing

effective evolutionary algorithms to solve combinatorial optimization problems with com-

plex and/or noisy fitness landscapes. In this context, one can view team learning as a form

of smart crossover. In this more abstract problem solving domain, initial population dis-

tributions and other factors are not constrained by reality (as they are in the healthcare

domain). In future work, we plan to compare team learning strategies and clustered initial

populations to genetic algorithms starting from scattered initial populations and using more

standard forms of crossover on combinatorial optimization problems of varying difficulty.

3.8 Summary and Conclusions

Healthcare institutions are increasingly participating in quality improvement collaboratives

(QICs). In these collaborations multi-institutional teams share information, and representa-

tives of each institution identify potentially better practices that are subsequently evaluated

in the local contexts of their home institutions. In this paper we modeled this collabora-
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tive learning approach using an agent-based model (ABM) to study how different team

characteristics affect quality improvement of agents (simulated hospitals) in clinical fitness

landscapes with varying degrees of complexity (interactions between clinical practices) and

noise (based on the number of patients in each trial).

We first analyzed a set of binarized clinical practices in real hospitals that participated

in QICs and found that these hospitals are clustered with respect to these practices. Guided

by the real data, we introduced a new method for generating synthetic agents that are sim-

ilarly clustered in feature space. We also introduced a new method for selecting teams

of homophilous agents. These methods were incorporated into the ABM and a variety of

sensitivity studies were performed.

Our simulations show that, in this type of learning environment (where the goal is dif-

fusion of knowledge to improve outcomes of individual agents rather than joint-problem

solving), teams with higher within-team similarity are able to improve performance more

quickly than diverse teams, are less sensitive to a variety of factors, and larger teams of sim-

ilar agents generally perform better than smaller teams. Notably, the advantage of within-

team similarity increases with the complexity of the fitness landscape and with the level

of noise in fitness evaluation. Interesting interactions are shown to occur between the fre-

quency of team reformation, the minimum number of trials steps before which an agent can

retry the same feature, the team formation strategy, the complexity of the landscape, and

the level of noise.

Further analysis of a larger data set of 20 real-valued practices over 11 years in the

growing Vermont Oxford Network (VON) of hospitals provided further evidence that (a)

hospitals in the VON are clustered in the landscape of clinical practices, (b) the set of VON

hospitals that actively participate in team learning through QICs are even more clustered
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than the population of hospitals at large, resulting in high within-team similarity, and that

(c) there is room for even greater within-team similarity in VON QICs if teams are encour-

aged to form using the principle of homophily.

Based on these results, we propose a new virtual collaboration framework that could

allow hospitals to efficiently improve quality by learning from a secure and confidential

knowledge base using an intelligent recommendation system to select which features to test

next in their own institutions. While this work was specifically motivated to inform quality

improvement in healthcare institutions, our results may also have bearing on other types of

learning environments where the aim is the diffusion of contextually relevant knowledge

in complex environments, including in personalized medicine, spreading of best practices

within franchises of a business, or evolutionary computational approaches to combinatorial

optimization problems.
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Bäck, Jouke Dijkstra, and Johan HC Reiber. Mixed-integer nk landscapes. In Par-
allel Problem Solving from Nature-PPSN IX, pages 42–51. Springer, 2006.

[69] Rung Tzuo Liaw and Chuan Kang Ting. Effect of model complexity for estimation
of distribution algorithm in NK landscapes. In 2013 IEEE Symposium on Founda-
tions of Computational Intelligence (FOCI), pages 76–83. IEEE, 2013.

[70] H. Liu, J. Li, and L. Wong. A comparative study on feature selection and classifi-
cation methods using gene expression profiles and proteomic patterns. Genome
Informatics Series, pages 51–60, 2002.

[71] Rita Mangione-Smith, Matthias Schonlau, Kitty S Chan, Joan Keesey, Mayde Rosen,
Thomas A Louis, and Emmett Keeler. Measuring the effectiveness of a collabo-
rative for quality improvement in pediatric asthma care: does implementing the
chronic care model improve processes and outcomes of care? Ambulatory Pedi-
atrics, 5(2):75–82, 2005.

[72] T. Manser. Teamwork and patient safety in dynamic domains of healthcare: A review
of the literature. Acta Anaesthesiologica Scandinavica, 53(2):143–151, 2008.

[73] Narine Manukyan, Margaret J Eppstein, and Jeffrey D Horbar. Team learning for
healthcare quality improvement. IEEE Access, 1:545–557, 2013.

87



[74] Narine Manukyan, Margaret J Eppstein, and Donna M Rizzo. Data-driven cluster
reinforcement and visualization in sparsely-matched self-organizing maps. Neural
Networks and Learning Systems, IEEE Transactions on, 23(5):846–852, 2012.

[75] M.A. Marks, J.E. Mathieu, and S.J. Zaccaro. A temporally based framework and tax-
onomy of team processes. Academy of Management Review, pages 356–376, 2001.

[76] J.A. Martin, K.D. Kochanek, D.M. Strobino, B. Guyer, and M.F. MacDorman. Annual
summary of vital statistics—2003. Pediatrics, 115(3):619, 2005.

[77] Klim McPherson, John E Wennberg, Ole B Hovind, Peter Clifford, et al. Small-area
variations in the use of common surgical procedures: An international comparison
of New England, England, and Norway. The New England journal of medicine,
307(21):1310, 1982.

[78] Brian S Mittman. Creating the evidence base for quality improvement collaboratives.
Annals of internal medicine, 140(11):897–901, 2004.

[79] Naoki Miyagawa, Hiroshi Teramoto, Chun-Biu Li, and Tamiki Komatsuzaki. Decom-
posability of multivariate interactions. Complex Systems, 20(2):165, 2011.

[80] Douglas C Montgomery, Douglas C Montgomery, and Douglas C Montgomery. De-
sign and analysis of experiments, volume 7. Wiley New York, 1984.

[81] Jason H Moore. The ubiquitous nature of epistasis in determining susceptibility to
common human diseases. Human heredity, 56(1-3):73–82, 2003.

[82] Alberto Moraglio and Julian Togelius. Geometric differential evolution. In Proceed-
ings of the 11th Annual conference on Genetic and evolutionary computation,
pages 1705–1712. ACM, 2009.

[83] L.S. Morales, D. Staiger, J.D. Horbar, J. Carpenter, M. Kenny, J. Geppert, and J. Ro-
gowski. Mortality among very low birthweight infants in hospitals serving minor-
ity populations. American journal of public health, 95(12):2206, 2005.

[84] Erum Nadeem, S Serene Olin, Laura Campbell Hill, Kimberly Eaton Hoagwood, and
Sarah McCue Horwitz. Understanding the components of quality improvement
collaboratives: A systematic literature review. Milbank Quarterly, 91(2):354–394,
2013.

[85] P.J. Newton, EJ Halcomb, PM Davidson, and A.R. Denniss. Barriers and facilitators
to the implementation of the collaborative method: Reflections from a single site.
Quality and Safety in Health Care, 16(6):409–414, 2007.

[86] I.S. Oh, J.S. Lee, and B.R. Moon. Hybrid genetic algorithms for feature selection.
Pattern Analysis and Machine Intelligence, IEEE Transactions on, 26(11):1424–
1437, 2004.

88



[87] World Health Organization et al. Who patient safety curriculum guide for medical
schools. 2009.

[88] J. Øvretveit, P. Bate, P. Cleary, S. Cretin, D. Gustafson, K. McInnes, H. McLeod,
T. Molfenter, P. Plsek, G. Robert, et al. Quality collaboratives: lessons from re-
search. Quality and safety in health care, 11(4):345–351, 2002.

[89] J Øvretveit, Paul Bate, Paul Cleary, Shan Cretin, D Gustafson, K McInnes,
H McLeod, T Molfenter, P Plsek, Glenn Robert, et al. Quality collaboratives:
lessons from research. Quality and safety in health care, 11(4):345–351, 2002.

