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ABSTRACT 
 

Arenaviruses and hantaviruses are human pathogens that cause significant 
morbidity and mortality. The current lack of vaccines and treatment options for these 
viruses is a global concern. Despite producing only 4 proteins, these viruses are able to 
maintain a persistent and asymptomatic infection in wild rodents while being continuously 
shed into the environment. In humans, these viruses cause a spectrum of diseases ranging 
from aseptic meningitis to severe hemorrhagic fever syndromes. Little is known about how 
arenavirus and hantavirus proteins engage and interact with the human proteome during 
the complex process of viral biogenesis, or how the interactions with human proteins 
contribute to viral propagation as well as the onset and progression of disease. This 
dissertation provides a road map of the protein interactions formed between a prototypic 
envelope glycoprotein encoded by either an arenavirus or hantavirus, and the human 
proteome.  

The viral envelope glycoprotein (GP) decorates the surface of the virion. The 
primary function of the GP is to mediate attachment of the virus to specific cellular 
receptors, and after internalization of the virion, fuse the viral membrane with an internal 
endosomal membrane. In order to carry out these specific tasks, the viral GPs must first 
co-opt the extensive machinery found within the cellular secretory pathway to coordinate 
the proper glycosylation, folding, proteolytic maturation, and targeting of the GP during its 
biosynthesis. We identified a human protein with a conserved interaction amongst these 
two groups of viral GPs termed the Endoplasmic Reticulum (ER)-Golgi Intermediate 
Compartment Protein of 53 kiloDaltons (ERGIC-53). ERGIC-53 is an intracellular cargo 
receptor that normally cycles within the early secretory pathway of cells, where it is 
responsible for ferrying a small subset of cellular glycoproteins, most notably the 
coagulation factors FV and FVIII, from the ER to the Golgi apparatus.  

Herein we describe a novel role for ERGIC-53 in the propagation of not only 
arenaviruses, but also coronaviruses and filoviruses. Following infection with an 
arenavirus, ERGIC-53 leaves the early secretory pathway and becomes incorporated into 
the virus as it pinches off from the cell surface. Newly formed viruses lacking ERGIC-53 
are no longer infectious due, in part, to a defect in their ability to attach to host cells. We 
suggest that ERGIC-53 represents a promising broad-spectrum antiviral target because of 
its association with the GPs from many families of pathogenic viruses, as well as its ability 
to exert control over their infectivity; and finally, because ERGIC-53 itself is not required 
for human health. The discovery of ERGIC-53 outside of its normal location inside of cells 
suggests that it may have additional unknown functions. Lastly, by revealing the 
importance of the cellular protein in controlling viral infectivity, we provide insight into 
the ongoing co-evolution of virus and host. 
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1 COMPREHENSIVE LITERATURE REVIEW 
 

Overview of aims and significance 

Arenaviruses are enveloped, negative sense, RNA viruses harbored in wild 

rodents in a variety of locales globally. Their natural history, genetic strategy, and 

cellular biology have provided a wealth of knowledge to researchers for nearly a century. 

In addition to providing scientists with an elaborate model to study virus-host 

interactions, these viruses are first and foremost, human pathogens that cause significant 

morbidity and mortality annually. Arenaviruses are known to cause a spectrum of disease 

ranging from aseptic meningitis to a severe hemorrhagic fever syndrome. The outcome of 

infection varies based on the route and amount of inoculation, as well as the genetics of 

the incoming virus. Additional clinical variation arises from differences in the age and 

immunological status of the infected person. With high mortality rates and a lack of 

preventative or therapeutic options available, arenaviruses represent an emerging and re-

emerging zoonotic group of pathogens with a clear need of targeted antiviral 

development strategies. Herein, this dissertation presents the first systematic and 

comprehensive documentation of the interactome of the prototypic arenavirus 

glycoprotein (herein revised as GP) derived from lymphocytic choriomeningitis virus 

(LCMV), in addition to the interactome of the prototypic New World (NW) hantavirus 

glycoprotein derived from Andes virus (ANDV). The inclusion of a hantavirus 

glycoprotein is that of a natural control and companion to the arenavirus GP. 

Hantaviruses, similarly, are rodent-borne, negative sense, enveloped RNA viruses lacking 
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in not only vaccines, but treatment options. Hantaviruses, however, are genetically 

distinct and share few pathophysiological features. As members of the bunyavirus family, 

they are thus grouped alongside arenaviruses, filoviruses, and flaviviruses as agents 

causing viral hemorrhagic fevers.  

The process of identifying and characterizing the interactome of the arenavirus 

and hantavirus GPs provided a platform for four distinct goals. First, by identifying the 

proteins in complex with these viral glycoproteins, a more detailed understanding of the 

basic cellular biology governing biogenesis and pathogenesis could be established at the 

resolution of protein-protein interactions. Secondly, by revealing which individual 

proteins, as well as protein networks, involved in biogenesis are biologically relevant to 

propagation and pathogenesis, a strategic approach to targeting crucial stages of the viral 

lifecycle could be implemented. Following bioinformatics comparisons, biochemical 

verification, and functional validation studies, characterization of a core suite of 

conserved cellular proteins that will serve as potential broad spectrum antiviral targets 

can occur. Next, mechanistic insight can be gained into the stage specific role of the 

virus-host interaction, through analyzing the organization and interaction of the protein or 

protein complexes, and their respective contributions to GP form and function. Lastly, by 

uncovering the protein determinants responsible for mediating the interaction, future 

studies can utilize this information to selectively disrupt the interactions therapeutically. 

The detailed investigation of the consequence and molecular mechanisms governing the 

arenavirus GP interactome revealed an interesting and unlikely candidate that coincided 
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with the four goals of this investigation; Endoplasmic Reticulum – Golgi intermediate 

compartment protein of 53 kilodaltons (kDa), hereafter referred to as ERGIC-53.  

We demonstrate that ERGIC-53, a previously assumed intracellular cargo 

receptor required for trafficking of coagulation factors V and VIII (FV & FVIII), is part 

of a receptor complex with multiple coagulation factor deficiency protein 2 (MCFD2) 

that interacts with arenavirus and hantavirus glycoproteins. This interaction is shared, 

minimally, amongst coronavirus, filovirus, and orthomyxovirus envelope glycoproteins, 

and is required for the production of infectious viral particles.  These dissertation studies 

revealed that during infection with an arenavirus, ERGIC-53 will traffic to the plasma 

membrane, and be incorporated into newly formed arenavirus particles. Depletion of 

ERGIC-53, or genetic ablation of its anterograde trafficking potential, severely impairs 

viral propagation. Depletion of MCFD2, inversely, bolsters viral replication. ERGIC-53 

and MCFD2, despite representing halves of a single molecular complex, propagate 

opposing forces on the viral lifecycle. Interrogating the ERGIC-53:MCFD2 complex has 

revealed a rich and interesting molecular insight to the history of virus and host, and 

represents a novel molecular machine to interfere with therapeutically. 

 

1.1. The Arenaviridae 
 

Arenaviruses are zoonotic, enveloped, RNA viruses commonly associated with 

the Muridae family of rodents (Childs & Peters, 1993), with exceptions being Tacaribe 

virus (TACRV; Artibeus, fruit bat,) (Downs, Anderson, Spence, Aitken, & Greenhall, 



 

4 
 

1963), California academy of science virus (CASV,  Corallus annulatus, the annulated 

tree boa), and, finally, Golden Gate virus and Collierville virus (GGV and CCV, Boa 

constrictor) (Stenglein et al., 2012). The majority of known arenavirus species are not 

associated with human disease and are thought to have co-evolved with their rodent hosts 

to cause little to no pathology. Lassa virus (LASV), Lujo virus (LUJV), and Lymphocytic 

choriomeningitis virus (LCMV) constitute the most widely recognized human pathogens 

in the Old World (Emonet, Lemasson, Gonzalez, de Lamballerie, & Charrel, 2006). Junín 

virus (JUNV), Machupo virus (MACV), Guanarito virus (GTOV), Sabia virus (SABV), 

Chapare virus (CHAPV), and White Water Arroyo virus (WWAV) are the predominant 

human pathogens in the NW grouping (Bowen, Peters, & Nichol, 1996).  

The Arenaviridae consists of a single genus with approximately 25 species currently 

recognized by the international committee on the taxonomy of viruses (ICTV), and 

several new species are pending approval. The virus family is subdivided into Old and 

New world groups based on antigenic reactivity (serology) (Casals, Buckley, & Cedeno, 

1975), geographic location, and genome similarity (Emonet et al., 2006). Old World 

(OW) viruses are predominantly found in Africa, as well as Asia and Europe. New World 

(NW) viruses are distributed in North and South America. The prototype of the Old 

World viruses, LCMV, is globally distributed and maintains a great deal of diversity with 

~20 known strains (Albarino, 2010). Phylogenetic analyses of the OW grouping suggest 

up to four lineages of LCMV globally (Albarino, 2010), as well as four lineages of LASV 

within Western African countries (Bowen et al., 2000). Inter-species diversity is common 

among pathogenic New World arenaviruses (Bowen et al., 2000) and “non”-pathogenic 
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arenaviruses (Michael D. Bowen, Clarence J. Peters, & Stuart T. Nichol, 1997). The 

heterogeneity that is prevalent amongst both pathogenic and non-pathogenic 

arenaviruses, as well as intra-species genetic variation, may provide clues to mechanisms 

of pathogenesis. The New World arenavirus group is further subdivided into clades A, B, 

C, and more recently the Rec A/B sub-grouping (Charrel et al., 2003). Currently, 

pathogenic NW viruses all group into clade B (Charrel, de Lamballerie, & Emonet, 2008) 

with the exception being WWAV, which is found in the Rec A/B. The NW arenavirus 

group Rec A/B is posited to be the result of a recombination event from an ancestral 

North American arenavirus species (Charrel et al., 2002). As new arenaviruses are being 

identified and characterized, additional phylogenetic and evolutionary groupings may 

begin to appear. The current phylogenetic organization and diversity of the Arenaviridae 

is thought to have arisen from extensive co-evolution of viruses with their rodent hosts 

(Emonet, de la Torre, Domingo, & Sevilla, 2009). Accordingly, closely related arenavirus 

species (i.e. JUNV and MACV) are harbored in closely related rodent species (C. 

musculinus and C. callosus) (Michael D. Bowen et al., 1997), and WWAV and Catarina 

virus (CTNV) (N. albigula and N. micropus) (Cajimat et al., 2008; Cajimat, Milazzo, 

Bradley, & Fulhorst, 2007). 

1.2. Arenavirus epidemiology: pathogenic Old World arenaviruses 
 

 

1.2.1. Lassa virus 
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The predominant African arenavirus is LASV, the etiologic agent of Lassa Fever 

(LF) (Buckley & Casals, 1970; Frame, Baldwin, Gocke, & Troup, 1970; Leifer, Gocke, 

& Bourne, 1970; Speir, Wood, Liebhaber, & Buckley, 1970), and is endemic in countries 

along the Western coast of Africa (Sierra Leone, Nigeria, Liberia, and Guinea). It is 

estimated that 100,000 – 300,000 cases of LF occur annually (McCormick, Webb, Krebs, 

Johnson, & Smith, 1987; Monath, Maher, Casals, Kissling, & Cacciapuoti, 1974). 

Epidemiological studies suggest overall mortality rates of 1-2% (McCormick et al., 

1987), however, fatalities in hospitalized patients are substantially higher (~15-20%) 

(Bausch et al., 2001) and can reach upwards of 80% during outbreaks (Günther & Lenz, 

2004). LASV is particularly dangerous to both pregnant women (Monson, Frame, 

Jahrling, & Alexander, 1984; Price, Fisher-Hoch, Craven, & McCormick, 1988) and 

developing fetuses with mortality rates of 30-50% and 70-90%, respectively (Günther & 

Lenz, 2004). However, these numbers vary depending on the age of the mother and fetus  

(Monson et al., 1987; Webb et al., 1986). In endemic regions, upwards of 50% of the 

human population are seropositive for LASV antibodies, and the Mastomys natalensis 

reservoir seropositivity ranges from 8-80% demonstrating a large potential for continued 

transmission events (Frame et al., 1970; McCormick et al., 1987; Monath, Newhouse, 

Kemp, Setzer, & Cacciapuoti, 1974). Re-infection rates and underreporting may change 

the complete picture of the disease burden. Also, given the antigenic similarities of the 

African arenaviruses, the human seropositivity rates in the LASV endemic region may 

also represent pre-exposure to non-pathogenic species as well as exposure to strains of 

LASV that cause less severe disease (Günther & Lenz, 2004; McCormick et al., 1987; 

Thomas P. Monath et al., 1974).  
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The LASV rodent reservoir population covers a widespread geographic area that 

extends beyond the LASV endemic zone (Lalis et al., 2012). The rodents are commonly 

found amongst dwellings and are consumed as bushmeat, both of which contribute to the 

common occurrence and spread of LASV in the region (Keenlyside et al., 1983; Meulen 

et al., 1996). Multiple Mastomys species may be involved in the transmission of LASV, 

however, the exact phylogeny is still unclear for these rodents (Salazar-Bravo, Ruedas, & 

Yates, 2002). LASV also poses a new found risk as an imported pathogen, as several 

cases of imported LF have been documented globally (Amorosa et al., 2010; Haas et al., 

2003; Hirabayashi et al., 1989). 

1.2.2. Lujo virus 
 

An unusually fatal outbreak of hemorrhagic fever in 2008 resulted in the 

identification of the most recent pathogenic Old World arenavirus, referred to as Lujo 

virus (LUJV) (Briese et al., 2009). Lujo virus was isolated and identified following the 

air-transfer of a patient from Zambia to South Africa. The nosocomial spread resulted in 

an 80% mortality rate and highlights the risk involved in hospital settings dealing with 

emergence/re-emergence of arenaviruses in a naïve community (Paweska et al., 2009). 

Lujo represents the first pathogenic arenavirus isolated in Africa in approximately four 

decades, and suggests a wider distribution of pathogenic species than has been previously 

documented. However, during the intervening years, a number of non-pathogenic viruses 

have been identified including: Ippy, Mobala, Mopia, and Luna viruses which overlap or 

are adjacent to LASV endemic areas. The vector responsible for transmitting LUJV has 
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yet to be identified. The index patient was reported to be near rodents in the week prior to 

the onset of symptoms, which is in accordance with most arenaviral transmission events. 

1.2.3. Lymphocytic choriomeningitis virus 
 

Lymphocytic choriomeningitis virus, the prototype virus of the family, has a 

global distribution which coincides with that of its reservoir, the common house mouse 

(Mus musculus or Mus domesticus) (Traub, 1936). The wide distribution of infected mice 

has been confirmed in several surveys within the United States and European countries 

which have demonstrated reservoir seroprevalence ranges of ~ 3-14% in urban settings 

(Childs, Glass, Korch, Ksiazek, & Leduc, 1992; Childs et al., 1991; Ledesma et al., 

2009). The mortality rate for LCMV infection in an immunocompetent human host is < 

1%. However, in the setting of solid organ transplantation, LCMV, or Dandenong virus 

(DANV), an LCMV-like virus (Palacios et al., 2008b), has recently been shown to be 

extraordinarily lethal (Staci A. Fischer et al., 2006; Macneil, Ströher, et al., 2012; 

Macneil, Stroher, et al., 2012; Palacios et al., 2008b).  In addition to immunosuppressed 

transplant recipients, developing fetuses are also highly susceptible to disease (Daniel J. 

Bonthius, 2012; Bonthius et al., 2007). Congenital LCMV infections are thought be an 

underdiagnosed phenomena (D. J. Bonthius, 2012; Enders, Varho-Gobel, Lohler, 

Terletskaia-Ladwig, & Eggers, 1999).  A number of outbreaks have also occurred in 

rodent breeding facilities (Centers for Disease & Prevention, 2012; Knust et al., 2014), as 

well as in research laboratories (Baum, Lewis, Rowe, & Huebner, 1966; Dykewicz, Dato, 

Fisher-Hoch, & et al., 1992; Knust et al., 2014), and from exposure to infected pet 
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rodents (Amman et al., 2007; Gregg, 1975; Rousseau, Saron, Brouqui, & Bourgeade, 

1997), suggesting multiple routes and opportunities for human exposure to virus.  

1.3. Arenavirus epidemiology: pathogenic New World arenaviruses 
 

1.3.1. Junín virus 
 

Junín virus, the etiological cause of Argentine hemorrhagic fever (AHF), was first 

reported in 1955 (Arribalzaga, 1955) as a febrile hemorrhagic disease of unknown origin, 

and was soon after isolated by Parodi et al. (Parodi et al., 1958). The virus is endemic 

amongst the rich agricultural land found in the pampas region and is responsible for 

approximately 100-3,000 cases annually in an area encompassing 150,000 km2 

(Maiztegui, 1975). The area of endemicity has increased from ~15,000 km since 

surveillance began, and now covers an area inhabited by ~ 1-5,000,000 people (Gómez et 

al., 2011). The principle host of JUNV is the vesper mouse (Callomus musculinus), 

however, some degree of spillover may be present in other closely related species (Mills 

et al., 1994; Salazar-Bravo et al., 2002). Approximately 10% of the vesper mice trapped 

in longitudinal studies have been reported as being seropositive (Mills et al., 1994; Mills 

et al., 1992), suggesting potential for widespread exposure. 

The case fatality rate for Junín virus is approximately 20-30% when untreated, 

however administration of immune sera from convalescent patients reduces this to ~ 1%, 

albeit with a modest risk of late neurological complications (Maiztegui, Fernandez, & de 

Damilano, 1979; Ruggiero et al., 1986). The virus predominantly affects male 

agricultural workers in the endemic region (Maiztegui, 1975). Amongst the South 
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American arenaviruses, Junín is thought to be responsible for the majority of human 

arenavirus disease; however recent vaccination coverage with a live-attenuated vaccine 

(Candid1) has substantially reduced annual cases of severe human disease, and has been 

delivered to several hundred thousand people in at risk populations within Argentina 

(Enria, Ambrosio, Briggiler, Feuillade, & Crivelli, 2010; Maiztegui et al., 1998). The 

attenuated vaccine varies from the parental strain (XJ) by 13 amino acids (Goni et al., 

2006), and has been given an investigational new drug status by the FDA. Concerns 

about the genetic stability of the vaccine, as well its passage history, have hampered its 

use outside of the endemic zone (Contigiani, Medeot, & Diaz, 1993). Despite the 

concerns, Candid1 has thus far provided roughly 90% protection against severe disease, 

and provides researchers a safe alternative (biosafety level 2 virus) to the BSL4 parental 

strain. 

1.3.2.  Machupo virus and Chapare virus 
 

Machupo virus, the pathogen responsible for Bolivian hemorrhagic fever (BHF), 

carries with it a similar disease course and mortality rate as JUNV, but is more sporadic 

in incidence (Patterson, Grant, & Paessler, 2014). The virus became known to the 

western world in 1963 following a series of HF outbreaks in the village of San Joaquin 

(Johnson, 1965; Mackenzie, 1965). The virus reservoir, Calomys callosus, is commonly 

found amongst houses, unless preventative measures are set in place  (Kuns, 1965; 

Salazar-Bravo et al., 2002). In addition to MACV, Chapare virus (CHAPV) was 

identified as an additional pathogenic arenavirus present in Bolivia. In December of 2003 

and January 2004, Chapare virus was identified in an area outside of the MACV endemic 
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zone, following reports of several VHF cases. Sera was recovered and made available 

from the only known fatal case of which Chapare virus was later isolated and 

characterized (Delgado et al., 2008). 

1.3.3. Guanarito virus and Sabia virus 
 

Guanarito virus (GTOV), the agent responsible for Venezuelan hemorrhagic fever 

(VHF), was identified in the rural area of Portuguesa State in central Venezuela (Salas et 

al., 1991). Epidemiological studies suggest that the number of infected animal reservoirs 

(Zygodontomys brevicuda) (Fulhorst et al., 1999)) in the endemic area to range from 5-

15% up to 48% and the human seroprevalence rates are approximated at 2.5% based on 

the limited serological surveillance to date (Milazzo, Cajimat, et al., 2011; Tesh et al., 

1993). Sabia virus (SABV) was isolated from a fatal case of VHF in  Sao Paolo, Brazil 

(Lisieux et al., 1994). During characterization and isolation of the virus, a laboratory 

worker became ill with the newly identified virus, but recovered successfully 

(Vasconcelos et al., 1993). The natural host of this virus has yet to be determined, 

however, given the history of rodents in arenavirus transmission, it is assumed to be an 

indigenous rodent species. These viruses (JUNV, MACV, GTOV, SABV, and CHAPV) 

constitute the known human pathogenic arenaviruses in South America able to cause viral 

hemorrhagic fever.  

1.3.4. White water arroyo virus 
 

White Water Arroyo virus (WWAV), identified in 2001, is associated with a brief 

outbreak of severe disease in California (Byrd et al., 2000), and is the only NW 
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pathogenic arenavirus currently recognized in North America. Its Neotomys sp., host 

covers a large area in the southwestern United States (Milazzo et al., 2010). In addition to 

WWAV, the other North American arenavirus suspected of being involved in human 

infection is Tamiami virus (TAMV). TAMV seropositivity exists minimally amongst a 

group of Seminole Indians, as well as the Sigmodon hispidus (TAMV) reservoir, which is 

geographically distinct from Neotoma albigula (WWAV) rodents (Fulhorst et al., 1996; 

Milazzo, Campbell, & Fulhorst, 2011). Despite the widespread prevalence of antibodies 

in North American rodents to arenaviruses, a limited number of bona-fide human 

pathogens have emerged (Milazzo et al., 2010; Salazar-Bravo et al., 2002). Additional 

epidemiological surveys and studies to identify molecular determinants of pathogenesis 

are required to ascertain the full risk involved with endogenous North American 

arenaviruses. 

1.4. Reservoir biology 
 

Arenaviruses, with the exception of tacaribe virus, and the newly identified grouping 

causing inclusion body disease (IBD) in related snake species, are each found within a 

discreet rodent species with minimal overlap and/or spillover. As such, their geographic 

distribution is restricted to the ecological range of the rodent hosts (Salazar-Bravo et al., 

2002). Maintenance of arenaviruses within these reservoir species is more than simple 

tolerance, rather it is likely an intricate co-evolution of virus and host (M. D. Bowen, C. 

J. Peters, & S. T. Nichol, 1997; Charrel et al., 2003; Emonet et al., 2006; Hugot, 

Gonzalez, & Denys, 2001). A record of this is maintained not only in the arenavirus 

genome, but also in the rodent genomes (Choe, Jemielity, Abraham, Radoshitzky, & 
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Farzan, 2011; Demogines, Abraham, Choe, Farzan, & Sawyer, 2013; Tayeh, Tatard, 

Kako-Ouraga, Duplantier, & Dobigny, 2010; Zapata & Salvato, 2013). Along these lines, 

the most similarly related arenaviruses (e.g. JUNV and MACV, or LASV and MOBV) 

can be found in closely related rodents (e.g. Calomus musculinus and Calomus callosus 

or Mastomys sp). These relationships are not always obvious, however, as substantial 

heterogeneity also exists within the family and sub-species. 

One of the distinguishing features of arenaviruses is the ability to establish a chronic 

infection in a host/cell whilst leaving the host/cell largely unharmed. This has been 

demonstrated both in vivo (Traub, 1936) in various rodent hosts, as well as in-vitro 

(Lehmann-Grube, Slenczka, & Tees, 1969) in laboratory settings. Rodent reservoirs, 

despite typically showing no overt signs of disease, are able to shed infectious virus into 

the environment via urine, saliva, and fecal leavings. The infectious fomites are thought 

to be the principal source for transmission of infectious matter into humans either through 

inhalation of aerosols, contaminated food sources, or through skin abrasions. 

Consumption of infected rodent meat may also play a role in rodent to human 

transmission. More recently, organ transplantations have produced a unique avenue for 

human to human transmission with exceptionally fatal outcomes (Botten, King, Klaus, & 

Zeigler, 2013).  

The mechanisms of viral persistence have been examined from a molecular 

perspective (e.g. viral gene regulation and D.I. particle production) (Oldstone & 

Buchmeier, 1982; Rawls, Chan, & Gee, 1981; Welsh & Buchmeier, 1979), as well as 

from a systems - immunological perspective (Teijaro et al., 2013). Close examination of 
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both virus and host has provided ongoing clues to the amalgam of mechanisms at play in 

maintaining a persistent infection (Oldstone & Buchmeier, 1982; Valsamakis et al., 

1986). Common themes include down-regulation of co-stimulatory molecules (e.g. 

MHC), avoiding and dampening type I interferon (IFN-I) production (Borrow, Martínez-

Sobrido, & De la Torre, 2010; Teijaro et al., 2013), and promotion of T cell exhaustion 

(e.g. PD-1) (Wherry et al., 2007; Zajac et al., 1998; Zinselmeyer et al., 2013).  

1.4.1. Arenavirus transmission: rodent-rodent and rodent-human 

The principal route of maintenance for the prototype arenavirus, LCMV, relies upon 

transmission from infected mother to her dams. This LCMV-mouse model has been 

widely used as a surrogate to study arenavirus transmission amongst rodent reservoirs, 

due in part to the biosafety concerns with more pathogenic species, as well as the 

difficulties found in studying transmission in the endemic areas. These developing 

rodents are qualified as carriers and harbor virus systemically. As such, they can shed the 

virus via urine, feces, blood, and saliva. Evidence for horizontal transmission amongst 

some NW and OW rodents, particularly during aggressive encounters,  suggests it may 

also play a substantial role. This is in contrast to LCMV in-uetero vertical models, as 

experimentally infected C. musculinus are reported to have reproductive consequences 

(Vitullo, Hodara, & Merani, 1987). However, this topic remains an issue of debate as 

additional studies suggest a prominent role also for vertical transmission (Vitullo & 

Merani, 1990). 
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The horizontal mechanism of transfer, though not key to maintenance is critical for 

zoonosis, and represents an additional ecological layer of complexity. Viral mutations 

acquired randomly can be selected via tissue-specific pressures which may assist in 

successful spillover into a naïve species (e.g. humans), as well as other closely related 

rodents depending on the fluctuations in rodent population numbers and behaviors (Gire 

et al., 2012; McCormick et al., 1987).  

1.5. Pathophysiology of arenaviruses in humans and animal models. 
 

Despite genetic dissimilarities, disparate vectors, and geographical separations, 

arenaviruses when transmitted to humans elicit some common symptoms. The common 

and unique aspects of arenavirus induced pathophysiology offers a challenge to both 

clinicians and researchers as they seek to understand the etiology of disease and to 

intervene in its progress. The onset of an infection by an arenavirus is widely considered 

insidious. Fever ensues, and is often relentless. The prevalence of the viruses 

geographically with other agents known to cause debilitating febrile illnesses often leads 

to complications in recognition and treatment (Daniel J. Bonthius, 2012; McLay, Liang, 

& Ly, 2014; Peters, 2002). 

The prototype of the family, LCMV, generally, causes a subclinical disease that is 

self-limiting and often goes unreported (Buchmeier & Zajac, 1999). The primary LCMV 

case, reported in 1934 by Lillie and Armstrong, briefly described a middle aged woman 

complaining of general malaise, severe headache, and of being “very hot” (Armstrong & 

Lillie, 1934). The initial discovery was made during an outbreak of Saint Louis 
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encephalitis, and was typical of the disease occurring at the time, until passaging of the 

infectious agent through rhesus monkeys and white mice revealed the unique, and never 

before seen characteristics of the virus including its presence in the choroid plexus and 

meninges, of which it’s named was garnered. 

In certain conditions, LCMV, can cause a variety of severe diseases in humans 

including, but not limited to, aseptic meningitis and encephalitis (Buchmeier & Zajac, 

1999). Sporadic reports of other manifestations (i.e. orchitis) in non-meningeal cases 

have also been documented (Baum et al., 1966). LCMV, though not frequently associated 

with hemorrhagic fevers, has also been documented as causing notable coagulopathy 

(Staci A. Fischer et al., 2006; Scott & Rivers, 1936). The disease in humans can manifest 

either systemically and/or neurologically and follows a biphasic course of development 

characterized by a febrile and late neurological episode that usually begins within 1-2 

weeks after exposure (Botten et al., 2013; Lehmann-Grube, 1989). Non-meningeal forms 

that have been documented have similar general symptoms including a febrile illness 

with fever, loss of appetite, low back pain, general malaise, nausea, vomiting, retro-

orbital headache, photophobia, maculopapular rash, occasional alopecia, with common 

lab findings leucopenia and occasional thrombocytopenia (Baum et al., 1966; Lewis & 

Utz, 1961; Strausbaugh, Barton, & Mets, 2001). LCMV acquired in-utero has been 

demonstrated to be highly teratogenic, can result in abortion of the fetus, and can cause 

severe developmental defects. Common signs in the fetus and surviving children are: 

hydrocephalus, microcephalus, chorioretinitis and retinal scarring, mental and 

psychomotor retardation, and cerebral palsy (Barton & Hyndman, 2000; Bonthius et al., 
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2007; Enders et al., 1999; Wright et al., 1997). Prenatal LCMV infections are thought to 

be an underdiagnosed disease due to similar and overlapping symptoms of TORCH 

(toxoplasmosis, rubella, cytomegaoviurs, and herpes virus) (Daniel J. Bonthius, 2012; 

Bonthius, Mahoney, Buchmeier, Karacay, & Taggard, 2002; Bonthius et al., 2007; 

Wright et al., 1997).  

African arenaviruses, in particular LASV, cause symptoms within 7-12 days post-

exposure (Yun & Walker, 2012). Common symptoms include fever, severe headache, 

sore-throat, retro-sternal pain, myalgia, facial and neck swelling, and pharyngitis (Bausch 

et al., 2001; Buckley & Casals, 1970). An early leucopenia is often observed, followed by 

a late leukocytosis. LF, if fatal, occurs usually within 12 days, and follows a hypotensive, 

hypovolemic, and/or hypoxic shock syndrome (Edington & White, 1972; Fisher-Hoch, 

McCormick, Sasso, & Craven, 1988). Hemorrhaging, often gingival or more rarely 

gastrointestinal, is less common during LF and is an indicator of poor prognosis, along 

with neurological involvement (Bausch et al., 2001; Günther & Lenz, 2004; Gunther et 

al., 2001). An unusual sequala of LF is sensorineural hearing deficit, which is estimated 

to occur in up to 30% of LF patients. The etiology of the hearing loss is not well 

understood, and has been suggested to be an immunopathological development, as 

opposed to a direct result of virus infecting the cells involved (Cummins, McCormick, 

Bennett, & et al., 1990; Okokhere, Ibekwe, & Akpede, 2009).  A more thorough 

description of the cellular and systemic features of this fatal disease course is lacking due 

to insufficient and infrequent post-mortem examinations.  
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An interesting feature of severe LASV disease is the insufficient immunological 

response early during infection (Mahanty et al., 2003). Antigen presenting cells (APCs) 

are thought to be a crucial early cell type infected with virus (macrophages and dendritic 

cells). Secondary dissemination occurs in most visceral tissue and virus can be found in 

hepatocytes, endothelial cells, epithelial cells, and fibroblasts. Immunosuppression is 

hypothesized to result from multiple dysfunctions within infected APCs, which could 

lead to a general repression of a functional antiviral CTL response thus facilitating 

uncontrolled viral replication (Günther & Lenz, 2004). Accordingly, uncontrolled viral 

replication and high titer are one of the few indicators of disease severity (Edington & 

White, 1972; Johnson et al., 1987). Several mechanisms have been proposed explaining, 

in part, how LASV deters activation of an immune response via nucleoprotein (NP) and 

matrix protein (Z) interactions involving cytosolic pattern sensors –RIG I and MDA5 and 

Caspase inhibition. These will be discussed below in the arenavirus protein sections. 

Also, the glycoprotein (GP) mediated tropism of the virus allows for direct infection of 

professional antigen presenting cells and is thought to interfere with sufficient antigen 

presentation and support the immunosuppressive state during the disease course 

(reviewed in (Russier, Pannetier, & Baize, 2012)).  

The lack of extensive cytopathology by the virus has been a conundrum for 

clinicians and scientists. Disruption of the vascular endothelium, and its barrier function, 

is a feature thought to contribute to pathogenesis (Kunz, 2009; Peters & Zaki, 2002). The 

immunosuppressive phenotype observed during OW arenavirus infection, seems at odds 

with the disease course for NW arenaviruses, as will be discussed in the following 
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section. The paucity of neutralizing antibodies seen following infection, contrasts with 

NW arenavirus convalescence, where high nAbs are a common feature that protect 

against re-infection (Bausch et al., 2000; Bond, Schieffelin, Moses, Bennett, & Bausch, 

2012). 

South American pathogenic arenaviruses all generate a very similar clinical 

picture (Schattner, Rivadeneyra, Pozner, & Gómez, 2013). The clinical descriptions and 

pathophysiology of Junín virus are the most well-documented. Symptoms begin within 7-

10 days post-infection and are highlighted by fever, malaise, macular popular rash, severe 

headache, photophobia, and petechial hemorrhaging (Grant et al., 2012; Molinas, Bracco, 

& Maiztegui, 1981). Neurological complications are common and include tongue tremor, 

hyporeflexia, confusion, ataxia, seizures, and coma in severe cases (Marta et al., 1999). 

As in severe LF, AHF cases have a terminal shock of unknown etiology. Autopsies from 

fatal cases report the involvement of lymphatic tissue as sites of replication with 

macrophages, dendritic cells, and monocytes being primary targets of replication (Pozner 

et al., 2010), as well as focal necrotic hepatic lesions (Gonzalez, Cossio, Arana, 

Maiztegui, & Laguens, 1980). In contrast to LASV infections, the South American 

arenaviruses elicit a potent inflammatory response in correlation with viral titer and 

disease severity, demonstrate high levels of proinflammatory cytokines -TNF alpha, IL-6, 

and have greater incidence of hemorrhaging (Heller, Saavedra, Falcoff, Maiztegui, & 

Molinas, 1992; Marta et al., 1999). Hemorrhaging caused by SA arenaviruses, in contrast 

to OW, does not correlate with disease severity or outcome (Heller et al., 1995; Molinas, 

de Bracco, & Maiztegui, 1981). In both OW and NW human disease, a consistent lack of 
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cytopathology exists which is insufficient to explain the severe disease and shock 

manifestations that people succumb to (Elsner, Schwarz, Mando, Maiztegui, & Vilches, 

1973; Walker et al., 1982).   

 The exact alterations in the hematological system during arenavirus infections 

across New and Old World viruses that lead to bleeding abnormalities have been elusive, 

and multiple explanations have been proposed. Many explanations, however, are based 

on studies in animal models or tissue culture systems, such as the role of nitric oxide in 

endothelial cell permeability following PICV infection (Brocato & Voss, 2009). NO 

production during AHF has been noted in patients, confirmed in an endothelial cell 

culture systems, and is suggested to promote hemorrhage through barrier disruption 

(Gomez et al., 2003). Platelet dysfunction via IFN over-stimulation is another hypothesis, 

and accordingly, JUNV virus has been found to infect megakaryocytes, which can lead to 

deficits in pro-platelet production (Pozner et al., 2010). Specific deficiencies and 

alterations have also been observed in clotting factors, and their regulatory cofactors in 

animal models, and in patient serological examinations (Felisa C. Molinas et al., 1981; 

Molinas, Paz, Rimoldi, & de Bracco, 1978; Schwarz et al., 1972). Given the observation 

of infection of hepatocytes and megakaryocytes, and the synthesis of clotting factors 

within these sites (Lenting PJ, 1998), this hypothesis has gained interest. An additional 

possible contributor is an inhibitor of platelet aggregation, which has been suggested, but 

not identified, in both LASV and JUNV infections, and is thought to also contribute to 

platelet abnormalities during infection (Cummins et al., 1989; Cummins, Molinas, et al., 

1990). 
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1.6. Animal models of arenavirus infection 
 

Upon introduction of an arenavirus to a susceptible human, a variety of both sub-

clinical and clinical features can present. Likewise, amongst rodent species, different 

routes of inoculation, as well different species and strains of virus, will cause a variety of 

outcomes both in the wild and in laboratory settings (Buchmeier & Zajac, 1999). Animal 

models have been established to recapitulate and investigate various aspects of human 

disease including the immunological responses of both rodents and non-human primates, 

vaccine efficacy, and antiviral screening. Many elegant studies have used LCMV 

infection of mice to characterize numerous aspects of virology, immunology, and modern 

medicine. The revelations, to name a few, include aspects of chronic viral infection, 

antigen presentation, and cytotoxic T cell responses (Buchmeier & Zajac, 1999), and 

have prompted the virus to be widely considered as the Rosetta stone of modern 

immunology.  

Given the biosafety requirements for most pathogenic arenaviruses (BSL4), closely 

related arenaviruses (e.g. TCRV, Candid1, LCMV, PICV) have been used to understand 

the disease course from a micro and macroscopic perspective (Vela, 2012).  Animal 

models include: inbred/outbred mice, Hartley guinea pigs, Strain 13 guinea pigs, Syrian 

hamsters, rhesus macaques, cynomolgus macaques, African green monkeys, and common 

marmosets. These animal models have been used to examine efficacy of vaccines, 

antiviral compounds, and neutralizing antibodies (Vela, 2012). 
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1.7. Arenavirus life cycle 
 

The arenavirus lifecycle begins with an introduction of an infectious virus to a naïve 

host. The surface glycoprotein, embedded in the host-acquired viral envelope, 

interrogates the cell surface until a suitable receptor ligation event(s) can take place. 

Following sufficient attachment, virions are endocytosed, and need to be trafficked to a 

late endosome (LE). The acidic environment of the late endosome provides the cue for a 

molecular rearrangement of the glycoprotein complex. The receptor binding subunit (GP-

1) is then shed from the complex, and a fusion peptide(s) is revealed on the 

transmembrane stalk (GP-2) that is able to insert into the LE membrane and initiate the 

fusion cascade. Successful viral to LE membrane fusion allows for the ejection of the 

viral genome, in the context of a ribonucleoprotein (RNP) complex, to be released into 

the cytoplasm. The RNP contains the minimal units required for transcription of genomic 

RNA, and replication of genome segments (genome, NP, L). Translation of viral proteins 

is proceeded by a highly dynamic assembly and staging event presumed to take place at 

the plasma membrane. Newly synthesized viral proteins and genomes are able to then 

passively bud from the plasma membrane, in the form of infectious viral particles, 

without destruction of the infected cell (Botten et al., 2013; Botten et al., 2007).  

1.8. Arenavirus gene structure and replication 
 

The arenavirus genome, though classified as negative sense (Leung, Ghosh, & 

Rawls, 1977), has both a negative (-) and positive (+) encoding polarity on each of the 

two genomic segments: the small (3 kb S segment) and large (~7 kb L segment). The S 
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segment contains the (+) GP coding region, the (-) NP coding region, and is separated by 

an intergenic region (IGR) that is thought to form a hairpin structure involved in 

transcriptional termination (Auperin, Romanowski, Galinski, & Bishop, 1984; Harnish, 

Dimock, Bishop, & Rawls, 1983; Riviere et al., 1985). The 3` and 5` untranslated 

region(s) (UTR) on each segment contains a 19 nt long, complementary termini that are 

proposed to form a pan-handle structure. The L segment encodes the matrix protein (Z) in 

the (+) and the L protein - RNA dependent RNA polymerase (RdRp) in the (-) with 

similar UTR and IGR features (Harnish et al., 1983) (see figure 1.2). 

 

Figure 1.1 Arenavirus genome 

Adapted from Botten et al., 2013. The arenavirus genome is bisegmented and ambisense. 
The protein coding regions (shaded arrows) within each RNA segment are separated by 
the noncoding IGR that forms a terminating hairpin structure. The termini of each 
segment contain untranslated regions UTRs involved in genome packaging 
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The arenavirus genome, upon entry into a host cell cytoplasm, is acted upon by the 

viral RdRp to facilitate the process of making sub-genomic viral mRNA, viral 

complementary (vc) RNA, as well as viral genomic sense RNA copies. This process 

requires first the translation of message sense NP and L, which after sufficient 

accumulation then support vcRNA synthesis from which GP and Z message can later be 

transcribed (Botten et al., 2013; Franze-Fernandez et al., 1987; Meyer, de la Torre, & 

Southern, 2002). Translation of NP is thought to facilitate a read-through of the 

polymerase along the viral RNA (i.e. transcriptional antiterminator) (Tortorici et al., 

2001). Accumulation of Z has been shown, in-vitro, to inhibit the activity of the 

polymerase, and thus may play the role of transcriptional and replicative repressor 

(López, Jácamo, & Franze-Fernández, 2001). The dynamics of vRNA and viral antigen 

have been interrogated in-vivo using in-situ hybridization and immunocytochemistry 

techniques (Oldstone & Buchmeier, 1982; Valsamakis et al., 1986), which revealed the 

transient nature of glycoprotein expression, along with early and consistent maintenance 

of NP, and novel mechanisms of truncated interfering RNAs. 
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Figure 1.2 Arenavirus genome replication and transcription strategy 

 

Adapted from Botten et al., 2013. This figure illustrates the steps carried out by the viral 
polymerase to carry out a successful round of replication, which begins with (1) synthesis 
of subgenomic RNAs needed for transcription of NP mRNA. (2) Newly translated NP 
facilitates the read-through of the IGR by the polymerase to generate a full length 
antigenomic RNA, and (3) which then serves as a template for transcription of GP 
mRNA. 
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Arenaviruses are structurally simple viruses. Genetically, they maintain a bi-

segmented, ambisense, single stranded RNA genome that codes for a total of four 

proteins. The most abundant viral protein, the nucleoprotein (NP), encapsidates the viral 

genome and is found clustered within the interior cavity of the virion. The viral 
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polymerase (L), also packaged within the virion, is responsible for all genomic 

transcription and replication events. The viruses are enveloped, which is derived from the 

plasma membrane of infected cells as they passively bud out into extracellular space in a 

process driven by the viral matrix protein, Z. The virions themselves are considered 

highly pleomorphic and range in size from ~ 90-300 nm in diameter. The membrane of 

the virions are decorated with the viral envelope glycoprotein (GP) which is derived from 

a cellular precursor, GPC, and is later processed into the multifunctional stable signal 

peptide (SSP), GP-1 receptor binding subunit, and the GP-2 transmembrane stalk. The 

name arenavirus, originally coined arenovirus, (latin Arenosus, meaning sandy) was 

agreed upon by Rowe et al. (1970) due to the unique granules observed within the cavity 

of budding virions when ultrathin sections of infected cells were viewed under a 

transmission election microscope. These granules were later defined as ribosomes, whose 

presence today remains an enigma. The incorporation of these cellular factories within 

the virions, however, is a harbinger of a far more elaborate and elusive network of 

cellular machinery involved in the biogenesis and transmission of this group of viruses 

(Murphy, Webb, Johnson, Whitfield, & Chappell, 1970; Rowe et al., 1970). 

The limited arenaviral proteome (NP, L, Z, and GP) implies that these proteins must 

be: (i) highly multi-functional, and (ii) able to congregate and re-purpose a network of 

cellular proteins to carry out the obligatory steps in the viral lifecycle, without destroying 

integral and vital cellular functions. Much effort has gone into understanding the core 

function of each viral protein in replication of the virus (i.e genome packaging, receptor 

binding, budding etc) (Buchmeier, 2002; Buchmeier, Elder, & Oldstone, 1978; Burns & 
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Buchmeier, 1991; Pinschewer, Perez, & de la Torre, 2003). Scientists now are beginning 

to unravel the cellular synthetic machinery hijacked by the individual proteins as well as 

their mechanisms of action (Lucas T. Jae et al., 2013; Klaus et al., 2013; Madakasira 

Lavanya, Christian D. Cuevas, Monica Thomas, Sara Cherry, & Susan R. Ross, 2013; 

Debasis Panda et al., 2011).  

 

Figure 1.3 Arenavirus anatomy. 

Mature arenavirus virions contain an envelope derived from the plasma membrane of an 
infected cell (blue shading) that is decorated by a tripartite glycoprotein complex 
consisting of the GP-1 ectodomain, the GP2 transmembrane domain, and the myristolated 
bitopic SSP. The inner leaflet of the plasma membrane is deformed into the curved shape 
via association of the myristolated matrix protein Z (yellow). The interior cavity of the 
virus contains the RNP consisting of the viral RNA genome ( L and S segment- red loop) 
encapsulated by the NP (green). Each genome segment also contains the RdRp L (red and 
green). The virions also contain interior host derived ribosomes of unknown function (red 
and pink), as well as the intracellular cargo receptor ERGIC-53 (brown). 
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1.9.1. NP 
 

The viral NP (ca~65 kDa), in addition to its canonical role of genome packaging 

and transcriptional regulation (Pinschewer et al., 2003), has been recently shown to play a 

role in subverting and manipulating innate immunological recognition. Structural studies 

of LASV NP revealed amino-terminal cap binding capabilities (7-methyl guanosine 

triphosphate) thought to be involved in cap snatching (Linda Brunotte et al., 2011; Qi et 

al., 2010) and carboxy terminal exonuclease activity that is specific for dsRNA (Hastie, 

Kimberlin, Zandonatti, MacRae, & Saphire, 2011; Hastie, King, Zandonatti, & Saphire, 

2012; Jiang et al., 2013). TKH�ODWWHU�RI�ZKLFK�LV�LPSRUWDQW�LQ�UHVWULFWLQJ�,)1ȕ�SURGXFWLRQ�

via recognition of dsRNA by cytosolic RNA sensors, retinoic acid-inducible gene 1, and 

melanoma differentiation-associated protein 5 (RIG I and MDA5), and inhibits the 

translocation of IFN regulatory factor 3 (IRF3). Interestingly, LCMV NP was found to 

directly complex with both RIG-I and MDA5 (Zhou et al., 2010). NP mediated inhibition 

of IFN activity has been shown for most arenaviruses (Martínez-Sobrido  et al., 2009). 

TCRV NP IFN suppression is currently under debate (Jiang et al., 2013; Martínez-

Sobrido, Giannakas, Cubitt, García-Sastre, & de la Torre, 2007), and likewise the 

residues involved in the active site of the DEDDh exonuclease domain are highly 

conserved. LCMV NP was also shown to DVVRFLDWH�ZLWK�DQG�LQDFWLYDWH�,ț%�.LQDVH�UHODWHG�

.LQDVH� ,ț.İ�� WKHUHE\�SUHYHQWLQJ�SKRVSKRU\ODWLRQ�RI� LWV� ,5)�� VXEVWUDWH, a prequel to its 

nuclear translocation and IFN activation program (Pythoud et al., 2012)��1)ț%�DFWLYDWLRQ�

and transcriptional activity is likewise inhibited by NP (Rodrigo et al., 2012), further 

highlighting the multifactorial immune suppression ability of the NP molecule, and the 
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arenavirus limited proteome. An additional innate immune aversion tactic is postulated 

for Junín virus NP, which is hypothesized to act as an anti-apoptotic molecule, via 

inhibition of Caspase 3 activation (Wolff, Becker, & Groseth, 2013).  

1.9.2. Z 
 

Originally identified as an 11kDa really interesting new gene (RING) domain 

containing protein (Salvato, Schweighofer, Burns, & Shimomaye, 1992; Salvato & 

Shimomaye, 1989), Z has since been shown to be a core structural virion protein that is 

anchored to the viral membrane via a myristolation addition at the N-terminus (Perez, 

Greenwald, & de la Torre, 2004), GP (Capul et al., 2007), NP (Ortiz-Riano, Cheng, de la 

Torre, & Martinez-Sobrido, 2011), and L (Jacamo, Lopez, Wilda, & Franze-Fernandez, 

2003; Kranzusch & Whelan, 2011). Z, the viral matrix protein, is minimally capable of 

forming virus-like particles (VLPs) that are morphologically identical to bona-fide 

virions (Eichler et al., 2004) and is also known to be curiously multifunctional despite its 

small size. Its primary function lies in orchestrating the deformation of the plasma 

membrane leading to the budding event, a process that involves recruitment of tumor 

susceptibility gene 101 (Tsg101) and members of the endosomal sorting complexes 

required for transport (ESCRT) pathway (Perez, Craven, & de la Torre, 2003). LCMV Z, 

along with NP, has been shown to be involved with recruiting ALG2-interacting protein 

X (ALIX/AIP1) during budding (Shtanko, Watanabe, Jasenosky, Watanabe, & Kawaoka, 

2011). Interestingly, New World arenavirus Z proteins also have dedicated immune-

modulatory features similar to NP, and act as IFN antagonists via RIG-I binding and 

sequestration from MAVS (Fan, Briese, & Lipkin, 2010). Association of Z with 
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translational machinery (e.g. EIF4E) is proposed to interfere with its 5’ 7-methyl G cap 

binding potential (100-fold reduction), thereby repressing host cell protein synthesis 

(Kentsis et al., 2001; Volpon, Osborne, Capul, de la Torre, & Borden, 2010). Ribosomal 

protein P0 was also found to interact with Z in the nuclear compartment, and also gets 

packaged into virions (Borden, CampbellDwyer, Carlile, Djavani, & Salvato, 1998), 

however, the consequence of this interaction remains largely unknown. Z is also 

proposed to possess anti-apoptotic capabilities via cytoplasmic re-routing of 

Promyelocytic leukemia protein (PML) through a direct interaction (Borden, Campbell 

Dwyer, & Salvato, 1998). Curiously, PML null mice are more susceptible and generate 

higher titers earlier during the acute phase of replication, which suggested PML 

recruitment provides a means of delayed CTL response in PML -/- mice (Bonilla et al., 

2002). Alternative proposals suggest it may also regulate the interferon sensitivity of 

virus, and or regulate the transcriptional activity of the polymerase via Z (Djavani et al., 

2001).  

1.9.3. L 
 

The large arenavirus L protein (ca. 250kDa) contains an RdRp, the enzyme 

responsible for all RNA replication and transcription activity in the viral lifecycle 

(Buchmeier, de la Torre, & Peters, 2007; Lukashevich et al., 1997). Due to the large size 

of the protein, and difficulties procuring it, little is known about the cellular activities of 

L outside of genome maintenance and transcription. Within virions, it is the lowest copy-

number protein amongst the viral proteome, and is found in complex with the RNPs. 

When present in virions, it is thought to be locked in a catalytically inert state via Z 
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mediated repression (Kranzusch & Whelan, 2011). Domain predictions segregate the 

protein into four domains (I-IV) (L. Brunotte et al., 2011). Synthesis of arenavirus 

mRNA is thought to occur via a small 5` cap of cellular origin, hypothesized to be 

“snatched” in a mechanism similar to other negative sense viruses (e.g. bunyavirus RdRp 

and influenza virus PA) (Morin et al., 2010). Accordingly, domain N1 of L contains a 

putative class II endonuclease implicated in the retrieval of caps via downstream 

liberation of RNA (Morin et al., 2010). Interestingly, mutations mapped to L provide a 

replicative benefit to LCMV in certain cell types (e.g. macrophages) (Bergthaler et al., 

2010), however, the mechanism behind this replication enhancement remains obscure 

(Bergthaler, Merkler, Horvath, Bestmann, & Pinschewer, 2007). Genetic studies of 

virulent versus avirulent Pichinde virus have also revealed a number of pathogenic 

substitutions in the polymerase (Lan, McLay, Aronson, Ly, & Liang, 2008) indicating 

alternative functions may exist. 

