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Abstract

The Coastal Batholith of central Chile preserves structures that record the concentration, migration,
transportation, and emplacement of magma during the progressive construction of a sheeted dike
complex. This sheeted dike complex is divided into three main structural-geographic domains. The
northwestern domain contains an abundance of deformed microgranitoid enclaves that host features
that facilitated the concentration of melt during crystallization. The formation of interconnected
dilational sites produced an array of lecocratic zones that may have formed larger dike networks that
facilitated the transportation of melt-rich magma producing new magmatic units of similar mineral-
ogy. The central domain is characterized by the presence of two tonalitic units that contain enclave
swarms distinguished by their general packing arrangement and degree of elongation. Differences
in the fabric architecture of these enclave swarms are displayed by two separate three-dimensional
fabric analyses using the Rf/φ method, which indicates an abrupt transition from low-distortion
oblate fabrics to more distorted prolate geometries. These changes are compared to the statistical
alignment of feldspar phenocrysts that indicate general flattening in both units with a higher degree
of alignment within the XZ fabric plane for the younger tonalite. The third (southeastern) domain is
distinguished by meter-scale, compositionally and texturally diverse sheeted dikes intercalated with
biotite-rich migmatite screens of the host gneiss along the pluton margin.

The need to process large quantities of fabric data from central Chile presented the opportunity
to establish a comprehensive method for the quantification of three-dimensional rock fabrics following
the Rf/φ and Fry methods. In order to test the utility of this procedure, a three-dimensional
synthetic model of known strain shape, magnitude, and orientation was processed. The results of
this assessment indicate that the procedure accurately calculated the expected state of strain within
a small margin of error. Finally, a natural example is presented to test the method’s ability to
quantify the fabrics of deformed rocks. This example is a “lineation much greater than foliation”
(L>>S) metagranite augen gneiss from the Coastal Batholith of central Chile. This analysis resulted
in calculated fabric ellipsoids from both the Rf/φ and Fry methods that clearly display significantly
prolate geometries at moderate distortions.

The development of the three-dimensional rock fabric quantification procedure highlighted the
need to teach analytical strain techniques in three-dimensions. To allow for this application, an
interactive R script (FRY3D) was created specifically to aid in the instruction and visualization
of three-dimensional strain calculation at the advanced undergraduate and graduate levels. This
tutorial was presented to a structural geology course of 20 students at the undergraduate level with
a two part semi-quantitative concept assessment before and after the presentation. The results of
this assessment indicate a positive increase in student’s understanding of three-dimensional finite
strain.

Finally, a simple examination of analytical error associated with the Panozzo projection tech-
nique for strain analysis is presented and indicates relationships among population size, strain mag-
nitude, and initial fabric. My results suggest that this method is most robust when applied to
sections containing greater than approximately 125 lines. Moreover, the magnitude-dependent error
indicates that the method may be better suited for rocks deformed at low to moderate strains. I
recommend an adaption to the initial conditional assumptions for this method that lines exhibit an
initial radial symmetry when recentered to a common point.



Dedication

The patient Earth amassed documents and inscribed them with signs and pictures,

which lay unnoticed and unused. Today, at last, they are waking up, because man

has come to rouse them. Stones have begun to speak, because an ear is there to hear

them. Layers become history and, released from the enchanted sleep of eternity, life’s

motley, never-ending dance rises out of the black depths of the past into the light of

the present.

-Hans Cloos

This is for my family, for they know exactly who I am.
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Preface

This thesis is a combination of fabric analysis methodology, application, and edu-

cation. Chapter one presents a general synopsis of previous work and background

information pertaining to the tectonic evolution of South America, as well as several

analytical strain techniques. In order to reduce redundancy I have simplified this

chapter. The reference lists throughout the text provide more information. Chapter

two forms the basis of a manuscript focused on the significance of mesocopic struc-

tures developed within the Coastal Batholith of central Chile. This chapter is the

foremost topic within my thesis and best captures the research completed during

the past two years. Chapter three resulted from addressing obstacles in calculating

three-dimensional fabrics from multiple data sources. The need for a comprehensive

procedure outlining this method became evident once I was faced with the task of

processing massive quantities of fabric data. Eventually I expanded the method to

enable both Rf/φ and Fry analyses, as well as the use of multiple data sources in-

cluding photomicrographs, outcrop images, and scanned hand-samples. Through this

process, I realized the inadequacy of two-dimensional fabric analysis and the need to

better teach deformation in three-dimensions at the undergraduate level. As such,

Chapter four was designed as a tutorial to help visualize the application of sectional

strain analyses within a three-dimensional context. The final chapter presents a short

note on the assessment of error in the Panozzo method that came about in the final

days of writing. Although this thesis is complete, the ideas presented herein will

remain a work in progress.

xvii



Chapter 1

Comprehensive Literature Review

1.1 Tectonic synthesis of Chile

The geologic history of South America is a product of plate tectonic processes that

document episodes of continental amalgamation, accretion, rifting, and the develop-

ment of a long lived oceanic-continental convergent margin (Fig. 1.1). This evolution

follows the breakup of Rodinia and Pannotia (see definition in Finney et al. 2003

pg. 351), through the construction of Gondwana, and the ultimate formation of the

South American continent. The following sections describe these tectonic phases in

the context of the Coastal Batholith in central Chile, which is the focus of my re-

search presented in Chapter 2. As such, they do not provide an exhaustive review of

the tectonic evolution of South America, but rather, a select collection of generally

distinct geologic events. This history begins with the Proterozic configuration of Ro-

dina (and subsequently Pannotia) to provide the cratonic core of the modern South

American continent. Following the breakup of Pannotia, two temporally distinct tec-

tonic phases (Pampean and Famatinian) are described that document deformation,

metamorphism, and accretion of domains with Laurentian affinities. These phases are

succeeded by the development of a subduction related magmatic arc during the cul-
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mination of Gondwana construction that ultimately produces the Coastal Batholith.

Finally, two more cycles are described that lead to the rifting of Gondwana and the

development of the modern Andean orogeny.

1.1.1 Rodinia

The existence of a late Proterozoic supercontinent has long been hypothesized since

the proliferation of plate tectonic theory (Valentine and Moores 1970). This conti-

nent is now widely accepted as Rodinia and is believed to be one of only two su-

percontinents (the other being Pangaea) that included nearly all crustal fragments

of continental lithosphere (see synthesis by Li et al. 2008). The formation of this

supercontinent persisted for roughly 150 million years with the culmination of amal-

gamation at roughly 900 Ma. It is prior to this culmination that the initial history

of Chile is recorded. The Arequipa-Antofalla Terrane, located in northern Chile, has

commonly been ascribed to the Ocloyic orogeny (Bahlburg and Hervé 1997) during

the Famatinian tectonic cycle. However, Loewy et al. (2004) concluded that the

Arequipa-Antofalla Terrane is a single basement block accreted to the Amazonian

Figure 1.1: Schematic cross section illustrating the tectonic evolution of South Amer-
ica. 1.) Formation of Rodinia (∼1.0 Ga). 2.) Break up of Rodinia / Pannotia and the
formation of the Iapetus and Puncoviscan oceans (∼550 Ma). 3.) Closure of the Pun-
coviscan ocean with oceanic subduction beneath Gondwana (Pampean tectonic cycle
∼540 Ma) 4.) Collision of the Pampean terrane and the formation of the Pampean
mobile belt (∼525 Ma). 5.) Closure of the Iapetus ocean with renewed subduction
beneath Gondwana during the Famatinian tectonic cycle (490–470 Ma). 6.) Docking
of the Precordillera terrane and subduction of the Proto-Pacific Ocean (430–390 Ma).
7.) Continued accretion of western terrains (e.g. Chilenia) with eastward directed
subduction and the progression of the Gondwana, Pre-Andean and Andean Tectonic
cycles (∼390 through modern times). Modified from Loewy et al. (2004); Rapela
et al. (1998); Durand (1996); Astini et al. (1995); Charrier et al. (2007).

2



3



craton during the Sunsás orogeny1 (Fig. 1.1). This accretion occurred prior to both

the Pampean and Famatinian tectonic cycles at approximately 1.05 Ga. Although

this the only unequivocal Proterozoic terrane exposed in Chile, several other terranes

and blocks throughout South America have been documented to contain Rodinian

affinities (see review by Li et al. 2008). Figure 1.2 shows a simplified plate tectonic

reconstruction of the of the Rodinia supercontinent (A) and the Proterozoic terranes,

cratons, and blocks of South America (B), which places the Arequipa-Antofalla Ter-

rane directly in between Laurentia and Amazonia (Fig. 1.1-1).
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Figure 1.2: A.) Global tectonic reconstruction of the major components of Rodinia.
B.) Terranes of South America modified from Dalziel et al. (1994) and Ramos (2009).
Those with Proterozoic affinities are shaded in dark gray.

1Even this assertion made by Loewy et al. (2004) is in contrast to early suggestions for the origin
of the Arequipa-Antofalla Terrane made by this group (Lowey) as interpreted by Murphy et al.
(2004).
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1.1.2 Pampean tectonic cycle

The Pampean tectonic cycle occurred from the Early to Middle Cambrian (Rapela

et al. 1998; Durand 1996) upon the initiation of subduction along the Gondwana

margin and the closure of the Puncoviscan ocean (Fig. 1.1-2) (Dalziel 1997; Rapela

et al. 1998). The beginning of this cycle is marked by the transition from a sta-

ble continental margin distinguished by the Puncoviscana Formation (Turner 1960;

Do Campo and Guevara 2005) to one dominated by accretionary wedge deposits

(Rapela et al. 1998) (Fig. 1.1-3). Furthermore, exposures of the Eastern Sierras

Pampeanas contain a belt of I-type granitoids (Lira et al. 1997) dated at 530±4 Ma

by Rapela et al. (1998) that is interpreted to represent a subduction related magmatic

arc along the Gondwana margin (Fig. 1.1-3). Metamorphism and partial melting in

this region dated at 522±8 Ma has been interpreted to represent the collision of a

semiautochthonous terrane known as the Pampean Terrane (Rapela et al. 1998)(Fig.

1.1-4). Continued deformation of the Puncoviscana Formation is accompanied by

a low pressure high temperature metamorphic event at ca. 520 Ma. speculated to

represent ridge subduction processes (Piñán-Llamas and Simpson 2006).

1.1.3 Famatinian tectonic cycle

The Famatinian tectonic cycle extends from the Late Cambrian to the Early Devonian

and documents the restoration of subduction related magmatism (Pankhurst et al.

1998, and references therein) following the development of a passive margin after

Pampean Terrane accretion. Furthermore, the latter portion of this tectonic cycle is

dominated by the Ocloyic orogeny (Astini et al. 1995; Casquet et al. 2001; Astini and

Dávila 2004; Thomas et al. 2002). This extensive contractional phase is associated

with the docking of the Precodillera Terrane (equivalent to the Cuyania Terrane) now

located in north western Argentina.
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1.1.4 Gondwana tectonic cycle

The Late Paleozoic geologic evolution of Chile is defined as the Gondwana tectonic

cycle and signifies the continental assembly of Gondwana (Charrier et al. 2007).

This cycle establishes a paleogeographic environment typical of oceanic-continental

convergent settings with an accretionary prism, forearc basin, magmatic arc, and a

backarc basin situated from west to east. Voluminous intrusive rocks were emplaced

throughout the Late Carboniferous and Permian times (Gana and Tosdal 1996) now

exposed as the Coastal Batholith (Fig. 2.1) throughout the Coastal Cordillera (SER-

NAGEOMIN 2002, and references therein).

1.1.5 Pre-Andean tectonic cycle

The temporary cessation of subduction along the western margin of Gondwana during

the Late Permian to the Early Jurassic is distinguished as the Pre-Andean tectonic

cycle (Charrier et al. 2007). The 55 million year long absence of orogenic magma-

tism (Charrier et al. 2007; Mpodozis and Cornejo 1988; Nasi et al. 1985; Coira

et al. 1982) is believed to reflect the final assembly followed by the initial break up

of Gondwana. During this tectonic cycle within the Triassic, numerous NNW-SSE

trending extensional basins (Uliana and Biddle 1988; Mpodozis and Kay 1992) devel-

oped that record extensive silicic volcanic and plutonic activity interpreted to mark a

transition from arc to intraplate magmatism (Llamb́ıas and Sato 1995) and possibly

elevated heat flow associated with the supercontinent Pangea.

1.1.6 Andean tectonic cycle

The final, and currently active, tectonic cycle is denoted as the Andean tectonic cycle

and initiated during the Late Jurassic at the recommencement of eastward directed

subduction beneath Gondwana and South America. This tectonic setting forms the
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archetypal oceanic-continent convergent margin (Dewey and Bird 1970). As such,

this modern setting can provide a type locality to study subduction related pro-

cesses. Variations along the western margin of South America with respect to volcan-

ism (Thorpe and Francis 1979), earthquake distribution (Barazangi and Isacks 1976),

subduction angle (Wortel 1984), and stress regime (Lavenu and Cembrano 1999)

have long been established. Subduction angle is often invoked as the predominant

tectonic control responsible for trench-normal deformation along oceanic-continental

convergent margins (Coney and Reynolds 1977; Dickinson and Snyder 1978; Bird

1988). However, recent studies have established higher order processes affecting the

structural regime of deformation within the overriding continental plate as a function

of the nature of subducted oceanic crust (Cembrano et al. 2007; Yáñez and Cem-

brano 2004; English et al. 2003), trench sediment supply (Lamb and Davis 2003),

and mantle delamination (Wells and Hoisch 2008). These factors likely control the

deformation style of the Andean orogen that is characterized by short intervals of

contractional deformation between longer periods of time dominated by extensional

tectonics (Charrier et al. 2007).

1.2 Quantification of rock fabric

The ability to quantify rock deformation in three-dimensions provides an incredi-

ble tool for geologists to address the kinematics of large crustal structures that may

localize and de-localize deformation through time and space. The opening quote

presented by Ramsay and Huber (1983) after Sorby (1908) states: “In the case of

nearly all branches of science a great advance was made when accurate quantita-

tive methods were used instead of more qualitative. One great advantage of this is

that it necessitates more accurate thought, points out what remains to be learned,

and sometimes small residual quantities, which otherwise would escape attention,
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indicate important facts.” In the context of geology, the ability to identify the ro-

tations of strain ellipsoids in a spatial context with gradients in both the octahedral

shear strain and Lode parameter (explained later in text) can provide crucial infor-

mation on crustal scale tectonic motions through time that are not reflected by local

strain regimes obtained through the traditional use of asymmetric fabrics at a small

scale. For example, it has been shown by several workers that rheologically competent

lozenges enveloped within shear zones will produce conflicting kinematic indicators

if the lozenge propagates through the shear zone much like a zipper (see for a con-

ceptual model: Hudleston 1999). The following sections describe several methods in

which deformational fabrics developed in rocks may be elucidated and applied to this

large-scale approach.

1.2.1 The Rf/φ method

The Rf/φ method2 is an analytical strain technique that utilizes the mathematical

relationship between the sectional orientations and ellipticites (for example plots re-

fer to Figures: 2.12; 2.13; 3.3; and 3.8) of deformed ellipsoidal objects to calculate

the two-dimensional magnitude and orientation of finite strain (Ramsay 1967; Dun-

net 1969; Ramsay and Huber 1983; Lisle 1985). The primary assumptions of this

method are threefold: deformation at the scale of analysis is homogeneous, the dis-

tributions of undeformed object orientations were originally uniform, and objects

deform passively. This latter requirement can be corrected for if the properties of

differing viscosity can be constrained following Lisle et al. (1983). Ramsay (1967)

first presented the mathematical proof of this concept, which was then expanded on

by Dunnet (1969). However, Lisle (1985) presented the first comprehensive manual

for the application of the Rf/φ method to deformed rocks and has since been widely

2For a complete list of symbols used in this thesis, refer to Table 1.1.
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applied to a variety of geologic problems. In this section, I present the basic concepts

of the Rf/φ method and expand on recent software advances that allow for fast and

accurate strain calculations.

A suite of elliptical markers will define a curve given by Equation 1.1 after a given

amount of finite strain if the initial Ri values are equal and the initial orientations

define a uniform distribution. Similarly, if the initial object orientations are held at

a constant angle but contain a uniform distribution of initial ratios a curve is defined

for a given magnitude of finite strain following Equations 1.2 and 1.3.

φ =

(
1

2

)
arccos

(
(Rf + 1/Rf )× (Rs + 1/Rs)− 2× (Ri + 1/Ri)

(Rf − 1/Rf )× (Rs − 1/Rs)

)
(1.1)

Where θ 6= ±45◦ : Rf =

√
tan 2θ × (R2

s − tan2 φ)− 2Rs tanφ

tan 2θ × (1−R2
s tan2 φ)− 2Rs tanφ

(1.2)

Where θ = ±45◦ : Rf =

√
tan2 φ−R2

s

R2
s tan2 φ− 1

(1.3)

Therefore, a series of these curves can be constructed from each of the above equa-

tions for a given Rs value defining a range of Ri and φ values respectively. These

composite plots are known as deformation marker grids and are the traditional means

for calculating the Rs value. The application of statistical software packages (Peach

and Lisle 1979; Mulchrone and Meere 2001; Chew 2003) has allowed for the automa-

tion of Rs calculation by iteratively destraining3 an Rf/φ dataset and calculating a χ2

goodness of fit for a uniform distribution. The Rs used in Equations 1.1 and 1.2 that

produces the lowest χ2 value is inferred to represent the magnitude of finite tectonic

3Refer to Lisle 1985 for description of this terminology used synonymously to “un-straining.”
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strain if the assumptions of the Rf/φ method are constrained.

The vector and harmonic means for a given Rf/φ data set allow for the determi-

nation of the maximum extension axis direction, as well as the nature of symmetry

within the plot. As deformation progresses, the long axes of elliptical markers will

rotate into parallelism with the maximum extension axis. Therefore, the vector mean

(Equation 1.4) of long axis orientations provides the direction of maximum extension.

The harmonic mean (Equation 1.5, where n is the population size) together with the

vector mean will divide an Rf/φ plot into four regions that can be used to address

the nature of distribution asymmetry. In an ideal scenario, the final distribution

of Rf/φ points will be divided equally into these four regions. However, if the as-

sumptions of no initial preferred orientation, or the absence of multiple non-collinear

superimposed deformation events is invalid, the plot will be skewed producing lower

values of the index of symmetry (Lisle 1985). As such, this forms a qualitative way

to address the validity of several assumptions of the method.

φ̄ =

(
1

2

)
× arctan

(∑
sin 2φ∑
cos 2φ

)
(1.4)

H =
n∑n

i=1 1/Rfi

(1.5)

In general, a statistically valid population size requires 50 to 75 markers (Bor-

radaile 1984). This number is somewhat dependent on the initial conditions of mark-

ers such that lower initial ellipticities (e.g. ooids) will require a smaller population

size relative to objects of higher initial ellipticities (e.g. conglomerate pebbles) for a

given degree of accuracy (Dunnet 1969; Lisle 1985). Nevertheless, analyses with as

few as six objects have been presented in the literature (see for example Treagus and

Treagus 2002) while others fail to report any population size for their analyses (Czeck
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et al. 2009). Due to this disparity in data presentation, I propose that the following

properties be reported for a complete Rf/φ analysis:

1. The orientation of the sectional face for an analysis with respect to the principle

fabric planes if applicable (e.g. parallel to foliation etc.).

2. The number of objects used in a single analysis.

3. The object lithology.

4. The reference frame used in determining the orientations of objects.

5. The method used in extracting object parameters (i.e. manual vs. object fitting

software).

6. The method of Rs determination (i.e. χ2 vs. deformation marker grid fitting).

7. The calculated vector and harmonic means.

8. The index of symmetry.

The data presented within this thesis conforms to these standards and has been

generated with a χ2 test.

1.2.2 The Fry method

The Fry method, originally presented by Fry (1979), is an all object separation method

that is based on a single polar plot of all object centroid pairs (for an example of a

fry plot construction refer to Figures 4.6; 3.4; 3.9; and 4.2). This method requires six

assumptions to be addressed in order to calculate finite strain: strain is homogeneous

at the scale of deformation; the strain history is coaxial such that simple shear, as

accommodated by infinitesimally narrow shear planes, is not accounted for by the

analysis (Genier and Epard 2007); objects contain a minimum threshold distance;
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the initial centroid distribution is considered random (Poisson) (Lisle 2010), and the

object centroids do not migrate relative to the object’s enveloping surface during

deformation. This method has been applied (with variable degrees of success) to a

number of entities from deformed ooids Fry (1979) to salt domes (Rönnlund and Koyi

1988; Paterson et al. 1989). The general aspects of this method are presented below.

After some amount of finite coaxial strain the distribution of centroid pairs will

develop a non-random anisotropic pattern such that the original minimum threshold

distance will produce a elliptical central void. The ellipticity of this central void is

analogous to the shape and orientation of the finite strain ellipse. Traditional methods

use a visual estimation of the ellipse apogee and perigee to calculate Rs. Recently,

several workers have attempted to integrate a statistical destraining approach to

automatically calculate this value (see for example Waldron and Wallace 2007; Lisle

2010). However, the application of these “objective” fitting methods depend heavily

on estimated inputs provided by the user that can have significantly different results.

Furthermore, the non-unique results from these statistical tests introduce a level

of subjectivity. As such, caution is advised in applying this methodology without

addressing the degree of central void development.

A major problem in producing a well defined central void ellipse is the degree of

object centroid clustering and anti-clustering. Erslev (1988) presented a modification

to the Fry method in order to correct for the phenomenon of clustering and anti-

clustering of objects in two-dimensional sections. This modification can be applied

to objects that have roughly equal ellipticities following Equation 1.6 where K is a

scale constant.

Dn =
D√

Xa × Za +
√
Xb × Zb

×K (1.6)

Fry (1979) established a theoretical minimum population size of 260 centroids but

12



reccomended upwards of 1,000 objects. This issue of a large required population size

is further exacerbated in the production of the Fry plot following Equation 1.7 where

the total number of points plotted is determined.

Fry plot population = n× (n− 1) (1.7)

As such a “good” fry plot would require 67,340 points per section with a minimum

of three sections for a three-dimensional strain analysis requiring 202,020 coordinate

pairs to be plotted. Obviously, this application is best processed with the use of com-

puterized scripts to alleviate the logistical problems of data reduction. Nevertheless,

the application of this technique together with other methods such as the Rf/φ tech-

nique may provide insight to the nature of deformation in terms of vorticity or the

validity of assumptions used in either procedure.

1.2.3 Additional techniques

Although the Rf/φ and Fry methods are the most widely applied techniques in calcu-

lating finite deformation in rocks, several other methods have been presented in the

literature. As such, a brief explanation is warranted, which may form the basis of

future research on rock fabrics. The following paragraphs briefly describe these addi-

tional methods including the Sanderson method (Sanderson 1977), Panozzo projec-

tion technique (Panozzo 1984), the Delaunay triangulation nearest neighbor method

(Mulchrone 2005), and the intercept method (Launeau and Robin 1996).

1.2.3.1 Sanderson and Panozzo projection method

Although the Sanderson and Panozzo techniques are considered separate methods, the

difference between them is minor and presents slightly different sensitivities in their

results (Trayner 1986). In both methods, deformation is assumed to be homogeneous

13



at the scale of observation and that objects can be approximated by lines, which

are initially randomly oriented. In the Sanderson technique, the distributions of

material line orientations with respect to a fixed reference frame will deviate from a

uniform distribution into a normal distribution with progressive deformation where

the frequency of lines, out of the total number of lines (n), in a sector subtended by

φ1 and φ2 is given by Equation 1.8 (Sanderson 1977).

Frequency =
n

2π
× (arctan(Rs × tanφ2)− arctan(Rs × tanφ1)) (1.8)

This allows a standard set of histograms to be constructed and compared to an

empirical data set.

In the Sanderson method, the lengths of lines are not considered. This lack of

sensitivity to the extension of material lines can be accounted for by the Panozzo

projection method. In this technique, the horizontal components of a population of

lines are projected onto a horizontal line and summed. The dataset is then itera-

tively rotated and the components are again added to produce a histogram where the

maximum projected length corresponds to the maximum extension direction and the

quotient between the maximum and minimum projected lengths is equal to the ratio

of strain.

Trayner (1986) applied these two methods to an identical data set of grain bound-

ary orientations from a deformed limestone and recommended against using the

Sanderson technique. The reasoning of this stemmed from the ability of the Panozzo

method to address the calculated angle between semi-major and minor axes. In the

case that this angle is not 90◦, the assumptions of initial uniform distribution and

homogeneous deformation can be called into question. However, I propose that the

Sanderson method may provide information on the nature of deformation if applied
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in conjunction with the Panozzo technique. Assuming the results of the Panozzo

method are deemed acceptable, I propose that the relative difference, as shown in

Equation 1.9, between the calculated Rs values may yield a proxy for the degree of

solid-body rotation versus passive material flow (i.e. viscosity contrast). This pro-

posal assumes the Rs value generated from the Panozzo method is less than or equal

to the Sanderson result. To clarify, if the resultant strain ratio of the Panozzo method

is less than what is predicted by the distribution of line orientations, the lines have

likely rotated into a higher degree of alignment than suggested for passive material

flow.

Rotation index = 2× Rsan
s −Rpan

s

Rsan
s +Rpan

s
(1.9)

Higher values would likely imply higher viscosity contrasts, while a relative difference

of zero would suggest passive deformation (i.e. both Rs alues are equal). This premise,

however, is entirely conceptual as Chapter 5 discusses the error associated with the

Panozzo method that would need to be considered prior to applying this rotation

index.

1.2.3.2 DTNNM (triangulation method)

Mulchrone (2005) presented a method (Delaunay triangulation nearest neighbor method

modified from a previous version by Mulchrone 2003) based on principles first con-

sidered by Ramsay (1967) that calculates the finite strain ratio from objects that

are assumed to have an initially even distribution (see assumptions presented for the

Fry method in section 1.2.2). Due to the complexity of internal calculations used in

this technique, the details are omitted herein and the reader is encouraged to seek

the references listed above. Conceptually, this method simply takes a series of lines

connecting each point with its nearest neighbor and translates the lines to the origin

of the plot. This produces a plot that resembles a Fry plot with significantly fewer
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points (roughly the square root of the population size used to create a Fry plot) that

defines an elliptical region corresponding to the orientation and ellipticity of the fi-

nite strain ellipse. The major draw back to this method is the fact that at higher

and higher strains the method begins to break down in that nearest neighbor pairs

oriented roughly parallel to the maximum extension direction are less likely to occur.

1.2.3.3 The intercept method

The intercept method (Launeau and Robin 1996) is not considered an analytical

strain technique, but rather a process to quantify the shape preferred orientation of

markers, such as mineral grains, within a two-dimensional section. This method uses

a series of parallel lines at a given spacing that traverse a plane containing object

traces. At equal intervals along these lines a boolean expression is executed defining

whether or not each point falls within a defined object. Each time this test changes

from object to matrix an intercept is counted and summed for each grid line. As

such a total intercept value is obtain for a set of grid lines proceeding in a given

direction. This procedure is repeated iteratively through 180◦ and a polar plot can

be constructed of the intercepts. This plot can then be inversely fitted with an ellipse

that corresponds to the sectional fabric ellipse. An interesting aspect of the intercept

method is the nature of object surface irregularities in producing more intercepts.

Consider for example a perfectly elliptical object. If the intercept method is applied

to this object we would obtain an ellipse geometrically similar to the object. How-

ever, imagine this object has an undulatory surface (e.g pinch and swell proto-boudin

necks) but can still be approximated by the previous ellipse. In this case the inter-

cept method will produce a fabric ellipse that is lower in ellipticity. This change is

a function of increased intercepts produced by the irregular surface. For this reason,

the nature of object digitization can have a great affect on the resultant fabric ellipse
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such that smoother traces will tend to provide more intercept anisotropy for a given

object. As an extension to this method, I propose the simple application of fitted

object ellipses as a proxy for the object shape. This proposal shifts the conundrum of

object digitization to a different stage because the procedure that ultimately fits an

ellipse to the object may be dependent on the nature of boundary smoothness. How-

ever, based on experimentation with boundary smoothness and the program SAPE

(Mulchrone et al. 2005) following a seed grow algorithm implemented therein (Adams

and Bischof 1994), I assert this procedure is substantially less sensitive to boundary

irregularities4. Therefore the application of the intercept method to sections contain-

ing fitted ellipses of objects, as the object itself (i.e. the intercept method applied

to the boundaries of ellipses as opposed to the actual object boundaries), may better

reflect the most consistent values of fabric, and indeed may relate directly to finite

strain if the assumptions of homogeneous and passive deformation can be constrained.

However, this remains to be confirmed with future research.

4SAPE statistically fits an ellipse to the object region while the intercept method simply counts
the number of boundaries. As such, the fitting of objects by SAPE will effectively smooth asperities
and not significantly change the overall fitted ellipse.
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Table 1.1: List of symbols used throughout the text as related to fabric quantification.

Symbol Description
R The axial ratio the semi-major axis and semi-minor axis of an ellipse.
Ri The initial undeformed axial ratio of an elliptical object.
Rf The final deformed axial ratio of an elliptical object.
Rs The ratio of principle stretches in an undefined 2D section (strain ratio).

RXY, XZ, Y Z
s The strain ratio corresponding to a specific principle plane of strain.

(X, Y, Z)t1 Normalized strain ellipsoid principle axial lengths at the initial measure of time.
(X, Y, Z)t2 Normalized strain ellipsoid principle axial lengths after a given finite strain from t1 to t2.
(X, Z)a, b Axial lengths (semi major and minor, respectively) of object “a” and “b.”

θ Angle between the maximum extension and an object’s semi-major axis before deformation.
φ Angle between the maximum extension axis and an object’s semi-major axis of after deformation.1

s The index of symmetry for a sectional Rf/φ analysis.
vm, φ̄ The vector mean of the φ angles.
hm, H The harmonic mean of Rf values.
ε̄s The octahedral shear strain of finite deformation
ν Lode parameter defining the symmetry of strain.

Dn, D Normalized distance between object centroids and actual distance, respectively.
Rpan

3 , Rsan
s The calculated strain ratio as given by the Panozzo and Sanderson techniques, respectively.

γ Geological shear strain: γ = tanψ.

1Angle with respect to strike following right hand rule, positive angles are defined down-dip from the line of strike.
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Early Paleozoic evolution in NW Gondwana. Universidad Nacional de Tucumán,
Argentina, Serie Correlación Geológica 12, 195–205.

English, J., S. Johnston, and K. Wang (2003). Thermal modelling of the laramide
orogeny: testing the flat-slab subduction hypothesis. Earth and Planetary Sci-
ence Letters 214 (3), 619–632.

Finney, S., J. Gleason, G. Gehrels, S. Peralta, and G. Acenolaza (2003). Early gond-
wanan connection for the argentine precordillera terrane. Earth and Planetary
Science Letters 205 (3-4), 349–359.
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Mineŕıa, Chile. Carta geológica de Chile. Serie Geoloǵıa básica No. 75, 1 mapa
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Chapter 2

Reconstruction of progressive dike emplace-

ment in the Coastal Batholith, central Chile

Abstract

The Coastal Batholith of central Chile preserves structures that record the concentration,
migration, transportation, and emplacement of magma during the progressive construction
of a sheeted dike complex. This sheeted dike complex, located on the Pacific Coast near the
town of El Tabo, is divided into three main structural-geographic domains. The northwest-
ern domain contains an abundance of deformed microgranitoid enclaves that host features
such as fold hinges, tension gashes, boudin necks, and strain shadows that are filled with
leucosome. We relate these structures to features developed in migmatite terrains that facil-
itate the concentration of melt. The formation of inter-connected dilational sites produced
an array of lecocratic zones that contain apophyses with tapered tips suggesting fracture
propagation related to magma overpressurization. The coalescence of multiple proto-dikes
may have formed larger dike networks that facilitated the transportation of melt-rich magma
producing new magmatic units of similar mineralogy. The central domain is characterized
by the presence of two tonalitic units emplaced under syn-magmatic conditions that con-
tain two enclave swarms distinguished by their general packing arrangement (i.e. enclave
vs. matrix supported) and degree of elongation. Cross-cutting field relationships indicate a
younging of emplacement towards the southeastern domain associated with a decrease in en-
clave abundance. Differences in the fabric architecture of these enclave swarms are displayed
by two separate three-dimensional fabric analyses using the Rf/φ method, which indicates
an abrupt transition from low-distortion oblate fabrics to more distorted prolate geome-
tries. This change in fabric architecture suggests that either the nature of hypersolidus flow
affected the packing arrangement of enclaves and their corresponding geometries, or that
the nature of enclave packing induced a characteristically different hypersolidus flow, and
allowed enclaves to become more aligned and distorted in a colinear manner. These changes
are compared to the statistical alignment of feldspar phenocrysts, which indicate general
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flattening in both units with a higher degree of alignment within the XZ fabric plane for
the younger tonalite. This application of analytical strain techniques to magmatic fabrics
may help decipher changes in the nature of hypersolidus flow despite the lack of finite strain
significance. The third (southeastern) domain is distinguished by meter-scale, composition-
ally and texturally diverse sheeted dikes intercalated with biotite-rich migmatite screens of
the host gneiss along the pluton1 margin. These observations indicate that the mechanisms
of granitic magmatism including melt extraction, migration, transportation, and emplace-
ment do not necessarily occur in series, and may operate concomitantly throughout a single
pluton. This concentration and movement of magma within the pluton is dependent on
deformation of variable styles.

2.1 Introduction

The transportation and emplacement of subduction-related magmas within oceanic-

continent convergent settings is an important process resulting in the growth of conti-

nental crust through magma addition. Although numerous models establish a genetic

relationship between hypersolidus deformation and the transportation and emplace-

ment of plutonic complexes (Petford 1996; Miller and Paterson 1999; Hutton et al.

1990; Grocott et al. 1994; Kalakay et al. 2001) the role of deformation during

magmatic arc construction can be difficult to interpret in many settings. A ma-

jor impediment to the resolution of this uncertainty is derived from of the complex,

ambiguous kinematic significance of magmatic structures that are commonly incom-

pletely preserved such as mineral alignment fabrics (Paterson et al. 1989; Nicolas

1992a; Paterson et al. 1998; Blumenfeld and Bouchez 1988) microgranitoid enclave

swarm geometries (Tobisch et al. 1997), microgranitoid enclave shapes (Paterson

et al. 2004), geometries of schlieren (Wiebe et al. 2007), and hypersolidus folds (Pa-

terson et al. 1998). Although these structures must form in response to differential

stresses, complex spatial and temporal variations in strain make distinguishing flow

regimes difficult, which are dependent on properties that can vary both spatially and

1The definition of a pluton used within this text is a generic term for an igneous rock as adapted
from Winter et al. (2001, pg. 59).
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temporally, including compositional heterogeneity (Frost and Mahood 1987), viscos-

ity contrast (Williams and Tobisch 1994; Vigneresse and Tikoff 1999; Petford 2003),

strain rate (Johnson et al. 2004), and vorticity (Vigneresse and Tikoff 1999). As

such, the processes that produce magmatic fabrics within a pluton can be difficult

to completely constrain. For this reason the application of traditional structural me-

chanics (e.g. pure shear vs. simple shear) to the quantification of deformation within

polyphase systems (i.e. soild and liquid constituents) has been met with warranted

resistance (for a discussion on the complexity of strain and stress see: Paterson et al.

1998). Therefore, progressive homogenous deformation is not likely a viable assump-

tion. Despite this complexity, a large body of literature has established the genetic

role of hypersolidus flow and host rock deformation in the transportation of magma

through the crust.

In this chapter I present a field-based study of magmatic structures observed

from the Coastal Batholith of central Chile (Fig. 2.1) that record a progressive

emplacement history involving the concentration, migration, and transportation of

melt-rich magmas during pluton construction. This location provides an excellent

opportunity to study the role of deformation in magmatic transport processes due

to the variety of compositionally distinctive phases, structures, and mineral fabric

geometries within a well-exposed, easily accessible coastal transect (Fig. 2.2).

The Coastal Batholith is an extensive belt of late Paleozoic and early Mesozoic

calcalkaline intrusive rocks located in the Coastal Range that developed in response

to the east-directed subduction of oceanic crust beneath Gondwana. Diachronous

eastward migration of magmatism is documented by a progressive younging of plu-

tons to the east (Levi 1973; Vergara et al. 1995), which are generally interpreted

to have been emplaced at increasingly shallower crustal levels through time (Parada

et al. 1999). Therefore, the Coastal Range of central Chile broadly exposes a tempo-
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ral section of magmatism from the late Paleozoic to modern times. This long-lived

subduction related arc magmatism provides a link between the modern archetypal

volcanic arc of the Andes and intrusive processes occurring at deeper crustal levels.

My analysis of hypersolidus structures, including magmatic fabrics, tension gashes,

folds, boudins, dikes, and strain shadows, define a progressive evolution of dike em-

placement involving pulses of compositionally distinctive magmas, the partitioning

of leucosome into dilational sites, the formation of melt-rich dike networks, and the

construction of a sheeted dike complex. This progression involved the mingling of

dominantly tonalitic and dioritic magmas to produce rheological contrasts that helped

concentrate melt into fold hinges, tension gashes, boudin necks and strain shadows

during synmagmatic deformation. This concentration of melt into interconnected net-

works of leucocratic zones focused flow and mobilized melt aiding in the construction

of a composite dike complex along the pluton margin. In contrast to suggestions made

by Petford et al. (2000), these observations indicate that the mobilization, transporta-

tion, and emplacement of granitic magma can proceed concomitantly during pluton

construction and can produce a highly diverse array of mesoscale structures and dif-

ferent deformation styles that together facilitated the migration and transportation

of magma during the construction of the Coastal Batholith in central Chile.

2.2 Background

2.2.1 Geologic framework

Central Chile, from 33◦ S to 34◦ S (Fig. 2.1), comprises three physiographic provinces

that include the western flank of the Main Cordillera, the Central Valley, and the

Coastal Cordillera. The Main Cordillera forms the physical expression of the modern

volcanic arc and contains folded and faulted Paleogene volcaniclastic sequences that

host Neogene plutonic rocks (SERNAGEOMIN 2002). The Central Valley separates
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the Main Cordillera from the Coastal Cordillera and is bounded by a kinematically

complex array of basin-bounding fault systems (Lavenu and Cembrano 1999; Faŕıas

et al. 2005; Fock et al. 2005) that have accommodated 1.5–5.0 km. of subsidence

from the Oligocene to the Holocene (Elgueta et al. 2000). The Coastal Cordillera

is composed of late Paleozoic to Mesozoic plutons, hypabyssal intrusive rocks, and

volcanic sequences (Wall et al. 1996). The eastern flank of the Coastal Range consists

of Mesozoic sedimentary, volcaniclastic, and volcanic rocks that constitute a 15 km

thick sequence, which developed during extension driven subsidence within a series

of intra-arc basins (Vergara et al. 1995). In central Chile, these deposits overlie

an intrusive basement, which is exposed as the Coastal Batholith. This batholith is

composed of three plutonic belts including the Cretaceous Illapel Complex, the Middle

Jurassic Papudo-Quintero Complex, and the Carboniferous Santo Domingo Complex

(Parada et al. 1999). This eastward migration of magmatism led to the preservation

of structures produced during pluton construction in the Coastal Cordillera.

Coastal granitoids of the Santo Domingo Complex (Figs. 2.1 and 2.2) between Isla

Negra and El Tabo (Isla Negra igneous complex) display coarse-grained porphyritic

hornblende and biotite-bearing tonalites that host fine grained mafic and microgran-

itoid enclaves (henceforth referred to as enclaves) (Siña and Parada 1985; Siña 1987;

Parada et al. 1999). Enclave abundances are spatially variable within the tonalites,

ranging from < 1% to >50% by volume (Siña 1987). The close association of en-

clave swarms with mafic dikes has led previous workers to suggest a dismembered

syn-plutonic2 dike origin for these enclaves (Parada et al. 1999). However, their ex-

act provenance remains equivocal. These large tonalitic units transition towards the

2Syn-plutonic, as defined by Pitcher (1991, pg. 384) indicates intrusion of a dike prior to complete
crystallization of the host rock. As such this terminology refers to the state of the host rock and
not the state of the dike, which by definition is obviously magmatic. This definition sensu-stricto is
carried throughout the following text.
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host margin to sheeted dikes that are compositionally variable including megacrystic

granodiorites, granites, tonalites, and fine-grained biotite-rich granitoids (Figs. 2.1,

2.2, and 2.3) (Siña 1987). The sheeted dikes range in thickness from ∼10 cm to >1

km and are cut by relatively undeformed mafic dikes.

To our knowledge, no crystallization ages have been obtained directly from out-

crops near Isla Negra. However, a U-Pb zircon age of 291±1 Ma (Godoy and Loske

1988) and a Rb-Sr whole rock isochron age of 292±2 Ma (Hervé et al. 1988) constrain

an Early Permian age for similar rocks of the Santo Domingo Complex. One geo-

barometric pressure obtained for hornblende crystallization of 7 kbar is reported in

the literature (Siña and Parada 1985) and suggests mid-crustal emplacement (Petrini

and Podladchikov 2000). The relatively undeformed cross-cutting mafic dikes were

emplaced from 163 Ma to 157 Ma (Creixell et al. 2011) and have been reported

to truncate brittle epidotiferous faults and fractures (Creixell et al. 2009). This

relationship suggests exhumation to relatively shallow crustal levels by the Middle

Jurassic.

The Santo Domingo Complex is hosted by granitic metaigneous gneiss and metased-

imentary rocks of the Valparáıso Metamorphic Complex that are locally migmatitic

(Wall et al. 1996). These metamorphic units are well exposed south of the Isla Negra

igneous complex near the town of Las Cruces (Fig. 2.1). One K-Ar radiometric age

of 278±6 Ma was obtained from garnet-bearing quartzofeldspathic gneiss roughly one

kilometer east of Punta Lacho (Cordani et al. 1976). This date has previously been

interpreted as the age of metamorphism (Wall et al. 1996). However, based on the

host relationship of the Valparáıso Metamorphic Complex to the Isla Negra igneous

complex, we suggest that this date may indicate a cooling or partial resetting age

following emplacement of late Paleozoic plutons.
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2.2.2 Magmatic processes

Granitic magmatism requires the partial melting of some protolith, segregation of

leucosome, ascent of magma, and the emplacement of plutons or dikes (Petford et al.

2000). During these phases, changing flow regimes may completely obscure ear-

lier features, limiting the record available within many plutons to younger events.

Nevertheless, the recognition of dilational structures, magmatic foliations, lineations,

enclave swarms and dike networks can provide key information on the evolution of

igneous complexes during the construction of batholiths.

The physical segregation of melt from grain (µm) to sample scale (dm) zones re-

quires driving forces such as gravitational buoyancy or pressure gradients (Brown and

Rushmer 1997). The formation of low pressure “dilation sites” caused by deformation

include the development of interboudin partitions (Strömg̊ard 1973; Van der Molen

and Paterson 1979; Mancktelow 1995; Brown and Rushmer 1997), folds (Hand and

Dirks 1992; Brown 1994; Williams et al. 1995; Collins and Sawyer 1996), tension

gashes (Shaw 1980; Sleep 1988; Rutter and Neumann 1995), and shear zones (Brown

and Solar 1998). If sufficient volumes of melt are concentrated at the mesoscopic

scale, interconnected networks of dikes and veins can initiate ascent (Brown 2010)

that may transport magma through the crust. The mechanisms of large-scale magma

transportation are widely debated in the literature and typically involve combinations

of two end member models that include the diapiric rise of plutons versus dike-driven

ascent (see for example: Petford 1996 Miller and Paterson 1999; Paterson and Vernon

1995; Clemens and Mawer 1992; Clemens et al. 1997).

The mechanisms of magma ascent are difficult to ascertain based on the ambi-

guity of kinematic indicators (Nicolas 1992b) and the significance of foliations and

lineations (Paterson et al. 1998). Due to this limitation, many workers (e.g. John
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and Blundy 1993; Molyneux and Hutton 2000) have attempted to use the shapes and

orientations of enclaves and xenoliths to determine changes in strain throughout a

pluton. However, the use of enclaves as strain markers to evaluate these mechanisms

has been challenged (Paterson and Vernon 1995; Paterson et al. 1998). This challenge

is due to difficulties in constraining key properties such as the initial characteristics

of enclave populations, enclave rheology, enclave-host viscosity contrasts, the passive

nature of enclave deformation under homogeneous strain, and the final distributions

of enclave populations (Paterson et al. 2004). However, geometric changes in the

architecture of enclave swarms can provide information on the nature of hypersolidus

flow and may be used to distinguish geometric domains within a magmatic complex

that may correlate to other regional structures.

The switch from magma transportation to emplacement may be controlled by nu-

merous feed-back systems that involve properties such as stress, strain, and rheology

(see discussion on emplacement by Brown 2001), which are incompletely understood.

Although the previously mentioned processes for granitic magmatism are qualitatively

believed to occur in series (Petford et al. 2000), observations presented herein suggest

that melt segregation, ascent, and emplacement may occur concomitantly during the

progressive construction of magmatic arcs.
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Figure 2.1: Geologic overview map of the Andean coastal range in central Chile. Modified from SERNAGEOMIN (2002)
and Wall et al. (1996).
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Figure 2.2: Generalized geologic map of coastal exposures between Isla Negra and
El Tabo. Stereographic projection contains data from region shown in map obtained
in this study. Map lithologies and extent modified from Siña (1987). Mineral SPO
relates to the shape preferred orientation of minerals within the outcrop.
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Figure 2.3: Schematic cross-section illustrating the general architecture of magmatic phases and structures developed
between Isla Negra and El Tabo. See Figure 2.2 for line of section (A-A’).
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2.3 Observations of host rock

Granite augen gneiss of the Valparáıso Metamorphic Complex displays a metamorphic

foliation that is defined by the alignment of plagioclase and potassium feldspar por-

phyroclasts within a matrix of fine-grained biotite, quartz, and hornblende minerals.

The foliation dips steeply to the north–northeast and contains an east-trending min-

eral lineation. The three-dimensional geometry of fabrics developed throughout the

granite augen gneiss varies locally from L>>S (see for example section 3.4 in Chapter

3) to L<S tectonites. Feldspar porphyroclasts commonly exhibit strain shadows that

are weakly asymmetric and tend to lack robust kinematic indicators. Moreover asym-

metric porphyroclasts are observed in sections orthogonal to the mineral stretching

lineation and suggest a complex triclinic deformation history, the details of which

remain unresolved.

Discrete, low-displacement, mylonitic shear zones cross-cut the granite augen

gneiss fabric and deflect foliations into parallelism with the shear zone. These discrete

shear zones display significant grain size reduction and are frequently ultramylonitic.

The orientations and kinematics of the mylonites vary throughout the region and do

not define a coherent displacement direction. However, fault plane solutions3 con-

structed for each shear zone (this study) and plotted on one composite stereographic

projection indicate well defined contractional and extensional quadrants that are com-

patible with north–northeast directed contraction (see Appendix A). The use of fault

3I have used fault plane solutions on these low displacement mylonites to characterize the regional
shortening and lengthening directions. Although this technique is typically restricted to brittle
deformation structures, I assert that in this unique case the method is valid for the following reasons.
First, all displacements observed are low (I concede that the actual magnitude of displacement is
not directly obtainable due to a lack of offset markers, however, none of the described shear zones
are regionally traceable, nor do any offset discernible compostional units). Secondly, deformation
is highly localized and occurs within a narrow zone of reduced grain size. Finally, all measured
shear zones of this style in this region define clear contrational and extensional domains. As such,
the formation of these mylonites likely represent (or closely approximate) the orientations of the
instantaneous state of strain.
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plane solutions assumes deformation under brittle conditions and is generally not ap-

plied to ductile structures. The use of fault plane solutions in this study, however, is

supported by the fact that displacement is low for each shear zone and is constrained

in a narrow (1 - 5 cm) localized domain (see footnote for expansion on this idea).

Moreover, these mylonites do not display any evidence for progressive deformation

(e.g. folding) and likely represent orientations approximating the instantaneous state

of strain. Although the timing of these structures are poorly constrained, none are

observed within the Isla Negra igneous complex, suggesting pre-emplacement devel-

opment.

Biotite-rich quartzofeldspathic gneiss near Punto Lancho host lit-par-lit granitoid

dikes that are commonly folded, yet preserve magmatic textures and generally lack

evidence for solid state deformation. Additionally, dikelets of ptygmatically folded

leucosome are observed with euhedral garnet, indicative of a peritectic crystallization.

Leucosome and granitoid dikes are generally concordant to the gneissic foliation.