[90] Ray Pawson and Nick Tilley. Realistic evaluation. Sage, 1997.

[91] N.R. Payne, M.J. Finkelstein, M. Liu, J.W. Kaempf, P.J. Sharek, and S. Olsen. Nicu
practices and outcomes associated with 9 years of quality improvement collabora-
tives. Pediatrics, 125(3):437–446, 2010.

[92] Martin Pelikan. Analysis of estimation of distribution algorithms and genetic algo-
rithms on NK landscapes. In Proceedings of the 10th annual conference on Ge-
netic and evolutionary computation, pages 1033–1040. ACM, 2008.

[93] F. Pernkopf and P. O’Leary. Feature selection for classification using genetic algo-
rithms with a novel encoding. In Computer Analysis of Images and Patterns, pages
161–168. Springer, 2001.

[94] Charles Perrow. Normal Accidents: Living with High Risk Technologies (Updated).
Princeton University Press, 2011.

[95] Paul E Plsek. Collaborating across organizational boundaries to improve the quality
of care. American journal of infection control, 25(2):85–95, 1997.

[96] Paul E Plsek and Trisha Greenhalgh. The challenge of complexity in health care. Bmj,
323(7313):625–628, 2001.

[97] Paul E Plsek and Tim Wilson. Complexity, leadership, and management in healthcare
organisations. Bmj, 323(7315):746–749, 2001.

[98] P.E. Plsek. Collaborating across organizational boundaries to improve the quality of
care. American journal of infection control, 25(2):85–95, 1997.

[99] B.C. Poulton and M.A. West. Effective multidisciplinary teamwork in primary health
care. Journal of Advanced Nursing, 18(6):918–925, 2008.

[100] M.L. Raymer, W.F. Punch, E.D. Goodman, L.A. Kuhn, and A.K. Jain. Dimension-
ality reduction using genetic algorithms. Evolutionary Computation, IEEE Trans-
actions on, 4(2):164–171, 2000.

[101] Colin Reeves and Christine Wright. An experimental design perspective on genetic
algorithms. In Foundations of Genetic Algorithms 3, 1995.

89



[102] Colin R Reeves. Experiments with tuneable fitness landscapes. In Parallel Problem
Solving from Nature PPSN VI, pages 139–148. Springer, 2000.

[103] Colin R Reeves and Christine C Wright. Epistasis in genetic algorithms: An experi-
mental design perspective. In Proceedings of the 6th International Conference on
Genetic Algorithms, pages 217–224. Morgan Kaufmann Publishers Inc., 1995.

[104] Ian Reid. Complexity science: Let them eat complexity: the emperor’s new toolkit.
BMJ: British Medical Journal, 324(7330):171, 2002.

[105] D.N. Reshef, Y.A. Reshef, H.K. Finucane, S.R. Grossman, G. McVean, P.J. Turn-
baugh, E.S. Lander, M. Mitzenmacher, and P.C. Sabeti. Detecting novel associa-
tions in large data sets. science, 334(6062):1518–1524, 2011.

[106] A.D. Rodrigues. Drug-drug interactions. Informa Healthcare, New York, NY, 2008.

[107] J.A. Rogowski, J.D. Horbar, P.E. Plsek, L.S. Baker, J. Deterding, W.H. Edwards,
J. Hocker, A.D. Kantak, P. Lewallen, W. Lewis, et al. Economic implications
of neonatal intensive care unit collaborative quality improvement. Pediatrics,
107(1):23, 2001.

[108] J.A. Rogowski, J.D. Horbar, D.O. Staiger, M. Kenny, J. Carpenter, and J. Gep-
pert. Indirect vs direct hospital quality indicators for very low-birth-weight infants.
JAMA: the journal of the American Medical Association, 291(2):202, 2004.

[109] J.A. Rogowski, D.O. Staiger, and J.D. Horbar. Variations in the quality of care for
very-low-birthweight infants: implications for policy. Health Affairs, 23(5):88–97,
2004.

[110] Jani Rönkkönen, Xiaodong Li, Ville Kyrki, and Jouni Lampinen. A framework for
generating tunable test functions for multimodal optimization. Soft Computing,
15(9):1689–1706, 2011.

[111] Peter M Rothwell. External validity of randomised controlled trials:to whom do the
results of this trial apply?. The Lancet, 365(9453):82–93, 2005.

[112] William Rowe, Mark Platt, David C Wedge, Philip J Day, Douglas B Kell, and
Joshua Knowles. Analysis of a complete dna–protein affinity landscape. Journal
of The Royal Society Interface, 7(44):397–408, 2010.

[113] Bill Runciman and Merrilyn Walton. Safety and ethics in healthcare: a guide to
getting it right. Ashgate Publishing, Ltd., 2007.

[114] E. Salas, N.J. Cooke, and M.A. Rosen. On teams, teamwork, and team performance:
Discoveries and developments. Human Factors: The Journal of the Human Fac-
tors and Ergonomics Society, 50(3):540–547, 2008.

90



[115] T. Sandmann and M. Boutros. Screens, maps & networks: From genome sequences
to personalized medicine. Current Opinion in Genetics & Development, 22:36–44,
2012.

[116] Elad Schneidman, Susanne Still, Michael J Berry, William Bialek, et al. Network
information and connected correlations. Physical review letters, 91(23):238701,
2003.

[117] Matthias Schonlau, Rita Mangione-Smith, Kitty S Chan, Joan Keesey, Mayde
Rosen, Thomas A Louis, Shin-Yi Wu, and Emmett Keeler. Evaluation of a quality
improvement collaborative in asthma care: does it improve processes and out-
comes of care? The Annals of Family Medicine, 3(3):200–208, 2005.

[118] L.M.T. Schouten, R.P.T.M. Grol, and M.E.J.L. Hulscher. Factors influencing success
in quality-improvement collaboratives: Development and psychometric testing of
an instrument. Implementation Science, 5(1):1–9, 2010.

[119] L.M.T. Schouten, M.E.J.L. Hulscher, J.J.E. Everdingen, R. Huijsman, and R.P.T.M.
Grol. Evidence for the impact of quality improvement collaboratives: Systematic
review. Bmj, 336(7659):1491–1494, 2008.

[120] Loes MT Schouten, MEJL Hulscher, Jannes JE Van Everdingen, Robbert Huijsman,
Louis W Niessen, and RPTM Grol. Short-and long-term effects of a quality im-
provement collaborative on diabetes management. Implement Sci, 5:94, 2010.

[121] Paul G Shekelle, Peter J Pronovost, Robert M Wachter, Stephanie L Taylor, Syd-
ney M Dy, Robbie Foy, Susanne Hempel, Kathryn M McDonald, John Ovretveit,
Lisa V Rubenstein, et al. Advancing the science of patient safety. Annals of Inter-
nal Medicine, 154(10):693–696, 2011.

[122] Stephen M Shortell, Jill A Marsteller, Michael Lin, Marjorie L Pearson, Shin-Yi
Wu, Peter Mendel, Shan Cretin, and Mayde Rosen. The role of perceived team
effectiveness in improving chronic illness care. Medical care, 42(11):1040–1048,
2004.

[123] Leif I Solberg. If youve seen one quality improvement collaborative. The Annals of
Family Medicine, 3(3):198–199, 2005.

[124] Kenneth Tan, Gordon Baxter, Simon Newell, Steve Smye, Peter Dear, Keith Brown-
lee, and Jonathan Darling. Knowledge elicitation for validation of a neonatal ven-
tilation expert system utilising modified delphi and focus group techniques. Inter-
national journal of human-computer studies, 68(6):344–354, 2010.

[125] Reiko Tanese. Distributed genetic algorithms for Function Optimization. PhD thesis,
The University of Michigan, Ann Arbor, MI, 1989.