1.10. Arenavirus glycoproteins 
 

Arenavirus glycoproteins (ca. 65-75 kDa) form ~ 10nm trimeric and tripartite (SSP-

GP1-GP2) club-like projections on the surface of virions that facilitate the attachment of 

virus to cell surface receptors (H�J�� Į-DG (Cao et al., 1998), TfR1 (Radoshitzky et al., 

2007), Axl, Tyro3, LseCTIn, DC-SIGN (Shimojima, Ströher, Ebihara, Feldmann, & 

Kawaoka, 2011), and L-SIGN (Martinez et al., 2013)). Arenavirus glycoproteins also 

enable the annealing of viral membrane to cellular membranes following endocytosis 

(Borrow & Oldstone, 1994; Fields, Knipe, & Howley, 2007). The primary GP role is that 

of viral sentinel protein which is able to interrogate and engage with the surface of 
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available cells, and thereby is the principle protein responsible for arenavirus tropism and 

downstream pathogenesis (Oldstone & Campbell, 2011). Its biogenesis requires an 

elaborate interplay with the synthetic machinery of host cells requiring sequential 

proteolysis, coordinated multimerization and folding, asparagine-linked glycosylation, 

myristolation, and targeted intracellular transport. There is limited information known 

about the cellular proteins orchestrating events involved in GP biogenesis, outside of the 

enzymes required for proteolysis, and the receptors involved in GP mediated viral entry. 

Our studies have illustrated the depth of cellular machinery involved in the intracellular 

biogenesis of viral glycoproteins, some of which have may have dual roles in intracellular 

vs extracellular processes (Klaus et al., 2013).  

1.10.1. Glycoprotein biogenesis: formatting of the complex 
 

The arenavirus glycoprotein complex is synthesized inside of cells as a single 

precursor polypeptide (Buchmeier & Oldstone, 1979; Clegg & Lloyd, 1983; Gangemi, 

Rosato, Connell, Johnson, & Eddy, 1978; Harnish, Leung, & Rawls, 1981). Following 

insertion into the ER by its signal peptide, two proteolytic maturation events are carried 

out by cellular proteases: (1) the signal peptidase (SP) cotranslationaly processes the 

growing peptide, and (2) the subtilisin kexin isozyme 1/ site-1 protease (SKI-1/S1P 

herein referred to as S1P) forms the GP-1/GP-2 functional subunits. The three part 

structure is strictly conserved across the arenaviridae. Additional domains lie within each 

subunit, of which a handful of known functions are currently attributed to. The 

glycoprotein ectodomain forms a globular structure capable of binding to receptors, the 

GP-2 stalk anchors the complex to the viral membrane and carries out fusion, and the 
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SSP is involved in intracellular trafficking and has multiple roles in viral infectivity (See 

figure 1.2). 

 

Figure 1.4 Arenavirus GP schematic. 

Adapted from Botten et al., 2013. Proteolytic sites are indicated by black arrows. 
Specifically, the SSP is cleaved after AA 58 by the signal peptidase, and the GP1-GP2 
consensus site is cleaved by site 1 protease after R[X]L[X] motif ending at aa ~251. The 
SSP contains a pan-arenaviral G2 myristol addition required for infectivity, two 
hydrophobic domains (H1 and H2) represented by black rectangles, which are each 
thought to span the membrane, residues K33 (critical for pH of fusion activation) as well 
as C57 (required for GP1-GP2 association). The GP-1 subunit contains the receptor 
binding domain and seven N-linked glycosylation additions indicated by (Y). GP-2 codes 
for the class I fusion structural elements including two sequential fusion peptides at the N 
terminus indicated by dark grey boxes, and two heptad repeats indicated by [H] . GP-2 
also utilizes 4 N-linked sugars as indicated (Y) and are from LASV GPC consensus sites 
determined by Eichler et al. (2006). The GP-2 transmembrane (TMD) and C-teminal 
domains (CTD) include discontinous SSP binding sites which may overlap or include a 
Zinc-binding Domain (ZBD), which are hypothesized to contribute to folding, SSP 
interactions, and fusion of Junín virus GPC ( York et al., 2007; Briknarova et al., 2010). 
F427I indicates a GP2 transmembrane domain (TMD) attenuation marker found in Junín 
virus by Albarino et al. (2011) also capable of attenuating LASV in-vitro.  
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1.10.2. GP post-translational modifications 
 

Arenavirus glycoprotein structure and function has been shown to be critically 

dependent upon two known post translational modifications: asparagine linked 

glycosylation and myristolation. Myristolation of the SSP will be discussed in a later 

section. The presence and function of multiple mannose-rich N-linked sugars on GP 

(Buchmeier & Oldstone, 1979) have been studied using a variety of techniques including: 

chemical inhibitors of glycosylation, lectin binding, x-ray crystallography, site directed 

mutagenesis, analysis of proteolysis, intracellular processing, fusion, and release of 

infectious virus. Whilst a growing body of evidence supports the essential contribution of 

these modifications, the exact composition of the carbohydrates, the enzymes involved in 

their maturation, and the molecular mechanism by which they contribute to GPs 

functions remain largely unknown (Bonhomme et al., 2011; Bonhomme, Knopp, 

Bederka, Angelini, & Buchmeier, 2013; Bowden et al., 2009; Buchmeier & Oldstone, 

1979; Burns & Buchmeier, 1993; Candurra & Damonte, 1997; Clegg, 1982; Damonte, 

Mersich, & Candurra, 1994; Eichler, Lenz, Garten, & Strecker, 2006; Lucas T. Jae et al., 

2013; Mersich, Castilla, & Damonte, 1988; Parekh & Buchmeier, 1986; Parsy, Harlos, 

Huiskonen, & Bowden, 2013; Silber, Candurra, & Damonte, 1993; Wright, Salvato, & 

Buchmeier, 1989; Wright, Spiro, Burns, & Buchmeier, 1990b). 

Investigations into the presence of carbohydrate additions to arenavirus 

glycoproteins via radiolabeling of viral and cellular derived LCMV GP (GP1/GP2 and 

GPC) performed by Buchmeier et al. identified a mannose-rich precursor GP molecule, 

which incorporated additional 3H fucose and 3H galactose during its secretion as 
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GP1/GP2 suggesting a degree of post-addition processing (Buchmeier et al., 1978; 

Buchmeier & Oldstone, 1979). The glycans on LCMV constitute approximately 35% of 

the molecular weight of the molecule (Wright et al., 1990b). Glycosidic mapping of 

JUNV GP-1 also suggests that the N-linked sugars contain terminal mannose and 

galactose, however, the level of fucose may have been substantially less using an 

alternatively less sensitive technique (Sergio Grutadauria a, 1999). Early studies on 

carbohydrate functions of LCMV GP maturation demonstrated tunicamycin addition,  via 

inhibition of the en bloc addition of core oligosaccharides onto GPC, greatly diminished 

viral yield, and more specifically the cleavage of GPC into GP-1 and GP-2. This suggests 

that glycosylation was a precursor to proteolytic maturation (Wright et al., 1990b). 

Concomitant with the inhibition of cleavage following tunicamycin addition, there was 

no detectable GP at the surface of cells and no virus could be concentrated from 

conditioned cell medium, suggesting the addition of N-linked sugars affected an early 

step in the assembly and maturation of the glycoprotein (Wright et al., 1990b). In support 

of this, infectivity of the NW Junín virus was likewise substantially reduced, along with 

proteolytic maturation when cultured in the presence of tunicamycin. The authors 

however, in the latter study, presented data from concentrated radiolabeled virions that 

still contained viral structural proteins but lacked the normal amount of glycosylated GP-

1. This indicates that some alterations in the requirements of N-linked sugars on GP may 

exist among arenaviruses (Padula & Segovia, 1984). This is in agreement with previous 

studies on the critical inclusion of glycosylation and its processing via demonstration of a 

high molar glucosamine block on JUNV replication (Martinez Peralta, Leon, Coto, & 

Laguens, 1979), as well as the role of terminal GP-1 sugars on adsorption (Raiger 
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Iustman, Castilla, Meich, & Mersich, 1998). Silber et al. demonstrated via use of a 

glucosidase I  & II, as well as mannosidase I & II inhibitors that maturation of the GP 

glycans to a complex form was largely irrelevant for infectivity (Silber et al., 1993). 

Interestingly, in the same study, bromoconduritol, which inhibits the ER glucosidase II, 

was able to reduce infectivity. In accordance with those findings for JUNV, recent studies 

have shown that small molecules antagonizing glucosidases within the ER are promising 

antiviral agents against multiple VHFs (Chang et al., 2013).  

Sequence comparisons across OW and NW GPs reveal four conserved sites 

within the GP-2 subunit, whereas GP-1 subunits maintain a degree of heterogeneity of N-

linked glycosylation sites in placement, number, and utility (Bonhomme et al., 2011; 

Bonhomme et al., 2013; Briese et al., 2009). Genetic disruption of arenavirus N-linked 

glycosylation sites (NLS) has revealed the importance of individual NLS to specific 

features of glycoprotein maturation and glycoprotein specific functions within the viral 

lifecycle (Bonhomme et al., 2011; Bonhomme et al., 2013; Eichler et al., 2006). 

Bonhomme et al. (2011) identified in a prototypical LCMV GP the usage of eight of the 

nine consensus NLS, which is in accordance with previous data from Wright et al. 

(1990a) on LCMV NLS utilization (Bonhomme et al., 2011; Wright et al., 1990b). 

Interrupting glycosylation, at several sites in LCMV and LASV GP-1, interfered with the 

proteolytic maturation of the complex (Bonhomme et al., 2011; Eichler et al., 2006), 

whereas alterations to LCMV GP-2 sites enhanced cleavage (Bonhomme et al., 2011). 

Interestingly, disruption of several LCMV GP-1 glycosylation sites, interfered with the 

fusion activity of GP-2, yet trafficked normally to the plasma membrane. Ablation of 
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conserved N-terminal sites along with an N-terminal GP-2 site also restricted VLP 

infectivity (Bonhomme et al., 2011). Several NLS have also been demonstrated to be 

involved in cell-type specific fitness and tropism (e.g. primary macrophage versus neuron 

cells), as recombinant LCMV lacking specific GP NLS revealed altered expression, 

fusogenicity, and growth kinetics depending on the cell type (Bonhomme et al., 2013). 

Using the recombinant virus bearing individual NLS mutations, the first 2 N-terminal 

NLS, the most conserved of GP-1 sites, were found to be completely indispensable for 

virus recovery (Bonhomme et al., 2013). Structural studies of MACV GP-1 crystalized at 

1.7Å (Bowden et al., 2009) and in a co-crystal with transferrin receptor 1 (Abraham, 

Corbett, Farzan, Choe, & Harrison, 2010) suggest that the NLS do not participate directly 

in receptor interactions, and instead help to solubilize the GP. Limited mass spec analysis 

of the glycopeptides did reveal substantial heterogeneity in the carbohydrate structures on 

GP-1 (Bowden et al., 2009), however a recent GTOV GP-2 structure suggests that given 

the packing and placement of GP-2 glycans, they are likely to be shielded from 

modification and remain in a homogeneous structure (Parsy et al., 2013). In the study by 

Parsy et al. the authors also suggest that the GP1-GP2 heterotrimer interface will require 

the structural influence of the N-linked sugars, which supports the infectivity data 

generated by Bonhomme et al. following NLS ablation. 

  Neutralizing epitopes on LCMV GP have been demonstrated to be structurally 

upheld by both intramolecular GP-1 disulfide bridges and N-linked glycosylation (Wright 

et al., 1989). LCMV GP-1 neutralizing epitope 1D requires minimally the core 

oligosaccharide added within the ER to maintain the folding required to present the 
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epitope properly. Interestingly, this same epitope is masked in other strains of LCMV by 

the addition of a GP-1 glycosylation site following a single point mutation; thereby 

extending the utility of N-linked glycosylation to not only assisting in folding, but in 

hiding neutralizing antibody epitopes (Bonhomme et al., 2011; Wright et al., 1989). 

Curiously, the immunosuppressive strain of LCMV (WE) lacks the GP1-D epitope, but 

the immunological extent of this observation was not clear as the site is reported to be 

genetically unstable (Parekh & Buchmeier, 1986). 

1.10.3. Making the SSP 
 

Following early GP mRNA translation, the arenavirus GP leader sequence, 

termed Stable Signal Peptide (SSP), directs the nascent peptide into the lumen of the 

rough Endoplasmic Reticulum (RER) presumably via the classical signal recognition 

particle and translocase (Eichler, Lenz, Strecker, Eickmann, et al., 2003; Eichler, Lenz, 

Strecker, & Garten, 2003; Froeschke, Basler, Groettrup, & Dobberstein, 2003). The SSP 

has several distinguishing and unusual characteristics which set it apart from 

conventional signal sequences. Signal Peptides  are normally 18-30 residues long with an 

N terminal positive residue, a hydrophobic stretch, and a C-terminal signal peptidase 

cleavage site. The first glimpse of a potential nontraditional role for the arenavirus SSP 

came about during investigations that revealed a major histocompatibility complex 

(MHC) class I restricted immunodominant epitope present within the LCMV signal 

peptide, conserved across all arenavirus species (Burns, 1993), that was processed in a 

Transporter of Antigen Presentation (TAP) dependent process (Hombach, Pircher, 

Tonegawa, & Zinkernagel, 1995; Hudrisier, Oldstone, & Gairin, 1997; Pircher et al., 
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1990). The amino acid sequence is curiously long (58 aa) (Eichler, Lenz, Strecker, & 

Garten, 2003) and has a half-life of > 6 hours (Froeschke et al., 2003). The enhanced 

stability and longevity can be ascribed directly to the SSP itself, rather than the remaining 

GPC molecule, as it is maintained when expressed in isolation (Froeschke et al., 2003). 

The signal peptide, in addition to its greater than normal length (58 vs 18-25 AA), 

has an additional unusual  molecular architecture, and rather than the prototypical single 

pass cellular signal peptides, potentially crosses the membrane twice, courtesy of its two 

hydrophobic domains. The bitopic peptide’s N and C termini, for JUNV GP, are thought 

to lie within the cytoplasm (Agnihothram, York, Trahey, & Nunberg, 2007; Eichler et al., 

2004), separated by a short lysine (K33) containing loop crucial for setting pH 

thresholding during activation of the fusion cascade (e.g. charge at position 33 determines 

what pH fusion occurs at) (Saunders et al., 2007; York & Nunberg, 2006). Some 

controversy remains as to the exact architecture of the SSP. Early studies with OW GPs 

suggested a class II transmembrane topology (N term anchored) (Eichler, Lenz, Strecker, 

Eickmann, et al., 2003; Froeschke et al., 2003), as well as two-pass with luminal termini 

(Schrempf, Froeschke, Giroglou, von Laer, & Dobberstein, 2007) versus the more recent  

bitopic –cytosolic termini arrangement (Agnihothram et al., 2007; Briknarova, Thomas, 

York, & Nunberg, 2011). Following liberation from the pre-GPC peptide via the cellular 

signal peptidase (Eichler, Lenz, Strecker, & Garten, 2003; York & Nunberg, 2007a), 

rather than being degraded, the SSP will maintain a non-covalent association with the 

arenavirus glycoprotein complex through the remainder of the viral life cycle (Froeschke 

et al., 2003; York, Romanowski, Lu, & Nunberg, 2004). The multiple membrane 
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spanning domains of the SSP are not each required for translocation of GPC, and each in 

isolation will suffice, in addition to alternative signal peptides (e.g CD4, CD8, or FLUAV 

HA) (Eichler, Lenz, Strecker, Eickmann, et al., 2003; Eichler et al., 2004; York et al., 

2004). However, proper proteolytic maturation of the GPC into GP-1 and GP-2 subunits 

requires an intact arenavirus SSP, and, accordingly, can be segregated into proteolysis 

and fusion influencing regions (Messina, York, & Nunberg, 2012). Further, the SSP can, 

interestingly, be provided in trans to complement GPC translocated via an alternative 

signal and restore downstream maturation and function (Agnihothram, York, & Nunberg, 

2006; Eichler et al., 2004; Eichler, Lenz, Strecker, & Garten, 2003; Saunders et al., 2007; 

York et al., 2004). Signal peptides from closely related arenavirus species (e.g. LASV 

and LCMV) can also complement the alternative species GP (Eichler, Lenz, Strecker, 

Eickmann, et al., 2003). However, more distantly related arenavirus SSPs (e.g. JUNV and 

LASV) fail to properly restore functionality to the GP molecule, presumably via specific 

signals in the GP2 transmembrane (TM) and C-terminal domain (CTD) (Agnihothram et 

al., 2006; Albarino, Bird, Chakrabarti, Dodd, White, et al., 2011). Association of the SSP 

with GP-2 is thought to facilitate the anterograde trafficking of GP-1/GP-2 via masking 

of a dibasic ER retention signal in the GP-2 CTD, and thus implements a quality control 

mechanism ensuring a properly assembled GP complex prior to anterograde movement 

(Agnihothram et al., 2006; Burri et al., 2013).  

 The SSP is also post-translationaly modified at a pan-arenavirus N-terminal GP-2 

site via a myristolation addition (York et al., 2004). The myristolation addition appears to 

be irrelevant for assembly of the tripartite molecular arrangement, but is crucial for 
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enabling downstream contributions of the SSP in GP function, namely fusion and 

infectious particle formation (Saunders et al., 2007; Schrempf et al., 2007; York et al., 

2004). It is hypothesized that the myristolation could also assist in proper targeting of the 

GP complex to sites of budding along with the myristolated Z molecule (Agnihothram et 

al., 2006). The SSP invariant C-terminal C57 residue has also recently been shown to be 

involved in the formation of a zinc finger domain in collaboration with GP-2 (Briknarova 

et al., 2011; York & Nunberg, 2007b). This zinc-finger moiety is considered to play a 

stabilizing role with the GP-2 CTD (Briknarova et al., 2011; York & Nunberg, 2007b), 

which, in addition to interactions between the SSP K33 loop-GP2 ectodomain (York & 

Nunberg, 2006, 2009) and first SSP hydrophobic region- GP2 TM domain, may become 

active during the fusion cascade; however, the exact molecular mechanism and 

chronology remains to be fully elucidated (Messina et al., 2012). In toto several lines of 

evidence support the role of the SSP in the anterograde transport, proteolytic maturation, 

fusion, and infectivity activities of the arenavirus GP (Nunberg & York, 2012). The role 

of SSP in orchestrating the mature trimeric assembly of SSP-GP1-GP2, and its 

functionality, is yet to be completely understood. However, elucidating SSP interactions 

and functions provides fertile ground for therapeutic intervention. As such, several small 

molecules have been identified that interfere with SSP-GP-2 based fusion activity 

(Bolken et al., 2006; A. M. Lee et al., 2008; Thomas et al., 2011; York, Dai, Amberg, & 

Nunberg, 2008). 

1.10.4. SKI-1/S1P cleavage: creating the GP-1 ectodomain and GP-2 stalk 
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Arenavirus GPs require sequential proteolysis in order to generate a functional 

tripartite complex. The second proteolytic maturation event, the cleavage of GPC into 

GP-1 and GP-2 subunits, is an absolute requirement for the activation of the metastable 

fusion elements entrenched in GP-2 and the formation of the globular GP-1 ectodomain 

containing the receptor binding determinants. GP-1 is formed from GPC by the 

proteolytic cleavage of site 1 protease (S1P) (Lenz, 2001), a calcium-dependent cellular 

endoprotease involved in sterol metabolism and the ER stress response (Seidah et al., 

1999). After separation from the parental precursor , mature GP-1 maintains a non-

covalent association with GP-2 on virions until acid induced ejection begins inside of 

endosomes (Burns & Buchmeier, 1991; Di Simone, Zandonatti, & Buchmeier, 1994). 

Properly processed GP-1/GP-2 molecules are incorporated into arenavirus particles and 

appear as evenly spaced club-like projections embedded in the membrane of virions, 

extending ~ 5-10nm from their surface (Burns & Buchmeier, 1993; Kunz, Edelmann, de 

la Torre, Gorney, & Oldstone, 2003; Neuman et al., 2005).  

The timing and molecular mechanism involved in S1P proteolytic maturation of 

arenavirus GPs has garnered much attention. The site for the cleavage event was initially 

mapped to a nine amino acid peptide in LCMV GP and was determined to have a 

conserved, but slightly degenerate sequence, amongst the Arenaviridae involving a 

dibasic cluster (Buchmeier, Southern, Parekh, Wooddell, & Oldstone, 1987). Studies 

examining post-translational processing of LCMV GP determined a cleavage event, 

approximately in or transiting from, the late Golgi (Wright et al., 1990b). This was in 

agreement with studies on JUNV GP processing, which demonstrated that cleavage 
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could be inhibited via disruption of ER to Golgi trafficking through the use of monensin, 

BFA, and temperature shifts (Candurra & Damonte, 1997; Damonte et al., 1994). The 

GPC cleavage site was further narrowed to a four amino acid motif in LASV GP 

(RRLL), spanning residues 256-260 (Lenz, ter Meulen, Feldmann, Klenk, & Garten, 

2000). An investigation of LASV GP also first revealed the enzyme S1P was responsible 

for the maturation cleavage of GPC into GP-1 and GP-2. Cleavage could be specifically 

blocked via calcium ionophores (S1P requires Ca2+ for proteolysis), but was insensitive 

to BFA (Lenz, 2001). This suggested the location of maturation cleavage was either ER 

or cis-Golgi, in contrast to the findings for LCMV GP (Beyer, Popplau, Garten, von 

Laer, & Lenz, 2003; Wright et al., 1990b) and JUNV GPs. These were thought to occur 

later in transit through the Golgi/trans Golgi after the glycan additions became complex 

(Damonte et al., 1994). LCMV was subsequently and quizzically also found to be a 

substrate for S1P (Beyer et al., 2003), along with the NW HF arenavirus GPs (Rojek, 

Lee, Nguyen, Spiropoulou, & Kunz, 2008). The differences in subcellular locations of 

cleavage were attributed to subtle changes in the cleavage consensus site. LASV GP 

contains a tetra peptide (RRLL) that resembles the autocatalytic site C embedded within 

the protease, which is acted on early in the secretory pathway (e.g. ER), whereas the 

JUNV GP site RSLK more closely resembles the autoprocessing site B (Pasquato et al., 

2011). Given the conservation of arenavirus GPC usage of S1P, mechanistic insight into 

the substrate selection may be gleaned from the evolutionary history of S1P and rodent 

maintenance of arenaviruses. Accordingly, a recent study demonstrated that a wood rat 

allele of S1P with reduced activity provided a means of protection against persistent, but 

not acute infection with LCMV in a tissue specific fashion, in bone marrow derived 
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dendritic cells (Popkin et al., 2011), which are known to be dysregulated during 

persistence (Borrow, Evans, & Oldstone, 1995; Popkin et al., 2011; Sevilla, Kunz, 

McGavern, & Oldstone, 2003). The extent of S1P function in the arenavirus lifecycle 

will require further studies, but has been greatly hampered by the lack of a tractable 

animal model due to embryonic lethality following gene deletion (Mitchell et al., 2001). 

Maturation cleavage has been proposed to be an absolute requirement for 

incorporation of glycoprotein species into arenavirus particles (Stefan Kunz et al., 2003; 

Lenz, 2001), and for cell-to-cell spread of virus (Rojek, Lee, et al., 2008). Interestingly, 

unprocessed GPC has been shown to traffic to the plasma membrane in certain 

circumstances: following production in S1P-deficient Chinese Hamster Ovary (CHO) 

cells, during expression of cleavage defective GP mutants, following exposure of cells to 

calcium ionophore additions (Beyer et al., 2003; Stefan Kunz et al., 2003; Rojek, Lee, et 

al., 2008). However, GP produced in these environments, is not efficiently incorporated 

into virions, which still bud with normal quantities of viral structural proteins. Thus, 

cleavage and plasma membrane trafficking are not predicated upon each other, per se, as 

it has also been shown that removal of the GP-2 CTD dibasic cluster, reported in JUNV 

to mediate anterograde trafficking via SSP masking, will negate cleavage of LCMV and 

LASV GP (Agnihothram et al., 2006; Stefan Kunz et al., 2003; Schlie et al., 2009; 

Schlie, Strecker, & Garten, 2010). The role of cleavage has been ascribed to activation of 

the fusion machinery in the GP-2 subunit (Klewitz, Klenk, & ter Meulen, 2007). 

However, its role in targeting and packaging of GP into virions remains under 

investigation (Beyer et al., 2003). Inhibiting the cleavage event has, however, through 
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the use of reverse genetic systems and small molecules, shown promise as an anti-viral 

tactic (Maisa, Stroher, Klenk, Garten, & Strecker, 2009; Pasquato, 2006; Rojek et al., 

2010).  

The association of arenavirus GP’s with S1P has additional implications with 

regard to the role of S1P in the ER stress response, or  the unfolded protein response 

(UPR). Synthetic peptides corresponding to the LASV GP recognition site (RRLL) are 

able to inhibit S1P-based cleavage of pro-activating transcription factor 6 pro-(ATF6) in 

CHO cells (Pasquato, 2006). Following the accumulation of unfolded proteins in the ER, 

ATF6 dissociates from BiP/GRP78 (both ER-resident chaperones capable of sensing 

folding capacity), undergoes  sequential proteolysis by S1P and S2P, and becomes 

nATF6, which  translocates to the nucleus and initiates a branch of the UPR (Pasquato, 

2006; Pasquato et al., 2011) (reviewed in (Chakrabarti, Chen, & Varner, 2011)). 

Moreover, the LCMV GP has been shown to be a selective inducer of the ATF6-

mediated UPR, independent of the other viral structural proteins. This response occurs 

during the acute phase of infection, when GP expression is highest. The response is 

thought to enhance the folding capacity within the ER which may be required for 

efficient viral replication (Pasqual, Burri, Pasquato, de la Torre, & Kunz, 2011b). An 

additional hypothesis is that the selective induction of the ATF6-mediated UPR 

facilitates the upregulation of ERGIC-53 (Nyfeler, Nufer, Matsui, Mori, & Hauri, 

2003b), which which we show in Chapter 2 to enhance arenavirus replication in a GP-

specific fashion (Klaus et al., 2013). 
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1.10.5. GP assembly and virion release 
 

 Assembly of arenavirus particles has been observed, via thin sectioning of 

infected cells, to take place at the plasma membrane, and in some instances, at 

intracellular locations (Murphy et al., 1970). Electron dense club-like projections have 

been shown to protrude from an engorged plasma membrane laden on the inner leaflet 

with matrix protein. The RNPs are shepherded into particles via an ill-described 

mechanism along with host ribosomes. Limited information exists as to the cellular 

factors involved in the assembly and release of particles; however, the viral matrix 

protein is widely accepted as the driving force of arenavirus budding (Fehling, Lennartz, 

& Strecker, 2012). The role of GP in polarized budding will be discussed more in detail 

in the following section (1.11).  

Given the myristolation requirement for proper function of both the glycoprotein 

and matrix protein of arenaviruses, several investigations have followed lipid 

requirements for arenavirus assembly. Junín virus GP was observed to cluster in discrete 

sections at the surface of cells when expressed in isolation, a feature commonly 

associated with lipid microdomains (Agnihothram et al., 2009). Through the use of non-

ionic detergents, which are commonly used to identify cholesterol rich lipid rafts, it was 

demonstrated that Junín virus GP is located in detergent soluble fractions of cell 

membranes, indicating no association with the detergent resistant membrane (DRM) 

fractions (Agnihothram et al., 2009). These findings, however, were contested in later 

studies that demonstrated cholesterol depleting drugs led to a  substantial reduction in 

surface presentation and solubility of JUNV GP, as well as release of NP-containing 
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particles (Cordo, Valko, Martinez, & Candurra, 2013). Further studies of LASV GP using 

similar DRM extraction methods demonstrated a lack of association with DRMs 

indicating both Old and New world arenaviruses assemble in detergent soluble fractions 

(Schlie et al., 2009). Furthermore, the clustering of GP at the membrane was found to 

occur independent of the G2A myristolation addition in Junín virus SSP (Agnihothram et 

al., 2009). Immunogold labeling of GP-1 at the cell surface, which was visualized by 

transmission electron microscopy, confirmed discrete clustering of GPC into 

microdomains of approximately 120-160nM (Agnihothram et al., 2009). Interestingly, 

GPC, when expressed in isolation, was found in areas containing localized membrane 

curvature reminiscent of budding sites, thereby suggesting matrix-independent budding 

(Agnihothram et al., 2009) which has also been observed for LASV GP (Schlie, Maisa, et 

al., 2010). Curiously, in this same study, the authors were unable to demonstrate 

colocalization of the matrix protein with the glycoprotein at the surface, which does not 

support evidence provided by a number of studies which have demonstrated the 

interactions of GP and Z (Luis M. Branco et al., 2010; Capul et al., 2007; Casabona, 

Levingston Macleod, Loureiro, Gomez, & Lopez, 2009; Neuman et al., 2005; Schlie, 

Strecker, et al., 2010). Treatment of purified LASV virions, or VSV psuedovirus particles 

decorated with LASV GP, with cholesterol sequestering drugs, causes a profound 

reduction in infectivity that can be restored via exogenous cholesterol (Schlie et al., 

2009). This finding suggests that budding, though not from cholesterol rich DRMs, 

occurs in non-raft cholesterol containing microdomains. 

1.10.6. GP-1 form and function 
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  The arenavirus GP-1 subunit contains the majority of neutralizing antibody 

epitopes as well as the sequence controlling receptor binding for arenaviruses (Cresta, 

Padula, & de Martinez Segovia, 1980; Oldstone, 1992; Parekh & Buchmeier, 1986; 

Sanchez et al., 1989; Wright et al., 1989). Therefore GP-1 largely controls the initial 

cellular tropism and downstream pathology of arenaviruses (Oldstone & Campbell, 

2011). Several studies have shown the importance of this decision making capabilities 

inherent in GP-1. In particular, studies of LCMV infection of inbred mice have 

illustrated how a single amino acid substitution in GP-1 can alter the tropism of the 

virus, and elicit strikingly different outcomes (e.g. persistence vs acute vs death of 

animal) (Ahmed, Salmi, Butler, Chiller, & Oldstone, 1984; Kunz, Sevilla, McGavern, 

Campbell, & Oldstone, 2001; Salvato, Borrow, Shimomaye, & Oldstone, 1991; Sevilla 

et al., 2003; Sullivan et al., 2011; Teng, Borrow, Oldstone, & de la Torre, 1996). A 

substitution found at position 260 (FÆL) changes the tropism (LCMV Arm to clone 13 

transition) from red to white splenic pulp areas (macrophage-tropic to dendritic cell -

tropic). In accordance with this, an acutely cleared virus becomes immunosuppressive 

and establishes persistence (Ahmed & Oldstone, 1988; Borrow et al., 1995; Sevilla et al., 

2000)��,QWHUHVWLQJO\��WKHVH�FKDQJHV��)���/��DOVR�IROORZ�WKH�DIILQLW\�RI�WKH�*3�IRU�Į-DG, 

a surface molecule highly expressed on dendritic cells (Sevilla et al., 2003; Smelt et al., 

2001). Further, LCMV WE GP-1 mutation S153ÆF enables the virus to replicate within 

the growth hormone (GH) producing cells of the anterior pituitary (Oldstone et al., 

1982), resulting in GH deficiency and hypoglycemia (Teng et al., 1996). A number of 

point mutations have been identified in variants of LCMV, yet most seem to alter the 

nature of the residue at position 260. Heterogeneity in NW arenavirus GP-1 molecules 
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have also been implicated in disease alterations (i.e. Junín attenuation) in both rodents 

and humans (Flanagan et al., 2008; Scolaro, Mersich, & Damonte, 1990; Zhang, 

Marriott, & Aronson, 1999). Studies mapping the determinants of NW arenavirus GP-1 

molecules with the transferrin receptor 1 (TfR1) have demonstrated how limited 

alterations to the GP or the receptor can change the tropism of the virus for cells bearing 

TfR1 (Abraham et al., 2010; Abraham et al., 2009; Martin et al., 2009; Oldenburg, 

Reignier, Flanagan, Hamilton, & Cannon, 2007; Radoshitzky et al., 2008; Reignier et al., 

2008). 

In addition to its well supported role in receptor binding, additional alternative 

functions for LASV GP-1 have been suggested following plasmid driven expression in 

HEK293T cells. A series of truncations and deletions of GP-1 and GP-2 revealed 

alterations in the kinetics of GP-1 release, as well as a potential GP-1 chaperone function 

for GP-2. This model suggests that the proteolytic maturation and glycosylation profile 

of GP-2 are contingent upon association with GP-1 through the latter half of the 

secretory pathway, as expression of GP-2 alone resulted in a protein that was 

inefficiently expressed, had a heterogeneous glycosylation pattern, and was transported 

poorly (Luis M. Branco et al., 2010; Illick et al., 2008). Further, the shed GP-1 (sGP) 

was shown to move independently of the GP2-SSP complex after cleavage (Burri et al., 

2013). Contradictory studies examining JUNV entry found GP-1 to retain the GP 

complex in a mechanism involving stabilization by SSP of the intact GP1-GP2 complex 

(York et al., 2008). As such, alternative functions may be different between OW and 

NW GP-1 subunits. Interestingly, secreted or shed LASV GP-1 has been reported to 
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contain distinct glycosylation patterns (Branco & Garry, 2009) based on binding to the 

mannose specific lectin Galanthus nivalis agglutinin (Van Damme, Allen, & Peumans, 

1987). Whether or not LASV GP-1 shedding outside of the late endosome has a 

functional role in vivo is yet to be determined. Analysis of serum from very early time 

points of suspected LF patients did, interestingly, provide initial evidence for the 

presence of sGP prior to synthesis of whole virus in-vivo (L. M. Branco et al., 2010).  

A recent study also suggested that LASV GP is capable of forming virus like 

particles (VLPs) independent of the matrix protein. Further, the GP in these studies, 

when co-expressed with the remaining structural proteins, directed the assembly and 

release of VLPs from the apical surface of a polarized epithelial cell line (Schlie, Maisa, 

et al., 2010). The solitary expression of Z exhibited a bipolar release of VLPs, suggesting 

that GP may play a crucial role in setting the appropriate time and place for budding of 

infectious virus to occur (Schlie, Maisa, et al., 2010).  

1.10.6.1.  GP-1 receptor binding domain  
 

Arenavirus GP-1 structural features have been characterized both by electron 

microscopy (Burns & Buchmeier, 1993; Neuman et al., 2005) and more recently by x-

ray crystallography either in isolation (Bowden et al., 2009) or with one of its cognate 

surface receptors (TfR1) (Abraham et al., 2010). Despite the sequence heterogeneity 

amongst GP-1 subunits, inherent in the receptor binding differences, the core 

architecture is thought to remain similar (Bonhomme et al., 2013). The globular domain, 

seen by EM in a cup-like arrangement in both OW and NW GPs, has a similar concave 
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arrangement made up of a series of beta-sheets stretching 6-7 nm across. The entire spike 

is thought to be composed of three GP1/GP2 heterodimers (Neuman et al., 2005). 

1.10.6.2.  OW arenavirus receptor interactions 
 

The receptor utilized by OW arenaviruses, in particular LASV and LCMV, was of 

great interest to virologists, yet its identification remained elusive for a number of years. 

Borrow et al., using an enzymatic process of surface molecule elimination (e.g. protease, 

lipase, glycosylase), narrowed the search down to a glycosylated proteinaceous surface 

molecule (Oldstone, 1992). In a seminal study by Cao et al. using the virus overlay 

protein blot Assay (VOPBA), the alpha-dystroglycan molecule was found to be an 

obligate receptor for several species of OW arenaviruses including several strains of 

LCMV, as well as LASV, and MOBV, and surprisingly, the NW clade C arenavirus 

OLIV (Cao et al., 1998).  The additional NW arenavirus LATV from clade C was also 

IRXQG� WR� XVH� Į-DG using a similar VOPBA approach (Spiropoulou, Kunz, Rollin, 

Campbell, & Oldstone, 2002). 

 The dystroglycan complex is synthesized as a precursor molecule that is 

SURFHVVHG� LQWR� PDWXUH� Į� DQG� ȕ� SURWHLQV�� 7KH� FRPSOH[� LV� LQYROYHG� LQ� FRQQHFWLQJ�

extracellular matrix proteins (laminin, agrin, perlecan, and neurexins) to the actin 

cytoskeOHWDO� HOHPHQWV� ZLWKLQ� FHOOV�� Į-DG is the soluble extracellular protein of the 

complex that is non-FRYDOHQWO\�DVVRFLDWHG�ZLWK�WKH�WUDQVPHPEUDQH�ȕ-DG protein (Barresi 

& Campbell, 2006)�� 7KH� ȕ-DG molecule was found to be dispensable for arenavirus 

binding and HQWU\�� DV� UHSODFHPHQW� RI� WKH� ȕ-'*� SURWHLQ� YLD� IXVLRQ� RI� Į-DG to the TM 

domain of PDGF receptor still facilitated entry (Kunz, Campbell, & Oldstone, 2003). 
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,QWHUHVWLQJO\��WKH�UHJLRQ�RI�Į-DG that binds arenavirus glycoproteins overlaps with that of 

its cellular ligands (Kunz et al., 2001). As such, it has been demonstrated that arenavirus 

binding can displace the cellular ligands (e.g. laminin). This phenomenon is hypothesized 

to dysregulate cellular junctions, which could contribute to viral pathogenesis, 

particularly of the endothelium (Oldstone & Campbell, 2011).  

In follow-up studies, strains of LCMV were identified with little or no binding 

DFWLYLW\�WR�Į-DG. These strain-specific GP alterations were found to have implications in 

the tropism and disease outcome when introduced to mice. The GP changes have been 

minimally mapped to the F260L mutation (Kunz et al., 2001; Smelt et al., 2001; Sullivan 

et al., 2011) and S153F (Sevilla et al., 2000; Teng et al., 1996). These findings were 

further corroborated by anRWKHU�VWXG\�FKDUDFWHUL]LQJ�Į-DG-independent entry of different 

strains of LCMV which strongly suggested the use of alternate receptors (Kunz, Sevilla, 

Rojek, & Oldstone, 2004). It is likely that additional viral and host factors contribute to 

both tropism and pathogenesis as viruses with markedly different disease potential in 

humans have been GHPRQVWUDWHG�WR�XWLOL]H�Į-DG.  

 In support of the notion that arenaviruses can utilize alternative receptors or co-

receptors to gain access to cells (Reignier et al., 2006), in a recent study utilizing cDNA 

libraries derived from Vero, Cercopithecus aethiops, and human liver cells were 

transduced into immortalized T lymphocytes, which are refractory to infection under 

normal conditions, and were later screened for entry of LASV and LCMV GP 

psuedotypes (Shimojima & Kawaoka, 2012; Shimojima et al., 2011). The authors 

idHQWLILHG� IRXU� DGGLWLRQDO� SURWHLQV� WKDW� FRXOG� IDFLOLWDWH� Į-DG independent entry of 

authentic LASV including liver and lymph node sinusoidal endothelial calcium 
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dependent lectin (LSECtin), Axl, Dendritic cell-specific intercellular adhesion molecule-

3-grabbing non-integrin (DC-SIGN), and Tyro3 (Shimojima et al., 2011). In contrast to 

the in vitro demonstration of enhanced entry of LCMV GP psuedovirus, another study 

found that the TAM receptor Axl failed to influence LCMV infection in Axl-deficient 

mice (Sullivan, Welch, Lemke, & Oldstone, 2013). LASV usage of DC-SIGN was 

confirmed in an additional study using chimeric LCMV bearing LASV GP and authentic 

LASV virions. In these studies entry was found to be critically dependent upon the 

mannose rich GP1 ectodomain. Accordingly, use of free mannan or chelators could 

specifically block binding to DC-SIGN, but not Į-DG (Goncalves et al., 2013). 

Interestingly, DC-SIGN-mediated entry was found to be dependent upon the actin 

F\WRVNHOHWRQ��ZKLFK�FRQWUDVWV�ZLWK�Į-DG mediated entry (Goncalves et al., 2013).  

7KH�ELRV\QWKHVLV�RI�Į-DG itself is dysregulated during infection via a mechanism 

proposed to prevent super-infection (Rojek, Campbell, Oldstone, & Kunz, 2007). Key O-

mannosylation events taking place within the Golgi involving the (LARGE) molecule, a 

putative glycosyltransferase involved in the O-mannosylation of the receptor, lead to a 

GP-dependent inhibition of this post-translational modification (PTM) event. This in turn 

GLVUXSWV�WKH�ELRORJLFDO�DFWLYLW\�RI�Į-DG without interfering with its surface presentation. 

The PTM of the receptor is required for both virus and ECM ligands to bind (Hara et al., 

2011; Imperiali, Spörri, Hewitt, & Oxenius, 2008; Imperiali et al., 2005; Kunz et al., 

2005; Rojek, Spiropoulou, Campbell, & Kunz, 2007). Interestingly, recent genomic 

surveys in Africa have identified SNPs within the LARGE gene [and also dystrophin 

(DMD), a ȕ-DG interacting molecule] demonstrating evidence for positive selection 
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(Sabeti et al., 2007). It has been hypothesized that these polymorphisms may protect 

against LASV infection (Oldstone & Campbell, 2011).  

1.10.6.3.  NW arenavirus receptor interactions 
 

The identity of a high affinity surface receptor for NW arenaviruses, like that of 

their OW counterparts, was of great interest to the arenavirus feild. Early attempts at 

deducing the nature of the receptor relied upon enzymatic digests of cell surface 

molecules and yielded a proteinaceus molecule that required glycosylation. However, 

studies by Rojek et al. using a broader range of glycosidases and mutant CHO cells 

deficient in GalNac and Gal, contested glycosylation requirements - albeit on a different 

cell type (Raiger Iustman, Candurra, & Mersich, 1995; Raiger Iustman et al., 1998; 

Rojek, Spiropoulou, & Kunz, 2006). In an elegant series of experiments by Rojek and 

colleagues, they determined that a common receptor was utilized by the South American 

HF arenaviruses, and that inactivated heterologous clade B virus competition was 

possible, albeit at high PFU/cell ratios. These data also suggested that the common 

receptor was also highly expressed and abundant on numerous cell types (Rojek et al., 

2006). The human transferrin receptor 1 (hTfR1) was identified in 2007 by Radoshitzky 

and colleagues, using a recombinant MACV GP1 molecule fused to an immunoglobulin 

Fc probe, as being the cellular receptor for several pathogenic NW clade B arenaviruses 

(e.g. MACV, JUNV, GTOV, and SABV) (Radoshitzky et al., 2007). TfR1 is a receptor 

ubiquitously expressed across most tissues. It ferries transferrin bound in its holo (Fe3+) 

bound form into cells via clathrin-dependent endocytosis, and has been suggested to 

deliver this cargo ultimately to the mitochondria, or to unload TF-Fe3+ in the acidic 
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environment while traversing late endosomes (Eckenroth, Steere, Chasteen, Everse, & 

Mason, 2011). Later genetic studies mapping the binding sites revealed an apical portion 

of the receptor that was distinct from its TF binding pocket. The ligation of TfR1 by 

arenavirus GPs, therefore, does not interfere with the normal function of this otherwise 

critical receptor involved in iron homeostasis (Demogines et al., 2013; Radoshitzky et al., 

2007; Sheftel, Mason, & Ponka). The relationship between TfR1 and zoonotic viruses 

has, however, left its mark on the genome of not only the rodent reservoirs, but also the 

human genome. A seminal study published by Demogines et al. revealed ongoing 

positive codon selection in TfR1 genes across multiple mammals that correspond to sites 

of arenavirus GP contact (Demogines et al., 2013). Importantly, the authors also 

identified positive selection specifically within areas of GP1 that faced the receptor, 

rather than GP2, thereby, providing additional support to receptor-mediated, 

evolutionarily-induced, selective pressure (Demogines et al., 2013).  

A number of studies have investigated non-TfR1 based entry in NW pathogenic 

arenaviruses (e.g. JUNV) (Cuevas, Lavanya, Wang, & Ross, 2011; Flanagan et al., 2008). 

Similar to OW arenavirus GPs, it was recently shown that both DC-SIGN and L-SIGN 

could facilitate the entry of JUNV pseudoparticles (Martinez et al., 2013). The authors 

propose that both DC-SIGN and L-SIGN are capable of binding to a terminal mannose 

residue on GP-1 (Martinez et al., 2013) (likewise in support of the data provided by 

Goncalves et al.). Accordingly, increasing concentrations of mannan were able to block 

entry of virus into cells. A growing number of viral envelope glycoproteins (e.g. human 

immunodeficiency virus (HIV), Dengue virus (DENV), severe acute respiratory 
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syndrome coronavirus (SARS CoV), influenza A viruses (FLUAV) and ebola virus 

(EBOV)) have been identified that are able to use these C-type lectins as attachment 

factors suggesting a common underlying mechanism of carbohydrate dependent capture 

(Han, Lohani, & Cho, 2007; Lin et al., 2003; Tassaneetrithep et al., 2003). This 

mechanism is dependent upon maintenance of a high mannose structure, as a complex N-

linked structure is not recognized by these lectins. 

Attachment to host cells by NW arenaviruses has also been demonstrated to occur 

via T-cell Immunoglobulin and Mucin-domain containing proteins (TIM1, 3, and 4) in a 

mechanism involving phosphatidyl serine (PS) present on the viral envelope (Jemielity et 

al., 2013). In support of this mechanism, studies have visualized the presence of PS on 

PICV infected cells as well as on the outer leaflet of virions (Soares, King, & Thorpe, 

2008). Interestingly, a chimeric mouse/human monoclonal antibody recognizing PS via 

LWV� KLJK� DIILQLW\� ELQGLQJ� SODVPD� SURWHLQ� ȕ�*3��ZDV� GHPRQVWUDWHG� WR� KDYH� D� SURWHFWLYH�

effect in a guinea pig model of PICV infection. 

1.10.7. GP-2 
 

Synthesis of the arenavirus GP-2 subunit, as in GP-1 biogenesis, requires 

proteolysis via SP and S1P. GP-2 anchors the maturing glycoprotein complex to the host 

membrane via its transmembrane domain and maintains a non-covalent interaction with 

the peripheral GP-1 and SSP subunits, as it traverses the exocytic pathway to the plasma 

membrane and, ultimately, to the extracellular space in the context of mature virions. 

Targeting, folding determinants, and pathogenicity factors have been genetically mapped 
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to the GP-2 subunit and to its core fusion machinery (Agnihothram et al., 2006; Eschli et 

al., 2006; Gallaher, DiSimone, & Buchmeier, 2001; York, Agnihothram, Romanowski, 

& Nunberg, 2005). As such, the arenavirus GP-2 subunit is a class I viral fusion protein, 

based on homology prediction to other class I viral fusion proteins (Gallaher et al., 

2001), which are responsible for acid-induced annealing of viral to endosomal 

membranes (Castilla, 1996; Castilla, Mersich, & Damonte, 1991; Di Simone & 

Buchmeier, 1995; Di Simone et al., 1994) that facilitate the injection of the viral genome 

into the cytoplasmic space (Borrow & Oldstone, 1994; Disimone & Buchmeier, 1993; 

Quirin et al., 2008). 

1.10.7.1. GP-2 ectodomain (fusion domain) 
 

  The GP-2 subunit is arguably the most dynamic of the viral proteome. Its 

maturation and function requires a profound molecular arrangement beginning with an 

SSP-primed metastable arrangement and ending in the classical type I fusion protein 6 

helix coiled-coil in the post-fusion state. Gallaher et al. using a bioinformatics approach, 

assigned LCMV and LASV GP to the family of class I fusion proteins based on heptad 

repeat regions predicted to form characteristic 6-helix bundles found in GP-2, similar to 

Ebola and influenza fusion proteins (Gallaher et al., 2001). The authors in the same study 

were able to generate peptides from the 2nd hydrophobic heptad region (aa 326-355) that 

were able to form helices in solution in support of the notion.  Genetic studies of the 

fusion machinery within GP-2 of LASV, LCMV, and JUNV also identified the two 

adjacent N-terminal heptad repeats and their ability to form distinctive trimers (Eschli et 

al., 2006; Klewitz et al., 2007; York et al., 2005). A 4.1 Å crystal structure of GTOV 
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GP2 (Parsy et al., 2013) and a 1.8 Å structure of LCMV GP2 (Igonet et al., 2011) 

(aa312-438) have confirmed the presence of trimeric protomers which formed the post-

fusion hairpin structure typical of the class.  A unique feature of the arenavirus GP-2 

fusion architecture is the presence of 2 N-terminal GP-2 fusion peptides (Glushakova, 

Lukashevich, & Baratova, 1990; Glushakova et al., 1992) that are normally covered by 

the globular GP1 head of the spike in a prefusion metastable state. The arenavirus fusion 

machinery is also unique in its requirement of the SSP to maintain the metastable form 

(described in 1.10.3). The fusion peptides lie at the N-terminus and are followed by the 

two antiparallel helices which fold together to form the coiled-coil hairpin structure, a 

thermodynamically favorable arrangement that is thought to facilitate the removal of 

water molecules between membrane leaflets prior to fusion pore formation (Nunberg & 

York, 2012; York et al., 2010).  

1.10.7.2.  GP-2 transmembrane domain (TMD) 
 

A recent investigation of the attenuation process in a vaccine strain of Junín Virus, 

Candid1, (Albarino et al., 1997; Ghiringhelli, Riverapomar, Lozano, Grau, & 

Romanowski, 1991; Pablo Daniel Ghiringhelli, 1997; Scolaro et al., 1990) which varies 

from its parental virulent strain by a total of 13 residues, revealed a single substitution in 

the transmembrane domain  (F427I) of GP-2 to be responsible for the  severely attenuated 

phenotype of the vaccine in mice (Albarino, Bird, Chakrabarti, Dodd, Flint, et al., 2011). 

The authors utilized a reverse genetics strategy to generate viruses representing the 

unique attenuation mutations and found the F426I mutation to be solely responsible for 

the decreased virulence. The same mutation when placed in the LASV GPC utilizing an 
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HIV psuedotyping system, displayed reduced infectivity in vitro, supporting a novel and 

critical role of the arenavirus GP-2 TMD in the viral lifecycle.  

In a recent report the I427 residue of Candid1 GP-2 was also demonstrated to confer 

the ability of neutral pH-induced cell-cell fusion (Droniou-Bonzom et al., 2011).The 

authors proposed a model by which this change from the parental virulent virus alters the 

metastable arrangement of the prefusion complex, allowing for premature conformational 

rearrangement required for fusion, and thereby contributing to the decreased infectivity in 

their assays (Droniou-Bonzom et al., 2011). 

1.10.7.3. GP-2 carboxy-terminal domain (CTD) 
 

The carboxy terminal domain (CTD) of Junín Virus GP-2 was recently reported to 

contain a series of 6 cysteine and histidine residues conserved across both Old and New 

world Arenaviruses (York & Nunberg, 2007b). Residues H447, H449, C455, H459, 

C467, and C469 similar to those required to form zinc fingers were found to bind Zn2+ 

with a kD of 1nM. Mutation of these residues abolished the interaction of the SSP with 

the GP1/GP2 complex in trans-complementation assays and inhibited the proteolytic 

maturation of the complex as well as the membrane fusion activity of GPC (York & 

Nunberg, 2007b). A structure of the ZBD was recently determined using NMR 

spectroscopy of residues 445-485 of the Junín Virus GP-2 CTD which confirmed the 

presence of the ZBD and highlighted the necessity of the conserved H and C residues in 

coordinating 2 Zn2+ ions within a novel fold (Briknarova, Thomas, York, & Nunberg, 

2010). The authors propose a model where the 2 Zn2+ molecules are responsible for 

bridging with the conserved C57 residue on the SSP thereby stabilizing the complex. It 
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remains to be determined if this structure is indeed a requisite of GP-2 SSP association 

across other Old and New World arenaviruses.  