2.4 Pluton divisions

The Isla Negra igneous complex is divided into three domains defined by the spa-

tial distribution of structures, compositions, and textures. The northwestern domain

(Figs. 2.2 and 2.3) is characterized by a hornblende-biotite tonalite that hosts abun-

dant enclaves and diffuse leucocratic zones and dikes. The central domain is distin-

guished by a series of tonalitic units that show progressively lower enclave abundances

towards the southeast. The third domain is located to the southeast and is defined

by a composite sheeted dike complex that occurs along the southeast margin of the

Isla Negra igneous complex. The following subsections document these divisions in

detail.

Throughout all domains, magmatic foliations are moderately well developed and

38



are defined by the preferential alignment of subhedral tabular, bladed, and platy min-

erals such as plagioclase, hornblende, and biotite. Mineral trace lineations, defined

by the alignment of mineral long axes within the magmatic foliation, are weakly de-

veloped. The best fit magmatic foliation throughout the complex dips moderately

to the northeast and contains a bulk down-dip magmatic lineation (Fig. 2.2). Al-

though the orientations of these features vary locally, a well-defined and consistent

bulk magmatic fabric is found throughout the region. The orientations of sheeted

dikes are generally concordant to the magmatic foliation as well as the flat surfaces

of lenticular enclaves and zones of schlieren.

2.4.1 Northwestern domain

The northwestern domain consists of outcrops just south of Laguna Cordóva (Fig.

2.2 and 2.3) and exposures to the north towards Punta Tralca (Figs. 2.1). This

domain is distinguished by tonalites with abundant enclaves that display of variety

of shapes, sizes, and compositions. Enclaves frequently display strain shadows within

the surrounding tonalite host and are commonly folded, boudinaged, and fractured

with leucosome preferentially concentrated inside these small-scale structures. The

northwestern domain also contains leucocratic dikes that display a wide variety of

spatial relationships and geometries. The details of these structural associations are

described below.

2.4.1.1 Enclave textures

Enclaves are prophyritic and are divided into three groups on the basis of the relative

percentage and distribution of feldspar phenocrysts (Fig. 2.4). Groups one and two

consist of evenly distributed phenocrysts (Fig. 2.4A & B), while the third group con-

tains a heterogeneous phenocryst distribution (Fig. 2.4C). Group two is distinguished

from group one by a relatively high percentage of feldspar phenocrysts (Fig. 2.4B).
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Feldspar phenocryst distributions in heterogeneous enclaves are concentrated at the

margin of the enclaves and grade directly into the tonalite host (Fig: 2.4C). Further-

more, feldspar grains within the host tonalite are petrographically indistinguishable

from many of the phenocrysts found in the enclaves. Additionally, variations in en-

clave color indices indicate that the relative abundance of mafic constituents changes

between enclaves throughout the region. Although these enclaves lack evidence for

pervasive solid-state deformation, interstitial anhedral quartz grains do appear to

have a crystallographic preferred orientation as qualitatively determined with the use

of a lambda plate. Schlieren are associated with enclaves and tend to grade into

diffuse, cuspate (Fig. 2.4B) to lobate (Fig. 2.4C) enclave protrusions. This rela-

tionship is best observed in outcrop sections oriented parallel to the bulk magmatic

lineation and perpendicular to the bulk magmatic foliation. These features, in the

absence of evidence for pervasive solid-state deformation, suggests the that material

exchange between enclaves and the host tonalite may have occurred prior to complete

crystallization of the enclaves.

2.4.1.2 Enclave structures

The hinges of folded enclaves (∼ 1–5 cm in width) are filled with crescentic zones

of leucosome that narrow along fold limbs and grade into the host (Fig. 2.5). The

leucosome is characterized by a higher abundance of felsic minerals, such as feldspar

and quartz, as compared to the tonalite host. Several of the folds are bounded

by neighboring enclaves and display leucosome zones that widen into strain shad-

ows. Magmatic textures within the host rock, such as aligned subhedral to euhedral

plagioclase phenocrysts that lack evidence for pervasive crystal-plastic deformation,

indicate folding was synmagmatic. As such, this association suggests enclave fold-

ing produced pressure gradients that transfered melt into fold hinges (see review by
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Figure 2.4: Basic enclave classification based on textures. The field of view in each
photograph is 15 cm.

Brown and Rushmer 1997).

Enclaves frequently display wedge-shaped en echelon fracture arrays filled with

leucosome (Fig. 2.6). These fractures occur in a variety of shapes from planar to

sigmoidal with tapered tips and often occur together with shear band boudins. Figure

2.6 documents an example of this relationship where an array of three fractures display

an approximate maximum stretching direction that is compatible with the dextral

sense of shear developed along a neighboring shear band. Although it is tempting

to discuss the angular relationship of these arrays to zones of shear4, the inability

to constrain the three-dimensional orientations of these features invalidates the use

4For example, the angle between the shear plane and instantaneous shortening direction is often
used to distinguish simple shear versus transpression or transtension regimes.
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Notes
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Figure 2.5: Photograph and sketch of folded enclaves with leucosome concentrated
in fold hinges. Notebook width is ∼ 19 cm. The finite strain axes are inferred and
shown with black arrows.

of general flow models. Nevertheless, we interpret these fracture arrays to be the

result of tensile deformation under high fluid pressures and strain rates based of

the presence of tapered tips, sigmoidal shapes, and their en echelon geometry. A

component of shear may be accommodated by these tension gashes as evidenced by

offset enclave boundaries and the neighboring shear band boudinage. Multiple tension

gashes can form in a single enclave with non-parallel orientations and intersect such

that isolated enclave fragments may be enveloped in leucosome as shown in Figure 2.6.

Furthermore, the lengths of tension gashes can exceed half the width of the enclave

and may record the initial stages of deformation prior to boudinage. The presence of

tension gashes suggests high magmatic pressures together with high strain rates that

can produce tensile deformation allowing for the concentration of melt.

Boudinaged enclaves commonly contain leucosome preferentially concentrated in

interboudin partitions. The leucosome is preserved as medium to coarse-grained
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feldspar and quartz preferentially aligned parallel to the boudin axis (Fig. 2.7).

Mafic minerals observed within enclave boudin necks typically occur as lithic frag-

ments likely derived from partial disaggregation of the enclave during boudinage. The

development of tension gashes and boudins suggests changes in the general style of

deformation (i.e. brittle vs. ductile) likely in response to either increases in the local

strain rate or the progressive ridgification of enclaves such that fracture propagation

becomes the preferred mechanism of deformation (Blake and Fink 2000; Paterson

et al. 2004).

Figure 2.6: Photograph and sketch of fractured enclaves with leucosome concentrated
in en echelon tension gashes. Notebook width is ∼ 19 cm. The finite strain axes are
inferred and shown with black arrows. Tonalite is distinguished from leucosome by
color and an increase in felsic minerals. Note that the shearband boudinage is defined
by the small relative arrow symbol.

Enclaves and mafic xenoliths are commonly enclosed by magmatic foliations of the

host tonalite and form strain shadows with increased leucosome concentrations (Fig.

2.8). Figure 2.8 documents a plagioclase hornblendite xenolith within a hornblende-

biotite bearing tonalite. In this example, tonalite magmatic foliation traces symmet-
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Figure 2.7: Photograph and sketch of boudinaged enclave with leucosome concen-
trated in boudin necks. Coin is roughly 2.5 cm in diameter. Section of view is
roughly parallel to magmatic foliation The finite strain axes are inferred and shown
with black arrows..

rically deflect around, and envelope, the xenolith. The alignment of host minerals

defining the magmatic foliation is better developed along the upper and lower surfaces

of the object and become tangential to wedge shaped strain shadows. These strain

shadows also contain lithic fragments identical to the xenolith that imply mechanical

plucking of a rheologically competent object within hypersolidus flow (Fig. 2.8).

2.4.1.3 Leucocratic dikes

Zones of leucosome throughout the enclave bearing tonalite unit at Isla Negra display

a variety of geometries from globular domains to narrow dikes (Figs. 2.9 and 2.10).

The boundaries of these domains range from diffuse and gradational with undulat-

ing and scalloped geometries (Fig 2.9) to discrete and planar. Leucosome domains

also frequently surround and entrain enclaves (Fig. 2.9) whereas others directly trun-

cate enclaves without entrainment (Fig. 2.10). Moreover, some leucosome domains
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Figure 2.8: Photograph and sketch of partially dismembered xenolith with leucosome
concentrated in strain shadows. Length of pen cap is approximately 3 cm. The
finite strain axes are inferred and shown with black arrows. Gray arrows define
inferred pressure gradient trajectories that illustrate the flow of melt prior to complete
crystallization.

show planar apophyses with tapered tips that cross-cut fabrics within the tonalite

host (Fig. 2.10). This suggests that leucosome domains may form from multiple

mechanisms including fracture propagation (proto-dike formation) and inundation of

low melt-fraction magmas via pooling. Leucocratic zones range in thickness from

centimeter to meter scale and frequently bifurcate to form interconnected networks.

The diversity of leucosome dike geometries with mutually cross-cutting relationships

is indicative of the collection of magma within diffuse zones forming incipient dikes

followed by hydraulic overpressurization and fracture propagation (see discussion on

dike formation by Gudmundsson 1984). The formation of these interconnected dikes

likely accommodated the extraction of melt from a crystal mush into larger networks

of melt-rich magma.
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Figure 2.9: Photograph and sketch of a concentrated leucosome in diffuse undulating
zones. Notebook length is ∼ 19 cm.

2.4.2 Central domain

In contrast to the northwestern domain, which is characterized by the shortening

and stretching of enclaves and xenoliths to produce structures that mobilized melt

and formed proto-dikes, the central domain documents the transportation and em-

placement of magmatic pulses under variable flow regimes. This domain, located

south of Laguna Cordóva (Figs. 2.2 and 2.3), is characterized by the progressive de-

crease in enclave abundance and the variable geometries of enclave swarms through

a series of approximately tabular tonalitic units. Cross-cutting relationships, such

as rafted xenoliths and narrow truncating apophyses indicate emplacement younging

to the southeast. Contacts between tonalitic units display non-planar cuspate-lobate

geometries that are locally diffuse and gradational. The following sections describe

the quantification of fabrics defined by both the orientations and ellipticities of en-

claves, as well as the statistical alignment of feldspar grains from two tonalitic units
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Figure 2.10: Photograph and sketch of an overpressurized leucosome domain with a
tapered proto-dike apophysis (likely representing the initial stage of dike formation)
extending into background. Notebook length is ∼ 19 cm.

at location 11-IN-01 (Fig. 2.2).

I documented the development of distinctive fabrics in response to the influx of

new magma and how these relate to hypersolidus flow regimes. Despite the lack

of variance in magmatic foliation and lineation orientations across these units (see

stereographic projection in Figure 2.2), the architecture of enclave swarms change

as indicated by three-dimensional fabric analyses. This suggests that subsequent

magmatic pulses display widely different flow regimes, yet maintain a larger-scale

fabric likely imposed by boundary conditions such as the margins of the host rock or

more viscous dikes.

2.4.2.1 Field-based observations

Location 11-IN-01 (Fig. 2.2) documents the interaction of two tonalitic units dis-

tinguished by enclave swarm concentrations, packing, and three-dimensional fabric
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geometries. The northwestern unit is the left portion of the outcrop face as shown in

Figure 2.11. The southeastern unit contains rafts of the northwestern one indicating

that it is younger in age. The contact between the units show thin diffuse leucocratic

dikes with undulating cuspate-lobate geometries that grade into the southeastern

unit, near the base of the outcrop (Fig 2.11). Splays of this dike intrude the north-

western unit and terminate with tapered tips. Enclaves within the northwestern unit

are highly concentrated and display a large degree of impingement. Enclaves are

frequently bent around neighboring enclaves from which they are separated by thin

layers of tonalite matrix. Although the enclaves in this unit generally impinge one an-

other, they do not completely coalesce. This clast-supported enclave swarm creates5 a

network of interconnected volumes separated by impinged enclaves that are filled with

tonalite matrix. The southeastern unit contains a significantly lower enclave fraction

where neighboring enclaves only locally impinge and form a matrix supported enclave

swarm. Although both units are hornblende-biotite bearing tonalites, the southeast-

ern unit contains a smaller modal fraction of mafic minerals. Nevertheless, modal

percentages of these mafic constituents locally vary in both units. Thus, 11-IN-01

records the boundary between two syn-plutonic dikes with different compositions and

enclave packing.

2.4.2.2 Enclave swarm architecture

In order to better define the characteristics of different flow regimes within the Central

domain, I quantified changes in the three-dimensional architecture of enclave swarms.

These calculations are based on the orientations and shapes of enclaves at location

11-IN-01 as determined by the Rf/φ technique. The details of this methodology are

5This clast-supported network refers only to the northwestern unit shown on the left side of
Figure 2.11. The probability of intersecting a surface (i.e. the outcrop surface) through a point of
impingement is low compared to the intersection area of the matrix, that is, the corpuscle effect
following Burger and Skala 1976.
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Figure 2.11: Photograph and sketch of location 11-IN-01 (see Figure 2.2) illustrating
two distinct tonalite phases. Enclave swarm fabrics are distinctive between the older
northwest unit and the younger southeast phase, as explained in the text.

explained with detail in Chapter 3 and Appendix B. Data collection involved both

manual measurements and digital imagery on faces aligned approximately parallel

to the three principle fabric planes. The orientations of the principle fabric planes

were calculated using magmatic foliation and lineation measurements as proxies (see

stereographic projection in Fig. 2.2). Therefore, the best fit lineation corresponds

to the fabric X-axis contained within the best fit foliation plane. By definition, the

foliation plane also contains the fabric Y-axis and is orthogonal to the fabric Z-axis.

As such the orientations of the poles to the principle fabric planes are defined as

shown in Table 2.1. Outcrop faces closely aligned to these fabric planes were grouped

into three mutually perpendicular sections such that the largest angular difference

between any outcrop face and the corresponding principle fabric plane is 11◦ (Table

2.1). Section “A” correlates the X-Y fabric plane, “B” to the X-Z fabric plane, and

“C” to the Y-Z fabric plane. Changes in the properties of the enclave swarms provide
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details on the nature of changing hypersolidus flow regimes during injection of new

tonalitic phases within the central domain.

Table 2.1: Analytical enclave section orientations vs fitted L-S fabric data.

Correlation Pole to section Pole to fabric axis Angular difference
A-XY 240◦ 41◦ 231◦ 38◦ 8◦

B-XZ 334◦ 02◦ 330◦ 14◦ 11◦

C-YZ 065◦ 49◦ 078◦ 54◦ 10◦

In total, the axial lengths and orientations of 203 enclaves were measured for six

sectional Rf/φ analyses that contained an average population size of 34 enclaves per

section (Figs. 2.12 and 2.13). Section “A” from the northwestern tonalite produced a

fairly symmetric Rf/φ plot with an index of symmetry = 0.8 and a moderate harmonic

mean of 2.13 (Fig. 2.12). An RS value of 1.54 was obtained from the Microsoft R©

Excel macro written by Chew (2003) using a χ2 function. Section “B” produced

a significantly different Rf/φ plot with a much lower index of symmetry value (s =

0.75) and a higher harmonic mean (2.71). Furthermore, the enclave traces display

a high degree of alignment with higher ellipticities and produced a fabric ellipse

ratio of 2.55 (RS). The third section (“C”) produced a moderate RS value of 2.03

with a harmonic mean of 2.39 and a high index of symmetry (s = 0.86). These

sectional analyses indicate the highest degree of enclave alignment and ellipticity in

outcrop sections oriented parallel to the bulk magmatic mineral trace lineation and

perpendicular to the magmatic foliation. Sectional analyses from the southeastern

unit produced substantially different results. Section “A” from the first unit displayed

a symmetric plot (index of symmetry ∼ 1) with a moderate harmonic mean of 2.44

and a value of 2.36 for the sectional fabric ellipse. Section “B” also displayed an

extremely symmetrical plot (s = 0.9) but contained a higher harmonic mean and RS
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value of 5.11 and 4.45 respectively. Finally, section “C” produced results similar to

section “A” (harmonic mean = 2.42; RS = 2.04) aside from a much more skewed

index of symmetry (s = 0.78). Not unlike the first unit, the sectional results from the

southeastern domain indicate the highest degree of enclave alignment and ellipticity

in sections parallel to magmatic lineations and perpendicular to magmatic foliations.

Nevertheless, the axial ratios of sectional fabric ellipses are generally higher in this

unit with respect to the northwestern unit.
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Figure 2.12: Sectional Rf/φ results from the northwestern unit at location 11-IN-01.
Analyses“A”, “B”, and “C” correspond to the three mutually perpendicular principle
fabric planes describe in Table 2.1.

The sectional results from the two units at 11-IN-01 yielded two best-fit fabric el-

lipsoids using the software program Ellipsoid 2003 (Launeau and Robin 2005). From

this program, the orientations and normalized lengths of fabric ellipsoid axes were ob-

tained and modeled using code explained in Chapter 3. Figure 2.14 contains rendered

views of the synthesized fabric ellipsoids from the northwestern unit (Fig. 2.14A) and
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Figure 2.13: Sectional Rf/φ results from the southeastern unit at location 11-IN-01.
Analyses“A”, “B”, and “C” correspond to the three mutually perpendicular principle
fabric planes describe in Table 2.1.

the southeastern phase (Fig. 2.14B) that clearly display distinct geometries. The ori-

entations of the calculated fabric ellipsoids are plotted in Figure 2.15A and contain

closely aligned X-Y principles planes, as well as X-axes.

The calculated best-fit fabric ellipsoid axes are parallel to the bulk magmatic fo-

liation (corresponding to the calculated X-Y planes) and magmatic mineral lineation

(X-axis) (Fig. 2.15A). Although the ellipsoid orientations are similar, the correspond-

ing shapes are clearly different. This disparity is best illustrated by the Nadai plot

in Figure 2.15B. The Nadai plot represents strain magnitude space, used herein as a

proxy for “fabric magnitude space,” and compares the magnitude of distortion (ε̄s)

to the fabric symmetry (ν) (see review of strain magnitude space by Brandon 1995).

These parameters are based on Equations 3.10 and 3.9 which are described with detail

in the corresponding chapter. The calculated fabric ellipsoid from the northwestern
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Figure 2.14: Rendered image of oriented fabric ellipsoids from the northwestern (A)
and southeastern (B) units at 11-IN-01 corresponding to oblate and prolate fabric
symmetries. Ellipsoids normalized to an equal volume.

unit plots well within the oblate field (i.e ν = 0.46) and has a relatively low magnitude

of distortion (i.e. ε̄s = 0.73). The fabric ellipsoid from the southeastern unit, how-

ever, plots within the prolate field (i.e ν = −0.24) and is substantially more distorted

(i.e. ε̄s = 1.36).

2.4.2.3 Mineral alignment

In order to determine if the distributions of feldspar long axes from the tonalite host

record similar changes in fabric architecture as displayed by the enclave swarms, the

two-dimensional orientations of 1,726 feldspar grains were measured. These data were

collected from three mutually-perpendicular sections of two samples corresponding to

the units at 11-IN-01. The outlines of individual feldspar grains were traced from

scanned images of known orientation and processed in the program SAPE to extract

the rake of each long axis (Mulchrone et al. 2005). Figure 2.16 contains six histograms

corresponding to the principle fabric planes (e.g XY ∼ foliation) of the two samples.

Each histogram is normalized to the population size and re-centered along the vector
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Figure 2.15: A: equal area stereographic projection of principle fabric axes from two
tonalitic sub-domains at 11-IN-01. B: Nadai plot illustrating the relationship between
fabric symmetry (ν) and the octahedral shear fabric (ε̄s).

mean (calculations presented by Lisle 1985). The circular standard deviation (Fisher

1996) and population size are also presented for each analysis. Histograms that dis-

play a more pronounced peak and lower circular standard deviation indicate sections

where two-dimensional feldspar axes are more aligned. Conversely, histograms with-

out pronounced peaks and higher circular standard deviations correspond to sections

with poorly aligned grains. For both units at 11-IN-01, sections oriented parallel to

the bulk magmatic lineation and perpendicular to the magmatic foliation (XZ) have

the most pronounced peaks, indicating a greater degree of mineral alignment. Mineral

alignment within this section from the southeastern unit is higher than the north-

western unit as determined from the circular standard deviations. Sections oriented

parallel to the XY and YZ principle fabric planes display a lower degree of alignment

and are similar between the domains. As expected from the bulk magmatic foliation
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orientation where traces of mineral alignment can be followed across corners, feldspar

grains observed in the XY fabric plane are slightly more misaligned than the YZ

plane. The preferential alignment of feldspar grains in the XZ fabric plane mimics

the enclave swarm architecture and roughly defines a common X-axis. This style of

mineral alignment suggests a hypersolidus flow regime where feldspar phenocrysts are

allowed to rotate within the bulk foliation plane and can more freely spin about their

long axes suggesting a general flattening style of hypersolidus flow.
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Figure 2.16: Normalized histograms of feldspar long axis orientations determined
from two samples collected at location 11-IN-01 (see Figure 2.2). Individual plots
correspond to the respective principle fabric plane and tonalitic unit. Histograms in
upper row are from the northwestern enclave abundant tonalite unit shown in Figure
2.11. Lower plots are from the southeastern unit. The circular standard deviations
(CSD) are displayed for each analysis.
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2.4.3 Southeastern domain

The southeastern domain is located along the margin of the Isla Negra igneous com-

plex (Fig. 2.2 and 2.3) and is characterized by the occurrence of sheeted dikes that

are intercalated with screens of biotite-rich migmatitic host gneiss that frequently

grade into schlieren (Fig 2.17). These dikes consist of numerous compositionally

and texturally distinctive phases that can be grouped into three major lithological

classifications. These include prophyritic granitoids, enclave bearing granitoids, and

migmatic biotite-rich host gneiss. The porphyritic granitoids contain several sub-

phases that include megacrystic granodiorites, granites, and tonalites. Enclave-rich

granitoid sheets are similar in composition to the hornblende-biotite tonalites de-

scribed previously, yet generally tend to contain higher mafic mineral percentages.

Biotite rich migmatitic screens display wide variations in leucosome concentrations

and are commonly difficult to distinguish from schlieren zones in the granitoids. More-

over, several porphyritic granitoid dikes host biotite rich pods and isolated ribbons of

concentrated schlieren (Fig. 2.17). The orientations of sheeted dikes are concordant

to the bulk magmatic foliation, which is generally well-developed within individual

dikes. Location 11-IN-03 also hosts late-stage mafic dikes (Fig. 2.17) that trun-

cate magmatic foliations and sheeted dike contacts. Although the relative timing of

all magma injections cannot be ascertained from these field relationships (excluding

those previously described in section 2.4.2), the syn-plutonic style of dike emplace-

ment is well evidenced by the folded cuspate-lobate geometry of dike contacts as well

as exceptionally well preserved magmatic mineral textures.

2.5 Discussion

The Coastal Batholith of central Chile forms the archetypal example of a mid-crustal

igneous complex developed during oceanic-continent convergence. This batholith is
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Figure 2.17: Photograph and sketch of location 11-IN-03 (see Figure 2.2) illustrating
the sheeted dike geometry of compositionally and texturally distinctive phases.

comprised of three main plutonic belts that record an eastward migration of mag-

matism. The oldest of these compexes is the Santo Domingo Complex that is Late

Paleozoic in age. Due to the eastward shift of magmatism, the exposures of the Santo

Domingo Complex lack the overprinting of younger magmatism. As such, features

observed within these rocks likely record processes that may be occurring beneath

the modern arc.

One of the most poorly understood aspects of granitic magmatism has to do with
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the significance of structures preserved in plutons and batholiths. These features in-

clude the formation and relative development of magmatic foliations and lineations,

enclave swarms, hypersolidus folds, and dikes. Although these structures must form

in response to differential stresses, complex spatial and temporal variations in strain

make distinguishing flow regimes, in a continuum mechanics sense, ambiguous. As

such, the application of traditional structural mechanics (e.g. pure shear vs. simple

shear) to the quantification of deformation within polyphase systems (i.e. solid and

liquid constituents) has been met with warranted resistance6. This is complicated by

the non-linear changes in strain rates, viscosities, and composition through crystal-

ization. Therefore, assumptions of progressive homogenous deformation are difficult

to constrain. Despite this complexity, a large body of literature has established the

genetic role of hypersolidus flow and host rock deformation in the transportation of

magma through the crust.

Structures preserved within the Isla Negra igneous complex document the concen-

tration of melt-rich magma (evidenced by the presence of leucosome) within dilational

sites (Figs. 2.5, 2.6, 2.7, 2.8, and 2.18). These sites developed in association with

rheologically competent enclaves and are analogous to structures widely documented

in migmatite terrains (see review by Brown and Rushmer 1997). The preferential

formation of leucosome in saddle reefs (hinges of folded enclaves), tension gashes,

interboudin partitions, and strain shadows indicate that melt can be freely extracted

from a crystal mush. Although specific structures may develop in response to changes

in local stresses, many features are compatible with the orientations of regional short-

ening and extension as determined by the bulk foliations and lineations. For example,

boudinaged enclaves are best observed in sections oriented parallel to the magmatic

6Criteria outlined by Tikoff and Fossen 1995, for identifying vorticity in naturally deformed rocks
are genetically solid-state, whereas the application of vorticity to the magmatic state has largely
been experimental; see for example Dlugogorski et al. 1994
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mineral trace lineation. Moreover, the occurrence of en echelon tension gash arrays

are compatible with the sense of shear expressed by shear band boudinage in neigh-

boring enclaves. Many of these shear bands are observed in sections orthogonal to the

mineral trace lineation, which suggests shear across the principle stretching direction

if the development of these features are assumed to be contemporaneous. This tri-

clinic deformation symmetry may be a product of local (internal) magmatic stresses

and regional (external) stresses. However, the details of this possibility remain uncon-

strained. The presence of sigmoidal tension gashes may suggest simultaneous ductile

shear and brittle fracture propagation facilitated by fluctuations in local strain rate7

during the rigidification of enclaves (following nomenclature of properties presented

by Blake and Fink (2000) to define the cessation of enclave distortion). Nevertheless,

the concentration of leucosome within mesoscale features associated with enclaves and

xenoliths suggests that rheological heterogeneities are important in the mobilization

of melt from within a crystal mush.

The association of tabular enclave swarms and zones of increased schlieren con-

centration that resemble syn-plutonic dikes has led previous workers to interpret the

origin of enclaves as dismembered mafic intrusions prior to the full crystallization of

the host. Although the exact provenance of the enclaves I studied remains poorly

understood, variations in enclave textures suggest several processes involving the ex-

change of material. This textural heterogeneity may be the result of multiple batches

of magma or a single heterogeneous magma source. The localized increase in plagio-

clase phenocrysts near the margin of some enclaves suggests a possible partial mixing

of the tonalite host. This texture could represent xenocrysts that were mechanically

7The presence of features that display both brittle and ductile mechanisms of formation (e.g folded
tension gashes) with mutually cross-cutting relationships indicates that temperature fluctuation is
unlikely a dominate control on deformation style. Therefore, strain rate fluctuation is a plausible
control on deformation style following experiments by Gumbsch et al. 1998.

59



entrained within the host and are therefore not chemically mixed (sensu stricto).

Nevertheless, the elongation of enclaves suggests some degree of magma mixing (Ver-

non et al. 1988). This reasoning remains equivocal due to the occurrence of foliations

within enclaves defined by the alignment of hornblende and biotite grains that contain

interstitial anhedral quartz, which displays a crystallographic preferred orientation8.

The application of geochemical analysis to these enclaves may elucidate the nature of

magma interaction in future work. Finally, the occurrence of enclaves with cuspate

wispy tips that grade into schlieren highly suggests the mechanical abrasion of grains

from the enclaves by a less viscous matrix. The general orientation of these tips, as

observed in outcrop sections perpendicular to the bulk magmatic foliation and paral-

lel to the mineral trace lineation (i.e. XZ principle fabric plane), may indicate up-dip

matrix flow to the southwest relative to the enclave swarm form the northwestern

domain of Isla Negra.

The three domains of the Isla Negra igneous complex characterize a progression

of melt concentration, mobilization, and transportation into interconnected networks

that permit the transportation of progressively higher volumes of magma into tabular

bodies, which produced a sheeted dike complex (Fig. 2.18). The formation of melt-

rich networks within the pluton may produce younger dikes that can interact under

syn-magmatic conditions with older phases. The tonalite units within the central

domain document changes in fabrics developed with the emplacement of new magma

pulses as evidenced by both cross-cutting relationships and fabric analyses. These

fabric analyses document the transition from oblate low-magnitude distortion fabrics

developed in older enclave swarms that are characterized by enclave supported net-

works to moderately distorted prolate swarms within younger units characterized by

matrix supported enclave swarms. One sectional Rf/φ analysis (XZ plane) from the

8See Section 2.4.1.1.
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northwestern unit displays a low index of symmetry (S = .75) and may have resulted

from the superposition of multiple igneous fabrics (see Section 2.4.2.2). The change in

enclave swarm architecture is accompanied by a slight change in host mineral align-

ment. This suggests that the alignment of matrix minerals is sensitive to changing

flow regimes that also appear to affect the shapes and orientation of enclaves. Nev-

ertheless, the orientations of all fabric elements such as mineral foliations, mineral

lineations, enclave foliation (XY) planes, and stretching directions (X-axes) indicate

the orientation of magma flow during transportation just prior to emplacement below

the particle locking threshold (Paterson et al. 1998; Vigneresse and Tikoff 1999).

The notion of “last gasp” magmatic fabric development has led previous workers

to suggest that magmatic fabrics may reflect the instantaneous state of strain de-

veloped under regional paleostresses (Paterson et al. 1998). This, however, remains

as conjecture for the time being within the Coastal Batholith, and likely for most

areas as studies continue to show heterogeneous deformation in many plutons. The

fact that the orientations of these sheeted dikes are concordant to the orientations

of the previously mentioned fabric elements indicates that, although flow regimes

are unique developed within dikes, external boundary conditions (e.g pluton margin9

or older dikes) likely determine the bulk orientations of features developed in the

complex.

Although it is tempting to describe the enclave swarm fabric analyses in terms of

strain, numerous factors clearly invalidate the assumptions required to address the

magnitude and symmetry of strain. These assumptions include the state of homoge-

neous deformation at the scale of analysis, the passive nature of markers, the ability

to constrain the initial properties of marker populations, the identification of single

9This statement does not preclude the fact that pluton margins are frequently structurally con-
trolled. See for example Kalakay et al. (2001).
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marker geometries in three-dimensions, the belief that all markers are the same age,

the use of a sufficient number of markers to be statistically viable, the degree of vis-

cosity contrasts can be determined, and that data are collected at a scale in which

principle planes of strain exist (see requirements presented in Paterson et al. 2004 p.

1467).

The enclave swarms at Isla Negra violate many of these assumptions. Even if we

assume homogenous deformation, the three-dimensional geometries of enclaves can-

not be assumed ellipsoidal. We have clearly shown enclaves that contain fractures

and are folded with wispy cuspate tips. Moreover, viscosity contrasts are nearly im-

possible to constrain due to the clear variety in deformation styles including enclave

elongation, fracturing, folding, and abrasion. This implies a large spectrum of enclave

rheologies that was likely highly variable through time. This variety of deformation

mechanisms also invalidates the notion of passive marker deformation. For example,

the boudinage of enclaves will essentially reset the Rf value determined for that en-

clave. Moreover, shear band boudinage is observed at variety of levels of development

and suggests that the slightly asymmetric shapes of many enclaves may have been

produced by this process. Nevertheless, variations in the index of symmetry obtained

from Rf/φ analyses as well as gradients in fabric shape and orientation may provide

information on the possibility of multiple superimposed fabrics with regional scale

kinematic implications.

Although the finite state of strain is not reflected in my results, they indicate

a change in the architecture of enclave swarms with respect to different pulses of

magma. This change in architecture is most likely due to differences in the nature

of hypersolidus flow as imposed by the packing arrangement of enclaves, pressure

gradients, viscosities, and pluton boundaries. One promising aspect of regional fabric

studies is the ability to sub-divide regions of plutonic complexes in terms of structural
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domains that record stages of emplacement. This may elucidate regional trends in

flow style with respect to fabric rotation (and therefore, imply regional kinematics)

and magnitude of development. Despite the difficulties previously mentioned in as-

certaining the kinematics of plutonic features developed during emplacement, this

style of fabric quantification may aid in the reconstruction of progressive continen-

tal growth via batholith construction. The associations of these features within the

context of cross-cutting relationships indicates that melt concentration, mobilization,

migration, transportation, and emplacement are not genetically linked in series10, and

may in fact occur diachronously or simultaneously within a spatially complex system.

2.6 Conclusions

The Coastal Batholith of central Chile preserves structures that document the pro-

gressive construction of a sheeted dike complex within a pluton that was emplaced

along the margin of western Gondwana during late Paleozoic and Jurassic times.

Exposures between Isla Negra and El Tabo record diverse magma types, including

tonalites, diorites, granites, and granodiorites. These magmas interacted with each

other under hypersolidus conditions forming enclaves and syn-plutonic dikes with vis-

cosity contrasts that locally exchanged material forming schlieren and compositionally

variable enclaves.

Deformation of rheologically competent phases was associated with the partition-

ing of leucosome into mesoscale structures such as fold hinges, boudin necks, tension

gashes and strain shadows. The deformation that produced these structures concen-

trated melt from the crystallizing host tonalite and produced interconnected domains

of leucosome. The contacts between leucosome domains and host tonalite are diffuse,

undulating, and scalloped. Other leucocratic zones display contacts that are more

10For a review of granitic magmatism terminology see Brown (2001).
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Figure 2.18: Schematic diagram displaying the general evolution of magmatic phases
recorded within the igneous complex between Isla Negra and El Tabo. 1.) Incomplete
interaction of compositionally distinctive magmas forming enclaves and schlieren.
2.) Rheological heterogeneities create dilational sites that concentrate melt during
deformation of crystal rich mush. 3.) Small volumes of concentrated melt pool and
become overpressurized causing diking. 4.) Dikes and melt rich domains become
interconnected and increase in volume forming distinct magmatic phases and flow
kinematics 5.) Magmatic phases emplace as dikes forming a composite sheeted pluton
along margin with host rock.
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planar and well defined. The presence of tapered apophyses originating from diffuse

leucocratic zones suggests locally fluctuating strain rates and magmatic overpressur-

ization that facilitated fracture propagation and formed proto-dikes.

The formation of interconnected dikes implies the transportion of higher volumes

of melt-rich magmas through the crystal mush that produced subsequent magmatic

pulses. Synmagmatic folds and cuspate-lobate contacts between these magmatic

pulses indicate emplacement of new phases prior to complete crystallization of host

units below the particle locking threshold (Vigneresse and Tikoff 1999). This pro-

gressive emplacement of numerous magmatic phases along the pluton margin formed

a sheeted dike complex with diverse textures and compositions.

The progressive emplacement of sheeted dikes was accompanied by distinctive flow

regimes that are distinguished by changes in the architecture of enclave swarms and

mineral fabrics. The results of three-dimensional fabric analyses applied to enclave

swarms within two tonalitic units indicate a clear difference in fabric symmetry as

a function of the arrangement of enclave shapes and orientations. Additionally, the

statistical alignment of feldspar phenocrysts within the host tonalite for the enclave

swarms indicates a general flattening flow regime that is relatively similar for both

units. The orientations of the calculated fabric ellipsoid X-Y planes and Z-axes are

concordant to the regional magmatic foliations and mineral trace lineations, respec-

tively. This association allowed me to recognize commonalities in fabric orientations

at a variety of scales (e.g. large dike orientations, mineral orientations, and enclave

swarm geometries) that is indicative of a flow regime imposed by conditions likely

resulting from the boundaries of the igneous complex or previously emplaced dikes.

This concordance of multiple features throughout the Isla Negra igneous complex

suggests that regional boundary conditions establish the final statistical orientations

of magmatic foliations, enclave swarms, and dikes.
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These observations indicate that the mobilization, transportation, and emplace-

ment of granitic magma can proceed concomitantly during pluton construction. This

progression concentrates and moves melt-rich magma into pulses of higher volume

that are emplaced along the pluton margin forming a sheeted dike complex. These

pulses are characterized by changes in fabric architecture, which may be useful in

mapping zones of focused flow and circulation within other magmatic complexes.

Our results highlight the role of deformation to produce a highly diverse array of

structures that allowed for the migration and transportation of magma during the

construction of the Coastal Batholith in central Chile.

References

Blake, S. and J. Fink (2000). On the deformation and freezing of enclaves during
magma mixing. Journal of Volcanology and Geothermal Research 95 (1-4), 1–8.

Blumenfeld, P. and J. Bouchez (1988). Shear criteria in granite and migmatite de-
formed in the magmatic and solid states. Journal of Structural Geology 10 (4),
361–372.

Brandon, M. (1995). Analysis of geologic strain data in strain-magnitude space.
Journal of Structural Geology 17 (10), 1375–1385.

Brown, M. (1994). The generation, segregation, ascent and emplacement of gran-
ite magma: the migmatite-to-crustally-derived granite connection in thickened
orogens. Earth-Science Reviews 36 (1-2), 83–130.

Brown, M. (2001). Orogeny, migmatites and leucogranites: a review. Journal of
Earth System Science 110 (4), 313–336.

Brown, M. (2010). The spatial and temporal patterning of the deep crust and im-
plications for the process of melt extraction. Philosophical Transactions of the
Royal Society A: Mathematical, Physical and Engineering Sciences 368 (1910),
11–51.

Brown, M. and T. Rushmer (1997). The role of deformation in the movement of
granitic melt: views from the laboratory and the field. In M. Holness (Ed.),
Deformation-enhanced fluid transport in the Earths crust and mantle, pp. 111–
144. Mineralogical Society Series vol. 8.

Brown, M. and G. Solar (1998). Granite ascent and emplacement during contrac-

66



tional deformation in convergent orogens. Journal of Structural Geology 20 (9),
1365–1393.

Burger, H. and W. Skala (1976). Comparison of sieve and thin-section technique by
a monte-carlo model. Computers & Geosciences 2 (2), 123–139.

Clemens, J. and C. Mawer (1992). Granitic magma transport by fracture propaga-
tion. Tectonophysics 204 (3-4), 339–360.

Clemens, J., N. Petford, and C. Mawer (1997). Ascent mechanisms of granitic mag-
mas: causes and consequences. In M. Holness (Ed.), Deformation-enhanced fluid
transport in the Earths crust and mantle, pp. 145–172. Mineralogical Society
Series vol. 8.

Collins, W. and E. Sawyer (1996). Pervasive granitoid magma transfer through the
lower–middle crust during non-coaxial compressional deformation. Journal of
Metamorphic Geology 14 (5), 565–579.
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Mecanismos de la depositación volcanoclástica oligo–miocena del cajón del
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Hervé, F., F. Munizaga, M. Parada, M. Brook, R. Pankhurst, N. Snelling, and
R. Drake (1988). Granitoids of the coast range of central chile: geochronology
and geologic setting. Journal of South American Earth Sciences 1 (2), 185–194.

Hutton, D., T. Dempster, P. Brown, and S. Becker (1990). A new mechanism of
granite emplacement: intrusion in active extensional shear zones.

John, B. and J. Blundy (1993). Emplacement-related deformation of granitoid
magmas, southern adamello massif, italy. Geological Society of America Bul-
letin 105 (12), 1517–1541.

Johnson, S., R. Vernon, and P. Upton (2004). Foliation development and progres-
sive strain-rate partitioning in the crystallizing carapace of a tonalite pluton:
microstructural evidence and numerical modeling. Journal of Structural Geol-
ogy 26 (10), 1845–1865.

Kalakay, T., B. John, and D. Lageson (2001). Fault-controlled pluton emplacement
in the sevier fold-and-thrust belt of southwest montana, usa. Journal of Structural
Geology 23 (6-7), 1151–1165.

Launeau, P. and P. Robin (2005). Determination of fabric and strain ellipsoids from
measured sectional ellipses–implementation and applications. Journal of struc-
tural geology 27 (12), 2223–2233.

Lavenu, A. and J. Cembrano (1999). Compressional-and transpressional-stress pat-
tern for pliocene and quaternary brittle deformation in fore arc and intra-arc
zones (andes of central and southern chile). Journal of Structural Geology 21 (12),
1669–1691.

Levi, B. (1973). Eastward shift of mesozoic and early tertiary volcanic centers in the
coast range of central chile. Bulletin of the Geological Society of America 84 (12),
3901.

Lisle, R. (1985). Geological strain analysis, a manual for the rf/phi method.

Mancktelow, N. (1995). Deviatoric stress and the interplay between deformation

68



and metamorphism. In Geological Society of Australia, Abstracts, Clare Valley
Conference, Volume 40, pp. 95–96.

Miller, R. and S. Paterson (1999). In defense of magmatic diapirs. Journal of Struc-
tural Geology 21 (8-9), 1161–1173.

Molyneux, S. and D. Hutton (2000). Evidence for significant granite space creation
by the ballooning mechanism: the example of the ardara pluton, ireland. Geo-
logical Society of America Bulletin 112 (10), 1543.

Mulchrone, K., P. Meere, and K. Choudhury (2005). Sape: a program for semi-
automatic parameter extraction for strain analysis. Journal of structural geol-
ogy 27 (11), 2084–2098.

Nicolas, A. (1992a). Kinematics in magmatic rocks with special reference to gabbros.
Journal of Petrology 33 (4), 891.

Nicolas, A. (1992b). Kinematics in magmatic rocks with special reference to gabbros.
Journal of Petrology 33 (4), 891.

Parada, M., J. Nyström, and B. Levi (1999). Multiple sources for the coastal
batholith of central chile (31-34 s): geochemical and sr-nd isotopic evidence and
tectonic implications. Lithos 46 (3), 505–521.

Paterson, S., T. Fowler Jr, K. Schmidt, A. Yoshinobu, E. Yuan, and R. Miller (1998).
Interpreting magmatic fabric patterns in plutons. Lithos 44 (1-2), 53–82.

Paterson, S., G. Pignotta, and R. Vernon (2004). The significance of microgranitoid
enclave shapes and orientations. Journal of Structural Geology 26 (8), 1465–1481.

Paterson, S. and R. Vernon (1995). Bursting the bubble of ballooning plutons: A
return to nested diapirs emplaced by multiple processes. Geological Society of
America Bulletin 107 (11), 1356–1380.

Paterson, S., R. Vernon, and O. Tobisch (1989). A review of criteria for the identi-
fication of magmatic and tectonic foliations in granitoids. Journal of structural
geology 11 (3), 349–363.

Petford, N. (1996). Dykes or diapirs? Geological Society of America Special Pa-
pers 315, 105–114.

Petford, N. (2003). Rheology of granitic magmas during ascent and emplacement.
Annual Review of Earth and Planetary Sciences 31 (1), 399–427.

Petford, N., A. Cruden, K. McCaffrey, and J. Vigneresse (2000). Granite magma
formation, transport and emplacement in the earth’s crust. Nature 408 (6813),
669–673.

Petrini, K. and Y. Podladchikov (2000). Lithospheric pressure-depth relationship in
compressive regions of thickned crust. Journal of Metamorphic Geology 18 (1),
67–78.

Rutter, E. and D. Neumann (1995). Experimental deformation of partially molten
westerly granite under fluid-absent conditions, with implications for the extrac-
tion of granitic magmas. Journal of Geophysical Research 100 (B8), 15697–15.

69



SERNAGEOMIN (2002). Mapa Geológico de Chile. Servicio Nacional de Geoloǵıa y
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una mezcla de magmas. In Proc. Congreso Geológico Chileno, 4th, Antofagasta,
Chile, Volume 3, pp. 512–530.

Sleep, N. (1988). Tapping of melt by veins and dikes. Journal of Geophysical Re-
search 93 (B9), 10255–10272.
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Chapter 3

A methodology for the quantification and

visualization of deformed rock fabrics within

the statistical computing environment R

Abstract

A comprehensive method for the quantification of three-dimensional rock fabrics following
the Rf/φ and Fry methods is presented herein. This method outlines the steps required
to construct a three-dimensional fabric ellipsoid from a variety of data sources including
standardized outcrop images, scanned hand-sample slabs, and photomicrographs of thin
sections. This methodology utilizes a series of scripts written within the open-source sta-
tistical computing environment R to convert data formats between preexisting strain soft-
ware packages. Moreover, these scripts produce an array of graphical figures and models
including sectional and three-dimensional Fry plots, sectional Rf/φ plots, interactive three-
dimensional fabric ellipsoid models, a Nadai plot of the Lode parameter and octahedral
shear strain, and a stereographic projection of the calculated fabric ellipsoid axial orienta-
tions. In order to test the utility of this procedure, a three-dimensional synthetic model
of known strain shape, magnitude, and orientation was tested. The results of this assess-
ment indicate that the procedure accurately calculated the expected state of strain within a
small margin of error. Finally, a natural example is presented to test the method’s ability to
quantify the estimated tectonite fabric properties. This example is an L >> S metagranite
augen gneiss from the Coastal Batholith of central Chile. This analysis resulted in calcu-
lated fabric ellipsoids from both the Rf/φ and Fry methods that clearly display significantly
prolate geometries at moderate distortions.
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3.1 Introduction

The recognition and quantification of rock fabrics can provide crucial insight to the

nature of finite deformation. Numerous studies have directly correlated changes in

fabric geometry (i.e. L > S; L ∼ S; L < S tectonites) to large scale structural features

such as thrust nappes (Flinn 1956; Hossack 1968), metamorphic core complex detach-

ments (Wells 2001), oroclinal fold hinges (Sullivan 2006), and mid-crustal extensional

shear zones (Klepeis et al. 2007). Nevertheless, a major restriction to the applica-

tion of classic analytical strain techniques to geologic scenarios is the time consuming

and commonly subjective nature of data collection, reduction, and synthesis (Dunnet

1969; Borradaile 1984; Lisle 1985; Fry 1979). Although several advances in computa-

tional software have greatly reduced the tedious nature of applying analytical strain

techniques to deformed rocks, a comprehensive integration of these tools from data

extraction to fabric modeling remains unestablished (Mulchrone et al. 2005; Chew

2003; Waldron and Wallace 2007; Mookerjee and Nickleach 2011). This limitation is

partially the result of data format incompatibilities and a lack of visualization func-

tionality. In order to elucidate regional trends from numerous three-dimensional fabric

analyses, a standard methodology that enables efficient processing and visualization

of extensive datasets is a fundamental requirement.

In this chapter, I present a procedure that integrates several widely available com-

puter programs to rapidly process large quantities of three-dimensional rock fabric

data and produce a series of standardized figures. This procedure is accompanied

by a set of templates and scripts written in the open-source statistical computing

environment R (R Development Core Team 2010) that establish a standard opera-

tional convention to produce three-dimensional fabric ellipsoids, following both the

Fry (Fry 1979) and the Rf/φ techniques (Ramsay 1967; Dunnet 1969; Ramsay and
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Huber 1983; Lisle 1985). The results of two separate analyses applied to a deformed

synthetic model with a known three-dimensional strain geometry and a natural ex-

ample with an L >> S gneissic fabric (determined from visual estimations) indicate

the validity of this procedure. My results closely align to the expected values of these

tests and clearly establish the ability of this procedure to distinguish changes in the

calculated fabric ellipsoid distortion, shape, and orientation.

3.2 Methodology

In order to quantify the three-dimensional architecture of a rock fabric, data must

be collected, extracted, analyzed, synthesized, and presented. This involves collect-

ing measurements on three mutually perpendicular sections where the properties of

objects (locations, orientations, and ellipticities) can be obtained and analyzed with

either the Rf/φ technique or the Fry method. The results of these analyses are then

synthesized into a fabric ellipsoid and presented in terms of shape, distortion, and

orientation. Although the details of this procedure are explained with detail in the

accompanying manual (see Appendix B), the following paragraphs provide a brief

outline of the major steps required.

3.2.1 Data collection and extraction

Data used for fabric analysis can be obtained from a variety of sources including

standardized outcrop images, slabbed hand sample scans, thin section photomicro-

graphs, and manual measurements1. These data (excluding manual measurements)

are obtained from digital imagery that is tagged with orientation information such

that the section can be placed within a three-dimensional context. Object traces

within the images are manually outlined to ensure correct selection of data (B.4) and

1Manual measurements will bypass the SAPE parameter extraction procedure as explained later
in text.
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allow for the statistical fitting of ellipses to each object. Although object detection

software may be viable in certain circumstances, it is not discussed further herein due

to complexities involved in distinguishing like-colored objects or boudin trains. The

object traces are exported to binary color bitmap files (B.5) and processed within

the program SAPE (Mulchrone et al. 2005). This program fits an ellipse to each

of the object traces and extracts the locations, axial lengths, and the orientations of

semi-major and minor axes throughout the image. These data are processed by an

R script to convert and write output files that are compatible with software designed

for two-dimensional strain analyses.