91



[126] S.L. Taylor, S. Dy, R. Foy, et al. What context features might be important determi-
nants of the effectiveness of patient safety practice interventions? BMJ Quality &
Safety, 20(7):611–617, 2011.

[127] Dirk Thierens. The linkage tree genetic algorithm. In Parallel Problem Solving from
Nature, PPSN XI, pages 264–273. Springer, 2010.

[128] Dirk Thierens and Peter AN Bosman. Hierarchical problem solving with the linkage
tree genetic algorithm. In Proceeding of the fifteenth annual conference on Genetic
and evolutionary computation conference, pages 877–884. ACM, 2013.

[129] Nicholas Tomko, Inman Harvey, and Andrew Philippides. Unconstrain the popula-
tion: The benefits of horizontal gene transfer in genetic algorithms. In SmartData,
pages 117–127. Springer, 2013.

[130] Shaun Treweek and Merrick Zwarenstein. Making trials matter: pragmatic and ex-
planatory trials and the problem of applicability. Trials, 10(37):9, 2009.

[131] M.E. Turner. Groups at work: Theory and research. Lawrence Erlbaum, Hillsdale,
NJ, 2000.

[132] Ryan J Urbanowicz and Jason H Moore. The application of michigan-style learn-
ing classifiersystems to address genetic heterogeneity and epistasisin association
studies. In Proceedings of the 12th annual conference on Genetic and evolutionary
computation, pages 195–202. ACM, 2010.

[133] G. Vaidyanathan. Redefining clinical trials: The age of personalized medicine. Cell,
148(6):1079–1080, 2012.

[134] Vesselin K Vassilev, Terence C Fogarty, and Julian F Miller. Information charac-
teristics and the structure of landscapes. Evolutionary Computation, 8(1):31–60,
2000.

[135] Edward Weinberger. Correlated and uncorrelated fitness landscapes and how to tell
the difference. Biological cybernetics, 63(5):325–336, 1990.

[136] John Wennberg and Alan Gittelsohn. Small area variations in health care delivery:
A population-based health information system can guide planning and regulatory
decision-making. Science, 182(4117):1102–1108, 1973.

[137] John E Wennberg. Tracking Medicine: A Researcher’s Quest to Understand Health
Care. Oxford University Press, USA, 2010.

[138] M.A. West. Effective teamwork: Practical lessons from organizational research.
Blackwell Publishing, Oxford, 2012.

[139] Tim Wilson, Donald M Berwick, and Paul D Cleary. What do collaborative improve-
ment projects do? experience from seven countries. Joint Commission Journal on
Quality and Patient Safety, 29(2):85–93, 2003.

92



[140] Tim Wilson, Tim Holt, and Trisha Greenhalgh. Complexity and clinical care. Bmj,
323(7314):685–688, 2001.

[141] David D Woods, Leila J Johannesen, Richard I Cook, and Nadine B Sarter. Behind
human error: Cognitive systems, computers and hindsight. Technical report, DTIC
Document, 1994.

[142] David D Woods, Emily S Patterson, and Richard I Cook. Behind human error: tam-
ing complexity to improve patient safety. Handbook of Human Factors and Er-
gonomics in Health Care and Patient Safety. London: Lawrence Erlbaum, pages
459–76, 2007.

[143] Michael Wooldridge. An introduction to multiagent systems. John Wiley & Sons,
2009.

[144] Alden H Wright, Richard K Thompson, and Jian Zhang. The computational com-
plexity of NK fitness functions. IEEE Transactions on Evolutionary Computation,
4(4):373–379, 2000.

[145] S. Wright. The roles of mutation, inbreeding, crossbreeding and selection in evo-
lution. In Proceedings of the sixth international congress on genetics, volume 1,
pages 356–366, 1932.

[146] Paul C Young, Gordon B Glade, Gregory J Stoddard, and Chuck Norlin. Evalua-
tion of a learning collaborative to improve the delivery of preventive services by
pediatric practices. Pediatrics, 117(5):1469–1476, 2006.

[147] Z.J. Yu, F. Haghighat, B. Fung, and L. Zhou. A novel methodology for knowledge
discovery through mining associations between building operational data. Energy
and Buildings, 2011.

[148] J.A.F. Zupancic, D.K. Richardson, J.D. Horbar, J.H. Carpenter, S.K. Lee, G.J. Esco-
bar, et al. Revalidation of the score for neonatal acute physiology in the vermont
oxford network. Pediatrics, 119(1):e156–e163, 2007.

93



Chapter 4

NM Landscapes

4.1 Abstract

For the past 25 years, NK landscapes have been a classic benchmark for modeling com-

binatorial fitness landscapes with epistatic interactions between up to K + 1 of N binary

features. However, the ruggedness of NK landscapes is only tunable in large discrete jumps,

and computing the global optimum of unrestrictedNK landscapes is an NP-complete prob-

lem. Furthermore, the range of fitness values can vary widely between different landscapes,

but since this range of fitnesses is unknown one cannot properly normalize fitnesses, as is

necessary for fair comparisons of fitness across different random landscapes. Walsh poly-

nomials are a superset of NK landscapes that avoid some of these problems, but both Walsh

polynomials and NK landscapes are only defined on binary alphabets and their represen-

tation of epistatic interactions is not intuitive. In this paper, we propose a new class of

benchmarks called NM landscapes, where M refers to the Maximum order of epistatic in-

teractions between N features. Like Walsh polynomials, NM landscapes are much more

smoothly tunable in ruggedness than NK landscapes. For all NM landscapes the location
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and the value of the global optimum is trivially known. For a subset of NM landscapes the

location and the value of the global minimum is also known, enabling proper normalization

of fitnesses. NM landscapes use a natural and transparent representation of epistasis and

work with alphabets of any arity, from binary to real-valued. We discuss several advantages

of NM landscapes as benchmark problems for evaluating search strategies.

Simulated landscapes are widely used for evaluating search strategies, where the goal is

to find the landscape location with maximum fitness value [62] [27]. Without loss of gen-

erality and for notational simplicity, we assume function maximization, rather than mini-

mization, throughout this paper.

NK Landscapes [62] have been classic benchmarks for generating landscapes with

epistatic interactions. They are described by two parameters: N specifies the number of

binary features and K specifies that the maximum degree of epistatic interactions among

the features is K + 1 [60]. NK landscapes have been used in many applications (e.g.,

[2, 36, 82, 112, 129]) and widely studied in theory (e.g., [15, 53, 69, 92, 144]), as they

can generate landscapes with tunable ruggedness by varying K. However, NK landscapes

have several limitations. Buzas and Dinitz [15] recently showed that the expected number

of local peaks in NK landscapes rises in large discrete jumps as K is increased, but actu-

ally decreases as a function of the number of interaction terms for a given K (Fig. 1, red

lines). Additionally, the problem of finding the location and value of the global optimum

of unrestricted NK landscapes with K > 1 is NP-complete [144] (although for restricted

classes one can use dynamic programming [144] [35] or approximation algorithms [144]).

NK landscapes have only been defined for binary alphabets.

Walsh polynomials are a superset of NK landscapes that overcome some of the limi-

tations of NK landscapes. For example, they allow more explicit control over which in-
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teraction terms are present. The problem of finding the global maximum value of a Walsh

polynomial is also NP-complete, although a restricted subset of Walsh polynomials has a

known global maximum [125]. However, even in this case finding the global minimum is

still NP-complete, preventing proper normalization by the range of fitnesses in the land-

scapes. As with NK landscapes, Walsh polynomials are only defined for binary alphabets.
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Figure 4.1: Number of local peaks in NK landscapes with N = 10, as a function of
the number of terms in the equivalent parametric interaction model (m, bottom x-axis)
for K = {1, 2, ..., 9} (top x-axis). The black dots show empirical results of 10 random
landscapes generated for each value of K; red lines show the expected number of peaks
(L) of these same landscapes computed according to the formula given in [15]. The inset
shows a magnification of the K = 3 results.