Involvement of the GP-2 CTD of both LASV (Schlie, Strecker, et al., 2010) and 

LCMV (Stefan Kunz et al., 2003), however, have been demonstrated to be involved in 

determining the cleavage state of the GPC. The studies support a model where specific 

residues located within the CTD of GP-2 are responsible for stabilizing the conformation 

of the glycoprotein in a permissive state for cleavage by SKI/S1P. Differences have been 

demonstrated in the utility of the CTD between OW and NW arenaviruses. Specifically, 

mutations of conserved residues spanning 463-491 were shown to inhibit cleavage of 

LASV (Schlie, Strecker, et al., 2010) and LCMV GPC (Stefan Kunz et al., 2003), 

whereas mutations  in the JUNV GP-2 CTD (Agnihothram et al., 2006) were permissive 

for cleavage. Several explanations may account for these differences. The use of a C-

terminal epitope tag may have altered the native ultrastructural conformation of the 

recombinant JUNV GP-2 used, or the sensitivity at which the protein could be detected in 

the assays used. Alternatively NW arenaviruses may have evolved independent functions 

for the CTD in maintaining the stability of the glycoprotein complex. The inability of the 

CTD mutants to facilitate fusion, however, supports the hypothesis that cytoplasmic 

residues can signal through the transmembrane domain and modulate features of the viral 

life cycle. 

 

1.11. Determinants of entry 
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Entry of arenaviruses involves a growing number of recognized receptors and surface 

molecules mentioned in the previous sHFWLRQV��K7I5���Į-DG, Axl, Tyro3, DC-SIGN, L-

SIGN, LsECTIN, and TIM family proteins) and their ability to interact with the virion 

embedded glycoproteins. A number of other protein and lipid cellular factors have also 

been described that contribute to the entry events. Early work to describe arenavirus entry 

featuring the prototype LCMV observed its uptake into cells, by EM, via smooth-walled 

and clathrin independent vesicles that were internalized via a process insensitive to 

cytochalasin disrupted actin filaments (Borrow & Oldstone, 1994). These entities have 

been described more thoroughly in the intervening years through use of specific 

endosomal markers. The fusion cascade for both OW and NW arenaviruses is known to 

be inhibited via the addition of lysomotropic agents such as ammonium chloride, which 

prevents the acidification of the maturing endosomes (Castilla et al., 1991; Lukashevich, 

1989). The ammonium chloride block for JUNV could be overcome if the media was 

buffered to low pH, suggesting that under these circumstances fusion could take place at 

the plasma membrane (Castilla, Mersich, Candurra, & Damonte, 1994). 

1.11.1. Clathrin, caveolin, and cholesterol 
 

The entry mechanisms between OW and NW arenaviruses are divergent, which is 

consistent with the biological properties of their cognate receptors. The high affinity 

UHFHSWRU�IRU�PRVW�2:�DUHQDYLUXVHV��Į-DG, currently has no known endocytic mechanism. 

JUNV and consequently TfR1 enter into cells via clathrin mediated endocytosis (CME) 

(Martinez, Cordo, & Candurra, 2007). Accordingly, drugs that inhibit clathrin coated pit 

(CCP) formation on the plasma membrane inhibited JUNV and TCRV particle entry into 
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clathrin coated vesicles. The authors did note, however, that at high MOI an alternate 

route of entry occurred that was sensitive to nystatin, a cholesterol sequestering drug 

(Martinez et al., 2007)�� $� VLPLODU� ILQGLQJ�ZDV� REVHUYHG� LQ� VWXGLHV� RI� Į-DG-dependent 

LCMV entry using MOIs ranging from 10-100 (Shah, Peng, & Carbonetto, 2006). The 

DXWKRUV�DOVR�FRQFOXGHG�WKDW�Į-DG is not associated with DRMs, but remained sensitive to 

agents capable of perturbing cholesterol at the plasma membrane (Shah et al., 2006). 

Shah et al. also demonstrated that movement of the DG complex to cholesterol rich 

fractions was not observed following DG ligation by LCMV, indicating that post-receptor 

ligation trafficking to DRMs was likely not taking place. The authors posited that 

cholesterol could be involved in coordinating signaling events proceeding ligation, prior 

to entry (Shah et al., 2006).  

Vela et al. provided additional data supporting the role of cholesterol in arenavirus 

entry by demonstrating that both PICV and LASV entry was diminished in the presence 

RI�0ȕ&'�SUHWUHDWPHQW�(Vela, Zhang, Colpitts, Davey, & Aronson, 2007). Interestingly, 

WKH� DXWKRUV� DOVR� REVHUYHG� DQ� HIIHFW� ZKHQ�0ȕ&'�ZDV� DGGHG� WR� FHOOV� ��� PLQXWHV� DIWHU�

addition of virus, suggesting the defect, though occurring early, may also occur post- 

attachment. The exact influence of non-raft cholesterol in arenavirus entry remains 

unknown. Vela et al. also demonstrated that entry of both LASV and PICV pseudoviruses 

occurred independent of caveolae, highlighting independence from the endocytic route 

involving lipid rafts. Following expression of a dominant negative EGFR pathway 

substrate clone 15 (Eps15) GFP fusion protein, a critical component involved in clathrin-

coated pit assembly, the authors observed a defect in entry of both PICV and LASV 
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pseudovirus, suggesting use of a clathrin-dependent endocytic route (Vela et al., 2007). 

These data also suggest that entry pathways may differ greatly between LCMV and 

LASV (i.e. clathrin-independent vs clathrin-dependent endocytosis). Rojek et al. refined 

the entry model for LCMV to include one that utilized non-raft cholesterol, specifically 

not for attachment, but rather for the internalization of virus using a thiol-sensitive 

biotinylated virus uptake assay (Rojek, Perez, & Kunz, 2008). The authors also tested the 

cellular requirements of LCMV entry pathways: caveolae-dependent via expression of a 

caveolin-1 dominant negative mutant cav-1Y14F, siRNA against CAV1, and cell lines 

naturally lacking cav1 and 2, the GTPase dynamin I and II dominant negative mutants 

(blocks both clathrin and caveolin-PHGLDWHG�HQWU\��� DQG� WKH�'1�(SV��ǻ������� �DEOH� WR�

block CCP formation), and found entry of LCMV to be independent of both caveolae and 

clathrin-dependent entry pathways (Rojek, Perez, et al., 2008). 

Several studies have thus demonstrated a discreet role for cholesterol in the 

internalization and assembly of arenaviruses. In addition to the entry event it was recently 

determined that treatment of purified virions (native LASV particles or LASV GP 

pseudotyped VSV) with cholesterol also greatly restricted infectivity in a reversible 

manner (Schlie et al., 2009). The role of virion contained-cholesterol can be restricted, in 

part, to the incorporation of the glycoprotein into the envelope. The contribution of 

cholesterol in the post attachment of arenaviruses remains to be fully described. 

 

1.11.2. Other factors 
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JUNV entry has been shown to require clathrin-mediated endocytosis (Martinez et 

al., 2007), in a process that also requires actin polymerization and microtubule dynamics. 

The OW pathogenic arenaviruses LCMV and LASV have been reported to use both 

clathrin-dependent (Vela et al., 2007) as well as clathrin-, caveolin-, dynamin-, and 

macropinocytosis/actin-independent pathways (Quirin et al., 2008; Rojek & Kunz, 2008). 

Differences in cell type and virus likely play a role in the emphasis of entry routes. To 

date, little information is known regarding the endocytic machinery and trafficking 

determinants. A study using rLCMV bearing the LASV GP (rLCMV-LASV GP) entry 

routes identified some influence of Rab5 but not Rab7 (following expression of DN 

mutants) suggesting an unusual mechanism of delivery to a late endosomal compartment 

that may bypass early endosomes (Rojek, Sanchez, Nguyen, de la Torre, & Kunz, 2008). 

This entry route is also independent of actin, but requires an intact microtubule network 

up to and including entry and post-fusion steps (Rojek, Sanchez, et al., 2008). 

Interestingly, the kinetics of entry for both LASV pseudovirus as well as authentic 

Candid1virions are very similar despite the differences in trafficking patterns and optimal 

fusion pH (4.5 vs 5.5) (Klewitz et al., 2007; York & Nunberg, 2006). Quirin et al. while 

monitoring Rab5- and Rab7-GFP fusion proteins during LCMV entry observed some 

colocalization of virus with both Rab5-positive and Rab7-positive (early and late) 

endosomes. However, expression of DN mutants of Rab5 and Rab7 caused little (20% 

Rab5) to no defect in replication. Following additional imaging of early and late 

endosomal markers in tandem with CME directed siRNA knockdown, the authors 

concluded that LCMV can use a CME dependent entry route through both early and late 

endosomes, however, the majority of incoming virus enters in a CME-independent route 
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that circumvents the early endosome (Quirin et al., 2008). This unusual route of entry 

was expanded upon by Pasqual et al., who demonstrated LCMV and rLCMV-LASVGP 

entry occurs through the multivesicular body (MVB) compartment en-route to late 

endosomes (Pasqual, Rojek, Masin, Chatton, & Kunz, 2011). Further, the authors 

demonstrated the activity of PI3K, involved in generating the PI3P lipid requirements of 

MVB, along with LBPA, a lipid concentrated during ILV morphogenesis, are critical 

factors in OW arenavirus entry, suggesting a crucial role for MVBs. RNAi knockdown of 

ESCRT complex 0- III proteins (e.g. Hrs, Tsg101 which is also involved in budding, Vps 

22 & 24, and Alix) all restricted, in part, entry as well. The authors propose a model 

whereby incoming LCMV bypasses early endosomes, and transiently passes through the 

MVB utilizing the ESCRT network en-route to late endosomes; a process dependent 

upon the microtubule transport (Pasqual, Rojek, et al., 2011). The authors also posit a 

very clear and plausible benefit to this unusual route of entry where the incoming virus 

circumvents detection by Toll-like receptors found within early endosomes, which would 

coincide with the lacking early immune response to LCMV and LASV. 

1.11.3. Polarization 
 

The use of cell lines to study entry, however, often fails to take into account the 3-

dimensional architecture and polarization requirements of the complex tissue that virus 

comes into contact with in vivo. As such, the distribution of OW and NW arenavirus 

receptors and their usage in terms of polarity have been a topic of debate. Functional 

VWXGLHV�RI�Į-'*�VXJJHVW�D�SUHIHUHQWLDO�DFFXPXODWLRQ�RI�Į-DG at the basolateral surface of 

cells, consistent with its role in organizing basement membranes. In contrast, other 
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studies have described a bipolar distribution of the OW receptor (Dylla, Michele, 

Campbell, & McCray, 2008). A recent study demonstrated that basolateral infection by 

LASV resulted in a substantial increase of virus uptake compared to apical infection in 

polarized Madine-Derby canine kidney (MDCK) cells (Schlie, Maisa, et al., 2010). This 

finding was confirmed using LCMV and JUNV applied to primary human epithelial cells 

(Dylla et al., 2008). This contradicts an earlier report for apically-dependent binding of 

JUNV by Cordo and colleagues (Cordo, Cesio y Acuna, & Candurra, 2005). The authors, 

however, noted that entry could occur in a non-polarized fashion suggesting perhaps 

diffusion of virus-receptor complexes following binding. 

Despite discrepancies in the route of entry and release current models agree on a 

polarized entry and release of both OW and NW arenaviruses. Further investigation of 

the requirements for polarization in vivo will be required to substantiate these 

contradictory findings and reconcile them with observations of primary cellular targets 

initiating human infection including macrophages and dendritic cells. 

1.12. Overview of endomembrane protein trafficking 
 

Arenavirus glycoproteins need to traverse the highly dynamic endomembrane system 

present in eukaryotic cells. Our understanding of the processive maturation is limited to a 

few key parts. In order to discuss the proteomics blue-print laid out in this dissertation, 

and the influence of the ERGIC-53 cargo receptor complex, we must first discuss in more 

detail some of the basic and more elaborate factors governing protein folding, 

modification, and trafficking within the confines of the cell.  The ability to selectively 

identify and traffic cargo within a cell, facilitates and underlies a dynamic necessity for 
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protein concentration within the membranous systems of eukaryotic cells. Specialized 

transport systems have facilitated the growth and divestment of compartmentalized 

faculties within cells that require a multitude of growth and survival signals as well as the 

ability to ascertain and respond to the repertoire of extracellular stimuli. Selectively 

transporting and maintaining proteins within the endomembrane system also allows for a 

dynamic and well-coordinated (usually) maturation of cargo destined for sites containing 

machinery involved in post-translational modifications that ensure the timing, folding, 

and function of the target molecules.  

Protein folding and trafficking within the endomembrane system begins within the 

Endoplasmic Reticulum (ER) where both co- and post-translational modifications arise. 

In many cases asparagine-linked glycosylation consensus sites (NLS) (NxS/T) receive a 

covalent en-bloc addition of a 14 piece high-mannose oligosaccharide unit. This glycan 

moiety enters the molecule into the calreticulin-calnexin cycle, to ensure proper folding 

via recognition of hydrophobic patches, which are characteristic of misfolded proteins, 

utilizing a repeated addition and removal of a terminal glucose residue (Hammond, 

Braakman, & Helenius, 1994). Following correct folding and disulfide linkage, proteins 

are either transported further through the secretory pathway, retained within the ER or 

retrieved soon after exit (e.g. KDEL receptor retrieval) (Munro & Pelham, 1987; Pelham, 

1988), or are shunted into an ER-assisted degradation pathway (ERAD) whereby proteins 

are reverse translocated and targeted for destruction via the proteasome (Wiertz et al., 

1996). Approximately one-third of all mammalian proteins are synthesized into the ER 

and become glycosylated. Therefore, the complex interplay of chaperones, isomerases, 
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lectins, and glycosyltransferases ensures not only the primary folding, but the functional 

retention versus degradation or passage of massively complex molecules destined either 

for an intracellular membranous compartment, the plasma membrane, or the extracellular 

space (Fiedler & Simons, 1995).  

Forward trafficking of proteins has been proposed to occur either via a non-specific 

bulk flow mechanism (Pfeffer & Rothman, 1987; Wieland, Gleason, Serafini, & 

Rothman, 1987) or one that requires specific intramolecular signals selectively 

recognized by transport receptors (Kelly, 1985; Palade, 1975). Transport receptors can 

assist in concentrating soluble cargo proteins within specialized exit domains of the ER 

termed ER exit sites (ERES) (Palade, 1975). Glycoproteins, if selected for anterograde 

movement, maintain a limited amount of primary information in the carbohydrate 

structure whilst in the ER. However, additional enzymes, concentrated within the Golgi 

cisterna, chemically and functionally elaborate the signature entrenched within the glycan 

structure (Helenius & Aebi, 2001; Reuter & Gabius, 1999). An outstanding question of 

cellular biologists’ remains unanswered in regard to the glycosylation pathway: why does 

the cell build up a carbohydrate modification in the ER, only to tear it down and build 

anew later in the pathway (Hammond et al., 1994; Helenius & Aebi, 2001)? The energy 

devoted to creating and maintaining the glycosylome suggests a key and fundamental 

purpose that remains to be fully described.  

1.12.1. Lectins 
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A key group of molecules involved in the biogenesis of cellular glycoproteins are the 

lectin family of proteins. Originally identified by plant biologists as early as 1888 (Lis & 

Sharon, 2007), this diverse class of typically non-enzymatic, carbohydrate binding 

molecules have provided cellular biologists, immunologists, and biochemists with 

powerful tools to purify, biochemically examine, and track the glycosylation profile of 

proteins inside and outside of the secretory pathway (Lis & Sharon, 2007). The 

abundance of cellular glycoproteins, as such, requires a complex array of lectins, and 

their specific activities. Intracellular lectins are thought to be intimately involved in 

decoding the glycosylated messages embedded within the changing structure of glycans 

within each membranous compartment. This class of proteins is evolutionarily conserved 

from archaea to mammals. Thus, the study of lectins has also facilitated the study of the 

co-evolution of carbohydrate structure and function (Reuter & Gabius, 1999).  

1.12.1.1. Common structural features, nomenclature, and function 
 

Lectins can be complex multi-domain proteins that function within a variety of 

environments including the secretory pathway, at the surface of cells, or in the 

extracellular space. Despite substantial heterogeneity via their modular domain 

structures, a single domain, the carbohydrate recognition domain (CRD) facilitates that 

sugar binding activity on most lectins. Accordingly, lectins can be characterized by the 

structural features of the CRD into a more discreet grouping (Varki, Etzler, Cummings, & 

Esko, 2009). Animal lectins are primarily segregated into C-type, Galectins, I-type, L-

type, P-type, and R-type (Dodd & Drickamer, 2001). For the purposes of the dissertation 

C-type, Galectins, and L-type lectins will be briefly discussed. C-type lectins are a broad 
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superfamily of proteins, characterized initially by their requirement for calcium ions for 

binding to sugars. Functions of this superfamily include pathogen clearance, endocytosis, 

and cell adhesion. This superfamily includes collectins, endocytic receptors, selectins, as 

well as lymphocyte lectins (Varki et al., 2009). The first animal lectin discovered, hepatic 

asialoglycoprotein receptor, belongs to this grouping. C-type lectins have been 

increasingly demonstrated to be involved in host-pathogen interactions (i.e. DC-SIGN 

has been shown to facilitate entry of a number of enveloped RNA viruses). Galectins are 

commonly found to bind to beta galactosides, but have other known high and low affinity 

interactions. Though the most widely expressed group of lectins across organisms, very 

few Galectins have been found in humans with examples being Galectins 1 and 3. Their 

physiological roles are not well described, but are thought to be involved in basement 

membrane interactions (Cummings & Liu, 2009; Tellez-Sanz, Garcia-Fuentes, & Vargas-

Berenguel, 2013). L-type, or leguminous, lectins were originally isolated from 

leguminous plant seeds, and were known for their hemagglutinating abilities via binding 

to cell surface glycans. Many lectins in this family contain a “jelly-roll” fold, however, 

this fold has been found across disparate primary sequences (e.g. Galectin-3) and species 

(e.g. the Rotavirus spike protein VP4) (Etzler, Surolia, & Cummings, 2009). 

 

 

1.13. ERGIC-53 and the intermediate compartment 
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Outside of CRT and CNX, arguably the most well studied mammalian lectin is the 

Endoplasmic Reticulum Intermediate Compartment Protein of 53 kilo Daltons (ERGIC-

53). The uninspiring name harbors a wealth of knowledge acquired by multiple 

generations of scientists probing the inner coming and goings of the secretory pathway. 

The protein is hypothesized to be an intracellular cargo receptor that facilitates the 

anterograde movement of a select subset of glycosylated cellular glycoproteins by 

binding to them via its, calcium-sensitive lectin function and coat protein interactions 

(see Figure 1.5). The protein is highly conserved across species from humans to yeast, 

and yet is paradoxically unessential (its loss in humans, though tolerated, is not without 

consequence). By studying its trafficking patterns and ligand selections, scientists have 

been able to synthesize a more comprehensive model of selective/receptor mediated 

protein trafficking within the early secretory pathway. Further, the loss of ERGIC-53 or 

its cofactor, multiple coagulation factor deficiency protein 2 (MCFD2), result in the 

Combined Deficiency of Factor V and Factor VIII (F5F8D), yet this happens without 

gross alteration of the machinery in the early secretory pathway. The majority of cellular 

glycoproteins cycle and are secreted normally, and other than the bleeding abnormalities, 

F5F8D patients live normal lives. Through the study of this biological conundrum, 
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Science has thus been advanced. 

 

Figure 1.5 Recycling of ERGIC-53 in the early secretory pathway. 

 

The early secretory pathway, comprised of the ER, ERGIC, and Golgi network provides 
the structural and biochemical cues for the cycling of ERGIC-53. Cargoes (depicted as 
FV & FVIII (red lumenal molecules)) are concentrated within specialized ER exit site 
(ERES) domains (1) with the help of the soluble, calcium-binding, cofactor MCFD2 
(yellow lumenal molecule). Hexameric, cargo loaded ERGIC-53 (bown transmembrane 
molecule), via c-terminal FF – COPII (blue) interactions, and with the help of the sub-
optimal TM length, is able to overcome the ER retention signal strength and traffic 
forward to the ERGIC (2). Fusion of ERGIC-53 positive carrier vesicles introduces the 
cargo receptor to an environment that is substantially lower in calcium concentrations, 
and subtly lower in pH (the green gradient represents changing chemical composition of 
the pathway). The composition of the ERGIC is hypothesized to act as the cue to dislodge 
calcium from the ERGIC-53 receptor complex, which reversibly attenuates its lectin 
activity and causes cargo release (3). COPI (purple) complexes assemble onto new 
ERGIC-53 sites via the dilysine (KK) c-terminal retrieval signal, and facilitate the Golgi-
independent retrograde trafficking of the cargo receptor (4). 
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ERGIC-53 was identified by several independent groups via complimentary 

approaches.  Schweizer and colleagues, following immunization of mice with material 

from enriched Golgi fractions of human Caco-2 cells,  proceeded with the immunologic 

identification of an ~ 53 kDa protein and thus preceded its provenance as marker to a 

network of vesicular tubular clusters at the cis-face of the Golgi, to be later termed the 

ERGIC (Schweizer, Fransen, Bachi, Ginsel, & Hauri, 1988). The protein was 

biochemically characterized as a non-glycosylated integral membrane protein containing 

a short cytoplasmic tail, and found capable of forming long lasting dimers and hexamers 

(a half-life of several days is suggested). Saraste et al., using a similar approach in rat 

pancreatic cells, identified a protein of a similar nature dubbed p58 (Saraste, Palade, & 

Farquhar, 1987). Following its further genetic characterization, p58 was identified as the 

rat homologue of ERGIC-53 (Lahtinen, Hellman, Wernstedt, Saraste, & Pettersson, 

1996). A third group identified a protein termed MR60 from a human promyelocytic cell 

line that bound a mannose column in a divalent cation-dependent fashion (Pimpaneau, 

Midoux, Monsigny, & Roche, 1991) that was also determined to be ERGIC-53 (Arar et 

al., 1995). In the intervening years, ERGIC-53 orthologues have been identified from a 

variety of species covering the spectrum from C. elegans to humans, suggesting a highly 

evolutionarily conserved protein (C. Appenzeller, H. Andersson, F. Kappeler, & H. P. 

Hauri, 1999a).  

The ability to reproducibly isolate and identify this intermediate compartment via 

ERGIC-53 has since facilitated the biochemical investigation of its purpose (Schweizer, 

Matter, Ketcham, & Hauri, 1991). The identity of the intermediate compartment is 
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biochemically unique relative to the ER, ERES, and Golgi stacks. Alterations not only in 

protein content  (Breuza et al., 2004; Klumperman et al., 1998a; Schweizer et al., 1991), 

but in lipid content (Ben-Tekaya, Kahn, & Hauri, 2010), and tonic qualities (e.g. ion 

concentrations and pH) have been identified (Paroutis, Touret, & Grinstein, 2004; 

Pezzati, Bossi, Podini, Meldolesi, & Grohovaz, 1997). Several hypotheses regarding the 

genesis and function of the compartment have been tested experimentally in vivo, as well 

as in vitro (e.g. maturation model versus stationary model) (Zeuschner et al., 2006). 

Schweizer and colleagues, using Vesicular stomatitis virus G (VSV G) as a marker along 

with a temperature shift characterized the ERGIC-53 compartment as an intracellular site 

where anterograde trafficking halts at 15° (e.g.15° compartment) (Schweizer et al., 1991). 

Upon rewarming, Klumperman and colleagues demonstrated that the ERGIC-53 positive 

structure was also involved in a Golgi-independent retrograde trafficking process to the 

ER (Klumperman et al., 1998a). The compartment has also been demonstrated to be a site 

of coat protein sorting. COPII anterograde moving vesicles ferrying cargo from ERES 

fuse with the adjacent ERGIC (Aridor, Bannykh, Rowe, & Balch, 1995), while COP I 

vesicles exit towards either ER (retrieval carrier vesicles) or towards the Golgi (Nickel & 

Brügger, 1999; Scales, Pepperkok, & Kreis, 1997). Live cell imaging studies using an 

ERGIC-53 GFP fusion protein highlighted the active qualities of the compartment. The 

GFP-ERGIC-53 positive structure, though highly dynamic, was indeed a stationary 

compartment (Ben-Tekaya, Miura, Pepperkok, & Hauri, 2005a) rather than one rapidly 

formed and decomposed, as had been formerly proposed (Scales et al., 1997). The 

localized movement of ERGIC-53 positive net-stationary (mobile-yet permanent) clusters 

and the anterograde and retrograde transporting vesicles were shown to be dependent 
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upon microtubules (Ben-Tekaya et al., 2005a) and (Cole, Sciaky, Marotta, Song, & 

Lippincott-Schwartz, 1996; Lippincott-Schwartz et al., 1990). The majority of ERGIC-53 

is localized to the intermediate compartment. When it does escape the ER-ERGIC 

cycling, it is generally limited to the first cisterna of the Golgi (Klumperman et al., 

1998a). The cycling of ERGIC-53 will be discussed more in detail in a later section 

(section 1.13.1.3). 

1.13.1. ERGIC-53 the lectin: structural and biochemical features 
 

ERGIC-53, along with its closely related resident Golgi homologues  vesicular 

integral membrane protein of 36 kDa (VIP36), ERGIC-53-like (ERGL), and VIP-36-like 

(VIPL), is categorized as an L-type lectin based on homology of its CRD to leguminous 

lectins and to some extent mammalian galectins (Arar et al., 1995; Fiedler & Simons, 

1994). The protein consists of approximately 510 amino acids in humans and consists of 

a signal sequence, a large lumenal segment subdivided into a CRD and helical region, a 

transmembrane domain, and a cytoplasmic tail (see figure 1.6).  

1.13.1.1. ERGIC-53 CRD 
 

ERGIC-53 contains a large, ER-lumenal CRD encompassing ~240 amino acids (31-

285) which contain all the information necessary for, minimally, in vitro carbohydrate 

binding. Extensive structural and biochemical studies have determined: the residues 

involved in binding to carbohydrate ligands (Zheng et al., 2013), separate structures with 

(Velloso, Svensson, Pettersson, & Lindqvist, 2003b) and without (Velloso et al., 2003b) 

Ca2+, and residues binding to the soluble EF-hand protein MCFD2 (Nishio et al., 2010; 
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Wigren, Bourhis, Kursula, Guy, & Lindqvist, 2010) . The CRD folds into D�ȕ-sandwhich, 

FRPSURPLVHG� RI� D� FRQFDYH� DQG� FRQYH[� ȕ-sheet (Velloso et al., 2003b). Removal of 

VSHFLILF� DPLQR� DFLGV� IURP� ȕ-SHSWLGHV� �H�J�ǻȕ�-4) (Zheng, Liu, Yuan, Zhou, & Zhang, 

2010) or structurally distant Ca2+ binding residues (N156A and D181) (Zheng et al., 

2013) are thought to create structural reformations causing collapse of the ligand binding 

site. 

 

Figure 1.6 ERGIC-53 structural features. 

This schematic depicts a hexameric ERGIC-53 molecule inserted into a membrane. The 
known functional regions are listed in the approximate areas (not drawn to scale). The N-
terminus lies within the lumen of the ER/ERGIC and the C-terminus is exposed to the 
cytoplasm. The carbohydrate recognition domain (bulbous white central region) contains 
residues controlling binding to calcium, carbohydrates, and MCFD2. The helical stem is 
thought to be involved in oligomerization and peptide binding. Two oligomerization 
critical cysteins are depicted as yellow ovals. The transmembrane domain has also been 
suggested to be involved in trafficking via a mechanism involving a sub-optimal length. 
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approximate pH of the ER (Itin, Roche, Monsigny, & Hauri, 1996), and was able to 

recognize the man8/9 structures when bound to calcium in vivo and in vitro (Itin et al., 

1996; Kamiya et al., 2008; Moussalli et al., 1999a; Zheng et al., 2013). This feature is 

one that separates ERGIC-53 biochemically from VIP-36, which has been proposed to 

bind to mannose in a calcium-independent fashion (Hara-Kuge, Ohkura, Seko, & 

Yamashita, 1999; Kamiya et al., 2008), and from the yeast orthologues, of ERGIC-53, 

Emp46p, which utilizes K+, and Emp47p binds carbohydrate independent of metal ion 

cofactors (Satoh et al., 2007). ERGIC-53’s N-terminal (ER-lumenal) carbohydrate 

recognition domain contains conserved residues involved in sugar binding amongst other 

L- lectins. When these restudies are disrupted (e.g. N156A and D121 mutations) the 

sugar binding features are lost (Itin et al., 1996; Nyfeler, Michnick, & Hauri, 2005; 

Nyfeler, Reiterer, et al., 2008a; Zheng, Liu, Yuan, et al., 2010). Another feature of the 

unique CRD of ERGIC-53 is its broader specificity for high mannose carbohydrate 

structures relative to other L-type lectins, and its inability able to discriminate between 

glucosylated and deglucosylated forms of high-mannose in vitro (Kamiya et al., 2008).  

The mannose binding capabilities (and structure) of ERGIC-53 were determined to 

be sensitive to not only calcium (Velloso et al., 2003b), but also to the pH of the 

environment (Appenzeller-Herzog, 2003). Binding of ERGIC-53 to mannose on a 

column was found to drop precipitously below the ER pH range (7-7.4). Further, by 

neutralizing the acidification of the ERGIC using chlorquine (albeit nonspecifically), the 

authors demonstrated impairment in the release of ERGIC-53 specific cargo in cells. The 

authors proposed a model by which ERGIC-53’s lectin activity reversibly facilitates 
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cargo loading and unloading based on pH - potentiated calcium binding. Within the ER, 

at a neutral pH, the lectin activity is optimal and glycoprotein binding can occur. As 

ERGIC-53 reaches the ERGIC, a subtle drop in pH was proposed to cause a critical pH 

sensing histidine (His178) to become protonated and dislodge calcium from the lectin 

(Appenzeller-Herzog, 2003). Contradictory evidence has also been provided as to the role 

of pH in cargo loading and unloading. Zheng et al., via a crystallographic analysis of the 

CRD in complex with terminal high-mannose type mannans, proposed that His178, rather 

than functioning as a pH switch, directly engaged in polar interactions with the hydroxyls 

present on the carbohydrate (Zheng et al., 2013). Further, the authors could not find any 

evidence of pH regulation in binding of ERGIC-53’s CRD to mannose, however, in 

contradiction to the studies by Appenzeller et al., who used a full length ERGIC-53, the 

latter study by Zheng and colleagues examined the CRD independently (Zheng et al., 

2013). 

 ERGIC-53’s method of recognizing cargo proteins was later extended when 

evidence was provided that illustrated that, in addition to the mannose requirement for 

binding cargo, a beta-hairpin peptide structure also contributed to ligand selection 

(Appenzeller-Herzog, Roche, Nufer, & Hauri, 2004). This composite glycan-peptide 

recognition motif suggested that ERGIC-53 was capable of adding an additional layer of 

selectivity in cargo transported from the ER that had not only been successfully trimmed 

by the CRT-CNX cycle, but also correctly folded such that its peptide conformation 

matches that of the ERGIC-53 pocket (Appenzeller-Herzog et al., 2004). However, the 

glucose trimming requirement for selection of cargo contradicts studies done on purified 
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CRD (Kamiya et al., 2008) and suggests that additional signals may be involved in 

binding. 

1.13.1.2. ERGIC-53 stalk 
 

The CRD is followed by a 210 residue helical-rich stalk that separates its lectin 

activity from the membrane and is able to form disulfide linked dimers and hexamers 

(Hauri, Kappeler, Andersson, & Appenzeller, 2000a; Schweizer et al., 1988). The stalk 

contains four predicted alpha-helices thought to form a coiled-coil (Lahtinen, Svensson, 

& Pettersson, 1999). Embedded within this helical region are four cysteine residues, two 

of which are critical (aa 466 and 475) in the formation of dimers and hexamers (C. 

Appenzeller et al., 1999a; Lahtinen et al., 1999; Zheng, Liu, Yuan, et al., 2010). 

Interestingly, in order to form a completely monomeric ERGIC-53 the two cysteines 

must be removed along with the helix region, suggesting some intramolecular peptide 

interactions also facilitate oligomerization (E. P. A. Neve, U. Lahtinen, & R. F. 

Pettersson, 2005; Zheng, Liu, Yuan, et al., 2010). Oligomerization has been proposed to 

be a requisite for anterograde trafficking (C. Appenzeller et al., 1999a; Lahtinen et al., 

1999), and for binding to specific ligands (Carrière, Piller, Legrand, Monsigny, & Roche, 

1999; Nufer, Kappeler, Guldbrandsen, & Hauri, 2003). A membrane proximal glutamine 

residue has also been proposed to play a role in ER-retention, although the exact 

mechanism by which it contributes has remained obscure (Kappeler, Klopfenstein, 

Foguet, Paccaud, & Hauri, 1997).  
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1.13.1.3. ERGIC-53 transmembrane domain, carboxy terminus, and transport 
 

ERGIC-53, a type I transmembrane protein, encodes a short 18 residue membrane 

spanning domain (TM), that in cooperation with the short 12 amino acid C-terminal tail 

(CT), largely determines the subcellular trafficking of the protein . However, some 

lumenal residues have also been shown to contribute as well (Kappeler et al., 1997b) 

(Itin, Foguet, Kappeler, Klumperman, & Hauri, 1995; Itin, Schindler, & Hauri, 1995a). 

These features control ER retention, retrieval, as well as anterograde trafficking with the 

assistance of two coatomer proteins (COP I and COPII), as well as a network of 

microtubules, motor proteins (presumably), and a network of regulatory molecules that 

are still largely unknown (Haines et al., 2012; Itin, Schindler, et al., 1995a; Kappeler, Itin, 

Schindler, & Hauri, 1994a; Nufer et al., 2003; Schindler, Itin, Zerial, Lottspeich, & 

Hauri, 1993; E. J. Tisdale, H. Plutner, J. Matteson, & W. E. Balch, 1997). The length of 

the transmembrane domain, rather than its specific chemical identity, has been proposed 

to augment the efficiency of ER exit via a suboptimal-length based mechanism, and 

swapping of the TM with that of CD4 removes the retention signal completely (Felix 

Kappeler  & Hauri, 1997; Itin, Foguet, et al., 1995). 

The C-terminal tail of ERGIC-53 ends with a KKFF tetrapeptide that contains 

anterograde (FF) and retrograde (KK) signals (Andersson, Kappeler, & Hauri, 1999; E. J. 

Tisdale et al., 1997). The dilysine motif has been recognized as an ER-retention signal 

(Andersson et al., 1999) and interacts with COPI (Kappeler et al., 1997b; E. J. Tisdale et 

al., 1997). However, retention can be separated from binding to COPI (Andersson et al., 
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1999). Mutating ERGIC-53’s dilysine signal to SS, or removing the cytoplasmic tail 

completely, resulted in the exposure of the molecule on the surface of cells. Surprisingly, 

overexpression of the WT protein also resulted in surface exposure in a population of 

~25% of the cells (Itin, Kappeler, Linstedt, & Hauri, 1995; Kappeler et al., 1994a). This 

was proposed to occur via saturation of the ER retention system (Kappeler et al., 1994a), 

but may also involve additional targeting mechanisms (Itin, Schindler, et al., 1995a). 

Surprisingly, the protein at the surface, when labeled with antibodies, was efficiently 

endocytosed in a process that utilized the C-terminal KKFF motif (Itin, Kappeler, et al., 

1995; Kappeler et al., 1994a). Transfer of the KKFF containing C-terminal sequence to 

CD4 also facilitated its trafficking to the surface, whereas the dilysine motif followed by 

di-alanine (KKAA) is restricted to the ER, confirming that the dilysine motif acts not 

only in COPI-retrieval (Itin, Schindler, et al., 1995a), but also is involved in ER retention 

(Andersson et al., 1999). The retention was not a side effect per se of lacking an exit 

signal (FF), but rather, it is a bona-fide retention signal as proteins given a poly A tail 

werH� DEOH� WR� WUDIILF� IRUZDUG�� DQG� FHOOV� PDNLQJ� D� WHPSHUDWXUH� VHQVLWLYH� İ-COP also 

retained molecules bearing the KKAA signal (Andersson et al., 1999). A more recently 

proposed mechanism for ER-retention of ERGIC-53 involves its interaction with VIPL, 

which contains a double arginine retention signal (Nufer et al., 2003; Qin et al., 2012). 

Interestingly, an antibody against the C-terminus of ERGIC-53 was found to block 

coatomer exchange at the level of the ERGIC, concentrating the protein there via COPI 

retrieval blocking (E. J. Tisdale et al., 1997). A recent proteomics based study identified a 

number of cellular proteins bound specifically to the tail of ERGIC-53. The authors noted 

that UBDX, a p97 adaptor protein, formed a complex with p97/VCP (vasolin containing 
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protein), that they propose regulates tail binding proteins, and thus, recycling potential of 

the protein. Accordingly, they discovered that this complex was able to influence the 

post-ERGIC movement of ERGIC-53 to an area near the cell periphery (Haines et al., 

2012) suggesting a complex and regulated post-ERGIC trafficking mechanism may exist. 

The two C-terminal phenylalanines have been demonstrated to facilitate anterograde 

trafficking of ERGIC-53. In vitro binding studies demonstrated selective binding of these 

peptides to the Sec23p subunit of the COPII complex (Kappeler et al., 1997b), and that 

lack of this binding due to a KKAA mutation results in a blockage of anterograde 

movement of ERGIC-53. Expression of the KKAA construct restricted movement of the 

recombinant protein and the endogenous pool, and so acts in a dominant negative 

fashion. Accordingly, immunoprecipitation of recombinant KKAA ERGIC-53 via its 

myc tag enabled purification of endogenous ERGIC-53 and recombinant protein, 

suggesting heterodimer/heterohexamer complexes form (Kappeler et al., 1997b; 

Vollenweider, Kappeler, Itin, & Hauri, 1998a). Interestingly, during in vitro binding 

assays, the KKAA peptide bound more efficiently to coatomer proteins, which could 

provide an additional mechanism whereby it’s trafficking is restricted to the ER 

(Kappeler et al., 1997b). It should be noted that restriction of ERGIC-53 to the ER did 

not disrupt the architecture or function of the secretory pathway, based on maintenance 

and location of fiducial protein markers of ER, and Golgi apparatus, and via analysis of 

glycoprotein secretion. 

Given the connection between ERGIC-53 protein levels and its intracellular 

localization, a number of studies were focused on determining its genetic regulatory 
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mechanisms. Several ER stressors have been shown to upregulate ERGIC-53 either from 

a transcriptional level (e.g. induction of the ATF6 branch of the unfolded protein 

response via transcription factor binding to an ER stress response element (ERSRE)) 

(Nyfeler et al., 2003b; Renna, Caporaso, Bonatti, Kaufman, & Remondelli, 2007) or from 

a translational level (e.g. heat shock induction via a ribosomal shunting mechanism) 

(Spatuzza et al., 2004). Raising the temperature to 42° C redistributes ERGIC-53 to a 

more peripheral site (along with MCFD2). These latter studies failed to examine potential 

surface decoration of ERGIC-53 though, as was reported earlier following its enhanced 

expression. A phenotypic alteration has yet to be established under these circumstances 

of increased transcription or translation, outside of increases to the folding capacity of the 

ER during stress. Further, two proteomic reports have also identified ERGIC-53 within 

purified preparations of exosomes via a highly sensitive mass spectroscopy approach 

(Conde-Vancells et al., 2008; Gonzalez-Begne et al., 2009). The presence of the protein 

within extracellular vesicles has no currently ascribed function, and no current 

mechanism has been proposed to explain how ERGIC-53 is trafficked or targeted to sites 

of exosome formation. 

1.13.2. ERGIC-53 the cargo receptor 
 

The structural and biological features of ERGIC-53 led researchers initially to 

predict its role as a cargo receptor (Schweizer et al., 1988). The lumenal CRD, type I 

transmembrane feature of the protein, and the ability of its C-terminus to interact both 

with COPII and COPI proteins, fit the criteria for selection criteria for a cargo receptor. 

This class of proteins is able to connect soluble cargo proteins to COPI/II molecules and 
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to selectively move their cargo in the early secretory pathway (Hauri et al., 2000a; 

Mitrovic, Ben-Tekaya, Koegler, Gruenberg, & Hauri, 2008; Nyfeler et al., 2003b; 

Nyfeler, Reiterer, et al., 2008a; B. Nyfeler, B. Zhang, D. Ginsburg, R. J. Kaufman, & H. 

P. Hauri, 2006). Evidence to support this claim was substantiated by Vollenweider et al. 

when they noticed a specific deficiency of a 57 kDa secreted protein following the 

expression of ER-restricted ERIGC-53 mutant (KKAA). Isolation  of the protein with the 

mannose-specific lectin ConA and tryptic sequencing led to the identification of the first 

soluble glycosylated ligand, cathepsin (CTSC), a lysosomal targeted protease, that 

required ERGIC-53 for its efficient export (Vollenweider et al., 1998a). In a related study 

Appenzeller and colleagues identified an additional cathepsin, Z, (CTSZ), that was also 

found to require the cargo receptor for its efficient transport (Appenzeller-Herzog, 2003; 

C. Appenzeller, H. Andersson, F. Kappeler, & H.-P. Hauri, 1999). Analysis of these 

cargoeV� LOOXPLQDWHG� WKH� DGGLWLRQDO� UHTXLUHPHQW� IRU� FDUJR� FRQWDLQLQJ� D� ȕ-peptide along 

with the high-mannose glycan previously mentioned (Appenzeller-Herzog et al., 2004; C. 

Appenzeller et al., 1999a; Vollenweider et al., 1998a). Using a protein complementation 

assay (PCA) featuring a split YFP molecule, Nyfeler and colleagues identified an 

additional ligand alpha-1 antitrypsin (Nyfeler, Reiterer, et al., 2008a). Also using a 

similar PCA approach, Chen et al., identified Mac-2BP as another glycosylation-

dependent ERGIC-53 cargo (Chen, Hojo, Matsumoto, & Yamamoto, 2013).  

1.13.3. ERGIC-53 and F5F8D 
 

Originally described in 1954 (Oeri, Matter, Isenschmid, Hauser, & Koller, 1954), 

Combined Factors V and VIII Deficiency is a type of mild hemophilia with specific 
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deficiencies in both antigen and activity of these two clotting factors. The disease 

manifests as deficits in the serum levels of coagulation factor V (FV) and VIII (FVIII) at 

approximately 5-30% of normal values. Inefficient secretion of these two protease 

cofactors causes a notable impairment in the activation of both thrombin and coagulation 

factor Xa (Camire & Bos, 2009; Spreafico & Peyvandi, 2008). The mild bleeding 

abnormalities can present as easy bruising, epistaxis, menorrhea, and gingival bleeding. 

Treatments are encouraged only as needed, and include fresh frozen plasma (FFP) and/or 

recombinant factor. Treatments are common following trauma such as dental extraction, 

child birth, and circumcision (Zhang, 2009).  

The underlying genetic cause for this type of rare hemophilia remained a mystery for 

nearly five decades. Using a homozygosity mapping technique developed by Lander and  

Botsein to study genetic disorders in children born of consanguinity (Lander & Botstein, 

1987), a flurry of rapid publications first by Nichols and colleagues, and later by 

Neerman-Abez and colleagues, narrowed the loci responsible for the disease to a region 

on chromosome 18 (Neerman-Arbez et al., 1997; Nichols et al., 1997). In a seminal 

study, Nichols et al., through the use of positional cloning, identified the locus 

responsible for causing the rare hemophilia (F5F8D omim 227300) to a region on the 

long arm of chromosome 18 containing the gene lectin mannose binding protein 1 

(LMAN1), the gene encoding ERGIC-53 (Nichols et al., 1998).  

The homozygous recessive syndrome was identified amongst Jews of Middle Eastern 

decent, and soon after additional affected families were identified in northern regions of 

Italy, Iran, and Pakistan (Neerman-Arbez et al., 1999). The disease is considered 
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extremely rare in the general population with incidence of ~ 1:1,000,000. Interestingly, in 

areas where consanguinity is commonplace, the incidence is approximately 1:100,000. In 

the intervening years since its initial discovery, multiple founder mutations have arisen 

suggesting a more widespread basis than was originally hypothesized (Sirachainan et al., 

2005; Zhang, 2009; Zhang et al., 2006; Zhang et al., 2008; Zhang, Zhou, Yang, & Xiong, 

2009). ERGIC-53 null populations have since been documented on most continents 

(Antarctica has thus far been excluded) (Spreafico & Peyvandi, 2008), and instances of 

compound heterozygousity leading to a clinical cases have also emerged (Farah et al., 

2006; Ge et al., 2010; Patel, Liu, Lager, Malkovska, & Zhang, 2013). To date there are 

nearly 50 known disease causing mutations in the ERGIC-53 gene and over 500 

polymorphisms have been recorded in NCBI. 

Biochemical and cellular studies have focused on identifying the mechanism by 

which lack of ERGIC-53 contributes to F5F8D. In an elegant series of experiments, 

Mousalli and colleagues demonstrated that ERGIC-53 was acting as a cargo receptor 

required for the ER to Golgi trafficking of the clotting factors (Moussalli et al., 1999a). 

The authors provided evidence that the ER-ERGIC recycling of ERGIC-53, as well as the 

FV/FVIII N-linked glycans, were necessary for efficient secretion of the clotting factors 

(Moussalli et al., 1999a). Biochemical evidence supports a direct binding of ERGIC-53 to 

FVIII; however, FV binding has not been demonstrated in vitro (Cunningham MA, 

2003). Zheng and colleagues recently described specific residues of ERGIC-53 (e.g. 

His178 and Gly 241/252) crucial for binding to FVIII (Zheng et al., 2013). The exact 

mechanism by which the ERGIC-53 cargo receptor complex facilitates the secretion of 
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FV and FVIII is currently unknown. The phenotypic impairment of FV/VIII secretion is 

not absolute following its loss, suggesting that either a redundant pathway exists, or that 

FV/FVIII may leak out via bulk flow (Moussalli et al., 1999a).  

1.13.4. MCFD2 and F5F8D 
 

Nearly five years after the discovery of the genetic basis for F5F8D, clinicians and 

scientists remained intrigued about the remaining 30% of F5F8D patients, whose ERGIC-

53 gene remained normal. In 2003, a study by Zhang and colleagues brought to light the 

nature of the disease in the remaining population of F5F8D patients. The genetic 

abnormalities pointed to a gene on chromosome 2, and subsequently became known as 

multiple coagulation factor deficiency protein 2 (MCFD2) (Bin Zhang et al., 2003). 

MCFD2 encodes for a soluble 16 kDa protein found in the lumen of the ER that contains 

a disordered N terminal region, followed by 2 C-terminal EF-hands separated by a short 

linker region. These EF hands become ordered when calcium is bound, and subsequently 

disorder without the metal cation (Nishio et al., 2010). 

MCFD2 forms a 1:1 calcium-dependent stoichiometric cargo receptor complex with 

ERGIC-53 (Bin Zhang et al., 2003; Zhang, Kaufman, & Ginsburg, 2005b). In addition to 

the biochemical interaction, interestingly, the genetic regulation of MCFD2 has been 

demonstrated to follow closely that of ERGIC-53 (e.g. both proteins are upregulated 

during stress) (Spatuzza et al., 2004). Genetic and structural studies have mapped the 

residues responsible for mediating the interaction to the first beta sheet in ERGIC-53 

(residues 47-60), as well as multiple regions in MCFD2 (e.g. both EF-hands) (Wigren et 
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al., 2010; Zheng, Liu, Zhou, & Zhang, 2010), in addition to the C-terminal 3 residues 

(Nyfeler, Kamiya, et al., 2008). Missense mutations in MCFD2 causing F5F8D have 

been demonstrated to abolish its interaction specifically with ERGIC-53, a result that has 

been proposed to occur via gross alterations in the tertiary structure of the protein (Hamza 

et al., 2012).  The interaction of MCFD2 and FV/FVIII occurs independently of ERGIC-

53, as such, mutations affecting its binding to ERGIC-53 do not ablate its interaction with 

clotting factors (Zheng, Liu, Zhou, et al., 2010). The cargo receptor complex formed by 

MCFD2 and ERGIC-53 has thus far been demonstrated to be important only in the 

trafficking of FV and FVIII, as well as the more recently described Mac-2BP (Chen et al., 

2013)��%RWK�FDWKHSVLQV��&�	�=��DQG�Į-1 antityrpsin are able to be ferried forward without 

the need for MCFD2 (B. Nyfeler et al., 2006).  

1.13.4.1. MCFD2 outside of F5F8D 
 

MCFD2 has recently been demonstrated by several groups to be a secretory 

protein (Liu et al., 2013; Toda et al., 2003). In addition to its role in recruiting and 

binding coagulation factors with ERGIC-53, it has been demonstrated to become O-

glycosylated and secreted into the extracellular space (B. Nyfeler et al., 2006). The 

secreted protein has been found to have a phenotypic influence on the maintenance and 

differentiation of neuronal stem cells. It is currently unknown how MCFD2 is exerting 

this influence, and if sMCFD2 is indeed a physiological phenomenon, or an artefactual 

event resulting from overexpression in a tissue culture system. Nyfeler et al., following 

knockdown of ERGIC-53 noticed that the MCFD2 molecule was secreted, suggesting an 

ERGIC-53 retention of MCFD2 (B. Nyfeler et al., 2006). An outstanding question left 
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unanswered hinges upon this predicament. The answer will be of great interest to not 

only the study of receptor mediated transport (e.g. ERGIC-53:MCFD2 receptor biology), 

but also to elucidating signal transduction involved in maintenance of adult stem cells, 

and lastly, its potential role as a therapeutic agent for a variety of maladies (to be 

discussed within the confines of chapter 3). 

1.13.5. Final remarks on the ERGIC-53 cargo receptor complex 
 

The ERGIC-53 MCFD2 cargo receptor complex has been studied extensively in 

vitro, in cells, but to only a limited extent within a complex organism. A mouse LMAN1 

knockout model yielded a partial recapitulation of human disease with plasma levels of 

FV and FVIII at approximately 50% of wt (Zhang et al., 2011). The authors of the study 

also noted alterations in liver accumulation of alpha-1 antitrypsin. Of the proteins found 

to bind to either ERGIC-53, MCFD2, or the ERGIC-53-MCFD2 complex, only the 

clotting factors have been demonstrated to be disrupted in people lacking either of these 

two functional proteins. A recent series of studies demonstrated that ERGIC-53 is 

involved in the efficient polymerization and secretion of IgM in concert with Erp44. 

However, the authors noted no overt immunological defects in F5F8D patients could be 

detected in their limited study. An additional manuscript by these authors on the topic is 

pending and will be of great interest to the community at large (Anelli et al., 2007; M. 