3.2.2 Sectional analyses

Two-dimensional fabric analyses are applied to each of the three-mutually perpendic-

ular sections by running the output files created within the previous stages through

several widely available analytical strain programs. Programs currently compatible

with this technique include Rf/Phi v1.0 (Mulchrone and Meere 2001), a Microsoft R©

Excel macro for Rf/φ analysis (Chew 2003), and an objective central void fitting

macro for the Fry method (Waldron and Wallace 2007). The details of these specific

analyses are presented in the accompanying manual (Appendix B) and the original

citations. The analytical results are then tagged to the corresponding sections and

processed through another R-script that generates an array of standardized plots.

The plots are saved as portable document files that can easily be imported into most

vector based graphic programs for production of publication-quality figures. Addi-

tionally, a file is automatically generated in the previous script that is formatted for

use in the program Ellipsoid 2003 (Launeau and Robin 2005).
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3.2.3 Ellipsoid synthesis

Ellipsoid 2003 (Launeau and Robin 2005) statistically fits a fabric ellipsoid to the

sectional data and returns the ellipsoid properties including normalized axial lengths,

axis orientations, and an “incompatibility index” (
√
F̃ ) that is a proxy for the de-

gree of misfit between the ellipsoid and the sectional ellipses. Although this program

provides all the raw data necessary to completely address the nature of fabric archi-

tecture, it does not present these results in elegant format, nor does it quantify the

fabric symmetry or magnitude of distortion. Therefore, the results can be save into

a file for further processing in R.

3.2.4 Visualization and presentation

In order to produce high quality standardized figures that aid in the visualization

and presentation of the calculated fabric ellipsoid, the output from Ellipsoid 2003

must be processed with scripts in R. These scripts enable the generation of a real-

time interactive ellipsoid model that is correctly oriented relative to a geographic

reference frame, a Nadai plot, and a stereographic projection of the calculated XY

principle fabric plane and principle axes. The ellipsoid model is also saved as a

three-dimensional mesh object that can be manipulated in the open source programs

MeshLab
TM

and Blender
TM

. Within these programs the ellipsoids can be stylized and

exported to a variety of images from any view point to best communicate the results.

As with the other plots, the Nadai plot and stereographic projection are saved as

portable document files and can easily be incorporated into publishable figures.
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3.3 Synthetic analysis

3.3.1 Model construction

The application of this procedure to a synthetic model is the most direct means to

address the nature of error introduced. In order to construct a viable model for strain

analysis, an undeformed dataset that upholds the initial conditions assumed for the

Rf/φ and Fry methods must be created (see review by Ramsay and Huber 1983 and

Chapter 1 of this thesis). The Rf/φ technique requires an initial set of randomly ori-

ented elliptical objects with varying ellipticities (Ramsay 1967; Dunnet 1969; Ramsay

and Huber 1983; Lisle 1985). As this medium undergoes homogeneous finite deforma-

tion, a statistical relationship between object orientations and ellipticities forms as a

product of the imposed strain magnitude and orientation. Similarly, the locations of

the object centroids will translate relative to each other in a predictable manner. This

translation forms the fundamental premise of the Fry method2 if the initial popula-

tion of markers roughly fits a “random” Poisson distribution and contains a minimum

nearest-neighbor threshold distance (Fry 1979; Lisle 2010).

The initial undeformed dataset used to create the synthetic model was generated

by a script written for the program R to maintain the assumptions of both strain

techniques. This script automatically creates a list of 1,000 axial ratios that fit a

normal distribution characterized by a known mean (R̄i = 1.5) and standard deviation

(σ = 0.167). This distribution limits the range of initial axial ratios from roughly one

to two, which are subsequently normalized to a common ellipse area. The script also

produces a population of values ranging from zero to 180 with a uniform distribution

to properly orient each ellipse. Although this criteria is sufficient for an Rf/φ analysis,

the distribution of ellipse centroids must be constrained for the Fry analysis. This

2For more information refer to Section 1.2.1.
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requires the determination of ellipse to background percentage and the prevention

of overlapping objects. In order to adequately produce a population of objects, the

script must determine the window size for plotting, as a function of the number of

clasts and the total clast area following Equation 3.1 where Ae is the summation of

all individual ellipse areas.

Window Area =

(
100× Ae

Clast Percentage

)
+ Ae (3.1)

Once the script has calculated the window size for plotting within Cartesian space,

the range of centroid coordinate values is determined. To prevent any ellipses from

overlapping, I designed an algorithm that randomly generates an X and Y coordinate

from a uniform distribution (limited by the window size) and tests the value against

previously accepted coordinates that are buffered by the summation of long axis

pairs. If the buffer length is greater than the centroid distance, the test coordinates

are rejected and new values are generated. Finally, the script will plot the set of 1,000

ellipses, which represents any two-dimensional section through an undeformed state

of strain.

In order to develop a three-dimensional strain ellipsoid with known geometric

properties, the initial undeformed dataset must be systematically distorted for each

principle plane such that the finite strain ellipsoid volume is preserved (Fig. 3.1). If

the initial measure of time (t1) represents the undeformed dataset, the initial geome-

try of strain can be represented by a sphere. In this unique case, the Lode parameter

(ν, also referred to as the strain symmetry) and the octahedral shear strain (ε̄s) are

both equivalent to zero3 (Lode 1926; Nadai 1963; Hsu 1966; Hossack 1968). The Lode

3The octahedral shear strain of an ellipsoid as the principle axes approach a length of one:

lim
(X, Y, & Z)→1

ε̄s = 0
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parameter, analogous to the k value of Flinn (1962), allows for the quantification of

ellipsoid shape such that prolate geometries range in value from negative one to zero,

and oblate shapes from zero to one. The octahedral shear strain describes the magni-

tude of ellipsoid distortion with increasing value. Therefore, after the initial dataset

has undergone homogeneous finite strain through a given increment of time (t2), the

sphere is deformed into an ellipsoid that is characterized by the nature of material

flow (i.e. constrictional vs flattening determined by the Lode parameter) and the

magnitude of distortion. Assuming the conservation of volume during deformation,

Equation 3.2 will hold true.

Xt1 × Yt1 × Zt1 = Xt2 × Yt2 × Zt2 (3.2)

The values of X, Y , and Z are the normalized axial lengths (see Equation 3.3) of the

strain ellipsoid before deformation (t1) and after deformation (t2). By convention, the

initial volume of the undeformed ellipsoid is equivalent to the unitless value: (4/3)π,

such that Equation 3.2 can reduce to Equation 3.3. Furthermore, this normalizes the

ellipsoid axial lengths such that X, Y, Z are equal to one.

Xt2 × Yt2 × Zt2 = 1 (3.3)

The conservation of volume fundamentally constrains the strain ratios observed in

each principle plane of strain. Therefore, if the finite strain ratios for any two principle

planes of strain are determined, the third is mathematically defined. In order to

properly distort the undeformed dataset, the two-dimensional strain ratio defined by

the X and Z principle strain axes (RXZ
s ) is established at a value of six (Fig. 3.1
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XZ). Additionally, the two-dimensional strain ratio defined by the X and Y strain

axes (RXY
s ) is set to four (Fig. 3.1 XY). This will produce a moderately deformed

model that is a reasonable representation of many geologic scenarios (for example,

see values reported by Czeck et al. 2009). As such, Equations 3.4 and 3.5 are defined.

RXZ
s = Xt2/Zt2 = 6 (3.4)

RXY
s = Xt2/Yt2 = 4 (3.5)

Equations 3.4 and 3.5 can rearrange to produce Equations 3.6 and 3.7.

Zt2 = Xt2/6 (3.6)

Yt2 = Xt2/4 (3.7)

This allows the length of Xt2 to be determined by substituting Equations 3.6 and 3.7

into Equation 3.3. By substituting the value of Xt2 into Equations 3.6 and 3.7, the

values of Zt2 and Yt2 are obtained. Furthermore, the quotient of Equations 3.7 and

3.6 will give the sectional strain ratio for the YZ principle plane as shown in Equation

3.8. This requires the principle strain axes to be scaled according to the percentages

listed in Table 3.1. From these percentages, the principle planes of strain for t2 can

be constructed by scaling the corresponding principle planes of strain at t1 dispropor-

tionately about the given axes to create a strain ellipsoid where the octahedral shear

strain and Lode parameter are obtained from Equations 3.9 and 3.10, respectively.

RY Z
s = Yt2/Zt2 = 1.5 (3.8)

ε̄s =

√
(lnXt2 − lnYt2)2 + (lnYt2 − lnZt2)

2 + (lnZt2 − lnXt2)
2

√
3

= 1.329 (3.9)
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ν =
2× lnYt2 − lnXt2 − lnZt2

lnXt2 − lnZt2

= −0.56 (3.10)

Z

Y

X

Z

Y

X

YZ

XY

XZ

Undeformed

Rs = 1.5

Rs = 6.0

Rs = 4.0

Volume1 = Volume2

Post-Deformation

Pre-Deformation

Figure 3.1: Schematic diagram illustrating the construction of the synthetic dataset
by scaling each principle plane proportionally about the axes defined in Table3.1.

To physically construct the synthetic model for error analysis, the undeformed

dataset must be appropriately distorted, printed, and applied to a cubic object such

as a cardboard box. This is accomplished by importing the portable document file

(PDF) with plotted undeformed elliptical objects into a vector based graphic program
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Table 3.1: Scale percentage values for the three principle strain axes used to produce
the deformed synthetic dataset

X% Y% Z%

288.45% 72.11% 48.07%

and scaling the horizontal and vertical axes according to the values in Table 3.1 for

each principle plane of strain. The deformed datasets are then printed on tiled sections

of paper that are aligned and pasted to the outside of a robust cubic cardboard

box with edge lengths of approximately 12 inches. Appendix D contains accurately

distorted tiles for additional model construction. After construction, the model is

securely mounted in the laboratory for data collection and processing.

3.3.2 Results

Although the analysis of a synthetic data set cannot possibly address all sources

of error that may arise in the application of this procedure to natural examples,

discrepancies between the expected and calculated results form a baseline level of

inherent procedural error. These results are described in terms of the properties of

the final fitted ellipsoids as derived from the Rf/φ and Fry techniques. In general, this

comparison addresses strain symmetry (Lode parameter), octahedral shear strain, and

the relative orientations of principle axes. The methodology previously presented was

applied to the synthetic conglomerate model from photographs taken with an aperture

camera device as illustrated in Figure 3.2. A total of 198 objects were traced from

the images (average of 66 objects per face, which exceeds the accepted adequate

population size as discussed in section 1.2.1) and processed in SAPE. The parameters

of the fitted object ellipses were then used to determine the fabric architecture as

explained in the following text.

The parameters extracted in SAPE were analyzed with the Rf/φ and Fry tech-
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XZ YZ

XY Camera Frame

Figure 3.2: Figure highlighting the use of a camera frame device in collection of ori-
ented and standardized digital images for error analysis of the fabric quantification
procedure. Note that perspective foreshortening of XY-plane produces the appear-
ance of a higher distortion than XZ, but is actually less than the XZ-plane.

niques. The sectional results of the Rf/φ analysis are presented in Figure 3.3. Section

“A” corresponds to the XY principle plane of strain and has a theoretical Rs value of

four as established in Equation 3.4. The calculated strain ratio of this section is 3.9,

which is quite close to the expected value. The XZ principle plane (shown in section

B of Figure 3.3) deviates slightly from the expected strain ratio value of 6 with a

calculated value of 5.6 when calculated with the macro by Chew (2003). However,

when the exact same dataset was processed with the program Rf/Phi by Mulchrone

and Meere (2001) an Rs value of 5.95 was calculated, which suggests this program

may be more robust at higher strains than the Chew (2003) macro. However, fu-

ture research will need to be completed to assess this difference. The final section

(YZ) produces a lower strain value of 1.4 compared to the theoretical ratio of 1.5 and

clearly demonstrates the validity of the procedure thus far. The relative differences
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in expected and calculated results is listed in Table 3.2.
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Figure 3.3: Sectional Rf/φ results from the synthetic model.

Table 3.2: Relative differences between the results of the calculated sectional strain
ratios and the expected values.

Method XY XZ Y Z
Rf/φ 2.5% 0.6% 4.7%
Fry 17.7% 5.1% 19.8%

The sectional results of the Fry method were slightly less robust than for the

Rf/φ method as shown in Figure 3.4 and Table 3.2. The XY, XZ, and YZ principle

plane strain ratios were calculated at 3.35, 5.7, and 1.83, respectively. At most, the

long axis orientation differs by 13 degrees with respect to the vector means calculated

in each section and indicates that the central void ellipse orientation is reasonably

well constrained.
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Figure 3.4: Sectional Fry results from the synthetic model.

The sectional results obtained from both the Rf/φ and Fry methods were fitted

with two strain ellipsoids and compared to the expected theoretical shape, distortion,

and orientation of finite strain. This comparison addresses the nature of error intro-

duced through the entire procedure and gives a general level of analytical resolution

to which gradients in strain may be determined. The inability to judge the quality of

a three-dimensional strain analysis based on a single stage of the procedure is high-

lighted in this example where the incompatibility index for ellipsoid fitting from the

Fry method was slightly better than that for the Rf/φ (
√
F̃ = 0.1 versus 0.2 for the

Fry and Rf/φ results, respectively), despite the better sectional results obtained from

the Rf/φ technique. As such, error should be addressed directly in terms of strain

symmetry, octahedral shear strain, and orientation and not based on any one given

component of the procedure. With that said, the total calculated error may be a

product of error propagated from an individual component.
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The expected theoretical strain symmetry value, as given by the Lode parameter

(Equation 3.10), falls well within the prolate field (Fig. 3.5). The ellipsoid shape

obtained from the Rf/φ analysis is slightly more prolate than the expected value.

However, the difference between the two is less a tenth of the Lode parameter. A

slightly higher difference between the results of the Fry analysis and the expected

value is observed in this example. As such, the Fry results produced a moderately

less prolate ellipsoid. Nevertheless, the general shape of this calculated ellipsoid still

represents an L > S tectonite fabric.

Octahedral shear strain values obtained in this analysis are remarkably consistent

with the expected values (Fig. 3.5). In general, both the Rf/φ and Fry methods

slightly underestimated the expected value (less than a tenth of a decimal difference).

Both analyses produced nearly identical values with the Rf/φ technique marginally

closer to that expected. This difference is visually indistinguishable and is an insignif-

icant source of total error.

The orientations of the calculated fabric ellipsoids deviate slightly from the true

orientation of the synthetic model. Figure 3.6 displays three stereographic projections

containing the plotted principle axes for the Rf/φ technique, Fry method, and the

expected fabric ellipsoid, as well as great circles defining the X-Y principle planes.

The X axis orientations are extremely consistent, with a largest angular distance

from the expected of 3.8◦ (Fry method). Although the X-axis orientations are quite

consistent and provide a good measure of the theoretical “mineral lineation,” they

do not constrain the alignment of the “foliation” planes. The angular distance be-

tween the Z-axis orientation for the Fry method and the expected orientation (16◦)

is considerably higher than that obtained for the Rf/φ method (2.6◦). Although the

Fry method tends to be the least consistent technique, it produced acceptable results

within a fairly small margin of error (Fig. 3.5).
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Figure 3.5: Comparison of fabric ellipsoid shapes and magnitudes obtained for the
synthetic data test and expected results.

3.4 Application to a naturally deformed example

3.4.1 Background

Sample 11-LC-03-C is a granite augen gneiss collected near the town of Las Cruces,

central Chile. This sample is interpreted to be part of the Valparáıso Metamorphic

Complex, which hosts voluminous magmatic rocks of late Paleozoic and Jurassic

ages (Wall et al. 1996; Gana and Tosdal 1996). The geometry of gneissic fabrics

within this metagranite vary spatially from regions dominated by foliations (L < S),

and lineation dominated domains (L > S). The advantage of fabric quantification

is the ability to quantitatively distinguish fabric gradients within a region that has

experienced inhomogeneous deformation at large scales. Therefore, the results of

natural analyses should compare well to visual fabric estimates such that L > S
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Figure 3.6: Comparison of orientation results from the synthetic data test.

and L < S tectonites are distinguished by prolate and oblate fabric geometries,

respectively. The natural example presented herein is derived from an L > S domain

as determined visually within the field. Therefore, we expect the results of this

analysis to produce a prolate fabric ellipsoid.

Sample 11-LC-03-C was slabbed on three mutually perpendicular faces and reori-

ented in the laboratory. The orientation of each face was measured following right

hand rule convention and directly marked with the line of strike. These faces were

then scanned in color at a high resolution and saved (Fig. 3.7). Each scan was mod-

ified following the procedure outlined in the accompanying manual (Appendix B) to

produce correctly aligned images of known orientation. The traces of 181 feldspar

porphyroclasts were outlined and exported to bitmap files for processing in the pro-

gram SAPE (Fig. 3.7), from which a file containing object properties was obtained.

The SAPE output was processed in R to reformat the data for sectional fabric analy-
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ses. Both the Rf/φ (Fig. 3.8) and Fry methods (Fig. 3.9) were applied to the section

data, which calculated the orientations and axial ratios of fitted fabric ellipses. These

results were processed in Ellipsoid 2003 and are describe in the following text.

Figure 3.7: Oriented sectional scans and traced objects of slabbed faces from 11-LC-
03-C. The X-Z, X-Y, and Y-Z faces correspond to the non-genetic sectional nomen-
clature of A, B, C, respectively.

3.4.2 Results

The results of both the Rf/φ and Fry analyses applied to sample 11-LC-03-C produced

fabric ellipsoids that closely resemble the visually estimated fabric shape and mag-

nitude obtained in the field. These results are described in terms of the appearance

of sectional analyses, the nature of fabric symmetries, the magnitudes of distortion,

and the principle fabric element orientations. Not only do my results correspond

closely to the fabric shape and magnitude from the field, but the orientations of the

calculated maximum stretching axes are concordant to the bulk mineral stretching

lineation. Although the XY fabric plane calculated for the Rf/φ analysis is parallel to

the bulk augen gneiss foliation, the orientation of the Fry XY-plane deviates (∼60◦)

substantially from this attitude.
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Figure 3.8: Sectional Rf/φ plots with normalized fitted ellipses from sample 11-LC-
03-C. Abbreviations: s = index of symmetry; vm = vector mean; and hm = harmonic
mean.

The sectional Rs fabric values obtained from the Rf/φ technique display two mod-

erately deformed sections (Fig. 3.8 A & B) while the third exhibits a low fabric

ellipse axial ratio (1.18). This relationship is expected based on the well-defined min-

eral trace lineation and less developed gneissic foliation. The sectional results from

the Fry method are similar with the third section containing an isotropic fabric value

of one. However, section “B” (Fig. 3.9) produced a substantially lower fabric ellipse

relative to the Rf/φ method (Fig: 3.8) with a 46.6% difference. Moreover, a 38◦

angular difference in long axis orientations between the methods is obtained.

Due to the premise that the orientation of the Rf/φ fabric ellipse is determined

directly from the vector mean of object long axes, while the Fry orientation is deter-

mined from the central void, differences between the two results suggests that either
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Figure 3.9: Sectional fry plots with normalized fitted ellipses.

a component of non-rotational object translation, or non-translational object rota-

tion has been superimposed on a former anisotropy. To clarify, non-rotational object

translation would cause the distribution of object centroids to change but would not

affect the orientations or ellipticities of objects. This would produce a deviation in the

Fry plot central void relative to the Rf/φ result. Conversely, non-translational object

rotation would change the Rf/φ results relative to the Fry method. This discrepancy

is supported by the low index of symmetry obtained for the Rf/φ section “B” anal-

ysis (s = 0.79) and indicates the possibility of superimposed fabrics that are best

developed within this section. The incompatibility indexes obtained during ellipsoid

fitting are substantially different (
√
F̃ = 0.2 vs. 4.7 for the Rf/φ and Fry methods,

respectively). This large degree of misfit obtained from the Fry sectional analyses

indicates that the fabric ellipse determined for section “B” is not representative of

the three-dimensional state of fabric architecture implied by the other two sections
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and their close approximation to the values obtained from the corresponding sections

of the Rf/φ analyses. As such, it is possible the Fry method may be more sensitive to

some violation of the assumptions of finite homogeneous deformation relative to the

Rf/φ technique for sample 11-LC-03-C.

The calculated fabric symmetry from both Rf/φ and Fry analyses correspond

to values in the prolate field of the Nadai plot (Fig. 3.10). The Lode parameter

calculated from the Rf/φ analysis very similar to the Lode parameter of the Fry

analysis at ∼ -0.75 (Fig. 3.10: upper right and lower right, respectively). The

calculated octahedral shear strains from this example plot at moderate distortions on

the Nadai graph (Fig. 3.10). The Rf/φ analysis resulted with a ε̄s value inappreciably

above one, while the Fry method produced a slightly higher value. Both methods

are reasonably consistent with each other and tend to support field observations of

rounded feldspar porphyroclasts with fairly well developed strain shadows. In light

of the high incompatibility index determined for the Fry analysis ellipsoid fitting,

the validity of this shape and magnitude may be called into question. However, the

close association to the values obtained for the Rf/φ ellipsoid suggests that effects

of the sectional ellipse determined for face “B” may be mitigated by the other two

sections, albeit, this could also be coincidental. Nevertheless these parameters for

both analyses are effectively constrictional in geometry and moderate in distortion,

as expected from the L >> S estimation and mineral elongations obtained in the

field, which supports the utility of the procedure.

The orientation of fitted principle axes from both methods is the most disparate

property obtained in this example. Figure 3.11 displays two stereographic projections

comparing the axial orientations for each method, as well as gneissic foliation and

mineral trace lineation data recorded in the field. The calculated X-axis from the

Rf/φ analysis plots within the cluster of measured mineral trace lineations throughout
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the region. The Z-axis also corresponds well to the orientations of several poles-to-

foliation. Therefore, the Rf/φ analysis is consistent with the regional field data.

However, orientations of fabric axes obtained from the Fry method are significantly

less congruous as shown in Figure 3.11. Not only does the X-axis plot outside the

cluster of mineral trace lineations, the calculated X-Y plane deviates substantially

from any foliation measurement (nearest pole to foliation measurement is approximate

30◦ from the Z-axis). However, the angular difference between the XY-plane and the

gneissic foliation is greater than that for the mineral trace and X-axis, indicating that

the orientations of prolate fabrics are more constrained by the lineation as is expected

from the poor development of foliation at location 11-LC-03.
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Figure 3.10: Nadai plot displaying the theoretical octahedral shear strain (ε̄s) and
Lode parameter ν for both Rf/φ and Fry methods. Rendered three-dimensional im-
ages correspond to the labeled points on the Nadai plot.
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Figure 3.11: Equal area stereographic projections with measured fabric elements from
the field (i.e. poles to gneissic foliations and gneissic mineral trace lineations) with
the calculated principle fabric ellipsoid axes for the Rf/φ technique (left) and the Fry
method (right). Great circles denote the calculated X-Y principle planes.

3.5 Discussion and conclusions

The power of fabric quantification within deformed terrains has been established by

correlating changes in fabric shape, magnitude, and orientation to regional structures.

However, this procedure requires an enormous quantity of data4 that is traditionally

arduous to process following classic analytical strain techniques. This problem has

been partially alleviated by advancements in computational software designed for

geological strain applications. Despite this advance, there remains an absence within

the literature of a comprehensive procedure outlining the steps of fabric quantification

4Assuming a minimum of 50 objects per each of the three mutually perpendicular sections that
require the collection of semi-major axis lengths, semi-minor axis lengths, and the long axis ori-
entation, one three-dimensional analysis involves a total of 450 measurements not including the
computation required to produce a fabric ellipsoid.
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from the field to an integrated result. The primary limitation to this stems from

incompatibilities in data format between these programs and a lack of standardized

visualization and presentation functions. The method presented herein outlines a

new integration of several preexisting and widely available programs for strain analysis

within the statistical computing environment R to convert data formats and produces

an array of standardized graphs that can be directly incorporated into figures for

publication.

This R-based quantification procedure described herein requires five main stages

that include the collection and extraction of data from multiple two-dimensional sec-

tions, the analysis of these data through analytical strain techniques (Fry and Rf/φ ),

the synthesis of sectional fabric data into a fabric ellipsoid, and the visualization of the

results. However, the assessment of error introduced in the procedure is difficult to

address in a theoretical manner due to the potential propagation of errors throughout

each of the stages outlined above. As such, I constructed a three-dimensional syn-

thetic model with a know strain symmetry, octahedral shear strain, and orientation to

empirically test the utility of the procedure. This model is based on the conservation

of volume through coaxial, passive, and homogeneous finite deformation that resulted

in principle planes of strain exhibiting sectional strain ratios of known magnitudes

(i.e. 6, 4, and 1.5) and orientations. This state of strain corresponds to a Lode pa-

rameter of -0.56 and an octahedral shear strain of 1.33 such that the style of flow

is general constriction at moderate distortions. With this model, the validity of the

procedure was tested by comparing the calculated results to the expected theoretical

state of strain.

The results of this assessment correspond closely to the expected state of strain and

indicate several components of potential error. In general, the Rf/φ method produced

the most precise and accurate results compared to the Fry method. However, this
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comparison is partially biased in that the population size of markers used for both

analyses satisfied the requirements presented by Lisle (1985) but not for the Fry

method (Fry 1979). Nevertheless, the sectional results where fairly consistent for

each corresponding plane between the two methods. This assessment emphasizes the

need to address analytical error in terms of shape, distortion, and orientation for a

given ellipsoid and not by error determined from individual procedural stages. This

is highlighted by the fact that the sectional Fry data produced an ellipsoid with a

smaller degree of misfit compared to the Rf/φ analysis despite the greater variation

in sectional strain calculation. This affirms the fact that the “incompatibility index”

generated by the program Ellipsoid 2003 (Launeau and Robin 2005) corresponds only

to the degree in which the relative parameters of ellipses in three-dimensional space

define the surface of any possible triaxial ellipsoid, and not the accuracy of data

collection or analysis. This error assessment produced ellipsoids that very closely

approximated the expected state of strain. In general, the Fry analyses were slightly

less robust, however, this may be a product of sample population size (see previous

note on population sample size). Therefore, this procedure is deemed valid within a

small margin of error (Figs. 3.5 and 3.6).

The applicability of this procedure to determine regional structures from changes

in rock fabric must directly relate to visual estimates of tectonite fabrics. In order

to highlight this application, a deformed metagranite with a characteristic L>>S

augen gneiss fabric from central Chile was processed. Results from both Rf/φ and

Fry analyses produced moderately distorted prolate ellipsoids that match field-based

observations closely. However the orientation of the XY-fabric plane from the Fry

analysis deviated considerably from the orientation of the bulk gneissic foliation, yet

the orientation of the X axis remained fairly concordant to the mineral stretching

direction. This relationship is expected from regions dominated by L>>S fabrics
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in that foliations will be poorly defined and the significance of their orientation is

reduced. The fabric ellipse calculated from section “B” of the Fry analysis deviated

substantially from the corresponding Rf/φ section. I interpret this association as a

possible result of either non-translational rotation, or non-rotational translation of

objects superimposed on a preexisting fabric. It is tempting to suggest that this

deviation may be produced by a component of plane-strain simple shear within sec-

tion “B” that is not recorded by the Fry analysis (refer to Fry technique discussion

in Chapter 1 for expansion on this concept) that may relate to vorticity. However,

this possibility remains unexplored. My results highlight the need to address a given

calculated fabric ellipsoid in terms of methodology and object type such that discrep-

ancies in the assumptions of different methods or object deformation characteristics

are not directly compared. To clarify, the results obtained from the Fry method can

deviate from those produced by the Rf/φ technique, which does not imply a change in

the fabric architecture in a spatial context. Nevertheless, the application of multiple

analytical strain techniques to a single sample may provide information on character-

istics of the nature of deformation and the acceptability of specific strain assumptions.
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Chapter 4

FRY3D: an interactive R script for the vi-

sualization of rock fabrics in three-dimensi-

ons

Abstract

FRY3D is an interactive R script designed to aid in the instruction and visualization of
three-dimensional strain calculation at the advanced undergraduate and graduate levels.
This tutorial helps mitigate the logistics of multiple manual strain calculations by main-
taining the orientations and properties of sectional data within a three-dimensional context.
This tutorial allows the centroids of objects from three images of known orientations to be
selected by the user and processed in the open-source program R to create three sectional
Fry plots. The properties of the central void ellipse are determined by the user and an
interactive, three-dimensional Fry plot is constructed. The sectional strain parameters are
exported to a file compatible with the program Ellipsoid 2003 for statistical ellipsoid fitting.
The output generated from Ellipsoid 2003 is read back into R to construct a Nadai plot
of the calculated Lode parameter and octahedral shear strain, as well as a stereographic
projection displaying the orientations of the principle strain axes. Additionally, the script
generates an interactive, three-dimensional model of the strain ellipsoid correctly oriented
with respect to a geographic reference frame so that the result can be directly compared
to the three-dimensional Fry plot. This tutorial was presented to an upper-level structural
geology course of 20 undergraduate students with a two part semi-quantitative concept as-
sessment before and after the presentation. The results of this assessment indicate a positive
increase in student’s understanding of three-dimensional finite strain.
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4.1 Introduction

The ability to visualize the characteristics of finite deformation in three-dimensions

is a fundamental requirement of structural geology. Traditionally, strain concepts

are taught at the undergraduate level through the use of static perspective diagrams

and figures. Recently however, several workers have produced resources for structural

geology education that utilize computer animations to help better convey the geom-

etry and evolution of features such as dipping strata, folds, and faults (e.g. Burger

and Harms 2006; Cockett 2012). Although these resources are widely available for

general structural concepts1, there is an absence of computer-based tools that help

students visualize the application of analytical strain techniques to three-dimensional

deformation. Many structural geology courses, textbooks, and laboratory manuals

(see for example: Rowland et al. 2007; Twiss and Moores 2007) provide examples

and assignments that describe two-dimensional strain analyses using a variety of tech-

niques such as the Fry method (Fry 1979), the Wellman procedure (Wellman 1962),

and the Rf/φ technique (Ramsay 1967; Dunnet 1969; Lisle 1985). However, these do

not directly illustrate the three-dimensional context of these analyses.

The lack of three-dimensional strain examples in educational curricula is likely

due to logistical impediments that include the time intensive nature of multiple plane

strain analyses, the synthesis of two-dimensional data, and the ability to visualize the

shape and orientation of the calculated strain ellipsoid. Nevertheless, a single two-

dimensional analysis cannot describe the three-dimensional state of strain because the

geometry of a strain ellipse is dependent on the orientation of the analytical section

relative to the finite strain ellipsoid. As such, a single analysis not only fails to

address the magnitude of deformation, it cannot provide information concerning the

1For a list of computer applications refer to the SERC website: http://serc.carleton.edu/

NAGTWorkshops/structure/computer_resources.html
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orientation and symmetry of strain. The ability to completely constrain the geometry

of finite deformation is an essential tool to describe strain gradients and thereby

quantitatively distinguish shear zones. I believe the lack of discussion on deformation

in three-dimensions creates the misconception that a single two-dimensional analysis

can effectively address the nature of pervasive deformation. Therefore, I highlight the

need to provide a three-dimensional context for analytical strain techniques taught

at the undergraduate and graduate levels.

In this chapter I present a new instructional approach to help students better

visualize three-dimensional deformation. This instructional procedure implements

the script FRY3D written within the open source statistical computing environment

R (R Development Core Team 2010) to alleviate the impediments of teaching tra-

ditional three-dimensional strain analyses. This script allows for the collection and

analysis of two-dimensional strain data in order to produce a coherent interactive

three-dimensional Fry plot, from which a finite strain ellipsoid is calculated. Accom-

panying this script is a deformed synthetic dataset (Fig. 4.1) that can be physically

constructed with a known orientation, strain symmetry (i.e. the Lode parameter),

and octahedral shear strain to aid in student visualization. For a discussion of these

properties see: Brandon (1995). The details of this model are explained in Chapter 3

and can be reproduced following the instructions outlined in Appendix D. A replica

of this model can easily be made and oriented (following the attitudes in Table D.1).

In addition to the classroom application of this tutorial, FRY3D provides an excellent

resource to train individuals interested in conducting analytical fabric research, as the

program introduces the user to the primary components of three-dimensional fabric

quantification.

In order to address the qualitative effectiveness of this instruction, a general as-

sessment of three-dimensional strain concepts was administered to a class of 20 under-
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graduate students before and after a presentation of the FRY3D script. The results

document a general decrease in the number of misconceptions associated with three-

dimensional deformation after the presentation of the instruction proposed herein.

For example, many students incorrectly stated that a two-dimensional strain analysis

accurately elucidates the orientation and magnitude of principle strain axes prior to

the tutorial. After the FRY3D instruction, a significant population of the class in-

dicated the importance of multiple strain analyses on three mutually-perpendicular

sections to define all principle strain axes. Therefore, I assert the effectiveness of

this tutorial in dismantling misconceptions concerned with strain quantification in

three-dimensions.

4.2 Methodology

FRY3D is an R script that uses functions within the add on package StructR (Web-

ber 2012) designed primarily for this tutorial and available for free download on the

Comprehensive R Archive Network 2. In order to successfully run the script, the

open-source statistical computing environment R must be correctly installed and the

StructR package loaded. The StructR package combines operations from other R

packages and may require additional downloads of these modules (see the accom-

panying manual in Appendix C, and R documentation for additional help). Once

the computer environment is established, the FRY3D instructional tutorial can be

executed. This procedure involves two parts including the construction of a three-

dimensional Fry plot and analysis of the fitted strain ellipsoid. As such, FRY3D is

broken into two scripts that read and write files associated with the program Ellipsoid

2003 (Launeau and Robin 2005) to completely define the three-dimensional state of

strain.

2For more information visit: http://cran.r-project.org/
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Figure 4.1: Cartoon illustrating the construction of the synthetic deformed conglom-
erate dataset accompanying the instructional tutorial. Part “A” denotes the two-
dimensional stain ellipses for the principle planes of strain shown in “B” as constructed
through constant volume deformation highlighted in “C.”

FRY3D enables the user to load a sectional image, with a know geographic ori-

entation, into the R-console and select the locations of object centroids (Fig. 4.2-A).

The sectional image is derived from a synthetic dataset based on the parameters ex-

plained in Chapter 3, illustrated in Figure 4.1, and available for construction following

the procedure in Appendix D. Once all objects are selected, a two-dimensional Fry

plot is produced that allows the user to visually estimate the central void apogee and

perigee (Fig. 4.2-B). The geometric parameters of the this central void estimation

are extracted and a strain ellipse is plotted directly on the diagram. This process is

repeated for the remaining two sectional images and a three-dimensional Fry plot is
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produced (Fig. 4.3-A). The three-dimensional diagram simply orients and combines

the previous two-dimensional Fry plots and plane strain ellipses into an interactive

window so that the user may navigate throughout the point cloud and better visualize

the resultant strain ellipsoid. In addition, a file is written and saved to the output

folder that is directly compatible with the program “Ellipsoid 2003.”

A B

Figure 4.2: Screen images from the FRY3D tutorial depicting the two-dimensional
strain analyses. A: object centroid selector tool. B: central void ellipse estimation.

Although the three-dimensional Fry plot helps students better visualize the con-

text of the sectional data, no quantitative parameters defining the true geometry of

finite strain are produced. However, running the output file through Ellipsoid 2003

statistically fits a strain ellipsoid to the sectional data3. The results of this synthesis

can be read into the R-console with the use of a second script and an array of graphs

are produced. Specifically, the script will construct another three-dimensional plot

with a model of the calculated ellipsoid (Fig. 4.3-B) so that a comparison to the Fry

3For a detailed methodology of the program Ellipsoid 2003 and the statistical properties of
ellipsoid fitting see Launeau and Robin 2005 and section 3.2.3.
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A B

Figure 4.3: Three-dimensional strain visualizers with an interactive Fry plot (A) and
a modeled fitted strain ellipsoid.

point cloud can be made. Furthermore, the script will run functions written by Lees

(2011), to create a standardized equal-area lower-hemisphere stereographic projection

directly in R that displays the orientations of the principle strain axes (Fig. 4.4-A).

A final plot is generated containing a Nadai graph, which allows both the magnitude

of distortion and strain symmetry to be compared (Fig. 4.4-B).

4.3 Qualitative evaluation

4.3.1 Evaluation setup

In order to qualitatively address the effectiveness of this instruction, a simple two part

questionnaire concerning student comprehension of three-dimensional deformation

was developed. The first assignment requires students to manually construct a Fry

plot from a photomicrograph of a deformed ooitic limestone (Ramsay and Huber

1983, p. 112). From this plot, the central void ellipse is estimated and plotted on
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A B

Figure 4.4: Images from the FRY3D instructional tutorial highlighting the quanti-
tative properties of the strain ellipsoid synthesis. A.) Equal-area lower-hemisphere
stereographic projection of the principle strain axes; B: Nadai plot illustrating the
Lode parameter and octahedral shear strain.

a separate graph, from which the strain ratio and orientation is calculated (see this

chapter’s additional materials for an example assignment). Finally, students are asked

to discuss how this section relates to three-dimensional deformation as stated below:

What does this two-dimensional representation of strain inform us about de-

formation in three-dimensions?

Although previous lectures have established the basic concepts of fabric symmetry

(i.e. L > S vs. L < S) the details of three-dimensional strain have not been dis-

cussed prior to this exercise. Therefore, I expect a significant number of incorrect

student responses to the above question, which helps to establish a general baseline

level of understanding prior to the FRY3D tutorial. Each response is categorized

as follows: 1.) lacks substantial understanding; 2.) some concepts are developed

but lack a comprehensive understanding 3.) exhibits a comprehensive understanding
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of the nature of deformation in three-dimensions. The relative proportions of these

categories are then determined.

After completion of the two-dimensional fry assignment, the FRY3D instructional

tutorial is implemented during lecture and projected on a large screen. This in-

struction is accompanied with a simple in-class worksheet to help focus the attention

of students. Additionally, the tutorial calls for volunteers to actively select object

centroids and fit sectional ellipses. This interaction with students helps motivate in-

terest and better solidify the process of data collection. After executing the tutorial,

students are able to individually navigate the modeled Fry plot and fitted ellipsoid.

Before the end of class, students are asked to complete a short answer questionnaire

containing the statement:

What does a calculated strain ellipsoid describe and why must the state of

strain be represented with this geometry and not an ellipse?

Once again, the results are categorized as described above and tabulated into rela-

tive proportions. These data are then compared to the base level understanding and

a general assessment of effectiveness is obtained. Our tutorial evaluation highlights

several common misconceptions students have about three-dimensional deformation

after completing only the two-dimensional Fry assignment. However, after the tuto-

rial was administered, the majority of students provided acceptable answers to the

previous question (Fig. 4.5).

4.4 Conclusions

The FRY3D script provides instructors with a tool to aid in teaching three-dimensional

deformation. The primary qualities of this instruction include the ability to quickly

produce three mutually perpendicular Fry plots of known orientation, combine mul-

tiple two-dimensional data sets into a single three-dimensional viewer, and quantify
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Figure 4.5: Results of the FRY3D evaluation compiled from a class of 20 students
before and after the tutorial. Comprehension is divided into three qualitative cate-
gories with a “lacks substantial understanding” corresponding to the histogram bins
on the left, “some concepts are developed but lack a comprehensive understanding”
for the center bins, and “exhibits a comprehensive understanding of the nature of
deformation in three-dimensions” on the right.

the geometric properties of a three-dimensional strain ellipsoid. With this function-

ality, the audience is able to physically see the manner in which non-unique sectional

data constrains a single unique strain ellipsoid. Although this tutorial aids in three-

dimensional visualization, students must have a prior knowledge of two-dimensional

strain techniques (i.e. the Fry method in this role) in order to be an effective learning

technique. Therefore, I recommend this procedure as an augmentation to lectures

after students have manually completed a single Fry plot. The results of our qualita-

tive evaluation document a favorable increase in the perception of three-dimensional

deformation.

Although this tutorial is generally designed as an educational tool for an upper-

level structural geology course, it can be expanded and used as a preparatory lesson
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for fabric analysis research (see Chapter 3). From the tutorial I expect users to

gain an more comprehensive understanding of the Fry method, the nature of a two-

dimensional strain in the context of three-dimensional deformation, and the geometric

properties of finite strain. Furthermore, this method clearly displays the advantages

of model representation for the visualization of deformation and the use of the Lode

parameter and octahedral shear strain to quantify strain gradients.

Additional materials

The following is an example assignment designed to better evaluate student compre-

hension of finite strain in three-dimensions.
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Name: Geol 260: Structure

Part one: two-dimensional strain

Introduction

The Fry method, also known as a nearest-neighbor center-to-center analysis, is an

analytical strain technique used to calculate the “amount” of deformation a rock has

experienced using the final distribution of object centers. The primary assumption

of this technique is that object centers (centroids) were randomly distributed with

a minimum nearest neighbor threshold distance prior to deformation. As such, this

method is best suited for scenarios that involve objects of similar sizes, similar shapes,

and a random distribution or packing. For example, well-sorted “structureless” sand-

stones, ooitic limestones, and even phenocrysts in an igneous rock can be used with

the Fry method. The Fry method graphically plots the centers of all objects for each

object so that variations in the statistical distance between nearest neighbors will be

determined. This produces an elliptical region at the center of the plot known as the

central void that mimics the shape of the finite strain ellipsoid.

Procedure

1. Use a colored pencil or pen to mark the centers of each ooid in Figure 4.7 directly

on the figure. Keep each point as small as possible but large enough to clearly

see through tracing paper (Fig. 4.6).

2. Take a sheet of tracing paper or mylar and place a small “X” roughly in the center

of the sheet. Make sure this sheet has straight and square edges.

3. Pick an ooid close to the center of Figure 4.7 and place the tracing paper “X”

directly on the ooid center you have marked. Align the the edge of the tracing
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paper to the edge of the figure so that the two are parallel.

4. On the tracing paper, copy the centers of all other ooids with small dots. Be

careful not to rotate the tracing paper as this will distort the plot.

5. Translate the tracing paper to another ooid and repeat step 4 for all other ooids.

Once again, make sure the edges of the figure and tracing paper are aligned

parallel. Do this for all ooid centers to clearly establish a central void. Yes, this

is tedious and it will take a while.

6. Transfer your Fry plot to Figure 4.8 and calculate the long axis length, short axis

length, strain ratio and orientation.

Figure 4.6: Schematic illustration highlighting the general procedure of the manual
Fry method.
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Figure 4.7: Deformed ooitic limestone: (Ramsay and Huber 1983, p. 112).
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Long axis length:

Short axis length:

Long axis orientation:

Strain ratio:

Figure 4.8: Plot the strain ellipse here and determine the properties listed above.

Questions and deliverables

What is a strain ellipse?

What does this two dimensional representation of strain inform us about deformation

in three-dimensions?
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Also turn in the following for credit:

Ooid centers: Original figure with ooid centers marked.

Fry plot: Staple your tracing paper with the fry plot.

Strain ellipse: Complete Figure 4.8 and calculate the strain ratio.
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Name: Geol 260: Structure

Part two: three-dimensional strain

Follow along in class with the three-dimensional strain tutorial and answer the basic

questions listed below.

What is the general shortening direction for section A (e.g. left-right)?

What is the general shortening direction for section B (e.g. left-right)?

Is section B more or less deformed than A?

What is the general shortening direction for section C (e.g. left-right)?

Is section C more or less deformed than B?

In the space below sketch the general ellipsoid shape and orientation given by the 3D

Fry plot.

What is the approximate direction of the maximum stretch axis?
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What is a strain ellipsoid?

Why must the state of strain be represented by an ellipsoid and not an ellipse?
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Chapter 5

Error evaluation of the Panozzo projection

method for strain analysis (short note)

Abstract

A brief assessment of analytical error associated with the Panozzo projection technique
for strain analysis is presented herein and indicates relationships among population size,
strain magnitude, and initial fabric. My results suggest that this method is most robust
when applied to sections containing greater than approximately 125 lines. Moreover, the
magnitude-dependent error indicates that the method may be better suited for rocks de-
formed at low to moderate strains. I recommend an adaption to the initial conditional
assumptions for this method that lines exhibit an initial radial symmetry when recentered
to a common point. A least-squares fitting modification is presented to better define the
calculated strain ratio mathematically. However, this modification does not effectively re-
duce the analytical error I document in this chapter.

5.1 Introduction

The Panozzo projection method is an analytical strain technique that involves sum-

ming the lengths of the horizontal components of a population of lines as projected

onto a horizontal line. The population of lines is then iteratively rotated and the

components are again added. From these data a plot is constructed that relates the

summed lengths of projected lines to the rotation step forming a sinusoidal wave re-
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flecting the strain ratio. The maximum projected length corresponds to the maximum

extension direction and the quotient between the maximum and minimum projected

lengths is equal to the ratio of strain. This method provides a fairly quick check for

inherited fabrics (using computational scripts I have written) if the direction of the

minimum projected length is not 90◦ from the maximum projected length (Trayner

1986).

The Panozzo projection method for two-dimensional strain analysis uses the ori-

entation and lengths of lines within a planar section to calculate finite strain (Panozzo

1984). The assumptions of this method include the following: deformation is homo-

geneous at the scale of analysis, markers deform in a passive nature, the viscosity

contrast between the objects and the matrix is zero, and the orientations of lines

are uniformly distributed prior to deformation. Although Panozzo (1984) does not

explicitly describe the nature of initial line lengths, all examples presented therein

appear to have initially equal lengths. This criteria is not generally applicable to

geologic scenarios where objects will likely form a range of lengths, therefore, it must

be assumed that there is no orientation dependent lengths.

In this paper I address the nature of analytical error that must be expected in

applying the Panozzo projection technique to deformed material lines. I present an

array of guidelines that address the magnitude of error expected under ideal condi-

tions with respect to both the magnitude of deformation and population size. This

error analysis is based on a series of synthetic datasets produced with highly ideal

initial undeformed conditions that are subjected to a range of known shear strains.

Variations in the calculated strain ratios are statistically compared to the expected

values. My results highlight the sensitivity of the Panozzo projection technique to

slight preferred orientations in the initial rock fabric despite a uniform distribution of

line orientations. I conclude that the Panozzo analytical strain method exacerbates
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these initial fabric anisotropies through finite strain even when the basic assumptions

of the method, as outlined in Panozzo (1984), are constrained. Based on these re-

sults, I recommend that the initial conditions of the Panozzo projection technique be

modified from lines of uniform distribution to lines that exhibit a radially symmetric

initial pattern when recentered about a common point within the section. Moreover,

I suggest that sections with population sizes below ∼125 lines are not statistically

robust. Finally, my results clearly show an increase in width of the confidence inter-

val with increasing strain magnitude, which indicates that this method may be best

suited for low strain fabrics (Rs ∼1.5 to 5).

5.2 Methodology

The methodology presented herein uses a series of scripts written in the statistical

computing environment R to construct, deform, analyze and calculate the magni-

tude of two-dimensional strain from a series of lines following the Panozzo projection

method (Panozzo 1984). The functions used in this procedure are freely available

within the R-package “StructR” (Webber 2012) and are briefly explained in the fol-

lowing paragraphs. The details of individual methods presented throughout the var-

ious tests are explained later in the text (Section 5.2.2) and are simple modifications

of these routines.

5.2.1 General procedure

In order to empirically determine the errors associated with this method a series

of ideal undeformed datasets were generated based on an input population size and

plot width. The lengths of lines are produced with a random normal population

generator based on the average line length and a standard deviation one quarter

this value. I assert that a normal distribution of line lengths in most geological

situations is more reasonable an assumption than lines of equal length due to natural
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variation in cross-sectional lengths of objects. The end point coordinates of these lines

are transformed based on a rotation matrix constructed from a uniform distribution

of angles and are plotted with tie-lines as shown in Figure 5.1-A. Note that the

translational distribution of lines is irrelevant and not incorporated in the Panozzo

projection method. For simplicity, the lines are centered at the plot origin.

The undeformed line coordinates are transformed with a separate function that

displaces the node abscissae in such a manner to deform the lines under plane strain

simple shear as determined by the input shear strain value (Fig. 5.1-B). This value

directly relates to the strain ratio (Rs) as given by Equation 5.11 (modified from

Ramsay 1967, page 85 Equation 3-67). This enables the comparison of applied shear

strain to the expected strain ratio and the calculated strain ratio.

Rs =

√
1
2
×
(
γ2 + 2 + γ ×

√
γ2 + 4

)
√

1
2
×
(
γ2 + 2− γ ×

√
γ2 + 4

) (5.1)

The function used to determine the projected lengths of a given deformed dataset

simply applies an iterative rotation matrix to the line node coordinates and calcu-

lates the summation of the absolute value of the difference in line node abscissae for

each each rotational step (all data presented herein is based on a one degree rotational

step). These data are then modified and plotted on a polar graph to define an elliptical

perimeter (Fig. 5.3-A). The method used in the following analyses fits a least-squares

ellipse to the perimeter point data to define the shape-preferred orientation mathe-

matically (Fig. 5.3). However the reduction in error following this modification is

insignificant as explained in Section 5.3.1. Based on the parameters of this ellipse

(i.e. semi-major axis length, semi-minor axis length, and angular orientation) the

1For variable definitions refer to Table 1.1.
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A B

n = 150 = 1  Rs = 2.62γ

Figure 5.1: Plot of 150 undeformed (A) and deformed (B) synthetic lines centered at
the plot origin. Initial dataset generated with a normal distribution of line lengths
with a mean length of 25 units and a standard deviation of 6.25 that are rotated to
create a uniform distribution of orientations. Undeformed data was subjected to a
dextral shear strain (γ) of one under homogeneous simple shear plane strain.

two-dimensional state of strain is theoretically defined.