In this paper, we introduce a different, more flexible subset of general interaction mod-

els that we dub NM landscapes. Like NK landscapes and Walsh polynomials, NM land-

scapes incorporate epistatic feature interactions. However,NM landscapes also (a) include

epistasis in a natural and transparent manner, (b) have known value and location of the

maximum fitness, (c) work with alphabets of any arity, including discrete and real-valued

alphabets, (d) with additional constraints have known value and location of the minimum

fitness, and (e) when coefficients are chosen properly, have relatively smoothly tunable
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ruggedness. In Section 4.2 we introduce the general class of parametric interaction models

and Walsh polynomials, then in Section 4.3 we define NM landscapes and prove the prop-

erties (a),(b),(c) and (d) above. In Sections 4.4 and 4.5 we describe experiments and results

that demonstrate property (e) above. In Section 4.6 we discuss the importance of these

properties and point out several advantages of NM landscapes as benchmark problems for

studying search in tunably rugged landscapes.

4.2 Interaction Models and Walsh Polynomials

Walsh polynomials provide a mathematical framework for defining any real-valued func-

tion on bit strings [31] [59]. A Walsh polynomial has the following form:

f(y) =
2q−1∑
j=0

ωjψj(y) (4.1)

where q is the length of the bit string y, each bit yi ∈ {0, 1}, and each ωj ∈ R. The Walsh

function ψj(y) corresponding to the jth partition is defined as:

ψj(y) =


1, if y ∧ j2 has even parity

−1, otherwise
(4.2)

where j2 denotes the binary representation of j.

NK landscapes are a subset of Walsh polynomials. Walsh polynomials have a one-to-

one correspondence with the more general class of general parametric interaction models,

when such models are restricted to binary alphabets [59].
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A fitness landscape F can be defined for N features using a general parametric interac-

tion model of the form:

F (x) =
m∑
k=1

βUk

∏
i∈Uk

xi (4.3)

where m is the number of terms, and each of m coefficients βUk
∈ R. For k = 1 . . .m,

Uk ⊆ {1, 2, . . . , N}, where Uk is a set of indices of the features in the kth term, and the

length |Uk| is the order of the interaction. We adopt the convention that when Uk = ∅,∏
j∈Uk

xj ≡ 1, so β0 represents the mean value of the landscape. If the parametric inter-

action model is defined on a binary alphabet, we adopt the convention that binary values

are represented as xi ∈ {−1, 1} (rather than {0, 1}, as in Walsh polynomials). However,

general parametric interaction models are also well defined for discrete valued features

with higher arities as well as for real-valued alphabets and provide a more intuitive way of

representing epistatic interactions among features.

A more readable notation for Eq. (4.3) is as follows:

F (x) = β0 +
N∑
i=1

βixi+

+
N−1∑
i=1

N∑
j=i+1

βi,jxixj+

+
N−2∑
i=1

N−1∑
j=i+1

N∑
k=j+1

βi,j,kxixjxk +H (4.4)

where we only explicitly show up to third order interactions and H represents higher order

interactions up to some maximum order M ≤ N . Note that some βUk
parameters may be

zero, so not all terms need be present.
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For example, consider a model with N = 2 loci and U1 = ∅, U2 = {1}, U3 = {2} and

U4 = {1, 2}. The interaction model for this example is:

F (x) = β0 + β1x1 + β2x2 + β1,2x1x2 (4.5)

where β0 is the average value of all fitnesses in the landscape, β1 and β2 are the coefficients

of the main effects of the binary features x1 and x2, and β1,2 is the coefficient of the second

order epistatic interaction x1x2. The Walsh polynomial corresponding to Eq. (4.5) is:

f(y) = ω0ψ0(y) + ω1ψ1(y) + ω2ψ2(y) + ω3ψ3(y)

= β0ψ0(y)− β1ψ1(y)− β2ψ2(y) + β1,3ψ3(y) (4.6)

where

yi =


1, when xi = 1

0, when xi = −1
(4.7)

Notice that there is a one-to-one correspondence of each term in Eq. (4.5) with each term in

Eq. (4.6) but the signs of the coefficients are different. Specifically, for the example above:

β0 = ω0, β1 = −ω1, β2 = −ω2, β1,2 = ω3 (4.8)

A random point selected in the search space of a Walsh polynomial can be forced to

be the global maximum by properly adjusting the sign of each of the non-zero Walsh co-

efficients, with the maximum fitness value equal to the sum of the absolute values of all

Walsh coefficients [125]. However, the location and the value of the global minimum is

still unknown.

99



General parametric interaction models are the standard models used in statistics to study

effects of multiple features on an outcome (e.g., [80]). They are easy to define and the in-

teractions are transparent and easy to interpret (unlike in NK landscapes and Walsh polyno-

mials). For example, the interaction terms present in Eq. (4.5) are clearly evident, whereas

the Walsh functions ψi in Eq. (4.6) obscure this. To date, general parametric interaction

models have received very little attention in the evolutionary computation literature, with

notable exceptions [101–103].

In [15] the authors show that for every NK landscape with a given K, one can create

an equivalent parametric interaction model, where the maximum order of interactions is

K+1. They show that the NK algorithm dictates that the interaction model contain all main

effects and sub-interactions contained in higher order interactions. For example, if a non-

zero interaction coefficient βi,j,k is present in anNK landscape, then there will generally be

non-zero coefficients βi, βj, βk, βi,j, βi,k, βj,k (there is an infinitesimally small probability

that one or more of these coefficients may be zero). For the classic NK model where K

is constant and K � N , main effect coefficients have the largest expected magnitude,

second order interactions have larger expected magnitude than third order interactions, and

so on [15]. Thus, NK landscapes are a very restricted subset of Walsh polynomials and the

more general class of parametric interaction models.

4.3 NM Landscapes

The class of Walsh polynomials is a subset of the larger class of general interaction models.

Here we introduce a different subset of general interaction models called NM landscapes,

where N is the number of features and all interactions in the model are of order ≤M .
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Definition 1: NM models comprise the set of all general interaction models specified

by Eq. (4.3), with the added constraints that (a) all coefficients βUk
are non-negative, (b)

each feature value xi ranges from negative to positive values, and (c) the absolute value of

the lower bound of the range ≤ the upper bound of the range of xi.

In this work, each βUk
is randomly created as follows:

βUk
= e−abs(N(0,σ)) (4.9)

where N(0, σ) is a random number drawn from a Gaussian distribution with 0 mean and

standard deviation of σ, which results in fitnesses that are symmetric around 0 (Fig. 4.2).

As the value of σ increases, the means and standard deviations of the coefficients decrease,

which results in a smaller range of fitness values and increasing clumping of fitness values

(Fig. 4.2). In contrast, when coefficients are drawn from a uniform distribution in the

range [0, 1], the fitnesses are skewed left (Fig. 4.3). NM landscapes offer several desirable

properties, as described in the following.
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Figure 4.2: Histograms of all 1024 fitnesses in NM landscapes for M = 2, N = 10 and
coefficients drawn from Eq. (4.9) with σ as indicated.
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Figure 4.3: Histograms of all 1024 fitnesses in binary NM landscapes for M = 2, N = 10
and coefficients drawn from a uniform distribution in the range [0, 1].

Proposition 1: NM landscapes with a binary alphabet have a known global maximum.