Cortini & R. Sitia, 2010). 
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2. THE INTRACELLULAR CARGO RECEPTOR ERGIC-53 IS REQUIRED 
FOR THE PRODUCTION OF INFECTIOUS ARENAVIRUS, CORNAVIRUS, 
AND FILOVIRUS PARTICLES 
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2.1. SUMMARY 
Arenaviruses and hantaviruses cause severe and often fatal diseases in humans. Little is 

known regarding host proteins required for their propagation. We identified human 

proteins that interact with the glycoproteins (GPs) of a prototypic arenavirus and 

hantavirus and show that the lectin ERGIC-53 - a cargo receptor required for cellular 

glycoprotein trafficking within the early exocytic pathway - associates with arenavirus, 

hantavirus, coronavirus, orthomyxovirus, and filovirus GPs. ERGIC-53 binds to 

arenavirus GPs through a lectin-independent mechanism, traffics to arenavirus budding 

sites, and is incorporated into arenavirus particles. ERGIC-53 is required for arenavirus, 

coronavirus, and filovirus propagation; in its absence, GP-containing virus particles form, 

but are noninfectious due, in part, to their inability to attach to host cells. Thus, we have 

identified a class of pathogen-derived ERGIC-53 ligands, a lectin-independent basis for 

their association with ERGIC-53, and a role for ERGIC-53 in the propagation of several 

highly pathogenic RNA virus families. 
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2.2. HIGHLIGHTS 
x Identification of host protein partners of arenavirus and hantavirus glycoproteins 

(GPs) 

x ERGIC-53 associates with viral GPs via a lectin-independent mechanism 

x ERGIC-53 is critical for arenavirus, coronavirus, and filovirus propagation 

x ERGIC-53 is a virion component; in its absence virions form, but are 

noninfectious 
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2.3. INTRODUCTION 
 

Arenaviruses and hantaviruses are rodent-borne, negative-sense RNA viruses that cause 

significant morbidity and mortality in humans (Buchmeier et al., 2007; Schmaljohn and 

Nichol, 2007). Most pathogenic arenaviruses are associated with severe hemorrhagic 

fever syndromes in humans. Examples include the New World arenaviruses Junin virus 

(JUNV), Machupo virus (MACV), and Guanarito virus (GTOV), which are the etiologic 

agents of Argentine, Bolivian, and Venezuelan hemorrhagic fevers, respectively, as well 

as Lassa virus (LASV), an Old World arenavirus that causes Lassa Fever along the coast 

of West Africa (Buchmeier et al., 2007). Additionally, lymphocytic choriomeningitis 

virus (LCMV) can cause aseptic meningitis in immunocompetent individuals and is a 

potent teratogen (Buchmeier et al., 2007). LCMV and Dandenong virus (DANV), an 

LCMV-like virus, are also responsible for a nearly uniform lethality in 

immunosuppressed recipients of virus-infected tissues (Fischer et al., 2006; Palacios et 

al., 2008).  Hantaviruses cause two human illnesses: hemorrhagic fever with renal 

syndrome in the Old World and hantavirus cardiopulmonary syndrome (HCPS) in the 

New World (Schmaljohn and Nichol, 2007). Sin Nombre virus (SNV) and Andes virus 

(ANDV) are the primary etiologic agents of HCPS in North and South America, 

respectively, and are associated with a fatality rate of 35 - 39% (da Rosa Elkhoury et al., 

2012; MacNeil et al., 2011). U.S. Food and Drug Administration (FDA)-approved 

vaccines or effective antivirals do not currently exist for the prevention and/or therapeutic 

treatment of arenavirus or hantavirus disease.  
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Arenaviruses and hantaviruses each encode an envelope glycoprotein (GP) that 

decorates the surface of the virion and functions to mediate attachment and entry of 

virions into permissive host cells. Each GP is encoded as a precursor (GPC) that is 

proteolytically processed into mature subunits. The arenavirus GPC is post-translationally 

modified to yield a stable signal peptide (SSP) as well as GP1 and GP2 subunits (Lenz et 

al., 2001), whereas the hantavirus GPC is co-translationally processed into G1 and G2 

subunits (Lober et al., 2001). In each case, the GP subunits form a mature GP complex 

(SSP-GP1-GP2 for arenaviruses; G1-G2 for hantaviruses) that facilitates receptor binding 

and entry (Buchmeier et al., 2007; Schmaljohn and Nichol, 2007). 

Relatively little is known regarding interactions that arenavirus or hantavirus GPs 

have with host proteins or the importance of such interactions for viral replication and 

disease pathogenesis. Herein, we utilized a proteomics approach to comprehensively 

identify human proteins that interact with GPs encoded by a prototypic arenavirus or 

hantavirus. We show that the ER-Golgi intermediate compartment 53 kDa protein 

(ERGIC-53) - an intracellular cargo receptor that facilitates the anterograde transport of a 

limited number of glycoprotein ligands in the early exocytic pathway (Appenzeller et al., 

1999) - has a conserved interaction with GPs encoded by multiple families of RNA 

viruses and is essential for the formation of infectious arenavirus, coronavirus, and 

filoviruses in a GP-specific manner. Our results suggest that loss of ERGIC-53 or its 

functionality leads to the formation of GP-containing virions that are defective in their 

ability to attach to permissive host cells.  
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2.4. RESULTS 
 

2.4.1. Identification of Cellular Proteins that Associate with Arenavirus and 
Hantavirus GPs and Choice of ERGIC-53 

 

To identify human proteins that associate with arenavirus and hantavirus GPs we used an 

approach that featured affinity purification (AP) of biotinylated viral proteins (LCMV GP 

to represent arenaviruses or ANDV GP for hantaviruses) in complex with host proteins 

followed by mass spectrometry to identify host protein partners as described in Figure 

S1A and the Extended Experimental Procedures. We identified a number of host proteins 

that associated with LCMV GP (n = 309), ANDV GP (n = 134), or both GPs (n = 51) 

(Figures 1A-C, S1B, and S1C; Tables S1A-C). As shown in Figure S1D and Table S1D, 

host proteins that associated with both GPs were enriched for processes involving the ER, 

protein folding, and vesicular transport. The LCMV GP-only partners were enriched for 

processes that included the ER, the proteosome, and nuclear import while the ANDV GP-

only partners were enriched for protein translation and ribosome biogenesis. We were 

particularly interested in the subset of proteins that interacted with both GPs as they could 

serve as broad-spectrum antiviral targets. Of these, we chose ERGIC-53 for further study 

based upon several criteria. First, the ERGIC-53 - viral GP interaction is physiologically 

plausible (e.g. each protein traffics within the exocytic pathway; ERGIC-53 is a 

mannose-specific lectin (Itin et al., 1996) and the viral GPs are mannosylated 

(Schmaljohn et al., 1986; Wright et al., 1990). Second, based on its identification as a 

cargo receptor within the exocytic pathway (Appenzeller et al., 1999), we hypothesized 
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that ERGIC-53 could be required for GP maturation and therefore might be critical for 

viral propagation. Finally, ERGIC-53 is an attractive target because loss of this protein or 

its normal function is well tolerated both in vitro (Mitrovic et al., 2008; Nyfeler et al., 

2006; Vollenweider et al., 1998) and in vivo (Khoriaty et al., 2012).  

 

2.4.2. Confirmation that ERGIC-53 Has a Conserved Association with GPs 
Encoded by Multiple Pathogenic Arenaviruses and Hantaviruses  

 

We next wished to determine whether ERGIC-53 could associate with additional GPs 

encoded by arenaviruses (LASV, MACV, JUNV strain XJ, JUNV strain Candid #1 

(C#1), and Whitewater Arroyo virus (WWAV)) or hantaviruses (SNV). Each viral GP 

tested, when serving as bait, was able to co-precipitate ERGIC-53 (Figure 1D, 1F-H, 

S1E, and data not shown). Likewise, ERGIC-53 was able to co-precipitate each GP 

screened (Figures 1E, 1I-K, S1F-I, and data not shown). For the arenavirus GPs, only the 

full length GPC was co-precipitated as prey. A full length hantavirus GPC cannot be 

recovered as this protein is co-translationally cleaved into G1 and G2 subunits prior to 

synthesis of a full length GPC species (Lober et al., 2001). As shown in Figure 1L, we 

further verified the specificity of the ERGIC-53 - JUNV C#1 GP interaction by showing 

both proteins strongly colocalize within a structure that we putatively identify as the 

ERGIC; both proteins also preferentially concentrate in this structure.  
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2.4.3. ERGIC-53 Is Required for Arenavirus Propagation  
 

We conducted a series of viral challenge studies to determine how various manipulations 

of ERGIC-53 might impact the ability of arenaviruses (JUNV C#1 or DANV) to release 

infectious progeny. Partial silencing of ERGIC-53 expression via siRNA transfection led 

to a considerable reduction in the release of infectious JUNV C#1 (24 hr pi, 39.6% 

decrease, p = 0.03; 48 hr pi, 64% decrease, p = 0.02; 72 hr, 51% decrease, p = 0.01) 

(Figures 2A and S2A) whereas increased expression of WT ERGIC-53 enhanced release 

of infectious JUNV C#1 (24 hr pi, 48% increase, p = 0.025; 48 hr pi, 68% increase, p = 

0.004 ) (Figures 2B and S2B). Expression of an ER-restricted, dominant negative (DN) 

mutant of ERGIC-53 (Vollenweider et al., 1998) resulted in a pronounced reduction in 

the release of infectious JUNV C#1 (48 hr pi, 90.5% decrease, p = 1.4 x10-8; 72 hr pi, 

99.8% decrease, p = 3.2 x 10-4) (Figures 2C and S2C), DANV (95% reduction, p = 0.003) 

(Figures 2D and S2D), and LCMV strain Armstrong 53b (data not shown). These 

experiments clearly demonstrate that ERGIC-53 is required for the propagation of New 

World and Old World arenaviruses. 

 

2.4.4. The Release of Infectious JUNV C#1 Is Restricted in Cell Lines Derived from 
ERGIC-53 Null Individuals  

Humans with homozygous null mutations in LMAN1 (lectin, mannose binding 1), the 

gene encoding ERGIC-53, have combined deficiency of factor (F)V and FVIII (F5F8D, 

OMIM 227300), a mild bleeding disorder characterized by reduced levels of circulating 

FV and FVIII (Nichols et al., 1998). We therefore conducted challenge studies featuring 
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B cells derived from LMAN1+/+ (2829-D) and LMAN1-/- (CRC-78 and CRC-79) 

individuals. The two LMAN1-/- individuals, despite being from separate families (A2 and 

A12 in (Neerman-Arbez et al., 1999), encode an identical null mutation (c.822-1G>A 

splice site mutation) that abrogates expression of ERGIC-53.  Significantly less infectious 

virus was released from each of the LMAN1-/- cell lines when compared to the LMAN1+/+ 

control cells (96% and 97% decrease for CRC-78 and CRC-79, respectively; p < 0.0001 

for each) (Figures 2E and S2E). 

 

2.4.5. ERGIC-53’s Influence on JUNV Replication Is Specific and Can Be 
Minimally Mapped to the JUNV GP  

 

To determine the specificity of ERGIC-53’s impact on arenavirus replication we 

HPSOR\HG�D�SVHXGRW\SLQJ�DSSURDFK�IHDWXULQJ�YHVLFXODU�VWRPDWLWLV�YLUXV��969��VWUDLQ�¨*��

a recombinant VSV that does not encode its native glycoprotein (G) and accordingly 

cannot form infectious particles unless a suitable viral glycoprotein (e.g. VSV G or 

JUNV GP) is provided in trans (Whitt, 2010). There was no difference in the formation 

RI� LQIHFWLRXV�969¨*�SDUWLFOHV�GHFRUDWHG�ZLWK�QDWLYH�969�*�EHWZHHQ� WKH�:7�DQG�'1�

ERGIC-53 backgrounds (Figures 3A and S3A). This may be due to the fact that VSV G 

does not associate with ERGIC-53 in co-immunoprecipitation assays (Figures 3E and 

3F). 7KH�IRUPDWLRQ�RI�LQIHFWLRXV�969¨*�GHFRUDWHG�ZLWK�-819�;-�*3�ZDV�VLJQLILFDQWO\�

impaired in cells expressing DN ERGIC-53 compared to the WT ERGIC-53 cells (80% 

reduction; p = 0.001) (Figures 3B and S3B). These experiments demonstrate that ERGIC-

53’s impact on arenavirus propagation is specific and can be minimally restricted to the 
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GP itself.  Importantly, the fact that ERGIC-53 does not associate with VSV G 

demonstrates the specificity of its interaction with arenavirus and hantavirus GPs. 

 

2.4.6. ERGIC-53 Broadly Associates with Viral Class I Fusion Proteins and Is 
Required for the Propagation of Coronaviruses and Filoviruses. 

 

We next screened for an association between ERGIC-53 and class I fusion GPs encoded 

by coronaviruses (the severe acute respiratory syndrome coronavirus (SARS CoV) spike 

protein (S)), orthomyxoviruses (the H1N1 influenza virus A/WSN/33 hemagglutinin 

protein (HA)), and filoviruses (the Ebola (EBOV) and Marburg virus (MARV) GPs). 

Each GP, when used as bait, was able co-precipitate ERGIC-53 (Figures 3G and 3I). 

Reciprocally, ERGIC-53 was able to co-precipitate the uncleaved, precursor GP from 

each virus (Figures 3H and 3J). TKH�IRUPDWLRQ�RI�LQIHFWLRXV�969¨*�SDUWLFOHV�GHFRUDWHG�

with either the SARS CoV S or EBOV GP was significantly impaired in cells expressing 

DN ERGIC-53 compared to the WT ERGIC-53 cells (81% reduction, p = 0.03 for SARS 

CoV; 70% reduction, p = 0.0002 for EBOV) (Figures 3C, 3D, S3C, and S3D). In 

summary, ERGIC-53 has a conserved interaction with class I fusion GPs and is required 

for the propagation of coronaviruses and filoviruses in a GP-specific manner. 

 

2.4.7. Trafficking of JUNV C#1 GP or hTfR1 to the Plasma Membrane Is Not 
Influenced by ERGIC-53 

To determine how the loss of ERGIC-53 function impaired the formation of infectious 

arenavirus particles we first tested whether ERGIC-53 could be a bona fide cargo 

receptor required for the proper anterograde trafficking of JUNV GP (Appenzeller et al., 
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1999). Cells expressing WT or DN ERGIC-53 were infected with JUNV C#1 and 

screened for surface expression of JUNV C#1 GP. Interestingly, GP surface staining was 

equivalent in both the WT and DN ERGIC-53 transfected cells in terms of the frequency 

of cells with GP expression (46% WT versus 47% DN) as well as the intensity of GP 

staining (median fluorescence intensity (MFI) 348 WT versus 363 DN) (Figure 4B). 

Confocal microscopy analysis revealed a similar result (Figure 4A). The DN ERGIC-53 

had no impact on the ability of hTfR1 - the surface receptor required for GP-mediated 

JUNV entry into host cells (Radoshitzky et al., 2007) - to traffic to the cell surface 

(Figure S4). In summary, cells expressing DN ERGIC-53 have normal surface expression 

of hTfR1, manifest no defect in viral entry of WT JUNV C#1 particles, and display no 

defect for GP synthesis or its trafficking to the plasma membrane.  

 

2.4.8. The DN ERGIC-53 Mutant Does Not Impair Proteolytic Processing of JUNV 
GPC or the Incorporation of GP Species into Virus-Like Particles (VLPs)  

 

Cells expressing WT or DN ERGIC-53 were transfected with plasmids encoding the 

JUNV matrix protein, Z, and JUNV XJ GP to allow for VLP formation and release. 

Expression of DN ERGIC-53 did not impair the generation of GP2 from GPC in cells or 

the incorporation of GP2 into VLPs (Figure 4C).  

 

2.4.9. Loss of ERGIC-53 Leads to the Formation of Virus Particles that Are 
Noninfectious 

In Figures 2E and S2E we show that JUNV C#1 is impaired in its ability to release 

infectious progeny from LMAN1-/- cells. To determine whether this was due to i) a 
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general deficiency in JUNV particle release or ii) the release of defective particles, we 

concentrated virions from the supernatants of LMAN1+/+ (2829-D) or LMAN1-/- (CRC-78) 

cells and screened them for infectious virus, viral genome, and viral structural proteins. 

We found no discernible difference in the quantity of viral proteins (GP1, nucleoprotein 

(NP), or Z) released from LMAN1+/+ or LMAN1-/- cells (Figure 4D) despite a nearly 10-

fold reduction in infectious virus titer from LMAN1-/- cells (Figure 4E). Additionally, the 

LMAN1-/--derived particles contained viral genomic RNA with a 6.4-fold higher ratio of 

genome to infectious virus compared to LMAN1+/+ particles (Figure 4F). Lastly, the 

LMAN1-/- particles also exhibited a specific defect in attachment to host cells (52% 

reduction compared to LMAN1+/+ particles) (Figure 4G). In summary, loss of ERGIC-53 

expression does not impact the ability of JUNV to generate particles containing viral 

structural proteins or genome, but rather renders the particles themselves noninfectious 

due, in part, to a defect in their ability to attach to permissive host cells. 

 

2.4.10. ERGIC-53 Traffics to Sites of JUNV Assembly and Is Incorporated into 
Virions 

 

Based on our finding that ERGIC-53 was detectable in concentrated supernatant 

preparations from JUNV C#1-infected cells (Figure 4D) we hypothesized that ERGIC-53 

might be packaged into viral particles. We first addressed whether ERGIC-53 trafficking 

was altered during infection by surface labeling cells with antibodies specific for JUNV 

C#1 GP and ERGIC-53. We observed discrete JUNV C#1 GP puncta of ~200 to 400 nm 

at the plasma membrane that we suggest are putative sites of viral assembly and budding 
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(Figure 5B). Strikingly, ERGIC-53 formed puncta of the same size, shape, and position 

as GP (Figure 5B). In contrast, ERGIC-53 was not detectable at the plasma membrane of 

uninfected cells (Figure 5B). This altered trafficking is specific as calreticulin (CRT), 

another Ca2+-binding lectin of the exocytic pathway, did not similarly redistribute to the 

plasma membrane following infection (Figure 5C). The intracellular distribution of 

ERGIC-53 did not change between mock- or JUNV C#1-infected cells (Figure 5A). We 

next captured JUNV particles using an anti-GPC/GP1 antibody and found that ERGIC-53 

was detectable in JUNV particles via Western blot (Figure 5D). ERGIC-53 also 

colocalized with JUNV NP in viral particles adhered onto cover slips (Figure S5).  Thus, 

during arenavirus infection, ERGIC-53 traffics to sites of viral assembly and budding and 

is incorporated into virions. 

 

2.4.11. The JUNV GP - ERGIC-53 Interaction Requires a Unique Region of 
ERGIC-53’s Carbohydrate Recognition Domain (CRD) and Occurs 
Independently of ERGIC-53’s Ability to Oligomerize, Traffic, or Bind 
Mannose, MCFD2, or Ca2+  

 

To determine the molecular basis for ERGIC-53’s association with viral GPs, we 

screened a panel of ERGIC-53 mutants (described in detail in Figure S6 and in (Zheng et 

al., 2010)), for their ability to associate with the JUNV C#1 GP. As shown in Figure 6, of 

WKH����PXWDQWV�VFUHHQHG��RQO\�WKH�¨&5'�PXWDQW�GLVSOD\HG�D�GHIHFW�LQ�ELQGLQJ�WR�-819�

C#1 GP. Interestingly, despite the requirement of the CRD for binding, the association of 

ERGIC-53 with JUNV C#1 GP does not appear to be lectin-mediated as mutations that 

disrupt ERGIC-��¶V�DELOLW\�WR�ELQG�PDQQRVH��1���$��'���$��¨ȕ���¨ȕ���DQG�¨ȕ���GR�QRW�
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disrupt its interaction with JUNV C#1 GP. Likewise, the association does not appear to 

require Ca2+-ELQGLQJ� �1���$� DQG� '���$��� ROLJRPHUL]DWLRQ� �¨+0��� WKH� KHOL[� GRPDLQ�

�¨+HOL[��RU�WKH�DVVRFLDWLRQ�RI�0&)'���¨ȕ���¨ȕ���¨ȕ���¨ȕ���DQG�¨+0���7KH�¨+0�DQG�

DN ERGIC-53 (KKAA) results also suggest that trafficking beyond the ER is not 

required for the interaction. )LQDOO\��WKH�¨&5'��¨ȕ���DQG�¨+HOL[�UHVXOWV�LQGLFDWH�WKDW�WKH 

GP-interacting domain on ERGIC-53 lies within the C-terminal 185 amino acids of the 

CRD (residues 84 - 269). 

 

2.5. DISCUSSION 
 

Arenaviruses and hantaviruses are significant human pathogens for which FDA-approved 

vaccines or effective antivirals do not exist. Their proteomes consist of only four 

proteins. While functional roles have been defined for each viral protein, their 

interactions with host proteins, and the importance of these interactions for viral 

replication and disease pathogenesis, remain largely unknown. In the current study we 

addressed this deficiency by providing a comprehensive viral GP - human protein 

interactome map using GPs encoded by a representative arenavirus and hantavirus. We 

identified ERGIC-53 as a potential antiviral target based upon its ability to associate with 

GPs encoded by several families of pathogenic RNA viruses and its clear role in the 

propagation of arenaviruses, coronaviruses, and filoviruses.  We demonstrate that 

ERGIC-53 is not required for the formation of GP-containing arenavirus particles, but 

rather their infectiousness. We also show that ERGIC-53 traffics to sites of arenavirus 
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budding and is incorporated into virions. Finally, we provide insight into the molecular 

basis for the GP - ERGIC-53 interaction by showing that the C-terminal region of 

ERGIC-53’s CRD is required for the interaction independent of ERGIC’s ability to 

oligomerize, traffic, or bind mannose, MCFD2, or Ca2+. 

ERGIC-53 is a nonglycosylated, hexameric type I integral membrane protein that 

functions as a cargo receptor for soluble glycoproteins within the early exocytic pathway. 

Its lumenal domain contains a CRD with homology to leguminous lectins and 

mammalian galectins; it selectively binds to high mannose glycans in a pH- and Ca2+-

dependent manner (Appenzeller-Herzog et al., 2004; Appenzeller et al., 1999; Itin et al., 

1996). Only five glycoproteins - FV and FVIII (Moussalli et al., 1999; Nichols et al., 

1998), the cathepsins C  and Z (Appenzeller et al., 1999; Vollenweider et al., 1998), and 

alpha-1 antitrypsin (Nyfeler et al., 2008) - have been shown to require ERGIC-53 for 

their efficient anterograde trafficking. Typically ERGIC-53 captures its cargo proteins in 

the ER via its lectin activity and releases them in the ERGIC, presumably due to the 

lower pH of this compartment (Appenzeller-Herzog et al., 2004; Appenzeller et al., 

1999). In the case of FV and FVIII, MCFD2 is also required for trafficking of these 

proteins independent of ERGIC-53 (Zhang et al., 2003). Because ERGIC-53 and MCFD2 

directly interact, it has been suggested that they form a mature cargo receptor required for 

efficient FV/FVIII trafficking (Nyfeler et al., 2006; Zhang et al., 2005). Importantly, 

while loss of ERGIC-53 expression or function impairs movement of its specific ligands, 

the overall architecture of the exocytic pathway is maintained and major glycoproteins 

still traffic normally (Mitrovic et al., 2008; Nyfeler et al., 2006; Vollenweider et al., 
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1998). Indeed, humans with homozygous null mutations in ERGIC-53 or MCFD2, 

despite having F5F8D - a condition that features mild to moderate bleeding symptoms 

due to reduced levels of circulating FV/FVIII (~5 to 30% of normal) - are generally 

healthy and lead normal lives provided they receive FV/FVIII supplementation following 

trauma (Khoriaty et al., 2012). These observations clearly suggest that ERGIC-53 is 

dispensable in humans and therefore represents a viable antiviral target. 

Our studies demonstrate that ERGIC-53 associates with a class of pathogen-

derived ligands, specifically GPs encoded by arenaviruses, hantaviruses, coronaviruses, 

orthomyxoviruses, and filoviruses (Figures 1, 3G-J, S1E-I, and data not shown). We 

show that, with the exception of the hantavirus GPs, ERGIC-53 preferentially interacts 

with the uncleaved, precursor GP, but not the proteolytically processed GP subunits 

(Figures 1I-K, 3H, 3J, S1F-H, and data not shown). In the case of the arenaviruses, this 

finding strongly suggests that the interaction takes place in the ER and/or ERGIC, prior 

to proteolytic cleavage of GPC into GP1/GP2 by the SKI-1/SP1 protease, which is 

thought to occur in the Golgi (Lenz et al., 2001; Wright et al., 1990). Indeed, imaging of 

JUNV C#1-infected cells revealed that GP and ERGIC-53 both concentrate in the ERGIC 

(Figure 1L and 5A). It was recently reported that the HIV glycoprotein Env can also 

associate with ERGIC-53 (Jager et al., 2012).  

Based on previous studies we initially hypothesized that the ERGIC-53 - GP 

interaction would be mediated by ERGIC-53’s CRD binding to one or more high 

mannose glycans on the viral GPs. Our results demonstrate that while ERGIC-53’s CRD 

is indeed critical for the interaction, its lectin- and Ca2+-binding functions are completely 
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dispensable (Figures 6 and S6). Consistent with this claim, we also found the interaction 

to be unaffected by competition with free mannose, manipulation of Ca2+, changes in pH 

(as low as 5.0), or deglycosylation of the JUNV or ANDV GP (data not shown). In 

summary, our studies reveal that the molecular basis for ERGIC-53’s interaction with 

JUNV GP is different from any of its previously characterized partners; only the C-

terminal region of ERGIC-53’s CRD (residues 84 to 269) is critical for the interaction 

whereas ERGIC-53’s ability to oligomerize, traffic, or bind mannose, Ca2+, or MCFD2 

are not.  

Movement of ERGIC-53 within the exocytic pathway is controlled by at least 

three targeting determinants that work in concert with two types of vesicular coats 

(COPII and COPI) to mediate ER retention, ER exit, and retrieval from post-ER 

compartments (Hauri et al., 2000; Nufer et al., 2003). ERGIC-53 preferentially 

accumulates in the ERGIC and recycles between this compartment and the ER (Ben-

Tekaya et al., 2005; Klumperman et al., 1998). Under normal conditions, ERGIC-53 does 

not appear to traffic beyond the cis-Golgi. However, following its overexpression via 

plasmid, ERGIC-53 can traffic to the plasma membrane, presumably due to saturation of 

COPI (Kappeler et al., 1994). JUNV C#1 infection induces a striking redistribution of a 

portion of the intracellular pool of ERGIC-53 to the plasma membrane, where it strongly 

colocalizes with GP at putative sites of viral assembly and budding (Figure 5B). 

Furthermore, ERGIC-53 is packaged into arenavirus particles (Figures 5D and S5), which 

may indicate that it is required for virion structure/function.  
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The mechanism by which ERGIC-53 traffics to the plasma membrane during 

JUNV C#1 infection is unclear, but one possibility is that ERGIC-53 expression increases 

during JUNV infection and that saturation of COPI allows ERGIC-53 to traffic, perhaps 

independent of its interaction with JUNV GP, beyond the ERGIC/cis-Golgi area to reach 

the plasma membrane. In support of this idea, infection with the related arenavirus 

LCMV triggers the activating transcription factor 6 (ATF6)-arm of the unfolded protein 

response (UPR) (Pasqual et al., 2011), which is known to increase ERGIC-53 expression 

(Nyfeler et al., 2003). Indeed, LCMV infection of nonhuman primates results in increased 

transcription of ERGIC-53 (Djavani et al., 2009). Alternatively, it is also possible that 

JUNV GP functions as a cargo receptor to facilitate the movement of ERGIC-53 beyond 

the ERGIC/cis-Golgi to sites of viral assembly and budding.  

How does ERGIC-53 impact arenavirus replication? We initially hypothesized 

that ERGIC-53 was acting as a bona fide cargo receptor required for the anterograde 

movement of GP out of the ER and ultimately to the plasma membrane. This idea proved 

incorrect as expression of the ER-restricted, DN ERGIC-53 mutant had no impact on the 

ability of GP to reach the plasma membrane (Figures 4A and 4B). Likewise, there was no 

disruption of either the proteolytic processing of GPC into GP1/GP2 or ability of these 

GP species to be incorporated into VLPs (Figure 4C). Additionally, the DN ERGIC-53 

mutant had no impact on the ability of WT JUNV C#1 particles to enter cells (Figures 4A 

and 4B) or on the level of expression of hTfR1 at the plasma membrane (Figure S4). To 

formally test whether ERGIC-53 is required for the release of viral particles, we 

challenged normal or ERGIC-53 null cell lines with JUNV C#1 and found similar 
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quantities of viral particles in the supernatants from each cell line (Figure 4D). However, 

despite equivalent particle release, the null cell-derived particles were ~10-fold less 

infectious (Figure 4E), demonstrating that ERGIC-53 is essential for the infectivity of 

JUNV C#1 particles. Therefore, in the absence of ERGIC-53, arenavirus particles are 

produced in normal quantities, but are defective in the early phase of replication. Our 

results suggest that this defect minimally exists at the level of virus attachment to the host 

cell (Figure 4G). It is possible that this defect may also impair other steps of viral entry 

such as endocytic uptake of particles into host cells and/or fusion and release of genome 

into the cytoplasm (see Figure 7 for our proposed model). 

How does ERGIC-53 mechanistically impact the infectiousness of arenavirus 

particles? ERGIC-53 itself may be a critical structural component of the virion, perhaps 

by acting as a co-receptor required for virion attachment to host cells. Direct support for 

this idea is our finding that ERGIC-53 is a component of virions (Figures 5D and S5) and 

that virions lacking ERGIC-53 are defective (Figures 4D-G). Additionally, less infectious 

virus was produced in our challenge studies featuring the ER-restricted, DN ERGIC-53 

mutant (Figures 2C, 2D, 3B, S2C, S2D, and S3B) or ERGIC-53 siRNA (Figures 2A and 

S2A). Conversely, overexpression of WT ERGIC-53 leads to increased trafficking of 

ERGIC-53 to the plasma membrane (Kappeler et al., 1994), which could lead to more 

ERGIC-53 being incorporated into particles and explain the increased release of 

infectious virus seen under these conditions (Figures 2B and S2B). Alternatively, 

ERGIC-53 could be required to traffic and/or recruit cellular proteins that are critically 
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required for virion structure and function or for the proper maturation of the arenavirus 

GP (e. g. glycan maturation or other posttranslational modifications).  

The protein partners of arenavirus and hantavirus GPs identified in this study help 

advance our understanding of how these viruses interact with host cell machinery to 

facilitate GP biogenesis and other aspects of the viral lifecycle. As the GPs themselves 

are likely to be highly multifunctional due to the small size of their respective proteomes, 

the identified partners may also help elucidate additional functions for each GP. Each 

partner represents a candidate target for future antiviral screening. Indeed, four additional 

proteins identified in our study - stromal cell derived factor 4 (SDF4), archain 1 

(ARCN1), coatomer protein complex, subunit alpha (COPA), and renin receptor 

(ATP6AP2) - were recently shown to be required for LCMV and VSV replication (Panda 

et al., 2011). These examples clearly highlight the feasibility and utility of using a 

proteomics-based approach to identify candidate antiviral targets.  

In conclusion, ERGIC-53 represents a potential antiviral target because of its 

clearly demonstrated importance for the replication of pathogenic arenaviruses, 

coronaviruses, and filoviruses and the fact that loss of this protein or its function is well 

tolerated in humans (Khoriaty et al., 2012). Furthermore, in the case of the arenaviruses, 

targeting ERGIC-53 function with an antiviral could be expected to set up an ongoing 

immunizing therapy as defective, but presumably immunogenic, viral particles would be 

released during the course of treatment. While ERGIC-53 represents a potential broad-

spectrum antiviral target for arenaviruses, coronaviruses, and filoviruses, it may also be 

required for additional human pathogens such as the New World hantaviruses, 
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orthomyxoviruses, or retroviruses based upon its conserved interaction with their GPs 

(Figures 1D, 1E, 3I, 3J, and S1I) (Jager et al., 2012) or for DNA viruses based on the 

finding that a murine gamma herpes virus was negatively impacted by silencing of 

ERGIC-53 (Mages et al., 2008). Based on our finding that JUNV propagation is impaired 

in cells from ERGIC-53 null individuals, future studies should also address whether 

exposure to rodent-borne viruses such as the arenaviruses has exerted a selective pressure 

to maintain ERGIC-53 mutations within the human population as a means to confer 

resistance to infection. Additionally, while bleeding is not a major cause of morbidity or 

mortality during arenavirus or hantavirus infection, it is also interesting to consider that 

viral GPs, by interacting with ERGIC-53, may disrupt ERGIC-53’s normal cargo 

receptor function for FV and FVIII, contributing to some of the hemorrhagic 

manifestations seen following infection with these viruses, which can include 

deficiencies in the levels and/or activity of circulating FV or FVIII (Lee, 1987; Lee et al., 

1989; Schwarz et al., 1972). The interaction of ERGIC-53 with the filovirus GPs is 

particularly intriguing considering the prominent coagulation abnormalities observed 

during human infection (Feldmann and Geisbert, 2011). Finally, our studies and others 

(Gonzalez-Begne et al., 2009) have shown that ERGIC-53 is actively secreted from cells 

in viral particles and/or cellular exosomes and strongly suggest that it has important roles 

outside of its normal distribution within the exocytic pathway, perhaps outside of the cell 

where, in the case of arenaviruses, coronaviruses, and filoviruses, it may influence the 

endocytic pathway-driven process of viral entry.  
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2.6. EXPERIMENTAL PROCEDURES 
 

Cells, Viruses, Antibodies, Plasmids, siRNAs, and Transfections  

A full description of the cells (HEK 293T cells, Vero E6 cells, and B lymphoblastoid 

cells from either normal or ERGIC-53 null individuals), viruses (DANV, JUNV C#1, and 

969¨*���DQWLERGLHV��VL51$V��SODVPLGV��DQG�WUDQVIHFWLRQ�SURFHGXUHV�XVHG�FDQ�EH�IRXQG�

in the Extended Experimental Procedures.  

 

Affinity Purification, Immunoprecipitation, Mass Spectrometry, Virus/VLP 

Concentration, and Western Blot  

To affinity purify viral GPs for the identification of human protein partners via mass 

spectrometry or validation of protein partners via Western blot, HEK 293T cells were co-

transfected with a plasmid that encodes each respective viral GP with a C-terminal HA 

epitope tag and a biotin acceptor peptide (BAP), and a second plasmid that encodes the 

bacterial biotin ligase BirA to facilitate biotinylation of the viral GPs. Two days later, 

biotinylated GPs and associated host proteins were affinity purified from whole cell 

lysates using magnetic streptavidin beads and separated on polyacrylamide gels for either 

Western blot analysis to confirm bait/prey purification or Coomassie staining for mass 

spectrometry analysis. To determine the identity of cellular proteins captured, each 

Coomassie-stained gel lane was cut into sections for in-gel, trypic digestion and mass 

spectrometry analysis. 
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 Immunoprecipitation of viral GPs or ERGIC-53 was accomplished by incubating 

clarified whole cell protein lysates with antibodies specific for each respective protein 

followed by magnetic Protein G beads. To purify intact JUNV C#1 particles, supernatants 

were collected at 72 hr post-inoculation, clarified, and incubated with either an anti-GP 

antibody or an isotype control antibody followed by magnetic protein G beads. 

Immunopurified proteins or viral particles were then washed, eluted from beads, and 

electrophoresed on polyacrylamide gels for Western blot analysis. 

JUNV C#1 virions and VLPs were concentrated via ultracentrifugation through a 

20% layer of sucrose.  

For Western blot analysis, protein lysates were separated by SDS-PAGE using 

Novex 4-20% Tris-Glycine polyacrylamide gels. Protein transfer to nitrocellulose 

membranes was accomplished using the iBlot Gel Transfer Device and iBlot Transfer 

Stack nitrocellulose membranes from Invitrogen (Carlsbad, CA). Proteins were detected 

using either chemiluminescence or an Odyssey Infrared Imaging System (LI-COR 

Biosciences, Lincoln, NE).  

Full details of these approaches are described in the Extended Experimental 

Procedures. 

 

Confocal Immunofluorescence Microscopy  
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A Zeiss LSM 510 Laser Scanning Confocal Microscope was used to visualize internal or 

surface expression of ERGIC-53, CRT, JUNV NP and/or JUNV GP in cells or virions. 

Colocalization analysis was done using the Zeiss AIM software package as described in 

the Extended Experimental Procedures. 

 

Flow Cytometry  

An LSRII (BD Biosciences, San Jose, CA) was used to enumerate the frequency and 

intensity of JUNV GP or hTfR1 staining at the plasma membrane or Myc-tagged WT 

and/or DN ERGIC-53 internally in HEK 293T cells as described in the Extended 

Experimental Procedures. 

 

Viral Challenge Assays 

Viral challenge assays were performed to evaluate how various manipulations of ERGIC-

53 (siRNA silencing of ERGIC-53, overexpression of WT ERGIC-53, expression of DN 

ERGIC-53, or loss of ERGIC-53 expression due to null mutation of LMAN1) would 

LQIOXHQFH� WKH� UHOHDVH� RI� LQIHFWLRXV� -819�&���� '$19�� RU� 969¨*� �SVHXGRW\SHG�ZLWK�

VSV G, JUNV XJ GP, SARS CoV S, or EBOV GP). At each time point examined in the 

various assays, supernatants and cells were collected (from each replicate well) to 

measure infectious virus or protein expression levels, respectively. Infectious virus load 

was determined via plaque assay for JUNV C#1 and DANV while GFP-positive foci 
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ZHUH� HQXPHUDWHG� YLD� IRFXV� DVVD\� IRU� 969¨*�� GLIIHUHQFHV� ZHUH� Getermined using the 

unpaired Student’s t test. Quantitative RT-PCR was used to determine copy number of 

JUNV C#1 S segment genomic viral RNAs. Virus attachment to cells was determined 

through a virus-cell binding assay. A full description of each challenge assay can be 

found in the Extended Experimental Procedures. 
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2.9. FIGURE LEGENDS 
 

Figure 2.1 Identification of Human Proteins that Associate with Arenavirus and 
Hantavirus GPs  

(A and B) HEK 293T cells were co-transfected with a pCAGGS plasmid encoding each 

respective viral GP with a C-terminal HA epitope tag and a biotin acceptor peptide 

(BAP), along with a second plasmid that encodes BirA, a bacterial biotin ligase, to ensure 

biotinylation of the viral GPs. As a control, cells were co-transfected with the BirA 

plasmid and an empty vector. Biotinylated GPs and associated host proteins were affinity 

purified (AP) from cell lysates (input) using magnetic streptavidin beads and separated on 

polyacrylamide gels for Western blot analysis to verify purification of the various GP 

species (GPC, GP1, and GP2 for LCMV; G1 and G2 for ANDV) and Coomassie staining 

for mass spectrometry analysis. Each Coomassie-stained gel lane was cut into sections 

for in-gel, trypic digestion and mass spectrometry analysis as described in the Extended 

Experimental Procedures (See Figure S1A for the proteomics workflow, Figures S1B and 

S1C for cut maps, Tables S1A-C for a list of the proteins, and Table S1D and Figure S1D 

for results of a functional clustering analysis). 

(C) Venn diagram representing the number of identified host proteins associated with 

LCMV GP, ANDV GP, or both GPs. 

(D-G, I, and J) ERGIC-53 has a conserved association with arenavirus and hantavirus 

GPs. HEK 293T cells were transfected with a pCAGGS plasmid encoding the indicated 

viral GPs with a C-terminal HA epitope tag and a BAP or, as a control, an empty 

pCAGGs plasmid. In panels D, F, and G, cells were also transfected with the BirA 
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plasmid to ensure biotinylation of each GP. Viral GPs (D, F, and G) or ERGIC-53 (E, I, 

and J) were AP or immunoprecipitated, respectively, as bait from cell lysates. Input 

lysates and purified bead fractions were screened for ERGIC-53 (D, F, and G) or viral GP 

species (G2 for hantaviruses; GPC and GP2 for arenaviruses) (E, I, and J) as prey via 

Western blot. See Figures S1E-I for screening of additional GPs. 

(H and K) HEK 293T or Vero E6 cells were infected with JUNV C#1 and JUNV GP (H) 

or ERGIC-53 (K) was immunoprecipitated from cell lysates. Input lysates and purified 

bead fractions were screened for ERGIC-53 (H) or JUNV C#1 GP species (GPC and 

GP1) (K) as prey via Western blot. 

(L) ERGIC-53 and JUNV C#1 GP concentrate in the same intracellular structure. JUNV 

C#1-infected HEK 293T cells were fixed, permeabilized, and stained for JUNV C#1 GP 

(green) and ERGIC-53 (red). Colocalization between GP and ERGIC-53 is displayed as 

white pixels in the colocalization mask. The histogram shows background gating (white 

lines) and specific immunofluorescence signal for JUNV GP (region 1), ERGIC-53 

(region 2) or colocalized GP and ERGIC-53 (region 3) (78.6% of ERGIC-53 signal 

colocalized with GP signal; 52.2% of GP signal colocalized with ERGIC-53 signal). 

Scale bar, 20 µm. 

 

Figure 2.2 ERGIC-53 is Required for Arenavirus Propagation  

(A) Silencing ERGIC-53 expression impairs the release of infectious JUNV C#1. HEK 

293T cells were transfected with an ERGIC-53-specific siRNA or a scrambled, negative 

control siRNA and challenged 72 hr later with JUNV C#1. Supernatants and cell protein 
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lysates were screened for JUNV C#1 plaque forming units (PFU) via plaque assay and 

ERGIC-53 or calreticultin (CRT) via Western blot. Data are presented as mean PFU ± 

SEM relative to the empty vector transfected wells and are the summation of 2 

independent experiments (24 & 48 hr pi n = 5, 72 hr n = 6).  

(B) Overexpression of WT ERGIC-53 enhances infectious JUNV release. HEK 293T 

cells were transfected with a plasmid encoding Myc-tagged, WT ERGIC-53 or, as a 

control, an empty plasmid; 48 hr following transfection these cells were challenged with 

JUNV C#1. Supernatants and cell protein lysates were screened for JUNV C#1 PFU via 

plaque assay and Myc-ERGIC-53 or CRT via Western blot. Data are presented as mean 

PFU ± SEM relative to the empty vector transfected wells and are the summation of 2 

independent experiments (n = 6 at each time point).  

(C and D) Restriction of ERGIC-53 to the ER impairs the release of infectious JUNV 

C#1 and DANV. HEK 293T cells were transfected with a plasmid encoding Myc-tagged 

DN ERGIC-53 or, as a control, an empty plasmid; 24 hr later cells were challenged with 

JUNV C#1 (C) or DANV (D). Supernatants and cell protein lysates were screened for 

PFU via plaque assay and Myc-DN ERGIC-53 or CRT via Western blot. Data are 

presented as mean PFU ± SEM relative to the empty vector transfected wells and are 

representative of 2 independent experiments (n = 12 or n = 6 per experiment for JUNV 

C#1 or DANV, respectively).  

(E) Release of infectious JUNV C#1 is impaired in ERGIC-53 (LMAN1-/-) null cells. 

EBV-transformed B cells from LMAN1+/+ (2829-D) and LMAN1-/- (CRC-78 and CRC-79) 
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individuals were challenged with JUNV C#1. Supernatants and cell protein lysates were 

screened for JUNV C#1 PFU via plaque assay and ERGIC-53 or actin via Western blot. 

Data are presented as mean PFU ± SEM relative to the LMAN1+/+ cells and are 

representative of 2 independent experiments (n = 3 per condition per experiment).  

(A - E) *p < 0.05, **p < 0.01, ***p < 0.001, determined using the unpaired Student’s t 

test. Note that Western blot results from representative lysates are shown; the full panel 

of lysates is displayed in Figure S2. 

 

Figure 2.3 ERGIC-53 Broadly Associates with Class I Viral Fusion GPs and 
Influences the Propagation of JUNV, SARS CoV, and EBOV in a GP-Specific 
Manner 

(A - D) ERGIC-53 is required for the production of infectious viral particles in a GP-

specific manner. HEK 293T cells were initially transfected with a plasmid encoding 

Myc-tagged WT or DN ERGIC-53, then 24 hr later with a plasmid encoding VSV G, 

JUNV XJ GP, SARS CoV S, or EBOV GP. Twenty-four hr following the final 

transfection, FHOOV�ZHUH� FKDOOHQJHG�ZLWK�969¨*. Supernatants and cell protein lysates 

were screened for infectious 969¨*�particles pseudotyped with the indicated viral GP 

via focus assay and Myc-ERGIC-53 (WT or DN) or CRT via Western blot (see Figure S3 

for blots), respectively. Data are presented as mean infectious units ± SEM relative to the 

WT ERGIC-53 vector transfected wells and are representative of 2 independent 

experiments (n = 3 wells per condition per experiment). *p < 0.05, **p < 0.01, ***p < 

0.001, determined using the unpaired Student’s t test.  



 

124 
 

(E and F) ERGIC-53 does not associate with VSV G. HEK 293T cells were transfected 

with a plasmid encoding VSV G or an empty plasmid and either VSV G (E) or ERGIC-

53 (F) was immunoprecipitated as bait from cell lysates (input). Immunoprecipitated bead 

fractions were screened for ERGIC-53 (E) or VSV G (F) as prey via Western blot. 

 (G-J) ERGIC-53 has a conserved association with class I viral fusion GPs. HEK 293T 

cells were transfected with a plasmid encoding WT ERGIC-53 and a pCAGGS plasmid 

encoding the indicated viral GPs with a C-terminal HA epitope tag and BAP or an empty 

pCAGGs plasmid. In panels G and I, cells were also transfected with the Bir A plasmid to 

ensure biotinylation of each GP. Viral GPs (G and I) or ERGIC-53 (H and J) were AP or 

immunoprecipitated, respectively, as bait from cell lysates. Input lysates and purified 

bead fractions were screened for ERGIC-53 (G and I) or viral GP species (full length S 

and the processed S2 subunit for SARS CoV; full length HA0 and the processed subunit 

HA2 for influenza virus A/WSN/33; and full length GP0 and the processed GP2 subunit 

for EBOV and MARV) (H and J) as prey via Western blot. Data are representative of 2 

independent experiments. 

 

Figure 2.4 Loss of ERGIC-53 Function Does Not Inhibit the Formation of GP-
Containing Arenavirus Particles but Instead Renders Them Noninfectious 

(A and B) The ER-restricted, DN ERGIC-53 does not impair trafficking of JUNV C#1 

GP to the plasma membrane. HEK 293T cells were transfected with a plasmid expressing 

WT or DN ERGIC-53, then inoculated 24 hr later with JUNV Candid #1 or not (mock), 

and collected 72 hr later to visualize internal rERGIC-53 and surface JUNV GP staining 
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via confocal immunofluorescence microscopy (GP, red; Myc-ERGIC-53, green) (A) or 

FACS (B). In B, the histograms are gated on Myc-positive cells and show the percentage 

of transfected cells with GP staining (grey = mock infected; white = JUNV C#1 infected). 

The median fluorescence intensity (MFI) is reported. Scale bars, 20 µm. Surface 

expression of hTfR1 is not altered by DN ERGIC-53 (Figure S4). 

(C) The DN ERGIC-53 mutant does not impair proteolytic processing of JUNV GPC or 

the incorporation of GP species into virus-like particles (VLPs). HEK 293T cells were 

transfected with a plasmid expressing WT or DN ERGIC-53, then 24 hr later with 

plasmids encoding the JUNV Z and XJ GPC proteins, respectively, to permit the 

formation of VLPs. Cells and supernatants (concentrated via ultracentrifugation through 

sucrose) were screened for the presence of various GP species (the C-terminally FLAG-

tagged precursor GPC or proteolytically processed GP2) or actin via Western blot. The 

data are representative of 2 independent experiments. 

(D - G) JUNV C#1 generates GP-containing virus particles that are noninfectious in 

ERGIC-53 null cell lines. B cells derived from LMAN1+/+ (2829-D) and LMAN1-/- (CRC-

78) individuals were challenged with JUNV C#1 or not and supernatants from these cells 

were concentrated through sucrose and screened for viral proteins (GP1, NP, and Z), 

ERGIC-53, or actin via Western blot (D), JUNV C#1 plaque forming units (PFU) via 

plaque assay (E), the ratio of S segment genomic RNA copies, as measured by 

quantitative RT-PCR, to PFU (F), or attachment to host cells (G).  All values are reported 

relative to the LMAN1+/+ particles. Statistics are not shown because the values in panels 

D-G were derived from the same individual preparation of either LMAN1+/+- or LMAN1-/-
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-derived viral particles. For the attachment assay, virions were allowed to bind to cells at 

4oC for 1.5 hr. Following washes to remove unbound particles, bound virus was 

enumerated on the basis of viral S segment genomic RNA copies detected via 

quantitative RT-PCR. The data in panels D-F are representative of 2 independent 

experiments. 

 

Figure 2.5 ERGIC-53 Traffics to Sites of Arenavirus Budding and Is Incorporated 
into Virions 

(A-C) ERGIC-53 traffics to sites of arenavirus budding. JUNV C#1- or mock-infected 

HEK 293T cells were screened for either internal (A) or surface (B and C) expression of 

JUNV GPC/GP1 and ERGIC-53 (A and B) or JUNV GPC/GP1 and CRT (C) via 

confocal microscopy. Scale bars, 10 µm (white), 20 µm (red), and 300 nm (yellow).  

(D) ERGIC-53 is a component of arenavirus particles. An anti-GP1 antibody was used to 

immunoprecipitate viral particles from supernatants of JUNV-infected or mock-infected 

Vero E6 cells. An irrelevant, species-matched antibody was also used for 

immunoprecipitation from the JUNV-infected supernatants. Cell lysates and 

immunoprecipitated protein fractions were screened for viral proteins (GP1, NP, and Z) 

and ERGIC-53 via Western blot under non-reducing conditions. Data are representative 

of 2 independent experiments. ERGIC-53 was also detectable in JUNV C#1 particles via 

confocal microscopy (Figure S5). 

Figure 2.6 The C-Terminal Region of ERGIC-53’s CRD Is Required for the 
ERGIC-53 - JUNV GP Interaction 
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(A) Depiction of ERGIC-53 mutants used in this study. SS, signal sequence; F, Flag 

epitope tag; TM, transmembrane. See Figure S6 for a detailed description of each mutant. 

(B) HEK 293T cells were co-transfected with the BirA plasmid, a plasmid encoding 

JUNV C#1 GP with a C terminal HA tag and BAP, and a plasmid encoding the indicated 

ERGIC-53 mutants with an N-terminal FLAG tag. JUNV GP species (GPC and GP2) 

were AP as bait from cell lysates. Input lysates and captured bead fractions were screened 

for ERGIC-53 (prey) and, as a control, CRT (prey) via Western blot. The data are 

representative of 2 independent experiments. 