5.2.2 Statistical setup

The primary statistical test presented here compares the magnitude of error obtained

from the Panozzo projection method to population size and strain magnitude. This

requires numerous undeformed datasets of different population sizes that are deformed

through a spectrum of strain magnitudes. Each Panozzo projection calculation, for a

given shear strain and population size, is repeated on a new (yet statistically identical)

initial dataset for 35 iterations. This produces a statistically viable distribution of

values, from which the average strain ratio and a two σ confidence interval can be

compared to the expected result. To generate these data, I wrote an R-script to

determine the errors within a range of population sizes (n = 5, 10, 20, 40, 80, 160,
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A B

n = 150

Figure 5.2: Panozzo projection results from line data presented in Figure 5.1. Polar
plot of projected lengths based on one degree rotations defining an ellipse perimeter
(A). Perimeter is statistically fitted with an ellipse (B) using a least-squares method
from which the semi-major and semi-minor axial lengths are obtained.

and 320) based on 35 Panozzo projection calculations at one degree step rotations

through a specturm of shear strains (γ = 0.25, 0.50, 0.75, 1.00, 1.25, 1.50, 1.75, 2.00,

2.25, 2.50, 2.75, and 3.00). In total, 2,520 Panozzo projection analyses were used to

obtain the mean and standard deviations of each population size at a given strain

magnitude. The following sections describe these results.

5.3 Results

5.3.1 Least-squares ellipse fitting

In order to better define the mathematical properties of a projected line population, a

least-squares ellipse is fitted to a radial plot of lengths and rotational steps. Although

I originally hypothesized that this ellipse fitting modification would reduce error as-

sociated with the Panozzo method, a simple comparison of the modification to the
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standard procedure produced a negligible difference (5.3). The premise of the original

idea stemmed from an observation of irregularities in the radial plot perimeter that

are likely due to an initial length preferred orientation. However, because each line

is added to the rotational projection length (except when the line is perpendicular

to the projection) the resultant perimeter ellipse distributes the effects of outliers

throughout the ellipse and cannot simply be reduced by a statistical ellipse fitting.
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Figure 5.3: A comparison of two different Panozzo Rs methods involving: (A) the
ratio of maximum to minimum projected line lengths; (B) the ratio of semi-major to
semi-minor axial lengths of a least squares fitted ellipse. Differences in the two plots
are indistinguishable.

5.3.2 Population size and strain magnitude errors

The statistical tests described in the previous section indicate an increase in error

with increasing strain magnitude and decreasing population size (Fig. 5.4). Figure
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5.4 contains six plots corresponding to different population sizes. Gray polygons in

each plot define the region given by a two σ error confidence from the calculated

mean of 35 Panozzo calculations at increasing strain magnitudes relative to the ex-

pected result. By definition, confidence intervals are truncated by a strain ratio of

one even if the lower limit of the two σ error falls below this value. With increas-

ing population sizes, the width of the confidence interval clearly narrows about the

one-to-one calculated-to-expected line (thick black lines on plots). This confidence

interval becomes progressively less narrow at increasing population sizes. As such,

this relationship, together with the practicality of sectional application to geologic

scenarios, suggests that population sizes below 125 lines per analysis are not statisti-

cally robust. A clear association of strain magnitude to confidence interval width can

be seen in Figure 5.4. As the magnitude of strain increases, the degree of uncertainty

also increases. The width of this interval, even at large population sizes (i.e. 160

lines) can be as large as 3.5 Rs values. As such the Panozzo method may be better

suited for smaller population sizes.

The source of error determined by these statistical tests is likely due to the dif-

ficulty in producing an isotropic initial dataset. Figure 5.5 displays the results of a

similar statistical test as described previously to datasets that exhibit initial radial

symmmetry. Due to the highly constrained initial conditions imposed on this test,

only one projection analysis was applied to a given strain magnitude and population

size. My results indicate that the initial condition of radial symmetry produces highly

accurate results at low population sizes (i.e. ∼20 lines). Datasets with lower than 20

lines will likely underestimate the true magnitude of strain at higher distortions. This

relationship indicates that projected lengths of lines from lower populations do not

accurately define the finite strain ratio (i.e. material lines have a lower probability

of being closely aligned to the maximum stretching direction). Nevertheless, in situ-
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ations where radial symmetry and be assumed (some potential fossils exist) smaller

population sizes may be acceptable.

5.4 Conclusions and summary

The results presented in this short note indicate several considerations in the appli-

cation of the Panozzo projection method, including the initial condition of material

lines, population size, strain magnitude, and methodology. My data indicate that

least-squares ellipse fitting does not significantly change the error associated with

the Panozzo projection technique but does better define the strain ellipse mathemat-

ically. The range of calculated strain ratio error at the two σ confidence interval

increases with increasing strain and indicates a potential limit to the applicability of

the method. The population sample size has a significant affect on the magnitude

of error, which is best mitigated by populations over ∼125 lines. The relationship of

error reduction to sample size is less pronounced at high population sizes (e.g. 320

lines) but is probably impracticable for most geological scenarios.

The close approximation of the calculated Rs value to the expected strain ratio

for initial datasets of “radial symmetry” indicates that the error associated with

Figure 5.4: Error associated with population size and strain magnitude. For each
applied shear strain on a population size of 10 (A), 20 (B), 40 (C), 80 (D), 160 (E),
and 320 (F). Thirty five initial datasets were generated with a normal distribution of
line lengths and a uniform distribution of orientations. Applied shear strains (γ) for
each population size included 0.25 (Rs = 1.28), 0.5 (Rs = 1.64), 0.75 (Rs = 2.08), 1
(Rs = 2.62), 1.25 (Rs = 3.26), 1.5 (Rs = 4), 1.75 (Rs = 4.86), 2 (Rs = 5.83), 2.25
(Rs = 6.92), 2.5 (Rs = 8.13), 2.75 (Rs = 9.46), and 3 (Rs = 10.91). The thick black
line in each plot forms a one to one relationship between the applied Rs and the
expected Rs. Gray polygons display a two σ confidence interval based on 35 analyses
per applied deformation. Lower limits of confidence region is truncated by Rs = 1 in
some plots (at lower population sizes). A total of 2,520 Panozzo projection analyses
were used at a one degree rotation interval to construct the plots requiring a total of
264,600 lines.
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populations of statistically uniform orientations and normally distributed line lengths

is a function of error propagation through progressive deformation based on a subtle

initial shape-preferred orientation. This indicates that although a population may be

defined as statistically uniform, subtle deviations from a truly isotropic population

will decrease the probability of calculating the actual strain ratio. Even if the initial

orientations of lines are perfectly uniform in distribution (i.e radially symmetric with

respect to orientation alone) a single line of extended length will define an initial

shape preferred orientation. This is further complicated with lower population sizes

due to the fact that this initial length preferred direction is a higher proportion of

the projected length values produced by the other lines.

My results indicate that at relatively high strain magnitudes (Rs > 4) and a

population size of approximately 120 lines, the two σ confidence interval for a single

Rs calculation is approximately between three and five. At higher strains (e.g. Rs ∼

9.5) this range can be as large as 7.5 to 11.5 for a calculated strain ratio. Due to this

range in possible sectional strain magnitude, the construction of a three-dimensional

strain ellipsoid may occupy a large field of strain-magnitude space within error and

could be difficult to accurately determine prolate from oblate strain symmetries. As

such, caution is advised in applying the Panozzo projection technique to geologic

scenarios without addressing the nature of initial radial symmetry and possible error

introduced by initial fabric anisotropy.

Figure 5.5: Calculated Rs versus applied Rs on lines of initial radial symmetry and
equal lengths. Gray line forms a one to one expected relationship. Note that this
”radial symmetry” distribution does not consider translational line location and is
not analogous to radial crystal growth habits. Points are plotted for applied shear
strains of 0.25 (Rs = 1.28), 0.5 (Rs = 1.64), 0.75 (Rs = 2.08), 1 (Rs = 2.62), 1.25 (Rs

= 3.26), 1.5 (Rs = 4), 1.75 (Rs = 4.86), 2 (Rs = 5.83), 2.25 (Rs = 6.92), 2.5 (Rs =
8.13), 2.75 (Rs = 9.46), and 3 (Rs = 10.91).
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una mezcla de magmas. In Proc. Congreso Geológico Chileno, 4th, Antofagasta,
Chile, Volume 3, pp. 512–530.

Sleep, N. (1988). Tapping of melt by veins and dikes. Journal of Geophysical Re-
search 93 (B9), 10255–10272.

Sorby, H. (1908). On the application of quantitative methods to the study of the
structure and history of rocks. Quarterly Journal of the Geological Society 64 (1-
4), 171.
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Appendix A

Additional field data

A.1 Sample information

All samples1 are given a period separated concatenated index code that corresponds

to the last two digits of the year (i.e. 2011), a two digit alphabetic region code, a

numeric value for the site location within that region, and a letter corresponding to

the sample collected. The easting and northing coordinates are based on the WGS

1984 datum and correspond to timezone 19H. Photographic identification numbers

correspond to digital images collected by the author and are available upon request

pending approval. Orientation markings are in strike and dip format following the

right hand rule convention. Polarity denotes the orientation of marked faces such

that an upright face has a positive polarity and an overhung face is negative. Sample

collector abbreviations denote individual’s notebook for specific information: JRW:

Jeffrey R. Webber; KAK: Keith A. Klepeis; LEW: Laura E. Webb. Samples are help

under the auspices of Keith A. Klepeis, Department of Geology, The University of

Vermont, Burlington, VT 05405.

1For location information please refer to the “SAMPLES.kmz” file in the accompanying digital
materials (explained in Appendix F).
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Index Easting Northing Photo Strike Dip Pol. Collector
11.IN.02.A 0250894 6295798 1376 016 64 pos JRW
11.IN.03.A 0250961 6295732 1377 325 25 pos JRW
11.IN.03.B 0250963 6295733 1378 058 52 pos JRW
11.IN.03.C 0250957 6295740 1379 315 54 pos JRW
11.LC.01.A 0255949 6290089 1387 273 52 pos JRW
11.LC.01.B 0255948 6290089 1388 334 44 pos JRW
11.LC.01.C 0255948 6290089 1402 134 50 pos JRW
11.LC.01.D 0255948 6290089 1403 074 57 pos JRW
11.LC.02.A 0255197 6289955 1404 066 72 pos JRW
11.LC.02.B 0255198 6289960 1407 031 40 pos JRW
11.LC.02.C 0255198 6289960 1409 297 88 pos JRW
11.LC.03.A 0254825 6290727 1429 132 02 pos JRW
11.AS.02.A 0256273 6283176 null 076 84 neg KAK
11.AS.02.B 0256273 6283176 null 082 64 pos KAK
11.IN.01.A 0250925 6295894 1440 251 87 pos JRW
11.IN.01.B 0250977 6295894 1441 192 61 pos JRW
11.IN.01.C 0250925 6295891 1442 019 67 pos JRW
11.IN.01.D 0250902 6295952 1443 null null null JRW
11.IN.01.E 0250902 6295952 1444 345 42 pos KAK
11.LC.02.D 0255187 6289973 1448 294 74 pos JRW
11.LC.04.A 0255194 6290077 1453 214 25 pos JRW
11.LC.04.B 0255257 6290313 1455 193 51 pos JRW
11.LC.03.B 0254825 6290727 null null null null LEW
11.LC.03.C 0254825 6290727 1456 025 60 pos KAK
11.LC.02.E 0255198 6289960 null null null null KAK
11.AS.01.A 0256404 6282774 1467 198 59 pos JRW
11.AS.01.B 0256404 6282774 1468 174 36 pos JRW
11.AS.01.C 0256407 6282744 1470 091 29 pos JRW
11.AS.01.D 0256404 6282771 1471 202 61 pos JRW
11.AS.01.E 0256403 6282761 1472 036 42 pos JRW
11.AS.03.A 0256396 6283131 1476 074 40 pos JRW
11.AS.03.B 0256396 6283140 1477 150 90 pos JRW
11.QT.01.A 0247986 6324162 1489 318 77 pos JRW

A.2 Las Cruces mylonites

The following consist of stereographic projections constructed for discrete mylonitic

shear zones developed within augen gneiss at Las Cruces. These projections follow the

same conventions used in brittle fault plane solutions. Figure A.1 contains individual
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mylonite plane solutions with shear zones plotted as thick great circles, extensional

axes denoted by the “x” character, contractional axes plotted with the letter “z,”

and the slip vector corresponding to lineation attitudes that point in the direction of

motion. Figure A.2 is a composite solution of the individual plots shown in Figure

A.1 and clearly defines a contractional and extensional . This analysis suggests that

the formation of discrete mylonitic shear zones within the Las Cruces region are

compatible with top to the north–north–west directed contraction.

My interpretation of these mylonites mimicking brittle faults is based on two ob-

servations: these mylonites exhibit low displacement and are highly localized (1–5 cm

in width). This suggests that their orientation and sense of shear likely represent the

initial state of strain and are not highly affected by progressive deformation. How-

ever, I must emphasize caution in applying this methodology to any given mylonite

system as fault plane solutions are genetically assumed brittle in formation.

Figure A.1: Mylonite plane solutions for discrete shear zones documented in augen
gneiss near Las Cruces.
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Figure A.2: Composite mylonite plane solution derived from the measurements shown
in Figure A.1. Solution suggests mylonite zones are compatible with general top to
the north–north–east directed contraction.
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Table A.2: Overview of the primary geochronological constraints for the Isla Negra Igneous Complex.

Age (Ma) Lithology Method Material Locality Reference

172.4±2.4 Mafic dike 40Ar/36Ar Amphibole Punta de Tralca (Irwin et al. 1987)
214.0±1.0 Dioritic gneiss U-Pb Zircon Cartagena (Gana and Tosdal 1996)
278.0±6.0 Orthogneiss K/Ar Biotite Las Cruces (Cordani et al. 1976)
291.0±1.0 Tonalite U-Pb Zircon Punta Gallo (Godoy and Loske 1988)
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A.3 Structure orientations

The following is a series of tables containing structural orientation data from the

central Chile field season of 2011. Theses measurements are tagged by a feature type

and geometry. As such, planes correspond to strikes and dips following right hand

rule. Linear features (“Lineations”) are presented with trends and plunges. The

table caption provides location information based on the site index tag. For location

information please refer to the “SAMPLES.kmz” file in the accompanying digital

materials (explained in Appendix F).

Table A.3: Structural orientations from: 11–AS–01

Feature Geometry Strike/Trend Dip/Plunge
Augen gneiss foliation Plane 229 88
Augen gneiss foliation Plane 210 79
Augen gneiss foliation Plane 181 68
Augen gneiss foliation Plane 213 50
Augen gneiss foliation Plane 217 79
Augen gneiss foliation Plane 309 87
Augen gneiss foliation Plane 220 89
Augen gneiss foliation Plane 200 67
Augen gneiss foliation Plane 225 78
Augen gneiss foliation Plane 210 74
Augen gneiss foliation Plane 205 78
Augen gneiss lineation Lineation 232 62
Augen gneiss lineation Lineation 245 40
Augen gneiss lineation Lineation 237 58
Augen gneiss lineation Lineation 222 50
Augen gneiss lineation Lineation 225 41
Augen gneiss lineation Lineation 220 40
Axial plane Plane 34 64
Axial plane Plane 36 66
Axial plane Plane 219 90
Axial plane Plane 71 76
Axial plane Plane 32 75
Axial plane Plane 59 85
Axial plane Plane 23 80
Axial plane Plane 54 86
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Table A.3: Structural orientations from: 11–AS–01

Feature Geometry Strike/Trend Dip/Plunge
Axial plane Plane 44 90
Axial plane Plane 60 79
Dike or vein contact Plane 18 85
Dike or vein contact Plane 273 87
Dike or vein contact Plane 238 82
Dike or vein contact Plane 81 76
Dike or vein contact Plane 182 50
Fold axis Lineation 274 64
Fold axis Lineation 271 70
Fold axis Lineation 232 36
Fold axis Lineation 207 33
Fold axis Lineation 212 42
Fold axis Lineation 234 49
Fold axis Lineation 215 54
Fold axis Lineation 211 42
Fold axis Lineation 235 35
Fold axis Lineation 213 52
Fold axis Lineation 212 42
Fold axis Lineation 230 33
Fold axis Lineation 237 59
Fold axis Lineation 248 60
Fold axis Lineation 207 24
Fold axis Lineation 243 40
Fold axis Lineation 210 45
Fold axis Lineation 54 40
Shear zone foliation Plane 245 54
Shear zone lineation Lineation 211 25
Migmatitic shear zone Plane 145 66
Migmatitic shear zone Plane 121 28
Migmatitic shear zone Plane 133 85
Migmatitic shear zone Plane 315 86
Migmatitic shear zone Plane 216 84
Migmatitic shear zone Plane 100 70
Migmatitic shear zone Plane 114 64
Migmatitic shear zone Plane 116 88
Migmatitic shear zone Plane 125 48
Migmatitic shear zone Plane 126 54
Migmatitic shear zone Plane 138 50
Migmatitic shear zone Plane 165 60
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Table A.3: Structural orientations from: 11–AS–01

Feature Geometry Strike/Trend Dip/Plunge
Migmatitic shear zone Plane 144 70
Migmatitic shear zone Plane 95 84
Migmatitic shear zone Plane 318 57
Migmatitic shear zone Plane 130 68
Migmatitic shear zone Plane 126 56
Migmatitic shear zone Plane 348 57

Table A.4: Structural orientations from: 11–AS–02

Feature Geometry Strike/Trend Dip/Plunge
Augen gneiss foliation Plane 84 60
Augen gneiss foliation Plane 104 55
Augen gneiss foliation Plane 90 66
Augen gneiss foliation Plane 95 61
Augen gneiss foliation Plane 89 65
Augen gneiss foliation Plane 89 77
Augen gneiss foliation Plane 76 84
Augen gneiss foliation Plane 237 85
Augen gneiss foliation Plane 75 78
Augen gneiss foliation Plane 80 60
Augen gneiss lineation Lineation 103 62
Augen gneiss lineation Lineation 244 58
Augen gneiss lineation Lineation 205 58
Augen gneiss lineation Lineation 192 52
Augen gneiss lineation Lineation 194 54
Augen gneiss lineation Lineation 210 58
Augen gneiss lineation Lineation 200 61
Augen gneiss lineation Lineation 212 58

Table A.5: Structural orientations from: 11–AS–03

Feature Geometry Strike/Trend Dip/Plunge
Augen gneiss foliation Plane 96 71
Augen gneiss foliation Plane 81 64
Augen gneiss foliation Plane 89 62
Augen gneiss foliation Plane 77 83
Augen gneiss foliation Plane 85 85
Augen gneiss foliation Plane 53 77
Augen gneiss foliation Plane 257 81
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Table A.5: Structural orientations from: 11–AS–03

Feature Geometry Strike/Trend Dip/Plunge
Augen gneiss foliation Plane 258 72
Augen gneiss foliation Plane 79 72
Augen gneiss foliation Plane 260 88
Augen gneiss foliation Plane 66 76
Augen gneiss lineation Lineation 213 69
Augen gneiss lineation Lineation 223 46
Augen gneiss lineation Lineation 242 53
Augen gneiss lineation Lineation 258 59
Augen gneiss lineation Lineation 225 55
Augen gneiss lineation Lineation 212 55
Augen gneiss lineation Lineation 287 50
Augen gneiss lineation Lineation 230 63
Dike or vein contact Plane 308 80

Table A.6: Structural orientations from: 11–IN–01

Feature Geometry Strike/Trend Dip/Plunge
Magmatic flow foliation Lineation 344 50
Magmatic flow foliation Lineation 189 35
Magmatic flow foliation Lineation 253 60
Magmatic flow foliation Lineation 319 56
Magmatic flow foliation Lineation 339 62
Magmatic flow foliation Lineation 334 66
Magmatic flow foliation Lineation 326 58
Magmatic flow foliation Lineation 329 55
Magmatic flow foliation Lineation 319 66
Magmatic flow foliation Lineation 325 63
Magmatic flow foliation Lineation 339 64
Magmatic flow foliation Lineation 339 60
Magmatic flow foliation Lineation 342 65
Magmatic flow foliation Lineation 357 59
Magmatic flow foliation Lineation 255 85
Magmatic flow foliation Lineation 329 66
Magmatic flow foliation Lineation 24 65
Magmatic flow foliation Lineation 334 57
Magmatic flow foliation Lineation 328 65
Magmatic flow foliation Lineation 336 65
Magmatic flow foliation Lineation 315 74
Magmatic flow foliation Lineation 253 60
Magmatic flow foliation Lineation 344 72
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Table A.6: Structural orientations from: 11–IN–01

Feature Geometry Strike/Trend Dip/Plunge
Magmatic flow foliation Lineation 326 70
Magmatic flow foliation Lineation 328 63
Magmatic flow foliation Lineation 327 56
Magmatic flow foliation Lineation 325 62
Magmatic flow lineation Lineation 58 63
Magmatic flow lineation Lineation 60 60
Magmatic flow lineation Lineation 64 55
Magmatic flow lineation Lineation 63 50
Magmatic flow lineation Lineation 65 60
Magmatic flow lineation Lineation 81 63
Magmatic flow lineation Lineation 67 58
Magmatic flow lineation Lineation 73 50
Magmatic flow lineation Lineation 74 64
Magmatic flow lineation Lineation 82 57
Magmatic flow lineation Lineation 78 64
Magmatic flow lineation Lineation 115 58
Magmatic flow lineation Lineation 114 58

Table A.7: Structural orientations from: 11–IN–02

Feature Geometry Strike/Trend Dip/Plunge
Dike or vein contact Plane 242 66
Dike or vein contact Plane 302 46
Enclave zone contact Plane 315 64
Enclave zone contact Plane 337 80
Enclave zone contact Plane 330 45
Compositional gneissic foliation Plane 327 65
Magmatic flow foliation Lineation 318 50
Magmatic flow foliation Lineation 315 44
Magmatic flow foliation Lineation 300 44
Magmatic flow foliation Lineation 315 40
Magmatic flow foliation Lineation 298 41
Magmatic flow foliation Lineation 305 44
Magmatic flow foliation Lineation 325 50
Magmatic flow foliation Lineation 308 43
Magmatic flow foliation Lineation 315 46
Magmatic flow foliation Lineation 330 45
Magmatic flow foliation Lineation 321 45
Magmatic flow foliation Lineation 320 48
Magmatic flow foliation Lineation 333 40
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Table A.7: Structural orientations from: 11–IN–02

Feature Geometry Strike/Trend Dip/Plunge
Magmatic flow foliation Lineation 307 44
Magmatic flow foliation Lineation 325 46
Magmatic flow foliation Lineation 317 58
Magmatic flow foliation Lineation 300 52
Magmatic flow foliation Lineation 315 40
Magmatic flow foliation Lineation 311 61
Magmatic flow foliation Lineation 309 62
Magmatic flow foliation Lineation 331 46
Magmatic flow foliation Lineation 317 52
Magmatic flow foliation Lineation 306 62
Magmatic flow foliation Lineation 298 52

Table A.8: Structural orientations from: 11–IN–03

Feature Geometry Strike/Trend Dip/Plunge
Dike or vein contact Plane 315 56
Dike or vein contact Plane 306 45
Compositional gneissic foliation Plane 305 58
Compositional gneissic foliation Plane 329 41
Magmatic flow foliation Lineation 315 54
Magmatic flow foliation Lineation 303 58
Magmatic flow lineation Lineation 75 42
Magmatic flow lineation Lineation 73 54

Table A.9: Structural orientations from: 11–IN–04

Feature Geometry Strike/Trend Dip/Plunge
Magmatic flow foliation Lineation 315 40
Magmatic flow foliation Lineation 341 55
Magmatic flow foliation Lineation 345 38
Magmatic flow foliation Lineation 325 56
Magmatic flow foliation Lineation 312 45
Magmatic flow foliation Lineation 332 52
Magmatic flow foliation Lineation 350 50
Magmatic flow lineation Lineation 75 38
Magmatic flow lineation Lineation 58 53
Magmatic flow lineation Lineation 109 28
Magmatic flow lineation Lineation 90 44
Magmatic flow lineation Lineation 76 36
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Table A.9: Structural orientations from: 11–IN–04

Feature Geometry Strike/Trend Dip/Plunge
Magmatic flow lineation Lineation 95 58

Table A.10: Structural orientations from: 11–LC–01

Feature Geometry Strike/Trend Dip/Plunge
Axial plane Plane 145 75
Dike or vein contact Plane 277 84
Fold axis Lineation 275 32
Fold axis Lineation 295 53
Fold axis Lineation 135 55
Compositional gneissic foliation Plane 125 75
Compositional gneissic foliation Plane 122 75
Compositional gneissic foliation Plane 120 74
Compositional gneissic foliation Plane 84 72
Compositional gneissic foliation Plane 104 72
Compositional gneissic foliation Plane 105 86
Compositional gneissic foliation Plane 95 72
Compositional gneissic foliation Plane 105 84
Compositional gneissic foliation Plane 290 80
Compositional gneissic foliation Plane 287 82
Compositional gneissic foliation Plane 292 80
Compositional gneissic foliation Plane 284 71
Compositional gneissic foliation Plane 274 89
Compositional gneissic lineation Lineation 150 70
Compositional gneissic lineation Lineation 100 64
Compositional gneissic lineation Lineation 92 62
Compositional gneissic lineation Lineation 150 70

Table A.11: Structural orientations from: 11–LC–02

Feature Geometry Strike/Trend Dip/Plunge
Augen gneiss foliation Plane 238 75
Augen gneiss foliation Plane 116 64
Augen gneiss foliation Plane 115 55
Augen gneiss foliation Plane 285 71
Augen gneiss lineation Lineation 137 58
Augen gneiss lineation Lineation 146 48
Augen gneiss lineation Lineation 141 84
Axial plane Plane 193 65
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Table A.11: Structural orientations from: 11–LC–02

Feature Geometry Strike/Trend Dip/Plunge
Dike or vein contact Plane 252 89
Dike or vein contact Plane 13 85
Dike or vein contact Plane 155 53
Dike or vein contact Plane 164 58
Fold axis Lineation 207 41
Fault zone foliation Plane 286 80
Fault zone foliation Plane 97 75
Gneissic foliation Plane 68 79
Gneissic foliation Plane 60 80
Shear zone foliation Plane 141 54
Shear zone foliation Plane 142 82
Shear zone foliation Plane 123 81
Shear zone foliation Plane 156 26
Shear zone foliation Plane 141 54
Shear zone foliation Plane 140 70
Shear zone foliation Plane 285 64
Shear zone foliation Plane 138 82
Shear zone foliation Plane 145 32
Shear zone foliation Plane 193 36
Shear zone foliation Plane 175 36
Shear zone foliation Plane 264 67
Shear zone foliation Plane 267 85
Shear zone foliation Plane 145 82
Shear zone foliation Plane 144 54
Shear zone foliation Plane 285 64
Shear zone foliation Plane 155 60
Shear zone foliation Plane 155 24
Shear zone foliation Plane 155 60
Shear zone foliation Plane 168 38
Shear zone lineation Lineation 202 14
Shear zone lineation Lineation 201 20
Shear zone lineation Lineation 293 35
Shear zone lineation Lineation 208 16
Shear zone lineation Lineation 180 58
Shear zone lineation Lineation 200 21
Shear zone lineation Lineation 210 58
Shear zone lineation Lineation 164 22
Shear zone lineation Lineation 185 9
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Table A.12: Structural orientations from: 11–LC–03

Feature Geometry Strike/Trend Dip/Plunge
Augen gneiss foliation Plane 296 76
Augen gneiss foliation Plane 273 82
Augen gneiss foliation Plane 297 75
Augen gneiss foliation Plane 274 71
Augen gneiss foliation Plane 284 80
Augen gneiss foliation Plane 282 76
Augen gneiss foliation Plane 284 74
Augen gneiss foliation Plane 252 79
Augen gneiss foliation Plane 267 67
Augen gneiss foliation Plane 289 56
Augen gneiss foliation Plane 269 70
Augen gneiss foliation Plane 125 87
Augen gneiss foliation Plane 356 32
Augen gneiss foliation Plane 287 72
Augen gneiss lineation Lineation 76 50
Augen gneiss lineation Lineation 94 56
Augen gneiss lineation Lineation 104 55
Augen gneiss lineation Lineation 174 68
Augen gneiss lineation Lineation 96 64
Augen gneiss lineation Lineation 97 67
Augen gneiss lineation Lineation 92 72
Augen gneiss lineation Lineation 55 66
Augen gneiss lineation Lineation 70 50
Augen gneiss lineation Lineation 71 50
Augen gneiss lineation Lineation 78 49
Augen gneiss lineation Lineation 135 68
Augen gneiss lineation Lineation 205 86
Augen gneiss lineation Lineation 120 70
Augen gneiss lineation Lineation 80 56
Augen gneiss lineation Lineation 108 70
Shear zone foliation Plane 290 72
Shear zone foliation Plane 296 86
Shear zone foliation Plane 154 55
Shear zone foliation Plane 139 73
Shear zone foliation Plane 279 83
Shear zone foliation Plane 70 65
Shear zone foliation Plane 140 71
Shear zone foliation Plane 303 87
Shear zone foliation Plane 116 85
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Table A.12: Structural orientations from: 11–LC–03

Feature Geometry Strike/Trend Dip/Plunge
Shear zone foliation Plane 313 84
Shear zone foliation Plane 304 24
Shear zone lineation Lineation 202 47
Shear zone lineation Lineation 174 60
Shear zone lineation Lineation 92 57
Shear zone lineation Lineation 107 72

Table A.13: Structural orientations from: 11–LC–04

Feature Geometry Strike/Trend Dip/Plunge
Augen gneiss foliation Plane 274 70
Augen gneiss foliation Plane 291 65
Augen gneiss foliation Plane 265 66
Augen gneiss foliation Plane 290 62
Augen gneiss foliation Plane 280 79
Augen gneiss foliation Plane 292 65
Augen gneiss foliation Plane 125 88
Augen gneiss foliation Plane 111 75
Augen gneiss foliation Plane 292 78
Augen gneiss foliation Plane 274 78
Augen gneiss lineation Lineation 114 57
Augen gneiss lineation Lineation 90 40
Augen gneiss lineation Lineation 125 42
Augen gneiss lineation Lineation 51 44
Augen gneiss lineation Lineation 90 36
Augen gneiss lineation Lineation 52 66
Augen gneiss lineation Lineation 67 56
Augen gneiss lineation Lineation 95 32
Gneissic foliation Plane 305 85
Shear zone foliation Plane 77 89

Table A.14: Structural orientations from: 11–QT–01

Feature Geometry Strike/Trend Dip/Plunge
Augen gneiss foliation Plane 168 79
Augen gneiss foliation Plane 147 80
Augen gneiss foliation Plane 334 64
Augen gneiss foliation Plane 159 74
Augen gneiss foliation Plane 170 80
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Table A.14: Structural orientations from: 11–QT–01

Feature Geometry Strike/Trend Dip/Plunge
Augen gneiss foliation Plane 155 84
Augen gneiss foliation Plane 324 83
Augen gneiss foliation Plane 158 74
Augen gneiss foliation Plane 159 70
Augen gneiss foliation Plane 152 80
Augen gneiss lineation Lineation 255 76
Augen gneiss lineation Lineation 67 64
Dike magmatic foliation Plane 165 88
Dike magmatic lineation Lineation 345 70
Dike or vein contact Plane 154 66
Shear zone foliation Plane 152 79
Shear zone foliation Plane 156 60
Shear zone foliation Plane 143 81
Shear zone foliation Plane 140 88
Shear zone foliation Plane 165 47
Shear zone foliation Plane 144 84
Shear zone foliation Plane 152 60
Shear zone foliation Plane 163 88
Shear zone foliation Plane 151 84
Shear zone foliation Plane 144 79
Shear zone foliation Plane 160 72
Shear zone lineation Lineation 280 58
Shear zone lineation Lineation 152 84
Shear zone lineation Lineation 178 77
Shear zone lineation Lineation 216 80
Shear zone lineation Lineation 225 67
Shear zone lineation Lineation 220 70
Shear zone lineation Lineation 175 35
Shear zone lineation Lineation 180 45
Shear zone lineation Lineation 166 50
Shear zone lineation Lineation 165 73
Shear zone lineation Lineation 313 55
Shear zone lineation Lineation 311 60

Table A.15: Structural orientations from: 11–QT–02

Feature Geometry Strike/Trend Dip/Plunge
Augen gneiss foliation Plane 327 82
Augen gneiss foliation Plane 300 78
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Table A.15: Structural orientations from: 11–QT–02

Feature Geometry Strike/Trend Dip/Plunge
Augen gneiss foliation Plane 151 70
Augen gneiss foliation Plane 132 71
Augen gneiss foliation Plane 328 85
Augen gneiss foliation Plane 137 85
Augen gneiss foliation Plane 145 86
Augen gneiss foliation Plane 298 87
Dike or vein contact Plane 158 33
Dike or vein contact Plane 133 44
Dike or vein contact Plane 145 65
Fault zone foliation Plane 154 80
Fault zone lineation Lineation 158 23
Shear zone foliation Plane 306 66
Shear zone foliation Plane 321 47
Shear zone foliation Plane 180 86
Shear zone foliation Plane 80 54
Shear zone foliation Plane 198 81
Shear zone foliation Plane 218 89
Shear zone foliation Plane 187 71
Shear zone foliation Plane 157 88
Shear zone foliation Plane 22 77
Shear zone foliation Plane 202 84
Shear zone foliation Plane 312 45
Shear zone lineation Lineation 312 5
Shear zone lineation Lineation 324 70
Shear zone lineation Lineation 312 5
Shear zone lineation Lineation 12 10

161



Appendix B

Fabric quantification

B.1 Preface

The purpose of this manual is to outline in detail, the process of obtaining and an-

alyzing fabric data from a variety of deformed rocks at different scales. As such,

different scenarios will present different challenges and may result in research avenues

not explicitly discussed within the tutorial. It is of the utmost importance that this

manual is applied with the notion of a working process, rather than an automated

procedure (i.e. no “black box” technology). Numerous stages throughout the tutorial

will require input and decisions from the operator which may have important conse-

quences, and can result in geologically meaningless and completely erroneous results if

not applied correctly. Therefore, I highly encourage you to review the references cited

throughout this document, and fully understand the required inputs and generated

outputs of each analytical stage. This task may seem daunting, but the ability to

understand the processes involved within this methodology will provide an invaluable

asset in describing deformation.

The fundamental requirement of this procedure is the recognition of a situation

worthy of fabric analysis. Given the banality of this statement, it is still surprising
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the number of workers who apply a strain analysis to rocks without a generalized

conceptual goal. Although we may not have the ability to foresee the significance of

our results prior to the embarkation of a new method or application, we must first

address the validity of the questions we ask. The method outlined in this manual

requires a fairly significant time investment, with no guarantee that the results will

suit the intended research questions. This investment must be weighed against the

allocation of time in other avenues, such that the specific goals of workers are met

without unproductive distractions.

I fully acknowledge the general evolution of most computer based analytical proce-

dures, in that the advancement of technology will undoubtedly leave the exact details

of this manual obsolete. Therefore, an attempt to highlight the principles behind

the operations, as opposed to the exact operations themselves, is made. Although

the means by which data will be obtained, formated, and manipulated within the

computer environment, is bound to change as technology evolves, the principles be-

hind the mathematics and algorithms implemented herein will remain through that

transformation. Ultimately, the rationale behind a geologist’s desire to quantitatively

address the geometries of deformed rocks, cannot be replaced by a computer. There-

fore, use this procedure only as a tool from which some answers may be obtained,

and more frequently, questions will be asked. I would like to invite the courageous

and patient to adapt, manipulate, adjust, or full on rewrite this procedure and apply

it to exciting new research in structural geology.

B.2 Getting Started

B.2.1 Understanding the manual

This manual is organized as guide to help establish the basic procedure of conducting

a fabric analysis using scanned or standardized photographic data. In order to effec-
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tively complete this task, the manual is set up as a tutorial, based on a synthetically

deformed conglomerate model with a known magnitude and shape. This synthetic

data set will allow you to check your results with the expected values, and will hope-

fully enable the correction of mistakes, if any arise. From this tutorial, you will learn

the general analytical fabric quantification process, as well as potential considerations

and issues that may arise with the application of this method to deformed earth ma-

terials. This manual uses entirely open source software with the single exception of

two Microsoft R© Excelbased spreadsheets. Unfortunately, I have not found the time

or motivation to “reinvent the wheel” and attempt to write the two critical Excel

macros into the statistical environment R.

Section B.2 documents the necessary steps to create a working environment on

a personal computer. This section is initially the most difficult and time consuming

phase, due to the large number of programs and packages needed for the various

components of data extraction, analysis, synthesis, and documentation. However,

once the programs are properly installed, additional analyses will effectively bi-pass

this section. Obviously, if you switch computers, or experience an unfortunate hard

drive failure, you will need to reestablish the working environment.

Section B.3 outlines the nitty-gritty details of extracting geometric data from

digital scans or images. In general, this is the least entertaining phase of a given

analysis, yet it is likely the most important. Here, you will use several programs

outlined in section B.2 to digitize the traces of deformed (or undeformed) markers,

and generate a plethora of numbers that will for the bases of all subsequent analyses.

Although this stage is somewhat analogous to point-counting in terms of excitement,

I can assure you the data are worth it.

Section B.4 is a general procedure to set up and retrieve data used by two

Microsoft R© Excelfeatures. This is not intended as a comprehensive set of instruc-
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tions on how to use these tools, but rather a simple list to help remind you (and

myself) of the basic required steps to complete an analysis. For more information on

these tools consult the original documentation as outlined in this manual. This sec-

tion implements only the two most widely used analytical strain techniques (Rf/φ and

Fry methods). If you wish to combine your data with other techniques such as the

normalized / least squares center-to-center method (Erslev 1988; Erslev and Ge 1990),

the DTNNM method (Mulchrone 2005), the Sanderson / projection method (Sander-

son 1977; Panozzo 1984; Trayner 1986), and/or the intercept method (Launeau and

Robin 1996), I encourage you to do so. However, an endeavor like that is quite beyond

any documentation found in this manual.

Section B.5 will guide you through the most entertaining phase of the entire pro-

cedure. This section documents how to obtain fitted ellipsoid data from the processed

two dimensional data, how to generate 3D computer models the oriented ellipsoids,

and how to calculate/plot various fabric parameters. I hope you enjoy this phase

as I have included 3D rendering and stereographic projection capabilities into the R

scripts to better standardize and visualize the calculated rock fabrics.

Finally, the last section describes some considerations for the application of this

procedure to tectonically deformed rocks. In general, these are only suggestions and

hints. I cannot personally determine the validity of the results you obtain from

this procedure, nor can I provide the best methodology for every potential scenario;

however, I do wish you patience and good luck.

B.2.2 Requirements

The basic requirements for this tutorial include a geologic entity of interest, tools

to extract raw data from that entity (e.g. rock saw, scanner, photographic aperture

device, etc.), a P.C. with a Microsoft Windows R© operating system (Windows R© 7
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is preferred), several open source software programs (Table B.1), the general folder

structure and conversion scripts for the analysis (see Fig. B.1), and a good sense of

humor. This chapter is designed to help establish the means of data processing within

the computer environment which is generally adapted from Betka (2008). Heartbreak

and frustration is greatly reduced by collecting data based on the conventions estab-

lished by the individual programs and conversions supplied. It will, therefore, behoove

you to establish the working environment prior to data collection. However, if you are

dealing with pre-existing data sets, a conversion may be required prior to analysis.

As previously mentioned, this procedure is accompanied by a set of standardized

photographic data for a synthetically generated, and deformed, conglomerate model.

These images were taken with a photographic aperture device (PAD) which allows

the orientation of the section to be measured and later processed. The synthetic

conglomerate model is obviously uncharacteristic of any geologic medium in that

all assumptions of finite strain are valid for both the Rf/φ or Fry methods. Stated

simply, this is the most idealistic dataset possible which cannot be expected from

reality. However, following this procedure with the provided dataset will allow you

check your calculations against the expected values, and will form a good foundation

for use in deformed earth materials. For details on the construction of the deformed

conglomerate model, or the Photographic Aperture Device, contact me at the address

listed in Table B.1.

B.2.3 Establishing the computer environment

Obtain the folder structure listed in B.1 by contacting me (in the future I hope

to make this available online). Place the directory in a desired location from which

you will work. Each folder structure is designed for one sample analysis. If multiple

samples or outcrops are processed, you will need to rename the ”FABRIC” folder to
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Table B.1: List of available software resources used within the tutorial.

Feature Usage
Folder Structure All folders, scripts, and templates
R Statistical computing environment
Inkscape Software for vector graphics
Gimp Software for raster graphics
Blender 3D modeling software
SAPE Parameter extraction software
Rf/φ Excel worksheet for Rf/φ analysis
Fry Excel worksheet for Fry analysis
Ellipsoid Statistical ellipsoid fitting
Notepad++ Fabulous text editor
Mulchone Rf/φ Program for Rf/φ analysis
Meshlab 3D object conversion

a unique title such as the specific sample ID or location station; however, this manual

will continue to refer to this master folder as the ‘FABRIC’ folder. The ‘FABRIC’

folder contains 27 nested folders which are required for proper data operation of the

supplied R-scripts (fig. B.1). Although the master folder can be renamed, changing

any sub-folder names is unwise, and will likely result in a myriad of errors. As a

first order organizational hierarchy, the project is divided into sections which will

contain the analytical data, digitization data, model data, extracted parameter data,

conversion and plotting scripts, raw scan or photo data, and various templates for

several processes. This hierarchy allows for specific locations to work and save data

that the supplied scripts will utilize in the procedure.

B.2.4 Software

Download each of the programs listed in Table B.1. As mentioned earlier, all of these

programs are free to use and distribute with the two exceptions of the Rf/φ and Fry

worksheets. Although other programs are available for the automating the Rf/φ tech-

nique (Peach and Lisle 1979; Mulchrone and Meere 2001), the Fry method (Lisle
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Figure B.1: Basic organizational description of the various components to the folder
structure implemented in each three-dimensional analysis
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2010), and image analysis (Abràmoff et al. 2004), they are not discussed within this

manual. Follow the directions associated with each program to successfully install

and operate the software.

B.2.4.1 R: Statistical Computing

The language and environment ”R” forms the basis of data conversion and plotting

within this tutorial. This program forms the heart of this procedure as it will effec-

tively take you from one program to another and will help standardize data output.

1. Download R from the URL listed in Table B.1 following the general installation

procedure associated with the program. I recommend creating a desktop shortcut,

as this will allow the working directory to be changed to the fabric analysis folders.

Once the program is installed, double click the desktop icon. Two windows should

appear, the RGui and the R Console. Most first impressions of R are typically

less than exciting; however, the computing power of R surely warrants the time

investment needed to fully learn the program; however, do not let this stop you

from continuing, you don’t have to know too much about R to process fabric data.

If everything is in working order, you may close the program.

2. In order to correctly use the conversion and data formatting operations within

this tutorial, we need to establish the working directory. Simply put, we need to

tell R where the files and folders that it needs to read and write are located on

the computer. To do this, right-click on the desktop icon and open the properties.

A window similar to that shown in Figure B.2 should appear. Change the folder

location under the ’Start in:’ field to the desired working location. That is, the

location of the ‘FABRIC’ folder. If you are working from your desktop, the directory

will look someting like this: ’C:\USER NAME\DESKTOP\FABRIC.’
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Figure B.2: How to change the working directory for R.

3. One of the best aspects of R, is the ability to download specialized packages for

a variety of computational and graphical operations. These are specific to an

enormous variety of disciplines ranging from three-dimensional MRI medical image

analyses to GIS datum conversion applications. In order for the supplied scripts

to operate, several packages must be downloaded and installed. This task is quite

easy with the RGui. Simply click on the ’Packages’ menu →’Install packages(s)...

’ and select the location nearest to you (see Fig. B.3). This is called a mirror, and

it is simply the nearest server from which you can download the desired packages.

4. Scroll through the extensive list of packages and select those listed in Table B.2.

This table contains the package names, a brief description of usage, and the citation.
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For more information on these packages, descriptions can be found from the CRAN

website (R Development Core Team 2010). As a side note, several of the scripts

implemented within this procedure use an ellipse plotting code created by Dr.

Peter Macdonald (Professor Emeritus of Mathematics and Statistics at McMaster

University) to whom I am grateful for permission to utilize the code within my

scripts (Macdonald 2007). I would also like to thank Dr. David Chew who also

helped with a ‘Vector Mean’ correction within one of the scripts.

Table B.2: Required R Packages.

Package Description Citation
sqldf Enables SQL operations. (Grothendieck 2010)
gplots Formatted tables for data output. (Warnes et al. 2010)
rgl Provides 3D visualization. (Adler and Murdoch 2011)
misc3d Output of 3D objects. (Feng and Tierney 2008)
plotrix Plotting of arcs for Nadai plots. (Lemon 2006)
RFOC Plotting of stereographic projections. (Lees 2011)

B.2.4.2 Graphics programs

I personally prefer the two open source graphics programs Inkscape and Gimp which

collectively provide extensive vector and raster capabilities. If you enjoy the expensive

proprietary equivalents (e.g. IllustratorTMand PhotoshopTM) feel free to use them,

just be warned that the operations will be different than explained in this tutorial.

The use of specific graphics programs does not matter, as long as the end result is a file

that SAPE is capable of processing, as explained in section B.3. Nevertheless, I will

caution anyone who would like to use the Inkscape templates in a different program

as this might become “fussy;” you will likely need to create your own. Finally,

BlenderTMis an excellent open source three dimensional modeling program that is
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specifically integrated into this procedure because of the program’s splendid rendering

capabilities and ability to fully attribute a three-dimensional scene.

B.2.4.3 Analytical software

The “heavy lifting” in terms of data computation comes from four available programs

specifically designed for use in strain analysis. These programs allow for the extrac-

tion of object trace parameters ‘SAPE’(Mulchrone et al. 2005); the objective, central

void fitting of a Fry plot ‘FryXFit’(Waldron and Wallace 2007); the Rf/φ processing

macro(Chew 2003); and an ellipsoid fitting program ‘Ellipsoid’(Launeau and Robin

2005). Additionally, I have incorporated an output file within this procedure that

enables use of the program rfphi (Mulchrone and Meere 2001). Please cite these pro-

grams if you use them in your research. All the other wizbangs and gizmos produced

during this procedure were created to help standardize, plot, and visualize fabric data

within the environment R. Please see the specific sources in Table B.2

B.3 Parameter extraction

B.3.1 Preparing the data

Once all the initial fuss setting up the various programs and packages is complete,

a few minor, yet critically important, steps must be made. All the conversion and

plotting scripts used in the procedure read and write from text files that must be

appropriately labeled. This manual attempts to highlight file nomenclature as a

potential source for calamity if not executed properly. Therefore, follow the procedure

accordingly, and abide to the cases of characters within filenames (yes I know... it’s

picky, but the file names are case sensitive) and folder locations (don’t change any of

the folder names except for the master folder originally entitled ‘FABRIC’. Along this

note, you must also establish the field data file, which contains orientation information
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pertaining to the three mutually perpendicular sections. Unfortunately, the order of

this data file matters as it will be read by the scripts in sequential order. The following

list documents how to properly update this data file.

1. Open the text file ‘FIELD DAT.txt’ in ‘TEMPLATES’ folder with a standard text

editor. If you use ‘Notepad,’ make sure that word wrapping is turned off.

2. Enter the correct data into each field separated by a ‘tab’ character and a hard

return for each new line. The photo id field will correspond to the three entries

‘A, B, and C’ in sequential descending order; however, you do not need to type

the names ‘A, B, C’ specifically, as long as you understand that the computer will

think of them as just described, and that you do have some id name filled in. The

‘strike’ field is the strike of each section following right hand rule convention as an

azimuth (not quadrant). The ‘dip’ is simply the dip also following right hand rule,

while the field ‘dd’ is just a reminder to check the data, put in ‘RHR’ if you don’t

care. Add in the polarity for each section. This is explained in greater detail in

the next section, but essentially denotes overhung faces; if the polarity is positive,

it means the scan or photograph came from an upright surface. Finally, add any

brief notes you desire about each section and add a single blank line at the end of

the document. See Table B.3 for an example.