Proof. By Definition 1, βUk
> 0 for all non-zero terms. Thus, the maximum possible value

for each term (βUk

∏
j∈Uk

xj) in an NM landscape with a binary alphabet xi ∈ {−1, 1} is

achieved when:

xi = 1, ∀i = 1 . . . n (4.10)
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and the value of the global maximum is:

Fmax = β0 +
N∑
i=1

βi+

+
N−1∑
i=1

N∑
j=i+1

βi,j+

+
N−2∑
i=1

N−1∑
j=i+1

N∑
k=j+1

βi,j,k +
∑
∀βUh

βUh
(4.11)

where βUh
are the coefficients of all the remaining higher order interactions. Note that the

calculation of Eq. (4.11) has time complexity of O(m), where m is the number of terms in

the model. �

Proposition 2: NM landscapes can be defined on discrete alphabets of any arity or on

real-valued alphabets, and the value and location of a global maximum is independent of

the discretization of the alphabet.

Proof. By Definition 1, all coefficients are non-negative, therefore the maximum Fmax of

an NM landscape with any discrete or real-valued alphabet xa,b defined in the range [−a, b]

where a ≤ b, occurs when xi = b, ∀i = 1 . . . N and its value is:

Fmax = β0 +
N∑
i=1

βib+

+

(N−1)∑
i=1

N∑
j=i+1

βi,jb
2+

+

(N−2)∑
i=1

(N−1)∑
j=i+1

N∑
k=k+1

βi,jb
3 +

∑
∀βUh

βUh
b|Uh| (4.12)
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where βUh
are the coefficients of all the remaining higher order interactions and the lengths

|Uh| are the orders of these interactions. Thus, the magnitude of Fmax is a function of b, but

is independent of the arity of the alphabet. �

We note that it is trivial to extend this proposition and proof to NM landscapes with

heterogeneous alphabets (i.e., different ranges and/or arities for each feature variable), as

long as the lower bound for each feature is negative, the upper bound is positive, and the

absolute value of the lower bound is≤ the upper bound. However, for notational simplicity

we only demonstrate the proof for homogeneous alphabets. We refer to the above described

general NM landscapes as Type I NM landscapes.

We conjecture that changing the arity of features in NM landscapes does not change

the number, locations, or values of the local peaks or global minima, because higher arity

alphabets simply sample the same landscape at a higher resolution that interpolates between

the local peaks. (Empirical data, not shown, supports this conjecture.)

Note that interaction models with all non-negative interaction coefficients βUk
, but no

negative feature values, generate unimodal landscapes. However, since alphabets in NM

landscapes are defined to include both negative and positive features, NM landscapes have

multiple local optima whenever any interaction terms are included.

Proposition 3: NM landscapes that include all main effects and any odd order inter-

actions have exactly one global maximum.

Proof. By proposition 1, a maximum fitness Fmax of an NM landscape is achieved at point

x = [b, b, . . . b]. Let’s assume there exists another point y = [y1, y2, . . . yn], where y 6=

x (i.e, there exists at least one i such that yi 6= b), that is also a global maximum. Two

cases must be considered. In the first case, if we assume that ∃i, abs(yi) < b, since each

xi ∈ [−a, b] and a ≤ b (by Definition 1) then the value of the interaction model at point
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y will be strictly less than the value at point x. In the second case, if we assume that

∃i, yi = −b, all even order terms will have the same values at points x and y but any odd

order terms (including main effects) containing yi will be negative (since, by Definition 1,

all coefficients are non-negative), therefore the overall sum of terms in y will be strictly less

than the global maximum achieved at point x. Thus, by contradiction, x is the only global

maximum. �

Proposition 4: NM Landscapes that include only even order terms with alphabets in

the range [-b, b] are symmetric and have exactly two global maxima at maximal distance

apart in feature space.

Proof. Since x2ti = (−xi)2t, ∀t ∈ I, then for all NM landscapes with only even or-

der terms, F (x) = F (−x) for each pair of points x = [x1, x2, . . . , xN ] and −x =

[−x1,−x2, . . . ,−xN ]. Thus, NM landscapes with only even order interactions and alpha-

bets in [−b, b] range are symmetric and the two global maxima are at locations [b, b, . . . b]

and [−b,−b, · · · − b], which are the maximum distance away from each other in the feature

space. �

When the value of the global maximum of the landscape is known one can partially

normalize fitnesses to the range ≤ 1 using the following formula:

F =
F

Fmax
(4.13)

However, proper normalization of fitnesses to the interval [0,1] also requires prior knowl-

edge of the global minimum of the landscape, as follows:

F =
F − Fmin

Fmax − Fmin
(4.14)
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To this end, we define subsets of NM landscapes that have a known global minimum.

While there are many ways to do this, below we present two such subsets.

Proposition 5: NM landscapes that include only main effects with odd indices (e.g.,

x1, x3, x5, etc.) and any terms with an odd number of odd indices (e.g., x1x2, x1x3x5,

x1x3x6x7, etc.) and alphabets in the range [−1, 1] have a global minimum located at point

[−1, 1,−1, 1 . . . ]. For example, models of this form including up to M = 3 order terms

are given by:

F (x) =β0 +
N∑

i odd

βixi +
N∑

i odd,
j even

βi,jxixj+

N∑
i odd,
j even,
k even

βi,j,kxixjxk +
N∑

i odd,
j odd,
k odd

βi,j,kxixjxk (4.15)

Proof. At the point [−1, 1,−1, 1 . . . ] all terms with an odd number of odd indices will have

a negative sign, as the product of an odd number of negative numbers is negative. Thus,

this point is the global minimum of the landscape with value:

Fmin = −
(
β0 +

N∑
i odd

βi +
N∑

i odd,
j even

βi,j + . . .
)

(4.16)

(where only terms up through second order are explicitly shown above). �

We refer to the NM landscapes defined in Proposition 5 as Type II NM landscapes.

Note that Type II NM landscapes can easily be extended to alphabets in the range [−a, b],
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where a ≤ b, although for notational simplicity we have limited the range to [−1, 1] in the

above.

Proposition 6: NM landscapes with only odd order terms and alphabets in the range

[−a, b], where a ≤ b, have a global minimum located at [−a,−a, . . . ,−a].

Proof. By Definition 1, βUk
> 0 for all non-zero terms, xi ∈ [−a, b] ∀i, and a ≤ b.

Therefore the value of each term Tk = βUk
∗xUk

has to be≥ −|a||Uk|. When all the features

xi = −a, Tk = −|a||Uk|. Therefore the point [−a,−a, . . . ,−a] is a global minimum with

value:

Fmin = −(β0 +
N∑
i=1

βia+

+

(N−2)∑
i=1

(N−1)∑
j=i+1

N∑
k=k+1

βi,ja
3 +

∑
∀βUh

βUh
a|Uh|) (4.17)

�

We refer to the NM landscapes defined in Proposition 6 as Type III NM landscapes.

When a = b the global maximum and minimum of Type III NM landscapes have the same

absolute value, but opposite signs. Because NM landscapes allow only non-negative coef-

ficients but require both positive and negative feature values, we are thus able to construct

NM landscapes with known maximum and known minimum, enabling normalization of

fitnesses to the range [0,1] by equation (4.14). In contrast, Walsh polynomials allow both

positive and negative coefficients, but have only non-negative feature values. Thus, while

it is possible to manipulate the signs of the Walsh coefficients to specify the location of the
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global maximum [125], the global minimum of Walsh polynomial is still unknown, even if

one restricts the order of the interactions as in Type II or Type III NM landscapes.

4.4 Experiments

4.4.1 Ruggedness

We illustrate how ruggedness changes on binary NM landscapes with coefficients drawn

from the distribution in Eq. (4.9). Since we assess the ruggedness of these models using

exhaustive search, we limit our experiments to N ≤ 15.

In one set of experiments, we generated a random Type I “master” NM model, including

terms for all N main effects and the
∑N

i=1

(
N
i

)
possible interaction terms (e.g., for N =

10 there are 1023 overall terms; 1013 interaction terms plus 10 main effects). We then

systematically created subsets of the master model that include an increasing number m

of terms from the master model, as follows. We started with a base model that includes

all main effects. Random second order terms were then added in groups of 10 (or less

if there are not 10 left). After we had included all of the second order terms, we began

adding randomly selected groups of 10 third order terms, and so on, until the singleN -order

interaction term was included. We performed repetitions of these incremental explorations

of 100 master NM models for each of N = 10 with σ = 10, and N = 15 with σ ∈

{15, 20, 100}.