Figure 2.7 Proposed Model Depicting the Role of ERGIC-53 in JUNV Propagation 

Under WT conditions (top half of left cell), the arenavirus GP undergoes a series of 

maturation steps within the early exocytic pathway (1), including proteolytic cleavage 

and trafficking to the plasma membrane where it is incorporated into newly forming viral 

particles (2) that bud out of the cell (3). The GP on newly formed particles then attaches 

to its cellular receptor (4), which permits endocytic uptake of particles into endosomes 

(5) where low pH leads to GP2-mediated fusion of the viral and endosomal membranes 

and, ultimately, release of viral genome into the cytoplasm (6). In the absence of ERGIC-

53 (null) or in the presence of the ER-restricted, DN ERGIC-53 (DN) (bottom half of left 

cell), GP is still proteolytically processed, trafficked to the plasma membrane, and 

incorporated, along with other viral structural proteins and viral genome, into budding 

particles (1-3). These particles, however, lack ERGIC-53 and are defective in their ability 

to attach to host cells (4). They may have deficiencies in other early replication events (5 

and 6) as well.  
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Figure 2.1 Identification of Human Proteins that Associate with Arenavirus and 
Hantavirus GPs 
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Figure 2.2 ERIGC-53 is Required for Arenavirus Propagation. 
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Figure 2.3 ERGIC-53 Broadly Associates with Class I Viral Fusion GPs and 
Influences the Propagation of JUNV, SARS CoV, and EBOV in a GP-Specific 

Manner 
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Figure 2.4 Loss of ERGIC-53 Function Does Not Inhibit the Formation of GP-
Containing Arenavirus Particles but Instead Renders Them Noninfectious 
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Figure 2.5 ERGIC-53 Traffics to Sites of Arenavirus Budding and is Incorporated 
into Virions 
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Figure 2.6 The C-Terminal Region of ERGIC-53’s CRD is Required for the 
ERGIC-53 –JUNV GP interaction 

  



 

136 
 

 

Figure 2.7 Proposed Model Depicting the Role of ERGIC-53 in JUNV Propagation 
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Figure S1. Proteomics Workflow, Cut Map of Coomassie-Stained Gels Containing 

Human Proteins Purified in Complex with LCMV GP or ANDV GP, Functional 

Clustering Analysis of Host Protein Partners, and Additional Viral GPs that 

Associate with ERGIC-53, Related to Figure 1 

(A) Workflow for identification of human proteins that associate with the GPs encoded 

by LCMV and ANDV. HEK 293T cells were co-transfected with a plasmid encoding 

each respective viral GP with a C-terminal HA epitope tag and a biotin acceptor peptide 

(BAP), along with a second plasmid that encodes BirA, a bacterial biotin ligase, to ensure 

biotinylation of the viral GPs. As a control, cells were co-transfected with the BirA 

plasmid and an empty vector. Two days later, biotinylated GPs and associated host 

proteins were affinity purified (AP) from whole cell lysates using magnetic streptavidin 

beads and separated on 4-20% polyacrylamide gels for Coomassie staining. To determine 

the identity of cellular proteins captured, each Coomassie-stained gel lane was cut into 

sections (see dashed lines) for in-gel, tryptic digestion and mass spectrometry analysis as 

described in the Extended Experimental Procedures.  

(B and C) Cut maps of the affinity purified LCMV GP (B) and ANDV GP (C) samples 

following SDS-PAGE and Coomassie staining. 

(D) NIH DAVID functional clustering identifies enriched protein functional categories 

from proteomic datasets representing proteins identified binding to both LCMV and 

ANDV GP proteins, LCMV GP alone, or ANDV GP alone. Official gene symbols (see 

Tables S1A-S1C) of these data sets were entered into NIH DAVID, searched under 
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medium stringency choosing Homo sapiens as background. Functional clusters showing 

four-fold or more increases were chosen for display here. Functional clusters were 

simplified by providing labels 1-14 above (see Table S1D for details). The percent of 

proteins (average of functional cluster subsets) in each data set in each of these categories 

is provided as well as the relative enrichment of a given cluster relative to the human 

proteome. Note that one protein may be found in more than one category. Also note that 

because the size of each dataset is different a category may show a higher percentage, but 

a lower enrichment when compared to the same category in a different data set. 

(E) HEK 293T cells were transfected with the BirA plasmid and a modified pCAGGS 

plasmid encoding WWAV GP with a C-terminal HA epitope tag and BAP or, as a 

control, an empty pCAGGS plasmid. Whole cell lysates (input) were collected 2 days 

later and incubated with streptavidin beads to isolate each biotinylated GP species (GPC 

and GP2). Input lysates and captured bead fractions were screened for GP species (GPC 

and GP2) (bait) and ERGIC-53 (prey) via Western blot. 

(F - I) HEK 293T cells were transfected with a plasmid encoding the indicated viral GPs 

with a C-terminal HA epitope tag or an empty plasmid. Two days later ERGIC-53 was 

immunoprecipitated from whole cell lysates (input). Inputs and immunoprecipitated bead 

fractions were screened for ERGIC-53 (bait) and the various GP species (GPC and GP2 

for arenaviruses; G2 for hantaviruses) (prey) via Western blot. 
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Figure S2. ERGIC-53 is Required for Arenavirus Propagation, Related to Figure 2  

(A) Silencing ERGIC-53 expression impairs the release of infectious JUNV C#1 (related 

to Figure 2A). HEK 293T cells were transfected with an ERGIC-53-specific siRNA or a 

scrambled, negative control siRNA and challenged 72 hr later with JUNV C#1 at an MOI 

of 0.1. Supernatants and cell protein lysates were collected at 24, 48, and 72 hr post-

inoculation (pi) and screened for JUNV C#1 plaque forming units (PFU) via plaque assay 

and ERGIC-53 or CRT (loading control) via Western blot (each lane represents an 

individual well). Data are presented as mean PFU ± SEM relative to the empty vector 

transfected wells and are the summation of 2 independent experiments (24 & 48 hr pi n = 

5, 72 hr n = 6).  

(B) Overexpression of WT ERGIC-53 enhances infectious JUNV release (related to 

Figure 2B). HEK 293T cells were transfected with a plasmid encoding Myc-tagged, WT 

ERGIC-53 or, as a control, an empty plasmid; 48 hr following transfection these cells 

were challenged with JUNV C#1 at an MOI of 0.1. Supernatants and cell protein lysates 

were collected at 24, 48, and 72 hr pi and screened for JUNV C#1 PFU via plaque assay 

and Myc-ERGIC-53 or CRT (loading control) via Western blot (each lane represents an 

individual well). Data are presented as mean PFU ± SEM relative to the empty vector 

transfected wells and are the summation of 2 independent experiments (n = 6 per time 

point).  
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(C and D) Restriction of ERGIC-53 to the ER impairs the release of infectious JUNV 

C#1 and DANV (related to Figures 2C and 2D, respectively). HEK 293T cells were 

transfected with a plasmid encoding Myc-tagged DN ERGIC-53 or, as a control, an 

empty plasmid; 24 hr later cells were challenged with JUNV C#1 (C) or DANV (D) at an 

MOI of 0.1 or 0.001, respectively. Supernatants and cell protein lysates were collected at 

the indicated times pi and screened for PFU via plaque assay and Myc-DN ERGIC-53 or 

CRT (loading control) via Western blot (each lane represents an individual well). Data 

are presented as mean PFU ± SEM relative to the empty vector transfected wells and are 

representative of 2 independent experiments (n = 12 or n = 6 per experiment for JUNV 

C#1 or DANV, respectively).  

(E) Release of infectious JUNV C#1 is impaired in ERGIC-53 (LMAN1-/-) null cells 

(related to Figure 2E). B cells from LMAN1+/+ (2829-D) and LMAN1-/- (CRC-78 and 

CRC-79) individuals were challenged with JUNV C#1 at an MOI of 1. Supernatants and 

cell protein lysates were collected at 48 and 72 hr pi and screened for JUNV C#1 PFU via 

plaque assay and ERGIC-53 or actin (loading control) via Western blot (each lane 

represents an individual well). Data are presented as mean PFU ± SEM relative to the 

LMAN1+/+ cells and are representative of 2 independent experiments (n = 3 per condition 

per experiment). 

(A - E) *p < 0.05, **p < 0.01, ***p < 0.001, determined using the unpaired Student’s t 

test. 
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Figure S3. ERGIC-53’s Influence on JUNV, SARS CoV, and EBOV Propagation is 
Specific and Can Be Minimally Mapped to the viral GP, Related to Figure 3  

(A - D) HEK 293T cells were initially transfected with a plasmid encoding Myc-tagged 

WT or DN ERGIC-53, then 24 hr later the WT and DN ERGIC-53 cells were transfected 

with a plasmid encoding VSV G (A), JUNV XJ GP (B), SARS CoV S (C), or EBOV GP 

(D). Twenty-four hr following the final transfection, cells were challenged with VSV¨G 

at an MOI of 2. Supernatants and cell protein lysates were collected 24 hr later and 
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screened for infectious VSV¨G particles pseudotyped with VSV G, JUNV XJ GP, SARS 

CoV S, or EBOV GP via focus assay and Myc-ERGIC-53 (WT or DN) or CRT (loading 

control) via Western blot (each lane represents an individual well), respectively. Data are 

presented as mean infectious units ± SEM relative to the WT ERGIC-53 vector 

transfected wells and are representative of 2 independent experiments (n = 3 wells per 

condition per experiment). *p < 0.05, **p < 0.01, ***p < 0.001, determined using the 

unpaired Student’s t test. 

 

 

  

Figure S4. The ER-Restricted, DN ERGIC-53 Does Not Impair Trafficking of 

hTfR1 to the Plasma Membrane, Related to Figure 4  

HEK 293T cells were transfected with a plasmid expressing WT ERGIC-53 or the DN 

ERGIC-53 mutant and 72 hr later incubated at 4oC with an anti-hTfR1 antibody to stain 
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for surface expression of hTfR1 and then fixed, permeabilized, and incubated with an 

anti-Myc antibody to stain for internal Myc-ERGIC (WT or DN). The histograms are 

gated on Myc-positive cells and show the percentage of transfected cells with hTfR1 

staining (grey shaded = isotype-matched IgG control antibody signal; white = hTfR1 

signal). The median fluorescence intensity (MFI) is reported for each condition.  

 

 

  

Figure S5. ERGIC-53 is Incorporated into Arenavirus Particles, Related to Figure 

5D 

JUNV C#1 particles generated in Vero E6 cells were adhered onto glass cover slips, 

permeabilized, and screened for JUNV NP (green) and ERGIC-53 (red) via confocal 

microscopy as described in the Extended Experimental Procedures. The data presented 
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are representative of 2 independent experiments. The arrowheads highlight JUNV 

particles that contain ERGIC-53. Scale bar, 5 µm. 

 

 

  

Figure S6. The C-Terminal Region of ERGIC-53’s CRD Is Required for the 

ERGIC-53 - JUNV GP Interaction, Related to Figure 6 

(A) Depiction of ERGIC-53 mutants used in this study. ERGIC-53 is a nonglycosylated, 

type I transmembrane protein that forms homohexamers and consists of an ER-lumenal 

domain, a transmembrane domain, and a cytoplasmic domain (for review see (Hauri et 

al., 2000b)). The ER-lumenal portion of the protein contains a carbohydrate recognition 

domain (CRD) that selectively binds high mannose glycans in a Ca2+- and pH-dependent 

manner (Appenzeller-Herzog et al., 2004; C. Appenzeller et al., 1999b; Itin et al., 1996). 

Lectin binding can be disrupted by deletion of the entire CRD (¨CRD) (residues 44 - 
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269) or specific ȕ-strands within the CRD (e.g. strands 1 & 2 (¨ȕ2) (residues 43-72), 1 

through 3 (¨ȕ3) (residues 43 - 76), or 1 through 4 (¨ȕ4) (residues 43-83)) (Zheng, Liu, 

Yuan, et al., 2010), or through mutation of individual amino acids (N156A or D181A) 

(Itin et al., 1996; Velloso, Svensson, Pettersson, & Lindqvist, 2003a; Zheng, Liu, Yuan, 

et al., 2010) within the CRD that are critically required for coordinating Ca2+-binding. 

The ER-lumenal region of ERGIC-53 also encodes an alpha helical domain and two 

cysteine residues (C466 & C475) that are all required for the formation of ERGIC-53 

homohexamers. Deletion of the helical domain (¨Helix) (residues 271 - 457) (E. P. Neve, 

U. Lahtinen, & R. F. Pettersson, 2005) or mutation of the cysteine residues to alanine 

(C466A/C475A) (Nufer et al., 2003) results in the loss of noncovalently-associated or 

disulfide-linked homohexamers, respectively. Deletion of the helical domain combined 

with mutation of C466 and C475 to alanine (¨helix monomer (¨HM)) (Zheng, Liu, 

Yuan, et al., 2010) completely abolishes ERGIC-53 oligomerization and yields 

monomeric ERGIC-53, which, like the DN mutant (KKAA) (Kappeler, Klopfenstein, 

Foguet, Paccaud, & Hauri, 1997a), cannot traffic beyond the ER. Additionally, several of 

these constructs (¨CRD, ¨ȕ1, ¨ȕ2, ¨ȕ3, ¨ȕ4, and ¨HM) abolish ERGIC-53’s ability to 

interact with MCFD2 (Zheng, Liu, Yuan, et al., 2010). SS, signal sequence; F, Flag 

epitope tag; TM, transmembrane.  

(B) HEK 293T cells were co-transfected with the BirA plasmid, a plasmid encoding 

JUNV C#1 GP with a C terminal HA tag and BAP, and a plasmid encoding the indicated 

ERGIC-53 mutants with an N-terminal FLAG epitope tag. JUNV GP species (GPC and 

GP2) were AP as bait from cell lysates. Input lysates and captured bead fractions were 
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screened for ERGIC-53 (prey) and, as a control, CRT (prey) via Western blot. The data 

are representative of 2 independent experiments.  

 

 

 

 

Supplemental Experimental Procedures 

Cells and Viruses  

HEK 293T/17 cells (CRL-11268, American Type Culture Collection, Manassas, VA) 

(referred to as HEK 293T cells in the manuscript) were grown in Dulbecco’s Modified 

Eagle Medium (DMEM) (11965-118) supplemented with 10% fetal bovine serum, 1% 

Penicillin-Streptomycin (15140-163), 1% MEM Non-Essential Amino Acids Solution 

(11140-050), 1% HEPES Buffer Solution (15630-130), and 1% GlutaMAX (35050-061) 

purchased from Invitrogen (Carlsbad, CA). Vero E6 cells were provided by J. L. Whitton 

(The Scripps Research Institute, La Jolla) and grown in DMEM supplemented with 10% 

FBS, 1% Penicillin-Streptomycin, and 1% HEPES Buffer Solution. The EBV-

immortalized B lymphoblastoid cell lines derived from normal (LMAN1+/+; 2829-D) or 

ERGIC-53 null (LMAN1-/-; CRC-78 and CRC-79) individuals have been described 

previously (the null lines are described as A2 and A12, respectively, in (Neerman-Arbez 

et al., 1999)) and were maintained in RPMI 1640 Medium (22400-105, Invitrogen) 
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containing 10% FBS and 1% Penicillin-Streptomycin. The two LMAN1-/- individuals are 

from different families but encode an identical null mutation (c.822-1G>A splice site 

mutation) that completely abrogates expression of ERGIC-53. All cell lines were cultured 

at 37°C in a humidified incubator containing 5% CO2. JUNV C#1 was provided by R. 

Tesh (The University of Texas Medical Branch at Galveston) and M. J. Buchmeier 

(University of California, Irvine) and DANV by W. I. Lipkin (Columbia University). 

JUNV C#1, which is an attenuated vaccine strain, was originally derived from WT JUNV 

strain XJ and differs by 12 amino acids (Chosewood, Wilson, Centers for Disease 

Control and Prevention (U.S.), & National Institutes of Health (U.S.), 2009; Goni et al., 

2006). Working stocks of infectious JUNV C#1 and DANV were generated in Vero E6 

cells. Infectious titers of these viruses were determined via plaque assay on Vero E6 cells. 

VSVǻG encoding a GFP reporter has been described elsewhere (Takada et al., 1997) and 

was provided by M. Whitt (The University of Tennessee Health Science Center, 

Memphis, TN). An infectious stock of VSVǻG pseudotyped with VSV G was generated 

by first transfecting HEK 293T cells with a pCAGGS plasmid encoding VSV G and then 

24 hr later inoculating these cells with infectious VSVǻG (which had previously been 

pseudotyped with VSV G) at a multiplicity of infection (MOI) of 3. Supernatants were 

collected 24 hr following inoculation and infectious titer was determined by enumerating 

green foci via focus assay in Vero E6 cells.   

 

Plasmids and Transfections 
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To identify and/or validate the interaction of human proteins, including ERGIC-53, with 

various viral GPs in Figures 1, 3, 6, S1, and S6, we subcloned each respective viral GP 

into our previously described pCAGGS expression vector (C. T. Cornillez-Ty, L. Liao, J. 

R. Yates, 3rd, P. Kuhn, & M. J. Buchmeier, 2009). This vector expresses each GP as a 

fusion protein containing 3 C-terminal elements: a hemaglutinin (HA) epitope tag 

(YPYDVPDYA) followed by the tobacco etch virus (TEV) cleavage site (ENLYFQG) 

followed by a 23 amino acid biotin acceptor peptide (BAP) 

(MASSLRQILDSQKMEWRSNAGGS). When co-transfected with a second plasmid that 

encodes the bacterial biotin ligase BirA, the BAP can be biotinylated for affinity 

purification with streptavidin beads. GPs were subcloned into this vector using Gateway 

Technology (Invitrogen) following the manufacturer’s instructions. Briefly, each GP was 

first amplified via PCR using forward and reverse primers containing attB1 and attB2 

sequences, respectively. In each case, the stop codon was excluded. PCR products were 

subcloned into pDONR221 via a BP recombination reaction. GP genes were then 

subcloned from pDONR221 into the modified pCAGGS vector via an LR recombination 

reaction. The nucleotide sequence of each GP clone was verified by DNA sequencing. 

GPs were subcloned from the following viral strains (for each GP, an NCBI Gene 

Identifier number and a Protein Locus number are listed to provide a link to the actual 

nucleotide sequence cloned for that particular GP and the corresponding translated amino 

acid sequence, respectively):  ANDV strain CHI-7913 (30313864, AAO86638), SNV 

NMR11 (999407 (note that there are two silent mutations in our clone: G changed to T 

and A changed to C at positions 60 and 843, respectively, of referenced sequence), 

AAC42202), LASV strain Josiah (23343509, NP_694870), LCMV strain Armstrong 53b 
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(61655715, AAX49341), JUNV strain XJ (also referred to as Parodi) (see (Reignier et al., 

2006) for description of the nucleotide sequence; the amino acid sequence of the cloned 

gene matches JVU70799), JUNV strain C#1 (52222815, AAU34180), MACV strain 

Carvallo (see (Reignier et al., 2006) for description of nucleotide sequence, the amino 

acid sequence of the cloned gene matches AAN09942); GTOV strain INH-95551 

(22901284, AAN09938), WWAV strain AV 9310135 (14333982, AAK60497), SARS 

CoV S from strain Tor2 (JX163924, AFR58686), influenza HA from strain A/WSN/33 

(CY010788, ABF47955), EBOV strain Zaire (EBORNA, AAB81004), and MARV strain 

Musoke (DQ217792, ABA87127). Each of these GPs, with the exception of LCMV GP, 

JUNV XJ GP, MACV GP, SARS CoV S, influenza virus A/WSN/33 HA, EBOV GP, 

and MARV GP was synthesized by Bio Basic Inc. (Markhamm, ON). The LCMV strain 

Armstrong GP gene was provided by J. C. de la Torre (The Scripps Research Institute, La 

Jolla) while the JUNV strain XJ GP and MACV strain Carvallo GP were provided by P. 

Cannon (University of Southern California, Los Angeles). The MARV GP in pCAGGS 

and EBOV GP in pcDNA3.1 were obtained through BEI Resources, NIAID, NIH, 

Manassas, VA (NR-19815 and NR-19814, respectively). The SARS CoV S was provided 

by M. J. Buchmeier (University of California, Irvine) while the influenza virus 

A/WSN/33 HA in pCAGGS was provided by M. Shaw and A. Garcia-Sastre (Mount 

Sinai School of Medicine, New York). For the VSV pseudotyping experiments in Figures 

3 and S3, we utilized standard pCAGGS vectors encoding VSV G (provided by J. C. de 

la Torre (Lee, Perez, Pinschewer, & de la Torre, 2002)) or EBOV GP (NR-19814, BEI 

Resources), our modified pCAGGS vector encoding SARS CoV S, and a pSA90 vector 

encoding JUNV XJ GP provided by P. Cannon (Reignier et al., 2006). The pCAGGS 
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VSV G plasmid was also used for the immunoprecipitation experiments to screen for an 

interaction between VSV G and ERGIC-53 in Figures 3E and 3F. For the viral challenges 

(Figures 2, 3, S2, and S3),  GP interaction (Figures 3G-3J), GP trafficking (Figures 4A 

and 4B), hTfR1 trafficking (Figure S4), and VLP experiments (Figure 4C) we utilized 

pCDNA3 GM (which encodes WT ERGIC-53 with an N-terminal c-Myc tag) and/or 

pECE KKAA (which encodes the DN ERGIC-53 with an N-terminal c-Myc tag; the 2 C-

terminal phenylalanines of this ERGIC-53 gene have been replaced with alanines)  

plasmids that were provided by H. P. Hauri (University of Basel, Basel, Switzerland) 

(Itin, Schindler, & Hauri, 1995b). For the VLP experiments, we also utilized our 

modified pCAGGS vector encoding JUNV strain XJ13 Z (this gene was synthesize by 

Bio Basic Inc. and subcloned via Gateway Technology) (33868610, AAQ55249 as well 

as JUNV XJ GP with a modified series of C-terminal epitope tags (HA followed by 

FLAG). We have previously described the panel of ERGIC-53 plasmids that were 

utilized to determine the molecular basis for the JUNV GP - ERGIC-53 association in 

Figures 6 and S6 (Zheng, Liu, Yuan, et al., 2010). Briefly, the WT and ERGIC-53 

mutants were cloned into the pED plasmid by replacing the ERGIC-53 signal sequence 

with that of calreticulin (CRT) and introducing a FLAG epitope directly after the signal 

sequence. The mutant plasmids used were ¨CRD (R44-E269), ¨Helix (G271-N457), 

¨HM (G271-N457 and C466A/C475A), C466A/C475A, N156A, D181A, KKAA (the 2 

C-terminal phenylalanines were replaced with alanines), ¨ȕ1 (H43-Q59), ¨ȕ2 (H43-

N72), ¨ȕ3 (H43-S76), and ¨ȕ4 (H43-A83) (a schematic of each mutant is shown in 

Figures 6A and S6A; a detailed description of each mutant is provided in the Figure S6A 

legend). All transfections were done using either Fugene HD (4709713001, Roche 
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Applied Science, Indianapolis, IN) (3 µl Fugene HD per 1 µg DNA) or Polyethylenimine 

(PEI) (23966, Polysciences, Inc., Warrington, PA) (5 µl PEI (from a 1 mg/ml solution in 

PBS (10010049, Invitrogen)) per 1 µg DNA). 

 

Affinity Purification of Viral GPs 

To capture biotinylated viral GPs for the identification of human protein partners via 

mass spectrometry (Figures 1A, 1B, S1B, and S1C) or validation of protein partners via 

Western blot (Figures 1D, 1F, 1G, and S1E), HEK 293T cells were co-transfected with 

our modified pCAGGS plasmid that encodes each respective viral GP with a C-terminal 

HA epitope tag and a BAP, and a second plasmid that encodes BirA to facilitate 

biotinylation of the viral GPs. As a control for the mass spectrometry studies and APs 

done to validate an interaction between a given viral GP and endogenous ERGIC-53, 

cells were co-transfected with the BirA plasmid and an empty pCAGGS plasmid. For the 

experiments to screen for an association between ERGIC-53 and coronavirus, 

orthomyxovirus, or filovirus GPs in Figures 3G and 3I, in addition to receiving the GP 

and BirA plasmids, cells were also transfected with pCDNA3 GM plasmid encoding WT 

ERGIC-53. For the experiments to map the molecular basis for the interaction between 

JUNV GP and ERGIC-53 in Figures 6 and S6, in addition to receiving the GP and BirA 

plasmids, cells were also transfected with a third plasmid encoding either the WT or one 

of mutant FLAG-tagged, ERGIC-53 proteins. In each case, cells were scraped into the 

media 48 hr following transfection, pelleted, washed with cold PBS, and then gently 

lysed on ice in 25 mM Tris-HCL, pH 7.6 containing 1% Triton X-100 (T9284, Sigma-
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Aldrich, St. Louis, MO), 0.5% Nonidet P-40 IGEPAL CA-630 (198596, MP 

Biomedicals, Solon, OH), 140mM NaCl, 1 mM calcium chloride (21115, Sigma-

Aldrich), and a Complete Mini EDTA-Free Protease Inhibitor Cocktail tablet 

(04693159001, Roche Applied Science). Cell lysates were clarified of insoluble material 

by centrifugation at 10,000 rpm at 4°C followed by incubation with magnetic streptavidin 

beads (Dynabeads MyOne Streptavidin T1, 65602, Invitrogen) on a rotating platform for 

2.5 hours at 4°C. Following 4 washes in ice cold lysis buffer to remove nonspecific 

proteins, each captured viral GP and its associated cellular protein partners were stripped 

from the streptavidin beads by boiling the beads in Laemmli buffer containing 5% ȕ-

mercaptoethanol and separated by size and charge on Novex 4-20% Tris-Glycine 

polyacrylamide gels (EC60285BOX, Invitrogen) for either Western blot analysis to 

confirm bait/prey purification or Coomassie staining for mass spectrometry analysis 

(described in next section).  

 

Mass Spectrometry 

To identify human protein partners of LCMV GP or ANDV GP in Figures 1A, 1B, S1B, 

and S1C, HEK 293T cells were co-transfected with our modified pCAGGS plasmid 

encoding each respective viral GP with a C-terminal HA epitope tag and a biotin acceptor 

peptide (BAP) and a second plasmid encoding BirA to ensure biotinylation of the viral 

GPs. As a control, cells were co-transfected with the BirA plasmid and an empty vector. 

Two days later, biotinylated GPs and associated host proteins were affinity purified (AP) 
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from whole cell lysates as described above, run out on a Novex 4-20% Tris-Glycine 

polyacrylamide gel, stained with Coomassie stain (0.1% Brilliant Blue R (B7920, Sigma-

Aldrich) in 40% methanol with 20% acetic acid) diluted in 30% methanol with 10% 

acetic acid solution to 20% v/v overnight at room temperature, and then destained  for 4 

to 6 hr in 30% methanol with 10% acetic acid solution. Each gel lane was cut into 15 

(LCMV GP) or 14 (ANDV GP) sections (see Figures S1B and S1C for cut maps) for in-

gel digestion of captured proteins using Sequencing Grade Modified Trypsin (V5111, 

Promega, Madison, WI 6 ng/ȝL) in 50 mM ammonium bicarbonate overnight at 37°C as 

previously described (Ballif, Cao, Schwartz, Carraway, & Gygi, 2006). Peptides were 

extracted from gel sections with 50% acetonitrile (MeCN) and 2.5% formic acid (FA) 

and then dried. Peptides were then resuspended in 2.5% MeCN and 2.5% FA and loaded 

onto a microcapillary column packed with 12 cm of reversed-phase Magic C18 material 

(5 ȝm, 200 Å, Michrom Bioresources, Inc., Auburn, CA) using a MicroAS autosampler 

(Thermo Scientific, Pittsburgh, PA). Elution was performed with a 5í35% MeCN (0.15% 

FA) gradient using a Surveyor Pump Plus HPLC (Thermo Scientific) over 40 min, after a 

15 min isocratic loading at 2.5% MeCN and 0.15% FA. Mass spectra were acquired in an 

LTQ-XL linear ion trap mass spectrometer (Thermo Scientific) over the entire run using 

10 MS/MS scans following each survey scan. Raw data were searched against the human 

IPI forward and reverse concatenated databases using SEQUEST software requiring 

tryptic peptide matches with a 2 Da mass tolerance. Cysteine residues were required to 

have a static increase in 71.0 Da for acrylamide adduction, and differential modification 

of 16.0 Da on methionine residues was permitted. Host proteins were considered 

legitimate GP protein partners if 2 or more unique tryptic peptides were detected from a 
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host protein in samples transfected with a given GP plasmid but not the empty vector or, 

alternatively, if there was a 5-fold higher quantity of total tryptic peptides detectable from 

a given human protein in a GP sample compared to the empty vector sample. These 

filters resulted in a false discovery peptide rate of less than 1%. 

Immunoprecipitations  

Whole cell protein lysates used for immunoprecipitation studies were generated as 

described above in the “Affinity Purification of Viral GPs” section. Following 

centrifugation at 10,000 rpm at 4°C to remove insoluble material, protein lysates were 

pre-cleared by incubating them with magnetic Protein G beads (Dynabeads Protein G 

beads, 10004D, Invitrogen) on a rotating platform for 15 minutes at 4°C. Each cleared 

lysate was then incubated (on a rotating platform) with its respective antibody for 2 hr 

followed by magnetic Protein G beads for 1 hr. The beads were then washed 4 times with 

ice cold lysis buffer to remove nonspecific proteins and excess antibody. Captured bait 

proteins and their associated protein partners (prey) were stripped from the beads by 

boiling them in Laemmli buffer (with or without 5% ȕ-mercaptoethanol) and separated 

by size and charge on gradient Novex 4-20% Tris-Glycine polyacrylamide gels for 

Western blot analysis to confirm bait/prey purification. Immunoprecipitations from 

cellular protein lysates were carried out using the following antibodies: ERGIC-53 was 

immunoprecipated with either the mouse anti-ERGIC-53 G1/93 antibody (ALX-804-602-

C100, Enzo Life Sciences Farmingdale, NY) (Figures 1E, 1I-1K, 3F, 3H, 3J, S1G and 

S1H) or a rabbit anti-ERGIC-53 antibody (sc-66880, Santa Cruz, Dallas, TX) (Figure 

S1F and S1I); VSV G with the mouse anti-VSV G antibody (11 667 351 001, Roche 
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Applied Science) (Figure 3E); JUNV GP with the mouse anti-GP1/GPC antibody GB03-

BE08 (NR-2564, BEI Resources) (Figure 1H); or, as a control, a species matched, non-

immune Mouse IgG1 Isotype (MAB002, R&D Systems Minneapolis, MN) (Figures 1K 

and S1H). 

To purify intact JUNV C#1 particles in Figure 5D, supernatant from JUNV C#1-

infected Vero E6 cells was collected 72 hr post-inoculation, cleared of cells by 

centrifugation at 1400 RPM, then pre-cleared with magnetic Protein G beads, incubated 

with the GP1-specific mouse monoclonal antibody QC03-BF11 (NR-2566, BEI 

Resources) for 2 hr followed by magnetic Protein G beads for 1 hr. The beads were 

washed 4 times with PBS containing 0.1% BSA and 1 mM calcium chloride and then 

boiled in Laemmli buffer to elute/lyse the captured viral particles. The collected lysate 

was then electrophoresed on a Novex 4-20% Tris-Glycine polyacrylamide gel for 

Western blot analysis. Controls for this experiment included the use of the GP1-specific 

antibody with supernatants from mock-infected cells as well as using the MAB002 

Mouse IgG1 Isotype Control antibody for immunoprecipitation from the JUNV C#1-

infected supernatants.  

SDS-PAGE and Western Blot  

Protein lysates were separated by SDS-PAGE using Novex 4-20% Tris-Glycine 

polyacrylamide gels. Protein transfer to nitrocellulose membranes was accomplished 

using the iBlot Gel Transfer Device and iBlot Transfer Stack nitrocellulose membranes 

(IB3010-01) from Invitrogen according to the manufacturer’s instructions. Following 
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transfer, membranes were blocked by rocking in a solution of 5% milk in PBS for 1 hour 

at room temperature followed by 3 washes with Western wash solution (PBS with 0.5% 

Nonidet P-40 IGEPAL CA-630). Primary antibodies were diluted in antibody diluent 

(PBS containing 5% milk, 3% FBS, and 0.05% Nonidet P-40 IGEPAL CA-630) and 

incubated overnight at room temperature. Following 3 washes in Western wash, 

membranes were incubated with secondary antibodies diluted in antibody diluent for 2 hr 

at room temperature, followed by 3 final washes in Western wash. Membranes were then 

developed using chemiluminescence (SuperSignal West Pico (34080) or Femto (34096) 

Chemiluminescent Substrate, Thermo Scientific). The membranes that were visualized 

via an Odyssey Infrared Imaging System (LI-COR Biosciences, Lincoln, NE) in Figures 

6 and S6 were treated as described above with the following changes: the antibody 

diluent for the primary antibodies was PBS containing 5% milk and 0.05% Nonidet P-40 

IGEPAL CA-630, the antibody diluent for the secondary antibodies was PBS containing 

5% milk, 0.02% SDS, and 0.05% Nonidet P-40 IGEPAL CA-630, while the final wash 

was done using PBS.  

Primary antibodies (and the dilutions they were used at) were: G1/93 mouse anti-

ERGIC-53 (1:500), sc-66880 rabbit anti-ERGIC-53 (1:4,000), QC03-BF11 mouse anti-

JUNV GPC/GP1 (1:5,000), GB03-BE08 mouse anti-JUNV GPC/GP1 (1:500),  11 667 

351 001 mouse anti-VSV G antibody (1:1,000), 9B11 mouse anti-Myc (2276, Cell 

Signaling, Danvers, MA) (1:3,000), 71D10 rabbit anti-Myc  (2278, Cell Signaling) 

(1:4,000), NA05-AG12 mouse anti-JUNV NP (NR-2582, BEI Resources) (1:200), clone 

M2 mouse anti-FLAG (F1804, Sigma-Aldrich) (1:3,000), SPA-600 rabbit anti-CRT 
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(Stressgen, Ann Arbor, MI) (1:4,000), Clone AC-15 mouse anti-ȕ-Actin (A5441, Sigma-

Aldrich) (1:5,000), HA.11 Clone 16B12 mouse anti-HA (MMS-101P, Covance 

Emeryville, CA) (1:4,000), and rabbit anti-JUNV Z (1:2,000) (provided by Sandra Goñi 

and described in (Goni et al., 2010)). Detection of native JUNV C#1 GPC/GP1 using 

GB03-BE08 or QC03-BF11 was done under non-reducing conditions. 

Secondary antibodies used for chemiluminescence were: goat anti-mouse IgG 

HRP conjugate (H+L) (71045, EMD Millipore, Billerica, MA) (1:10,000), goat anti-

mouse light chain IgG HRP conjugate light chain specific  (AP200P, EMD Millipore) 

(1:50,000), Peroxidase-AffiniPure Goat Anti-Rabbit IgG (H+L) (111035045, Jackson, 

West Grove, PA) (1:10,000), mouse anti-rabbit light chain IgG HRP (211032171, 

Jackson) (1:50,000).  

Secondary antibodies used for LI-COR were: IRDye 800CW Goat Anti-Rabbit 

IgG (H+L) (926-32211, LI-COR) (1:20,000), IRDye 800CW Goat Anti-Rabbit IgG 

(H+L) (926-32210, LI-COR) (1:20,000), and IRDye 680CW Goat Anti-Rabbit IgG 

(H+L) (926-68070, LI-COR) (1:20,000).  

Viral Challenge Assays 

A series of viral challenge assays were conducted to determine how various 

manipulations of ERGIC-53 (siRNA silencing of ERGIC-53, overexpression of WT 

ERGIC-53, expression of DN ERGIC-53, or loss of ERGIC-53 expression due to null 

mutation of LMAN1) would impact the ability of viruses (JUNV C#1, DANV, or VSV¨G 

pseudotyped with VSV G, SARS CoV S, EBOV GP or JUNV XJ GP) to release 
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infectious progeny. At each time point examined in the various assays, supernatants and 

cells were collected (from each replicate well) to measure infectious virus or protein 

expression levels, respectively. Supernatants were clarified via centrifugation at 2000 

RPM for 5 minutes and then screened for infectious virus via plaque assay (JUNV C#1 

and DANV) or focus forming assay (pseudotyped VSV¨G). To generate protein lysates, 

cells were scraped into PBS, combined with any cells that pelleted while clarifying the 

supernatants,  pelleted by centrifugation at 2000 RPM, and then lysed on ice in 25 mM 

Tris-HCL, pH 7.6 containing 1% Triton X-100, 0.5% Nonidet P-40 IGEPAL CA-630, 

140 mM NaCl, and a Complete Mini EDTA-Free Protease Inhibitor Cocktail tablet. 

Lysates were clarified of insoluble material by centrifugation at 10,000 rpm at 4°C and 

run on Novex 4-20% Tris-Glycine polyacrylamide gels for Western blot analysis. For 

selected challenge assays described below, we utilized the unpaired Student’s t test to 

determine whether statistically significant differences existed between the quantities of 

infectious virus released from control versus experimental groups as indicated in the 

Figure legends.   

 For the siRNA challenge experiments shown in Figures 2A and S2A, HEK 293T 

cells were plated in 6-well plates, reverse transfected with 25 nM of either an ERGIC-53-

specific siRNA (5’-GGACAGAAUCGUAUUCAUCdTdT-3’ as sense and 5’-

AUGAAUACGAUUCUGUCCdTdT-3’ as antisense) (B. Nyfeler et al., 2006) or a 

scrambled, negative control siRNA (Allstars Negative Control siRNA, 1027280, Qiagen, 

Valencia, 

CA) using HiPerFect Transfection Reagent (301705, Qiagen) according to the 
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manufacturer’s instructions. Cells were challenged 72 hr later with JUNV C#1 at an MOI 

of 0.1. Supernatants and cell protein lysates were collected at 24, 48, and 72 hr post-

inoculation (96, 120, and 144 hr post-transfection with siRNA, respectively) and screened 

for JUNV C#1 plaque forming units (PFU) via plaque assay or ERGIC-53 and CRT 

(loading control) expression via Western blot. Prior to carrying out the viral challenge, 

we determined, using the ERGIC-53-specific siRNA, the timeframe post-transfection that 

would yield optimal ERGIC-53 knock-down. Using Western blot as a read out, we 

observed silencing of ERGIC-53 in HEK 293T cells from 48 to 144 hr post-transfection 

(data not shown). 

 For the overexpression challenge experiments shown in Figures 2B and S2B, 

HEK 293T cells were plated in 6-well plates, transfected the next day with a plasmid 

encoding Myc-tagged, WT ERGIC-53 or an empty vector, and challenged 1 day later 

with JUNV C#1 at an MOI of 0.1. Supernatants and cell protein lysates were collected at 

24, 48, and 72 hr post-inoculation and screened for JUNV C#1 PFU via plaque assay or 

Myc-WT ERGIC-53 and CRT (loading control) expression via Western blot.  

 For the DN ERGIC-53 challenge assays shown in Figures 2C, 2D, S2C, and S2D, 

HEK 293T cells were plated in 24-well plates, transfected the next day with a plasmid 

encoding Myc-tagged, DN ERGIC-53 or an empty vector, and challenged 1 day later 

with JUNV C#1 or DANV at an MOI of 0.1 or 0.001, respectively. Supernatants and cell 

protein lysates were collected at 48 and 72 hr post-inoculation for JUNV C#1 or 48 hr 

post-inoculation for DANV and screened for PFU via plaque assay or Myc-DN ERGIC-

53 and CRT (loading control) expression via Western blot.  
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For the ERGIC-53 null cell line challenge assays shown in Figures 2E and S2E, 

EBV-immortalized B lymphoblastoid cell lines derived from 1 normal (LMAN1+/+; 2829-

D) or 2 ERGIC-53 null (LMAN1-/-; CRC-78 and CRC-79) individuals were seeded in a 

24-well plate and challenged with JUNV C#1 at an MOI of 1. Supernatants and cell 

protein lysates were collected 72 hr post-inoculation and screened for PFU via plaque 

assay or ERGIC-53 and actin (loading control) expression via Western blot.  

 For the VSV¨G pseudotyping challenge assays shown in Figures 3A-3D and S3, 

HEK 293T cells were initially transfected with a plasmid encoding Myc-tagged WT or 

DN ERGIC-53, then 24 hr later the WT and DN ERGIC-53 cells were transfected with a 

plasmid encoding VSV G, JUNV XJ GP, SARS CoV S, or EBOV GP. Twenty-four hr 

following the final transfection, cells were challenged with VSV¨G (that had been 

previously pseudotyped with VSV G) at an MOI of 2. Supernatants and cell protein 

lysates were collected 24 hr later and screened for infectious VSV¨G particles 

pseudotyped with VSV G, JUNV XJ GP, SARS CoV S, or EBOV GP via focus assay 

and Myc-ERGIC-53 (WT or DN) or CRT (loading control) via Western blot, 

respectively.  

For the ERGIC-53 null cell line challenge assays shown in Figures 4D-4G, EBV-

immortalized B lymphoblastoid cell lines derived from a normal (LMAN1+/+; 2829-D) or 

ERGIC-53 null (LMAN1-/-; CRC-78) individual were seeded in T-75 flasks and 

challenged or not (mock) with JUNV C#1 at an MOI of 0.1. Supernatants were collected 

96 hr post-inoculation, concentrated via ultracentrifugation as described below, and 

screened for PFU via plaque assay, JUNV proteins (GP1, NP, and Z) or cellular proteins 

(ERGIC-53 and actin (loading control)) via Western blot, and viral S segment genomic 
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RNA via quantitative RT-PCR (as described below). RNA was extracted from each viral 

preparation using the QIAamp Viral RNA Mini Kit (52906, Qiagen) according to the 

manufacturer instructions. Virion preparations were also screened for their ability to bind 

host cells in a virus-cell binding assay (described below). 

Virus-Cell Binding Assay 

To determine whether the viral particles produced in EBV-immortalized B 

lymphoblastoid cell lines derived from a normal (LMAN1+/+; 2829-D) or ERGIC-53 null 

(LMAN1-/-; CRC-78) individual had differing capacities to bind host cells in Figure 4G, 

we chilled Vero E6 cells grown in 48-well plates to 4°C, washed them twice with PBS, 

and then incubated duplicate wells with each viral preparation for 1.5 hrs at 4°C. 

Unbound virus was then aspirated and each well was washed 3 times in PBS. Following 

the final wash, total RNA was extracted from each monolayer using the RNeasy Mini Kit 

(74106, Qiagen) according to the manufacturer instructions. RNA samples were then 

subjected to quantitative RT-PCR, as described below, to determine the copies of JUNV 

C#1 S segment genomic RNA.  

Quantitative RT-PCR 

To enumerate quantities of JUNV C#1 viral S segment genomic RNA, cDNA was 

generated using 200 nM of primer 5’-AAGGGTTTAAAAATGGTAGCAGAC-3’, which 

is specific for the NP region of the S segment genomic (negative-sense) RNA,  with 

Multiscribe-RT (4311235, Life Technologies, Carlsbad, CA). Reaction conditions were 

25oC for 10 min, 48oC for 30 min, and 95oC for 5 min. Quantitative PCR was then 
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performed using a primer-probe set originally described in (Trombley et al., 2010). 

Specifically, we used forward primer (900 nM) 5’-CATGGAGGTCAAACAACTTCCT-

3’, reverse primer (900 nM) 5’-GCCTCCAGACATGGTTGTGA-3’, and probe (200 nM) 

5’-6FAM-ATGTCATCGGATCCTT-MGBNFQ-3’. Note that the forward primer differs 

by 1 nt from the originally reported sequence. Reactions were carried out using Taqman 

Universal PCR Master Mix (4326614, Life Technologies). Reaction conditions were 

95oC for 10 min and 45 cycles of 95oC for 15 sec and 60oC for 1 min. Absolute copy 

numbers of JUNV C#1 S segment genomic RNA were determined by comparison with a 

series of standard dilutions of the our modified pCAGGS plasmid encoding the JUNV 

C#1 NP gene. Data was acquired using an Applied Biosystems StepOnePlus Real-Time 

PCR System and analyzed with the provided StepOne software. 

Virus-Like Particle (VLP) Assay 

For the VLP assays shown in Figure 4C, HEK 293T cells were initially transfected with a 

plasmid expressing Myc-tagged WT or DN ERGIC-53, then 24 hr later with a cocktail of 

2 plasmids encoding the JUNV Z and XJ GPC proteins, respectively, to permit the 

formation and release of VLPs. Cells and supernatants were collected 72 hr later and 

screened for the presence of various GP species (the C-terminally FLAG-tagged 

precursor GPC or proteolytically processed GP2) or actin (to serve as a loading control) 

via Western blot. Cells were collected as described above in the “Viral Challenge Assay” 

section. VLPs were concentrated from supernatants via ultracentrifugation through 

sucrose (as described below) prior to Western blot analysis. 
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Ultracentrifugation of VLPs and Authentic JUNV C#1 Particles 

The JUNV VLPs in Figure 4C and JUNV C#1 particles in Figure 4D were concentrated 

via ultracentrifugation through sucrose as previously described (Neuman, Adair, Yeager, 

& Buchmeier, 2008). Briefly, supernatants were clarified of cellular debris via 2 rounds 

of centrifugation at 1500 rpm and 2500 rpm, respectively. VLPs/particles were then 

precipitated by dissolving polyethylene glycol MW 8,000 (81268, Sigma-Aldrich) into 

clarified supernatants (10% weight/volume) at 4oC. Supernatants were then centrifuged at 

10,000 RPM for 30 minutes at 4oC to pellet VLPs/particles. Pellets were gently 

resuspended in HEPES buffered saline, pH 7.4, layered onto 20% sucrose, and 

centrifuged at 100,000 x g in a T-865 Rotor (Thermo Scientific) for 2.5 hr at 4oC. 

Pelleted virus was gently resuspended in HEPES buffered saline, pH 7.4 for use in plaque 

and/or Western blot assays.  

 

Confocal Microscopy  

Confocal microscopy was used to visualize the localization of JUNV C#1 GP and 

ERGIC-53 in HEK 293T cells (either internally, at the plasma membrane, or a 

combination of internal/surface staining) or JUNV C#1 NP and ERGIC-53 in virions. For 

the internal staining of JUNV C#1 GP and endogenous ERGIC-53 shown in Figure 1L, 

HEK 293T cells were seeded onto 22 mm glass cover slips (12-541-B, Thermo 

Scientific) within 6-well dishes, inoculated or not (mock) the next day with JUNV C#1 at 

an MOI of 0.1, then 72 hr later washed with PBS, fixed with Z-FIX (174, ANATECH, 
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Battle Creek, MI), permeabilized in PBS with 0.1% Triton X-100 and 1% BSA, then 

blocked in PBS containing 3% FBS and 10% normal goat serum (005-000-121, Jackson) 

for 30 minutes at room temperature. Cells were then incubated with a 1:500 dilution of 

the G1/93 mouse anti-ERGIC-53 antibody in PBS containing 1% BSA and 0.1% Triton 

X-100 overnight at 4oC. Cells were then washed 3 times with PBS containing 0.1% BSA 

and incubated with Alexa Fluor 647-conjugated goat anti-mouse IgG (H+L) (A-21236, 

Invitrogen). After 3 washes in PBS containing 0.1% BSA, cells were incubated with a 

1:50 dilution of the GB03-BE08 mouse anti-JUNV GP1/GPC antibody that had been 

directly conjugated to Alexa Fluor 488. Cover slips were washed 3 times with PBS, 

stained with 4’, 6-diamidino-2-phenylindole hydrochloride (DAPI) (D9542, Sigma 

Aldrich), washed 3 times with PBS, and then mounted onto glass slides using ProLong 

Gold Antifade Reagent (P36934, Invitrogen).  

The intracellular and surface staining of JUNV C#1 GP and endogenous ERGIC-

53 shown in Figures 5A and 5B, respectively, was accomplished by seeding HEK 293T 

cells in T-75 flasks and then inoculating them or not (mock) the next day with JUNV C#1 

at an MOI of 0.1.  Cells were trypsinized 2 days later (at 48 hr post-inoculation), reseeded 

onto 22 mm glass cover slips within 6-well dishes, and at 72 hr post-inoculation either a) 

fixed, permeabilized, and blocked in an identical manner described above for internal 

staining or b) incubated at 4oC for surface staining. Following blocking, internal staining 

was done by incubating cells with a 1:500 dilution of the GB03-BE08 mouse anti-JUNV 

GP1/GPC antibody and a 1:200 dilution of the sc-66880 rabbit anti-ERGIC-53 antibody 

in PBS with 1% BSA overnight at 4oC. After 3 washes in PBS with 0.1% BSA, cells 
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were incubated with a 1:800 dilution of both the Alexa Fluor 488-conjugated Goat Anti-

Mouse IgG (H+L) (A-11029, Invitrogen) and Alexa Fluor 647-conjugated Goat Anti-

Rabbit IgG (H+L) (A-21245, Invitrogen) antibodies. For the live-cell surface staining, 

cells were incubated with a 1:50 dilution of the GB03-BE08 mouse anti-JUNV GP1/GPC 

antibody and a 1:50 dilution of the sc-66880 rabbit anti-ERGIC-53 antibody in PBS with 

3% FBS and 10% normal goat serum for 20 minutes at 4oC. After 3 washes in PBS with 

3% FBS, cells were incubated with a 1:200 dilution of both the Alexa Fluor 488-

conjugated Goat Anti-Mouse IgG (H+L) and Alexa Fluor 647-conjugated Goat Anti-

Rabbit IgG (H+L) antibodies. In both staining protocols, cells were washed 3 times 

following incubation with the secondary antibodies, stained with DAPI, washed 3 times 

with PBS, and then mounted onto glass slides using ProLong Gold Antifade Reagent. As 

a control, cells were surface stained for JUNV C#1 GP and CRT using a 1:50 dilution of 

the SPA-600 rabbit anti-CRT antibody (Figure 5C). The protocol was the same with the 

exception of replacing the ERGIC-53-specific antibody with the CRT-specific antibody. 

The surface staining of JUNV C#1 GP and intracellular staining of either Myc-

tagged WT or DN ERGIC-53 shown in Figure 4A was accomplished by seeding HEK 

293T cells in T-75 flasks, transfecting them with plasmids encoding either Myc-tagged 

WT or DN ERGIC-53, then 1 day later inoculating them with JUNV C#1 at an MOI of 

0.1.  Cells were trypsinized 2 days later (at 48 hr post-inoculation) and reseeded onto 22 

mm glass cover slips within 6-well dishes.  At 72 hr post-inoculation cells were washed 

in PBS and then surface stained for JUNV GP1/GPC via incubation with a 1:50 dilution 

of the GB03-BE08 mouse anti-JUNV GP1/GPC antibody directly conjugated to Alexa 
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Fluor 488 in PBS containing 3% FBS for 20 minutes at 4oC. Cells were then washed 3 

times in PBS and fixed using Z-FIX. Following fixation, cells were washed 2 times with 

PBS, permeabilized via incubation with PBS containing 0.1% Triton X-100 and 1% BSA 

for 10 minutes, washed 3 times with PBS containing 0.1% BSA, blocked for 30 minutes 

at room temperature with PBS containing 1% BSA and 10% normal goat serum, then 

stained for Myc-tagged WT or DN ERGIC-53 via overnight incubation at 4oC with a 

1:200 dilution of the 71D10 rabbit anti-Myc antibody in PBS containing 0.1% BSA. 

Cells were washed 3 times in PBS containing 0.1% BSA, then incubated with a 1:800 

dilution of the Alexa Fluor 647-conjugated goat anti-rabbit antibody in PBS containing 

0.1% BSA for 2 hr, washed 3 times in PBS, stained with DAPI, washed 3 times in PBS, 

then mounted on glass slides using ProLong Gold Antifade Reagent. 