Table B.3: Example field data text file. Each field is separated with a tab character.

photo id strike dip dd polarity notes
A 035 64 RHR pos none
B 123 90 RHR pos none
C 214 26 RHR pos none

3. Once all the data is entered into the text file, save the document FIELD DAT.txt’
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in the ‘RAW DATA’ folder and close the text editor. The data file for the deformed

conglomerate is contained within the example folder also available upon contact.

B.3.2 Digitization

The digitization process requires the manual selection and tracing of markers within

the standardized photographs. Care must be taken to accurately follow the outlines

of the markers, as repetitive inconsistencies in tracing may cause an unwanted de-

viation from the true object geometries. In general, three parameters are needed

from each object, which include the long axis orientation, long axis length, and the

short axis length. The location where the axes intersect marks the object centroid,

which is necessary for a Fry plot. These attributes enable the application of both

the Rf/φ and Fry methods with relative ease compared to classic strain analyses. In

general, the Rf/φ technique requires 50 to 75 objects to produce a statistically valid

plot (Borradaile 1984), while the Fry method classically requires greater than 260

centroids (Fry 1979); however, fry analyses with vastly fewer centroids (as low as 25)

are reported in the literature with acceptable results (Treagus and Treagus 2002).

Nevertheless, samples with less than 50 markers should generally be avoided.

1. Open the Inkscape template ‘STAND PHOTO.svg’ in the ‘TEMPLATES’ folder

and save as ‘A.svg’ (you will need to type the file extension) under the location

FABRIC/ DIGITIZATION/ SVG. This will preserve the template for use on the

other sections.

2. The basic Inkscape lay out consists of the canvas, a black rectangle and a yellow

grid. The blue lines are guides which allow the photographic data to ’snap’ into

the correct placement. Before we begin the digitization process, we need to set

up the screen. First, the template uses a series of layers to organize the various
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components of the process. Use the shortcut [Ctrl+Shift+L] to view the layers.

The two important features of the layer panel are the ’eyeball’ and the ’lock.’

These features will allow us to toggle the visibility on and off, and will keep certain

layers locked that we do not wish to edit. Make sure the ‘PHOTODATA’ layer

is highlighted (in blue), visible (open eye icon), and unlocked. The other layers

should remain locked for now.

3. Set up the other tool panels such as the transform [Ctrl+Shift+M], fill and stroke

[Ctrl+Shift+F], and the align and distribute panels [Ctrl+Shift+A]. The transform

panel will allow precise adjustments of objects, the fill and stroke will change the

aspects of polygons, and the align and distribute panel will provide the means for

accurately adjusting object locations on the canvas.

4. Import the file ‘A.jpg’ from the FABRIC/ RAW DATA folder by pressing [Ctrl+I]

or File →Import. Make sure to ‘link’ the image, as embedding will create an

excessively large file. Just note that if the location of the photo file changes, you

will need to manually edit the image properties in Inkscape to the new location.

Save the document.

5. Use the select tool (this one looks like a standard pointer) and move the image

so the upper right hand corner snaps to the intersecting guides on the upper right

portion of the canvas. Lock the ‘PHOTODATA’ layer and unlock the ‘GRID’

layer. This grid is based on the dimensions of the camera aperture device which

is 25 cm by 25 cm. The grid is not a crucial part of the process, but may come

in handy for additional research questions later on. Adjust the yellow grid so that

it is approximately aligned to the inside margin of the Plexiglas frame. Lock the

‘GRID’ layer and turn off the visibility. Save the document.
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6. We are now ready begin the exciting task of digitization, which conjures emotions

similar to those experienced while grading assignments. Nevertheless, this tedious

process is the most limiting step of the procedure in terms of data quality. By

rushing this phase, you are limiting the accuracy of the entire project, in short,

take your time. Begin by highlighting and unlocking the ‘DIGITIZATION’ layer,

and make sure all other layers are locked. Select the pencil tool and toggle the

‘smoothing’ bar to 30. This is my personal preference, but feel free to experiment.

Find an ellipse located near the center of the image, and accurately trace the

outline. This is done by dragging the pencil along the ellipse outline until finished

by releasing the tool within the small start box that denotes the beginning of the

path. Save the document.

7. The extraction process works best with white objects on a black background.

Therefore, we need to set the pencil tool to create filled white objects. Select

the ellipse with the ’selection’ tool and left-click the white color palette, typically

located at the bottom of the screen, and repeat the motion while holding the

shift key (this sets the outline color). Also, move the cursor over to the ‘fill and

stroke, stroke style’ panel, and set the width to 1 pt. Make sure the ellipse is now

completely white and selected. In order automatically set this object style for future

ellipses, go to ‘File’→‘Inkscape Preferences’ (or use the shortcut [Ctrl+Shit+P]),

select ‘Pencil’ from the ‘Tools’ category, and click on ‘Take from selection.’ Exit the

preferences, and we are now ready to digitize the rest of the objects (see Fig. B.4).

Remember to save frequently as Inkscape does crash from time to time.

8. Finish digitizing the ellipses so that there are at least 50 objects as previously

mentioned. This may require some of the ellipses under the camera frame to be

used; however, avoid this when there is a sufficient population within the frame.
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Once again, save often. In order to view the number of objects digitized, press

[Ctrl+A] and click the ‘selection’ tool; the number of objects selected should be

displayed on the information bar at the bottom of the screen.

9. Once all the objects are traced, lock the ‘DIGITIZATION’ layer and save the doc-

ument. Turn off the ‘PHOTO DATA’ visibility and unlock the ‘BACKGROUND’

layer. You may need to adjust the black box within the ‘BACKGROUND’ layer

so that it completely incorporates the white ellipses. All layers other than ‘DIG-

ITIZATION’ and ‘BACKGROUND’ should be hidden. Use the ‘selection’ tool to

select the black box and click ‘file’→‘Export Bitmap’ or [Ctrl+Shift+E]. Set the

‘Export Area’ to ‘Selection’, Bitmap size to 100 dpi resolution which should reset

the dimensions to 2629 by 2629 pixels, and change the file name to the location

FABRIC/ DIGITIZATION/ PNG/ A.png.

10. Close Inkscape and repeat the digitization process for each of the three standard-

ized photographs, while maintaining file nomenclature (i.e B.jpg→B.svg→B.png

within the respective folders).

B.3.3 Raster requirements

We have now established three exported raster files from our digitization process.

However, this file type (portable network graphics .png) is not compatible with the

program SAPE(Mulchrone, Meere, and Choudhury 2005), which requires a simple

conversion using the program Gimp
TM

to a bitmap (.bmp) image. Also, SAPE can

only handle black and white images, so we must convert the image from gray scale.

1. Start the program Gimp
TM

and open the file ‘A.png’ exported from the digitization

process. Zoom into the boundary and notice that the image is not entirely black

and white. In fact there are many gray values which will confuse SAPE. Therefore
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it is wise to adjust the colors so that only black and white pixes exist as shown in

Figure B.5.

2. Click on ‘Colors’→‘Brightness-Contrast’ and move the ‘Contrast’ bar to the max-

imum value possible. Select ‘OK’ and the pixels are now composed of only black

and white values.

3. Finally, we need to export the image as a Windows R© Bitmap image (.bmp). To

do this simply click on ‘File’→‘Save As’, change the file location to FABRIC/

DIGITIZATION/ PNG, and name the file ‘A.bmp.’ Select ‘Save’ and close Gimp
TM

.

4. Repeat the raster conversion process for each of the three standardized pho-

tographs, while maintaining file nomenclature (i.e B.jpg, B.svg, B.png, B.bmp

within the respective folders).

B.3.4 SAPE

The program SAPE (Mulchrone, Meere, and Choudhury 2005) is a powerful tool

which will statistically fit ellipses to individual digitized objects. With this tool,

massive quantities of data can be obtained including the relative lengths of all major

and minor ellipse axes, the location in cartesian space for the ellipse centroids, and

the orientations of the major axes. This data set will therefore, provide all the

necessary components required in both Fry and Rf/φ analyses. For more information

on the internal processes of SAPE, the reader is directed to (Mulchrone, Meere, and

Choudhury 2005).

1. Open SAPE and edit the extraction parameters by clicking on ‘Process’→‘Set

Parameters’ and changing the ‘Bottom Tail %’ and ‘Top Tail %’ to zero. Press ‘OK’.

However, if you do not intended to manually check the individual SAPE results,
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which is highly discouraged (as SAPE will occasionally misidentify an object), do

not adjust the default ‘Data Reduction’ parameters and leave to 5% tail cutoff.

2. Import the image ‘A.bmp’ into SAPE by clicking‘File’ →‘Import Image.’ Once

the image is loaded click on ‘Process’ →‘Run Analysis’ [Ctrl+R] and wait till the

analysis is finished. This may take a few seconds.

3. In order to prevent the acceptance of erroneous fitted ellipses, and to insure all

valid data is collected, a manual inspection is required. Change the ‘View’ to

‘Processed Data and Fitted Ellipses’ which will display the approximate outline

of the fitted ellipses in red. Notice that most of the numbered tags are colored

white (see Fig. B.6). When an object is rejected by SAPE, it will color the tag red.

Manually inspect each tag to ensure that no valid data is rejected and no erroneous

objects are accepted.

4. Once the dataset is satisfactory, export the parameters into the correct file location

by clicking ‘File’ →‘Export Parameters’→‘All Data’. The file location and name

is crucial at this point, as all the subsequent scripts will process the data based on

these attributes. Furthermore, always export ‘All Data’ even if you only intend to

run an Rf/φ analysis because all the scripts are written for this data format. Save

the (.sda) file as FABRIC/ PAR EX/ A.sda. Once this is completed you may close

SAPE.

5. Repeat the parameter extraction process for each of the remaining bitmap images,

while maintaining file nomenclature.
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B.4 Analytical methods

B.4.1 Setup

Before the Fry or Rf/φ methods can be applied to the extracted dataset from SAPE,

several conversions must be made. First, the program FryXFit needs the coordinates

of a fry plot generated from the dataset and reduced to less than 3,000 data points.

Secondly, SAPE uses a different origin for the coordinates than what is desired for

plotting in the Cartesian grid. Finally, the Rf/φ program (Chew 2003) requires the

long, short, and φ orientations arranged in subsequent columns. This format is not

quite the same as produced in the SAPE export file so we must rearrange and convert

these data. Fortunately, I have written conversion scripts for use in the program R

(R Development Core Team 2010) to automatically execute the above operations and

produce nice text based data files. Additionally, I have incorporated a new output

file for direct use in the program written by Mulchrone and Meere (2001) that can

directly bypass the Microsoft R© Excel macro. This is the new recommended usage for

rfphi analysis as newer versions of Microsoft R© Excel have difficulties in executing

the Chew 2003 macro. Assuming the previous steps outlined in this manual were

followed closely, the conversions are very simply done. If however, you have deviated

from the established nomenclature and folder structure, you will need to severely edit

the scripts. I do not recommend changing the conversion scripts unless you are fluent

in R and fully understand the inputs and outputs of each process in detail, but the

world is yours, so do as you may.

1. Open the R Console from the desktop icon (this is the location for which the

working directory has been changed and will correctly read and write the data

files).
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2. Open the script entitled “FRY SETUP” found in the “R SCRIPTS” folder with

a text editor (I prefer notepad ++; however, simple notepad will work fine, but

it’s a little more finicky). If you are using notepad, make sure the ‘Word Wrap’

option is not selected under ‘Format’. Select the entire script by using the shortcut:

[Ctrl+A] and copy with [Ctrl+C].

3. Paste the entire script in to the R Console by using the command [Ctrl+V]. Let

the machine do it’s thing and hopefully everything is produced without a hitch!

4. Scroll through the R Console and check for serious errors (don’t worry about

warnings that deal with the specific version of R). If there are any, I suggest checking

the working directory for the console and all file names and folder locations. Good

Luck, this can become a nightmare if things are misplaced. However, if working

properly, the program R will provide an incredible environment which cannot be

matched by Microsoft R© Excel. This point will be addressed further when producing

graphs and figures directly from the data.

5. Close the R Console and don’t save the ‘Workspace Image’ as the scripts are the

only things needed to processes the data again.

6. Check to make sure the output files were generated within the location FABRIC/

ANALYSIS/ FRY/ INPUT. There should now exist six text files titled ‘A.txt’,

‘B.txt’, ‘C.txt.’ These correspond to the respectively titled photographic data and

SAPE parameter exports but are formatted for use in FryXFit.

7. Complete the same process for the Rf/φ data by running the script entitled ‘RF-

PHI SETUP’ within the R Console and checking the converted text files in FAB-

RIC/ ANALYSIS/ RFPHI/ INPUT.
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B.4.2 Rf/φ technique

B.4.2.1 Mulchrone and Meere 2001 method

1. Open the program rfphi by (Mulchrone and Meere 2001).

2. Open the sectional “.rfp” files directly in this program and three new windows

should appear.

3. Simply press the “Run analysis” button and check the results.

4. In order to extract the section results, simply open the template ‘RFPHI DAT.txt’

found in the ‘TEMPLATES’ folder and complete each column for each section (i.e.

A, B, and C) with the specific attributes directly from the Rfphi.xls document,

and separated by hitting the ’Tab’ button once to denote a column change (this is

the same style as the ‘FIELD DAT.txt’ file you previously completed). Save the

data file as ‘RF PHI.txt’ in the folder location FABRIC/ ANALYSIS/ RFPHI/

OUTPUT. Only the section names A,B, and C (listed as rows in that order) and

the calculated Rsvalues are required for the subsequent stages of this procedure.

The R-based scripts used in section B.5 will re-plot the data in a standardized

manner for each section and will calculate the vector mean based on a geographic

rake convention used in subsequent steps.

B.4.2.2 Chew 2003 method

If you have used the program rfphi, there is no need to follow the subsequent steps.

1. Open the Microsoft R© Excelbased macro (Chew 2003) titled ‘Rfphi.xls.’

2. Open the converted text data file titled ‘A.txt’ from FABRIC/ ANALYSIS/ RF-

PHI/ INPUT. Select the entire text file by using the shortcut: [Ctrl+A] and copy

with [Ctrl+C].
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3. Paste the data into the Microsoft R© Excelwork sheet ’Enter data’ by right clicking

the upper-left cell and selecting the ‘Paste Special’ option, choose ‘text’ and click

‘OK’. Both the vector and harmonic means will be displayed to the right of the

purple data cells, as well an Index of symmetry after Lisle (1985). The worksheet

‘ln Rf vs. phi’ will plot the data in standard Microsoft R© Exceldefault colors with

the Rf/φ axis oriented horizontal. Note that the data is reentered such that the

vector mean mean is now equal to 0◦.

4. The Rsvalue will be calculated using a χ2 statistical test from an iterative process

which will essentially “hone” in on a precise value. To do this, open the ‘Calculate

Rs’ worksheet. There will be three groups of cells colored yellow, purple, and red

respectively from left to right. The yellow cells will allow us to set a range of values

and a resolution from which the best Rsvalue will be determined. Because we are

somewhat limited by the range and resolution of each calculation, I find it wise to

hypothesize a general strain range for which the data will likely fall within (this

estimation can be aided by visually examining the Rf/φ plots and the calculated

harmonic mean as suggested by Lisle (1985, page: 18).

5. Begin by changing the ‘increment cell’ to a value of ‘0.1’ which will test a series

of Rsvalues over a range of 1 to roughly 8.5. If you believe the strain exceeds this

range, you may increase the ’Start Rs’ cell to a value that will center the strain

range over your hypothesis. Hit the return key to exit the current cell, and press the

‘Calculate’ button. Switch to the ‘χ2 vs. Rs’ worksheet and notice the generated

graph. The minimum χ2 value produced for the Rsrange is accepted as the best fit

“strain” ratio.

6. In order to obtain a more precise Rsvalue, we will increase the resolution of the

test range, and thereby, decrease the width of the test range. This is best done by
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subtracting an Rsvalue of one from the first calculated Rs(assuming this is greater

than 1), and enter this into the ‘Start Rs’ cell. Change the ‘Increment’ value to

‘.05,’ hit enter, and press ‘Calculate’. The range is now centered on the original

value and at a higher resolution. Repeat this process one more time; however,

subtract an Rsvalue of .5 and change the ‘Increment’ cell to ‘.01.’ Press ‘Calculate’

and the worksheet has now effectively produced a best fit χ2 test of the extracted

parameter data.

7. Before enjoying a cold beverage, you must compile the results into a standard-

ized tab-separated text-based data table. Don’t worry, this isn’t as scary as it

sounds. Simply open the template ‘RFPHI DAT.txt’ found in the ‘TEMPLATES’

folder and complete each column for each section (i.e. A, B, and C) with the

specific attributes directly from the Rfphi.xls document, and separated by hit-

ting the ’Tab’ button once to denote a column change (this is the same style as the

‘FIELD DAT.txt’ file you previously completed). Save the data file as ‘RF PHI.txt’

in the folder location FABRIC/ ANALYSIS/ RFPHI/ OUTPUT. Only the section

names A,B, and C (listed as rows in that order) and the calculated Rsvalues are

required for the subsequent stages of this procedure. The R-based scripts used in

section B.5 will re-plot the data in a standardized manner for each section and will

calculate the vector mean based on a geographic rake convention used in subse-

quent steps. Please note, however, if you desire to have marker deformation grids

accompany plots, use the graphs produced in the Microsoft R© Excelmacro as the

R plots will not produce deformation marker grids.

8. Complete the same process for the remaining sections. Do not forget to compile

the fitted parameters and add a final blank line to the text document.
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B.4.3 Fry method

1. Open the Microsoft R© Excelwork sheet by Waldron and Wallace (2007) titled

‘FryXFit.’

2. Open the converted text data file titled ‘A.txt’ from FABRIC/ ANALYSIS/ FRY/

INPUT. Select the entire text file by using the shortcut: [Ctrl+A] and copy with

[Ctrl+C].

3. Paste the data into the Microsoft R© Excelworksheet ‘Data’ by right clicking the

upper-left cell and selecting the ‘Paste Special’ option, choose ‘text’ and click ‘OK’.

Now that the data is correctly placed within the Excel environment, you can use

another worksheet to fit an ellipse.

4. Switch to the ‘Plot’ worksheet and you should see the Fry plot in the typically

ugly Microsoft R© Excel colors. Visually estimate the central void and form a

couple hypotheses for possible minimum and maximum “strain” values. Also pos-

tulate the orientation of the long axis in degrees with increasing positive values

counter-clockwise from the positive x-axis (standard high school math convention).

Estimate Phi values between -90 and +90, with negative values indicating a clock-

wise rotation from the positive x-axis. Enter these general estimates into the ‘Rs,’

‘Phi,’ and ‘Radius’ cells. The super hot pink ellipse should automatically update

with the new values.

5. Attempt to objectively fit the Fry-ellipse by using the Microsoft R© Excel‘solver’

function. This is found under ‘Tools’→‘Solver’ (see the instructions worksheet for

more help and details). Click the numerical cell to the right of the ‘fit statistic’ text

and check to see if this is updated within the ‘set target cell’ box. Click solve and

wait for the machine to run it’s course. Hopefully the produced values are satis-
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factory and fall within your hypothesized “strain range”. If an obviously erroneous

ellipse is created, do not accept the solved parameters and toggle the estimated

parameters to obtain a reasonable result. For more detail on this procedure con-

sult Waldron and Wallace (2007), and review the ‘Instructions’ worksheet provided

directly within ‘FryXFit.’

6. Save the Microsoft R© Excelfile as ‘A.xls’ in FABRIC/ ANALYSIS/ FRY/ FILES.

7. Compile the results for the fitted ellipse in a tab separated text file using the

provided template ‘FRY DAT.txt’ found in the ‘TEMPLATES’ folder. Make sure

each column is filled in for each section (i.e. A, B, and C) with the specific attributes

directly from FryXFit, and separated by hitting the ‘tab’ button once.

8. Save the compiled data file as ‘FRY DAT.txt’ in FABRIC/ ANALYSIS/ FRY/

OUTPUT. Close the Excel document without modifying the original content.

9. Complete the same process for the remaining sections. Do not forget to compile

the fitted parameters and add a final blank line to the text document.

B.4.4 Data Compilation

Congratulations, you have now analyzed a tremendous quantity of data in a relatively

short amount of time. Additionally, you have utilized multiple methods on the same

markers which may provide interesting insight to deformation mechanisms later on.

However, we should take a moment to compile the sectional data into standardized

plots. These plots could easily go into a publication if they are completed with

enough data and care. I personally prefer Rf/φ plots without marker deformation

grids, unless the plots have been manually fitted. Manual plots require deformation

marker grids so that the audience can judge the degree of fit. However, when a χ2

test is used, I feel the grids tend to distract from the data. I have no problem if you

186



disagree with this statement, feel free to use the plots generated from the ‘Rfphi.xls’

document. The following few steps will automatically plot and synthesize the data

generated from the Rf/φ and Fry methods for use in ellipsoid fitting.

1. Open the R Console from the desktop icon (once again, this is the location for

which the working directory has been changed and will correctly read and write

the data files).

2. Open the script entitled ‘FRY PLOT.r’ found in the ‘R SCRIPTS’ folder with

notepad ++ or notepad. Select the entire script by using the shortcut: [Ctrl+A]

and copy with [Ctrl+C].

3. Simply paste [Ctrl+V] the script into the R-Console and wait until a nifty looking

plot of the sectional data appears in a second window. Hopefully you do not en-

counter any errors! Scroll through the R Console and check for errors and warnings.

If there are any, I suggest checking the working directory for the console and all

file names and folder locations. As I mentioned earlier, this can easily become a

nightmare if the file nomenclature and folder structure is not maintained.

4. Assuming the script has successfully executed and a plot of all the Rf/φ sectional

data is produced, you may exit the R-Console. Don’t worry about saving anything,

the script has already produced a PDF document of the plots within the FABRIC/

ANALYSIS/ RFPHI/ OUTPUT folder, entitled ‘RFPHI.pdf.’ Pretty neat. If you

would like to change the layout or colors of the plot, this can easily be done in

Inkscape. If you wish to directly change the direct outputs of the ’RFPHI PLOT’

script, I suggest learning the R-language if you are not already proficient.

5. A similar script for compiling the Fry data is available in the ‘R SCRIPTS’ folder

titled ‘FRY PLOT.’ Execute this script in the same manner as before, and a PDF
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plot should be generated with the name ‘FRY.pdf’ within the FABRIC/ ANALY-

SIS/ FRY/ OUTPUT folder. You will also notice that I have included a 3d Fry

plotting functionality to better assess the sectional data and fitted ellipses.

B.5 Ellipsoid construction

B.5.1 Ellipsoid

At this point, you have successfully analyzed the two dimensional fabric of three

mutually perpendicular faces with two different methods. In order to extrapolate

these data into a fabric ellipsoid you will need to run a program entitled ‘Ellipsoid2003’

created by Launeau and Robin (2005). This program will directly read in a file

generated by the previously executed R-scripts that utilizes the ‘FIELD DAT.txt’ file

for geographical orientation information.

1. Open the program ‘Ellipsoid2003’ and click ‘OK’ on the startup credit screen. Four

boxes will appear on the screen. We will only use the ‘main’ and ‘table’ frames for

the ellipsoid fitting process.

2. As mentioned above, the previous R-scripts have auto generated an ellipsoid raw

data file (.elli) which is saved in the folder FABRIC/ MODEL/ ELLIPSOID/ IN-

PUT. If you have executed both an Rf/φ and Fry analysis there will be two such

files entitled ‘RFPHI RAW.elli’ and ‘FRY RAW.elli’ respectively. Also within this

folder are two PDF files that show the compiled parameters in a nice table format

that you can easily refer to later.

3. Within the main ’Ellipsoid 2003’ window, check the ‘shape ratio r’ parameter in

the ‘Data format’ field. This will change the columns in the data window to match

those produced in the RFPHI RAW.elli file. To import the data, simply click
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‘File’→‘Load ASCII file (*.elli)’ and direct the browser to the RFPHI RAW.elli

file location in the FABRIC/ MODEL/ ELLIPSOID/ INPUT folder. Press ‘Open’

and click ‘OK’ on the new dialog box. The data will automatically load into the

Ellipsoid2003 table window. If this is too easy, feel free to manually enter the data

from the exported PDF files.

4. Once finished, hit the bright green Ellipsoid button, and the two dimensional data

with be statistically fitted with an ellipsoid! I recommend spending some time

looking through the output panel to make sure no mistakes have been made.

5. If everything appears in order, you may export the fitted data for the three

dimensional modeling phase. This is done by saving the ELLIPSOID project,

‘File’→‘Export results in ASCII file (*.txt)’, as FABRIC/ MODEL/ ELLIPSOID/

OUTPUT/ RFPHI.elli. Make sure to use the default ‘.elli’ file extension as the next

phase will extract the necessary data from these files. If you like the output stereo-

graphic projection produced in Ellipsoid 2003, save the image; however, I personally

prefer the plotting capabilities I have incorporated into the next set of R-scripts

which are vector based and easily imported into Inkscape (or Illustrator
TM

... or

Canvass
TM

... or etc.).

6. Repeat the process for the Fry method data with the compiled data in FABRIC/

MODEL/ ELLIPSOID/ OUTPUT/ FRY.elli, while maintaining file nomenclature.

B.5.2 Visualization

This stage of the fabric quantification process combines many aspects of art with sci-

ence, and is a superb way of communicating the geometry of fabrics within deformed

mediums. I have found that an excellent way to produce three-dimensional models of

publishable quality is through the open source program Blender
TM

, which is described
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in the following sections. Moreover, I have also included three-dimensional real-time

modeling capabilities into the R-scripts that help aid in shape and orientation visual-

ization. Unfortunately, recent versions of Blender
TM

no longer support the file format

“.off.” As such, you will need to use the program Mesh lab to convert R output object

to blender recognized files.

1. Before modeling the fabric ellipsoid, a few conversions must be made to the Ellip-

soid2003 outputs. Once again, the program ‘R’ will be used for this process. Open

the R-Console and the script ‘ELLIP2BLEND RFPHI.r’ in the location FABRIC/

R SCRIPTS/. Select all, copy, and paste the script into the Console as described

previously. Check for errors. If everything works correctly, you will see an interac-

tive modeled ellipsoid in the ‘RGL’ window, as well as a plotted stereonet similar

to the one shown in Figure B.7.

2. Close R, and repeat the previous step with the script ‘R SCRIPTS/ ELLIP2-

BLEND FRY.r.’ These two scripts have completed five basic tasks each: 1.) the

‘.elli’ files were scanned, and the desired ellipsoid parameters were extracted; 2.) the

scripts converted the geographic orientation data into a series of parameters which

Blender
TM

will use to orient the modeled ellipsoids; 3.) the scripts also produced

and rendered oriented ellipsoid objects in three dimensions with real-time viewing

capabilities; 4.) stereographic projections of the ellipsoid major axes and foliation

planes were generated; and 5.) the scripts have written a text file of parameters

which will be used in calculating the Octahedral Shear Strain (ε̄s) and Lode’s

parameter (ν). Each time the script is fed into the R-Console, the new outputs

will be appended to the former outputs within the ε̄s and ν parameter text file

entitled ‘AXIAL DAT.txt.’ This will effectively create additional data points that

allows multiple analyses to be plotted on the same graph. However, if the same
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‘ELLI2BLEND’ script is processed multiple times, numerous duplicates of the same

outputs will be stacked in subsequent steps. To avoid this duplication issue, only

process the desired ‘ELLIP2BLEND’ scripts once in a correct manner. If errors

arise during the conversion, close the R-Console, check all folder names, file names,

and delete the output file ‘MODEL/ NADAI/ INPUT/ AXIAL DAT.r.’ Fix the

errors, and reprocess the scripts. Once this is completed, you are ready to begin

the Blender
TM

phase.

3. The most simplistic method to generate an ellipsoid will utilize a file generated by

the ‘ELLIP2BLEND’ scripts. The down side to this method, is that the object axes

will not be generated. If you are from the quick and easy crowd, simply open the

Blender
TM

template file ‘ELLIPMOD BASIC.blend,’ and add the generated object

by File→Import→DEC Object File Format (.off). Open the ‘RFPHI.off’ file in the

‘FABRIC’ folder, and save the file as ‘RFPHI.blend’ within the FABRIC/ MODEL/

BLENDER/ WORK/ BLEND folder. If you are using a new version of Blender,

you will need to convert the .OFF file into a .PLY file in Meshlab. To do this

simply open Mesh lab and import to .OFF file. Next click “Export mesh as” and

select the Stanford polygon file format (*.ply). Then open this file in Blender. Skip

to step 10.

4. If you prefer axes, then skip the previous method and use the following procedure.

5. Open the Blender
TM

template file ‘ELLIPMOD.blend’ located in the ‘TEMPL-

ATES’ folder and save the file as ‘RFPHI.blend’ within the FABRIC/ MODEL/

BLENDER/ WORK/ BLEND folder. The Blender
TM

graphical user interface is

quite incredible and extensive in the ability to complete a plethora of operations.

If you wish to learn the details of this program, I suggest working through a number

of the many tutorials available online. Furthermore, several Blender
TM

manuals are
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available for purchase which are quite comprehensive. Nevertheless, the procedure

outlined within this section is designed to provide the beginner Blender
TM

user with

the minimum number of tools necessary to accurately model the calculated fabric

ellipsoids.

6. Check to make sure both the ‘BUTTONS’ and ‘3D VIEW’ windows are open.

The screen should contain a horizontal reference frame with abbreviations for the

azimuthal directions labeled, and a red sphere. Projecting from the sphere, are

three axes, which will eventually define the principle fabric or strain axes.

7. Open the ‘Transform Properties’ dialog box if it is not already open by pressing

the letter ‘n’ on the keyboard and with the cursor positioned within the ‘3D VIEW’

window.

8. Open the output PDF file from the previous conversion script (FABRIC/ MODEL/

BLENDER/ INPUT/ ELLIP2BLEND RFPHI.pdf) and enter the six parameters

directly into the ‘Transform Properties’ window. This will successfully distort and

orient the sphere according to the calculated fabric ellipsoid.

9. The camera view can be adjusted several ways. The most precise, yet finicky,

method is to directly change the camera properties by right clicking on the black

frame which surrounds the ellipsoid (you may need to zoom out to see this) and

manually editing the ‘Transform Properties.’ A more entertaining method involves

the ‘Fly Mode’ feature which is entered by pressing the shortcut [Shiftl+f] and

maneuvering by the commands listed on the screen. Alternatively, use the number

pad key to navigate based on the shortcuts listed under ‘View’→‘View Navigation.’

10. Finally, render a high quality image of the model by entering the ‘Scene’ panel

[F10] and changing the ‘OSA’ parameter to ‘16.’ You can also change the render
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image type and quality in dpi under the ‘Format’ frame. Press the large ‘REN-

DER’ button and save the image [F3] as ‘RFPHI.jpeg’ in the FABRIC/ MODEL/

BLENDER/ WORK/ RENDER folder (see Fig. B.8).

11. Repeat the same process for the calculated ellipsoid using the Fry method.

B.5.3 Quantifying shape and magnitude

The comparison of multiple fabric analyses can be an extremely powerful tool in

understanding the architecture of deformation through time. For this reason, sev-

eral methods have been developed to graphically display various parameters of the

calculated fabric ellipsoid. The two most widely implemented diagrams include the

Flinn diagram (Flinn 1956) and the Nadai diagram (Nadai 1963) which are designed

to illustrate both the strain symmetry and the deviatoric component of deforma-

tion (Brandon 1995). Unlike the Flinn diagram, the Nadai diagram forms an undis-

torted representation of the deviatoric section (Brandon 1995), yet is often more

difficult to construct. As a utility of this procedure, another R based script will au-

tomatically set up a Nadai plot and tabulate the calculated Octahedral Shear Strain

(ε̄s) and Lode’s parameter (ν) for both the Rf/φ and Fry analyses. For a complete

discussion on the use of strain magnitude space diagrams see Brandon (1995).
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Figure B.3: Selecting a mirror to download R-packages.

194



Figure B.4: Digitization of objects with Inkscape.

Figure B.5: Difference between gray scale (A) objects and two color objects (B).
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Figure B.6: Manual inspection of fitted ellipses in SAPE.

Figure B.7: R console output for the ELLIP2BLEND scripts.

196



Figure B.8: Basic use of the Blender GUI.
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1. Open the R console and the script ‘R SCRIPTS/ NADAI PLOT.r’. Select all,

copy, and paste the script into the Console as described previously. This will

generate a Nadai plot and the calculated parameters(see Fig. B.9), and will also

automatically save a PDF version of the plot found in FABRIC/ MODEL/ NADAI/

OUTPUT/ NADAI PLOT.pdf.

Figure B.9: R console display of the NADAI plotting utility.

2. Check the Console for errors and problems such as the stacking of identical data

points. As briefly addressed earlier, this problem likely arises from running the

ELLIP2BLEND scripts more than once. To correct this problem, delete the ‘AX-

IAL DAT.txt’ file, and rerun the ‘ELLIP2BLEND’ scripts.

3. Once the script is correctly executed you may close the Console without sav-

ing anything. Check the output file ‘FABRIC/ MODEL/ NADAI/ OUTPUT/

NADAI PLOT.pdf’ to ensure proper plotting.
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B.6 Data Collection

B.6.1 Manual field measurement

The use of manual field measurements will work fine within this tutorial once all mea-

surements have been compiled and formatted according to several key conventions.

The best place to integreate a manually collected data set is within the Parameter

Extraction phase. Obviously, you will not run the program SAPE. However, you must

produce a tab delimited text file with an ‘.sda’ file extension that is formatted exactly

like the the output files produced in SAPE. Table B.4 shows the basic structure of

this file type, note however, the header names will not be produced within the ‘.sda’

file. The next sections will explain the necessary fields to processes manual data.

As a side note, manually collected data must also be grouped into three mutually

perpendicular planes and the orientations entered within the ‘FIELD DAT.txt’ file.

Table B.4: Basic file structure for a .sda file, columns from left to right in output file.

Column Description
Column 1 Unconverted x-coordinates
Column 2 Unconverted y-coordinates
Column 3 Length of ellipse major axis
Column 4 Length of ellipse minor axis
Column 5 Orientation of the major axis
Column 6 Unknown extracted data

B.6.1.1 Manual Rf/φ data

To process manual Rf/φ data you will need to create a spread sheet without coulmn

headers. I prefer work in the Open Office suite as opposed to Microsoft R© Excelsimply

because this software is open source. If you wish to work in Microsoft R© Excel, the

process will essentially remain the same.
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1. Populate the first two columns with the text ‘NA.’ Copy and paste this text for as

many rows as data points.

2. Add the lengths of all recorded major axes in column two. If you only collected

ratio data, simply place the ratio in this column and populate the next column

with the value ‘1.’

3. Add the minor ellipse axes in column four (see above note about collected ratio

data).

4. Populate the 5th column with the orientation of the long ellipse axis. The con-

vention required for this field is in respect to the line of strike following right hand

rule. To clarify, all φ values are measured as the acute angle produced from the

intersection of the strike line and the marker’s long axis, as read from the direction

of strike according to right hand rule convention (i.e. the right side of the strike line

on an upright surface, or the left side of the strike line on an overhanging surface).

Positive values denote acute angles that fall above the line of strike and negative

values denote acute angles that are measured below the line of strike.

5. Populate the final field with the text ‘NA’ in each row and check for errors in the

spread sheet.

6. Copy all the populated cells in the spreadsheet, open either ‘Notepad++’ or regular

‘Notepad’ and click paste. The data should now be entered within the program as

tab delimited columns and row separated by hard returns.

7. Finally, save the file as ‘A.sda’ in the folder FABRIC/ PAR EX/. You may need

to change the file type to ‘All Types.’

8. Repeat this process for the other two sections and maintain file nomenclature as
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discussed earlier in this manual. You may now complete the analytical process as

outlined in this procedure.

B.6.1.2 Manual Fry data

The manual collection of mesoscopic scale analyses is rather unlikely to occur consid-

ering the difficulty in defining a Cartesian coordinate system in the field. However, if

the locations of object centroids can be identified from GPS data or any other source,

this conversion will need to occur. This procedure will operate exactly the same as

described in section B.6.1.1, however, you will only populate the first two columns

with data and all others will be filled with the text string ‘NA.’ Unfortunately, SAPE

utilizes a different quadrant to calculate the origin coordinates than is used for the

program FryXFit. As such, the provided conversion scripts are written to correct

for this discrepancy and will erroneously change the orientation of your data set.

Use Equations B.1 and B.2 to correct for this correction (silly, but necessary) before

running any subsequent steps.

Column 1 = (Maximum V alue of Y )− Yn (B.1)

Column 1 = Xn − (Minimum V alue of X) (B.2)

An alternative method to this conversion would involve plotting the coordinates

without a conversion, converting the plot (with large white circles and a black back-

ground) to a 1.bmp’ file and running this through SAPE. You could also disable the

conversion code directly in the R-scripts and enter the SAPE data as is; however, I

suspect this might lead to more problems than it solves.
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B.6.2 Standardized photographs

The use of photographic data to calculate rock fabrics has generally been avoided

based on recommendations presented in Paterson (1983); however, recent studies have

effectively applied digital imagery for strain analysis (Treagus and Treagus 2002).

Advances in the resolution of digital cameras allowing for workers to easily zoom

in on pictures from the field makes the reevaluation of this process a worth while

endeavor. Nevertheless, several key limitations to this application involve: 1.) photo

distortion due to changes in the line-of-sight distance from the center of the image to

the periphery; 2.) oblique view distortion causing ‘foreshortening’ of objects; and 3.)

the lack of orientation information associated with images.

In order to remove these limitations, I have constructed a Photographic Aperture

Device (see Fig B.6.2) that attaches to a digital camera and positions the line of sight

orthogonally onto a 25 cm X 25 cm Plexiglas frame.

Due to the close distance of the camera to the section of interest ( 50 cm), pe-

ripheral distortion is negligible. Foreshortening is removed on roughly planar surfaces

because the line-of-sight is forced orthogonal to the basal frame. Finally, the orien-

tation of the frame is easily measured and recoded in a standard table similar to

Figure B.11.

The implementation of this device on outcrop surfaces, grouped into three ap-

proximately perpendicular sections, allows for the collection of an incredible quantity

of data that can be later processed in the lab. Furthermore, multiple photos can be

tiled and analyzed if objects are too large or spread apart to obtain a statistically sig-

nificant population size in one image. In general, a few conventions must be followed

to easily incorporate this kind of data into a fabric analysis.

• Identify outcrop faces that contain fabric markers of interest and that can be
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Figure B.10: Photographic Aperture Device for the collection of standardized digital
images.
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grouped in three approximately perpendicular planes (limit angular variances to

∼> 10◦). Make sure faces are accessible for the PAD and sufficient lighting is

available to recognize objects in the digital images. Some objects will need to be

outlined in chalk for later recognition if the color contrast between objects and the

matrix is low.

• Record the bulk orientations of the three sections in the table shown in Figure

B.11 and denote the general locations of the sections to be digitized.

• Place the frame on the outcrop surface with the top of the frame aligned exactly

parallel to the line of strike, orient the camera such that the image margins are

aligned to the frame, and take the image.

• Fill out the table in B.11 with all necessary fields paying special attention to the

‘polarity’ if the outcrop surface (OH/UP). As noted previously, this simply refers

to upright surfaces as ‘positive’ and overhung surfaces as ‘negative.’

Once back in the laboratory, the images can be digitized and synthesized into a

fabric ellipsoid, just remember to correct for faces with a negative polarity.

B.6.3 Scanned slabs

Numerous sources of error can occur when extracting scanned sections from hand

samples. This is due to a variety of logistical issues that need to be addressed prior

to scanning. Several key considerations in hand sample preparation include: 1.)

the use of proper rock cutting equipment with planar cutting tables; 2.) aligned

saw blades; and 3.) correctly positioned fences; as well as the correct orientation

marks on each face. Unlike standardized photographic data where angular variance is

Figure B.11: Basic table for collection of standardized photographic field data.
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Photographic Fabric Analysis Data Sheet

Project:

Name: Location:

Date: Zone: E: N:

# PHOTO ID STRIKE DIP DD OH/UP NOTES

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25
Use one sheet per outcrop region with location nomenclature corresponding to notes written in the individual's field book.
UTM coordinates need to be collected using the WGS84 datum and should represent a central location within the outcrop
region.  All  attitudes need to use right  hand rule standards with the upper frame edge parallel  to  strike and upright or
overhung orientation indicated. Issues with measurements need to be recorded in the notes section. If more than one sheet is
used per outcrop, indicate page number.

Page#
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expected due to the inability to extract information from three precisely perpendicular

mesoscopic outcrop faces, hand samples can easily be cut to within a few degrees of

this requirement. As such they can provide high quality fabric data if properly cut

and aligned. By following the steps recommended within this procedure, accurate,

high quality data can be extracted on a variety of samples within the comfort of the

laboratory (although many of us prefer the comfort of the field). The following steps

require an oriented sample suitable for analysis, rock preparation equipment, and a

quality scanner (preferably dedicated solely to use on rocks). Also, a little knowledge

of stereographic projections is useful (then again, I always think stereonets are useful).

1. In order to properly execute a fabric analysis at the hand sample scale, proper cuts

must be made on a sample with a sufficient number of markers to be statistically

significant. This statement is easier said then done, and experience is highly benefi-

cial. If you are new to rock preparation, I recommend testing a few cuts on several

toss pieces. Of course, this is in addition to proper training and knowledge of the

necessary tools and safety procedures required for cutting. I recommend attempt-

ing to mimic the principle fabric places, such that pane A is parallel to the mineral

foliation, plane B is perpendicular to foliation and parallel to the bulk mineral trace

lineation, and plane C is orthogonal to the bulk mineral trace lineation.

2. Section the hand sample and use a goniometer to check the faces for accuracy.

Hopefully the sections are within a few degrees of the desired 90◦.

3. Reconstruct and properly orient the sample using a sand box or clay base. I have

personally constructed an adjustable platform to aid in this step which is highly

recommended to save patience and time.

4. Record the strike and dip of the most easily accessible sectioned face and lightly
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draw an arrow with a colored pencil parallel to strike such that the head points in

the direction of strike following right hand rule convention. Also, add a tick in the

down dip direction. This will properly orient face A in a geographic sense.

5. Orientation marks on faces B and C will be calculated directly from a simple

stereonet procedure.

6. First, plot the great circle and pole to face A on an equal area stereonet. Measure

the rake of the edge between face A and B on face A using a goniometer. Plot this

rake from the correct side of the primitive circle along the great circle for plane A.

7. Because all three planes are 90◦ apart from each other, and plane A and B must

share the line formed from the intersection of these two planes along their great

circles, the orientation of plane B can easily be calculated. Plane B will contain

the lines formed by the edge of A&B, and the pole to A. Rotate the stereonet until

these two lines fall along the same great circle. Draw in the great circle and plot

the pole to this plane. This is the orientation of plane B. Record the strike and dip

of face B and determine the polarity.

8. Count the angular distance between the cut edge made from faces A&B and the

primitive circle along the great circle for face B. Set the goniometer to this value

and measure in the strike line. To clarify, the measured angle is effectively the rake

of the cut edge between faces A and B within face B. Therefore, this rake will allow

you to reconstruct the the strike line without directly measuring the orientation

on the sample (this method of direct measurement is logistical nightmare as the

samples tend to move and faces are frequently obscured within the setup). Note

the ambiguity of this measurement in that it can be made from two directions

along the cut edge. However, a quick examination of the sample should clarify the
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ambiguity. Also, add an arrow in the direction of strike following right hand rule

convention and a down dip tick as mentioned before. However, if the polarity is

negative, remember the arrow will point to the left.

9. Repeat this process for Plane C using either plane A or B (which ever face creates

the best edge to measure the rake). Determine the polarity and add the strike line,

arrow and down dip tick.

10. Place face A onto a sheet of transparency film and trace the outline of the sample

on the film with a sharpie. Cut the transparency along the trace line so it will

neatly cover the section without too much extra.

11. Lightly coat face A with mineral oil and gently apply the transparency cover.

With a stirring straw “squeegee” extra oil out from under the slip. Clean up any

extra oil and wipe down the surface of the transparency film with a non-abrasive

fabric or tissue.

12. Scan face A on a high quality flatbed scanner at a resolution of 600 dpi. Save

the image as ‘A.jpeg’ in the folder FABRIC/ RAW DATA. Open image ‘A.jpeg’

with Gimp
TM

and use the rotate tool to align the strike line parallel to horizontal

(note, you may need to adjust the canvas size for images with long aspect ratios

so that the image corners are not cutoff). If the face has a negative polarity (i.e.

the arrow hear is located to the left of the strike line when upright following right

hand rule convention), you will need to flip the image about a vertical axis. This is

accomplished with the mirror image tool in Gimp
TM

. Crop the image to size, and

save at the highest quality. This will maintain the proper resolution.

13. Repeat this process for the two remaining sections while maintaining file nomen-

clature and proper the folder structure.
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14. Check the dimensions of each section scan by right clicking on the image icon

and going to ‘properties’→‘details.’ Find the image with the largest dimension and

record the number in pixels. In order to preserve scale information from the scanned

sections, we will need to resize each image by the same percentage. This is easily

done by sizing the largest dimension to the digitization template and calculating the

scale. The scale will then be applied to the other two sections prior to digitization.

15. Following Equation (B.3), calculate the scale percentage. This is the proportional

scale percentage that will be applied to each scanned image within the digitization

phase.

Scale Percentage =

(
1000 px

Longest dimension in px

)
× 100 (B.3)

16. Complete the analysis by following the general procedure outlined within the man-

ual beginning with section B.3. However, open the Inkscape template ‘SCAN.svg’

in the ‘TEMPLATES’ folder and save as ‘SECTION A.svg’ (you will need to type

the file extension) under the location FABRIC/ DIGITIZATION/ SVG. Also, re-

member to scale each imported image by the calculated Scale Percentage and

update the field data file. The completed digitization process should result in

scaled images similar to those shown in Figure B.6.3.

B.6.4 Fabric from thin sections

The use of thin sections to determine the three-dimensional fabric of a rock is relatively

straight forward, following the procedure listed in section B.6.3. However, several key

logistical issues may need consideration. By now, you may have realized the reference

frame used in all measurements is based on azimuthal strike and dip following right

hand rule convention. This convention is dependent on the nature of the section in
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Figure B.12: Scanned, oriented, and traced images for three mutually perpendicular
faces on a deformed granite aguen gneiss.

terms of polarity. In the digitization of scanned slabs or standardized photographs

originating from overhung sections, a simple image reflection is required to re-orient

the direction to the right of the screen. Not only does this also apply to images of

thin sections, an additional complication is the fact that a thin section can be viewed

from both sides. As such, the direction of sight is a critical component when orienting

photomicrographs (see Fig. B.6.4).

Although there is no procedure outlined in this manual for thin section prepara-

tion, I recommend follow the general guidelines for collecting oriented samples found

in most structural or field geology texts. Always document the locations of the thin

on slabbed surfaces, and keep all pieces of the sample so that reconstruction may

be easier in the future. In general, photomicrographs may be tiled together, or thin

sections may be scanned at high resolution in order to create a base image for object

tracing. Follow the guidelines in section B.6.3 and factor in the relative orientations

of the thin section and the line of strike on each face.
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Figure B.13: The use of thin sections in a fabric analysis requires the documentation
of the direction of sight in order for photomicrographs to be correctly oriented.

B.7 Concluding remarks

Congratulations, you have now processed a tremendous quantity of data and reduced

the results into a series of standardized plots. The visualization of three dimensional

fabric data or ‘strain’ data is the one of the hardest concepts to convey. By combining

stereographic projections, Nadai plots, and location information within the context of

a known scale and representative object population; all the properties of fabric, with

respect to the defining objects at the scale of analysis, can be effectively conveyed.

Although this procedure, as applied only to a single analysis will essentially produce

a rather meaningless number, the application to numerous samples within a region,

may provide the means to quantify gradients in fabric development, and eventually

in deformation partitioning.
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In a semi-qualitative approach, this method could enable a field geologist to es-

tablish know fabric parameters at several key locations within a terrain, from which

changes in fabric could be successfully mapped directly in the field. This holds great

promise for the documentation of fabric development as it effectively enables to user

to apply a standardized method to numerous samples, in a relatively time efficient

manner. Nevertheless, I must emphasize the recognition that none of the techniques

presented within this manual are new. In fact, most originate from the heyday of the

analytical strain revolution spawned by individuals like Ramsay, Dunnet, Fry, and

Lisle (not to mention numerous others). The only new concepts presented herein are

those which pertain to the nature of data manipulation, and presentation.

Throughout this documentation, I have made a concerted effort to avoid the im-

plications of strain. Although the development of fabric maybe inherently related to

some component of a finite strain path, serious assumptions are required in the use

of this terminology. As clearly documented in Paterson et al. (2004) the application

of these methods to directly measure strain requires the following considerations:

1. At the scale of analysis, deformation is homogeneous.

2. Markers deform passively with the matrix, or some ductility contrast correction

can be applied.

3. The initial properties of markers are reasonably understood with respect to pop-

ulation shapes and orientations.