In another set of experiments, we similarly created 100 master Type II NM landscapes

according to Eq. (4.15), with N = 10 and σ = 10. We created increasing subsets from the

master models, as described above for the Type I landscapes.
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We computed two standard measures of landscape ruggedness [134, 135]: (a) we

counted the number of local peaks (where a local peak is defined as any point whose fitness

value is greater than that of all of its neighbors); (b) we computed the lag 1 autocorrelation

of random walks through the landscapes.

4.4.2 Distribution of fitnesses and local peaks

We generated representative NM landscapes with N = 10 and σ = 10 for each of

M ∈ {1, 2, 3, 4, 6, 10} for both Type I and Type II NM landscapes. We visualize these

landscapes by plotting the fitnesses of all points in the landscape as a function of their

distances (in feature space) to the global optimum, indicating which are local optima.

4.4.3 Basin of attraction of global optimum

We assessed the size of the basin of attraction of the global maximum of Type I and Type

III NM landscapes and NK landscapes for different values of K = M − 1 ∈ {1, 9} and

N = 10. The fitness matrix of NK landscapes is generated from random uniform numbers

in the [0, 1] range. We calculated the size of the global basin of attraction as a weighted sum

of the points in the landscape that can reach the global maximum using only hill climbing.

Each point was weighted based on the percentage of its immediate neighbors with higher

fitnesses that were also in the basin of attraction of the global maximum.

4.4.4 Searchability of the landscapes

We assessed how searchable NM landscapes are using simple genetic algorithms (GAs).

In all the experiments we used a GA with N = 32, σ = 32, population size 256, crossover
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rate 0.7, uniform mutation and the number of random seeds of 32 (these parameter values

were selected to be the same as in [125]).

We studied search on Type I NM landscapes with M = 2 and P ∈ {0, 0.1, . . . , 1}

proportions of all possible second-order interactions. We studied the search on Type III

NM landscapes with M ∈ {1, 3, 5} including all possible main effects and odd order

interactions of order ≤M .

4.5 Results

The number of local peaks L in NM landscapes increases relatively smoothly as we in-

crease the number of terms (m) in both Type I and Type IINM landscapes (i.e., the regions

between the vertical lines on Fig. 4.4) and as we increase the maximum order of interac-

tions M (i.e., as we cross a vertical line on Fig. 4.4).

Note that the average number of local peaks for a given m in both Type I and Type III

landscapes is on the same order of magnitude as the expected number of local peaks inNK

models with the same N and K + 1 =M (compare Figs. 4.4a and 4.4c to Fig. 1).

Similarly, the lag 1 autocorrelation of random walks through both Type I and Type III

NM landscapes decreases relatively smoothly as the number of terms m is increased in

models with a given M , as well as when the maximum order of interactions M is increased

(Figs. 4.4b and 4.4d), where lower autocorrelation corresponds to greater ruggedness. No-

tice that, especially for small M , the increase in ruggedness (as measured by both the

number of local peaks and the lag 1 autocorrelation) asymptotically slows as the number of

terms m increases (Fig. 4.4).
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Figure 4.4: Number of local peaks in landscape as we increase the number of terms (x-
axis) and order of interactions (labels near top), for NM landscapes with N = 10 and
σ = 10. The gray area shows the standard deviation and black line shows the mean for
100 random NM landscapes. a) and c) show the number of local peaks, b) and d) show
the lag 1 autocorrelation for the general model and the model with known global minimum
respectively.

The larger the σ values in Eq. (4.9), the smaller the range of fitness values in the

landscape (Fig. 2), resulting in larger standard deviations of both the number of local peaks

in the landscape (shown in Fig. 4.5 for N = 15) and the autocorrelation (not shown).

We show the fitnesses of all points in representative NM landscapes with N = 10 and

σ = 10 as a function of their distances in feature space to the global maximum for both the
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Figure 4.5: Number of local peaks in landscape as we increase the number of terms (x-axis)
and order of interactions (labels near top), for NM landscapes with N = 10 and σ = 10.
The gray area shows the standard deviation and black line shows the mean for 100 random
NM landscapes.

Type I (Fig.4.6) and Type II (Fig. 4.7) NM landscapes. The global maximum is indicated

by the leftmost red × in each panel and the remaining red ×’s are sub-optimal local peaks.

As we increase the maximum order of interactions M , the fitness difference between the

global maximum and other points in the landscape increases; this effect is amplified for

Type II NM landscapes (Fig. 4.7) relative to Type I NM landscapes (Fig. 4.6).

In both Type I and Type II NM landscapes the distance in feature space between the

global maximum and the nearest local peak generally decreases with increasing M and the

sizes of the basin of attraction for the global maximum decreases (Fig. 4.8). Our results

show that NK and NM landscapes have similar sizes of the basin of attraction for the

global maximum for small and large K = (M −1). However, the size of the basin of attrac-

tion for the global maximum of both Type I and Type II NM landscapes decreases with

increasing M rapidly for M ≤ 5 then levels out, while for NK landscapes the decrease is

more gradual (see Fig. 4.8).
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Figure 4.6: Visualization of fitnesses of all the points in representative Type I binary NM
landscapes with N = 10, σ = 10 versus their distances from the global optimum in feature
space for (a) M = 1, (b) M = 2, (c) M = 3, (d) M = 4, (e) M = 6, (f) M = 10. In these models,
all possible interactions for orders up to M were included.
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Figure 4.7: Same as Fig. 4.6 for the Type II NM landscapes.
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Note that K =M − 1.
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Figure 4.9: Best fitnesses in population of 256 agents shown for 30 generations of search
with Genetic Algorithm. Search is performed on 32 random NM landscapes with M = 2,
N = 32 and different proportions of second-order interactions shown in legend. Crossover
rate is 0.7.
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Figure 4.10: Histograms of the distances between the best solution at generation 30 and
the global maximum for 32 random NM landscapes with M = 2 and N = 32. Results
are shown for NM landscapes with different proportions of second-order interactions (see
histogram titles).
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Figure 4.11: Mean of the best fitnesses found by GA over 30 generations (x-axis) for
32 random NM landscapes with M = [1, 3, 5] and N = 32 when (a) fitnesses are not
normalized, (b) fitnesses are normalized by the global maximum and the global minimum
of the NM landscapes.
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Figure 4.12: Results of search with GA on 32 random NM landscapes with M = [1, 3, 5]
and N = 32. (a) The proportion of the times the search found the global maximum out of
32 runs. (b) The mean and the standard deviation of the distances between the best solution
found by GA and the global maximum, when the global maximum was not found. The
dashed line indicates that at M = 1 all runs found the global maximum.
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Figure 4.13: The mean and the standard deviation of the best fitnesses found by GA on
NM landscapes withM = 3 andN = 32, when fitnesses are either normalized by only the
global maximum (red dashed lines) or both the global maximum and the global minimum
(black lines).

The difficulty of GA search on NM landscapes also increases with increasing m and

M , by several measures of difficulty. When the maximum order of interactions M = 2

and the proportion P of all the possible second-order interactions increases from 0 to 1

in 0.1 increments, our results show that the mean of the best fitnesses found by the GA

decreases, although above P = 0.7 there is little if any further change in difficulty (Fig.

4.9). We speculate that this might correspond to the periodically asymptotic pattern in the

ruggedness noted previously as the maximum number of termsm approaches the maximum

possible for a given M (Fig. 4.4a-b). Results are shown for only the first 30 generations,

after which no further improvement was observed. Histograms of the Hamming distances

between the best solutions found by GA and the global maximum are shown for 32 runs of

the GA, for different proportions of the possible second-order interactions (Fig. 4.10). For

unimodal landscapes (M = 1), the GA found the global optimum in all 32 runs (Fig. 4.10).