Detection of ERGIC-53 in JUNV C#1 particles shown in Figure S5 was 

accomplished by  incubating clarified media from either mock- or JUNV C#1-infected 

cells for 2 hr at 37°C in 35 mm glass bottom culture dishes (P356-1.5-10-C, MatTek 

Corporation, Ashland, MA) that had been coated with 0.01% Poly-L-Lysine (3438-100-

01, Trevigen, Gaithersburg, MD). The JUNV C#1-containing media had a titer of ~1 x 

107 PFU/ml. Viral particles were subsequently fixed by incubation in 4% 

paraformaldehyde for 30 minutes at room temperature, washed three times with 1X PBS, 

permeabilized in PBS containing 1% BSA and 0.1% Triton X-100 for 10 minutes at room 

temperature, and then blocked in PBS containing 1% BSA and 10% normal goat serum 

for 30 minutes at room temperature. Staining for JUNV NP and ERGIC-53 was done via 

incubation with a 1:200 dilution of the mouse anti-JUNV NP antibody NA05-AG12 (NR-
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2582, BEI Resources) and a 1:100 dilution of a rabbit anti-ERGIC-53 antibody (raised by 

B.Z.) in PBS containing 1% BSA for 2 hours at room temperature. Following 3 washes in 

PBS with 0.1% BSA, the dishes were incubated with a 1:200 dilution of both the Alexa 

Fluor 488-conjugated Goat Anti-Mouse IgG (H+L) and Alexa Fluor 647-conjugated Goat 

Anti-Rabbit IgG (H+L) antibodies. The stained dishes were then washed 3 times in PBS 

and stored at 4°C prior to imaging in PBS.  

Images for all confocal experiments were obtained using a Zeiss LSM 510 Laser 

Scanning Confocal Microscope. Images were captured using either a 63X or 100X 

objective lens with a numerical aperture of 1.4. Optical zoom was set to 1.5X and images 

were obtained at 1.0 Airy unit. The colocalization analysis shown in Figure 1L was 

performed with the colocalization analysis module contained in the Zeiss Aim software 

on images that were captured using the 63X objective lens. To determine background 

gating thresholds for colocalization analysis, we averaged the background signal from 

triplicate images of either mock-infected cells stained using the GB03-BE08 mouse anti-

JUNV GP1/GPC antibody directly conjugated to Alexa Fluor 488 or JUNV C#1-infected 

cells stained with the Alexa Fluor 647-conjugated goat anti-mouse secondary antibody 

(gates are shown as white lines in the histogram in Figure 1L).  

 

Flow Cytometry  

Flow cytometry was utilized to screen, in cells expressing either WT or DN ERGIC-53, 

whether JUNV C#1 GP (Figure 4B) or hTfR1 (Figure S4) was detectable at the plasma 
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membrane and, if so, the median fluorescence intensity (MFI) of these respective signals. 

In both cases, HEK 293T cells were seeded in 6-well dishes and transfected the next day 

with plasmids encoding either Myc-tagged WT or DN ERGIC-53. To screen for surface 

expression of JUNV C#1 GP, cells were inoculated the next day with JUNV C#1 at an 

MOI of 1.0. At 72 hr post-inoculation the media was aspirated and cells detached from 

the plates by incubating them with Versene (2 mM EDTA in PBS) for 15 minutes at 

37oC. Cell pellets were washed 2 times with PBS and then surface stained for JUNV 

GP1/GPC via incubation with a 1:100 dilution of the GB03-BE08 mouse anti-JUNV 

GP1/GPC antibody directly conjugated to Alexa Fluor 488 in FACS buffer (PBS 

containing 2% fetal bovine serum and 0.2% sodium azide) for 20 minutes at 4oC. Cells 

were then washed 3 times in FACS buffer, fixed/permeabilized in BD Cytofix/Cytoperm 

solution (554722, BD Biosciences, San Jose, CA) for 20 minutes at room temperature, 

washed 2 times in BD Perm/Wash buffer (554723, BD Biosciences), then stained for 

Myc-tagged WT or DN ERGIC-53 via a 20 minute incubation at 4oC with a mouse anti-

Myc antibody directly conjugated to Alexa Fluor 647 (2233, Cell Signaling) diluted 

1:100 in Perm/Wash buffer. For the experiments looking at surface expression of hTfR1, 

72 hr following transfection of the WT or DN ERGIC-53 plasmids, cells were collected 

and stained as described for JUNV C#1 GP with the exception of replacing the mouse-

anti JUNV C#1 GP Alexa Fluor 488 antibody with a primary/secondary antibody 

combination consisting of a 1:100 dilution of an unlabeled A4A6 mouse monoclonal anti-

hTfR1antibody provided by J. Cook (University of Kansas Medical Center, Kansas City, 

KS) and a 1:200 dilution of a goat anti-mouse antibody directly conjugated to R-
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Phycoerythrin (P852, Invitrogen). Data was acquired on an LSR II (BD Biosciences) and 

analysis was done using FlowJo software (v9.6.2, TreeStar, Inc., Ashland, OR).  
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3.1. Abstract 
 

The Arenaviridae are a family of zoonotic viruses able to cause a severe and often 

fatal disease in humans. Despite the morbidity and mortality caused by these pathogens, 

no FDA approved vaccines or effective antivirals exist. The simplicity of the viral 

proteome (4 ORFs from 2 RNA segments) suggests an extensive interplay between the 

viral and host proteomes. Identifying these host proteins and understanding their roles in 

viral replication and disease progression is a promising strategy to develop therapeutic 

interventions for arenavirus disease. Accordingly, we demonstrate a three-part 

macromolecular complex is formed by arenavirus envelope glycoproteins (GPs) and the 

Endoplasmic Reticulum (ER)- Golgi Intermediate Compartment 53 kilo-Dalton protein/ 

Multiple Coagulation Factor Deficiency Protein 2 (ERGIC-53/MCFD2)  intracellular 

cargo receptor complex,  which is involved in trafficking of a restricted number of 

cellular glycoproteins in the early secretory pathway, including coagulation factors V and 

VIII. Loss of MCFD2, or changing of its protein levels, though not affecting GP binding, 

potently regulates the ERGIC-53-dependent function of the intracellular cargo receptor in 

the production of infectious arenavirus, coronavirus, filovirus, and hantavirus particles. 

We show that MCFD2 expression is upregulated during arenavirus infection; addition of 

an O-glycosylated purified MCFD2 restricts virus propagation, and thereby represents a 

novel candidate for antiviral development. Collectively, these findings provide insight 

mailto:Ralph.budd@uvm.edu
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into the biology of the ERGIC-53/MCFD2 axis in the extracellular space, and provide 

additional functionality to the cargo receptor complex. 
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3.2. Introduction 
 

The Arenaviridae are a family of enveloped RNA viruses comprised of a number 

of human pathogens found within rodent populations in a variety of global settings (1). 

The zoonotic nature of the viruses, and the biology of their reservoir rodents (2, 3), has 

resulted in the emergence of new and re-emergence of existing human pathogens (4). 

Increased surveillance and detection capabilities have facilitated the detection of new 

arenavirus species approximately every 2-3 years (5). As such, there is a clear need to 

develop antiviral treatments for this family of viruses that cause significant morbidity and 

mortality annually (6). The Arenaviridae is comprised of a single genus that is subdivided 

into Old and New World groupings based on location, serological reactivity, and genome 

similarity (7). Pathogens in the Old World arenavirus grouping include Lassa virus 

(LASV), which is the predominant cause of human disease in the family (8, 9), and 

Lymphocytic choriomeningitis virus (LCMV), an under-reported pathogen able to cause 

aseptic meningitis as well as severe neurological abnormalities in a developing fetus (10, 

11). Dandenong virus (DANV), an LCMV-like virus, along with LCMV, has been 

associated with severe and highly fatal outcomes in cases of organ transplantation (12-

14). Pathogenic arenaviruses in the New World grouping include Junín, Chapare, 

Guanarito, Machupo, and White Water Arroyo viruses, which cause a severe 

hemorrhagic fever syndrome (1). Junín virus is unique amongst the Arenaviridae in that 

an attenuated vaccine strain has been developed, JUNV Candid1 (15), which currently 

has FDA investigational new drug (IND) status (16).  
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The limited arenavirus proteome consists of: an RNA-dependent RNA 

polymerase (L polymerase) responsible for viral genome transcription and replication, a 

viral nucleoprotein (NP) which encapsidates the RNA genome, a small zinc-binding 

matrix protein (Z) that drives budding and, along with NP, has been proposed to interfere 

with cellular immune responses (17-19), and lastly a tripartite envelope glycoprotein 

complex (SSP-GP1-GP2) formed from a precursor molecule (GPC) that is proteolyzed by 

the host signal peptidase (SPase) (20, 21), and site-1 protease (S1P) (22) to form the 

functional spike complex required for attachment and entry (17, 23). The simplicity of 

the arenavirus proteome suggests that these viruses have evolved highly multifunctional 

proteins that are able to effectively utilize a network of host-derived macromolecular 

complexes to accomplish their entry (24-26), biosynthesis (21, 22), and exit strategies 

(27) encoded for in such limited viral genomic space. We have recently utilized a 

proteomics screen to identify human proteins in complex with a prototypic arenavirus GP 

molecule. In doing so we uncovered a novel role for ERGIC-53 in the production of 

infectious arenaviruses, coronaviruses, and filoviruses. We found that ERGIC-53, during 

infection with an arenavirus, is relieved of its normal ER-ERGIC recycling program and 

gets packaged into arenavirus particles. Viral particles lacking ERGIC-53 were found to 

be non-infectious, in part, because of their inability to attach to host cells (28).  

Given the importance of these findings for ERGIC-53 in viral propagation, and 

knowing that the protein forms a receptor complex, we wished to further investigate the 

function of the primary macromolecular complex formed by ERGIC-53 and MCFD2. 

ERGIC-53 is a type 1 transmembrane protein that cycles continuously between the ER 
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and ERGIC (29-31), under normal conditions, where it functions as an intracellular cargo 

receptor. ERGIC-53 can require a soluble cofactor, MCFD2, for binding to and moving a 

discreet subset of cellular glycoproteins via its calcium-sensitive lectin activity (32, 33). 

The cellular ligands dependent upon the complete complex are the coagulation factors V 

and VIII. Loss of ERGIC-53 in humans results in combined deficiencies of factor V and 

VIII (OMIM 2273000), a rare and often mild hemophilia which results in low serum 

concentration and activity of FV and FVIII (34, 35). A second genetic impairment 

causing F5F8D has been identified in the MCFD2 locus (36). The resulting genetic 

lesions result in either a loss of protein, or code for a protein no longer able to interact 

with ERGIC-53 (37). The ERGIC-53 cargo receptor complex is maintained in a calcium-

dependent fashion via several intramolecular contact sites, and both Ca2+ and ligand 

binding cause conformational changes in its structure (38, 39). ERGIC-53 is able to bind 

to high mannose N-linked glycans in the absence of MCFD2 (40-42), however upon 

MCFD2 binding, it has been reported that ERGIC-53 has a higher affinity for its cognate 

glycans (43).  

The precise molecular mechanisms involved in ERGIC-53’s role in arenavirus 

attachment and entry are currently unknown. In the current study we have extended our 

analysis of ERGIC-53’s function in arenavirus propagation to include the soluble 

cofactor MCFD2, and show that a three-part complex is formed between the GP, ERGIC-

53 and MCFD2, that only occurs in the presence of ERGIC-53. We show that binding of 

MCFD2, minimally, to ERGIC-53 regulates the function of the complex in arenavirus 

propagation, and that MCFD2’s antiviral function is conserved across not only 
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arenaviruses, but also coronavirus, filovirus, and hantavirus particles in a GP restricted 

fashion. We demonstrate that the addition of exogenous MCFD2 neutralizes cell-free 

arenaviruses, and also provide mechanistic insight into the orientation of the cargo 

receptor complex on arenavirus particles through the use of super resolution imaging. 

3.3. Methods 

3.3.1. Antibodies, Cells, Viruses and Plasmids 
 

 The following antibodies were used: HA.11 Clone 16B12 mouse anti-HA (MMS-

101P, Covance Emeryville, CA) (1:4,000) was used to detect recombinant viral 

glycoproteins in Western Blot assays. Mouse anti MCFD2 and rabbit anti ERGIC-53, 

used in microscopic examination of endogenous MCFD2 and ERGIC-53 by confocal and 

STORM applications respectively,  were the generous gift of Bin Zhang and have been 

previously described (28, 44). 9B11 mouse anti-Myc (2276, Cell Signaling, Danvers, 

MA) (1:3000) was used to detect myc-MCFD2 in Western Blot assays.  Calreticulin was 

used as a calcium-sensitive lectin prey-control in Western blots and was detected using 

rabbit anti (CRT) SPA-600 (Stressgen, Ann Arbor, MI) at 1:4,000.  Mouse monoclonal 

anti JUNV GP-1 QC03-BF11 and NP NA05-AG12 (NR-2566 and NR-2582, BEI 

resources) were used to detect intracellular GP (confocal analysis) and C#1 particles (NP 

dSTORM analysis). Recombinant ERGIC-53 was detected in Western blots using clone 

M2 mouse anti-FLAG (1:3,000) (F1804, Sigma-Aldrich), and rabbit anti-ERGIC-53 

antibody (sc-66880, Santa Cruz, Dallas, TX) (1:4,000) was used to detect endogenous 

ERGIC-53 in Western blot assays. For a thorough description of each viral GP used : 
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JUNV XJ GP, JUNV C#1 GP, LASV GP, SARS S, ANDV GP, EBOV GP, MARV GP,  

FLUAV WSN33A HA, and VN HA, see the extended supplemental section of ref (28). 

-819� &���� '$19�� DQG� UHFRPELQDQW� 969ǻ*� KDYH� EHHQ� SUHYLRXVO\� GHVFULEHG 

(28). JUNV C#1 was provided by R. Tesh (The University of Texas Medical Branch at 

Galveston) and M. J. Buchmeier (University of California, Irvine) and DANV by W. I. 

Lipkin (Columbia University). 969ǻ*� HQJLQHHUHG� WR� H[SUHVV� D� *UHHQ� )OXRUHVFHQW�

Protein (GFP) in lieu of its own native G protein was provided by M. Whitt (The 

University of Tennessee Health Science Center, Memphis TN). 

All transfections were carried out using low-passage HEK293T/17 cells (CRL-

11268, American Type Culture Collection, Manassas, VA). HEK293T cells were 

maintained in Dulbecco’s Modified Eagle Medium (DMEM) supplemented with 10% 

fetal bovine serum, 1% Penicillin-Streptomycin, 1% MEM Non-Essential Amino Acids 

solution, 1% GlutaMax, and buffered with 1% Hepes. All cell culture reagents were 

purchased from Invitrogen (Carlsbad, CA). Vero cells were provided by J. Lindsay 

Whitton (The Scripps Research Institute, La Jolla, CA) were cultivated in DMEM 

supplemented with 10% FBS, 1% Penicillin-Streptomycin, and 1% Hepes. B-cells from 

either a healthy donor (MCFD2 +/+) (2829D) or from F5F8D patients with MCFD2 

mutations CRC80 (c.149+5G>A (family A32)) and 1258 ( c.103delC (family A21)) have 

been previously described (36) and were cultured in RPMI 1640 containing 10% FBS, 

1% Penicillin-Streptomycin, and 1% Hepes. 

3.3.2. Transfections 
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All transfections were carried out using Polyethylenimine (PEI) (23966, 

Polysciences, ,QF���:DUULQJWRQ��3$��XVLQJ�D�UDWLR�RI��ȝ/�3(,����PJ�P/�VWRFN�EURXJKW�XS�

LQ�3%6���WR��ȝJ�SODVPLG�'1$� 

 

3.3.3. Affinity Purifications  
 

 To determine the molecular basis for arenavirus glycoproteins binding to ERGIC-

53 and MCFD2 we transfected into sub-confluent HEK293T/17 cells a PCAGGS 

expression plasmid previously described by Cornillez-Ty et al., into which we subcloned 

JUNV C#1 GP [synthesized via Bio Basic Inc (Markhamm, ON)] along with a plasmid 

encoding the bacterial biotin ligase BirA to ensure biotinylation of target GP molecules 

within cells. ERGIC-���:7��ǻ&5'��ǻȕ���ǻ+HOL[�ZHUH�DOO�GHVFULEHG�SUHYLRXVO\��=KHQJ�

et al., 2010 and Klaus et al., 2013); FLAG-ERGIC-��� :7�� ǻ&5'�� ǻȕ��� ǻȕ��� P\F-

MCFD2 WT, D89A, and D129E were the generous gift of Bin Zhang (Cleveland Clinic, 

Cleveland, OH) and have been previously described (Zheng et al., 2008) and (Klaus et 

al., 2013), and were co-WUDQVIHFWHG� LQWR� FHOOV� ZLWK� HTXDO� ȝJ� TXDQWLWLHV�� )ROORZLQJ�

transfection, cultures were incubated for 48 hours at which point the cells were harvested 

as previously described (28). Clarified lysates were incubated with streptavidin-coated 

magnetic beads (Dynabeads MyOne Streptavidin T1, 65602, Invitrogen) at 4°C on a 

rotating platform for 2.5 hr to allow binding of biotinylated bait-prey protein complexes.  

The bead fractions were extensively washed with cold lysis buffer to remove unbound 

proteins, and proteins were eluted via boiling in Lammli buffer supplemented with fresh 

ȕ-mercaptoethanol to 5%. Captured proteins were then analyzed by SDS PAGE on 
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Novex Tris-Glycine 4-20% precast gels (Invitrogen) and Western blot by probing for the 

different bait-prey combinations. 

Co-immunoprecipitations in which exogenously added sMCFD2 was used as bait 

to examine its potential for binding ERGIC-53 released from cells, were carried out by 

first collecting supernatant from JUNV C#1, or mock, infected HEK cells cultured in 

Pro293 (protein free) medium (Lonza), and clarifying the supernatant of cellular debris 

by two centrifugation steps each 15 minutes at 1500 rpm in a refrigerated centrifuge. 

Following clarification, samples were pre-cleared of immunoglobulin binding proteins by 

incubation with Protein G beads (Dynabeads Protein G beads, 1004D, Invitrogen). 

3XULILHG� V0&)'�� ���� ȝJ�� ZDV� DGGHG� WR� HDFK� FRQGLWLRn in a buffer containing PBS 

supplemented with 0.05% BSA , 2.5 mM calcium chloride, and a Complete Mini EDTA-

Free Protease Inhibitor Cocktail tablet (04693159001 Roche Applied Science), buffered 

with 1% Hepes pH 7.2. The supernatants were incubated for 2.5 hr on a rotating platform 

in the cold. To immunoprecipitate sMCFD2-ERGIC-53 protein complexes, mouse anti 

MYC mAb was added to each sample, and incubated for an additional 2 hr. Following 

the antibody incubation, Protein G magnetic beads were added to each condition and 

incubated for an additional 2 hr. Following extensive washing with cold wash buffer to 

remove non-specific bound proteins, the sMCFD2 captured complexes were concentrated 

on a magnetic column and then eluted by boiling in Lammeli buffer witK� ��� ȕ-Me.  

Samples were then analyzed by SDS PAGE and Western blot for myc-MCFD2 (bait) and 

ERGIC-53 (prey). 
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3.3.4. SDS PAGE and Immunoblotting 
 

SDS PAGE and Immunoblot analysis was performed as described by Klaus et al., 2013. 

 

3.3.5. Production of sMCFD2 
 

Purification of secreted human MCFD2 was accomplished by transfecting into a 

T-75 flask of sub-confluent HEKs, a modified PCAGGS plasmid encoding human 

MCFD2 containing a 6X His tag and MYC tag (sub-cloned from pcDNA3.1 MCFD2 

Zhang et al., 2008). Cells were allowed to recover for 2 days, were then trypsinized and 

re-seeded into 2 T-150 flasks. After 1 day of recovery the medium was removed, cells 

were washed once with PBS, and then replenished with Pro293 medium (Lonza) and 

incubated for 2 days prior to harvesting. Following 2 centrifugation steps, to remove any 

cellular debris (6000 g for 15 min), 5X Qiagen start buffer was added to the collected 

production medium, containing the secreted MCFD2, to yield a final concentration of 1X 

Qiagen start buffer (50 mM Tris-HCl, pH 7.5, 300 mM NaCl, 20 mM imidazole, 10% 

glycerol and 0.05% sodium azide).  The His tagged sMCFD2 was then captured by 

passage over a Qiagen Ni-NTA column (8 mL of resin, 2 mL/min).  The column was 

attached to a BioCad Sprint system (Applied Biosystems) allowing for continuous 

monitoring of the absorbance at 280 nm, the conductivity, and the pH.  Following sample 

loading, the column was washed with start buffer until the baseline returned to the 

background level (< 0.1 A280 units).  The sMCFD2 was eluted with start buffer 

containing 250 mM imidazole and 3 mL fractions were collected. The absorbance of each 

fraction at 280 nm was determined on a Cary 100 spectrophotometer. Fractions were 
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screened via Western blot to identify samples containing myc-MCFD2 which were 

subsequently pooled. Pooled fractions were then concentrated using 10 kDa MWCO 

Ultracel microconcentrators to a concentration of 1 mg/mL, stored in Hepes-buffered 

PBS supplemented with 1 mM calcium chloride, and stored at 4° until use. 

3.3.6. Microscopy 
 

2-color confocal microscopy analysis was completed as previously described (28). 

Briefly, for analysis of intracellular JUNV C#1 GP and MCFD2, HEK293T cells were 

seeded onto 12 mm glass coverslips (Thermo Scientific), and infected the following day 

with JUNV C#1 at a multiplicity of infection of 0.1. At 72 hours post-infection cells were 

washed with PBS, and fixed using 4% paraformaldehyde (PFA) for 30 minutes at room 

temperature followed by extensive washing with PBS to remove excess PFA. Cells were 

permeabilized in a buffer containing 0.1% Triton-X 100 and 0.1% bovine serum albumin 

(BSA). A blocking step was carried out for 30 minutes at room temperature in a buffer 

containing 1% BSA and 10% normal goat serum (NGS). Mouse anti MCFD2 mAb was 

used at a dilution of 1:2000, incubated overnight at 4°, and then antibody binding 

revealed with Alexa Fluor 647-conjugated goat anti-mouse IgG (H+L) (A-21236, 

Invitrogen) at a dilution of 1:800. JUNV GP was stained using mouse monoclonal anti 

JUNV GP-1 QC03-BF11 directly conjugated to Alexa Fluor 488 (Invitrogen) at a dilution 

of 1:50. Nuclei were visualized via 4’, 6-diamidino-2-phenylindole hydrochloride (DAPI) 

(D9542, Sigma Aldrich) staining, and slides were mounted using ProLong Gold Antifade 

Reagent (P36934, Invitrogen). Cells were imaged using a Zeiss LSM 510 META Laser 

Scanning Confocal Microscope housed in the UVM Microscopy Imaging Center. Images 
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were acquired using a 63X lens with a numerical aperature of 1.4 with the optical zoom 

set to 1.5X.  Using the AIM software suite images were captured at 1 airy unit, with gain 

settings for 488 and 647 signals balanced based on either mock infected controls (GP-

488) or secondary only controls (MCFD2-647).  

For visualizing JUNV C#1 virions containing three fluorophores  using 2-

dimensional (2D) and 3-dimernsional (3D) direct stochastic optical reconstruction 

microscopy (2D and 3D 3dSTORM), clarified supernatant from JUNV C#1 (containing 

1.0 x 107 PFU/mL virus), or mock infected cells was incubated for 2 hr at 37° in 35 mm 

glass bottom culture dishes (P356-1.5-10-C, MatTek Corporation, Ashland, MA) 

pretreated with 0.01% Poly-L-Lysine (3438-100-01, Trevigen, Gaithersburg, MD). 

Following adsorption, the dishes were fixed using 4% PFA for 30 minutes at room 

temperature and then washed extensively to remove excess PFA. The virions were then 

permeabilized in a buffer containing 0.1% Triton-X100 with 0.1% BSA for 10 minutes at 

room temperature and washed 3x in buffer containing PBS with 0.1% BSA. A blocking 

step was carried out with PBS containing 1% BSA and 10% NGS for 30 minutes at room 

temperature. 

Staining of virions was accomplished by first bathing the dishes with sMCFD2 

����QJ�ȝ/��LQ�EXIIHU�$%��FRQWDLQLQJ�3%6�VXSSOHPHQWHG�ZLWK������%6$�DQG��P0�&D&O2, 

for 4 hours at 4° C. Dishes were then washed with buffer AB 3-times, before incubation 

with a mouse anti myc mAb, recognizing sMCFD2, at 1:50, and a rabbit polyclonal 

antibody recognizing ERGIC-53, at 1:50 for 2 hours at 4°C. The dishes were then washed 

3-times in buffer AB, and incubated with Alexa Fluor 647-conjugated goat anti-rabbit 
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IgG (H+L) (Invitrogen) to reveal ERGIC-53 staining, and Alexa Fluor 568-conjugated 

goat anti-mouse IgG (H+L) (Invitrogen) to reveal sMCFD2, at 1:100, respectively for 2 

hr 4° C. Following 3 additional washes in Buffer AB, JUNV NP staining was 

accomplished by incubating dishes with a biotin-conjugated mAb NA05-AG12 

recognizing JUNV NP at a dilution of 1:50 for 2 hours at 4 degrees. Dishes were washed 

3 additional times in buffer AB before NP was counter-stained with Alexa Fluor 488 

conjugated streptavidin (Invitrogen) at a dilution of 1:100 in buffer AB for 2 hr at 4° C. 

Plates were then washed 3-times with PBS and stored at 4°C prior to imaging.  

We have developed a method for the visualization of three fluorophores all using 

direct STORM (dSTORM) methodology. The Nikon N-STORM super-resolution 

microscope system consists of a Nikon Eclipse Ti-E TIRF inverted microscope base with 

laser modules delivering excitation at 405 nm, 488 nm, 561 nm, and 647 nm, and a high 

sensitivity Andor iXON3 DU897 EMCCD camera. Theoretically, this instrument 

provides resolution in the fluorescence mode of 20 nm lateral dimension and 50 nm axial 

dimensions. For the triple dSTORM protocol, the following parameters were chosen: 

100X, 1.45 NA objective lens; 64 X 64 pixel frame size; EM gain 10MHz at 14 bit, EM 

gain multiplier 300, and 1X conversion gain; auto exposure 1 frame, and no binning. 

TIRF setting of illumination was determined to be 4100 using 647 nm laser excitation. 

Images were acquired using N-STORM “normal mode” setting with 0 activation cycles 

and 2 reporter cycles. A STORM quad cube (Nikon part # 260319) was inserted into the 

microscope turret to separate the three fluorescence signals. Sequential order of activation 

was 488 nm (62 mWatts), followed by 647 nm (33 mWatts), and finally 561 nm (59 
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mWatts). Following acquisition of 15,000-30,000 frames, the data were rendered into a 

super-resolution image using a Gaussian distribution function. For three-dimensional 

image acquisition, an astigmatic lens was inserted into the microscope beam path. Image 

processing and display were accomplished with NIS Elements software.  

All images were acquired in an oxygen scavenging buffer system containing 

glucose oxidase (G2133, Sigma) and catalase (C30, Sigma) in 50mM Tris-HCl, with 10% 

glucose, and 0.1M cysteamine (30070, Sigma) that was prepared fresh prior to each 

imaging session.  

 

3.3.7. Viral challenge assays 
 

Viral challenge assays to assess the role of MCFD2 were conducted as previously 

described (28). Briefly, to assess the consequences of plasmid over expression of MCFD2 

(figure 1), HEK293T cells were seeded in 24 well plates (Fisher) and allowed to adhere 

for 24 hr at which time they were transfected with a plasmid encoding WT MCFD2, or 

with an empty plasmid, and incubated overnight. The following day monolayers were 

infected with JUNV C#1 at a multiplicity of infection of 0.1, or with DANV at a 

multiplicity of infection of 0.001, and the viruses were allowed to adsorb for 1 hour at 

37° C. Following viral adsorption, monolayers were washed extensively with 

maintenance medium and returned to the incubator. At 48 and 72 hours post-infection, 

the supernatant was harvested, clarified by centrifugation for 5 minutes at 1500 rpm, 

transferred to a fresh Eppendorf tube, and stored for determination of PFU by standard 



 

190 
 

plaque assay on Vero E6 cells. Results were tested for statistical significance using the 

Student’s unpaired t-test where p values < .05 were considered significant. 

Viral challenge assays to determine the respective contributions of ERGIC-53’s 

CRD features were carried out as described above with minor modifications. 

Combinations of plasmids that were transfected were balanced with an equal 

concentration of an empty vector where indicated (figure 3). 

Viral challenge assays to assess the ability of EBV-transformed B cells from a 

healthy donor (2829D) or 2 MCFD2 null F5F8D patients (CRC-79 and 1258) to produce 

infectious arenavirus were conducted by infecting equal numbers of cells with JUNV C#1 

in a low volume at a multiplicity of infection of 1. Viral adsorption was carried out at 37° 

C for 2 hours at which time the cells were gently pelleted and inoculums were removed. 

The cells were then washed 3-times with PBS with each wash being followed by a low 

speed centrifugation step (1200 rpm for 5 minutes). Infected cells were then plated in a 

24 well culture dish in complete RPMI medium, and returned to the incubator. After 72 

hours the post infection supernatants were harvested via centrifugation (1200 rpm for 

minutes), and the clarified supernatants stored at -80° C until determination of PFU 

content by standard plaque assay on Vero E6 cells. 

 

3.4. Results 

3.4.1. MCFD2 is a negative regulator of arenavirus propagation 
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It is well established that ERGIC-53 plays a critical role in production of 

infectious arenavirus particles: since it forms a complex, we wanted to explore the role of 

the macromolecular cargo receptor complex formed between ERGIC-53 and MCFD2. 

We hypothesized that by increasing MCFD2 expression levels, an enhancement in viral 

propagation, similar to one observed following ERGIC-53 overexpression, would occur. 

We transiently overexpressed WT MCFD2 in HEK293T cells, and tested the impact of its 

expression on a representative New and Old world arenavirus (Junín virus Candid1 (C#1) 

and Dandenong virus (DANV)). In striking contrast to the effect of overexpressed 

ERGIC-53, increased expression of MCFD2 led to a potent decrease in the generation of 

infectious C#1 at 48 and 72 hours post infection (75.22%  p = 0.001 and  48.7% 

reduction p = 0.0116, respectively) as well as DANV at 48 hpi (83.7% reduction p = 

0.0001), strongly suggesting a conserved and restrictive effect in both Old and New 

World arenavirus propagation (Fig 1C-D). Thus, MCFD2 and ERGIC-53 have a 

divergent contribution to arenavirus propagation. 

3.4.2. JUNV C#1 propagation is enhanced in cells from F5F8D patients who are 
MCFD2 null  

 

We have previously reported that the production of infectious C#1 particles is 

impaired in B cells derived from ERGIC-53 null F5F8D patients (28). Given the 

divergent influence of MCFD2 overexpression in arenavirus propagation compared to 

ERGIC-53’s, we next wanted to examine the effect on arenavirus replication in B cells 

derived from two unrelated F5F8D patients who had WT ERGIC-53, but were null for 

MCFD2 (1258 and CRC80 – family A21 and A32 (36)). A healthy MCFD2 WT (2829D) 
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donor served as a neccesary control. Cells from each donor were challenged with C#1 to 

determine whether loss of MCFD2 would affect the production of infectious virus. 

Surprisingly, loss of MFD2 in these cells resulted in an increase in the release of 

infectious virus at 72 hpi (141.2% and 988.3% increase CRC80 and 1258 p < 0.0001 and 

p = 0.049, respectively) (figure 1D), thereby adding support to the antiviral role of the 

molecule. 

3.4.3. MCFD2 forms a tripartite complex with ERGIC-53 and viral glycoproteins 
 

We have previously reported the conserved association of ERGIC-53 with envelope GPs 

encoded by arenaviruses, coronaviruses, filoviruses, hantaviruses, and orthomyxoviruses (28). 

MCFD2 has likewise been reported to associate with ERGIC-53, and is required for efficient 

secretion of blood coagulation factors (F)V and FVIII (32, 39, 45). Using a biotin-streptavidin 

affinity purification technique (46), we therefore wanted to test whether MCFD2 would associate 

with an arenavirus glycoprotein, or if the viral GP by interacting with ERGIC-53, precluded its 

binding to MCFD2. HEK 293T cells were co-transfected with plasmids encoding the JUNV C#1 

GP and the bacterial biotin ligase BirA to ensure in-situ biotinylation of the GP, along with either 

WT ERGIC-53, WT MCFD2, or CRD mutants of ERGIC-��� �ǻ&5'� �QRQ� *3� ELQGLQJ�� RU�

ǻȕ��QRQ-MCFD2 binding)) and as an internal control ERGIC-��� ǻ+HOL[�� DQG�RU� PXWDQWV� RI�

MCFD2 (D89A and D129E) unable to bind ERGIC-53 (37) because of changes in tertiary 

structure (38), which are sufficient to cause F5F8D (36). Biotinylated C#1 GP efficiently 

precipitated WT MCFD2 in the presence of WT ERGIC-53, but not ERGIC-���ǻȕ��which lacks 

the ability to bind MCFD2 (37) (Fig 1F), suggesting that ERGIC-53 links MCFD2 to C#1 GP 

indirectly. 
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  In validation of the requirement of ERGIC-53 to form the three-part complex, when 

ERGIC-���ǻ&5'�ZDV� FR-expressed in cells, which is unable to interact with JUNV GP, WT 

MCFD2 did not precipitate with C#1 GP (Fig 1F). MCFD2 binding was then restored following 

expression of ERGIC-���ǻ+HOL[��FRQILUPLQJ�WKH�PLQLPDO�UHTXLUHPHQW�RI�DQ�LQWDFW�(5*,&�&5'�

(aa 47-60) for the formation of the complex. Conversely, when JUNV GP precipitated WT 

ERGIC-53 in cells also expressing either of the two inactivating MCFD2 mutants (D89A and 

D129E), no MCFD2 was detected in the complex. These data indicate that MCFD2 forms an 

ERGIC-53 dependent complex with C#1 GP that minimally requires MCFD2 EF-hand residues 

D89 and D129 as well as ERGIC-53 CRD residues 47-60. 

3.4.4. MCFD2 trafficking during infection with an arenavirus 
 

To confirm the biochemical data suggesting a multi-protein complex between JUNV C#1 

GP and MCFD2, and to visualize the intracellular distribution of these proteins, we performed 2-

color confocal microscopy analysis on cells infected, or not, with Candid1 72 hr post-infection 

(hpi). At 72 hpi, infected cells demonstrated a profound shift in the intracellular concentration and 

localization of MCFD2 compared to uninfected cells (Figure 1F). The intracellular pool of 

MCFD2 was found to concentrate with JUNV GP, within the structure we have putatively 

identified as the ERGIC (figure 1F and data not shown). Compared to the mock-infected control 

cells, a marked increase in MCFD2 was observed primarily within the ERGIC and punctate 

transport vesicles. These data demonstrate a virus-specific upregulation of MCFD2 expression 

and coordinated trafficking of MCFD2 to sites of GP concentration. 

3.4.5. ERGIC-53/MCFD2 receptor complex has a conserved interaction with viral 
GPs 
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Given the broad extent of ERGIC-53’s association with viral envelope glycoproteins, we 

next examined whether MCFD2 could also form a complex with additional envelope 

glycoproteins from arenaviruses (JUNV XJ and  Lassa Virus (LASV) GP), hantaviruses (ANDV 

GP), as well as severe acute respiratory syndrome coronavirus (SARS CoV S), orthomyxoviruses 

(HA proteins from FLUAV WSN and VN (H1 & H5)), filoviruses (Ebola virus and Marburg 

virus (EBOV & MARV)), and finally a rhabdovirus envelope from vesicular stomatitis virus 

(VSV G) (figure 2A). All envelope glycoproteins tested, with the exception of VSV G , were 

found to complex with both ERGIC-53 and MCFD2 clearly showing that the ERGIC-53 : 

MCFD2 molecular complex has a highly conserved but specific biochemical affinity for viral 

glycoproteins (Fig 2A). 

3.4.6. MCFD2’s antiviral action is highly conserved and restricted by the GP  
 

To assess the conservation of MCFD2’s regulation of viral propagation, and to 

determine whether the molecular activity of MCFD2 can be restricted to the envelope 

glycoprotein : ERGIC-53 complex, we employed a vesicular stomatitis virus (VSV) 

pseudotyping approach whereby cells overexpressing MCFD2, or not, were transfected 

with plasmids encoding GPs representing a subset of those able to form a complex with 

ERGIC-53 and MCFD2 (Figure 2A). Specifically, GPs from JUNV, SARS, ANDV, 

MARV, EBOV, and as a control VSV. Cells were infected a day later with pre-made 

VSV pseudo-particles �SS��RI�969ǻ*�*)3���969�* (47). The resulting pseudotyped 

SDUWLFOHV� �969ǻ*� �� -819� *3�� 6$56� 6�� 0$59� *3�� (%29� *3�� or ANDV GP) 

generated from cells overexpressing MCFD2 (75.68 % p = 0.005; 71.01% p = .0152; 

55.26 % p = 0.0238; 56.61 % p = 0.0277; 68.18% p = 0.0142 reduction, respectively), but 
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not the empty control plasmid, were similarly restricted as with bona fide New and Old 

WRUOG� DUHQDYLUXV� SDUWLFOHV�� ZKHUHDV� 969ǻ*� �� 969� * was unaffected by MCFD2 

(Figure 2B). The pseudo-particle experiments indicate a highly conserved antiviral 

mechanism of action of MCFD2 across arenavirus, coronavirus, filovirus, and hantavirus 

particles that can be restricted to the presence of their respective envelope glycoproteins. 

3.4.7. MCFD2 controls ERGIC-53 function in arenavirus propagation 
 

Because MCFD2 associates with arenavirus GPs in an ERGIC-53 dependent 

fashion (Figure 1F), and ERGIC-53 interacts with the arenavirus GP via its carbohydrate 

recognition domain (28), we designed a series of challenge experiments to tease apart the 

relative contributions of the molecular complex. We first wished to assess the role of 

ERGIC-53’s entire CRD, which contains 3 non-overlapping regions: the GP binding 

region (Figure 1F), the MCFD2 binding site (45), and the sugar binding cleft (48), in 

arenavirus propagation. We therefore transfected cells with either: (i) a plasmid in which 

the CRD has been entirely deleted �ǻCRD), or as a control, plasmids encoding either (ii) 

WT ERGIC-53 (known to enhance C#1 replication), (iii) WT MCFD2, (iv) or an empty 

plasmid, and infected the cells a day later with JUNV C#1. At 48 hpi, in cells making an 

ERGIC-53 which can no longer bind to GP, sugar, or MCFD2 �ǻCRD), there was a 

reduction in the amount of infectious virus produced (61.95% reduction p = 0.0002) 

(Figure 3A). Likewise, when MCFD2 is in excess, there is a net reduction in the release 

of infectious virus (Figures 1A-C, and Figure 3A).    
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We next wished to test the individual contributions of ERGIC-53’s binding 

partners (e.g. MCFD2 and carbohydrate) to the ERGIC-53 mechanism of action on 

arenavirus replication. Given the CRD requirement for binding to GP, MCFD2, and 

carbohydrates, we designed an experiment in which we infected HEK293T cells that had 

been co-transfected with either an empty plasmid, or plasmids making WT ERGIC-53, 

ERGIC-53 ǻȕ� (non-MCFD2 binding), ERGIC-53 ǻȕ� (non-MCFD2 and non-sugar 

binding), or N156A (non-sugar binding), in tandem with WT MCFD2 (to ensure the 

opportunity for the cargo receptor complex to form). Association of MCFD2 with 

ERGIC-53 is known to increase its ability to bind to N-linked glycans (43). Accordingly, 

expression of ERGIC-53 ǻ&5'�� ZKLFK� cannot bind to carbohydrate or MCFD2, 

diminished the replication of JUNV C#1 (figure 3A). ERGIC-53 lacking MCFD2 �ǻȕ���

was unable to inhibit viral propagation (28.26% reduction, p = 0.09 (ns)), or MCFD2 and 

carbohydrate bLQGLQJ�FDSDELOLWLHV��ǻȕ���ZDV less efficient at inhibiting viral propagation 

(61.96% reduction, p = 0.0067), respectively. Therefore, these results suggest that an 

MCFD2-dependent allosteric regulation of ERGIC-53’s lectin activity could be 

contributing to diminished viral propagation. Finally, ERGIC-53 N156A, unable to bind 

carbohydrate, but able to bind MCFD2, was also able to diminish viral propagation 

(84.89% reduction, p = 0.0012). Collectively these data suggest a potent negative 

regulatory role for MCFD2 in the propagation of arenaviruses that is exerting its effect 

via an association with ERGIC-53 (potentially by altering its lectin activities).  

3.4.8. Secretory MCFD2 can interact with ERGIC-53 in the extracellular space 
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It has been suggested that ERGIC-53 plays a role in the attachment of arenavirus 

particles to the surface of permissive cells. We were then interested in determining 

whether we could utilize the binding of MCFD2 to secreted ERGIC-53 to alter the entry 

of an arenavirus. In doing so we could more precisely establish the properties of an 

ERGIC-53-dependent antiviral mechanism of action by MCFD2 in arenavirus 

propagation. Specifically, we wanted to first test if a purified recombinant MCFD2 

secreted from HEK cells (Fig S1A-B) would interact with ERGIC-53 in the extracellular 

space. The secreted form of MCFD2 (sMCFD2), in mammalian cells, is heavily O-

glycosylated (49). Our purified protein migrated at approximately 28 kDa, consistent 

with the multiple additions of O-linked glycans in accordance with previous reports. To 

test whether sMCFD2 was capable of directly binding to ERGIC-53 we utilized a co-

immunoprecipitation (Co-IP) technique whereby sMCFD2 was used to co-purify ERGIC-

53 secreted from JUNV C#1 infected or mock infected cells (virus and exosome or 

exosome only). Culture fluid from infected and mock infected cultures was sequentially 

incubated with soluble recombinant MCFD2 (sMCFD2), followed by an antibody 

recognizing the C-terminal Myc tag of recombinant protein, and Protein-G coated 

magnetic beads. Recombinant sMCFD2 was able to co-purify ERGIC-53 from the 

supernatant under both conditions, indicating that the complex was stable outside of the 

secretory pathway, and that the post-translational modification of MCFD2 (O-linked 

glycosylation) did not prevent the formation of the cargo receptor complex (Figure 4A). 

3.4.9. MCFD2 neutralizes arenavirus particles  
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Having demonstrated that sMCFD2 could interact with ERGIC-53 released from 

cells, and knowing that ERGIC-53 affects the attachment and entry of arenaviruses, we 

next wanted to determine if sMCFD2 could exert an effect on arenavirus entry via its 

association with ERGIC-53. To test this we pre-incubated C#1 and or DANV with 

purified sMCFD2, or a vehicle control, to allow for the formation of protein complexes. 

Following addition of pre-complexed sMCFD2 – virions to cells, we then tested for an 

impact on virus production at 72 (C#1) and 48 (DANV) hpi. In both cases there was a 

potent inhibitory effect on the production of infectious virus; JUNV C#1 ( 90.32% 

reduction, p = 0.0223) and DANV (94.88% reduction, p = 0.0038) (Fig 4 C-D).  

To confirm whether sMCFD2 was capable of directly binding to an arenavirus we 

utilized a  2D and 3D, triple color, direct stochastic optical reconstruction microscopy 

(2D and 3D 3dSTORM) approach to visualize, at a sub-diffraction level, the spatial 

arrangement of purified sMCFD2 pre-complexed with arenavirus virions (C#1) adhered 

to Poly-L-Lysine-treated matTek dishes. The virions, visualized via nucleoprotein (NP) 

staining, revealed sMCFD2 arranged in clusters of ~ 200-500 nm rings, along with 

ERGIC-53, that were surrounding the densely packed arenavirus NP core (Fig 4 C-D). 

3.5. Discussion 
  

The ERGIC-53-MCFD2 receptor complex consists of equal molar ratios of the 

type I transmembrane sorting lectin, as well as the soluble EF-hand containing molecule 

MCFD2 (32, 38). We have previously shown that ERGIC-53’s ability to bind to viral 

glycoproteins occurs in the C-terminus of the carbohydrate recognition domain (CRD) 
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independently of MCFD2 (28). In the current study, we refined and extended those 

findings to include the greater macromolecular cargo receptor complex, and found that a 

tripartite complex was formed between ERGIC-53, MCFD2 and the GPs of arenaviruses, 

coronaviruses, filoviruses, hantaviruses, and orthomyxoviruses, and that MCFD2’s 

interaction was contingent upon ERGIC-53 binding to the GPs (Figure 1F and 2B). The 

formation of the complex was also found to require functional EF-hand domains of 

MCFD2 (Figure 1F), which supports the existing model of ERGIC-53-MCFD2 

interactions (37, 38).  

The unexpected antiviral activity of MCFD2 was demonstrated to occur via 

several lines of evidence. First, cells from MCFD2 null F5F8D patients (50) were more 

adept at producing infectious JUNV (Figure 1D), in contrast to our previous studies on 

ERGIC-53 null cells (28). Second, plasmid-driven overexpression of MCFD2 was able to 

inhibit the production of bonafide NW and OW arenavirus particles (Figure 1A-C), and 

we were able to restrict the impact of MCFD2 overexpression on viral propagation to the 

arenavirus GP independent of the remaining arenavirus core (Figure 2 A-B). VSV 

pseudoparticles bearing not only arenavirus, but also coronavirus, filovirus, and 

hantavirus GPs were likewise inhibited by the increased expression of MCFD2 in a GP 

specific manner which indicates a basic and highly conserved mechanism of action 

(Figure 2A-B). Third, infection with an arenavirus greatly enhanced the expression of 

MCFD2, and concentrated it in the structure we and others have identified as the ERGIC 

(Figure 1F) (51). These data are in agreement with previous studies of an arenavirus 

infected non-human primate where MCFD2 was shown to be transcriptionally 
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upregulated nearly 15-fold in the liver (52) which surpasses the transcriptional 

upregulation of ERGIC-53 in the same study. Lastly, exogenously supplied soluble 

MCFD2 was able to interact with individual arenavirus particles, visualized at sub-

diffraction limited resolution, and pre-complexed virus was deficient in its ability to 

successfully initiate a new round of propagation (Figure 4A). 

How is MCFD2 regulated intracellularly, and how does this affect arenavirus 

propagation? We and others have observed that MCFD2, following escape from a 

presumed ERGIC-53 retention system (MCFD2 lacks a known ER retention signal), can 

become O-glycosylated, and is secreted into the extracellular space (32, 49, 53). In 

accordance with this, following expression of mutants of ERGIC-53 unable to retain 

MCFD2 within cells, (Fig1A and data not shown) depletion in the intercellular MCFD2 

pool was observed. The increased expression of MCFD2 leads to the efficient secretion 

of the molecule (Figure S1). Based on this we suggest that an upregulated and secreted 

MCFD2 may be able to allosterically regulate ERGIC-53’s lectin activity, and that 

changes in ERGIC-53’s lectin activity could regulate the infectivity of viral particles 

(Figure 3A-B and 4A-C). Interestingly, it has been reported that MCFD2 interacts with 

ERGIC-53 via 2 separate sites (38), which could imply alternative functions of ERGIC-

53 based on MCFD2 site usage. However, several other possibilities exist, including 

MCFD2 regulating a crucial intracellular GP maturation event that requires the ERGIC-

53-MCFD2 complex. Alternatively, MCFD2 may be ligating an, as of yet unknown, 

surface receptor with antiviral potential. The presence and structure of O-linked glycans 

on sMCFD2 may also contribute to the structure-function relationship of the two 
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molecules in the complex, however, to date, most biochemical and structural analyses 

have utilized the de-glycosylated form of MCFD2. 

The intracellular regulation thus far reported for MCFD2 is largely dependent 

upon ERGIC-53 (54), its expression levels, and intracellular location (in terms of 

binding, the compartment its located in, and calcium levels) (32). The unique 

upregulation seen during arenavirus infection suggests that the transcriptional or 

translation regulation for MCFD2 is likely to possess elements distinct from the ER stress 

response element within ERGIC-53’s promoter region (55). In support of this notion, 

Toda and colleagues noticed an upregulation of MCFD2 (which they refer to as Stem 

Cell-derived Neural Stem/Progenitor Cell Supporting Factor (SDNSF)) following 

ischemic treatment and FGF-2 withdrawal of primary rat hippocampal cultures (53). The 

increased expression of both ERGIC-53 and MCFD2 seen during heat shock (54), also 

could have implications in protein folding and secretion during the insidious febrile phase 

of an arenavirus infection (or other viral infections). Additionally, the stimulation of the 

ATF-6 branch of the unfolded protein response is known to be selectively initiated via 

LCMV GP (56), and also upregulates both ERGIC-53 and MCFD2 (55). Lastly, during 

Juinn virus infection, it has been reported that levels of nitric oxide are increased (57) 

which are also known to upregulate both ERGIC-53 and MCFD2 (58). The consequence 

of these combined stimuli on MCFD2 transcriptional control, and its regulation of viral 

propagation, however, remains unsolved. 

 The binding of an arenavirus GP to a site within the CRD that is distinct from the 

sugar-binding region, preserves the lectin function of ERGIC-53, presumably to the 
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benefit of the virus. Accordingly, when the CRD was removed from ERGIC-53 

expressed in a viral challenge assay, a concomitant reduction in arenavirus propagation 

RFFXUUHG� �)LJXUH� �$��� /LNHZLVH�� ZKHQ� WKH� ǻ&5'�� ǻȕ��� DQG� 1���$� PXWDQWV� ZHUH�

expressed in addition to MCFD2 overexpression, a dampening in the MCFD2-mediated 

regulation occurred (Figure 3A-B), suggesting MCFD2 acts through the CRD to alter 

arenavirus propagation. The strategy of utilization of host-machinery, particularly in NW 

arenavirus entry, by engaging in non-essential areas of the host-molecule, has been 

elegantly shown for the transferrin receptor 1 (59, 60). NW arenaviruses GPs have 

evolved to utilize this highly expressed surface receptor at a site distinct from its ligand 

binding site. The interaction of arenavirus GPs with ERGIC-53 and MCFD2 may follow 

a similar strategy. 

Our findings provide a proof of principle that targeting ERGIC-53’s lectin 

activity, via its known cofactor MCFD2, is an attractive therapeutic approach for treating 

arenavirus infections (Figure 4A-C). Given the conservation of the MCFD2-dependent 

antiviral activity with not only arenaviruses, but also coronaviruses, filoviruses, and 

hantaviruses (Figure 2A-B), the molecule may represent a valuable broad-spectrum 

antiviral target. Further, the enhanced expression of MCFD2 during arenavirus infection 

(Figure 1E) (52) may suggest that MCFD2 is acting as an antiviral signaling molecule 

following its upregulation, if it is indeed secreted under these circumstances. MCFD2, 

when added to neuron slice cultures, has been recently reported to cause a signaling event 

contributing to the maintenance of adult neuronal stem ccll populations (53, 61) 

suggesting it may have inherent signaling capabilities. It is of interest to determine if 
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sMCFD2 can be detected in the serum of VHF patients during the acute phase of 

infection, which would support a cytokine-like signaling potential.  