4. Markers must be approximate ellipsoids in three-dimensional space.

5. Deformation within the region is not diachronous and effects the sample population

with the same finite strain path such that marker objects are not introduced within

the deforming medium at different times.
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6. Population sizes are statistically significant.

7. The scale of interpretation is applied to the scale of analysis.

8. Specifically for the Fry method, object centroids and population distributions are

reasonably understood.

In many circumstances, these assumptions may be impossible to constrain. This is

the nature of science. However, the notion of fabric (and more importantly changes

in fabric) can elucidate many great characteristics of deformation. The application of

numerous analytical strain techniques to a single population of markers may unveil

specific characteristics of the deforming markers, based on deviations in the analytical

results. Nevertheless, the use of fabric quantification must be attributed to the scale

of analysis, the specific population of markers, and the analytical method used. For

instance, the development of fabric within an aguen gneiss, as defined by the shapes

and orientations of feldspar porphyroclasts, using the Rf/φ method, may be entirely

different than the fabric produced by biotite grain centroids surrounding the feldspar

porphyroclasts. It is from these nuances, however, that great insight may be obtained.

As such, I wish any individuals good luck in their exploration of deformation.
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Appendix C

FRY3D user guide

C.1 Preface

The purpose of this tutorial is to guide structural geology students, at either the

undergraduate or graduate level, through the procedure of three dimensional strain

analysis using the Fry method. Traditionally, analytical strain techniques taught at

the university level are restricted to two-dimensional sections. This limitation is not

the product of poor course design, but rather a logistical issue of processing and

maintaining the enormous quantity of data generated in such analyses. Although

this is generally an accepted practice, I believe the lack of discussion on deformation

in three-dimensions creates the misconception that a single two-dimensional analysis

can effectively address the nature of pervasive deformation. Not only does a single

section fail to accurately address the magnitude of strain, no information pertaining

to the symmetry of strain can be gained as well.

In order to alleviate the logistical issues inherent to three-dimensional Fry anal-

yses, this manual allows the user to interactively collect, process, and analyze data

from both a synthetic data set and an actual rock sample.

Despite my best attempt to limit the user code interaction, some basic computer
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knowledge is required. I do not recommend implementing this tutorial as an assign-

ment without proper preparation, as some minor nuances are expected from time to

time. Nonetheless, I am confident that with sufficient preparation this tutorial can be

effectively used. Additionally, this application will provide students and instructors

with an introduction to the extremely powerful language R. I hope you enjoy this

tutorial, or at least learn something moderately interesting. Cheers!

C.2 Getting Started

This general procedure will require only two programs to function completely. As

mentioned in the preface, the statistical computing environment “R” is the primary

program used. However, I have incorporated the program Ellipsoid2003 created by

Launeau and Robin (2005) in order to synthesize the two-dimensional section data

into a statistically fitted ellipsoid. Although the first portion of the tutorial will not

require this ellipsoid fitting program, the second part will. Based on time constrains,

you may opt to forgo the latter portion and focus only on combining three mutually

perpendicular Fry plots. However, if time allows, I recommend downloading the

program Ellipsoid2003 (see hyperlink) and incorporating this into the procedure.

C.2.1 R: Statistical Computing

The language and environment R forms the basis of data collection, conversion and

plotting within this tutorial. As such, it is essential that all components of this

language are set up properly. The following steps will guide you through the basics of

setting up R. Once this is established on your machine, you can skip this section for

future runs. As a note, I have written these instructions based on Windows R© 7, which

may deviate slightly from the exact steps used on other platforms. Nevertheless, the

general procedure should still work with minor procedural variations.

215

http://www.sciences.univ-nantes.fr/lpgnantes/index.php?option=com_content&view=article&id=94&Itemid=22&lang=en


1. Download R from the Comprehensive R Archive Network following the general

installation procedure associated with the program (see hyperlink). Once the pro-

gram is installed, double click the desktop icon. The RGui should open with the

R Console inside. Most first impressions of R are typically less than exciting; but

what this program lacks in snazzy widow design, it makes up for in power and

versatility.

2. One of the best aspects of R, is the ability to download specialized packages for

a variety of computational and graphical operations. These are specific to an

enormous variety of disciplines ranging from three-dimensional MRI medical image

analyses to GIS datum conversion applications. In order for the supplied scripts to

operate, the package StructR (Webber 2012) must be loaded.

3. To load the package “StructR,” click “Packages” within the RGui window and

select “install package(s).” Find the CRAN mirror nearest to your location and

press “OK” (Fig. C.1). Scroll through the extensive list and select the correct

package. If you cannot find the “StructR” package, you can do a manual installation

of the tar ball file available from CRAN by following the help pages associated with

R.

4. Now that the package is installed on your computer, you must load the package

into the current R session. Simply type: library(StructR) into the command line

interface and press enter. This package is dependent on several other packages

which may be dependent on other packages as well. Check the return messages

and look for additional packages that need to be installed (e.g. package: “RFOC”).

Repeat the steps above to install all required packages.

5. Once everything is installed correctly, you will be able to run the remainder of this
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Figure C.1: Selecting a mirror to download R-packages.
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tutorial with only a few minor modifications.

C.2.2 Tutorial scripts and data

Now that R is correctly set up, you need to establish the general working environment

to processes the data accompanying this manual. This will require some minor editing

of the supplied scripts such that the program will read and write data to and from

your computer. The following steps will guide you through this process.

1. Make sure you have downloaded and extracted the data set accompanying this

manual. The contents should be the same as illustrated in Figure C.2. The basic

contents of the compressed folder include six image files that form the raw data

to be analyzed. Additionally, there are four scripts associated with the synthetic

and natural examples. Finally, there is another folder to organize input and output

files.

2. Place the entire folder structure into a desired directory on your computer. This

will be the location from which the image files are processed and the results are

written.

3. In order for the script to correctly read in the image files and output the Ellip-

soid2003 file you must configure the path locations directly in the script. This can

be edited in two ways. First, you may edit the configuration header directly in a

text editor (e.g. notepad) and save the file. However, some issues may arise from

this if the text editor produces any auto formatting. The other method is explained

in the following steps.

4. Open the RGui select “File”→“Open script...” and point the browser to the folder

structure described above. Open the file entitled “SYNTHETIC P1.R.”
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FRY3D

IMG_DAT

A_EX.png

B_EX.png

C_EX.png

VT_A.png

VT_B.png

VT_C.png

OUTPUT

SCRIPTS

SYNTHETIC_P1.R

SYNTHETIC_P2.R

VT_P1.R

VT_P2.R

Extracted master folder

Folder containing image files

Synthetic section A image

Synthetic section C image

Vermont rock scan B

Synthetic section B image

Vermont rock scan A

Vermont rock scan C

Folder to contain Ellipsoid2003 files

Folder containg R scripts

Part one of the synthetic data script

Part two of the synthetic data script

Part one of the Vermont rock data script

Part two of the Vermont rock data script

Figure C.2: Folder structure and R scripts accompanying the manual.
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Figure C.3: Loaded R script from which the configuration parameters can be edited.

5. The RGui will load the script into a new window as shown in Figure C.3. Edit the

location of the image files following the example syntax in the script. Note the use

of the double “//” characters between folder locations.

6. Click on “File” →“Save” to save the edits you just made. This step will not need

to be repeated for subsequent trials unless you change computers or re-download

the accompanying data.

7. Double check to make sure the file location is correct for each image and the output

location of the Ellipsoid file. Repeat this process for each of the remaining scripts

and close the “RGui.” Now we are ready to begin the tutorial.
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C.3 Operating procedure

Once the correct programs and packages have been installed and the scripts edited

to the correct directory, you can begin the FRY3D procedure.

1. Open the RGui and open the script “SYNTHETIC P1.R.” A new window should

appear with the script code inside.

2. To run the script, simple click “Edit” →“Run all.” If the script fails to run

correctly, you likely did not edit the directory location correctly. If so, close the

RGui and repeat the previous steps.

3. If the script executes correctly, a new window will open with an image of a section

of the synthetically deformed conglomerate. Use the cursor to select the center

of each ellipse. A yellow dot will appear where clicked and is accompanied by a

slightly annoying chime (Fig. C.4).

4. Once all of the ellipses are marked, right click with the mouse and press stop.

5. A new window will appear with the sectional Fry plot. Once again you will use the

cursor, but this time you will need to estimate the central void apogee length. To

clarify, simply click where you think the end of the central void’s long axis is. A red

line will appear on the screen to denote your estimate of the long axis (Fig. C.5).

6. Repeat the previous step with the perigee (short axis). Note that the program will

automatically plot the ellipse.

7. Once the ellipse is plotted, the program will move to the next section. Simply

repeat the previous steps until all three mutually perpendicular sections are com-

pleted. The program will now plot an interactive three-dimensional Fry plot with
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Figure C.4: Centroid locator tool in new window of sectional data.
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Figure C.5: Central void apogee and perigee locator tool.
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the fitted ellipses (Fig. C.6). Each color corresponds to each section such that red

is the first section, blue the second, and green the third. Furthermore, the program

has also written a file to be used in the program Ellipsoid2003 that is saved in the

directory you specified at the beginning of the procedure.

8. In the 3D Fry plot window, use the left button on the mouse to spin the plot and

the right to zoom in and out. With these controls, you will be able to see how the

sectional strain data synthesizes into an ellipsoid. Furthermore, you will also be

able to recognize the accuracy to which each ellipse represents the data and how

closely they correspond.

9. In order to complete the second main part of this tutorial, you will need to run

the exported Elliposid 2003 file. Minimize the main RGui window and open the

program Ellipsoid 2003. Press “OK” on the start up credit window.

10. Load the exported file by clicking “File”→“Load ASCII file (*.elli)” and directing

the browser to the “synth in.elli” file. Press “Open” and “OK” in the new window.

Now the file is successfully loaded.

11. Click on the bright green button within the Ellipsoid 2003 graphical user interface

entitled “Ellipsoid.” The program has now statistically fitted a strain ellipsoid to

the two-dimensional Fry data.

12. Now we must load in the fitted ellipsoid to R by saving the exported results. In

order to do this, Click “File” →“Export results in ASCII file (.txt).” Change the

name from “synth in.elli” to “synth out.elli” and press “OK.” You can now close

the Ellipsoid program.

13. Maximize the RGui. Open and run the second script entitled “SYNTHETIC P2.R.”

If the script executes correctly (that is, if you have saved the data correctly and
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Figure C.6: Three-dimensional Fry plot with sectional fabric ellipses. Lower view is
zoomed in from upper plot.
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Figure C.7: Three-dimensional fitted ellipsoid calculated by the program Ellip-
soid2003.

configured the scripts as outlined previously), a plethora of graphs and models will

appear.

14. Activate the window containing the gray ellipsoid (Fig. C.7). You can use the

mouse to navigate the ellipsoid and compare to the raw sectional data in the three

dimensional Fry plot. Notice the geographic reference frame in both plots when

comparing orientations.

15. Activate the window containing the Nadai plot (Fig. C.8). This diagram is

generated by plotting the octahedral shear strain and Lode’s parameter so that

the ellipsoid distortion magnitude and shape (respectively) can be visualized. The

synthetic data set is constructed from an idealized finite deformation corresponding

to an octahedral shear strain of 1.33 and a Lode’s parameter of -0.73. As such,

the results presented in Figure C.8 are insignificantly less than the theoretical
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Figure C.8: Nadai plot corresponding to the fitted fabric ellipsoid.

octahedral shear strain and slightly less prolate.

16. Finally, activate the window with the stereographic projection. This plot will

contain four attitudes that correspond to the three principle ellipsoid axes and

the XY principle plane. Furthermore, the numerical values to these points are

listed at the bottom of the plot. In general, the XY plane should correspond to

the fabric foliation. This may be less developed in more “L” dominated terrains

with highly prolate strain symmetries. Therefore, cross checking this attitude to

foliations measured in the field may be less reliable. However, the X axis (as a
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proxy for the mineral stretching direction) should be much better constrained in

prolate zones and may form a more robust measure of the discrepancy between

measured fabric and calculated. The expected orientation of the XY plane for the

synthetic data set is roughly 281◦ 55◦ (strike and dip following right hand rule) and

073◦ 34◦ (trend and plunge) for the X axis. Acceptable results should generally fall

with in the same quadrants. This plotting function depends heavily on code from

the RFOC package (Lees 2011) and would not be possible without the tremendous

effort of Jonathan M. Lees.

C.3.1 Concluding remarks

As stated in the preface, the intention of this manual is twofold: allow users to bet-

ter visualize three dimensional strain data; and introduce the statistical computing

environment R. I must reiterate that the purpose of this procedure has never been,

nor will likely ever be, designed to hide the code in a user friendly environment. By

allowing the user to edit and run the scripts directly, I believe versatility and the

potential for innovation is gained. I hope you see this as I do, and have attained

some notion of the goals I have set to produce without too much frustration.
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Figure C.9: Stereographic projection of the principle fabric axes and XY plane for
the fitted ellipsoid.
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Appendix D

Three–dimensional synthetic model

D.1 Introduction

This appendix contains raw tiles for the construction of a physical three–dimensional

deformed conglomerate as modified from the synthetic dataset presented in Chapters

3 and 4. This model abides to the conservation of volume such that the section area

of each ellipse was initially equal. This model represents a homogeneously deformed

medium under general constrictional coaxial flow. This dataset is intended for use in

error analysis of various strain techniques, as well as a general teaching tool such that

students may better visualize three–dimensional deformation. Table D.1 contains the

attitudes used in both the error analysis of Chapter 3 and the synthetic dataset in

Chapter 4.

Table D.1: Sectional orientations following right hand rule convention to reorient a
physical model of the synthetic dataset implemented in the FRY3D tutorial

Section Strike Dip
XY 281 55
XZ 041 53
YZ 162 57
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D.2 Construction procedure

1. Purchase a robust cubic cardboard box with a length dimension of 12 inches. Using

packaging tape, securely close the box openings. Make sure each face is as planer

as possible.

2. Print (or photocopy) two sets of Figures D.1–D.12 such that you have 24 pages

to construct six faces of four tiles each. With scissors cut precisely along the tile

border for each page. Do not cut the small section tab at the top of each tile until

after the model is finished.

3. Find tile XYA (Fig. D.1) and paste to the lower left quarter section of a face of

the cardboard box.

4. Paste tile XYB (Fig. D.2) to the lower right side of the same face and repeat

for the other two XY tiles (Figs. D.3 and D.3) continuing in a counterclockwise

fashion. Keep the box in the same orientation as you started with.

5. Rotate the box 90◦ either direction along the maximum stretching axis in the XY

plane (i.e. rotate to the left or right). Spin the box 90◦ about a vertical axis and

repeat steps 3 and 4 for the XZ tile (Figs. D.5 – D.8). Do not rotate the box during

this step.

6. Flip the box 90◦ away from you about a horizontal axis then spin the box 90◦

about a vertical axis.

7. Repeat the procedure in steps 3 and 4 for the YZ tiles.

8. Finally complete the other three faces such that the corresponding principle plane

of strain is on the opposite face.
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D.3 Sectional tiles

XYA

Figure D.1: Sectional tile A of the XY principle plane of strain.
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XYB

Figure D.2: Sectional tile B of the XY principle plane of strain.
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XYC

Figure D.3: Sectional tile C of the XY principle plane of strain.
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XYD

Figure D.4: Sectional tile D of the XY principle plane of strain.
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XZA

Figure D.5: Sectional tile A of the XZ principle plane of strain.
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XZB

Figure D.6: Sectional tile B of the XZ principle plane of strain.
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XZC

Figure D.7: Sectional tile C of the XZ principle plane of strain.
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XZD

Figure D.8: Sectional tile D of the XZ principle plane of strain.
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YZA

Figure D.9: Sectional tile A of the YZ principle plane of strain.
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YZB

Figure D.10: Sectional tile B of the YZ principle plane of strain.
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YZC

Figure D.11: Sectional tile C of the YZ principle plane of strain.
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YZD

Figure D.12: Sectional tile D of the YZ principle plane of strain.
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Appendix E

R Scripts

E.1 Fry data setup and con-
version

####Scr i p t : FRY SETUP
####Author : J e f f r e y R. Webber
####Con : jrwebber@uvm . edu
###REQUIRED: Working d i r e c t o r y s e t to the

master f o l d e r l o c a t i on
###Data : Extracted SAPE data ,

l o c a t i on=”PAR EX”
###Data : Maintain hard re turn at end

o f data l i s t

#Set up l i b r a r i e s
l ibrary ( s q l d f )

#Define p l o t bound l im i t a t i o n f a c t o r
pBOUND<−2

#Load data in to R from SAPE output : PLANE
A

raw1<−read . table ( f i l e=”PAR EX\\A. sda” ,
header=F)

names( raw1 )=c ( ”x” , ”y” , ”a” , ”b” , ” phi ” , ”
other ” )

#Load data in to R from SAPE output : PLANE
B

raw2<−read . table ( f i l e=”PAR EX\\B. sda” ,
header=F)

names( raw2 )=c ( ”x” , ”y” , ”a” , ”b” , ” phi ” , ”
other ” )

#Load data in to R from SAPE output : PLANE
C

raw3<−read . table ( f i l e=”PAR EX\\C. sda” ,
header=F)

names( raw3 )=c ( ”x” , ”y” , ”a” , ”b” , ” phi ” , ”
other ” )

##PLANE A CALCULATIONS
#Convert data to match car t e s i an coord .

from SAPE ( o r i g i n cor r ec t i on )
xcoordA<−( raw1$y−min( raw1$y ) )
ycoordA<−(max( raw1$x )−raw1$x )

#Determine data l eng t h
lengthA<−length ( xcoordA )

#Reg i s t e r v a r i a b l e s f o r concatenat ion
xCatA<−NULL
yCatA<−NULL

#Run loop to crea t e Fry coords .
loopCont<−0
while ( loopCont<lengthA ) {

loopCont<−loopCont+1
#Center po in t s based on i t e r a t i v e s t ep

[ loopCont ] l o c a t i on =(0 ,0)
xA<−xcoordA [ loopCont ]−xcoordA
yA<−ycoordA [ loopCont ]−ycoordA

#Concatenate coord . l i s t s
xCatA=c (xCatA ,xA)
yCatA=c (yCatA ,yA)
}

#Compile parameters in to Waldron and
Wallace (2007) input

WaldWallA<−data . frame (xCatA , yCatA)
names(WaldWallA)=c ( ”x” , ”y” )

#Remove s tacked center va lue s
WaldWallA<−s q l d f ( ” s e l e c t ∗ from WaldWallA

where x != ’ 0 ’ and y != ’ 0 ’ ” )

#Calcu la t e p l o t bounds
coordPosA<−round(max(c (max( xcoordA ) ,max(

ycoordA ) ) )/pBOUND, 0 )
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coordNegA<−(−1)∗coordPosA

#Run i t e r a t i v e loop to l im i t data
bufDat<−sqrt (2∗ ( ( coordPosA ) ˆ2) )
limDat<−length (WaldWallA$x )

while ( limDat > 3000) {
#Create new rad ius such tha t f i e l d

area i s reduced by 10%
bufDat<− sqrt ( . 9∗ ( bufDat ) ˆ2)

#Test coord d i s t ance WRT new rad ius
VAL<−i f e l s e ( sqrt ( ( as .numeric (

WaldWallA$x ) ) ˆ2+(as .numeric (
WaldWallA$y ) ) ˆ2) < bufDat , 1 , 0 )

#Count number o f v a l i d va lue s
limDat<−sum(VAL)

#Combine l i s t o f v a l i d va lue s with
data s e t

WaldWallA<−data . frame (WaldWallA$x ,
WaldWallA$y ,VAL)

names(WaldWallA)=c ( ”x” , ”y” , ” va l ” )

#Se l e c t from data frame only v a l i d
coords .

WaldWallA<−s q l d f ( ” s e l e c t ∗ from
WaldWallA where va l = 1” )

}

#Compile and name data frame
WaldWallA<−data . frame (WaldWallA$x ,

WaldWallA$y )
names(WaldWallA)=c ( ”x” , ”y” )

WaldWallA$x<−as .numeric (WaldWallA$x )
WaldWallA$y<−as .numeric (WaldWallA$y )

##PLANE B CALCULATIONS
#Convert data to match ca r t e s i an coord .

from SAPE ( o r i g i n cor r ec t i on )
xcoordB<−( raw2$y−min( raw2$y ) )
ycoordB<−(max( raw2$x )−raw2$x )

#Determine data l eng t h
lengthB<−length ( xcoordB )

#Reg i s t e r v a r i a b l e s f o r concatenat ion
xCatB<−NULL
yCatB<−NULL

#Run loop to crea t e Fry coords .
loopCont<−0
while ( loopCont<lengthB ) {

loopCont<−loopCont+1
#Center po in t s based on i t e r a t i v e s t ep

[ loopCont ] l o c a t i on =(0 ,0)
xB<−xcoordB [ loopCont ]−xcoordB
yB<−ycoordB [ loopCont ]−ycoordB

#Concatenate coord . l i s t s
xCatB=c (xCatB , xB)
yCatB=c (yCatB , yB)
}

#Compile parameters in to Waldron and
Wallace (2007) input

WaldWallB<−data . frame (xCatB , yCatB)
names(WaldWallB)=c ( ”x” , ”y” )

#Remove s tacked center va lue s
WaldWallB<−s q l d f ( ” s e l e c t ∗ from WaldWallB

where x != ’ 0 ’ and y != ’ 0 ’ ” )

#Calcu la t e p l o t bounds
coordPosB<−round(max(c (max( xcoordB ) ,max(

ycoordB ) ) )/pBOUND, 0 )
coordNegB<−(−1)∗coordPosB

#Run i t e r a t i v e loop to l im i t data
bufDat<−sqrt (2∗ ( ( coordPosB ) ˆ2) )
limDat<−length (WaldWallB$x )

while ( limDat > 3000) {
#Create new rad ius such tha t f i e l d

area i s reduced by 10%
bufDat<− sqrt ( . 9∗ ( bufDat ) ˆ2)

#Test coord d i s t ance WRT new rad ius
VAL<−i f e l s e ( sqrt ( ( as .numeric (

WaldWallB$x ) ) ˆ2+(as .numeric (
WaldWallB$y ) ) ˆ2) < bufDat , 1 , 0 )

#Count number o f v a l i d va lue s
limDat<−sum(VAL)

#Combine l i s t o f v a l i d va lue s with
data s e t

WaldWallB<−data . frame (WaldWallB$x ,
WaldWallB$y ,VAL)

names(WaldWallB)=c ( ”x” , ”y” , ” va l ” )

#Se l e c t from data frame only v a l i d
coords .

WaldWallB<−s q l d f ( ” s e l e c t ∗ from
WaldWallB where va l = 1” )

}
#Compile and name data frame
WaldWallB<−data . frame (WaldWallB$x ,

WaldWallB$y )
names(WaldWallB)=c ( ”x” , ”y” )
WaldWallB$x<−as .numeric (WaldWallB$x )
WaldWallB$y<−as .numeric (WaldWallB$y )

##PLANE C CALCULATIONS
#Convert data to match car t e s i an coord .

from SAPE ( o r i g i n cor r ec t i on )
xcoordC<−( raw3$y−min( raw3$y ) )
ycoordC<−(max( raw3$x )−raw3$x )

#Determine data l eng t h
lengthC<−length ( xcoordC )

#Reg i s t e r v a r i a b l e s f o r concatenat ion
xCatC<−NULL
yCatC<−NULL

#Run loop to crea t e Fry coords .
loopCont<−0
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while ( loopCont<lengthC ) {
loopCont<−loopCont+1
#Center po in t s based on i t e r a t i v e s t ep

[ loopCont ] l o c a t i on =(0 ,0)
xC<−xcoordC [ loopCont ]−xcoordC
yC<−ycoordC [ loopCont ]−ycoordC

#Concatenate coord . l i s t s
xCatC=c (xCatC ,xC)
yCatC=c (yCatC ,yC)
}

#Compile parameters in to Waldron and
Wallace (2007) input

WaldWallC<−data . frame (xCatC , yCatC)
names(WaldWallC)=c ( ”x” , ”y” )

#Remove s tacked center va lue s
WaldWallC<−s q l d f ( ” s e l e c t ∗ from WaldWallC

where x != ’ 0 ’ and y != ’ 0 ’ ” )

#Calcu la t e p l o t bounds
coordPosC<−round(max(c (max( xcoordC ) ,max(

ycoordC ) ) )/pBOUND, 0 )
coordNegC<−(−1)∗coordPosC

#Run i t e r a t i v e loop to l im i t data
bufDat<−sqrt (2∗ ( ( coordPosC ) ˆ2) )
limDat<−length (WaldWallC$x )

while ( limDat > 3000) {
#Create new rad ius such tha t f i e l d

area i s reduced by 10%
bufDat<− sqrt ( . 9∗ ( bufDat ) ˆ2)

#Test coord d i s t ance WRT new rad ius
VAL<−i f e l s e ( sqrt ( ( as .numeric (

WaldWallC$x ) ) ˆ2+(as .numeric (
WaldWallC$y ) ) ˆ2) < bufDat , 1 , 0 )

#Count number o f v a l i d va lue s
limDat<−sum(VAL)

#Combine l i s t o f v a l i d va lue s with
data s e t

WaldWallC<−data . frame (WaldWallC$x ,
WaldWallC$y ,VAL)

names(WaldWallC)=c ( ”x” , ”y” , ” va l ” )

#Se l e c t from data frame only v a l i d
coords .

WaldWallC<−s q l d f ( ” s e l e c t ∗ from
WaldWallC where va l = 1” )

}

#Compile and name data frame
WaldWallC<−data . frame (WaldWallC$x ,

WaldWallC$y )
names(WaldWallC)=c ( ”x” , ”y” )
WaldWallC$x<−as .numeric (WaldWallC$x )
WaldWallC$y<−as .numeric (WaldWallC$y )

#Save data f o r use in Fry Waldron and
Wallace (2007)

write . table (WaldWallA , f i l e=”ANALYSIS\\FRY
\\INPUT\\A. txt ” , col .names = F,append=
F, sep = ”\ t ” ,quote=F,row .names=F)

write . table (WaldWallB , f i l e=”ANALYSIS\\FRY
\\INPUT\\B. txt ” , col .names = F,append=
F, sep = ”\ t ” ,quote=F,row .names=F)

write . table (WaldWallC , f i l e=”ANALYSIS\\FRY
\\INPUT\\C. txt ” , col .names = F,append=
F, sep = ”\ t ” ,quote=F,row .names=F)

#End of Sc r i p t#

E.2 Rf/φ data setup and con-
version

####Scr i p t : RFPHI SETUP
####Author : J e f f r e y R. Webber
####Con : jrwebber@uvm . edu
###REQUIRED: Working d i r e c t o r y s e t to the

master f o l d e r l o c a t i on
###Data : Extracted SAPE data ,

l o c a t i on=”PAR EX”
###Data : Maintain hard re turn at end

o f data l i s t

#Load data in to R from SAPE output : PLANE
A

raw1<−read . table ( f i l e=”PAR EX\\A. sda” ,
header=F)

names( raw1 )=c ( ”x” , ”y” , ”a” , ”b” , ” phi ” , ”
other ” )

#Load data in to R from SAPE output : PLANE
B

raw2<−read . table ( f i l e=”PAR EX\\B. sda” ,
header=F)

names( raw2 )=c ( ”x” , ”y” , ”a” , ”b” , ” phi ” , ”
other ” )

#Load data in to R from SAPE output : PLANE
C

raw3<−read . table ( f i l e=”PAR EX\\C. sda” ,
header=F)

names( raw3 )=c ( ”x” , ”y” , ”a” , ”b” , ” phi ” , ”
other ” )

##PLANE A CALCULATIONS
#Convert data to match car t e s i an coord .

from SAPE ( o r i g i n cor r ec t i on )
xcoord1<−( raw1$y−min( raw1$y ) )
ycoord1<−(max( raw1$x )−raw1$x )

#Redefine f i t t e d e l l i p s e axes
aAxis1<−raw1$a
bAxis1<−raw1$b

#Calcu la t e a x i a l r a t i o
axRat1<−( aAxis1/bAxis1 )

#Calcu la t e phi in radians f o r standard
math convent ion

phiDeg1<−raw1$phi
phiRad1<−phiDeg1∗ ( p i/180)
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#Add Phi va lue s in RHR c lockw i s e p o s i t i v e
convent ion ( standard geographic (

E l l i p s o i d ) convent ion )
phiDegGEO1<−i f e l s e ( raw1$phi>0, 180−raw1$

phi , raw1$phi∗−1)
phiRadGEO1<−phiDegGEO1∗ ( p i/180)

#Compile parameters in to Chew(2003) input
chewA<−data . frame ( aAxis1 , bAxis1 , phiDeg1∗

(−1) )

##PLANE B CALCULATIONS
#Convert data to match ca r t e s i an coord .

from SAPE ( o r i g i n cor r ec t i on )
xcoord2<−( raw2$y−min( raw2$y ) )
ycoord2<−(max( raw2$x )−raw2$x )

#Redefine f i t t e d e l l i p s e axes
aAxis2<−raw2$a
bAxis2<−raw2$b

#Calcu la t e a x i a l r a t i o
axRat2<−( aAxis2/bAxis2 )

#Calcu la t e phi in radians f o r standard
math convent ion

phiDeg2<−raw2$phi
phiRad2<−phiDeg2∗ ( p i/180)

#Add Phi va lue s in RHR c lockw i s e p o s i t i v e
convent ion ( standard geographic (

E l l i p s o i d ) convent ion )
phiDegGEO2<−i f e l s e ( raw2$phi>0, ( raw2$phi∗

−1)+180 , raw2$phi∗−1)
phiRadGEO2<−phiDegGEO2∗ ( p i/180)

#Compile parameters in to Chew(2003) input
chewB<−data . frame ( aAxis2 , bAxis2 , phiDeg2∗

(−1) )

##PLANE C CALCULATIONS
#Convert data to match ca r t e s i an coord .

from SAPE ( o r i g i n cor r ec t i on )
xcoord3<−( raw3$y−min( raw3$y ) )
ycoord3<−(max( raw3$x )−raw3$x )

#Redefine f i t t e d e l l i p s e axes
aAxis3<−raw3$a
bAxis3<−raw3$b

#Calcu la t e a x i a l r a t i o
axRat3<−( aAxis3/bAxis3 )

#Calcu la t e phi in radians f o r standard
math convent ion

phiDeg3<−raw3$phi
phiRad3<−phiDeg3∗ ( p i/180)

#Add Phi va lue s in RHR c lockw i s e p o s i t i v e
convent ion ( standard geographic (

E l l i p s o i d ) convent ion )
phiDegGEO3<−i f e l s e ( raw3$phi>0, ( raw3$phi∗

−1)+180 , raw3$phi∗−1)

phiRadGEO3<−phiDegGEO3∗ ( p i/180)

#Compile parameters in to Chew(2003) input
chewC<−data . frame ( aAxis3 , bAxis3 , phiDeg3∗

(−1) )

#Save data f o r use in Rf/Phi Chew (2003)
write . table (chewA , f i l e=”ANALYSIS\\RFPHI\\

INPUT\\A. txt ” , col .names = F,append=F,
sep = ”\ t ” ,quote=F,row .names=F)

write . table (chewB , f i l e=”ANALYSIS\\RFPHI\\
INPUT\\B. txt ” , col .names = F,append=F,
sep = ”\ t ” ,quote=F,row .names=F)

write . table (chewC , f i l e=”ANALYSIS\\RFPHI\\
INPUT\\C. txt ” , col .names = F,append=F,
sep = ”\ t ” ,quote=F,row .names=F)

#End of Sc r i p t#

E.3 Standardized Fry plot

####Scr i p t : FRY PLOT
####Author : J e f f r e y R. Webber
####Con : jrwebber@uvm . edu
###REQUIRED: Working d i r e c t o r y s e t to the

master f o l d e r l o c a t i on
###Data : Extracted SAPE data ,

l o c a t i on=”PAR EX”
###Data : Compiled f i e l d data in f i l e

=”NOTES\\FIELD DAT. t x t ”
###Data : Maintain hard re turn at end

o f data l i s t s

##Set up l i b r a r i e s
l ibrary ( s q l d f )
l ibrary ( gp l o t s )
l ibrary ( r g l )

#Load data in to R from SAPE output : PLANE
A

raw1<−read . table ( f i l e=”PAR EX\\A. sda” ,
header=F)

names( raw1 )=c ( ”x” , ”y” , ”a” , ”b” , ” phi ” , ”
other ” )

#Load data in to R from SAPE output : PLANE
B

raw2<−read . table ( f i l e=”PAR EX\\B. sda” ,
header=F)

names( raw2 )=c ( ”x” , ”y” , ”a” , ”b” , ” phi ” , ”
other ” )

#Load data in to R from SAPE output : PLANE
C

raw3<−read . table ( f i l e=”PAR EX\\C. sda” ,
header=F)

names( raw3 )=c ( ”x” , ”y” , ”a” , ”b” , ” phi ” , ”
other ” )

#Load f i e l d data
fDat<−read . table ( f i l e=”RAW DATA\\FIELD

DAT. txt ” , header=T, sep=’ \ t ’ )

##PLANE A CALCULATIONS
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#Convert data to match ca r t e s i an coord .
from SAPE ( o r i g i n cor r ec t i on )

xcoordA<−( raw1$y−min( raw1$y ) )
ycoordA<−(max( raw1$x )−raw1$x )

#Determine data l eng t h
lengthA<−length ( xcoordA )

#Reg i s t e r v a r i a b l e s f o r concatenat ion
xCatA<−NULL
yCatA<−NULL

#Set loop con t ro l

#Run loop to crea t e Fry coords .
loopCont<−0
while ( loopCont<lengthA ) {

loopCont<−loopCont+1
#Center po in t s based on i t e r a t i v e s t ep

[ loopCont ] l o c a t i on =(0 ,0)
xA<−xcoordA [ loopCont ]−xcoordA
yA<−ycoordA [ loopCont ]−ycoordA

#Concatenate coord . l i s t s
xCatA=c (xCatA ,xA)
yCatA=c (yCatA ,yA)
}

#Compile coords
fryA<−data . frame (xCatA , yCatA)
names( fryA )=c ( ”x” , ”y” )

#Remove s tacked center va lue s
fryA<−s q l d f ( ” s e l e c t ∗ from fryA where x !

= ’ 0 ’ and y != ’ 0 ’ ” )

##PLANE B CALCULATIONS
#Convert data to match ca r t e s i an coord .

from SAPE ( o r i g i n cor r ec t i on )
xcoordB<−( raw2$y−min( raw2$y ) )
ycoordB<−(max( raw2$x )−raw2$x )

#Determine data l eng t h
lengthB<−length ( xcoordB )

#Reg i s t e r v a r i a b l e s f o r concatenat ion
xCatB<−NULL
yCatB<−NULL

#Run loop to crea t e Fry coords .
loopCont<−0
while ( loopCont<lengthB ) {

loopCont<−loopCont+1
#Center po in t s based on i t e r a t i v e s t ep

[ loopCont ] l o c a t i on =(0 ,0)
xB<−xcoordB [ loopCont ]−xcoordB
yB<−ycoordB [ loopCont ]−ycoordB

#Concatenate coord . l i s t s
xCatB=c (xCatB , xB)
yCatB=c (yCatB , yB)
}

#Compile coords

fryB<−data . frame (xCatB , yCatB)
names( fryB )=c ( ”x” , ”y” )

#Remove s tacked center va lue s
fryB<−s q l d f ( ” s e l e c t ∗ from fryB where x !

= ’ 0 ’ and y != ’ 0 ’ ” )

##PLANE C CALCULATIONS
#Convert data to match car t e s i an coord .

from SAPE ( o r i g i n cor r ec t i on )
xcoordC<−( raw3$y−min( raw3$y ) )
ycoordC<−(max( raw3$x )−raw3$x )

#Determine data l eng t h
lengthC<−length ( xcoordC )

#Reg i s t e r v a r i a b l e s f o r concatenat ion
xCatC<−NULL
yCatC<−NULL

#Run loop to crea t e Fry coords .
loopCont<−0
while ( loopCont<lengthC ) {

loopCont<−loopCont+1
#Center po in t s based on i t e r a t i v e s t ep

[ loopCont ] l o c a t i on =(0 ,0)
xC<−xcoordC [ loopCont ]−xcoordC
yC<−ycoordC [ loopCont ]−ycoordC

#Concatenate coord . l i s t s
xCatC=c (xCatC ,xC)
yCatC=c (yCatC ,yC)
}

#Compile coords .
fryC<−data . frame (xCatC , yCatC)
names( fryC )=c ( ”x” , ”y” )

#Remove s tacked center va lue s
fryC<−s q l d f ( ” s e l e c t ∗ from fryC where x !

= ’ 0 ’ and y != ’ 0 ’ ” )

#Read in compied parameters o f the f i t t e d
e l l i p s e s

f i tPa r<−read . table ( f i l e=”ANALYSIS\\FRY\\
OUTPUT\\FRY DAT. txt ” , header=T)

#Calcu la t e each f i t t e d e l l i p s e max rad ius
winParA<−f i tPa r$ r s [ 1 ] ∗ f i tPa r$ rad iu s [ 1 ]
winParB<−f i tPa r$ r s [ 2 ] ∗ f i tPa r$ rad iu s [ 2 ]
winParC<−f i tPa r$ r s [ 3 ] ∗ f i tPa r$ rad iu s [ 3 ]

#Determine max rad ius and add a 25%
bu f f e r

winPar<−max(winParA , winParB , winParC )∗1 .25

#Es t a b l i s h t e s t s
testA<−i f e l s e ( sqrt ( ( as .numeric ( fryA$x ) )

ˆ2+(as .numeric ( fryA$y ) ) ˆ2)>winPar
, 0 , 1 )

testB<−i f e l s e ( sqrt ( ( as .numeric ( fryB$x ) )
ˆ2+(as .numeric ( fryB$y ) ) ˆ2)>winPar
, 0 , 1 )
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testC<−i f e l s e ( sqrt ( ( as .numeric ( fryC$x ) )
ˆ2+(as .numeric ( fryC$y ) ) ˆ2)>winPar
, 0 , 1 )

#Compile data frame and t e s t r e s u l t s
fryA<−data . frame ( fryA$x , fryA$y , testA )
names( fryA )=c ( ”x” , ”y” , ” t e s t ” )
fryB<−data . frame ( fryB$x , fryB$y , testB )
names( fryB )=c ( ”x” , ”y” , ” t e s t ” )
fryC<−data . frame ( fryC$x , fryC$y , testC )
names( fryC )=c ( ”x” , ”y” , ” t e s t ” )

#SQL for v a l i d va lue s
fryA<−s q l d f ( ” s e l e c t ∗ from fryA where

t e s t = 1” )
fryB<−s q l d f ( ” s e l e c t ∗ from fryB where

t e s t = 1” )
fryC<−s q l d f ( ” s e l e c t ∗ from fryC where

t e s t = 1” )

#remove t e s t va lue s
fryA<−data . frame ( fryA$x , fryA$y )
names( fryA )=c ( ” fryA$x” , ” fryA$y” )
fryB<−data . frame ( fryB$x , fryB$y )
names( fryB )=c ( ” fryB$x” , ” fryB$y” )
fryC<−data . frame ( fryC$x , fryC$y )
names( fryC )=c ( ” fryC$x” , ” fryC$y” )

#Calcu la t e geographic e l l i p s o i d phi
va lue s

AgeoPhi<−i f e l s e ( f i tPa r$phi [1]>0 ,180−
f i tPa r$phi [ 1 ] , ( −1)∗ f i tPa r$phi [ 1 ] )

BgeoPhi<−i f e l s e ( f i tPa r$phi [2]>0 ,180−
f i tPa r$phi [ 2 ] , ( −1)∗ f i tPa r$phi [ 2 ] )

CgeoPhi<−i f e l s e ( f i tPa r$phi [3]>0 ,180−
f i tPa r$phi [ 3 ] , ( −1)∗ f i tPa r$phi [ 3 ] )

#Function fo r p l o t t i n g e l l i p s e s ( h t t p ://
www.math . mcmaster . ca/pe t e r/s4m03/
s4m03 0304/ c l a s s no t e s/ e l l i p s e . html )

e l l i p s e <−function ( hlaxa = 1 , hlaxb = 1 ,
theta = 0 , xc = 0 , yc = 0 , npo ints =
100 , s ty=”black ” ,
. . . )

{
a <− seq (0 , 2 ∗ pi , length = npoints

+ 1)
x <− hlaxa ∗ cos ( a )
y <− hlaxb ∗ sin ( a )
alpha <− ang le (x , y )
rad <− sqrt ( xˆ2 + yˆ2)
xp <− rad ∗ cos ( alpha + theta ) + xc
yp <− rad ∗ sin ( alpha + theta ) + yc
l ines (xp , yp , . . . , col=sty )
invis ible ( )

}
ang le <−function (x , y )
{

angle2 <− function (xy) {
x <− xy [ 1 ]
y <− xy [ 2 ]
i f ( x > 0) {

atan ( y/x )
}

else {
i f ( x < 0 & y != 0) {

atan ( y/x ) + sign ( y ) ∗ pi
}
else {

i f ( x < 0 & y == 0) {
pi

}
else {

i f ( y != 0) {
( sign ( y ) ∗ pi )/2

}
else {

NA
}

}
}

}
}
apply (cbind (x , y ) , 1 , ang le2 )

}

#Compile va lue s f o r ELLIPSOID
Number<−1 :3
S t r i k e<−c (round( fDat$ s t r i k e [ 1 ] , 0 ) ,round(

fDat$ s t r i k e [ 2 ] , 0 ) ,round( fDat$ s t r i k e
[ 3 ] , 0 ) )

Dip<−c (round( fDat$dip [ 1 ] , 0 ) ,round( fDat$
dip [ 2 ] , 0 ) ,round( fDat$dip [ 3 ] , 0 ) )

Rake<−c (round(AgeoPhi , 2 ) ,round( BgeoPhi , 2 )
,round(CgeoPhi , 2 ) )

Ratio<−c (round( f i tPa r$ r s [ 1 ] , 2 ) ,round(
f i tPa r$ r s [ 2 ] , 2 ) ,round( f i tPa r$ r s [ 3 ] , 2 )
)

Long<−c (round(2∗winParA , 2 ) ,round(2∗
winParB , 2 ) ,round(2∗winParC , 2 ) )

Short<−c (round(2∗ f i tPa r$ rad iu s [ 1 ] ) ,round
(2∗ f i tPa r$ rad iu s [ 2 ] , 2 ) ,round(2∗ f i tPa r
$ rad iu s [ 3 ] , 2 ) )

Weight<−c ( 1 , 1 , 1 )
e l l i P a r 1<−data . frame (Number , St r ike , Dip ,

Rake , Ratio , Weight )
e l l i P a r 2<−data . frame (Number , St r ike , Dip ,

Rake , Long , Short , Weight )

#Write . e l l i f i l e f o r parameters
sink ( f i l e=”MODEL\\ELLIPSOID\\INPUT\\FRY

RAW. e l l i ” )
cat ( ”#” , ” s t r i k e ” , ” dip ” , ” rake ” , ” shape

r a t i o ” , ”” , ”” , ”” , ”” , ”” , ”” , ”” , ”\n” , sep=
”\ t ” )

cat ( ”1” , S t r i k e [ 1 ] , Dip [ 1 ] , Rake [ 1 ] , Ratio
[ 1 ] , ”” , ”1\n” , sep=”\ t ” )

cat ( ”2” , S t r i k e [ 2 ] , Dip [ 2 ] , Rake [ 2 ] , Ratio
[ 2 ] , ”” , ”1\n” , sep=”\ t ” )

cat ( ”3” , S t r i k e [ 3 ] , Dip [ 3 ] , Rake [ 3 ] , Ratio
[ 3 ] , ”” , ”1\n” , sep=”\ t ” )

cat ( ”\n” )
sink ( )

#Plot compiled parameters
x11 ( )
par (mfrow=c ( 2 , 1 ) )
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t e x tp l o t ( e l l iPa r 1 , ha l i gn=” cente r ” ,
va l i gn=”top” ,show .rownames=F)

t i t l e ( ”Compiled Parameters f o r ELLIPSOID
with Rat ios ” )

t e x tp l o t ( e l l iPa r 2 , ha l i gn=” cente r ” ,
va l i gn=”top” ,show .rownames=F)

t i t l e ( ”Compiled Parameters f o r ELLIPSOID
with Lengths” )

#Save compiled data
dev . copy ( pdf , ”MODEL\\ELLIPSOID\\INPUT\\

FRY COMPILE. pdf ” , useDingbats=F)
dev . of f ( )

##Design coo l p l o t s o f data
x11 ( )
par (mfrow=c ( 2 , 3 ) ,mar=c ( 5 . 1 , 4 . 1 , 4 . 1 , 1 ) )

#Plot Fry data wh i l e maintaining same
s ca l e between p l o t s and add e l l i p s e s

plot ( fryA , xlim=c(−winPar , winPar ) , yl im=c(−
winPar , winPar ) , asp=1,pch=20, axes=F,
main=”A” ,

frame . plot=F, xlab=paste ( ” phi =” ,round(
AgeoPhi , 0 ) ) , y lab=NA)

e l l i p s e ( hlaxa=winParA , hlaxb=f i tPa r$ rad iu s
[ 1 ] , theta=( f i tPa r$phi [ 1 ] ) ∗ ( p i/180) ,n
=100 , s ty=” red ” )

e l l i p s e ( hlaxa=winPar∗1 . 05 , hlaxb=winPar∗
1 . 05 , theta=0,n=100)

plot ( fryB , xlim=c(−winPar , winPar ) , yl im=c(−
winPar , winPar ) , asp=1,pch=20, axes=F,
main=”B” ,

frame . plot=F, xlab=paste ( ” phi =” ,round(
BgeoPhi , 0 ) ) , y lab=NA)

e l l i p s e ( hlaxa=winParB , hlaxb=f i tPa r$ rad iu s
[ 2 ] , theta=( f i tPa r$phi [ 2 ] ) ∗ ( p i/180) ,n
=100 , s ty=” red ” )

e l l i p s e ( hlaxa=winPar∗1 . 05 , hlaxb=winPar∗
1 . 05 , theta=0,n=100 ,)

plot ( fryC , xlim=c(−winPar , winPar ) , yl im=c(−
winPar , winPar ) , asp=1,pch=20, axes=F,
main=”C” ,

frame . plot=F, xlab=paste ( ” phi =” ,round(
CgeoPhi , 0 ) ) , y lab=NA)

e l l i p s e ( hlaxa=winParC , hlaxb=f i tPa r$ rad iu s
[ 3 ] , theta=( f i tPa r$phi [ 3 ] ) ∗ ( p i/180) ,n
=100 , s ty=” red ” )

e l l i p s e ( hlaxa=winPar∗1 . 05 , hlaxb=winPar∗
1 . 05 , theta=0,n=100)

#Add normalized e l l i p s e A
plot (0 , 0 , xl im=c (−2 ,2) , yl im=c (−2 ,2) , asp=1,

axes=F, frame . plot=F, pch=20, xlab=NA,
ylab=NA)

e l l i p s e ( hlaxa=sqrt ( f i tPa r$ r s [ 1 ] ) /2 , hlaxb=
sqrt (1/ f i tPa r$ r s [ 1 ] ) /2 , theta=( f i tPa r$
phi [ 1 ] ) ∗ ( p i/180) ,n=100)

text (0 ,−2 , ”Axia l Ratio : ” , adj =.5)
text (0 ,−2.5 , f i tPa r$ r s [ 1 ] , adj =.5)
l ines ( x=c (−2 ,2) , y=c ( 0 , 0 ) )

#Add normalized e l l i p s e B

plot (0 , 0 , xl im=c (−2 ,2) , yl im=c (−2 ,2) , asp=1,
axes=F, frame . plot=F, pch=20, xlab=NA,
ylab=NA, main=”Normalized E l l i p s e s ” )

e l l i p s e ( hlaxa=sqrt ( f i tPa r$ r s [ 2 ] ) /2 , hlaxb=
sqrt (1/ f i tPa r$ r s [ 2 ] ) /2 , theta=( f i tPa r$
phi [ 2 ] ) ∗ ( p i/180) ,n=100)

text (0 ,−2 , ”Axia l Ratio : ” , adj =.5)
text (0 ,−2.5 , f i tPa r$ r s [ 2 ] , adj =.5)
l ines ( x=c (−2 ,2) , y=c ( 0 , 0 ) )

#Add normalized e l l i p s e C
plot (0 , 0 , xl im=c (−2 ,2) , yl im=c (−2 ,2) , asp=1,

axes=F, frame . plot=F, pch=20, xlab=NA,
ylab=NA)

e l l i p s e ( hlaxa=sqrt ( f i tPa r$ r s [ 3 ] ) /2 , hlaxb=
sqrt (1/ f i tPa r$ r s [ 3 ] ) /2 , theta=( f i tPa r$
phi [ 3 ] ) ∗ ( p i/180) ,n=100)

text (0 ,−2 , ”Axia l Ratio : ” , adj =.5)
text (0 ,−2.5 , f i tPa r$ r s [ 3 ] , adj =.5)
l ines ( x=c (−2 ,2) , y=c ( 0 , 0 ) )

#Save p l o t
dev . copy ( pdf , ”ANALYSIS\\FRY\\OUTPUT\\

SECTIONAL PLOT FRY. pdf ” , useDingbats=F
)

dev . of f ( )

#Plot 3D Fry with f i t t e d e l l i p s e s#

e l l i p s e 3 d <−function ( hlaxa = 1 , hlaxb =
1 , theta = 0 , xc = 0 , yc = 0 , npo ints
= 100 , s ty=”black ” ,
. . . )

{
a <− seq (0 , 2 ∗ pi , length = npoints

+ 1)
x <− hlaxa ∗ cos ( a )
y <− hlaxb ∗ sin ( a )
alpha <− ang le (x , y )
rad <− sqrt ( xˆ2 + yˆ2)
xp <− rad ∗ cos ( alpha + theta ) + xc
yp <− rad ∗ sin ( alpha + theta ) + yc
zp <− seq (0 , 0 , l en = npoints + 1)
return (cbind (xp , yp , zp ) )

}
ang le <−function (x , y )
{

angle2 <− function (xy) {
x <− xy [ 1 ]
y <− xy [ 2 ]
i f ( x > 0) {

atan ( y/x )
}
else {

i f ( x < 0 & y != 0) {
atan ( y/x ) + sign ( y ) ∗ pi

}
else {

i f ( x < 0 & y == 0) {
pi

}
else {

i f ( y != 0) {
( sign ( y ) ∗ pi )/2
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}
else {

NA
}

}
}

}
}
apply (cbind (x , y ) , 1 , ang le2 )

}

fry3dA<−cbind ( fryA$” fryA$x” , fryA$” fryA$y”
, seq (0 , 0 , l en=length ( fryA$” fryA$x” ) ) )

fry3dB<−cbind ( fryB$” fryB$x” , fryB$” fryB$y”
, seq (0 , 0 , l en=length ( fryB$” fryB$x” ) ) )

fry3dC<−cbind ( fryC$” fryC$x” , fryC$” fryC$y”
, seq (0 , 0 , l en=length ( fryC$” fryC$x” ) ) )

e3dA<−e l l i p s e 3 d ( hlaxa=winParA , hlaxb=
f i tPa r$ rad iu s [ 1 ] , theta=( f i tPa r$phi
[ 1 ] ) ∗ ( p i/180) ,n=100 , s ty=” red ” )

e3dB<−e l l i p s e 3 d ( hlaxa=winParB , hlaxb=
f i tPa r$ rad iu s [ 2 ] , theta=( f i tPa r$phi
[ 2 ] ) ∗ ( p i/180) ,n=100 , s ty=” red ” )

e3dC<−e l l i p s e 3 d ( hlaxa=winParC , hlaxb=
f i tPa r$ rad iu s [ 3 ] , theta=( f i tPa r$phi
[ 3 ] ) ∗ ( p i/180) ,n=100 , s ty=” red ” )

e3dA<−matrix ( e3dA , ncol = 3)
e3dB<−matrix ( e3dB , ncol = 3)
e3dC<−matrix ( e3dC , ncol = 3)

fry3dA<−ro tate3d ( fry3dA , fDat$dip [ 1 ] ∗ (
p i/180) , −1, 0 , 0)

fry3dA<−ro tate3d ( fry3dA , ( fDat$ s t r i k e
[1 ]−90) ∗ ( p i/180) , 0 , 0 , 1)

e3dA<−ro tate3d (e3dA , fDat$dip [ 1 ] ∗ ( p i/
180) , −1, 0 , 0)

e3dA<−ro tate3d (e3dA , ( fDat$ s t r i k e [1 ]−90)
∗ ( p i/180) , 0 , 0 , 1)

fry3dB<−ro tate3d ( fry3dB , fDat$dip [ 2 ] ∗ (
p i/180) , −1, 0 , 0)

fry3dB<−ro tate3d ( fry3dB , ( fDat$ s t r i k e
[2 ]−90) ∗ ( p i/180) , 0 , 0 , 1)

e3dB<−ro tate3d ( e3dB , fDat$dip [ 2 ] ∗ ( p i/
180) , −1, 0 , 0)

e3dB<−ro tate3d ( e3dB , ( fDat$ s t r i k e [2 ]−90)
∗ ( p i/180) , 0 , 0 , 1)

fry3dC<−ro tate3d ( fry3dC , fDat$dip [ 3 ] ∗ (
p i/180) , −1, 0 , 0)

fry3dC<−ro tate3d ( fry3dC , ( fDat$ s t r i k e
[3 ]−90) ∗ ( p i/180) , 0 , 0 , 1)

e3dC<−ro tate3d ( e3dC , fDat$dip [ 3 ] ∗ ( p i/
180) , −1, 0 , 0)

e3dC<−ro tate3d ( e3dC , ( fDat$ s t r i k e [3 ]−90)
∗ ( p i/180) , 0 , 0 , 1)

po ints3d ( fry3dA , col=”red” )
po ints3d ( fry3dB , col=”blue ” )
po ints3d ( fry3dC , col=”orange ” )

l i n e s 3d (e3dA , col=”red” )

l i n e s 3d ( e3dB , col=”blue ” )
l i n e s 3d ( e3dC , col=”orange ” )

box3d ( col=”#DDDDDD” , lwd=.5)
mtext3d ( ”N” , edge=’x++’ , col=”#DDDDDD” )
mtext3d ( ”S” , edge=’x−+’ , col=”#DDDDDD” )
mtext3d ( ”E” , edge=’y++’ , col=”#DDDDDD” )
mtext3d ( ”W” , edge=’y−+’ , col=”#DDDDDD” )

#End of Sc r i p t#

E.4 Standardized Rf/φ plot

####Scr i p t : RFPHI PLOT
####Author : J e f f r e y R. Webber
####Con : jrwebber@uvm . edu
###REQUIRED: Working d i r e c t o r y s e t to the

master f o l d e r l o c a t i on
###Data : Extracted SAPE data ,

l o c a t i on=”PAR EX”
###Data : Compiled Rf/Phi data in f i l e

=”ANALYSIS\\RFPHI\\OUTPUT\\RFPHI DAT.
t x t ”

###Data : Compiled f i e l d data in f i l e
=”NOTES\\FIELD DAT. t x t ”

###Data : Maintain hard re turn at end
o f data l i s t

###Acknow . : David M. Chew , Vector mean
cor r ec t i on he lp .