For more rugged landscapes the global optimum was also found in some runs, and surpris-
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ingly the proportion of times it was found increased from P = 0.2 to P = 1. However, as

the ruggedness increased, those runs in which the best individuals were suboptimal gener-

ally became stuck farther and farther from the global optimum (note how the distributions

become increasingly spread out to the right, as you view the panels in Fig. 4.10 from top

to bottom).

When fitnesses are not normalized, a higher maximum order of interactions M results

in higher raw fitnesses (Fig. 4.11a). This is due to the fact that summing more interaction

terms result in higher ranges of fitness (Fig. 4.6 and Fig. 4.7). However, when fitnesses

are properly normalized by Eq. 4.14 to the range [0,1], increasing the maximum order of

interactions in the model decreases the values of the best individuals’ fitnesses found (Fig.

4.11b), reflecting the fact that GA search becomes more difficult at higher M .

While the proportion of times that GA was able to find the global maximum out of 32

runs decreased as the maximum order of interactions M increased (Fig. 4.12a), the means

and standard deviations of the distances between the best solutions found by the GA and

the global maximum increased (Fig. 4.12b). Normalizing by Eq. (4.13), rather than Eq.

(4.14) exagerates both the apparent relative generational increase in fitnesses in the GA and

the variance in fitnesses across different random landscapes with the same m and M (Fig.

4.11). This illustrates how knowing the global minimum can help to assess the relative

increase in fitnesses and fairly compare search results on different NM landscapes.

4.6 Discussion

In this work we introduce NM landscapes, which are parametric interaction models that

(a) have non-negative coefficients and (b) are well-defined for feature alphabets of any

arity (from binary to real-valued), as long as (c) the minimum value in the alphabet is neg-
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ative with absolute value less than or equal to the positive maximum. This combination

of constraints ensures that a global maximum is located at the point where all decision

variables have their maximum value, with the optimal value equal to the sum of the model

coefficients. By further restricting which combinations of interactions are present, various

subsets of NM models also have known location and value of the global minimum (we

illustrate two such subsets, which we refer to as Type II and Type III NM landscapes). By

using an appropriate non-negative distribution for the coefficients, the resulting NM land-

scape models have relatively smoothly tunable ruggedness. Epistatic terms are transpar-

ently represented in NM landscapes, making it trivial to control or analyze exactly which

terms and interactions are present. In the following, we discuss why these various aspects

of NM landscapes are valuable, and how they offer advantages over NK landscapes and

Walsh polynomials as epistatic benchmark problems.

4.6.1 Value of finely tunable epistasis

Although NK landscapes have been widely used as benchmark problems with varying

degrees of epistasis, there are many potential applications that require more fine control

over which terms are present or absent.

For example, this study was originally motivated by some of our previous research in

comparing search strategies for healthcare improvement [27, 73]. In the context of clinical

fitness landscapes, it is not reasonable to assume that all features have only main effects

(corresponding toK = 0 inNK landscapes) as there are many known interactions between

various practices and/or treatments in the real world (e.g., [18, 56]). However, it is also not

reasonable to assume that every feature interacts with at least one other feature (corre-

sponding to K = 1). Rather, we sought to explore the performance of the different clinical
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quality improvement strategies (including randomized controlled trials and team quality

improvement collaboratives) in more realistic clinical fitness landscapes where all features

had main effects but varying numbers of second-order interactions were also present.

Alternatively, in some application domains one may wish to model purely epistatic

landscapes in which no main effects are present. For example, in complex diseases there

may be little if any association between single genes and incidence of disease [81]. Sim-

ilarly, the electrical grid is explicitly ensured to be stable with respect to the loss of any

one component, but interactions between two or more component outages can lead to large

cascading failures [26]. For these types of applications, we and others have been seeking

algorithms that are capable of detecting purely epistatic interactions (e.g., [25, 26, 132]).

To test these algorithms, one must be able to create benchmark landscapes where there are

interaction terms but no main effects.

Classic NK landscapes cannot model landscapes between K = 0 and K = 1, nor can

they model landscapes with no main effects or where the strengths of the main effects are

smaller than the strengths of interaction terms [15]. In contrast, general interaction models

(including NM landscapes) easily allow fine control over exactly which terms are present

or absent and one can easily specify different magnitudes of coefficients for different terms.

This is also possible using Walsh polynomials, although the notation is not as simple or

transparent.

In the experiments shown here, we provide evidence that increasing the number m

and/or maximum order M of interactions increases the ruggedness of NM landscapes

with coefficients generated using Eq. (4.9) with σ = N , as measured by number of local

peaks and the lag 1 autocorrelation of random walks through the landscapes (Fig. 4.4),

and also increases the difficulty of these landscapes by several different measures of search
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difficulty, including size of the basin of attraction of the global optimum (Fig. 4.8), final

normalized best fitnesses found with a GA (Figs. 4.9 and 4.11), distances from the global

optimum of sub-optimal final best fitnesses found by a GA (Figs. 4.10 and 4.12a), and

proportion of times a GA was able to find the global optimum (Fig. 4.12b).

4.6.2 Value of fitness normalization

Since the range of possible fitness values varies so much between rugged landscapes (as

illustrated in Figs. 4.6 and 4.7), it is important to normalize fitnesses to a consistent range

if one desires to compare fitness values on different lanscapes (Fig 4.11), or to assess the

variability of a search strategy on landscapes with a given m and M (Fig. 4.9). In [27,

73] we used logistic transforms of general parametric interaction models with unknown

maxima to model search on clinical fitness lanscapes with varying numbers of second order

interactions. While the logistic function successfully bounds the transformed fitnesses to

the open interval (0, 1), it also has the side effect of compressing high fitness values to

the degree that there is very little difference between the fitnesses of the optimal peak and

many suboptimal peaks. This may be a realistic assumption in health care (where there

may be many possible combinations of clinical practices that yield good results), but for

applications where such compression is not ideal it may be more appropriate to normalize

fitnesses to values ≤ 1 using Eq. (4.13), which requires knowing the global maximum, or

even better to the closed interval [0, 1] using Eq. (4.14), which also requires knowing the

global minimum. NM landscapes enable these types of normalization, as discussed in the

following subsections.
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4.6.3 Value of knowing the global maximum

Knowing the best possible fitness offers obvious benefits, including: (a) one can terminate

a search as soon as the known optimal value is found, potentially saving significant com-

putation time; (b) one can compare methods by assessing the frequency with which the

search strategies are able to find the global maximum; (c) one can tell if a stalled search

has found the global optimum or is stuck on a local optimum. Knowing the location of the

global maximum in feature space offers obvious additional benefits (e.g., [57]) including:

(e) one can track the evolving distances of solutions to the global optimum as the search

progresses, which could potentially inform ways to improve the search process; (f) one

can compare the distances (in feature space) from the best final solution to the global opti-

mum; (g) one can assess the difficulty of the fitness landscape by assessing the correlation

of fitness values encountered on a random walk with the distances to the global optimum;

(h) one can empirically explore a landscape near the global optimum in order to asses the

size and shape of its basin of attraction, and (i) one can normalize fitnesses be ≤ 1 using

equation (4.13).

For arbitrary epistatic landscapes (including NK landscapes, general parametric in-

teraction models, and Walsh polynomials) finding the global maximum is NP complete.