The presence of ERGIC-53 in the extracellular space, in the context of both virus 

(28) and exosomes (62, 63), and MCFD2s ability to engage and interact with ERGIC-53 

there (Figure 4A), could alter the activity of the cargo receptor complex via its binding to 

the blood coagulation factors FV or FVIII. Although this process is poorly understood, 

FV after it is secreted, is endocytosed and stored within alpha granules in 

megakaryocytes (64), which is interestingly a site of JUNV replication (65). Our current 

understanding of the role of ERGIC-53 and MCFD2 in clotting factor biogenesis and 

activity has been limited to their interactions in the early secretory pathway. One 

potential role of the ERGIC-53-MCFD2 complex in the extracellular space could be to 

assist in the targeting or endocytosis of the clotting factors. Accordingly, the C-terminus 

of ERGIC-53 contains a signal involved in endocytic uptake, as well as targeting (66, 

67), and F5F8D patients have been demonstrated with deficiencies not only in circulating 

levels of FV and FVIII, but in the endocytosed fraction found in platelets (68).  

Alternatively, during virion biogenesis and budding, disruption of the complex biogenic 

process of FV and FVIII, by direct GP competition for ERGIC-53/MCFD2, could also 

contribute to the bleeding abnormalities observed during infection with an arenavirus; a 

process that is likewise poorly characterized and understood (69, 70).  

Last, the paradoxical and diametrically opposed phenotypes driven by loss of 

ERGIC-53 versus MCFD2 may suggest opposing evolutionary selective pressures from 

the side of host (MCFD2) versus virus (ERGIC-53). Interestingly, the prevalence of 
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MCFD2 genetic abnormalities in F5F8D is substantially less than those caused by 

ERGIC-53 lesions (70% vs 30%) (34, 50). Since loss of MCFD2 could lead to 

individuals within the human population being more susceptible to infection (Figure 1D), 

this could select against maintenance of diseased alleles within the human genome. 

Interestingly, F5F8D caused by disruptions in MCFD2 have also been shown to have a 

modest, but significant, increase in phenotypic severity (e.g. lower levels of FV and 

FVIII in the plasma) (68). Epidemiological studies of F5F8D, as well as immunological 

assessment of the different F5F8D populations will be required, however, before a firm 

understanding of the evolutionary forces at work on the ERGIC-53 macromolecular 

receptor complex can be assessed. 
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3.7. Figure legends 
 

Figure 3.1 MCFD2 is an arenavirus restriction factor that forms a tripartite 
complex with ERGIC-53 and JUNV GP:  

(A-C) Overexpression of WT MCFD2 leads to impairment in production of infectious 

JUNV C#1 and DANV. HEK293T cells were transfected with a plasmid encoding 

MCFD2 or an empty plasmid. 24 hr. following transfection, cells were infected with 

JUNV C#1 at an MOI of 0.1, or DANV at an MOI of 0.001, and after 48 or 72 hour post-
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infection (hpi) supernatants were screened for number of plaque forming units (PFU) by 

a standard plaque assay on Vero E6 cells. Data are from replicate experiments (n=6, 48 

hpi C#1 and n= 3 DANV, n=6 72 hpi C#1) and are presented as mean PFU ± SEM 

relative to the cells receiving the empty vector. 

(D) Production of infectious JUNV C#1 is enhanced in MCFD2 null cells. EBV 

transformed lymphoblastoid cells from a healthy MCFD2 +/+ donor (2829D) and MCFD2 

-/- individuals with F5F8D (CRC-80 and 1258) were challenged with JUNV C#1 at an 

MOI of 1.0 and 72 hpi supernatants were screened for PFU via plaque assay. Data are 

presented as mean PFU ± SEM relative to the MCFD2 +/+ cells. Data are representative of 

two independent experiments (n=6 per condition per experiment). 

(E) MCFD2 expression and trafficking during infection with an arenavirus. HEK293T 

infected cells infected with JUNV C#1 were fixed 72 hpi and stained internally for JUNV 

GP (green) and MCFD2 (red) and visualized by confocal microscopy. The image is 

representative of a minimum of 10 fields of view. Background signal was subtracted via 

gain reduction based on values obtained from secondary antibody alone (MCFD2) or 

mock infected cells (GP). 

(F). MCFD2 forms an ERGIC-53 dependent tripartite complex with JUNV C#1 GP that 

requires MCFD2 EF-hand residues 89 and 129. HEK293T cells were co-transfected with 

a modified PCAGGS vector (pCC384) encoding JUNV C#1 GP with a carboxy-terminal 

biotin acceptor peptide (BAP), for efficient streptavidin based purification,  and an HA 

epitope used for detection of GPC and GP2 by Western blot; a bacterial biotin ligase, 

BirA, to ensure in-situ biotinylation, and plasmids encoding the indicated versions of 

ERGIC-53 and MCFD2. Biotinylated proteins were isolated using streptavidin coated 
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beads, and purified complexes were eluted and analyzed by SDS PAGE and Western blot 

detection of GPC/GP2 (bait), FLAG-ERGIC-53 (prey), MYC-MCFD2 (prey), and CRT 

as a control. 

 

Figure 3.2 MCFD2 antiviral action is conserved across multiple pathogenic RNA 
viruses and is specific to the viral GP.  

(A) MCFD2 forms a tripartite complex with arenavirus, coronavirus, filovirus, 

hantavirus, and orthomyxovirus envelope glycoproteins. HEK293T cells were co-

transfected with modified PCAGSS vectors (pCC384) with carboxy terminal BAP and 

HA features for purification and detection procedures encoding the respective viral GPs: 

LASV GP, JUNV XJ GP, ANDV GP, EBOV GP, MARV GP, SARS S, VN HA (H5), 

WSN HA (H1), and VSV G, along with WT ERGIC-53 and MCFD2, as well as BirA to 

ensure in-situ biotinylation. Streptavidin precipitated GP-cellular protein complexes were 

analyzed via SDS PAGE and Western blot for GP (bait) content, ERGIC-53, and MCFD2 

(prey) content along with CRT as a control.(B) MCFD2 has a highly conserved antiviral 

function that can be restricted to the viral glycoprotein. HEK293T cells were first 

transfected with either an empty plasmid, or one encoding WT MCFD2. The following 

day cells were transfected with each of the respective viral glycoproteins:  VSV G, JUNV 

XJ GP, SARS S, MARV GP, EBOV GP, and ANDV GP. 24 hr following the final 

WUDQVIHFWLRQ��PRQROD\HUV�ZHUH�LQIHFWHG�ZLWK�969ǻ*-GFP pseudoparticles decorated with 

VSV G. Supernatants were harvested 24 hpi to assay for focus forming units (FFU) on 

fresh Vero monolayers. Data are presented as mean FFU ± SEM relative to the cells 



 

211 
 

receiving an empty vector. Data are representative of two independent experiments (n=3 

per condition per experiment).  

 

Figure 3.3 MCFD2 regulates ERGIC-53’s lectin activity to inhibit arenavirus 
replication. 

(A) ERGIC-53’s CRD is critical for production of infectious JUNV C#1. HEK 293T cells 

were transfected with either an empty plasmid, or one containing WT ERGIC-53, 

ERGIC-���ǻ&5'��or WT MCFD2. Monolayers were infected 24 hpi with JUNV C#1 at 

an MOI or 0.1, virus containing supernatants were harvested at 48 hpi and assayed for 

PFU content via standard plaque assay. Data are represented as mean PFU ± SEM 

relative to the cells receiving an empty vector. 

(B) Interactions of ERGIC-53’s CRD regulate arenavirus production. HEK 293T cells 

were co-transfected with either an empty plasmid, or one containing WT MCFD2 in 

tandem with WT and functional mutants of ERGIC-53 to test for their relative 

contributions to the ERGIC-��� GHSHQGHQW� SKHQRW\SH�� ǻ&5'� �XQDEOH� WR� ELQG� *3��

0&)'���RU�VXJDU���ǻȕ���XQDEOH�WR�ELQG�0&)'����ǻȕ���XQDEOH�WR�ELQG�0&)'��RU�VXJDU���

N156A (unable to bind sugar). Monolayers were infected 24 hpi with JUNV C#1 at an 

MOI or 0.1, virus containing supernatants were harvested at 72 hpi and assayed for PFU 

content via standard plaque assay. Data are represented as PFU ± SEM relative to the 

cells receiving HTXDO�ȝJ�DPRXQWV�RI�WKH empty vector. 

 

Figure 3.4 sMCFD2 interacts with extracellular ERGIC-53 and arenaviruses to 
inhibit infectivity.  
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 (A) Purified MCFD2 interacts with ERGIC-53 secreted from infected and mock infected 

cells. MCFD2 purified from HEK293T cells (see methods section for details on 

purification) was added to clarified supernatant from JUNV C#1 and mock infected 

cultures. Recombinant MCFD2 in complex with ERGIC-53 was immunoprecipitated 

using an anti-myc antibody that recognizes the recombinant MCFD2 molecule. 

Precipitated fractions were separated via SDS PAGE and analyzed by Western blot for 

the presence of myc-MCFD2 (bait) and endogenous ERGIC-53 (prey). 

(B) Purified MCFD2 is able to inhibit the entry of Old and New World arenaviruses. 

Purified MCFD2 or vehicle was added to supernatant containing 200 PFU of JUNV C#1 

or DANV derived from Vero E6 cells. The supernatant was incubated with purified 

protein for 2 hr at 4° C before being overlaid onto monolayers of HEK293T cells. 

Following a 2 hr adsorption at 37° C the cells were washed extensively and fresh medium 

was added. At 48 (DANV) and (72) hpi, supernatants were harvested and assayed for 

PFU content by standard plaque assay. Data are represented as mean PFU ± SEM relative 

to the supernatant treated with vehicle. 

(C-D) 2D and 3D 3dSTORM imaging reveals organization of sMCFD2 and ERGIC-53 

on arenavirus particles. JUNV C#1 containing particles generated in Vero E6 cells were 

fixed onto poly-L-Lysine treated MatTek dishes. Following fixation with PFA, adsorbed 

virions were permeablized and incubated with purified sMCFD2 from HEK293T cells 

prior to staining for myc-MCFD2(blue), JUNV NP (green), and endogenous ERGIC-53 

(red). Images are representative from a minimum of 10 acquisitions of 15,000 to 30,000 

frames. Scale bars are indicated for each image. Signal versus noise values were assessed 

by imaging single fluorophores in their respective channels, as well as in all 3 channels to 
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ensure localizations from each respective fluorophore were distinct. The 2 panels in (C) 

are of a 1,000 nm view of a series of JUNV C#1 particles, and then a single particle 

magnified. The image in panel (D) is a 3D rendering of an individual JUNV C#1 virion 

identified via NP staining (green) containing a ring of ERGIC-53 (red) and MCFD2 

(blue). The model presented in panel (E) illustrates the arenavirus lifecycle and specific 

stages where MCFD2 can exert an effect. The bottom WT cell (red shaded) represents a 

scenario where MCFD2 is present in abundance. The interaction between ERGIC-

53/MCFD2 and GP is likely to occur early during synthesis in the ER/ERGIC (1) where 

the proteins are concentrated. Binding of MCFD2 to the complex may alter an 

intracellular maturation event leading up (folding, proteolysis, glycan maturation) to 

budding and release (2). MCFD2 interacts with ERGIC-53 in the context of viral particles 

(3) when added exogenously, and presumably during endogenous secretion, where it 

interferes with steps of arenavirus entry. MCFD2 binding may act at the level of receptor 

binding (4) either through blocking of arenavirus receptors, by changing ERGIC-53’s 

sugar preference, or by ligation of an unknown MCFD2-specific receptor. If the entry 

defect is post-attachment, the targeting and trafficking (5), and fusion cascade (6) may 

also be disrupted. 
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Figure 3.1 MCFD2 is an arenavirus restriction factor that forms a tripartite 
complex with ERGIC-53 and JUNV GP 
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Figure 3.2 MCFD2 antiviral action is conserved across multiple pathogenic RNA 
viruses and is specific the viral GP. 
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Figure 3.3 MCFD2 regulates ERGIC-53’s lectin activity to inhibit arenavirus 
replication. 
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Figure 3.4 sMCFD2 interacts with extracellular ERGIC-53 and arenaviruses to 
inhibit infectivity. 
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Figure 3.5 Supplemental Figure 1. Analysis of sMCFD2 production 
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4. SUMMARY OF RESULTS, DISCUSSION, AND FUTURE DIRECTIONS 
 

Summary of aims 

The body of this dissertation has been put forth to discuss, at length, four specific aims 

that, following their completion, would advance the field’s current understanding of the 

cellular biological framework of arenavirus biogenesis and pathogenesis. The focus of the 

dissertation was directed primarily on the arenavirus envelope glycoprotein complex, but 

also incorporated hantavirus GPs. The first aim was to establish a comprehensive 

interactome of an arenavirus GP with the human proteome. The inclusion of a prototypic 

hantavirus GP served both as a control for this venture, as well as a scientific 

advancement in its own right. The hantavirus glycoproteins, much like their arenavirus 

counterparts, have a dearth of information regarding their interactions (and subsequent 

biological consequences) with human cellular proteins. Following the characterization of 

these interactomes, the second aim of these studies was to identify cellular targets from 

the interactomes that were biologically relevant to either the propagation of viruses, or 

the progression of disease caused by each virus. This aim focused on two specific host 

proteins; ERGIC-53 and MCFD2. The third aim, which became the bulk of the studies, 

was to identify and characterize the mechanism of action of the biologically relevant 

cellular targets identified in aim 2 (ERGIC-53 and MCFD2). The fourth aim was to 

characterize the molecular nature of the interaction between the viral and host molecules 

(e.g. map domains and residues supporting the interaction). These four aims will be 

summarized and explored individually where possible; however given the interesting and 

occasionally circuitous route the data led us on, some sections are not mutually exclusive. 
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4.1.  Summary of GP interactome studies and future directions (aim 1) 
 

The first aim of this dissertation was to generate an arenavirus and hantavirus GP 

– human protein interactome. Accordingly, data presented here provides a primary and 

comprehensive identification of human proteins involved in the biogenesis of arenavirus 

and hantavirus glycoproteins. Our collective understanding of specific proteins involved 

in their biogenesis has been limited thus far to the proteases involved in maturation 

cleavage of the arenavirus (SPase and S1P) and hantavirus GPs (SPase). The new 

collection of interacting proteins identified here will be of use to researchers interested in 

dissecting the molecular machinery involved in the chaperone-assisted folding, 

glycosylation, isomerization, and transport of the glycoprotein complex. The proteomics 

screen revealed molecules with associated functions in each of these categories. It should 

be noted, however, that there was a caveat to the approach detailed in chapter 2 in the use 

of HEK293T cells to generate the interactomes. The cells were selected based on both the 

ability of these viruses to productively infect them, as well as for their permissiveness to 

transfection for the production of recombinant proteins.  Future studies to confirm these 

interactions within tissue relevant cell types will likely provide additional interactions, 

some of which may be tissue specific. 

Chapter 1 summarizes the different approaches to understanding the imperative 

nature of the N-linked glycosylation additions to arenavirus glycoprotein structure and 

function. It will be of particular interest to investigate more fully the glycosylation 

machinery involved. Despite several elegant studies, the exact make-up of the glycan 

additions remain unknown and the enzymes involved in shaping them are likewise 



 

222 
 

murky. We identified several sugar processing (adding and trimming) enzymes as well as 

lectins and lectin binding proteins in this study including ERGIC-53, calreticulin, 

calnexin, Golgi apparatus protein 1, LMAN2, and LMAN2L. Given the importance of 

ERGIC-53 and its lectin function in the production of infectious virus, characterizing the 

role of each of these lectins may also shed insight into the intracellular trafficking and 

glycosylation content of the GP, as well as reveal other unknown lectin-mediated 

activities for both virus and cell. 

 Chapter 2 describes the cluster analysis of the individual versus the conserved GP 

interactomes. While this type of primary analysis is insightful, a more thorough 

investigation will be required to cross-reference the interactomes with existing databases 

for human viral pathogens (i.e. influenza and HIV) for which similar proteomics or RNAi 

based studies have been carried out. In addition to an in-depth bioinformatics analysis, 

functional studies carried out via forward or reverse genetics approaches (genetic deletion 

vs over expression) will be needed to characterize the significance of the remainder of the 

interactome. Since there are several enzymes also listed, specifically those involved in the 

proteasome function, small molecules targeting their enzymatic activity should also be 

utilized where feasible. This type of approach has gained traction recently. Specifically, 

treatment of cells with Bortezomib, a clinically approved proteasome inhibitor, as well as 

MG12, has been demonstrated to result in the impaired propagation of orthomyxoviruses 

and paramyxoviruses, respectively (Dudek, Luig, Pauli, Schubert, & Ludwig, 2010; 

Watanabe et al., 2005). During the preparation of this dissertation, Jager et al. identified 

ERGIC-53 as an interacting protein of HIV-1 GP in a proteomics screen characterizing 
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the HIV-interactome (Jager et al., 2012), however it has not yet been revealed whether 

ERGIC-53 will likewise be important for retrovirus propagation. Given the phenotypes 

presented thus far for the arenavirus, coronavirus, filoviruses, and hantaviruses, and 

ERGIC-53’s interaction with them, it is plausible that HIV may also utilize ERGIC-53’s 

pro-viral function. 

 While these studies were underway, Panda et al. performed a genome-wide 

siRNA screen searching for proteins involved in rhabdovirus (VSV), arenavirus (LCMV), 

and human parainfluenza virus (HPIV) replication (D. Panda et al., 2011). Several GP 

partners identified in our studies were found to be deleterious to viral replication when 

silenced. Specifically coatomer (COPA), archain 1 (ARCN), stromal cell derived factor 4 

(SDF4), and Renin Receptor (ATP6AP2), when silenced, restricted replication. In light of 

our findings, it is likely that the mechanism by which these proteins restrict replication 

occurs via their interaction with the arenavirus glycoprotein. A recent study by Iwasaki 

and colleagues, after mining the Panda data set, extended their findings for sodium 

hydrogen exchanging 3 (NHE3), by demonstrating that loss of NHE3 resulted in an entry 

defect involving the macropinocytosis pathway that was conserved across OW and NW 

arenaviruses. Further, the authors were able to utilize zoniporide,  a drug used in clinical 

trials for preventing myocardial ischemia, to inhibit arenavirus entry (Iwasaki, Ngo, & de 

la Torre, 2014). This study is an excellent example of how the sharing of large data sets 

encourages cooperation amongst labs in the field to understand more in detail the cellular 

biology of these viruses, and how therapeutic targets can be identified through basic 

science. 
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In addition to the study by Panda and colleagues, an arenavirus entry screen into 

human cells has recently been carried out using a gene-trap viral vector, bearing LASV 

GP, as a platform to select for genes allowing survival in a population of virally disrupted 

haploid cells (L. T. Jae et al., 2013). Disruption of both ERGIC-53 and MCFD2 genes 

showed signs of inactivating insertions within the genes, but were below the threshold of 

statistical significance, suggesting that there may be either tissue specificity in the 

ERGIC-53/MCFD2 phenotype, or different sensitivities between screening techniques. 

Further, a recent genome-wide siRNA screen was also carried out using VSV decorated 

with JUNV C#1 GP, which yielded little to no overlap amongst the validated protein 

targets with the data presented in this dissertation (M. Lavanya, C. D. Cuevas, M. 

Thomas, S. Cherry, & S. R. Ross, 2013).  A thorough pathway analysis may provide 

clues as to the incongruence of overlap amongst the varying screens which has thus far 

been minimal. Specifically, it will be important to determine if the conserved protein 

complexes, rather than specific proteins, are similarly impacted. This criterion may then 

re-connect the disparate data sets. However, similar discrepancies in host-protein 

significance have been reported in the HIV literature, and so does not come as a surprise 

that following genome-scale screens specific proteins are not found to be functionally 

relevant across studies (Brass et al., 2008; Zhou et al., 2008). In summary, the proteomics 

data generated in these studies provide a starting point for a more detailed and 

comprehensive testing of the cellular mechanisms involved with individual proteins, and 

may be carried out by the arenavirus and hantavirus community at large. The remainder 

of the discussion will emphasize the results obtained regarding ERGIC-53, MCFD2, and 

the ERGIC-53-MCFD2 receptor complex.  
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4.1.1. ERGIC-53 interacting proteins and future directions 
 

Several interesting hypotheses can be made regarding the GP proteomics data 

presented in these studies, that though not specifically tested, may provide additional 

insight into the mechanisms at play regarding ERGIC-53’s presence and purpose in a 

multi-protein complex with the GPs. Accordingly, multiple ERGIC-53 interacting 

proteins were also identified in the GP interactome data sets including several COP 

proteins (including alpha and gamma) (Haines et al., 2012; Itin, Foguet, et al., 1995; Itin, 

Schindler, et al., 1995a; Kappeler et al., 1994b), and several tubulin proteins (Haines et 

al., 2012) (TUBB), ERP44 (Margherita Cortini & Roberto Sitia, 2010), valosin- 

containing protein (VCP) (Haines et al., 2012), nicastrin (NCSTN) (Morais et al., 2006), 

and sulfatase modifying factor 1 (SUMF1) (Fraldi et al., 2008) which binds indirectly 

through SUMF2 heterodimer formation (Zito et al., 2005). Interrogating the contribution 

of these proteins, individually and synergistically, to viral propagation may greatly 

increase our understanding of ERGIC-53’s regulation and function in the secretory 

pathway and beyond. Several of these proteins have a variety of documented roles 

involved in viral replication including coatomer protein’s pro-viral role with VSV, 

LCMV, HPIV (D. Panda et al., 2011), as well as FLUAV (Sun, He, & Zhuang, 2013)). 

VCP/p97 has also been shown to be critical for entry of an alphavirus, Sinbis virus 

(SINV), (Panda et al., 2013) and is involved in a human adenovirus (AdV) TRIM21-

mediated neutralization process (Hauler, Mallery, McEwan, Bidgood, & James, 2012), as 

well as an enterovirus (polio virus (PV))  RNA replication (Arita, Wakita, & Shimizu, 

2012). Examining how ERGIC-53 associates with its other known interacting proteins 
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may reveal additional functionality to the molecule and/or molecular complex, as well as 

illustrate the exact role it is playing during the production of infectious virus. 

It is interesting to note that despite the large complex of ERGIC-53 interacting 

proteins identified in our proteomics screen, several of its known interacting partners 

ZHUH�QRW�IRXQG��Į-1 antitrypsin (Nyfeler, Reiterer, et al., 2008a), fibroblast growth factor 

receptor 3 (Lievens et al., 2008), as well as the cathepsins C and Z (Christian Appenzeller 

et al., 1999; Vollenweider et al., 1998a)). This may suggest that there are separate pools 

of ERGIC-53 within the early secretory pathway, each with their own repertoire of 

regulatory proteins purposed to unique tasks. Alternatively, binding of ERGIC-

53/MCFD2 to the viral GPs may impair its ability to interact with the remaining proteins 

mentioned above. In addition, the sensitivity of our assay may be insufficient to isolate 

macromolecular complexes past the second layer of proteins involved (e.g. GP to 

ERGIC-53 (1st) and GP-ERGIC-53 to COP (2nd)). The lack of MCFD2 identification 

within the interactomes suggests that the sensitivity may indeed be insufficient to detect 

low abundance proteins, or protein complexes that may only be formed transiently. 

However, the exact ordering of the interactions is not currently known based on our 

biochemical interrogations. There may in fact be additional proteins bridging the GPs to 

ERGIC-53. Given the discovery of ERGIC-53 outside of the confines of the cell (e.g. 

within exosomes and virions), it will be important to extend the search for its 

cargo/ligands to the extracellular milieu (i.e. exosomes), cell surface proteins, as well as 

within the endocytic pathway. 
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4.1.2. Summary of the ERGIC-53-GP interaction 
 

In chapters 2 and 3 we demonstrated ERGIC-53’s conserved binding to several 

viral GPs. The structural significance of the conservation of ERGIC-53’s interaction with 

GPs encoded by arenaviruses, coronaviruses, filoviruses, hantaviruses, orthomyxoviruses, 

and retroviruses remains to be determined. However, these data strongly suggest that 

these viral envelopes share some structural homology to an ancestral viral GP. The 

conservation of the cargo-receptor complex formed with MCFD2 and the listed GPs 

reinforces this idea. The large degree of primary amino acid separation amongst the GPs 

further suggests that the specific recruitment is based on a conserved fold or domain, 

rather than a specific amino acid sequence (or the presence of glycans). High-resolution 

structural data exist for several of the viral GPs listed including SARS S1 (receptor 

binding domain) and S2 (fusion subunit) (Deng, Liu, Zheng, Yong, & Lu, 2006; Li, Li, 

Farzan, & Harrison, 2005), EBOV GP1/GP2 (J. E. Lee et al., 2008; Weissenhorn, Carfi, 

Lee, Skehel, & Wiley, 1998), HIV Env (reviewed in (Merk & Subramaniam, 2013), as 

well as both OW and NW arenavirus GP-1/GP-2 (Abraham et al., 2010; Igonet et al., 

2011; Parsy et al., 2013) . Comparisons of the individual subunits, and their respective 

domains, may yield vital information regarding how ERGIC-53 recognizes and binds to a 

viral GP. The ERGIC-53 CRD and MCFD2 complex, likewise, has been crystallized 

(Nishio et al., 2010). Fitting of the known GP subunits with the reported structures may 

reveal how the overall complex is formed. It has been reported that upon binding to 

MCFD2, carbohydrate, or calcium, that some refolding occurs amongst the ERGIC-53 - 

MCFD2 complex (Guy, Wigren, Svard, Hard, & Lindqvist, 2008; Nishio et al., 2010; 
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Wigren et al., 2010). It will therefore be imperative to analyze these proteins as a 

complex. The envelope glycoproteins have, however, produced several barriers to 

crystallization in a native state as glycosylated, full length, or intact GPs are notoriously 

challenging to crystallize (Lee et al., 2009). 

 The biochemical studies presented in chapters 2 and 3 demonstrate that GP’s are 

all recognized by ERGIC-53 early in the secretory pathway based on its selective binding 

to full-length GPs (with the exception of hantavirus GPs). This was further supported by 

the finding that intracellular C#1 GP, ERGIC-53 (Chapter 2) and MCFD2 (Chapter 3), all 

selectively concentrate within the ERGIC during infection. Also, the ERGIC-53 domain 

mapping experiments in chapter 2, which demonstrated that the ER-restricted ERGIC-53 

(KKAA) binds to GP, confirms a pre-ERGIC association. The consequence, if any, of the 

intracellular concentration, and how it relates to the proteolytic and/or maturation status 

of the glycoproteins also remains to be determined. One potential explanation is that a 

conserved glycan array on the viral GPs could be selectively modified within the ERGIC. 

In support of this notion, a specific endomannosidase has been reported to colocalize with 

ERGIC-53 and the intermediate compartment (Zuber, Spiro, Guhl, Spiro, & Roth, 2000). 

This glycan modification could in turn target the GPs to a specific subdomain or 

compartment, much like the mannose-6-phospate  receptor (a P-type lectin)  lysosomal 

targeting mechanism (reviewed in (Kim, Olson, & Dahms, 2009)), for later modification 

or secretion. However, in our studies, we were unable to detect changes in the release of 

GP, or in their migration via SDS PAGE in cells lacking ERGIC-53 that would be 

indicative of changes in glycosylation. The limit of resolution in our SDS-PAGE – 
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Western blot assay, may however, be insufficient to detect minor alterations in glycan 

composition. A mass spectroscopy-based approach to analyze the glycan composition 

with substantially greater mass-resolution would answer this question, much like what 

has been proposed by Krudysz-Amblo and colleagues for human tissue factor (Krudysz-

Amblo, Jennings, Matthews, Mann, & Butenas, 2011).  

4.2.  Summary of findings for ERGIC-53 and MCFD2 functional studies and future 
directions (aim 2) 

 

4.2.1.  Summary of findings for ERGIC-53 functional studies and future directions 
(aim 2) 

 

The discovery of an important role for ERGIC-53 in the propagation of 

arenaviruses fulfilled the goal of aim 2, and in doing so, catalyzed several additional 

important biological findings for not only ERGIC-53, but also for its soluble cofactor 

MCFD2. This significance was extended to several additional families of enveloped RNA 

viruses, all of which represent human pathogens in need of antiviral treatments. Briefly, 

following the biochemical identification of a novel class of pathogen-derived ligands for 

ERGIC-53, we used several complimentary techniques to determine that ERGIC-53 plays 

a critical role in the generation of infectious virions. First, RNAi knockdown of ERGIC-

53 in cells resulted in JUNV C#1 propagation being reduced. Second, overexpression of 

ERGIC-53 in cells resulted in an enhancement in production of JUNV C#1. Third, human 

B cells naturally lacking ERGIC-53 were defective in their ability to produce infectious 

arenavirus particles. Lastly, expression of an ER-restricted mutant of ERGIC-53 potently 

inhibited the production of infectious C#1 and DANV particles, as well as 
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pseudoparticles of VSV decorated with SARS S and EBOV GP. This last piece of data 

suggested specifically that either the post-ER trafficking of ERGIC-53 was important for 

the production of infectious virus, or that its C-terminal targeting domain was required 

for viral propagation. These two concepts are not mutually exclusive, and so can be 

challenging to separate. Creating an ERGIC-53 tail chimera on a related lectin (VIP-36) 

could assist in discriminating between these two potential contributors.  

ERGIC-53 expression has also been found to be upregulated in several types of 

mouse-derived cells (ANA-1 macrophages, MEFs, or embryonic endothelial progenitor 

cells) following infection with murine gammaherpes virus 68 (MHV68). Following 

ERGIC-53 siRNA knockdown there was a reduction in virus yield (Mages et al., 2008). 

Interestingly, the authors also pre-treated NIH3T3 cells with a phospholipase A2 inhibitor 

(ONO-RS-082), known to inhibit retrograde trafficking of ERGIC-53 (de Figueiredo et 

al., 2000), and found that treatment also inhibited viral yield. These data, together with 

ours, indicates that the intact recycling pathway of ERGIC-53 is of critical importance for 

the generation of infectious virions, and is important in the propagation of multiple 

families of enveloped RNA viruses, and at least one DNA virus. Screening for an 

ERGIC-53 - dependent phenotype for additional pathogenic viruses including OW and 

NW hantaviruses, flaviviruses, and paramyxoviruses will be of interest to the virology 

community at large. 

4.2.2.  Summary of findings for MCFD2 functional studies and future directions 
(aim 2) 
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The investigation into the role of MCFD2 in viral propagation was initiated 

(unlike ERGIC-53, which began from an unbiased screen) as an interesting control 

because of its known role in forming a complex with ERGIC-53. The protective role of 

overexpressed MCFD2 during JUNV C#1 and DANV propagation (chapter 3) led us to 

hypothesize that MCFD2 may be acting as a viral restriction factor. The unexpected 

discovery of its antiviral role following overexpression, led us to investigate whether 

cells from MCFD2 null F5F8D patients would support infectious virus production. The 

enhanced production of infectious virus from MCFD2 null cells further supports the 

notion that this protein is acting as a restriction factor for arenaviruses. Overexpression of 

MCFD2 was also shown to inhibit the propagation of VSV bearing coronavirus, filovirus, 

and hantavirus GPs suggesting that, like ERGIC-53, its impact is highly conserved, and 

can be restricted to the presence of the respective viral GPs. The difference, however, 

was in the respective direction of regulation (i.e ERGIC-53 is pro-viral and MCFD2 is 

anti-viral). 

4.3.  Summary of findings for ERGIC-53’s mechanism of action and future 
directions (aim 3) 

 

Using several techniques we tested how ERGIC-53 and MCFD2 were impacting 

the production of infectious arenavirus particles. In chapter 2 we relied upon the DN 

ERGIC-53 to show that trafficking of ERGIC-53, despite being critical for generating 

infectious virus, was not required for the proteolytic processing, trafficking of GP, or  its 

assembly and release in viral particles. During these studies we also discovered that 

ERGIC-53 would traffic to the plasma membrane along with the GP, and be packaged 
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into viral particles. Further, we were able to minimally map the stage of the defect in viral 

propagation to cell surface attachment. Specifically, virus from ERGIC-53 null cells was 

defective, in part, in its ability to attach to a permissive cell. These data are supported by 

the fact that DN ERGIC-53 cannot traffic beyond the ER (Andersson et al., 1999; Felix 

Kappeler  & Hauri, 1997), and so would be prevented from entering into viral particles 

and thus influencing attachment. Collectively, these data suggest that ERGIC-53 may be 

acting as a host-derived attachment factor that is incorporated into virions.  

The presence of ERGIC-53 in the extracellular space in both infected and 

uninfected preparations suggested that it was also found in cellular exosomes. This 

finding was corroborated by 2 additional studies which identified ERGIC-53 in human 

and rat derived exosomes (Conde-Vancells et al., 2008; Gonzalez-Begne et al., 2009). 

Moreover, it has been demonstrated that d,l-threo-1-phenyl-2-decanoylamino-3-

morpholino-1-propanol (PDMP), a sphingolipid synthesis inhibitor known to interfere 

with the production of glycosylceramide and sphingomyelin, ER calcium homeostasis,  

and interfere with ERGIC-53’s recycling (Maceyka & Machamer, 1997; Sprocati, 

Ronchi, Raimondi, Francolini, & Borgese, 2006), causes a reduction in the uptake of  

HIV-1 particles, produced in PDMP treated cells, by dendritic cells (Hatch, Archer, & 

Gummuluru, 2009). Further, this mechanism was later refined to include the requirement 

of CD169 (a SigLec) on the surface of dendritic cells recognizing the glycosphingolipid 

GM3 (for capture and trans-infection of HIV (Puryear et al., 2013). The same surface 

UHFHSWRU� �&'����� KDV� EHHQ� UHFHQWO\� VKRZQ� WR�PHGLDWH� H[RVRPH� FDSWXUH� YLD� Į���� VLDOLF�

acid, specifically within the marginal zone of the spleen (Saunderson, Dunn, Crocker, & 
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McLellan, 2014), a prominent site involved in LCMV infection (Macal et al., 2012). If 

ERGIC-53, or its recycling, is required for biosynthesis of this class of specialized lipid, 

restriction of ERGIC-53 to the ER could disrupt the lipid content of viruses, as well as 

exosomes, and could therefore be expected to interfere with both capture of virus, as well 

as exosomes. Given our findings on the presence of ERGIC-53 in both virus and 

exosomes, we can further postulate that ERGIC-53 is involved directly in targeting or 

maintaining of the GPs in specific microdomains enriched in these lipids. Interestingly, 

HTXLQH� LQIOXHQ]D� YLUXV� �(,9��� DOVR� NQRZQ� WR� XWLOL]H� Į���� VLDOLF� DFLG�� LV� LQKLELWHG� YLD�

addition of PDMP (Stuart & Brown, 2007). We provide evidence in chapters 2 and 3 that 

additional FLUAV HA’s from WSN and VN (H1 and H5) also interact with ERGIC-53. 

The effect of PDMP and ERGIC-53 on the uptake of these respective HA-bearing viruses 

will be important to determine experimentally. Further, dissecting a potential role of 

ERGIC-53 in the cellular biology of CD169 as well as glycosphingolipid biogenesis may 

shed light on the exact nature of this otherwise complicated interaction. 

 Another potential connection to lipid metabolism can be inferred by the 

interaction of both LCMV and ANDV GPs with molecules associated with sphingolipid 

biosynthesis; serine palmitoyltransferase long chain base subunit 1 and 2 (SPTLC1 and 2) 

which are involved in ER synthesis of  sphingolipids (Gault, Obeid, & Hannun, 2010), 

and UDP-glucose ceramide glucosyltransferase-like 1 and 2 (UGCGL1 and UGCGL2). 

Given the number of other ERGIC-53 interacting proteins found within the proteomics 

list, some of these enzymes may have been found in complex with the glycoproteins via 

their association with ERGIC-53. In support of this notion, Haines and colleagues, while 
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mapping binding partners of UBDX1 and ERGIC-53, identified UGCGL1 (Haines et al., 

2012). 

Several additional hypotheses can be made regarding the role that ERGIC-53 is 

asserting during its control of arenavirus particle infectivity. Chapter 2 describes the 

mapping of the interaction between C#1 GP and ERGIC-53, minimally, to the C-terminal 

portion of ERGIC-53’s CRD (in completion of aim 4). Further, chapter 3 demonstrates 

that expression of ERGIC-��ǻ&5'� UHVWULFWV� WKH� SURSDJDWLRQ� RI� -819� &���� 7KH�

requirement of ERGIC-53’s CRD both for binding to the GP and coordinating its 

function in the production of infectious virus could indicate that ERGIC-53 (without its 

CRD) is not packaged in virions due to lack of GP binding and/or that the CRD is 

controlling the infectivity of the particles directly. The major biological role of the CRD 

is binding to N-linked sugars (and the proteins to which they are attached) (Appenzeller-

Herzog et al., 2004; Christian Appenzeller et al., 1999; Kawasaki et al., 2008; Moussalli 

et al., 1999b). ERGIC-���ǻ&5'�� WKHUHIRUH��ZRXOG�EH�XQDEOH� WR�FDUU\�RXW� WKLV� IXQFWLRQ��

which could indicate that ERGIC-53 controls viral infectivity, in part, via binding of its 

CRD to N-linked glycans on the surface of cells. This idea is supported by data 

illustrating that infection by an arenavirus could be blocked via addition of mannan 

(Goncalves et al., 2013; Martinez et al., 2013). The authors in these studies were 

investigating C-type lectin attachment factors (DC-SIGN and L-Sign) which are also 

known to bind mannosylated glycoproteins. Collectively these data may suggest a 

cooperative lectin-mediated attachment mechanism between virion associated ERGIC-53 

and host cell-displayed DC-SIGN. 
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Alternatively, Velloso and colleagues, while examining the structure of ERGIC-

53’s CRD, reported on the structural similarity between the CRD and neurexins (Velloso, 

Svensson, Schneider, Pettersson, & Lindqvist, 2002). Neurexins are also known ligands 

RI� Į-DG, and occupy a similar site on the receptor as OW arenavirus GPs (Rojek, 

Campbell, et al., 2007). These data could indicate that ERGIC-53, contained in OW 

DUHQDYLUXV�YLULRQV��LV�LQWHUDFWLQJ�ZLWK�Į-DG along with the GP to increase binding avidity 

of virions to cells. Furthermore, ERGIC-53 has also been reported to show structural 

homology to galectins (Arar et al., 1995). Galectin-3 has been demonstrated to be 

upregulated following infection with JUNV C#1 (Giusti et al., 2011), and has been shown 

also to bind to Mac-2BP (Inohara, Akahani, Koths, & Raz, 1996). Mac-2BP which also 

interacts with ERGIC-53’s CRD (Chen et al., 2013), in a carbohydrate-dependent 

fashion. Therefore, Mac-2BP could bridge ERGIC-53 embedded in virions to Galectin-3 

on the surface of cells. In addition, Mac-2BP has also been demonstrated to be 

upregulated during hantavirus infection, and binds to Tula virus, an OW hantavirus 

(Vaheri et al., 2013), suggesting a similar mechanism could be involved in hantavirus 

entry. 

The presence of ERGIC-53 within arenavirus virions was an unexpected finding. 

The mechanism(s) involved in its recruitment to sites of arenavirus assembly and budding 

are currently unclear.  Of relevance, ERGIC-53’s expression levels are upregulated 2.5 

fold during LCMV WE infection in primate liver cells (Djavani et al., 2009). Therefore it 

could be postulated that this upregulation allows ERGIC-53 to saturate its COPI retention 

(Kappeler et al., 1997b; Ellen J. Tisdale, Helen Plutner, Jeanne Matteson, & William E. 
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Balch, 1997) and traffic to the surface of cells. LCMV GP has also been reported to 

selectively induce the ATF6 branch of the unfolded protein response (Pasqual, Burri, et 

al., 2011b), which has been shown to upregulate ERGIC-53 (Nyfeler et al., 2003a), 

further supporting the hypothesis of its role in causing post-ERGIC movement of 

ERGIC-53. Heat-shock (Spatuzza et al., 2004) as well as the presence of NO (Renna et 

al., 2006) also upregulate ERGIC-53, and are known consequences of arenavirus 

infection (Brocato & Voss, 2009) and would likewise support this proposed mechanism 

of viral GP induced alterations in ERGIC-53’s trafficking. 

 

4.3.1.  Summary of findings for the mechanism of action of ERGIC-53 and MCFD2 
in viral propagation and future directions 

 

An outstanding question remains: how does MCFD2 regulate viral propagation? 

Several lines of evidence support its role as a restriction factor. First, MCFD2 following 

arenavirus infection, is highly upregulated (Chapter 3) and (Djavani et al., 2009)). 

Second, plasmid overexpression inhibits propagation of multiple enveloped RNA viruses 

in a GP-restricted fashion. Third, cells lacking MCFD2 are more susceptible to infection. 

Importantly, VSV is neither impacted by MCFD2, nor is its GP able to form a complex 

with ERGIC-53 and MCFD2. This evidence indicates that the MCFD2 contains 

specificity in its antiviral action, and that its action is restricted by specific viral GPs. The 

data presented in Chapter 3 also indicate that MCFD2 may be acting as a restriction 

factor through its interaction with ERGIC-53 by regulating ERGIC-53’s ability to control 

viral infectivity. We have not, however, conclusively ruled out the possibility that the two 
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proteins may be acting independently of one another. MCFD2 may bind to a separate 

receptor on the surface of cells that, following binding, initiates an antiviral cascade. In 

order to test for this possibility, several methodologies could be employed. To identify a 

cell surface receptor of MCFD2, cell surface proteins could be biotinylated and isolated 

via streptavidin beads, and the captured proteins subjected to a Far-Western blot analysis 

where soluble MCFD2 was used as a probe. MCFD2 positive proteins bands could then 

be excised and identified via mass spectroscopy. Alternatively, cell membrane 

preparations could be isolated via gradient ultracentrifugation, and incubated with 

immobilized MCFD2. Captured proteins could then be eluted, and identified via mass 

spectroscopy. These two approaches would require additional studies targeting the 

expression and function of the putative receptor to then formally test its sufficiency for 

antiviral signaling. 

The triple dSTORM analysis of sMCFD2, ERGIC-53, and C#1 NP, as well as the 

pre-complexed sMCFD2-virus addition assays lend support to a model where the 

antiviral activity of MCFD2 is taking place directly via neutralization of the virus. Using 

the highly sensitive qPCR-based attachment assay outlined in chapter 2, it could be tested 

whether the defect is taking place solely at the level of attachment, or if MCFD2, when  

pre-complexed to virions, is impeding its intracellular trafficking, disrupting the fusion 

capabilities of the GP, or interfering with the transcription or replication of the RNA 

through an unknown mechanism. In order to examine potential alterations in either fusion 

potential or trafficking of the pre-complexed virions, Alexa Fluor 647 conjugated virus 

(highly concentrated) could be used to study the trafficking of virus through the 
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endosomal system (Lozach et al., 2011; Pasqual, Rojek, et al., 2011). A similar approach, 

but with dual fluorescently labeled virus (DioC and R18) has been successfully used to 

quantitate influenza virus fusion in real-time based on fluorescent shifts following fusion 

of virus within endosomes (Sakai et al., 2006). A similar approach would be feasible with 

arenaviruses, and would facilitate the quantitative assessment of fusion alterations 

following addition of MCFD2, if that is indeed the case. A pitfall to both of these 

approaches is the high multiplicity of infection required to gain adequate signal to noise 

ratios. However, the ERGIC-53 dependent phenotype could likewise be altered during 

these steps of the viral life cycle, and thus could benefit from a quantitative assessment. 

Collectively, the identification of a proviral and antiviral role for the ERGIC-

53/MCFD2 cargo receptor complex strongly suggests that this cellular machinery is of 

critical importance to the outcome of infection with multiple viruses that are pathogenic 

for humans. Selectively targeting the CRD of ERGIC-53 via a library of small molecules 

would likely yield valuable lead compounds for drug development, based on the critical 

role demonstrated in chapter 2 for binding to GP, and chapter 3 for controlling viral 

infectivity. Interestingly, in support of this notion, a recent study by Lu and colleagues 

demonstrated that a small molecule interfering with the interaction of JUNV C#1 Z and 

TSG101 resulted in a pronounced reduction in viral release (Lu et al., 2014). Further, 

given the small size and solubility of MCFD2, its potent role in the neutralization of viral 

infectivity, and the advanced structural data on the molecule, a small molecule could be 

rationally designed to mimic MCFD2’s ERGIC-53 interacting residues.  
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4.4.  Summary of findings for the molecular arrangement of the ERGIC-53/MCFD2 
complex binding to glycoproteins. 

 

 The details of the domain residues required for ERGIC-53 to interact with JUNV 

C#1 GP were discussed in chapter 2, and have been mentioned in section 4.2.2. Briefly, 

we tested a comprehensive panel of plasmids encoding deletions and mutations in each of 

the known functional regions of ERGIC-53 (excluding the transmembrane domain) and 

found that the CRD alone was responsible for binding to an arenavirus GP. This finding 

was in agreement with our original hypothesis, as the glycoproteins are heavily 

mannosylated (Buchmeier et al., 2007; Wright et al., 1990a) and ERGIC-53 is a 

mannose-specific lectin (C. Appenzeller et al., 1999b; Kamiya et al., 2008; Moussalli et 

al., 1999b). Interestingly, the sugar, calcium, and MCFD2 binding properties of ERGIC-

53 along with its oligomerization, and forward trafficking, were all found to be unrelated 

to the interaction with C#1 GP. These data demonstrate a novel lectin-independent 

mechanism of cargo binding. As has been discussed above, there is a plausible benefit to 

the virus to maintain its interaction with ERGIC-53 from a site distinct from its normal 

ligand binding: maintenance of ERGIC-53’s normal cellular functions. This strategy has 

also been employed by New World arenaviruses interacting with TfR1 and may then 

represent a common mechanism by which the viruses engage passively with a host 

molecule (Abraham et al., 2010; Radoshitzky et al., 2007). 

4.5.  Summary of findings, biological and evolutionary significance, and closing 
remarks 
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 It is feasible that the interaction of viral GPs with the ERGIC-53/MCFD2 cargo 

receptor complex is not entirely harmless to the host. While loss of ERGIC-53 and 

MCFD2 is well tolerated by humans (Khoriaty et al., 2012), it does, however, result in a 

specific deficiency in FV and FVIII (F5F8D) (Nichols et al., 1998; Bin Zhang et al., 

2003). Accordingly, deficiencies in circulating FV and FVIII cause bleeding 

abnormalities following trauma such as surgery or child birth (Spreafico & Peyvandi, 

2008; Zhang, 2009). Loss of ERGIC-53 or MCFD2, though able to cause disease, is a 

manageable syndrome with little to no long term consequences.  Loss of ERGIC-53 or 

MCFD2 allows the cellular architecture to remain intact and the host secretome is largely 

unmodified (Mitrovic et al., 2008; Vollenweider et al., 1998a; Zhang et al., 2011).  This 

information was the primary impetus for this in-depth study of ERGIC-53 and 

specifically its selection as an antiviral target. Arenaviruses, hantaviruses, and notably the 

filoviruses, each can cause a hemorrhagic fever syndrome, where specific deficiencies in 

clotting factors have been reported (Lee, 1987; Lee et al., 1989; Felisa C. Molinas et al., 

1981; Schwarz et al., 1972).  However, given the logistical problems involved in 

obtaining and testing serum samples from infected patients, much of what is currently 

understood about coagulation abnormalities caused by these viruses is the result of 

animal models of infection (Molinas et al., 1978; Xiao, Zhang, Yang, & Tesh, 2001). We 

provide several lines of evidence that support the notion that the ERGIC-53/MCFD2 

cargo receptor may no longer be able to support the secretion of coagulation factors 

during an infection. First, the binding of the trimeric GP complex to the ERGIC-

53/MCFD2 complex, specifically within the CRD, may impede the binding of the large 

FV and FVIII molecules. Second, the re-routing of ERGIC-53, along with the viral GP, to 
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the plasma membrane, as well as to the surface of virions, removes the potential for those 

ERGIC-53 molecules to shuttle FV and FVIII forward. Given the recycling nature of the 

ERGIC-53/MCFD2 complex, removal of a fraction of the pool is likely to have a 

compounding effect over time.  

The first explanation mentioned in the preceding paragraph, inhibition of 

FV/FVIII binding caused by GP-mediated steric hindrance, can be experimentally tested 

using a well-established co-immunoprecipitation technique (Cunningham et al., 2003; 

Zheng, Liu, Yuan, et al., 2010; Zheng, Liu, Zhou, et al., 2010). Expression of the 

glycoprotein in cells also expressing the clotting factors should, if this hypothesis is 

correct, show a reduced co-immunoprecipitation of each factor with ERGIC-53 and 

MCFD2. There are notable caveats to this approach, however, first in the cost reagents to 

identify FV and FVIII directly, and secondly, the need to express the clotting factors in 

trans. To date, most biochemical evaluations of the ERGIC-53/MCFD2 complex and 

FV/FVIII binding have relied upon transient transfections to express FV and FVIII. The 

second proposed mechanism, inefficient secretion due to lack of available ERGIC-

53/MCFD2, can be tested indirectly through a coagulation activity assay (Tilley, Levit, & 

Samis, 2012; Zhang et al., 2008). Similar caveats exist for this approach as well. 

A thorough understanding the molecular mechanisms behind the bleeding 

abnormalities observed during infection with VHFs will likely reveal a multifactorial 

cause. Platelet abnormalities, specific factor deficiencies, as well as endothelial barrier 

dysfunction may all contribute to the hemorrhaging. However, removal of either ERGIC-

53 or MCFD2 is sufficient to cause a coagulopathy. Through the biochemical interaction 
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and the trafficking alterations, it would seem that the arenavirus GPs are likely sufficient 

to disrupt the efficient secretion of these molecules, and therefore provide a direct 

molecular mechanism explaining the bleeding abnormalities that have mystified scientists 

and clinicians for half of a century. 

Last, and perhaps most importantly, given the potent role of ERGIC-53 and 

MCFD2 in dictating the infectivity of arenavirus, coronavirus, filovirus, and hantavirus 

particles, there may be sufficient selective pressure to preserve (ERGIC-53) or discourage 

(MCFD2) the maintenance of diseased alleles in the human population. Several lines of 

evidence support of this idea. Firstly, genetic lesions in the MCFD2 gene occur much less 

frequently in the human population relative to ERGIC-53 (30% vs 70 %). The disease 

caused by loss of MCFD2 is also somewhat more profound in the impairment of FV and 

FVIII secretion (Zhang et al., 2008). We demonstrate that cells from people lacking 

ERGIC-53 produce less infectious virus, whereas cells from people lacking MCFD2 

produce more infectious virus. People lacking MCFD2, if this cellular phenotype holds 

true, would produce more virus. Viral titer is a strong predictor of disease severity 

(Richmond & Baglole, 2003). Further, in areas of Africa where Lassa virus is endemic, it 

has been hypothesized that the virus may provide a selective pressure on certain SNPs 

WKDW�ZHUH� IRXQG� LQ�JHQHV� UHJXODWLQJ� WKH�ELRV\QWKHVLV�RI� LWV� UHFHSWRU��Į-DG (Oldstone & 

Campbell, 2011; Sabeti et al., 2007). The receptor for pathogenic NW arenaviruses has 

also been hypothesized to be under positive selection (Demogines et al., 2013). Inherent 

human disease providing protection from acquired disease has been proposed for a 

number of circumstances. The earliest, and perhaps, most well-known example of this 
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would be the proposal of Allison in 1954, who, based on Raper and Lehman’s 1949 

observations of high frequencies of sickle cell anemia in Ugandans (Lehmann & Raper, 

1949), suggested that the abundance of the disease could be a result of the protection it 

afforded from malaria (Allison, 1954), the disease cause by the plasmodium falciparum 

parasite. Therefore, in our studies, exposure to rodents and the viruses they harbored may 

have provided a similar protection to an archetype arenavirus. 