#Load requ i red l i b r a r y
l ibrary ( gp l o t s )

#Load data in to R from SAPE output : PLANE
A

raw1<−read . table ( f i l e=”PAR EX\\A. sda” ,
header=F)

names( raw1 )=c ( ”x” , ”y” , ”a” , ”b” , ” phi ” , ”
other ” )

#Load data in to R from SAPE output : PLANE
B

raw2<−read . table ( f i l e=”PAR EX\\B. sda” ,
header=F)

names( raw2 )=c ( ”x” , ”y” , ”a” , ”b” , ” phi ” , ”
other ” )

#Load data in to R from SAPE output : PLANE
C

raw3<−read . table ( f i l e=”PAR EX\\C. sda” ,
header=F)

names( raw3 )=c ( ”x” , ”y” , ”a” , ”b” , ” phi ” , ”
other ” )

#Load f i e l d data
fDat<−read . table ( f i l e=”RAW DATA\\FIELD

DAT. txt ” , header=T, sep=’ \ t ’ )

##PLANE A CALCULATIONS
#Convert data to match car t e s i an coord .

from SAPE ( o r i g i n cor r ec t i on )
xcoord1<−( raw1$y−min( raw1$y ) )
ycoord1<−(max( raw1$x )−raw1$x )
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#Redefine f i t t e d e l l i p s e axes
aAxis1<−raw1$a
bAxis1<−raw1$b

#Calcu la t e a x i a l r a t i o
axRat1<−( aAxis1/bAxis1 )

#Calcu la t e phi in radians f o r standard
math convent ion

phiDeg1<−raw1$phi
phiRad1<−phiDeg1∗ ( p i/180)

#Add Phi va lue s in RHR c lockw i s e p o s i t i v e
convent ion ( standard geographic (

E l l i p s o i d ) convent ion )
phiDegGEO1<−i f e l s e ( raw1$phi>0, 180−raw1$

phi , raw1$phi∗−1)
phiRadGEO1<−phiDegGEO1∗ ( p i/180)

#Compile parameters in to new data frame
exparam1<−data . frame ( xcoord1 , ycoord1 ,

aAxis1 , bAxis1 , axRat1 , phiDeg1 , phiRad1 ,
phiDegGEO1 , phiRadGEO1)

#Calcu la t e Vector Mean : L i s l e (1985) ,
page 14

vMeanRad1<−. 5∗atan ( sum( sin (2∗exparam1$
phiRad1 ) ) /sum( cos (2∗exparam1$phiRad1
) ) )

vMeanDeg1<−vMeanRad1∗(180/pi )
vMeanDeg1<−i f e l s e (sum( cos (2∗exparam1$

phiRad1 ) )<0,vMeanDeg1+90,vMeanDeg1)

#Convert to ELLIPSOID rake convent ion
vMeanDegGEO1<−i f e l s e (vMeanDeg1 > 0 , 180−

vMeanDeg1 , −1∗vMeanDeg1)

#Calcu la t e Harmonic mean : L i s l e (1985) ,
page 14

hMean1<−( length ( axRat1 ) )/ (sum( ( axRat1 )
ˆ(−1) ) )

##PLANE B CALCULATIONS
#Convert data to match ca r t e s i an coord .

from SAPE ( o r i g i n cor r ec t i on )
xcoord2<−( raw2$y−min( raw2$y ) )
ycoord2<−(max( raw2$x )−raw2$x )

#Redefine f i t t e d e l l i p s e axes
aAxis2<−raw2$a
bAxis2<−raw2$b

#Calcu la t e a x i a l r a t i o
axRat2<−( aAxis2/bAxis2 )

#Calcu la t e phi in radians f o r standard
math convent ion

phiDeg2<−raw2$phi
phiRad2<−phiDeg2∗ ( p i/180)

#Add Phi va lue s in RHR c lockw i s e p o s i t i v e
convent ion ( standard geographic (

E l l i p s o i d ) convent ion )

phiDegGEO2<−i f e l s e ( raw2$phi>0, ( raw2$phi∗
−1)+180 , raw2$phi∗−1)

phiRadGEO2<−phiDegGEO2∗ ( p i/180)

#Compile parameters in to new data frame
exparam2<−data . frame ( xcoord2 , ycoord2 ,

aAxis2 , bAxis2 , axRat2 , phiDeg2 , phiRad2 ,
phiDegGEO2 , phiRadGEO2)

#Calcu la t e Vector Mean : L i s l e (1985) ,
page 14

vMeanRad2<−. 5∗atan ( sum( sin (2∗exparam2$
phiRad2 ) ) /sum( cos (2∗exparam2$phiRad2
) ) )

vMeanDeg2<−vMeanRad2∗(180/pi )
vMeanDeg2<−i f e l s e (sum( cos (2∗exparam2$

phiRad2 ) )<0,vMeanDeg2+90,vMeanDeg2)

#Convert to ELLIPSOID rake convent ion
vMeanDegGEO2<−i f e l s e (vMeanDeg2 > 0 , 180−

vMeanDeg2 , −1∗vMeanDeg2)

#Calcu la t e Harmonic mean : L i s l e (1985) ,
page 14

hMean2<−( length ( axRat2 ) )/ (sum( ( axRat2 )
ˆ(−1) ) )

##PLANE C CALCULATIONS
#Convert data to match car t e s i an coord .

from SAPE ( o r i g i n cor r ec t i on )
xcoord3<−( raw3$y−min( raw3$y ) )
ycoord3<−(max( raw3$x )−raw3$x )

#Redefine f i t t e d e l l i p s e axes
aAxis3<−raw3$a
bAxis3<−raw3$b

#Calcu la t e a x i a l r a t i o
axRat3<−( aAxis3/bAxis3 )

#Calcu la t e phi in radians f o r standard
math convent ion

phiDeg3<−raw3$phi
phiRad3<−phiDeg3∗ ( p i/180)

#Add Phi va lue s in RHR c lockw i s e p o s i t i v e
convent ion ( standard geographic (

E l l i p s o i d ) convent ion )
phiDegGEO3<−i f e l s e ( raw3$phi>0, ( raw3$phi∗

−1)+180 , raw3$phi∗−1)
phiRadGEO3<−phiDegGEO3∗ ( p i/180)

#Compile parameters in to new data frame
exparam3<−data . frame ( xcoord3 , ycoord3 ,

aAxis3 , bAxis3 , axRat3 , phiDeg3 , phiRad3 ,
phiDegGEO3 , phiRadGEO3)

#Calcu la t e Vector Mean : L i s l e (1985) ,
page 14

vMeanRad3<−. 5∗atan ( sum( sin (2∗exparam3$
phiRad3 ) ) /sum( cos (2∗exparam3$phiRad3
) ) )

vMeanDeg3<−vMeanRad3∗(180/pi )
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vMeanDeg3<−i f e l s e (sum( cos (2∗exparam3$
phiRad3 ) )<0,vMeanDeg3+90,vMeanDeg3)

#Convert to ELLIPSOID rake convent ion
vMeanDegGEO3<−i f e l s e (vMeanDeg3 > 0 , 180−

vMeanDeg3 , −1∗vMeanDeg3)

#Calcu la t e Harmonic mean : L i s l e (1985) ,
page 14

hMean3<−( length ( axRat3 ) )/ (sum( ( axRat3 )
ˆ(−1) ) )

##Define p r i n c i p l e p lanes r e l a t e d to
s e c t i on data

#Read in Rf/Phi a x i a l r a t i o data
RFPHI DAT<−read . table ( f i l e=”ANALYSIS\\

RFPHI\\OUTPUT\\RFPHI DAT. txt ” , header=
T)

#Plane A
Apar<−exparam1
names(Apar )=c ( ” xcoord” , ” ycoord” , ” aAxis ” , ”

bAxis” , ”axRat” , ”phiDeg” , ”phiRad” , ”
phiDegGEO” , ”phiRadGEO” )

AvMean<−vMeanDegGEO1
AhMean<−hMean1
Ars<−RFPHI DAT$ r s [ 1 ]

#Plane B
Bpar<−exparam2
names(Bpar )=c ( ” xcoord” , ” ycoord” , ” aAxis ” , ”

bAxis” , ”axRat” , ”phiDeg” , ”phiRad” , ”
phiDegGEO” , ”phiRadGEO” )

BvMean<−vMeanDegGEO2
BhMean<−hMean2
Brs<−RFPHI DAT$ r s [ 2 ]

#Plane C
Cpar<−exparam3
names(Cpar )=c ( ” xcoord” , ” ycoord” , ” aAxis ” , ”

bAxis” , ”axRat” , ”phiDeg” , ”phiRad” , ”
phiDegGEO” , ”phiRadGEO” )

CvMean<−vMeanDegGEO3
ChMean<−hMean3
Crs<−RFPHI DAT$ r s [ 3 ]

##Recenter data f o r p l o t t i n g and
determine Isym

#A vMean center
Aphi<−Apar$phiDegGEO−AvMean
Aphi<−i f e l s e (Aphi>90,Aphi−180 ,Aphi )
Aphi<−i f e l s e (Aphi<(−90) ,Aphi+180 ,Aphi )
Aplot<−data . frame (Aphi , Apar$axRat )
names( Aplot )=c ( ”Aphi” , ”AaxRat” )

#Calcu la t e number o f data po in t s in each
reg ion

AQa<−i f e l s e ( Aplot$AaxRat>AhMean & Aplot$
Aphi<0 ,1 ,0)

AQa<−sum(AQa)
AQb<−i f e l s e ( Aplot$AaxRat>AhMean & Aplot$

Aphi>0 ,1 ,0)
AQb<−sum(AQb)

AQc<−i f e l s e ( Aplot$AaxRat<AhMean & Aplot$
Aphi<0 ,1 ,0)

AQc<−sum(AQc)
AQd<−i f e l s e ( Aplot$AaxRat<AhMean & Aplot$

Aphi>0 ,1 ,0)
AQd<−sum(AQd)

#Calcu la t e Isym
AIsym<−1−((abs (AQa−AQb)+abs (AQc−AQd) )/

length ( Aplot$Aphi ) )

#B vMean center
Bphi<−Bpar$phiDegGEO−BvMean
Bphi<−i f e l s e (Bphi>90,Bphi−180 ,Bphi )
Bphi<−i f e l s e (Bphi<(−90) , Bphi+180 ,Bphi )
Bplot<−data . frame (Bphi , Bpar$axRat )
names( Bplot )=c ( ”Bphi” , ”BaxRat” )

#Calcu la t e number o f data po in t s in each
reg ion

BQa<−i f e l s e ( Bplot$BaxRat>BhMean & Bplot$
Bphi<0 ,1 ,0)

BQa<−sum(BQa)
BQb<−i f e l s e ( Bplot$BaxRat>BhMean & Bplot$

Bphi>0 ,1 ,0)
BQb<−sum(BQb)
BQc<−i f e l s e ( Bplot$BaxRat<BhMean & Bplot$

Bphi<0 ,1 ,0)
BQc<−sum(BQc)
BQd<−i f e l s e ( Bplot$BaxRat<BhMean & Bplot$

Bphi>0 ,1 ,0)
BQd<−sum(BQd)

#Calcu la t e Isym
BIsym<−1−((abs (BQa−BQb)+abs (BQc−BQd) )/

length ( Bplot$Bphi ) )

#C vMean center
Cphi<−Cpar$phiDegGEO−CvMean
Cphi<−i f e l s e (Cphi>90,Cphi−180 ,Cphi )
Cphi<−i f e l s e (Cphi<(−90) , Cphi+180 ,Cphi )
Cplot<−data . frame (Cphi , Cpar$axRat )
names( Cplot )=c ( ”Cphi” , ”CaxRat” )

#Calcu la t e number o f data po in t s in each
reg ion

CQa<−i f e l s e ( Cplot$CaxRat>ChMean & Cplot$
Cphi<0 ,1 ,0)

CQa<−sum(CQa)
CQb<−i f e l s e ( Cplot$CaxRat>ChMean & Cplot$

Cphi>0 ,1 ,0)
CQb<−sum(CQb)
CQc<−i f e l s e ( Cplot$CaxRat<ChMean & Cplot$

Cphi<0 ,1 ,0)
CQc<−sum(CQc)
CQd<−i f e l s e ( Cplot$CaxRat<ChMean & Cplot$

Cphi>0 ,1 ,0)
CQd<−sum(CQd)

#Calcu la t e Isym
CIsym<−1−((abs (CQa−CQb)+abs (CQc−CQd) )/

length ( Cplot$Cphi ) )

##Compile va lue s f o r ELLIPSOID
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Number<−1 :3
S t r i k e<−c (round( fDat$ s t r i k e [ 1 ] , 0 ) ,round(

fDat$ s t r i k e [ 2 ] , 0 ) ,round( fDat$ s t r i k e
[ 3 ] , 0 ) )

Dip<−c (round( fDat$dip [ 1 ] , 0 ) ,round( fDat$
dip [ 2 ] , 0 ) ,round( fDat$dip [ 3 ] , 0 ) )

Rake<−c (round(AvMean , 2 ) ,round(BvMean , 2 ) ,
round(CvMean , 2 ) )

Ratio<−c (round(Ars , 2 ) ,round( Brs , 2 ) ,round(
Crs , 2 ) )

Weight<−c ( 1 , 1 , 1 )
e l l i P a r<−data . frame (Number , St r ike , Dip ,

Rake , Ratio , Weight )

#Write . e l l i f i l e f o r parameters
sink ( f i l e=”MODEL\\ELLIPSOID\\INPUT\\RFPHI

RAW. e l l i ” )
cat ( ”#” , ” s t r i k e ” , ” dip ” , ” rake ” , ” shape

r a t i o ” , ”” , ”” , ”” , ”” , ”” , ”” , ”” , ”\n” , sep=
”\ t ” )

cat ( ”1” , S t r i k e [ 1 ] , Dip [ 1 ] , Rake [ 1 ] , Ratio
[ 1 ] , ”” , ”1\n” , sep=”\ t ” )

cat ( ”2” , S t r i k e [ 2 ] , Dip [ 2 ] , Rake [ 2 ] , Ratio
[ 2 ] , ”” , ”1\n” , sep=”\ t ” )

cat ( ”3” , S t r i k e [ 3 ] , Dip [ 3 ] , Rake [ 3 ] , Ratio
[ 3 ] , ”” , ”1\n” , sep=”\ t ” )

cat ( ”\n” )
sink ( )

#Plot compiled parameters
x11 ( )
t e x tp l o t ( e l l i P a r , ha l i gn=” cente r ” , va l i gn

=”top” ,show .rownames=F)
t ex tp l o t ( e l l i P a r , ha l i gn=” cente r ” , va l i gn

=”top” ,show .rownames=F)
t i t l e ( ”Compiled Parameters f o r ELLIPSOID”

)

#Save f i l e to input
dev . copy ( pdf , ”MODEL\\ELLIPSOID\\INPUT\\

RFPHI COMPILE. pdf ” , useDingbats=F)
dev . of f ( )

#Plot RF/PHI data wh i l e maintaining same
s ca l e between p l o t s and add e l l i p s e s

x11 ( )
par (mfrow=c ( 2 , 3 ) ,mar=c ( 5 . 1 , 4 . 1 , 4 . 1 , 1 ) )
plot ( Aplot , main=”A” , log=’y ’ , x lab=”

Recentered Phi” , ylab=”Rf” , xlim=c
(−90 ,90) ,

yl im=c (1 , 21 ) ,sub=paste ( ”vm=” ,round(AvMean
, 0 ) , ”/ hm=” ,round(AhMean , 2 ) ) , pch=20,
xaxp=c (−90 ,90 ,2) )

l ines ( x=c ( 0 , 0 ) , y=c (1 , 20 ) )
l ines ( x=c (−90 ,90) , y=c (AhMean ,AhMean) , col=

”grey ” )
text (−90 ,21 ,paste ( ”n = ” , length ( Aplot$

Aphi ) ) , adj=0)
text (90 ,21 ,paste ( ” s =” ,round(AIsym , 2 ) ) ,

adj=1)
plot ( Bplot , main=”B” , log=’y ’ , x lab=”

Recentered Phi” , ylab=”Rf” , xlim=c
(−90 ,90) ,

yl im=c (1 , 21 ) ,sub=paste ( ”vm= ” , round(
BvMean , 0 ) , ”/ hm=” ,round(BhMean , 2 ) ) ,
pch=20,xaxp=c (−90 ,90 ,2) )

l ines ( x=c ( 0 , 0 ) , y=c (1 , 20 ) )
l ines ( x=c (−90 ,90) , y=c (BhMean ,BhMean) , col=

”grey ” )
text (−90 ,21 ,paste ( ”n = ” , length ( Bplot$

Bphi ) ) , adj=0)
text (90 ,21 ,paste ( ” s =” ,round(BIsym , 2 ) ) ,

adj=1)
plot ( Cplot , main=”C” , log=’y ’ , x lab=”

Recentered Phi” , ylab=”Rf” , xlim=c
(−90 ,90) ,

yl im=c (1 , 21 ) ,sub=paste ( ”vm= ” , round(
CvMean , 0 ) , ”/ hm=” ,round(ChMean , 2 ) ) ,
pch=20,xaxp=c (−90 ,90 ,2) )

l ines ( x=c ( 0 , 0 ) , y=c (1 , 20 ) )
l ines ( x=c (−90 ,90) , y=c (ChMean ,ChMean) , col=

”grey ” )
text (−90 ,21 ,paste ( ”n =” , length ( Cplot$Cphi

) ) , adj=0)
text (90 ,21 ,paste ( ” s =” ,round(CIsym , 2 ) ) ,

adj=1)

#Function fo r p l o t t i n g e l l i p s e s ( h t t p ://
www.math . mcmaster . ca/pe t e r/s4m03/
s4m03 0304/ c l a s s no t e s/ e l l i p s e . html )

e l l i p s e <−function ( hlaxa = 1 , hlaxb = 1 ,
theta = 0 , xc = 0 , yc = 0 , npo ints =
100 ,
. . . )

{
a <− seq (0 , 2 ∗ pi , length = npoints

+ 1)
x <− hlaxa ∗ cos ( a )
y <− hlaxb ∗ sin ( a )
alpha <− ang le (x , y )
rad <− sqrt ( xˆ2 + yˆ2)
xp <− rad ∗ cos ( alpha + theta ) + xc
yp <− rad ∗ sin ( alpha + theta ) + yc
l ines (xp , yp , . . . )
invis ible ( )

}

ang le <−function (x , y )
{

angle2 <− function (xy) {
x <− xy [ 1 ]
y <− xy [ 2 ]
i f ( x > 0) {

atan ( y/x )
}
else {

i f ( x < 0 & y != 0) {
atan ( y/x ) + sign ( y ) ∗ pi

}
else {

i f ( x < 0 & y == 0) {
pi

}
else {

i f ( y != 0) {
( sign ( y ) ∗ pi )/2
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}
else {

NA
}

}
}

}
}
apply (cbind (x , y ) , 1 , ang le2 )

}

#Add A s t r a i n e l l i p s e
plot (0 , 0 , xl im=c (−2 ,2) , yl im=c (−2 ,2) , asp=1,

axes=F, frame . plot=F, pch=20, xlab=NA,
ylab=NA)

e l l i p s e ( hlaxa=sqrt ( Ars )/2 , hlaxb=sqrt (1/
Ars )/2 , theta=(−1∗AvMean)∗ ( p i/180) ,n
=100)

text (0 ,−2 , ”Axia l Ratio : ” , adj =.5)
text (0 ,−2.5 ,Ars , adj =.5)
l ines ( x=c (−2 ,2) , y=c ( 0 , 0 ) )

#Add B s t r a i n e l l i p s e
plot (0 , 0 , xl im=c (−2 ,2) , yl im=c (−2 ,2) , asp=1,

axes=F, frame . plot=F, pch=20, xlab=NA,
ylab=NA, main=”Normalized E l l i p s e s ” )

e l l i p s e ( hlaxa=sqrt ( Brs )/2 , hlaxb=sqrt (1/
Brs )/2 , theta=(−1∗BvMean)∗ ( p i/180) ,n
=100)

text (0 ,−2 , ”Axia l Ratio : ” , adj =.5)
text (0 ,−2.5 , Brs , adj =.5)
l ines ( x=c (−2 ,2) , y=c ( 0 , 0 ) )

#Add C s t r a i n e l l i p s e
plot (0 , 0 , xl im=c (−2 ,2) , yl im=c (−2 ,2) , asp=1,

axes=F, frame . plot=F, pch=20, xlab=NA,
ylab=NA)

e l l i p s e ( hlaxa=sqrt ( Crs )/2 , hlaxb=sqrt (1/
Crs )/2 , theta=(−1∗CvMean)∗ ( p i/180) ,n
=100)

text (0 ,−2 , ”Axia l Ratio : ” , adj =.5)
text (0 ,−2.5 , Crs , adj =.5)
l ines ( x=c (−2 ,2) , y=c ( 0 , 0 ) )

#Save f i l e to output
dev . copy ( pdf , ”ANALYSIS\\RFPHI\\OUTPUT\\

SECTIONAL PLOT RFPHI . pdf ” , useDingbats
=F)

dev . of f ( )
#End of Sc r i p t#

E.5 Ellipsoid to Blender con-
version (Fry)

####Scr i p t : ELLIP2BLEND FRY
####Author : J e f f r e y R. Webber
####Con : jrwebber@uvm . edu
###REQUIRED: Working d i r e c t o r y s e t to the

master f o l d e r l o c a t i on
###Data : ELLIPSOID output ASCII f i l e (

MODEL\\ELLIPSOID\\OUTPUT\\RFY. e l l i )

###Data : Maintain hard re turn at end
o f data l i s t

#Load requ i red l i b r a r i e s
l ibrary ( gp l o t s )
l ibrary ( misc3d )
l ibrary ( r g l )
l ibrary (RFOC)

#Load data in to R from ELLIPSOID OUTPUT
Lnorm<−read . table ( f i l e=”MODEL\\ELLIPSOID

\\OUTPUT\\FRY. e l l i ” , sk ip =17, sep=’ \ t ’ ,
nrows=1)

OrDat<−read . table ( f i l e=”MODEL\\ELLIPSOID
\\OUTPUT\\FRY. e l l i ” , sk ip =20, sep=’ \ t ’ ,
nrows=2)

FolDat<−read . table ( f i l e=”MODEL\\ELLIPSOID
\\OUTPUT\\FRY. e l l i ” , sk ip =23, sep=’ \ t ’ ,
nrows=1)

#Create o r i en t a t i on o b j e c t s (L=length , P=
plunge , T=trend )

XL<−Lnorm$V2
YL<−Lnorm$V3
ZL<−Lnorm$V4
TX<−round(OrDat$V2 [ 1 ] , 2 )
TY<−round(OrDat$V3 [ 1 ] , 2 )
TZ<−round(OrDat$V4 [ 1 ] , 2 )
PX<−round(OrDat$V2 [ 2 ] , 2 )
PY<−round(OrDat$V3 [ 2 ] , 2 )
PZ<−round(OrDat$V4 [ 2 ] , 2 )

#Calcu la t e roa t ion o f p r i n c i p l e axes
RX<−i f e l s e (TX<=180,

i f e l s e (TY>TX,
i f e l s e (TY<=(TX+180) ,

PY/cos (PX∗ ( p i/180) ) ,
PY/cos (PX∗ ( p i/180) )∗(−1) ) ,

PY/cos (PX∗ ( p i/180) )∗(−1) ) ,
i f e l s e (TY<TX,

i f e l s e (TY<=(TX−180) ,
PY/cos (PX∗ ( p i/180) )∗(−1) ,
PY/cos (PX∗ ( p i/180) ) ) ,

PY/cos (PX∗ ( p i/180) ) )
)

RX<−round(RX, 2 )
RY<−round(PX, 2 )
RZ<−round(((−1)∗TX+90) ,2 )

#Compile parameters f o r Blender input
names<−c ( ”RotX” , ”RotY” , ”RotZ” , ”DimX” , ”

DimY” , ”DimZ” )
va lue s<−c (RX,RY,RZ, round(XL, 2 ) ,round(YL

, 2 ) ,round(ZL , 2 ) )
blendPar<−data . frame (names , va lue s )

#Write data f i l e f o r appended a x i a l
l e n g t h s

nadaiPar<−cbind (XL,YL,ZL , ”FRY” )
write . table ( nadaiPar , f i l e=”MODEL\\NADAI\\

INPUT\\AXIAL DAT. txt ” ,append=T, col .
names=F, sep = ”\ t ” ,quote=F,row .names=
F)
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#Plot and expor t t a b l e o f Blender va lue s
t e x tp l o t ( blendPar , ha l i gn=” cente r ” ,

va l i gn=”top” ,show .rownames=F, show .
colnames=F)

#Save compiled data
dev . copy ( pdf , ”MODEL\\BLENDER\\INPUT\\

ELLIP2BLEND FRY. pdf ” , useDingbats=F)
dev . of f ( )

##Plot s t e r eone t o f o r i en t ed e l l i p o s i d
net ( )
XY<−f a u l t p l an e ( FolDat$V2 , FolDat$V3 ,PLOT=F

)
l ines (XY, lwd=2)
t i t l e ( ”FRY” )
text ( 0 , 1 . 0 4 , ”N” , cex=.8)
lab1<−f o cpo in t (TX,PX, pch=20, col=”blue ” )
lab2<−f o cpo in t (TY,PY, pch=20, col=”blue ” )
lab3<−f o cpo in t (TZ,PZ, pch=20, col=”blue ” )
i n f o 1<−paste ( ”XY(S&D) : ” ,round( FolDat$V2

, 0 ) ,round( FolDat$V3, 0 ) , ” ; X(T&P) : ” ,
round(TX, 0 ) ,round(PX, 0 ) , ” ; Y(T&P) : ” ,
round(TY, 0 ) ,round(PY, 0 ) , ” ; Z(T&P) : ” ,
round(TZ, 0 ) ,round(PZ, 0 ) , sep=” ” )

mtext( in fo1 , s i d e =1, cex=.8)
text ( lab1 , ”X” , col=”blue ” ,pos=3)
text ( lab2 , ”Y” , col=”blue ” ,pos=3)
text ( lab3 , ”Z” , col=”blue ” ,pos=3)

#Save s t e r eone t p l o t
dev . copy ( pdf , ”MODEL\\ELLIPSOID\\OUTPUT\\

FRY STEREO. pdf ” , useDingbats=F)
dev . of f ( )

#Create non−or i en t ed f a b r i c e l l i p s o i d
f<−function (x , y , z ) xˆ2+yˆ2+zˆ2
x<−seq (−2 ,2 , l en=20)
S0<−contour3d ( f , 4 , x , x , x , draw=F)
S1<−s c a l eT r i a n g l e s ( t r i a n g l e s=S0

, . 2 5 , . 2 5 , . 2 5 )
S2<−s c a l eT r i a n g l e s ( t r i a n g l e s=S1 ,XL,YL,ZL)

#Es t a b l i s h ro ta ion mat r i c i e s
rotxM<−ro tat ionMatr ix ( (RX∗ ( p i/180) )

, 1 , 0 , 0 )
rotyM<−ro tat ionMatr ix ( (RY∗ ( p i/180) )

, 0 , 1 , 0 )
rotzM<−ro tat ionMatr ix ( (RZ∗ ( p i/180) )

, 0 , 0 , 1 )

#Run trans format ions
TRANS1<−t rans fo rmTr iang l e s ( t r i a n g l e s=S2 ,

rotxM)
TRANS2<−t rans fo rmTr iang l e s ( t r i a n g l e s=

TRANS1, rotyM)
TRANS3<−t rans fo rmTr iang l e s ( t r i a n g l e s=

TRANS2, rotzM )
obj<−updateTr iang les (TRANS3)

#Generate e l l i p s o i d
exportScene ( obj , ”FRY” , ”OFF” )
drawScene . r g l ( obj )
box3d ( col=”#DDDDDD” , lwd=.5)

mtext3d ( ”N” , edge=’x++’ , col=”#DDDDDD” )
mtext3d ( ”S” , edge=’x−+’ , col=”#DDDDDD” )
mtext3d ( ”E” , edge=’y++’ , col=”#DDDDDD” )
mtext3d ( ”W” , edge=’y−+’ , col=”#DDDDDD” )
#End of s c r i p t#

E.6 Ellipsoid to Blender con-
version (Rf/φ )

####Scr i p t : ELLIP2BLEND RFPHI
####Author : J e f f r e y R. Webber
####Con : jrwebber@uvm . edu
###REQUIRED: Working d i r e c t o r y s e t to the

master f o l d e r l o c a t i on
###Data : ELLIPSOID output ASCII f i l e (

MODEL\\ELLIPSOID\\OUTPUT\\RFY. e l l i )
###Data : Maintain hard re turn at end

o f data l i s t

#Load requ i red l i b r a r i e s
l ibrary ( gp l o t s )
l ibrary ( misc3d )
l ibrary ( r g l )
l ibrary (RFOC)

#Load data in to R from ELLIPSOID OUTPUT
Lnorm<−read . table ( f i l e=”MODEL\\ELLIPSOID

\\OUTPUT\\RFPHI . e l l i ” , sk ip =17, sep=’ \ t
’ , nrows=1)

OrDat<−read . table ( f i l e=”MODEL\\ELLIPSOID
\\OUTPUT\\RFPHI . e l l i ” , sk ip =20, sep=’ \ t
’ , nrows=2)

FolDat<−read . table ( f i l e=”MODEL\\ELLIPSOID
\\OUTPUT\\RFPHI . e l l i ” , sk ip =23, sep=’ \ t
’ , nrows=1)

#Create o r i en t a t i on o b j e c t s (L=length , P=
plunge , T=trend )

XL<−Lnorm$V2
YL<−Lnorm$V3
ZL<−Lnorm$V4
TX<−round(OrDat$V2 [ 1 ] , 2 )
TY<−round(OrDat$V3 [ 1 ] , 2 )
TZ<−round(OrDat$V4 [ 1 ] , 2 )
PX<−round(OrDat$V2 [ 2 ] , 2 )
PY<−round(OrDat$V3 [ 2 ] , 2 )
PZ<−round(OrDat$V4 [ 2 ] , 2 )

#Calcu la t e roa t ion o f p r i n c i p l e axes
RX<−i f e l s e (TX<=180,

i f e l s e (TY>TX,
i f e l s e (TY<=(TX+180) ,

PY/cos (PX∗ ( p i/180) ) ,
PY/cos (PX∗ ( p i/180) )∗(−1) ) ,

PY/cos (PX∗ ( p i/180) )∗(−1) ) ,
i f e l s e (TY<TX,

i f e l s e (TY<=(TX−180) ,
PY/cos (PX∗ ( p i/180) )∗(−1) ,
PY/cos (PX∗ ( p i/180) ) ) ,

PY/cos (PX∗ ( p i/180) ) )
)

RX<−round(RX, 2 )
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RY<−round(PX, 2 )
RZ<−round(((−1)∗TX+90) ,2 )

#Compile parameters f o r Blender input
names<−c ( ”RotX” , ”RotY” , ”RotZ” , ”DimX” , ”

DimY” , ”DimZ” )
va lue s<−c (RX,RY,RZ, round(XL, 2 ) ,round(YL

, 2 ) ,round(ZL , 2 ) )
blendPar<−data . frame (names , va lue s )

##Write data f i l e f o r appended a x i a l
l e n g t h s

nadaiPar<−cbind (XL,YL,ZL , ”RFPHI” )
write . table ( nadaiPar , f i l e=”MODEL\\NADAI\\

INPUT\\AXIAL DAT. txt ” ,append=T, col .
names=F, sep = ”\ t ” ,quote=F,row .names=
F)

#Plot and expor t t a b l e o f Blender va lue s
t e x tp l o t ( blendPar , ha l i gn=” cente r ” ,

va l i gn=”top” ,show .rownames=F, show .
colnames=F)

#Save compiled data
dev . copy ( pdf , ”MODEL\\BLENDER\\INPUT\\

ELLIP2BLEND RFPHI . pdf ” , useDingbats=F)
dev . of f ( )

##Plot s t e r eone t o f o r i en t ed e l l i p o s i d
net ( )
XY<−f a u l t p l an e ( FolDat$V2 , FolDat$V3 ,PLOT=F

)
l ines (XY, lwd=2)
t i t l e ( ”Rf/Phi” )
text ( 0 , 1 . 0 4 , ”N” , cex=.8)
lab1<−f o cpo in t (TX,PX, pch=20, col=”blue ” )
lab2<−f o cpo in t (TY,PY, pch=20, col=”blue ” )
lab3<−f o cpo in t (TZ,PZ, pch=20, col=”blue ” )
i n f o 1<−paste ( ”XY(S&D) : ” ,round( FolDat$V2

, 0 ) ,round( FolDat$V3, 0 ) , ” ; X(T&P) : ” ,
round(TX, 0 ) ,round(PX, 0 ) , ” ; Y(T&P) : ” ,
round(TY, 0 ) ,round(PY, 0 ) , ” ; Z(T&P) : ” ,
round(TZ, 0 ) ,round(PZ, 0 ) , sep=” ” )

mtext( in fo1 , s i d e =1, cex=.8)
text ( lab1 , ”X” , col=”blue ” ,pos=3)
text ( lab2 , ”Y” , col=”blue ” ,pos=3)
text ( lab3 , ”Z” , col=”blue ” ,pos=3)

#Save s t e r eone t p l o t
dev . copy ( pdf , ”MODEL\\ELLIPSOID\\OUTPUT\\

RFPHI STEREO. pdf ” , useDingbats=F)
dev . of f ( )

#Create non−or i en t ed f a b r i c e l l i p s o i d
f<−function (x , y , z ) xˆ2+yˆ2+zˆ2
x<−seq (−2 ,2 , l en=20)
S0<−contour3d ( f , 4 , x , x , x , draw=F)
S1<−s c a l eT r i a n g l e s ( t r i a n g l e s=S0

, . 2 5 , . 2 5 , . 2 5 )
S2<−s c a l eT r i a n g l e s ( t r i a n g l e s=S1 ,XL,YL,ZL)

#Es t a b l i s h ro ta ion mat r i c i e s
rotxM<−ro tat ionMatr ix ( (RX∗ ( p i/180) )

, 1 , 0 , 0 )

rotyM<−ro tat ionMatr ix ( (RY∗ ( p i/180) )
, 0 , 1 , 0 )

rotzM<−ro tat ionMatr ix ( (RZ∗ ( p i/180) )
, 0 , 0 , 1 )

#Run trans format ions
TRANS1<−t rans fo rmTr iang l e s ( t r i a n g l e s=S2 ,

rotxM)
TRANS2<−t rans fo rmTr iang l e s ( t r i a n g l e s=

TRANS1, rotyM)
TRANS3<−t rans fo rmTr iang l e s ( t r i a n g l e s=

TRANS2, rotzM )
obj<−updateTr iang les (TRANS3)

#Generate e l l i p s o i d
exportScene ( obj , ”RFPHI” , ”OFF” )
drawScene . r g l ( obj )
box3d ( col=”#DDDDDD” , lwd=.5)
mtext3d ( ”N” , edge=’x++’ , col=”#DDDDDD” )
mtext3d ( ”S” , edge=’x−+’ , col=”#DDDDDD” )
mtext3d ( ”E” , edge=’y++’ , col=”#DDDDDD” )
mtext3d ( ”W” , edge=’y−+’ , col=”#DDDDDD” )
#End of s c r i p t#

E.7 SYNTHETIC P1

###Scr i p t : SYNTHETIC P1 ###
###Author : J e f f r e y R. Webber ###
###Cont . : jrwebber@uvm . edu ###

##################################
# Configure the parameters below #
##################################

#Location o f image f i l e s#
img . a <− ”C:\\WEBBER\\UVM\\JGE 2012\\

FRY3D\\IMG DAT\\A EX. png”
img . b <− ”C:\\WEBBER\\UVM\\JGE 2012\\

FRY3D\\IMG DAT\\B EX. png”
img . c <− ”C:\\WEBBER\\UVM\\JGE 2012\\

FRY3D\\IMG DAT\\C EX. png”

#Fi l e to expor t data f o r use in E l l i p s o i d
2003#

e . in <− ”C:\\WEBBER\\UVM\\JGE 2012\\FRY3D
\\OUTPUT\\ synth in . e l l i ”

##################################
# Configure the parameters above #
##################################

l ibrary ( StructR )
at t . a <− c (281 , 55)
a t t . b <− c (041 , 53)
a t t . c <− c (162 , 57)
x11 ( )
c en t r o i d s . a <− FryImg ( img . a )
f r y . data . a<−FryPLOT( c en t r o i d s . a )

c en t r o i d s . b <− FryImg ( img . b)
f r y . data . b<−FryPLOT( c en t r o i d s . b )

c en t r o i d s . c <− FryImg ( img . c )

257



f r y . data . c<−FryPLOT( c en t r o i d s . c )

E l l ipse3D ( hlaxa = f r y . data . a$a . h a l f . axis ,
hlaxb = f ry . data . a$b . h a l f . axis ,
theta = f r y . data . a$ e l l i . azimuth

,
s t r i k e = at t . a [ 1 ] , dip = at t . a

[ 2 ] ,
s ty = ” red ” )

El l ipse3D ( hlaxa = f r y . data . b$a . h a l f . axis ,
hlaxb = f ry . data . b$b . h a l f . axis ,
theta = f r y . data . b$ e l l i . azimuth

,
s t r i k e = at t . b [ 1 ] , dip = at t . b

[ 2 ] ,
s ty = ”blue ” )

El l ipse3D ( hlaxa = f r y . data . c$a . h a l f . axis ,
hlaxb = f ry . data . c$b . h a l f . axis ,
theta = f r y . data . c$ e l l i . azimuth

,
s t r i k e = at t . c [ 1 ] , dip = at t . c

[ 2 ] ,
s ty = ” green ” )

Fry3D( c en t r o i d s . a , s t r i k e = at t . a [ 1 ] , dip
= at t . a [ 2 ] , c o l o r = ” red ” )

Fry3D( c en t r o i d s . b , s t r i k e = at t . b [ 1 ] , dip
= at t . b [ 2 ] , c o l o r = ”blue ” )

Fry3D( c en t r o i d s . c , s t r i k e = at t . c [ 1 ] , dip
= at t . c [ 2 ] , c o l o r = ” green ” )

RFrame ( )

E l l iWr i t e (path = e . in ,
s e c t i o n . a = f r y . data . a ,
s e c t i o n . b = f r y . data . b ,
s e c t i o n . c = f ry . data . c ,
o r t . a = at t . a ,
o r t . b = at t . b ,
o r t . c = att . c )

#End of s c r i p t#

E.8 SYNTHETIC P2

##Scr i p t : SYNTHETIC P2 ##
##Author : J e f f r e y R. Webber ##
##Cont . : jrwebber@uvm . edu ##
l ibrary ( StructR )
path <− ”C:\\WEBBER\\UVM\\JGE 2012\\FRY3D

\\OUTPUT\\ synth out . e l l i ”

El l iRead ( e l l i . f i l e = path )

RFrame ( )
#End of s c r i p t#

E.9 VT P1

###Scr i p t : VERMONT P1 ###

###Author : J e f f r e y R. Webber ###
###Cont . : jrwebber@uvm . edu ###

##################################
# Configure the parameters below #
##################################

#Location o f image f i l e s#
img . a <− ”C:\\WEBBER\\UVM\\JGE 2012\\

FRY3D\\IMG DAT\\VT A. png”
img . b <− ”C:\\WEBBER\\UVM\\JGE 2012\\

FRY3D\\IMG DAT\\VT B. png”
img . c <− ”C:\\WEBBER\\UVM\\JGE 2012\\

FRY3D\\IMG DAT\\VT C. png”

#Fi l e to expor t data f o r use in E l l i p s o i d
2003#

e . in <− ”C:\\WEBBER\\UVM\\JGE 2012\\FRY3D
\\OUTPUT\\ vt in . e l l i ”

##################################
# Configure the parameters above #
##################################

l ibrary ( StructR )
at t . a <− c (011 , 68)
a t t . b <− c (110 , 71)
a t t . c <− c (235 , 30)

c en t r o i d s . a <− FryImg ( img . a )
f r y . data . a<−FryPLOT( c en t r o i d s . a , . 7 5 )

c en t r o i d s . b <− FryImg ( img . b)
f r y . data . b<−FryPLOT( c en t r o i d s . b , . 7 5 )

c en t r o i d s . c <− FryImg ( img . c )
f r y . data . c<−FryPLOT( c en t r o i d s . c , . 7 5 )

El l ipse3D ( hlaxa = f r y . data . a$a . h a l f . axis ,
hlaxb = f ry . data . a$b . h a l f . axis ,
theta = f r y . data . a$ e l l i . azimuth

,
s t r i k e = at t . a [ 1 ] , dip = at t . a

[ 2 ] ,
s ty = ” red ” )

El l ipse3D ( hlaxa = f r y . data . b$a . h a l f . axis ,
hlaxb = f ry . data . b$b . h a l f . axis ,
theta = f r y . data . b$ e l l i . azimuth

,
s t r i k e = at t . b [ 1 ] , dip = at t . b

[ 2 ] ,
s ty = ”blue ” )

El l ipse3D ( hlaxa = f r y . data . c$a . h a l f . axis ,
hlaxb = f ry . data . c$b . h a l f . axis ,
theta = f r y . data . c$ e l l i . azimuth

,
s t r i k e = at t . c [ 1 ] , dip = at t . c

[ 2 ] ,
s ty = ” green ” )

Fry3D( c en t r o i d s . a , s t r i k e = at t . a [ 1 ] , dip
= at t . a [ 2 ] , c o l o r = ” red ” )
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Fry3D( c en t r o i d s . b , s t r i k e = at t . b [ 1 ] , dip
= at t . b [ 2 ] , c o l o r = ”blue ” )

Fry3D( c en t r o i d s . c , s t r i k e = at t . c [ 1 ] , dip
= at t . c [ 2 ] , c o l o r = ” green ” )

RFrame ( )

E l l iWr i t e (path = e . in ,
s e c t i o n . a = f r y . data . a ,
s e c t i o n . b = f r y . data . b ,
s e c t i o n . c = f ry . data . c ,
o r t . a = at t . a ,
o r t . b = at t . b ,
o r t . c = att . c )

#End of s c r i p t#

E.10 VT P2

##Scr i p t : VERMONT P2 ##
##Author : J e f f r e y R. Webber ##
##Cont . : jrwebber@uvm . edu ##
l ibrary ( StructR )
path <− ”C:\\WEBBER\\UVM\\JGE 2012\\FRY3D