However, there are restricted subsets of these for which the global maximum is known. For

example, in Walsh polynomials one can select an arbitrary point and then adjust the signs

of the coefficients to force this to be the global maximum [125]. In NM landscapes both

the location and value of the global maximum is trivially known.
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4.6.4 Value of knowing the global minimum

While fitnessess can be partially normalized to values ≤ 1 with Eq. 4.13 (as in Fig. 4.9),

this can still be misleading, since the range of fitness values has not been properly ac-

counted for. It is thus preferable to normalize to values in the closed interval [0, 1] with

Eq. (4.14), as in Fig. 4.11. For example, in Fig. 4.13 we illustrate how both increase in

relative fitnesses over time and the variability of fitnesses on different landscapes with the

same maximum order M are over-estimated when normalizing by Eq. (4.13), which only

requires that the maximum possible fitness value be known, relative to when the data is

normalized by Eq. (4.14), which requires that both the maximum and minimum possible

fitness values be known.

Finding the global minimum is NP complete in NK landscapes and Walsh polynomi-

als. However, in certain subsets of NM landscapes (e.g., Type II and Type III NM land-

scapes) the value and location of the global minimum is trivially known, enabling proper

normalization of fitnesses.

4.6.5 Value of arbitrary arity of the alphabet

Both NK landscapes and Walsh polynomials are defined for combinatorial problems with

binary alphabets [62] [31] [59]. There are also a variety of benchmark problems with tun-

able difficulty for real-valued alphabets (e.g., [16, 110]). However, in some applications it

would be desirable to have one type of model with tunable ruggedness that could be applied

to binary alphabets, integer alphabets, real-valued alphabets, or heterogeneous alphabets.

For example, in real clinical fitness landscapes, decision variables can have a variety of ari-
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ties ranging from binary (e.g., whether or not a certain practice is performed) to real-valued

(e.g., the amount or duration of application of a particular treatment) [73].

NK landscapes and Walsh polynomials are only defined for binary feature alpha-

bets. NM landscapes are well-defined for alphabets of all arities (including mixed ari-

ties); changing the arity does not change the location or value of the global maximum or

minimum.

4.6.6 Value of transparency of interactions

Various researchers are working on developing algorithms to try to detect which inter-

actions are present in fitness landscapes and use these inferred interactions to guide the

search (e.g., the linkage tree genetic algorithm [128]). Being able to easily control exactly

which feature interactions are present and also know the relative strengths of these interac-

tions would facilitate the testing and validation of such approaches, as one could easily see

whether the algorithm was properly estimating interaction terms.

NK landscapes offer little control over which interactions are to be included, and once

generated it is non-obvious which interaction terms are present or what their coefficients

values are (without significant effort [15]). Walsh polynomials present a framework where

specific interaction terms can be included or excluded from the model, but the notation can

be confusing and obfuscates which terms are present (e.g., see the example in Eq. (4.6)). In

NM landscapes, the interaction terms and their coefficients are obvious, since this is how

interaction models are defined (e.g., see the example in Eq. (4.5)).
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4.7 Summary

We propose a new class of fitness landscapes with tunable degrees of epistasis, referred to

as NM landscapes. All NM landscapes have a known global optimum, various subsets of

NM landscapes have a known global mimimum (thus permitting proper normalization of

fitness values), the ruggedness and search difficulty of NM landscapes can be made to be

relatively smoothly tunable,NM landscapes are well-defined on alphabets of any arity, and

which epistatic interactions are included in a particular instantiation of an NM landscape

is easily controlled or analyzed. In summary, NM landscapes are a simple but powerful

class of models that offer several benefits over NK landscapes and Walsh polynomials as

benchmark models with tunable epistasis.
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[7] Alberto Barceló, Elizabeth Cafiero, Melanie de Boer, Alejandro Escobar Mesa,
Marcelina Garcı́a Lopez, Rosa Aurora Jiménez, Agustı́n Lara Esqueda, José Anto-
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Chapter 5

Concluding Remarks

5.1 Summary of Main Findings of Dissertation

This dissertation presents several methods for studying healthcare quality improvement

initiatives using computational methods. In the first part of the dissertation we present a

genetic algorithm for co-evolving four important aspects of exploratory multivariate time-

series clinical data on inter-hospital interactions aimed at quality improvement in healthcare

outcomes: (i) a subset of features based on inter-hospital interactions aimed at healthcare

improvement to be used as input into some sort of statistical predictor, (ii) which health

outcome attribute we can best predict from these input features, (iii) a dividing year that

partitions the time-series, and (iv) a time lag to be added to the dividing year that predicts

the delay between inter-hospital interactions designed to improve healthcare and subse-

quent observable changes in health outcomes. While this method correctly inferred inter-

actions on synthetic data, the complexity and incompleteness of the real hospital dataset

available to us made it difficult to infer much about the real system, although we did find

that participation in QICs was associated with change in health outcomes.
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In the second part of the dissertation we present an extension of the agent-based model

(ABM) introduced in [27], which permits exploration of various theoretical questions about

quality improvement collaboratives (QICs). We use this ABM to compare how differ-

ent details of team formation affect improvements in patient outcomes. In summary, we

found that teams with higher within-team similarity are able to improve performance more

quickly than diverse teams, are less sensitive to a variety of factors, and larger teams of sim-

ilar agents generally perform better than smaller teams. Notably, the advantage of within-

team similarity increases with the complexity of the fitness landscape and with the level

of noise in fitness evaluation. Based on these results, we propose a new virtual collabo-

ration system that would allow hospitals to receive personalized recommendations about

practices for potentially high impact improvement in patient outcomes. This system would

provide a mechanism for protecting the privacy of hospital and patient data, while facil-

itating learning from a common knowledge bank and accounting for differences in local

contexts.

To use agent-based modeling for testing different hypotheses on healthcare improve-

ment, it is important to have benchmark landscapes that can properly simulate various

characteristics of clinical fitness landscapes. Unfortunately currently existing state-of-the

art benchmark landscapes (including NK landscapes and Walsh polynomials) have many

limitations. In the third part of this dissertation we thus introduce a new set of benchmark

landscapes that we call NM landscapes. NM landscapes have relatively smoothly tun-

able ruggedness, known global optima, a transparent representation of feature interactions,

and are well-defined for both discrete and real-valued features. Subsets of NM landscapes

also have known global minima, which permits proper normalization. In conclusion NM

landscapes are a simple but powerful class of models that offer several benefits over NK
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landscapes and Walsh polynomials as benchmark models with tunable epistasis, making

them well suited for modeling clinical fitness landscapes.

5.2 Future Work

While organizations like the Vermont Oxford Network (VON) have been collecting large

amounts of data for over two decades, this data collection was not done with the aim of

studying how social interactions affect healthcare improvement and thus are insufficient

to measure the healthcare implications of social interactions such as QICs. In the future,

data collection could focus on creating a richer data environment for analysis of how inter-

hospital quality improvement interactions affect healthcare outcomes. VON annual mem-

ber surveys could be restructured to collect data on the types of day to day clinical practices

and treatments that are often the focus of study in QICs. Improvements could also include

automatic collection of data on how much practitioners interact with each other via email,

phone calls and listserves. In addition, VON members participating in QICs could be more

thoroughly surveyed about details on their social interactions designed to improve health-

care.

Many scientists have tried to detect multivariate interactions in complex systems, given

a sample of system states [79] [116]. In [116] the authors use the measure of connected

information, which is based on Shannon information entropy measure. Others tried to use

Shannon entropy from a sample of the possible network states to identify linkages among

features to help guide evolutionary search in NK landscapes [127]. There is also much

research focused on finding epistasis in real clinical landscapes [13] [38] [65] [9]. Knowing

those interactions could potentially improve healthcare outcomes. However, without a clear

understand of which interactions are actually present in complex benchmark landscapes
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used to test these methods, it is difficult to assess how accurately such methods can infer

correct interaction terms. In future work we propose to search for the epistatic interactions

among multiple practices and patient outcomes in the VON database of member hospitals

using the clustering algorithm in [74] applied to the principal components of healthcare

practices and outcomes. NM benchmark landscapes will be used to provide an appropriate

means for testing and validating our approach, as well as the approach in [127], to finding

epistatic interactions.
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