 In conclusion, the identification of conserved biosynthetic machinery utilized by 

multiple families of enveloped RNA viruses has revealed a wealth of information about 

not only the evolution of these viruses, but also the co-evolution of virus and host. From 

these studies, a clearer picture of the underlying cellular biology and cause of arenavirus 

propagation and disease has been obtained, a novel molecular machine to interfere with 

therapeutically has been identified, and insight into the selective pressures that have 

shaped the modern human have been gained. 
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6. Appendix 
 

Table S1A, Related to Figures 1A-1C. Intersect of Identified Proteins Interacting with GP 
Proteins of ANDV and LCMV. The number of total peptides identified is listed. *Indicates non-GP 
control contained peptides from this protein but at levels at least five times less. 

     
Proteins Identified Interacting with GP proteins of both 

ANDV and LCMV 

 ANDV LCMV 

Gene symbol Description IPI id # 

Peptides 

# 

Peptides 

B3GALT6 UDP-Gal:betaGal beta 1,3-
galactosyltransferase polypeptide 6 

IPI00064848 2 2 

BAG2 BCL2-associated athanogene 2 IPI00000643 3 16* 
CALR calreticulin IPI00020599 9 24 
CALU calumenin IPI00045396 8 36 
CANX calnexin IPI00020984 53* 75 
CPNE3 copine III IPI00024403 2 3 
DDOST dolichyl-diphosphooligosaccharide-

protein glycosyltransferase 
IPI00297084 6 10* 

DHX30 DEAH (Asp-Glu-Ala-His) box 
polypeptide 30 

IPI00164906 29* 2 

DNAJA1 DnaJ (Hsp40) homolog, subfamily A, 
member 1 

IPI00012535 2 7* 

DNAJB11 DnaJ (Hsp40) homolog, subfamily B, 
member 11 

IPI00008454 5 11 

DNAJC10 DnaJ (Hsp40) homolog, subfamily C, 
member 10 

IPI00293260 4 4 

DNAJC7 DnaJ (Hsp40) homolog, subfamily C, 
member 7 

IPI00329629 6 12 

EMD emerin (Emery-Dreifuss muscular 
dystrophy) 

IPI00032003 6 20* 

ERLIN1 SPFH domain family, member 1 IPI00007940 2 15 
ERLIN2 SPFH domain family, member 2 IPI00026942 6* 19 
G3BP1 Ras-GTPase-activating protein SH3-

domain-binding protein 
IPI00012442 8 4 

GANAB glucosidase, alpha; neutral AB IPI00011454 19* 16 
GPX8 similar to RIKEN cDNA 2310016C16 IPI00291695 2 4 
HSP90B1 heat shock protein 90kDa beta 

(Grp94), member 1 
IPI00027230 18* 22* 

HSPA5 heat shock 70kDa protein 5 (glucose-
regulated protein, 78kDa) 

IPI00003362 481* 144* 

KPNA2;LOC728860 karyopherin alpha 2 (RAG cohort 1, 
importin alpha 1) 

IPI00002214 2 4 
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LMAN1 (ERGIC53) lectin, mannose-binding, 1 (ERGIC53) IPI00026530 12 15 
LYAR hypothetical protein FLJ20425 IPI00015838 3 6 
MYBBP1A MYB binding protein (P160) 1a IPI00005024 9 18* 
MYO1B myosin IB IPI00376344 3 2 
MYO1C myosin IC IPI00010418 10 9* 
MYO6 myosin VI IPI00008455 21 2 
P4HB procollagen-proline, 2-oxoglutarate 

4-dioxygenase (proline 4-
hydroxylase), beta polypeptide 

IPI00010796 14 10 

PDIA6 protein disulfide isomerase family A, 
member 6 

IPI00299571 27* 17* 

PSMB6 proteasome (prosome, macropain) 
subunit, beta type, 6 

IPI00000811 3 4 

PSMD2 proteasome (prosome, macropain) 
26S subunit, non-ATPase, 2 

IPI00012268 3 6 

RCN1 reticulocalbin 1, EF-hand calcium 
binding domain 

IPI00015842 9 50 

RPL22 ribosomal protein L22 IPI00219153 2 5* 
RPL28 ribosomal protein L28 IPI00182533 7 10* 
RPLP2 ribosomal protein, large, P2 IPI00008529 7 3 
RPN1 ribophorin I IPI00025874 9 13 
RPS24 ribosomal protein S24 IPI00029750 3 3 
RPS9 ribosomal protein S9 IPI00221088 11 10* 
RRBP1 ribosome binding protein 1 homolog 

180kDa (dog) 
IPI00215743 11 3 

RRP1 DNA segment on chromosome 21 
(unique) 2056 expressed sequence 

IPI00550766 2 3 

SDF2L1 stromal cell-derived factor 2-like 1 IPI00106642 2 3 
SDF4 stromal cell derived factor 4 IPI00009794 2 12 
SEP15 15 kDa selenoprotein IPI00030877 4 3 
SIL1 SIL1 homolog, endoplasmic reticulum 

chaperone (S. cerevisiae) 
IPI00296197 3 5 

SLC25A13 solute carrier family 25, member 13 
(citrin) 

IPI00007084 2 8 

SMC2 SMC2 structural maintenance of 
chromosomes 2-like 1 (yeast) 

IPI00007927 2 9 

TOR3A torsin family 3, member A IPI00301631 3 5 
TUBB2A tubulin, beta 2A IPI00013475 5 27* 
UBC;RPS27A;UBB ribosomal protein S27a IPI00179330 50* 88* 
UGCGL1 UDP-glucose ceramide 

glucosyltransferase-like 1 
IPI00024466 51 58 

VCP valosin-containing protein IPI00022774 15 21 
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Table S1B, Related to Figures 1A-1C. Proteins Identified Interacting with LCMV GP and Not ANDV 
GP. The number of total peptides identified is listed. *Indicates non-GP control contained peptides from 
this protein but at levels at least five times less. 

    

Gene symbol Description IPI id # 
Peptides 

ABCD3 ATP-binding cassette, sub-family D (ALD), 
member 3 

IPI00002372 2 

ACAD9 acyl-Coenzyme A dehydrogenase family, 
member 9 

IPI00152981 2 

ACOT8 acyl-CoA thioesterase 8 IPI00298202 3 
ACP1 acid phosphatase 1, soluble IPI00218847 3 
AIFM1 programmed cell death 8 (apoptosis-inducing 

factor) 
IPI00000690 12 

AKAP8L A kinase (PRKA) anchor protein 8-like IPI00297455 2 
ALDH1B1 aldehyde dehydrogenase 1 family, member 

B1 
IPI00103467 3 

ARCN1 archain 1 IPI00298520 5 
ARF1 ADP-ribosylation factor 1 IPI00215914 2 
ARF4 ADP-ribosylation factor 4 IPI00215918 5* 
ARMCX3 armadillo repeat containing, X-linked 3 IPI00009906 2 
ATAD3B ATPase family, AAA domain containing 3B IPI00045921; 

IPI00178879 
40* 

ATP2A1 ATPase, Ca++ transporting, cardiac muscle, 
fast twitch 1 

IPI00024804 5 

ATP2A2 ATPase, Ca++ transporting, cardiac muscle, 
slow twitch 2 

IPI00177817 8 

ATP5A1 ATP synthase, H+ transporting, 
mitochondrial F1 complex, alpha subunit 1 

IPI00440493 19* 

ATP6AP2 ATPase, H+ transporting, lysosomal 
accessory protein 2 

IPI00168884 4 

ATXN10 ataxin 10 IPI00001636 7 
AURKB aurora kinase B IPI00176642 2 
BCAP31 B-cell receptor-associated protein 31 IPI00218200 8 
BZW2 basic leucine zipper and W2 domains 2 IPI00022305 3 
C14orf21 chromosome 14 open reading frame 21 IPI00216999 8 
C19orf10 chromosome 19 open reading frame 10 IPI00056357 2 
C22orf28 hypothetical protein HSPC117 IPI00550689 2 
C8orf41 chromosome 8 open reading frame 41 IPI00306207 2 
C8orf55 chromosome 8 open reading frame 55 IPI00171421 2 
C9orf89 chromosome 9 open reading frame 89 IPI00177808 2 
CAND1 cullin-associated and neddylation-dissociated 

1 
IPI00100160 8 

CAND2 cullin-associated and neddylation-dissociated IPI00374208 4 
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2 
CCDC3 coiled-coil domain-containing protein 3  IPI00385079 2 
CCDC47 coiled-coil domain containing 47 IPI00024642 2 
CDC2 cell division cycle 2, G1 to S and G2 to M IPI00026689 2 
CDKN2A cyclin-dependent kinase inhibitor 2A 

(melanoma, p16, inhibits CDK4) 
IPI00001560 3 

CHST14 dermatan 4 sulfotransferase 1 IPI00044326 2 
CLTC clathrin, heavy polypeptide (Hc) IPI00024067 2 
CNPY2 transmembrane protein 4 IPI00443909 3 
COPA coatomer protein complex, subunit alpha IPI00295857 2 
COPG2 coatomer protein complex, subunit gamma 2 IPI00002557 2 
CPE carboxypeptidase E IPI00031121 2 
CSE1L CSE1 chromosome segregation 1-like (yeast) IPI00022744 6 
CYC1 cytochrome c-1 IPI00029264 2 
DHCR24 24-dehydrocholesterol reductase IPI00016703 3 
DHCR7 7-dehydrocholesterol reductase IPI00294501 2 
DHRS7B dehydrogenase/reductase (SDR family) 

member 7B 
IPI00550165 2 

DNAJA2 DnaJ (Hsp40) homolog, subfamily A, 
member 2 

IPI00032406 9 

DNAJB1 DnaJ (Hsp40) homolog, subfamily B, 
member 1 

IPI00015947 3 

DNAJB4 DnaJ (Hsp40) homolog, subfamily B, 
member 4 

IPI00003848 3 

DNAJB6 DnaJ (Hsp40) homolog, subfamily B, 
member 6 

IPI00024523 6* 

DNAJC11 DnaJ (Hsp40) homolog, subfamily C, 
member 11 

IPI00333016 3 

DSG2 desmoglein 2 IPI00028931 3 
EARS2 KIAA1970 protein IPI00384503 4 
EIF2B1 eukaryotic translation initiation factor 2B, 

subunit 1 alpha, 26kDa 
IPI00221300 2 

EIF2B2 eukaryotic translation initiation factor 2B, 
subunit 2 beta, 39kDa 

IPI00028083 6 

EIF2B4 eukaryotic translation initiation factor 2B, 
subunit 4 delta, 67kDa 

IPI00005979 6 

ERP44 thioredoxin domain containing 4 
(endoplasmic reticulum) 

IPI00401264 5 

FAF2 UBX domain containing 8 IPI00172656 6 
FAM3C family with sequence similarity 3, member C IPI00334282 3 
FANCD2 Fanconi anemia, complementation group D2 IPI00075081 4 
FANCI KIAA1794 IPI00019447 5 
FAR1 male sterility domain containing 2 IPI00386139 7 
FSTL1 follistatin-like 1 IPI00029723 2 
FUCA2 fucosidase, alpha-L- 2, plasma IPI00012440 2 
GALK1 galactokinase 1 IPI00019383 3 
GALNT2 UDP-N-acetyl-alpha-D-

galactosamine:polypeptide N-
IPI00004669 3 
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acetylgalactosaminyltransferase 2 
GBAS glioblastoma amplified sequence IPI00016077 5 
GCN1L1 GCN1 general control of amino-acid 

synthesis 1-like 1 (yeast) 
IPI00001159 20 

GEMIN4 gem (nuclear organelle) associated protein 4 IPI00027717 4 
GEMIN6 gem (nuclear organelle) associated protein 6 IPI00103087 3 
GLA galactosidase, alpha IPI00025869 2 
GLG1 golgi apparatus protein 1 IPI00414717 2 
GLMN glomulin, FKBP associated protein IPI00074604 3 
GLT8D1 glycosyltransferase 8 domain containing 1 IPI00020470 2 
GPC4 glypican 4 IPI00232571 2 
HADHA hydroxyacyl-Coenzyme A dehydrogenase 

alpha subunit 
IPI00031522 8* 

HAX1 HCLS1 associated protein X-1 IPI00010440 8 
HEATR2 hypothetical protein FLJ20397 IPI00242630 2 
HEATR3 hypothetical protein FLJ20718 IPI00100984 4 
HEXA hexosaminidase A (alpha polypeptide) IPI00027851 2 
HLA-A major histocompatibility complex, class I, A IPI00472013 3 
HLA-B;HLA-C major histocompatibility complex, class I, B IPI00004657 3 
HS2ST1 heparan sulfate 2-O-sulfotransferase 1 IPI00040900 7 
HSD17B12 hydroxysteroid (17-beta) dehydrogenase 12 IPI00007676 3 
HSPB1 heat shock 27kDa protein 1 IPI00025512 2 
HSPBP1 hsp70-interacting protein IPI00100748 7 
HSPD1 heat shock 60kD protein 1 IPI00784154 9 
IARS2 isoleucine-tRNA synthetase 2, mitochondrial IPI00017283 2 
IDH3A isocitrate dehydrogenase 3 (NAD+) alpha IPI00030702 2 
IKIP IKK interacting protein IPI00043598 2 
ILK-2;CCT4 chaperonin containing TCP1, subunit 4 

(delta) 
IPI00302927 5 

IMMT inner membrane protein, mitochondrial 
(mitofilin) 

IPI00009960 16 

IPO11 importin 11 IPI00301107 2 
IPO4 importin 4 IPI00156374 6 
IPO5 importin 5 IPI00793443; 

IPI00514205; 
IPI00639960 

41 

IPO7 importin 7 IPI00007402 15 
IPO8 importin 8 IPI00007401 4 
IPO9 importin 9 IPI00185146 10 
IQGAP2 IQ motif containing GTPase activating 

protein 2 
IPI00299048 2 

KIAA0368 proteasome-associated protein ECM29 
homolog 

IPI00157790 2 

KIAA0913 zinc finger SWIM domain-containing protein 
KIAA0913 

IPI00166606 2 

KIAA1524 cancerous inhibitor of PP2A IPI00154283 2 
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KPNB1 karyopherin (importin) beta 1 IPI00001639 15* 
LAP3 leucine aminopeptidase 3 IPI00419237 6 
LEPRE1 leucine proline-enriched proteoglycan 

(leprecan) 1 
IPI00045839 4 

LMAN2 lectin, mannose-binding 2 IPI00009950 3 
LMNB1 lamin B1 IPI00217975 2 
LOC442497;SLC3A2 solute carrier family 3 (activators of dibasic 

and neutral amino acid transport), member 2 
IPI00027493 6 

LPCAT1 acyltransferase like 2 IPI00171626 4 
LRPAP1 low density lipoprotein receptor-related 

protein associated protein 1 
IPI00026848 5 

LRRC59 leucine rich repeat containing 59 IPI00396321 3 
MAGED1 melanoma antigen family D, 1 IPI00328354 3 
MAGT1 implantation-associated protein IPI00301202 4 
MARS methionine-tRNA synthetase IPI00008240 6* 
MCM3AP MCM3 minichromosome maintenance 

deficient 3 (S. cerevisiae) associated protein 
IPI00028954 2 

MDN1 MDN1, midasin homolog (yeast) IPI00167941 11 
MIA3 melanoma inhibitory activity family, member 

3  
IPI00455473 17 

MLF2 myeloid leukemia factor 2 IPI00023095 3 
MSH6 mutS homolog 6 (E. coli) IPI00106847 2 
MTCH1 mitochondrial carrier homolog 1 (C. elegans) IPI00386258 3 
MTCH2 mitochondrial carrier homolog 2 (C. elegans) IPI00003833 3 
MTHFD1 methylenetetrahydrofolate dehydrogenase 

(NADP+ dependent) 1 
IPI00218342 2 

MTX2 metaxin 2 IPI00025717 4 
MYH15 myosin, heavy chain 15  IPI00180408 2 
NCLN nicalin homolog (zebrafish) IPI00470649 3 
NCSTN nicastrin IPI00021983 2 
NDUFS1 NADH dehydrogenase (ubiquinone) Fe-S 

protein 1, 75kDa (NADH-coenzyme Q 
reductase) 

IPI00604664 6 

NDUFS3 NADH dehydrogenase (ubiquinone) Fe-S 
protein 3, 30kDa (NADH-coenzyme Q 
reductase) 

IPI00025796 2 

NDUFS7 NADH dehydrogenase (ubiquinone) Fe-S 
protein 7, 20kDa (NADH-coenzyme Q 
reductase) 

IPI00307749 2 

NDUFV1 NADH dehydrogenase (ubiquinone) 
flavoprotein 1, 51kDa 

IPI00028520 4 

NDUFV2 NADH dehydrogenase (ubiquinone) 
flavoprotein 2, 24kDa 

IPI00291328 4 

NGDN neuroguidin, EIF4E binding protein  IPI00000162 2 
NOMO1;NOMO3 NODAL modulator 1 IPI00329352 4 
NRM nurim (nuclear envelope membrane protein) IPI00217557 3 
NUCB1 nucleobindin 1 IPI00295542 9 
NUCB2 nucleobindin 2 IPI00009123 5 
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NUP205 nucleoporin 205kDa  IPI00783781 19 
NUP210 nucleoporin 210kDa IPI00291755 3 
NUP93 nucleoporin 93kDa IPI00397904 9* 
ORC4L origin recognition complex, subunit 4-like IPI00015164 2 
OS9 amplified in osteosarcoma IPI00186581 3 
OXA1L oxidase (cytochrome c) assembly 1-like IPI00014301 2 
P4HA1 procollagen-proline, 2-oxoglutarate 4-

dioxygenase (proline 4-hydroxylase), alpha 
polypeptide I 

IPI00009923 3 

P4HA2 procollagen-proline, 2-oxoglutarate 4-
dioxygenase (proline 4-hydroxylase), alpha 
polypeptide II 

IPI00003128 2 

PCYT1A phosphate cytidylyltransferase 1, choline, 
alpha 

IPI00329338 8 

PCYT1B phosphate cytidylyltransferase 1, choline, 
beta 

IPI00001562 3 

PDIA3 protein disulfide isomerase family A, 
member 3 

IPI00025252 25 

PEX11B peroxisomal biogenesis factor 11B IPI00021978 6 
PHB prohibitin IPI00017334 5 
PHB2 prohibitin 2 IPI00027252 8 
PHGDH phosphoglycerate dehydrogenase IPI00011200 7* 
PIGK phosphatidylinositol glycan, class K IPI00022543 2 
PIGS phosphatidylinositol glycan, class S IPI00465308 2 
PIK3CG phosphoinositide-3-kinase, catalytic, gamma 

polypeptide 
IPI00292690 2 

PLOD1 procollagen-lysine 1, 2-oxoglutarate 5-
dioxygenase 1 

IPI00027192 3 

PPFIBP1 PTPRF interacting protein, binding protein 1 
(liprin beta 1) 

IPI00179172 17 

PPP2R1A protein phosphatase 2 (formerly 2A), 
regulatory subunit A (PR 65), alpha isoform 

IPI00168184 3 

PREB prolactin regulatory element binding IPI00033349 2 
PRKDC protein kinase, DNA-activated, catalytic 

polypeptide 
IPI00296337 135* 

PSMA1 proteasome (prosome, macropain) subunit, 
alpha type, 1 

IPI00016832 8 

PSMA3 proteasome (prosome, macropain) subunit, 
alpha type, 3 

IPI00171199 4 

PSMA4 proteasome (prosome, macropain) subunit, 
alpha type, 4 

IPI00299155 3 

PSMA5 proteasome (prosome, macropain) subunit, 
alpha type, 5 

IPI00291922 7 

PSMA6 proteasome (prosome, macropain) subunit, 
alpha type, 6 

IPI00029623 4 

PSMA7 proteasome (prosome, macropain) subunit, 
alpha type, 7 

IPI00024175 6 

PSMB1 proteasome (prosome, macropain) subunit, 
beta type, 1 

IPI00025019 4 

PSMB2 proteasome (prosome, macropain) subunit, IPI00028006 3 
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beta type, 2 
PSMB4 proteasome (prosome, macropain) subunit, 

beta type, 4 
IPI00555956 4 

PSMB5 proteasome (prosome, macropain) subunit, 
beta type, 5 

IPI00383971; 
IPI00479306 

9* 

PSMB7 proteasome (prosome, macropain) subunit, 
beta type, 7 

IPI00003217 6 

PSMC1 proteasome (prosome, macropain) 26S 
subunit, ATPase, 1 

IPI00011126 5 

PSMC2 proteasome (prosome, macropain) 26S 
subunit, ATPase, 2 

IPI00021435 18* 

PSMC3 proteasome (prosome, macropain) 26S 
subunit, ATPase, 3 

IPI00018398 18* 

PSMC4 proteasome (prosome, macropain) 26S 
subunit, ATPase, 4 

IPI00020042 10 

PSMC5 proteasome (prosome, macropain) 26S 
subunit, ATPase, 5 

IPI00023919 16 

PSMC6 proteasome (prosome, macropain) 26S 
subunit, ATPase, 6 

IPI00021926 12 

PSMD1 proteasome (prosome, macropain) 26S 
subunit, non-ATPase, 1 

IPI00299608 5* 

PSMD11 proteasome (prosome, macropain) 26S 
subunit, non-ATPase, 11 

IPI00105598 17 

PSMD12 proteasome (prosome, macropain) 26S 
subunit, non-ATPase, 12 

IPI00185374 9 

PSMD13 proteasome (prosome, macropain) 26S 
subunit, non-ATPase, 13 

IPI00375380 10 

PSMD14 proteasome (prosome, macropain) 26S 
subunit, non-ATPase, 14 

IPI00024821 2 

PSMD3 proteasome (prosome, macropain) 26S 
subunit, non-ATPase, 3 

IPI00011603 11 

PSMD4 proteasome (prosome, macropain) 26S 
subunit, non-ATPase, 4 

IPI00022694 4 

PSMD6 proteasome (prosome, macropain) 26S 
subunit, non-ATPase, 6 

IPI00014151 7 

PSMD7 proteasome (prosome, macropain) 26S 
subunit, non-ATPase, 7 (Mov34 homolog) 

IPI00019927 4 

PSMD8 proteasome (prosome, macropain) 26S 
subunit, non-ATPase, 8 

IPI00010201 2 

PTPLAD1 protein tyrosine phosphatase-like A domain 
containing 1 

IPI00008998 3 

RAD23B RAD23 homolog B (S. cerevisiae) IPI00008223 2 
RCN2 reticulocalbin 2, EF-hand calcium binding 

domain 
IPI00029628 19 

RPL35 ribosomal protein L35 IPI00412607 5* 
RPL36 ribosomal protein L36 IPI00216237 3 
RPN2 ribophorin II IPI00028635 4* 
RPS10 ribosomal protein S10 IPI00008438 7* 
RPS13 ribosomal protein S13 IPI00221089 14 
RPS15 ribosomal protein S15 IPI00479058 2 
RPS17 ribosomal protein S17 IPI00221093 6* 
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SAAL1 serum amyloid A-like 1 IPI00304935 5 
SAPS3 SAPS domain family, member 3 IPI00019540 2 
SDF4 stromal cell derived factor 4 IPI00106646 2 
SEC11A SEC11-like 1 (S. cerevisiae) IPI00104128 4 
SEC16A SEC16-like 1 (S. cerevisiae) IPI00031242 2 
SEC22B SEC22 vesicle trafficking protein-like 1 (S. 

cerevisiae) 
IPI00006865 2 

SFXN4 sideroflexin 4 IPI00412741 2 
SGPL1 sphingosine-1-phosphate lyase 1 IPI00099463 4 
SIRT1 sirtuin (silent mating type information 

regulation 2 homolog) 1 (S. cerevisiae) 
IPI00016802 5 

SLC16A1 solute carrier family 16 (monocarboxylic 
acid transporters), member 1 

IPI00024650 4 

SLC25A12 solute carrier family 25 (mitochondrial 
carrier, Aralar), member 12 

IPI00386271 2 

SLC25A22 solute carrier family 25 (mitochondrial 
carrier: glutamate), member 22 

IPI00003004 4 

SLC25A24 solute carrier family 25 (mitochondrial 
carrier; phosphate carrier), member 24 

IPI00337494 6* 

SLC25A3 solute carrier family 25 (mitochondrial 
carrier; phosphate carrier), member 3 

IPI00022202 8* 

SLC25A5 solute carrier family 25 (mitochondrial 
carrier; adenine nucleotide translocator), 
member 5 

IPI00007188 94* 

SMC4 SMC4 structural maintenance of 
chromosomes 4-like 1 (yeast) 

IPI00328298 7 

SMPD4 sphingomyelin phosphodiesterase 4, neutral 
membrane (neutral sphingomyelinase-3)  

IPI00743121 2 

SNX3 sorting nexin 3 IPI00216508 3 
SPTLC1 serine palmitoyltransferase, long chain base 

subunit 1 
IPI00005745 7 

SPTLC2 serine palmitoyltransferase, long chain base 
subunit 2 

IPI00005751 3 

SRPRB signal recognition particle receptor, B 
subunit 

IPI00295098 2 

SSR4 signal sequence receptor, delta (translocon-
associated protein delta) 

IPI00019385 11* 

STT3B STT3, subunit of the 
oligosaccharyltransferase complex, homolog 
B (S. cerevisiae) 

IPI00152377 5 

STUB1 STIP1 homology and U-box containing 
protein 1 

IPI00025156 5 

SUMF2 sulfatase modifying factor 2 IPI00171412 4 
TBRG4 transforming growth factor beta regulator 4 IPI00329625 3 
TELO2 KIAA0683 gene product IPI00016868 2 
TFB2M transcription factor B2, mitochondrial IPI00034069 2 
TIMELESS timeless homolog (Drosophila) IPI00335541 2 
TMED1 transmembrane emp24 protein transport 

domain containing 1 
IPI00009976 3 

TMED10 transmembrane emp24-like trafficking IPI00028055 8 
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protein 10 (yeast) 
TMED2 transmembrane emp24 domain trafficking 

protein 2 
IPI00016608 7 

TMED4 transmembrane emp24 protein transport 
domain containing 4 

IPI00296259 3 

TMED9 transmembrane emp24 protein transport 
domain containing 9 

IPI00023542 6 

TMEM109 transmembrane protein 109 IPI00031697 2 
TMEM33 transmembrane protein 33 IPI00299084 21* 
TMEM43 transmembrane protein 43 IPI00301280 10 
TMEM59 transmembrane protein 59 IPI00399320 6 
TMX1 thioredoxin domain containing IPI00395887 2 
TNPO1 transportin 1 IPI00024364 9 
TOMM40 translocase of outer mitochondrial membrane 

40 homolog (yeast) 
IPI00014053 2 

TOR1AIP2 torsin A interacting protein 2 IPI00168878 7 
TROVE2 TROVE domain family, member 2 IPI00019450 2 
TTC13 tetratricopeptide repeat domain 13 IPI00301227 2 
TUBA4A tubulin, alpha 1 (testis specific) IPI00007750 45* 
TUBB tubulin, beta IPI00011654 40* 
TUBB2C tubulin, beta 2C IPI00007752 150* 
TUBB3 tubulin, beta 3 IPI00013683 3 
TUBB4 tubulin, beta 4 IPI00023598 3 
TUBB6 tubulin, beta 6 IPI00646779 4 
TUBG1 tubulin, gamma 1 IPI00295081 2 
UBAC2 phosphoglycerate dehydrogenase like 1 IPI00007034 3 
UBE3C ubiquitin protein ligase E3C IPI00472810; 

IPI00604464 
7 

UFD1L ubiquitin fusion degradation 1 like (yeast) IPI00218292 4 
UGCGL2 UDP-glucose ceramide glucosyltransferase-

like 2 
IPI00024467 3 

UNC45A unc-45 homolog A (C. elegans) IPI00072534 4 
UQCRC2 ubiquinol-cytochrome c reductase core 

protein II 
IPI00305383 16* 

USP9X ubiquitin specific peptidase 9, X-linked IPI00003964 5* 
VDAC3 voltage-dependent anion channel 3 IPI00031804 2 
XPO1 exportin 1 (CRM1 homolog, yeast) IPI00298961 27 
XPO5 exportin 5 IPI00549861; 

IPI00640703 
10 

XPO6 exportin 6 IPI00465296 2 
XPOT exportin, tRNA (nuclear export receptor for 

tRNAs) 
IPI00306290 7 

YME1L1 YME1-like 1 (S. cerevisiae) IPI00045946 3 
YWHAH tyrosine 3-monooxygenase/tryptophan 5-

monooxygenase activation protein, eta 
polypeptide 

IPI00216319 2 
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Table S1C, Related to Figures 1A-1C. Proteins Identified Interacting with ANDV GP and Not 
LCMV GP. The number of total peptides identified is listed. *Indicates non-GP control contained 
peptides from this protein but at levels at least five times less. 

    
Gene 

symbol 

Description IPI id # 

Peptides 

AMOT angiomotin IPI00163085 5 
ANXA6 annexin A6 IPI00002459 5 
ATAD3A ATPase family, AAA domain containing 3A IPI00295992 6 
CAPRIN1 cell cycle associated protein 1  IPI00783872 12 
CHMP4B chromatin modifying protein 4B IPI00025974 2 
CLGN calmegin IPI00024776 3 
CSDA cold shock domain protein A IPI00031801 4 
DARS aspartyl-tRNA synthetase IPI00216951 2 
DDX21 DEAD (Asp-Glu-Ala-Asp) box polypeptide 21 IPI00015953 7 
DHX29 DEAH (Asp-Glu-Ala-His) box polypeptide 29 IPI00217413 3 
DIMT1L dimethyladenosine transferase IPI00004459 4 
DNAJB12 DnaJ (Hsp40) homolog, subfamily B, member 12 IPI00014400 2 
DNAJC3 DnaJ (Hsp40) homolog, subfamily C, member 3 IPI00006713 8 
ERGIC1 endoplasmic reticulum-golgi intermediate compartment 

(ERGIC) 1 
IPI00003635 2 

EXT2 exostoses (multiple) 2 IPI00004047 2 
FLOT2 flotillin 2  IPI00789008 2 
FMR1 fragile X mental retardation 1 IPI00215720 2 
G3BP2 Ras-GTPase activating protein SH3 domain-binding 

protein 2 
IPI00009057 6 

GNB2 guanine nucleotide binding protein (G protein), beta 
polypeptide 2 

IPI00003348 2 

HSPA7 heat shock 70kDa protein 7 (HSP70B) IPI00011134 13* 
IGF2BP3 insulin-like growth factor 2 mRNA binding protein 3  IPI00165467 4 
LACTB lactamase, beta IPI00294186 2 
LARS leucyl-tRNA synthetase IPI00103994 3 
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LIMA1 LIM domain and actin binding 1 IPI00008918 4 
LMAN2L lectin, mannose-binding 2-like IPI00218337 2 
MOGS glucosidase I IPI00328170 3 
MYO1D myosin ID IPI00329719 2 
NACA nascent-polypeptide-associated complex alpha 

polypeptide 
IPI00023748 3 

NCL nucleolin IPI00183526 4 
NDUFA9 NADH dehydrogenase (ubiquinone) 1 alpha subcomplex, 

9, 39kDa 
IPI00003968 2 

NOP2 nucleolar protein 1, 120kDa IPI00294891 2 
NPM1 anaplastic lymphoma kinase (Ki-1) IPI00220740 11* 
NUFIP2 nuclear fragile X mental retardation protein interacting 

protein 2 
IPI00002349 2 

PABPC4 poly(A) binding protein, cytoplasmic 4 (inducible form) IPI00012726 3 
PCBP2 poly(rC) binding protein 2 IPI00012066 3 
PCNA proliferating cell nuclear antigen IPI00021700 2 
PLOD2 procollagen-lysine, 2-oxoglutarate 5-dioxygenase 2 IPI00337495 2 
PURA purine-rich element binding protein A IPI00023591 3 
PXDN peroxidasin homolog (Drosophila)  IPI00016112 2 
QARS glutaminyl-tRNA synthetase IPI00026665 2 
RAB11B RAB11B, member RAS oncogene family IPI00020436 2 
RARS arginyl-tRNA synthetase IPI00004860 2 
RFC2 replication factor C (activator 1) 2, 40kDa IPI00017412 2 
RFC3 replication factor C (activator 1) 3, 38kDa IPI00031521 3 
ROD1 ROD1 regulator of differentiation 1 (S. pombe) IPI00159072 3 
RPL11 ribosomal protein L11 IPI00376798 7* 
RPL13A ribosomal protein L13a IPI00304612 11* 
RPL14 ribosomal protein L14 variant IPI00069693 7* 
RPL17 ribosomal protein L17 IPI00413324 2 
RPL18 ribosomal protein L18 IPI00215719 20* 
RPL18A ribosomal protein L18a IPI00026202 5 
RPL19 ribosomal protein L19 IPI00025329 5* 
RPL23A ribosomal protein L23a IPI00021266 6 
RPL24 ribosomal protein L24 IPI00306332 8* 
RPL26 ribosomal protein L26 IPI00027270 3 
RPL26L1 ribosomal protein L26-like 1 IPI00007144 5 
RPL3 ribosomal protein L3 IPI00550021 6 
RPL30 ribosomal protein L30 IPI00219156 5 
RPL35A ribosomal protein L35a IPI00029731 5 
RPL37A ribosomal protein L37a IPI00414860 3 
RPL5 ribosomal protein L5 IPI00000494 17* 
RPL6 ribosomal protein L6 IPI00329389 3 
RPL7; ribosomal protein L7; ribosomal protein L7 pseudogene IPI00796861 2 
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RPL7P32 32 
RPL7A ribosomal protein L7a IPI00299573 9 
RPL7A; 
RPL7AP27 

ribosomal protein L7; ribosomal protein L7a pseudogene 
27  

IPI00075558 11* 

RPLP0 ribosomal protein, large, P0 IPI00008530 22* 
RPS12 ribosomal protein S12 IPI00013917 3 
RPS16 ribosomal protein S16 IPI00221092 7* 
RPS19 ribosomal protein S19 IPI00215780 21* 
RPS27 ribosomal protein S27  IPI00397358 2 
RPS3A ribosomal protein S3A IPI00419880 16* 
RPS5 ribosomal protein S5 IPI00008433 9* 
RPS6 ribosomal protein S6 IPI00021840 9* 
RPS8 ribosomal protein S8 IPI00216587 2 
RRP1B ribosomal RNA processing 1 homolog B (S. cerevisiae) IPI00032374 2 
SND1 staphylococcal nuclease domain containing 1 IPI00140420 4 
STAU1 staufen, RNA binding protein, homolog 1 (Drosophila) IPI00000001 2 
TEX10 testis expressed sequence 10 IPI00549664 2 
TMPO thymopoietin IPI00030131 2 
TP53 tumor protein p53 (Li-Fraumeni syndrome) IPI00025087 2 
USP10 ubiquitin specific peptidase 10 IPI00291946 5 
WRNIP1 Werner helicase interacting protein 1 IPI00102997 3 
XRN2 5'-3' exoribonuclease 2 IPI00100151 2 

 

 

Table S1D, Related to Figures 1A-1C, S1D, and Tables S1-S3. NIH DAVID Functional Annotation 
Clustering of Proteomic Data.  Gene symbols from proteins identified interacting with LCMV 
GPC, ANDV GPC, or those interacting with both (intersect) were analyzed by NIH DAVID using 
medium stringency and with Homo sapiens as background. Data for the clusters below all show 
enrichments of four-fold over background.  Sub-categories are provided and the numbers of 
proteins identified in each sub-category and their corresponding P value and percent of total 
proteins. These data are tabulated at the end of this table and were used to generate Figure 
S1D. 

     
     
     

LCMV and ANDV 

Intersect 

    

Annotation Cluster 
1  

Sub-category Count  P Value  Percent 

(Endoplasmic 
Reticulum A) 

endoplasmic reticulum lumen  12 4.20E-15 24 
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Enrichment Score: 
8.9  

intracellular organelle lumen  23 5.70E-08 46 

 organelle lumen  23 8.60E-08 46 
 membrane-enclosed lumen  23 1.20E-07 46 
 Average 20  41 

Annotation Cluster 
2  

Sub-category Count  P Value  Percent 

(Endoplasmic 
Reticulum B) 

endoplasmic reticulum  21 1.80E-16 42 

Enrichment Score: 
8.49  

endoplasmic reticulum part  18 2.10E-15 36 

 endoplasmic reticulum lumen  12 4.20E-15 24 
 endoplasmic reticulum  23 3.50E-13 46 
 short sequence motif:Prevents secretion 

from ER  
9 2.10E-12 18 

 signal  19 6.80E-04 38 
 signal peptide  19 7.30E-04 38 
 glycosylation site:N-linked (GlcNAc...)  14 2.50E-01 28 
 glycoprotein  14 3.00E-01 28 
 Average 17  33 

Annotation Cluster 
3  

Sub-category Count  P Value  Percent 

(Protein Folding) protein folding  13 1.40E-13 26 
Enrichment Score: 
7.44  

unfolded protein binding  9 2.70E-09 18 

 Chaperone  9 5.90E-09 18 
 disulfide bond  7 7.80E-01 14 
 Average 10  19 

Annotation Cluster 
4  

Sub-category Count  P Value  Percent 

(Vesicles) melanosome  8 3.10E-08 16 
Enrichment Score: 
4.39  

pigment granule  8 3.10E-08 16 

 cytoplasmic membrane-bounded vesicle  9 8.00E-04 18 
 membrane-bounded vesicle  9 9.80E-04 18 
 cytoplasmic vesicle  9 2.10E-03 18 
 vesicle  9 2.80E-03 18 
 Average 9  17 

LCMV_NOT_ANDV     
Annotation Cluster 
5 

Sub-category Count  P Value  Percent 
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(Proteasome A) proteasome  30 3.30E-40 12 
Enrichment Score: 
19.93  

proteasome complex  31 1.20E-36 12 

 Proteasome  27 4.30E-32 10 
 negative regulation of ubiquitin-protein 

ligase activity  
28 1.00E-31 11 

 negative regulation of ligase activity  28 1.00E-31 11 
 negative regulation of ubiquitin-protein 

ligase activity during mitotic cell cycle  
27 1.80E-30 10 

 anaphase-promoting complex-dependent 
proteasomal ubiquitin-dependent protein 
catabolic process  

27 1.80E-30 10 

 proteasomal protein catabolic process  31 2.50E-30 12 
 proteasomal ubiquitin-dependent protein 

catabolic process  
31 2.50E-30 12 

 negative regulation of protein 
ubiquitination  

28 2.70E-30 11 

 positive regulation of ubiquitin-protein 
ligase activity during mitotic cell cycle  

27 7.70E-30 10 

 regulation of ubiquitin-protein ligase 
activity  

28 1.50E-29 11 

 positive regulation of ubiquitin-protein 
ligase activity  

27 1.90E-29 10 

 regulation of ubiquitin-protein ligase 
activity during mitotic cell cycle  

27 3.00E-29 10 

 regulation of ligase activity  28 4.80E-29 11 
 positive regulation of ligase activity  27 7.00E-29 10 
 positive regulation of protein 

ubiquitination  
28 1.50E-28 11 

 regulation of protein ubiquitination  29 1.10E-27 11 
 negative regulation of protein modification 

process  
29 2.30E-25 11 

 negative regulation of cellular protein 
metabolic process  

31 1.90E-22 12 

 negative regulation of protein metabolic 
process  

31 6.10E-22 12 

 negative regulation of catalytic activity  35 6.50E-21 14 
 ubiquitin-dependent protein catabolic 

process  
33 1.00E-20 13 

 negative regulation of molecular function  36 3.00E-19 14 
 positive regulation of protein modification 

process  
28 1.30E-18 11 

 mitotic cell cycle  35 5.90E-17 14 
 regulation of protein modification process  31 3.00E-16 12 
 positive regulation of cellular protein 28 3.90E-16 11 
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metabolic process  
 positive regulation of protein metabolic 

process  
28 1.20E-15 11 

 regulation of cellular protein metabolic 
process  

37 3.30E-15 14 

 cell cycle process  40 4.70E-15 16 
 threonine protease  11 2.20E-14 4 
 Proteasome, subunit alpha/beta  11 2.70E-14 4 
 threonine-type peptidase activity  11 6.10E-14 4 
 threonine-type endopeptidase activity  11 6.10E-14 4 
 proteasome core complex  11 5.00E-13 4 
 protein catabolic process  38 2.40E-12 15 
 proteolysis involved in cellular protein 

catabolic process  
37 3.90E-12 14 

 cellular protein catabolic process  37 4.50E-12 14 
 modification-dependent macromolecule 

catabolic process  
36 5.10E-12 14 

 modification-dependent protein catabolic 
process  

36 5.10E-12 14 

 cell cycle  41 2.50E-11 16 
 macromolecule catabolic process  41 3.00E-11 16 
 positive regulation of catalytic activity  33 3.70E-11 13 
 cellular macromolecule catabolic process  39 5.20E-11 15 
 negative regulation of macromolecule 

metabolic process  
39 7.50E-11 15 

 positive regulation of molecular function  33 7.80E-10 13 
 proteolysis  45 1.90E-09 17 
 positive regulation of macromolecule 

metabolic process  
33 4.80E-06 13 

 Average 30  12 
Annotation Cluster 
2  

Sub-category Count  P Value  Percent 

(Ednoplasmic 
Reticulum B) 

endoplasmic reticulum  50 8.30E-22 19 

Enrichment Score: 
11.87  

endoplasmic reticulum  55 3.20E-14 21 

 endoplasmic reticulum part  28 1.70E-10 11 
 nuclear envelope-endoplasmic reticulum 

network  
23 1.00E-08 9 

 endoplasmic reticulum membrane  21 9.60E-08 8 
 Average 35  14 

Annotation Cluster 
6 

Sub-category Count  P Value  Percent 
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(Nuclear Import A) Armadillo-like helical  25 3.40E-20 10 
Enrichment Score: 
9.36  

protein import into nucleus, docking  12 1.40E-16 5 

 domain:Importin N-terminal  11 1.40E-16 4 
 Importin-beta, N-terminal  11 9.30E-16 4 
 cellular protein complex assembly  22 1.00E-13 9 
 protein transport  31 2.20E-12 12 
 pore complex  17 1.30E-11 7 
 nuclear pore  15 1.20E-10 6 
 nuclear envelope  22 1.40E-10 9 
 cellular macromolecular complex assembly  25 2.20E-10 10 
 transport  55 4.90E-10 21 
 protein import into nucleus  14 8.50E-10 5 
 nuclear import  14 1.10E-09 5 
 protein import  16 2.30E-09 6 
 cellular macromolecular complex subunit 

organization  
25 2.30E-09 10 

 protein localization in nucleus  14 2.60E-09 5 
 nucleocytoplasmic transport  17 3.30E-09 7 
 protein localization  40 3.90E-09 16 
 nuclear transport  17 4.00E-09 7 
 protein transporter activity  13 4.90E-09 5 
 cellular protein localization  26 7.90E-09 10 
 cellular macromolecule localization  26 9.10E-09 10 
 protein localization in organelle  16 1.00E-08 6 
 protein transport  36 1.10E-08 14 
 intracellular transport  33 1.30E-08 13 
 establishment of protein localization  36 1.40E-08 14 
 intracellular protein transport  24 2.70E-08 9 
 protein targeting  17 3.10E-07 7 
 protein complex biogenesis  24 5.20E-06 9 
 protein complex assembly  24 5.20E-06 9 
 macromolecular complex assembly  27 1.90E-05 10 
 macromolecular complex subunit 

organization  
27 5.60E-05 10 

 Average 23  9 
Annotation Cluster 
7 

Sub-category Count  P Value  Percent 

(Protease) threonine protease  11 2.20E-14 4 
Enrichment Score: 
8.44  

Proteasome, subunit alpha/beta  11 2.70E-14 4 

 threonine-type peptidase activity  11 6.10E-14 4 
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 threonine-type endopeptidase activity  11 6.10E-14 4 
 proteinase  10 2.30E-13 4 
 proteasome core complex  11 5.00E-13 4 
 Proteasome, alpha and beta subunits  8 3.80E-10 3 
 Proteasome, alpha-subunit, conserved site  6 3.30E-08 2 
 Proteasome, beta-type subunit, conserved 

site  
6 4.40E-07 2 

 peptidase activity  22 1.10E-04 9 
 peptidase activity, acting on L-amino acid 

peptides  
21 1.70E-04 8 

 Protease  18 2.60E-04 7 
 endopeptidase activity  16 4.30E-04 6 
 hydrolase  31 2.30E-02 12 
 Average 14  5 

Annotation Cluster 
8 

Sub-category Count  P Value  Percent 

(Heat Repeat) repeat:HEAT 6  13 1.60E-15 5 
Enrichment Score: 
8.09  

repeat:HEAT 5  13 1.50E-14 5 

 repeat:HEAT 2  15 2.30E-14 6 
 repeat:HEAT 1  15 2.30E-14 6 
 repeat:HEAT 4  13 2.50E-13 5 
 repeat:HEAT 8  10 9.20E-13 4 
 repeat:HEAT 3  13 1.80E-12 5 
 repeat:HEAT 7  10 1.20E-11 4 
 repeat:HEAT 10  8 4.00E-10 3 
 repeat:HEAT 9  8 4.00E-10 3 
 HEAT  11 5.50E-09 4 
 repeat:HEAT 15  6 8.20E-09 2 
 repeat:HEAT 14  6 4.80E-08 2 
 repeat:HEAT 13  6 9.50E-08 2 
 repeat:HEAT 12  6 9.50E-08 2 
 repeat:HEAT 11  6 1.70E-07 2 
 repeat:HEAT 24  4 9.20E-06 2 
 repeat:HEAT 20  4 9.20E-06 2 
 repeat:HEAT 21  4 9.20E-06 2 
 repeat:HEAT 22  4 9.20E-06 2 
 repeat:HEAT 23  4 9.20E-06 2 
 repeat:HEAT 17  4 9.20E-06 2 
 repeat:HEAT 18  4 9.20E-06 2 
 repeat:HEAT 19  4 9.20E-06 2 
 repeat:HEAT 16  4 9.20E-06 2 



 

314 
 

 repeat:HEAT 25  3 5.20E-04 1 
 repeat:HEAT 26  3 5.20E-04 1 
 Average 7  3 

Annotation Cluster 
9  

Sub-category Count  P Value  Percent 

(Mitochondria) organelle envelope  48 2.30E-17 19 
Enrichment Score: 
6.78  

envelope  48 2.60E-17 19 

 mitochondrion inner membrane  18 8.10E-10 7 
 mitochondrion  34 1.70E-08 13 
 organelle inner membrane  24 3.20E-08 9 
 mitochondrial inner membrane  23 3.90E-08 9 
 mitochondrion  47 4.20E-08 18 
 mitochondrial part  32 1.10E-07 12 
 mitochondrial envelope  26 1.70E-07 10 
 mitochondrial membrane  25 2.10E-07 10 
 oxidoreductase  23 6.00E-06 9 
 oxidation reduction  26 2.70E-05 10 
 transit peptide:Mitochondrion  19 5.70E-05 7 
 transit peptide  19 6.70E-05 7 
 mitochondrial membrane part  10 4.50E-04 4 
 generation of precursor metabolites and 

energy  
14 1.50E-03 5 

 Parkinson's disease  10 2.00E-03 4 
 Huntington's disease  11 6.30E-03 4 
 Average 25  10 

Annotation Cluster 
10 

Sub-category Count  P Value  Percent 

(Nuclear Import B) domain:Importin N-terminal  11 1.40E-16 4 
Enrichment Score: 
5.28  

Importin-beta, N-terminal  11 9.30E-16 4 

 Ran GTPase binding  4 6.30E-04 2 
 Ras GTPase binding  4 1.50E-01 2 
 small GTPase binding  4 1.90E-01 2 
 GTPase binding  4 2.20E-01 2 
 enzyme binding  11 2.40E-01 4 
 Average 7  3 

Annotation Cluster 
11 

Sub-category Count  P Value  Percent 

(GOLD Domain) emp24/gp25L/p24  5 5.10E-06 2 
Enrichment Score: domain:GOLD  5 6.30E-05 2 
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4.48  
 GOLD  5 1.10E-04 2 
 Average 5  2 

Annotation Cluster 
12 

Sub-category Count  P Value  Percent 

(Proteasome B) PINT  5 9.90E-06 2 
Enrichment Score: 
4.35  

Proteasome component region PCI  5 8.80E-05 2 

 domain:PCI  5 1.00E-04 2 
 Average 5  2 

ANDV_NOT_LCMV     
Annotation Cluster 
13 

Sub-category Count  P Value  Percent 

(Protein 
Translation) 

ribosome  25 2.30E-40 30 

Enrichment Score: 
28.79  

translational elongation  28 7.60E-40 34 

 Ribosome  28 1.80E-37 34 
 translation  36 4.30E-37 43 
 protein biosynthesis  29 1.80E-36 35 
 ribosome  31 6.60E-35 37 
 ribosomal protein  28 1.10E-34 34 
 ribosomal subunit  27 1.30E-34 33 
 structural constituent of ribosome  28 8.30E-33 34 
 cytosolic ribosome  23 2.70E-32 28 
 ribonucleoprotein  29 1.80E-31 35 
 ribonucleoprotein complex  37 2.00E-31 45 
 large ribosomal subunit  19 2.50E-26 23 
 cytosolic part  23 1.00E-25 28 
 cytosolic large ribosomal subunit  15 7.30E-23 18 
 RNA binding  33 2.70E-21 40 
 structural molecule activity  29 2.30E-18 35 
 intracellular non-membrane-bounded 

organelle  
49 1.50E-17 59 

 non-membrane-bounded organelle  49 1.50E-17 59 
 cytosol  37 2.50E-17 45 
 Average 30  36 

Annotation Cluster 
14 

Sub-category Count  P Value  Percent 

(Ribosome 
Biogenesis) 

ribosome biogenesis  16 9.90E-17 19 
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Enrichment Score: 
11.65  

ribosomal large subunit biogenesis  8 1.30E-14 10 

 ribonucleoprotein complex biogenesis  16 3.70E-14 19 
 ncRNA metabolic process  16 1.40E-12 19 
 rRNA processing  12 2.30E-12 14 
 rRNA metabolic process  12 3.70E-12 14 
 ncRNA processing  12 5.10E-09 14 
 RNA processing  16 2.10E-07 19 
 Average 14  16 
     
 Cluster Average 

Percent 
of Total 

Sample  

 1. Endoplasmic Reticulum (A) 41 Intersect  
 2. Endoplasmic Reticulum (B) 33 Intersect  
 2. Endoplasmic Reticulum (B) 14 LCMV 

Only 
 

 3. Protein Folding 19 Intersect  
 4. Vesicles 17 Intersect  
 5. Proteasome (A) 12 LCMV 

Only 
 

 6. Nuclear Import (A) 9 LCMV 
Only 

 

 7. Protease 5 LCMV 
Only 

 

 8. HEAT Repeat 3 LCMV 
Only 

 

 9. Mitochondria 10 LCMV 
Only 

 

 10. Nuclear Import (B) 3 LCMV 
Only 

 

 11. GOLD Domain 2 LCMV 
Only 

 

 12. Proteasome (B) 2 LCMV 
Only 

 

 13. Protein Translation 36 ANDV 
Only 

 

 14. Ribosome Biogenesis 16 ANDV 
Only 
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