\\OUTPUT\\ vt out . e l l i ”

El l iRead ( e l l i . f i l e = path )

RFrame ( )
#End of s c r i p t#

E.11 StructR functions

El l ipse2D <−
function ( hlaxa = 1 , hlaxb = 1 , theta = 0 ,

xc = 0 , yc = 0 , npo ints = 50 , s ty=”
red ” ) {

ang le <− function (x , y ) {
angle2 <− function (xy) {

x <− xy [ 1 ]
y <− xy [ 2 ]
i f ( x > 0) {

atan ( y / x )
}
else {

i f ( x < 0 & y != 0) {
atan ( y / x ) + sign ( y ) ∗ pi

}
else {

i f ( x < 0 & y == 0) {
pi

}
else {

i f ( y != 0) {
( sign ( y ) ∗ pi ) / 2

}
else {

NA
}

}
}

}

}
apply (cbind (x , y ) , 1 , ang le2 )

}

a <− seq (0 , 2 ∗ pi , length = npoints +
1)

x <− hlaxa ∗ cos ( a )
y <− hlaxb ∗ sin ( a )
alpha <− ang le (x , y )
rad <− sqrt ( xˆ2 + yˆ2)
xp <− rad ∗ cos ( alpha + theta ) + xc
yp <− rad ∗ sin ( alpha + theta ) + yc
l ines (xp , yp , col = sty , lwd =2)
invis ible ( )

}

El l ipse3D <−
function ( hlaxa = 1 , hlaxb = 1 , theta = 0 ,

xc = 0 , yc = 0 , s t r i k e = 0 , dip = 0 ,
npo ints = 50 , s ty=” red ” ) {

ang le <− function (x , y ) {
angle2 <− function (xy) {

x <− xy [ 1 ]
y <− xy [ 2 ]
i f ( x > 0) {

atan ( y / x )
}
else {

i f ( x < 0 & y != 0) {
atan ( y / x ) + sign ( y ) ∗ pi

}
else {

i f ( x < 0 & y == 0) {
pi

}
else {

i f ( y != 0) {
( sign ( y ) ∗ pi ) / 2

}
else {

NA
}

}
}

}
}
apply (cbind (x , y ) , 1 , ang le2 )

}

a <− seq (0 , 2 ∗ pi , length = npoints +
1)

x <− hlaxa ∗ cos ( a )
y <− hlaxb ∗ sin ( a )
alpha <− ang le (x , y )
rad <− sqrt ( xˆ2 + yˆ2)
xp <− rad ∗ cos ( alpha + theta ) + xc
yp <− rad ∗ sin ( alpha + theta ) + yc
zp <− seq (0 , 0 , l en = npoints + 1)
e l l i 3 d . dat <− matrix (cbind (xp , yp , zp ) ,

ncol = 3)
e l l i 3 d . dat <− ro tate3d ( e l l i 3 d . dat , dip

∗ ( p i / 180) , −1, 0 , 0)
e l l i 3 d . dat <− ro tate3d ( e l l i 3 d . dat , (

s t r i k e − 90) ∗ ( p i / 180) , 0 , 0 , 1)
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l i n e s 3d ( e l l i 3 d . dat , col = sty )
}

El l iRead <−
function ( e l l i . f i l e ) {

Lnorm <− read . table ( f i l e = e l l i . f i l e ,
sk ip =17, sep=’ \ t ’ , nrows=1)

OrDat <− read . table ( f i l e = e l l i . f i l e ,
sk ip =20, sep=’ \ t ’ , nrows=2)

FolDat <− read . table ( f i l e = e l l i . f i l e ,
sk ip =23, sep=’ \ t ’ , nrows=1)

XL<−Lnorm$V2
YL<−Lnorm$V3
ZL<−Lnorm$V4
TX<−round(OrDat$V2 [ 1 ] , 2 )
TY<−round(OrDat$V3 [ 1 ] , 2 )
TZ<−round(OrDat$V4 [ 1 ] , 2 )
PX<−round(OrDat$V2 [ 2 ] , 2 )
PY<−round(OrDat$V3 [ 2 ] , 2 )
PZ<−round(OrDat$V4 [ 2 ] , 2 )

#Calcu la t e roa t ion o f p r i n c i p l e axes#
RX<−i f e l s e (TX<=180,

i f e l s e (TY>TX,
i f e l s e (TY<=(TX+180) ,

PY/cos (PX∗ ( p i/180) ) ,
PY/cos (PX∗ ( p i/180) )∗(−1) ) ,

PY/cos (PX∗ ( p i/180) )∗(−1) ) ,
i f e l s e (TY<TX,

i f e l s e (TY<=(TX−180) ,
PY/cos (PX∗ ( p i/180) )∗(−1) ,
PY/cos (PX∗ ( p i/180) ) ) ,

PY/cos (PX∗ ( p i/180) ) )
)

RX<−round(RX, 2 )
RY<−round(PX, 2 )
RZ<−round(((−1)∗TX+90) ,2 )

#Plot s t e r eone t o f o r i en t ed e l l i p o s i d#
net ( )
XY<−f a u l t p l an e ( FolDat$V2 , FolDat$V3 ,PLOT

=FALSE)
l ines (XY, lwd=2)
t i t l e ( ”FRY” )
text ( 0 , 1 . 0 4 , ”N” , cex=.8)
lab1<−f o cpo in t (TX,PX, pch=20, col=”blue ” )
lab2<−f o cpo in t (TY,PY, pch=20, col=”blue ” )
lab3<−f o cpo in t (TZ,PZ, pch=20, col=”blue ” )
i n f o 1<−paste ( ”XY(S&D) : ” ,round( FolDat$V2

, 0 ) ,round( FolDat$V3, 0 ) , ” ; X(T&P) : ” ,
round(TX, 0 ) ,round(PX, 0 ) , ” ; Y(T&P) : ”
,round(TY, 0 ) ,round(PY, 0 ) , ” ; Z(T&P) :
” ,round(TZ, 0 ) ,round(PZ, 0 ) , sep=” ” )

mtext( in fo1 , s i d e =1, cex=.8)
text ( lab1 , ”X” , col=”blue ” ,pos=3)
text ( lab2 , ”Y” , col=”blue ” ,pos=3)
text ( lab3 , ”Z” , col=”blue ” ,pos=3)

#Create non−or i en t ed f a b r i c e l l i p s o i d#
f<−function (x , y , z ) xˆ2+yˆ2+zˆ2
x<−seq (−2 ,2 , l en=20)
S0<−contour3d ( f , 4 , x , x , x , draw=FALSE)

S1<−s c a l eT r i a n g l e s ( t r i a n g l e s=S0
, . 2 5 , . 2 5 , . 2 5 )

S2<−s c a l eT r i a n g l e s ( t r i a n g l e s=S1 ,XL,YL,
ZL)

#Es t a b l i s h ro ta ion mat r i c i e s#
rotxM<−ro tat ionMatr ix ( (RX∗ ( p i/180) )

, 1 , 0 , 0 )
rotyM<−ro tat ionMatr ix ( (RY∗ ( p i/180) )

, 0 , 1 , 0 )
rotzM<−ro tat ionMatr ix ( (RZ∗ ( p i/180) )

, 0 , 0 , 1 )

#Run trans format ions#
TRANS1<−t rans fo rmTr iang l e s ( t r i a n g l e s=S2

, rotxM)
TRANS2<−t rans fo rmTr iang l e s ( t r i a n g l e s=

TRANS1, rotyM)
TRANS3<−t rans fo rmTr iang l e s ( t r i a n g l e s=

TRANS2, rotzM )
obj<−updateTr iang les (TRANS3)

#Generate e l l i p s o i d#
open3d ( )
drawScene . r g l ( obj )

#Function fo r drawing arcs from package
: p l o t r i x#

draw . arc <− function ( x = 1 , y = NULL,
rad iu s = 1 , ang le1 = deg1 ∗ pi/180 ,
ang le2 = deg2 ∗ pi/180 , deg1 = 0 ,

deg2 = 45 , n = 35 , col = 1 , . . . ) {
draw . arc . 0 <− function (x , y , radius ,

angle1 , angle2 , n , col = col ,
. . . ) {

xylim <− par ( ” usr ” )
plotdim <− par ( ” pin ” )
ymult <− ( xylim [ 4 ] − xylim [ 3 ] ) / (

xylim [ 2 ] − xylim [ 1 ] ) ∗ plotdim
[ 1 ] /plotdim [ 2 ]

ang le <− angle1 + seq (0 , length = n
) ∗ ( ang le2 − angle1 )/n

p1x <− x + rad iu s ∗ cos ( ang le )
p1y <− y + rad iu s ∗ sin ( ang le ) ∗

ymult
ang le <− angle1 + seq ( length = n) ∗

( ang le2 − angle1 )/n
p2x <− x + rad iu s ∗ cos ( ang le )
p2y <− y + rad iu s ∗ sin ( ang le ) ∗

ymult
segments ( p1x , p1y , p2x , p2y , col =

col , . . . )
}
xy <− xy . coords (x , y )
x <− xy$x
y <− xy$y
a1 <− pmin( angle1 , ang le2 )
a2 <− pmax( angle1 , ang le2 )
angle1 <− a1
angle2 <− a2
args <− data . frame (x , y , radius ,

angle1 , angle2 , n , col ,
s t r i ng sAsFac to r s = FALSE)
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for ( i in 1 :nrow( args ) ) do . ca l l ( ”draw
. arc . 0 ” , c ( args [ i , ] , . . . ) )

invis ible ( args )
}

#Set up data , frame of a x i a l l e n g t h s#
axDat<−data . frame (XL, YL, ZL)
names( axDat )=c ( ”X” , ”Y” , ”Z” )

#Calcu la t e Lode ’ s parameter#
l od e s<−(2∗ ( log ( axDat$Y)−log ( axDat$X)−

log ( axDat$Z) ) )/ ( log ( axDat$X)−log (
axDat$Z) )

#Calcu la t e the oc tahedra l shear s t r a i n#
octSS<−( sqrt ( ( log ( axDat$X)−log ( axDat$Y)

) ˆ2+( log ( axDat$Y)−log ( axDat$Z) ) ˆ2+(
log ( axDat$Z)−log ( axDat$X) ) ˆ2)/sqrt
(3 ) )

#Calcu la t e ca r t e s i an coords#
xcoord<−octSS∗sin ( ( p i/6)∗ l od e s )
ycoord<−octSS∗cos ( ( p i/6)∗ l od e s )

#Create s tandard i zed p l o t#
x11( width=10, he ight =7.5)
par (mfrow=c ( 1 , 2 ) ,mar=c ( 0 , 0 , 0 , 0 ) )
plot (0 , 0 , pch=NA, xlab=NA, ylab=NA, xlim=c

( −2 .25 ,2 .25) , yl im=c ( 0 , 4 . 5 ) , asp=1,
xaxt=’n ’ , yaxt=’n ’ , frame . plot=FALSE)

text ( 0 , 4 . 7 5 , ”NADAI PLOT” , cex=1.5)
text ( 0 , 4 . 2 5 , expression (nu ) , cex =1.5)
text (−2 ,3.75 , ”−1” )
text ( 2 , 3 . 7 5 , ”1” )
text (−1 ,4.1 , ” Pro la te ” , s r t =15)
text ( 1 , 4 . 1 , ”Oblate ” , s r t =345)
text ( −1 .75 ,1 .75 , expression ( bar ( e p s i l o n )

[ s ] ) , cex =1.5)
text ( . 2 5 , 0 , ”0” )
text ( . 7 5 , . 8 6 6 , ”1” )
text ( 1 . 2 5 , 1 . 7 3 2 , ”2” )
text ( 1 . 7 5 , 2 . 5 9 8 , ”3” )
text ( 2 . 2 5 , 3 . 4 6 4 , ”4” )
l ines (c ( 0 , 0 ) ,c ( 0 , 4 ) , lwd=1.5)
l ines (c ( 0 , 2 ) ,c ( 0 , 3 . 4 6 ) , lwd=1.5)
l ines (c (0 ,−2) ,c ( 0 , 3 . 4 6 ) , lwd=1.5)
l ines (c ( 0 , 1 . 0 4 ) ,c ( 0 , 3 . 8 6 ) , lwd=1)
l ines (c (0 ,−1.04) ,c ( 0 , 3 . 8 6 ) , lwd=1)
draw . arc ( x=0,y=0, rad iu s=4, ang le=(p i )/3 ,

ang le2=(2∗pi )/3 , lwd = 1 . 5 )
draw . arc ( x=0,y=0, rad iu s=3, ang le=(p i )/3 ,

ang le2=(2∗pi )/3 , lwd = 1)
draw . arc ( x=0,y=0, rad iu s=2, ang le=(p i )/3 ,

ang le2=(2∗pi )/3 , lwd = 1)
draw . arc ( x=0,y=0, rad iu s=1, ang le=(p i )/3 ,

ang le2=(2∗pi )/3 , lwd = 1)
points ( xcoord , ycoord , pch=20)
index<−1 : ( length ( axDat$X) )

#Create data t a b l e#
nadPar<−data . frame ( index , octSS , l ode s )
plot (0 , 0 , pch=NA, xlab=NA, ylab=NA, xlim=c

(−2 ,2) , yl im=c ( 0 , 4 . 5 ) , asp=1,xaxt=’n ’
, yaxt=’n ’ , frame . plot=FALSE)

text (−1 ,4.25 , ” Index” , cex =1.5 , adj=1)
text ( − . 375 ,4 .25 , expression ( bar ( e p s i l o n )

[ s ] ) , cex =1.5)
text ( . 3 7 5 , 4 . 2 5 , expression (nu ) , cex =1.5)
l ines (c (−2 ,2) ,c ( 4 , 4 ) , lwd=1.5)

#Add s i d e t a b l e o f compiled data#
i<−0
while ( i<length ( axDat$X) ) {

i<−i+1
text (−1 ,4.25−( i∗ . 5 ) , index [ i ] , col=’ red

’ , adj=1)
text (− .375 ,4.25−( i ∗ . 5 ) ,round( octSS [ i

] , 3 ) )
text ( .375 ,4 .25 − ( i ∗ . 5 ) ,round( l ode s [ i

] , 3 ) )
l ines (c (−2 ,2) ,c(4−( i ∗ . 5 ) ,4−( i ∗ . 5 ) ) )

}
}

El l iWr i t e <−
function (path , s e c t i o n . a , s e c t i o n . b ,

s e c t i o n . c , o r t . a , o r t . b , o r t . c ) {
s t r i k e . a <− or t . a [ 1 ]
s t r i k e . b <− or t . b [ 1 ]
s t r i k e . c <− or t . c [ 1 ]

dip . a <− or t . a [ 2 ]
dip . b <− or t . b [ 2 ]
dip . c <− or t . c [ 2 ]

rake . a <− round ( ( p i − s e c t i o n . a$ e l l i .
azimuth ) ∗ (180 / pi ) , 1)

rake . b <− round ( ( p i − s e c t i o n . b$ e l l i .
azimuth ) ∗ (180 / pi ) , 1)

rake . c <− round ( ( p i − s e c t i o n . c$ e l l i .
azimuth ) ∗ (180 / pi ) , 1)

norm <− (1 / min(c ( s e c t i o n . a$a . h a l f .
axis , s e c t i o n . a$b . h a l f . axis ,
s e c t i o n . b$a . h a l f . axis , s e c t i o n . b$b .
h a l f . axis , s e c t i o n . c$a . h a l f . axis ,
s e c t i o n . c$b . h a l f . axis ) ) )

l . a <− round( s e c t i o n . a$a . h a l f . axis ∗
norm , 1)

s . a <− round( s e c t i o n . a$b . h a l f . axis ∗
norm , 1)

l . b <− round( s e c t i o n . b$a . h a l f . axis ∗
norm , 1)

s . b <− round( s e c t i o n . b$b . h a l f . axis ∗
norm , 1)

l . c <− round( s e c t i o n . c$a . h a l f . axis ∗
norm , 1)

s . c <− round( s e c t i o n . c$b . h a l f . axis ∗
norm , 1)

#Write . e l l i f i l e f o r parameters#
sink ( f i l e = path )
cat ( ”#” , ” s t r i k e ” , ” dip ” , ” rake ” , ” long

ax i s ” , ” shor t ax i s ” , ”” , ”” , ”” , ”” , ”” , ”
” , ”\n” , sep=”\ t ” )
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cat ( ”1” , ”\ t ” , s t r i k e . a , ”\ t ” , dip . a , ”
\ t ” , rake . a , ”\ t ” , l . a , ”\ t ” , s . a ,
”\ t ” , 1 , ”\n” , sep=”” )

cat ( ”2” , ”\ t ” , s t r i k e . b , ”\ t ” , dip . b , ”
\ t ” , rake . b , ”\ t ” , l . b , ”\ t ” , s . b ,
”\ t ” , 1 , ”\n” , sep=”” )

cat ( ”3” , ”\ t ” , s t r i k e . c , ”\ t ” , dip . c , ”
\ t ” , rake . c , ”\ t ” , l . c , ”\ t ” , s . c ,
”\ t ” , 1 , ”\n\n” , sep=”” )

sink ( )
}

Fry3D <−
function ( f r y . data , s t r i k e = 0 , dip = 0 ,

c o l o r = ” black ” ) {
f ry3d <− matrix (cbind ( f r y . data$x , f r y .

data$y , seq (0 , 0 , l en = length ( f r y .
data$x ) ) ) , ncol = 3)

f ry3d <− ro tate3d ( fry3d , dip ∗ ( p i /
180) , −1, 0 , 0)

f ry3d <− ro tate3d ( fry3d , ( s t r i k e − 90)
∗ ( p i / 180) , 0 , 0 , 1)

po ints3d ( fry3d , col = co l o r )
}

FryImg <−
function ( img .path = NULL, l im i t = 3000) {

#Plot image and crea t e po in t l o c a t o r#
img <−readPNG( source = img .path )

x11( xpos=25, ypos=0)
par (mar=c ( 0 , 0 , 0 , 0 ) )
plot .new( )
raster Image ( img , 0 , 0 , 1 , 1 , i n t e r p o l a t e=

FALSE)
coords <− locator ( type=”p” , pch=20, col

= ”ye l low ” )
dev . of f ( )

#Run loop to crea t e Fry coords .#
x . f r y <− NULL
y . f r y <− NULL
i <− 0

while ( i < length ( coords$x ) ) {
i<−i+1

#Center po in t s based on i t e r a t i v e
s t ep [ i ] l o c a t i on =(0 ,0)#

x . raw<−coords$x [ i ] − coords$x
y . raw<−coords$y [ i ] − coords$y

#Concatenate coord . l i s t s#
x . f r y <− c ( x . f ry , x . raw )
y . f r y <− c ( y . f ry , y . raw )

}

coords . f r y <− data . frame ( x . f ry , y . f r y )

#Calcu la t e center d i s t ance and l im i t
data s i z e#

coords . f r y$distance <− sqrt ( ( coords . f r y
$x . f r y ) ˆ2 + ( coords . f r y$y . f r y ) ˆ2)

coords . f r y <− coords . f r y [ with ( coords .
f ry , order (distance ) ) , ]

x <− coords . f r y$x [ ( length ( coords$x ) +
1) : length ( coords . f r y$x ) ]

y <− coords . f r y$y [ ( length ( coords$x ) +
1) : length ( coords . f r y$x ) ]

i f ( length ( x ) > l im i t ) {
x <− x [ 1 : l im i t ]
y <− y [ 1 : l im i t ]

}

coords . f r y . l im <− data . frame (x , y )
return ( coords . f r y . l im )

}

FryPLOT <−
function ( f r y . data , zoom = 1) {

#Determine p l o t window parameters#
x . range <− summary( f r y . data$x )
x . range <− x . range [ 5 ]
y . range <− summary( f r y . data$y )
y . range <− y . range [ 5 ]

#Plot data and es t imate apogee#
x11( xpos=−25, ypos=0)
plot ( f r y . data ,

xl im = c((−1 ∗ x . range ) ∗ zoom , x .
range ∗ zoom) ,

ylim = c((−1 ∗ y . range ) ∗ zoom , y .
range ∗ zoom) ,

asp = 1 , ann = FALSE, axes = FALSE
,

pch = 19 , col = ”#AAAAAA” )
box ( )
t i t l e (main = ” Se l e c t c e n t r a l void

apogee ” )
points (0 , 0 , pch = 3 , col = ”red” )
apogee <− locator (n = 1 , type=”n” )

#Plot data and es t imate pe r i g e e#
plot ( f r y . data ,

xl im = c((−1 ∗ x . range ) ∗ zoom , x .
range ∗ zoom) ,

ylim = c((−1 ∗ y . range ) ∗ zoom , y .
range ∗ zoom) ,

asp = 1 , ann = FALSE, axes = FALSE
,

pch = 19 , col = ”#AAAAAA” )
box ( )
t i t l e (main = ” Se l e c t c e n t r a l void

pe r i g e e ” )
points (0 , 0 , pch = 3 , col = ”red” )

l ines ( x = c(−1 ∗ as .numeric ( apogee [ 1 ] ) ,
as .numeric ( apogee [ 1 ] ) ) ,
y = c(−1 ∗ as .numeric ( apogee [ 2 ] ) ,

as .numeric ( apogee [ 2 ] ) ) ,
col = ”red” , lwd = 2)

pe r i g e e <− locator (n = 1 , type=”n” )

l ines ( x = c(−1 ∗ as .numeric ( p e r i g e e [ 1 ] )
, as .numeric ( p e r i g e e [ 1 ] ) ) ,
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y = c(−1 ∗ as .numeric ( p e r i g e e [ 2 ] )
, as .numeric ( p e r i g e e [ 2 ] ) ) ,

col = ”blue ” , lwd = 2)

#Create data frame of c en t r a l vo id
parameters#

e l l i . coords <− matrix ( rbind ( apogee ,
pe r igee , deparse . l e v e l = 0) , ncol =
2)

a . h a l f . axis <− sqrt (as .numeric ( e l l i .
coords [ 1 , 1 ] ) ˆ2 + as .numeric ( e l l i .
coords [ 1 , 2 ] ) ˆ2)

b . h a l f . axis <− sqrt (as .numeric ( e l l i .
coords [ 2 , 1 ] ) ˆ2 + as .numeric ( e l l i .
coords [ 2 , 2 ] ) ˆ2)

#Run algor i thm to determine dip
d i r e c t i on azimuth#

i f (as .numeric ( e l l i . coords [ 1 , 1 ] ) >= 0 &
as .numeric ( e l l i . coords [ 1 , 2 ] ) > 0) {

rake . azimuth<−abs (atan (as .numeric (
e l l i . coords [ 1 , 1 ] ) / as .numeric (
e l l i . coords [ 1 , 2 ] ) ) )

}
i f (as .numeric ( e l l i . coords [ 1 , 1 ] ) >= 0

& as .numeric ( e l l i . coords [ 1 , 2 ] ) <=
0) {

rake . azimuth<−( p i / 2) + abs (atan (as .
numeric ( e l l i . coords [ 1 , 2 ] ) / as .
numeric ( e l l i . coords [ 1 , 1 ] ) ) )

}
i f (as .numeric ( e l l i . coords [ 1 , 1 ] ) < 0 &

as .numeric ( e l l i . coords [ 1 , 2 ] ) <=
0) {

rake . azimuth<−( p i ) + abs (atan (as .
numeric ( e l l i . coords [ 1 , 1 ] ) / as .
numeric ( e l l i . coords [ 1 , 2 ] ) ) )

}
i f (as .numeric ( e l l i . coords [ 1 , 1 ] ) < 0 &

as .numeric ( e l l i . coords [ 1 , 2 ] ) >
0) {

rake . azimuth<−( (3 / 2) ∗ pi ) + abs (
atan (as .numeric ( e l l i . coords [ 1 , 2 ] )
/ as .numeric ( e l l i . coords [ 1 , 1 ] ) ) )

}

e l l i . azimuth <− ( (5 / 2) ∗ pi − rake .
azimuth ) %% pi

#Plot f i t t e d e l l i p s e#
El l ipse2D ( a . h a l f . axis , b . h a l f . axis ,

theta = e l l i . azimuth , s ty = ”black ”
)

e l l i .par <− data . frame ( a . h a l f . axis , b .
h a l f . axis , e l l i . azimuth )

return ( e l l i .par )
}

Nadai <−
function (Lx = 2 , Ly = 1 , Lz = . 5 , Plot=

TRUE) {
axDat<−data . frame (Lx , Ly , Lz )
names( axDat )=c ( ”X” , ”Y” , ”Z” )

#Calcu la t e Lode ’ s parameter#
l od e s<−(2∗ ( log ( axDat$Y)−log ( axDat$X)−

log ( axDat$Z) ) )/ ( log ( axDat$X)−log (
axDat$Z) )

#Calcu la t e the oc tahedra l shear s t r a i n#
octSS<−( sqrt ( ( log ( axDat$X)−log ( axDat$Y)

) ˆ2+( log ( axDat$Y)−log ( axDat$Z) ) ˆ2+(
log ( axDat$Z)−log ( axDat$X) ) ˆ2)/sqrt
(3 ) )

i f ( Plot == FALSE) {
parameters<−data . frame ( lodes , octSS )
names( parameters ) = c ( ” l ode s ” , ” octSS”

)
return ( parameters )

}
i f ( Plot == TRUE) {
#Calcu la t e ca r t e s i an coords#
xcoord<−octSS∗sin ( ( p i/6)∗ l od e s )
ycoord<−octSS∗cos ( ( p i/6)∗ l od e s )

#Function fo r drawing arcs from
package : p l o t r i x#

draw . arc <− function ( x = 1 , y = NULL
, rad iu s = 1 , ang le1 = deg1 ∗ pi/
180 , ang le2 = deg2 ∗ pi/180 , deg1
= 0 , deg2 = 45 , n = 35 , col = 1 ,
. . . ) {

draw . arc . 0 <− function (x , y , radius
, angle1 , angle2 , n , col = col ,
. . . ) {

xylim <− par ( ” usr ” )
plotdim <− par ( ” pin ” )
ymult <− ( xylim [ 4 ] − xylim [ 3 ] ) / (

xylim [ 2 ] − xylim [ 1 ] ) ∗
plotdim [ 1 ] /plotdim [ 2 ]

ang le <− angle1 + seq (0 , length =
n) ∗ ( ang le2 − angle1 )/n

p1x <− x + rad iu s ∗ cos ( ang le )
p1y <− y + rad iu s ∗ sin ( ang le ) ∗

ymult
ang le <− angle1 + seq ( length = n)

∗ ( ang le2 − angle1 )/n
p2x <− x + rad iu s ∗ cos ( ang le )
p2y <− y + rad iu s ∗ sin ( ang le ) ∗

ymult
segments ( p1x , p1y , p2x , p2y , col

= col , . . . )
}
xy <− xy . coords (x , y )
x <− xy$x
y <− xy$y
a1 <− pmin( angle1 , ang le2 )
a2 <− pmax( angle1 , ang le2 )
angle1 <− a1
angle2 <− a2
args <− data . frame (x , y , radius ,

angle1 , angle2 , n , col ,
s t r i ng sAsFac to r s = FALSE)

for ( i in 1 :nrow( args ) ) do . ca l l ( ”
draw . arc . 0 ” , c ( args [ i , ] , . . . ) )

invis ible ( args )
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}

#Create s tandard i zed p l o t#
x11( width=10, he ight =7.5)
par (mfrow=c ( 1 , 2 ) ,mar=c ( 0 , 0 , 0 , 0 ) )
plot (0 , 0 , pch=NA, xlab=NA, ylab=NA, xlim

=c ( −2 .25 ,2 .25) , yl im=c ( 0 , 4 . 5 ) , asp
=1,xaxt=’n ’ , yaxt=’n ’ , frame . plot=
FALSE)

text ( 0 , 4 . 7 5 , ”NADAI PLOT” , cex=1.5)
text ( 0 , 4 . 2 5 , expression (nu ) , cex =1.5)
text (−2 ,3.75 , ”−1” )
text ( 2 , 3 . 7 5 , ”1” )
text (−1 ,4.1 , ” Pro la te ” , s r t =15)
text ( 1 , 4 . 1 , ”Oblate ” , s r t =345)
text ( −1 .75 ,1 .75 , expression ( bar (

e p s i l o n ) [ s ] ) , cex =1.5)
text ( . 2 5 , 0 , ”0” )
text ( . 7 5 , . 8 6 6 , ”1” )
text ( 1 . 2 5 , 1 . 7 3 2 , ”2” )
text ( 1 . 7 5 , 2 . 5 9 8 , ”3” )
text ( 2 . 2 5 , 3 . 4 6 4 , ”4” )
l ines (c ( 0 , 0 ) ,c ( 0 , 4 ) , lwd=1.5)
l ines (c ( 0 , 2 ) ,c ( 0 , 3 . 4 6 ) , lwd=1.5)
l ines (c (0 ,−2) ,c ( 0 , 3 . 4 6 ) , lwd=1.5)
l ines (c ( 0 , 1 . 0 4 ) ,c ( 0 , 3 . 8 6 ) , lwd=1)
l ines (c (0 ,−1.04) ,c ( 0 , 3 . 8 6 ) , lwd=1)
draw . arc ( x=0,y=0, rad iu s=4, ang le=(p i )/

3 , ang le2=(2∗pi )/3 , lwd = 1 . 5 )
draw . arc ( x=0,y=0, rad iu s=3, ang le=(p i )/

3 , ang le2=(2∗pi )/3 , lwd = 1)
draw . arc ( x=0,y=0, rad iu s=2, ang le=(p i )/

3 , ang le2=(2∗pi )/3 , lwd = 1)
draw . arc ( x=0,y=0, rad iu s=1, ang le=(p i )/

3 , ang le2=(2∗pi )/3 , lwd = 1)
points ( xcoord , ycoord , pch=20)
index<−1 : ( length ( axDat$X) )

#Create data t a b l e#
nadPar<−data . frame ( index , octSS , l ode s )
plot (0 , 0 , pch=NA, xlab=NA, ylab=NA, xlim

=c (−2 ,2) , yl im=c ( 0 , 4 . 5 ) , asp=1,xaxt
=’n ’ , yaxt=’n ’ , frame . plot=FALSE)

text (−1 ,4.25 , ” Index” , cex =1.5 , adj=1)
text ( − . 375 ,4 .25 , expression ( bar (

e p s i l o n ) [ s ] ) , cex =1.5)
text ( . 3 7 5 , 4 . 2 5 , expression (nu ) , cex

=1.5)
l ines (c (−2 ,2) ,c ( 4 , 4 ) , lwd=1.5)

#Add s i d e t a b l e o f compiled data#
i<−0
while ( i<length ( axDat$X) ) {

i<−i+1
text (−1 ,4.25−( i ∗ . 5 ) , index [ i ] , col=’

red ’ , adj=1)
text (− .375 ,4.25−( i ∗ . 5 ) ,round( octSS [

i ] , 3 ) )
text ( .375 ,4 .25 − ( i∗ . 5 ) ,round( l ode s [ i

] , 3 ) )
l ines (c (−2 ,2) ,c(4−( i ∗ . 5 ) ,4−( i ∗ . 5 ) ) )

}
}

}

RFrame <−
function ( c o l o r = ”#DDDDDD” , lwe ight = . 5 )

{
box3d ( col = co lor , lwd = lwe ight )
mtext3d ( ”N” , edge = ’x++’ , col = co l o r )
mtext3d ( ”S” , edge = ’x−+’ , col = co l o r )
mtext3d ( ”E” , edge = ’y++’ , col = co l o r )
mtext3d ( ”W” , edge = ’y−+’ , col = co l o r )

}

E.12 Panozzo functions

### PANOZZO FIT .R ###
### Je f f r e y R. Webber ###
### May 2012 ###

#Function to crea t e undeformed l i n e data
s e t .

#n . l i n e s , number o f l i n e s .
#width , genera l width o f reg ion to p l o t

l i n e s .
#PLOT, Boolean expres s ion to p l o t

undeformed l i n e s .
#Returns data frame of x1y1 x2y2

coord ina te s f o t t i e l i n e pa i r s .
LineGenerator <− function (n . l ines = 100 ,

width = 50 , PLOT = TRUE, r . norm =
TRUE) {

#Define o b j e c t my. data
my. data <− NULL

#Create normal d i s t r i b u t i o n o f l i n e s
with average l eng t h .5 width

length . l <− abs (rnorm(n = n . l ines , mean
= width / 2 , sd = width / 2) )

i f ( r . norm == TRUE) {
#Set l i n e coord ina te s a long the x−−ax i s
my. data$x . 1 <− −1 ∗ length . l / 2
my. data$y . 1 <− seq (0 , 0 , length = n .

l ines )
my. data$x . 2 <− length . l / 2
my. data$y . 2 <− seq (0 , 0 , length = n .

l ines )

#Create uniform vec tor o f t h e t a ang l e s
f o r ro t a t i on

theta <− runif (n = n . l ines , min = 0 ,
max = pi )

}

i f ( r . norm == FALSE) {
#Set l i n e coord ina te s a long the x−−

ax i s
my. data$x . 1 <− seq (−12.5 , −12.5 ,

length = n . l ines )
my. data$y . 1 <− seq (0 , 0 , length = n .

l ines )
my. data$x . 2 <− seq ( 1 2 . 5 , 12 . 5 , length

= n . l ines )
my. data$y . 2 <− seq (0 , 0 , length = n .

l ines )
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#Create uniform vec tor o f t h e t a
ang l e s f o r r o t a t i on

theta <− seq (0 , pi , length = n . l ines )
}

#Loop to ro t a t e mater ia l l i n e s in to
uniform d i s t r i b u t i o n

i <− 0
while ( i < n . l ines ) {

i <− i + 1

#Create ro t a t i on matrix f o r l i n e [ i ]
roa t ion

ro t .matrix <− matrix (c ( cos ( theta [ i ] ) ,
−1 ∗ sin ( theta [ i ] ) , sin ( theta [ i
] ) , cos ( theta [ i ] ) ) , ncol = 2 ,
byrow = TRUE)

#Apply matrix t rans format ion
temp .matrix . a <− ro t .matrix %∗%

matrix (c (my. data [ [ 1 ] ] [ i ] , my. data
[ [ 2 ] ] [ i ] ) , ncol = 1)

temp .matrix . b <− ro t .matrix %∗%
matrix (c (my. data [ [ 3 ] ] [ i ] , my. data
[ [ 4 ] ] [ i ] ) , ncol = 1)

#Overwrite data frame element [ i ]
my. data$x . 1 [ i ] <− temp .matrix . a [ 1 ]
my. data$y . 1 [ i ] <− temp .matrix . a [ 2 ]
my. data$x . 2 [ i ] <− temp .matrix . b [ 1 ]
my. data$y . 2 [ i ] <− temp .matrix . b [ 2 ]
remove( temp .matrix . a , temp .matrix . b )

}

#Plo t ing rou t ine
i f (PLOT) {

plot (0 , 0 , pch = ”” , xlim = c(−1 ∗
width , width ) , yl im = c(−1 ∗
width , width ) , ann = FALSE, axes
= FALSE, asp = 1)

i <− 0
while ( i < n . l ines ) {

i <− i + 1
l ines (c (my. data$x . 1 [ i ] ,my. data$x . 2 [

i ] ) , c (my. data$y . 1 [ i ] ,my. data$y
. 2 [ i ] ) , lwd = 2 , col = ”#009900
” )

}
}

#Return undeformed l i n e data frame
return (my. data )

}

#Function to shear l i n e p a r a l l e l to x−−
ax i s .

#l . nodes , data frame conta in ing
mater ia l l i n e node pa i r s .

#e . s , shear s t r a i n va lue f o l l ow i n g e . s
= tan ( Psi ) .

#PLOT, Boolean expres s ion to p l o t
undeformed l i n e s .

#p l o t . width , i f POLT = TRUE the width
o f the p l o t .

#Returns data frame of x1y1 x2y2
coord ina te s f o t t i e l i n e pa i r s .

LineShear <− function ( l . nodes , e . s = 1 ,
PLOT = TRUE, plot . width = 100) {

#Define o b j e c t my. data
my. data <− NULL

#Run loop to t r a n s l a t e x−−coord inate
based on shear s t r a i n .

i <− 0
while ( i < length ( l . nodes [ [ 1 ] ] ) ) {

i <− i + 1

#Overwrite data frame element [ i ]
my. data$x . 1 [ i ] <− l . nodes [ [ 1 ] ] [ i ] + l

. nodes [ [ 2 ] ] [ i ] ∗ e . s
my. data$y . 1 [ i ] <− l . nodes [ [ 2 ] ] [ i ]
my. data$x . 2 [ i ] <− l . nodes [ [ 3 ] ] [ i ] + l

. nodes [ [ 4 ] ] [ i ] ∗ e . s
my. data$y . 2 [ i ] <− l . nodes [ [ 4 ] ] [ i ]

}

#Plo t ing rou t ine
i f (PLOT) {

plot (0 , 0 , pch = ”” , xlim = c(−1 ∗
plot . width / 2 , plot . width / 2) ,
yl im = c(−1 ∗ plot . width / 2 ,
plot . width / 2) , ann = FALSE,
axes = FALSE, asp = 1)

i <− 0
while ( i < length ( l . nodes [ [ 1 ] ] ) ) {

i <− i + 1
l ines (c (my. data$x . 1 [ i ] ,my. data$x . 2 [

i ] ) , c (my. data$y . 1 [ i ] ,my. data$y
. 2 [ i ] ) , lwd = 2 , col = ”#009900
” )

}
}

#Return undeformed l i n e data frame
return (my. data )

}

#Function to c a l c u l a t e p ro j e c t ed l i n e
data frame f o l l ow i n g Panozzo

#n . l i n e s , number o f l i n e s .
#res , number o f r o t a t i on s ( e . g . 180 = 1

degree increments .
#Returns data frame of s t ep ro t a t i on

and l i n e l e n g t h s .
Panozzo <− function ( l . nodes , r e s = 180) {

#Calcu la t e angular s t ep in radians
based on r e s o l u t i o n

ang le . step <− pi / r e s

#Es t a b l i s h i n i t i a l r o t a t i on ang le o f 0
ang le . to t <− 0
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#Define o b j e c t p ro j e c t ed
pro j e c t ed <− NULL

#Add s t ep index in pro j e c t ed data frame
#

pro j e c t ed$rad <− seq (0 , pi , length =
re s )

#Run loop to ro t a t e l i n e data s t epw i s e
i <− 0
while ( i < r e s ) {

i <− 1 + i

#Define o b j e c t temp . data
temp . data <− NULL

#Determine s e t r o t a t i on ang le f o r
i t e r a t i o n [ i ]

ang le . to t <− ang le . to t + angle . step

#Create ro t a t i on matrix based s t ep
i t e r a t i o n ro t a t i on ang le

ro t .matrix <− matrix (c ( cos ( ang le . to t )
, −1 ∗ sin ( ang le . to t ) , sin ( ang le .
t o t ) , cos ( ang le . to t ) ) , ncol = 2 ,
byrow = TRUE)

#Run loop to app ly ro t a t i on matrix to
each coord inate pa i r

i i <− 0
while ( i i < length ( l . nodes [ [ 1 ] ] ) ) {

i i <− i i + 1

#Mul t i p l y roa ta t i on matrix to l i n e
pa i r s

temp .matrix . a <− ro t .matrix %∗%
matrix (c ( l . nodes [ [ 1 ] ] [ i i ] , l .
nodes [ [ 2 ] ] [ i i ] ) , ncol = 1)

temp .matrix . b <− ro t .matrix %∗%
matrix (c ( l . nodes [ [ 3 ] ] [ i i ] , l .
nodes [ [ 4 ] ] [ i i ] ) , ncol = 1)

#Populate temp . data data frame with
coord ina te s

temp . data$x . 1 [ i i ] <− temp .matrix . a
[ 1 ]

temp . data$y . 1 [ i i ] <− temp .matrix . a
[ 2 ]

temp . data$x . 2 [ i i ] <− temp .matrix . b
[ 1 ]

temp . data$y . 2 [ i i ] <− temp .matrix . b
[ 2 ]

}

#Add progec ted x−−l e n g t h s and
concatenate f o r each i t e r a t i o n

pro j e c t ed$ l en <− c ( p ro j e c t ed$ len , sum
(abs ( temp . data$x . 1 − temp . data$x
. 2 ) ) )

}
return ( p ro j e c t ed )

}

#Function to produce p l o t o f e l l i p s e
po in t per imeter

#panozzo , data frame of the panozzo
radian s t e p s and corresponding
pro j e c t ed l en g t h s

#Returns coord ina te s o f p ro j e c t ed
e l l i p s e per imeter po in t s

PanozzoEl l ip se <− function ( panozzo , PLOT
= TRUE) {

#Define o b j e c t my. data
my. data <− NULL

#Determine s t ep r e s o l u t i o n
r e s <− length ( panozzo [ [ 1 ] ] )

#Determine radian s t ep increment
ro t . step <− pi / r e s

#Begin i n i t i a l ang le cond i t i on
ang le . to t <− pi / 2

#Construct coords o f l e n g t h s a long x−
ax i s

ycoords <− seq (0 , 0 , r e s )

#Set up l eng t h coords f o r ro t a t i on
coord .matrix <− matrix ( rbind (1 /

panozzo [ [ 2 ] ] , ycoords ) , nrow = 2)

#Run lood to ro t a t e l eng t h coords to
crea t e data . frame of Rs per imeter

i <− 0
while ( i < r e s ) {

i <− i + 1

#Determine s t ep [ i ] r o t a t i on ang le
ang le . to t <− ang le . to t − ro t . step

#Construct r o t a t i on matrix
ro t .matrix <− matrix (c ( cos ( ang le . to t )

, −1 ∗ sin ( ang le . to t ) , sin ( ang le .
t o t ) , cos ( ang le . to t ) ) , ncol = 2 ,
byrow = TRUE)

#Apply ro t a t i on matrix to panozzo
coord ina te s

temp .matrix <− ro t .matrix %∗% matrix (
c ( coord .matrix [ 1 , i ] , coord .matrix
[ 2 , i ] ) , ncol = 1)

#Construct data frame of e l l i p s e
per imeter

my. data$x [ i ] <− temp .matrix [ 1 ]
my. data$x [ i + r e s ] <− temp .matrix [ 1 ]

∗ −1
my. data$y [ i ] <− temp .matrix [ 2 ]
my. data$y [ i + r e s ] <− temp .matrix [ 2 ]

∗ −1
}

i f (PLOT) {
plot (my. data , asp = 1 , pch = 21 , cex

= . 5 , axes = FALSE, ann = FALSE,
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col = ”red” )
}

return (my. data )
}

#Function to f i t an e l l i p s e to p ro j e c t ed
l eng t h per imeter

#Modif ied code from Michael Bedward <
michael . bedward at gmail . com>

#Fol lowing a l gor th ims de sc r i b ed in :
# Radim Hal i r & Jan Flusser . 1998.
# Numerical ly s t a b l e d i r e c t l e a s t

squares f i t t i n g o f e l l i p s e s .
# Proceedings o f the 6 th In t e rna t i ona l

Conference in Centra l Europe
# on Computer Graphics and

V i sua l i z a t i on . WSCG ’98 , p . 125−132
PanozzoFit <− function (p . e l l i p s e ) {

EPS <− 1 .0 e−8
y <− NULL
dat <− xy . coords (p . e l l i p s e , y )

D1 <− cbind ( dat$x ∗ dat$x , dat$x ∗ dat$
y , dat$y ∗ dat$y )

D2 <− cbind ( dat$x , dat$y , 1)
S1 <− t (D1) %∗% D1
S2 <− t (D1) %∗% D2
S3 <− t (D2) %∗% D2
T <− −solve ( S3 ) %∗% t ( S2 )
M <− S1 + S2 %∗% T
M <− rbind (M[ 3 , ] / 2 , −M[ 2 , ] , M[ 1 , ] /

2)
evec <− eigen (M)$vec
cond <− 4 ∗ evec [ 1 , ] ∗ evec [ 3 , ] − evec

[ 2 , ] ˆ 2
a1 <− evec [ , which( cond > 0) ]
f <− c ( a1 , T %∗% a1 )
names( f ) <− l e t t e r s [ 1 : 6 ]

# ca l c u l a t e the center and l en g t h s o f
the semi−axes

b2 <− f [ 2 ] ˆ 2 / 4
cente r <− c ( ( f [ 3 ] ∗ f [ 4 ] / 2 − b2 ∗ f

[ 5 ] ) , ( f [ 1 ] ∗ f [ 5 ] / 2 − f [ 2 ] ∗
f [ 4 ] / 4) ) / ( b2 − f [ 1 ] ∗ f [ 3 ] )

names( c en t e r ) <− c ( ”x” , ”y” )

num <− 2 ∗ ( f [ 1 ] ∗ f [ 5 ] ˆ 2 / 4 + f [ 3 ] ∗
f [ 4 ] ˆ 2 / 4 + f [ 6 ] ∗ b2 −

f [ 2 ] ∗ f [ 4 ] ∗ f [ 5 ] /4 − f [ 1 ] ∗ f [ 3 ] ∗ f [ 6 ] )
den1 <− ( b2 − f [ 1 ] ∗ f [ 3 ] )
den2 <− sqrt ( ( f [ 1 ] − f [ 3 ] ) ˆ2 + 4∗b2 )
den3 <− f [ 1 ] + f [ 3 ]

semi . axes <− sqrt (c ( num / ( den1 ∗ (
den2 − den3 ) ) , num / ( den1 ∗

(−den2 − den3 ) ) ) )

# ca l c u l a t e the ang le o f r o t a t i on
term <− ( f [ 1 ] − f [ 3 ] ) / f [ 2 ]
ang le <− atan (1 / term ) / 2

l i s t ( coef=f , c en te r = center , major =
max( semi . axes ) , minor =

min( semi . axes ) , ang le = unname( ang le ) )
}

#Function to p l o t f i t t e d e l l i p s e from
PanozzoFit output

#Modif ied code from Michael Bedward <
michael . bedward at gmail . com>

get . e l l i p s e <− function ( f i t , n=360 ) {
t t <− seq (0 , 2∗pi , length=n)
sa <− sin ( f i t $ang le )
ca <− cos ( f i t $ang le )
c t <− cos ( t t )
s t <− sin ( t t )

x <− f i t $ c en te r [ 1 ] + f i t $maj ∗ ct ∗ ca
− f i t $min ∗ s t ∗ sa

y <− f i t $ c en te r [ 2 ] + f i t $maj ∗ ct ∗ sa
+ f i t $min ∗ s t ∗ ca

cbind ( x=x , y=y)
}

#Function to c a l c u l a t e the t rue Rs from
shear s t r a i n

Es2R <− function ( e . s = 1 . 5 ) {
l . 1 <− sqrt ( (1/2) ∗ ( e . s ˆ2 + 2 + e . s ∗

sqrt ( e . s ˆ2 + 4) ) )
l . 2 <− sqrt ( (1/2) ∗ ( e . s ˆ2 + 2 − e . s ∗

sqrt ( e . s ˆ2 + 4) ) )

r s <− l . 1 / l . 2
return ( r s )

}

#An empty func t i on to run an example
PanozzoExample <− function ( ) {

l ines . t1 <− LineGenerator (n . l ines =
150 , PLOT = TRUE)

windows ( )
l ines . t2 <− LineShear ( l ines . t1 , e . s =

1 , PLOT = TRUE, plot . width = 100)

panozzo <− Panozzo ( l ines . t2 )

windows ( )
my. data <− PanozzoEl l ip se ( panozzo , PLOT

= TRUE)
e l l i p . f i t <− PanozzoFit (my. data )
e l l i p <− get . e l l i p s e ( e l l i p . f i t )
l ines ( e l l i p , col = ”blue ” )

}

PanozzoExample ( )
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Appendix F

Digital materials

This thesis includes an additional series of digital materials located on the accompa-

nying compact disk. The following list briefly describes the contents of this compact

disk. These files are also currently available at http://www.uvm.edu/~jrwebber/

resources.html and are password protected (“webber2012”).

UNDEFORMED.pdf Portable document file containing vector based ellipses that
are uniform in orientation and define a normal distribution of axial ratios.

FABRIC.zip Folder structure and scripts for the fabric quantification procedure
presented in this thesis. Please visit my website for updated versions.

FRY3D.zip Folder structure and scripts for the FRY3D tutorial.

CHILE2011.kmz An SQLite3 database file containing structural orientation mea-
surements and sample information.

GEOCHRON.kml Compiled gechronological ages throughout the Coastal Batholith
of central Chile.

11LC03C.kmz A Google Earth File containing the oriented fabric ellipsoid calcu-
lated from the Rf/φ method as presented in section 3.4.

ISLA NEGRA.kmz Oriented enclave swarm fabric ellipsoids from Isla Negra as
explained in section 2.4.2.2.

SAMPLES.kmz A Google Earth file containing sample location information and
field imagery of samples.
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