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Abstract

Methods of dust mitigation in Martian and Lunar environments are an increasingly
active area of research within the fluid dynamic and aerospace community. Martian
and Lunar environments produce electrically charged particles, which easily adhere
to exposed surfaces. Adhered regolith particles can interfere with human comfort and
mechanical functionality. In this work we investigate the potential to enhance particle
removal through bound vortex surface impingement. A bound vortex flow condition
is created using a specialized nozzle configuration where a combination of positive
pressure inlets and a central negative pressure outlet are used to control flow dynam-
ics. Using the techniques of computational fluid dynamic simulations and physical
experiments, the effectiveness of vortex-induced flow conditions is evaluated. A para-
metric study is performed to explore bound vortex formation over a range of nozzle
configurations and pressure conditions. Visualization of pathlines and measurement
of shear stress under various geometric and pressure conditions provide insight into
flow characteristics. It is found that an optimal range of key geometric and pressure
parameters exist in the creation of bound vortex flow and such flow enhances par-
ticle transportation and removal. A subset of optimal computational configurations
is recreated experimentally to support the existence of bound vortex flow and its
positive impact on the removal of particles.
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Chapter 1

Introduction

Methods of dust mitigation in Martian and Lunar environments are becoming an

increasingly important consideration in light of future space missions to the Moon

and Mars. Unlike Earth, the Moon and Mars lack aqueous precipitation and egress,

which would aid in the removal of dust aggregate on exposed surfaces. The absence

of moisture in Martian and Lunar environments results in a significant buildup of

electrical charge on particles. In Martian environments the charge is acquired through

triboelectric charging [14]. In Lunar environments solar radiation is the main charging

mechanism [1]. The significant static charge causes particles to strongly adhere to

surfaces, such as solar panels, space suits, clothing, and mechanical devices [18].

Particles remain sharp and abrasive due to an absence of erosion characteristics

present in Earth’s environment. An image of Lunar simulant particles under an optical

microscope can be seen in Figure 1.1. The abrasive characteristics of particles can

greatly reduce the projected life of equipment through frictional forces. In addition

to mechanical failure, particles may pose a serious health risk. During the Apollo 17

mission to the Moon, electrically charged lunar regolith had adhered to spacesuits

during extra-vehicular activities on the Moon’s surface. Upon reentering the Lunar
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Module, particles became airborne and were inhaled by the occupying astronauts.

Symptoms of congestion, fever and a “Gun Powder” smell were reported [20] . In

future Martian and Lunar missions, dust mitigation will be paramount in preserving

human health and mechanical longevity [10].

1.1 Existing Mitigation Strategies

Charged and uncharged particles can be removed from surfaces using electrostatic

forces. Calle et al. (2008) have had success in transporting particles using an ar-

rangement of parallel conductors [5]. An AC source is applied to the conductors to

generate a traveling electrostatic wave. The wave acts as a conveyer causing particles

to travel along or against the direction of the wave. The system is effective at clearing

a specified area but further particle removal may be required to completely remove

particles from the contaminated object. Variations of this method have been applied

to clean surfaces such as solar panels.

Acoustic radiation in conjunction with air impingement has been used by Chen

and Wu (2009) to dislodge particles from various surfaces [6]. Acoustic radiation at a

frequency of 13.8 kHz and pressure of 128 dB was delivered to a surface using a 3 cm

aperture tweeter. A standing wave was maintained between the tweeter and reflector

surface. It was discovered that this radiation is sufficiently strong to overcome van

der Waals adhesive force between dust particles and the surface. Once particles were

levitated, an air flow was applied to remove the particles from the surface.

Lu et al. (1999) studied the effects of Laser Pulses on the removal of micron

sized particles [15]. The method has been utilized to remove particles from optical

apparatus, archive portraits, and metal surfaces. During the laser pulse, the particle

gains acceleration through sudden surface and particle expansion. The acceleration
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can be millions of times larger than earth’s gravitational acceleration. Particles break

free of adhesive bonds and are dislodged from the surface. Particle removal efficiency

increase with an increase in laser intensity. It was concluded that the laser inten-

sity threshold required to remove particle increases abruptly for particles less than 1

micron.

As summarized by Hyatt et al. (2007), several conventional methods of dust

mitigation were used in the Apollo surface operations [10]. A water jet and wet cloths

were used to clean suits, boots, and gloves. A lens brush was used to clean camera

optics. A vacuum cleaner was used to remove dust from the living environment.

Stomping, brushing the suit, and placing bags over the boots upon reentry reduced

dust infiltration. Repeated wiping of surfaces easily scratched visors and displays

rendering them dysfunctional.

1.2 Surface Shear Stress

Particle removal strongly depends on the magnitude of shear stress imposed on the

target surface. Enhanced surface shear stress can be achieved using a variety of

methods. Jet impingement is one common strategy used to impose shear stress and

remove particles from surfaces. Also, many methods associated with surface cooling

can be applied to enhance surface shear stress [29].

Zhang et al. (2002) experimentally characterized particle removal efficiency of

a single air jet delivered by a 3 mm converging nozzle. Glass spheres (40-50 mi-

cron) were applied to the test surface and removal efficiency was calculated after jet

impingement. It was determined that removal efficiency strongly depends on the dis-

tance from the surface, pressure applied, elapsed time, and impingement angle. For

a single jet, a 30 degree impingement angle resulted in the greatest particle removal.
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The minimum pressure required to provide particle transport depended on surface

roughness and particle properties. A critical pressure exists beyond which little par-

ticle removal efficiency is gained. Maximum removal efficiencies were reached for

impinging distances of 40 mm (13 diameters) to 60 mm (20 diameters) [28].

Masuda et al. (1994) and Ziskind et al. (2002) studied particle removal from

surfaces by pulsed air jet impingement [17], [29]. Pulsed flow was produced using an

electromagnetic valve in Masuda’s work and a chopper wheel in Ziskind’s experiment.

It was determined that a critical range of frequencies are most effective at dislodging

particles from surfaces. An optimal impingement angle of 30 degrees was identified

for producing the greatest particle removal. This result agrees with the continuous

air jet study performed by Zhang et al. (2002).

Shock tube vortex ring impingement as studied by Kontis et al. (2008) can be

used to induce surface shear stress [13]. A vortex ring was generated using an open

ended shock tube with a 30 mm internal diameter. As the vortex ring approaches

the wall the flow accelerates rapidly in the radial direction imposing shear stress on

the impinged surface. Such flow could be effective in dislodging strongly adhered

particles.

Parras et al. (2007) studied the interaction of an unconfined vortex with a solid

surface [21]. The interaction of a vortex with a solid plane perpendicular to its axis

of rotation was solved numerically. It was determined that the swirl intensifies as

the vortex approaches the impinged surface. The flow resembled intense tornado-like

vortices where a significant annular updraft was present. The flow at the axis of the

vortex was directed downward. This intensified flow could enhance shear stress on

the surface.
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1.3 Enhanced Flow Structures

The interaction of a vortex with a ridged wall was studied by Hirsa et al. (2000) [9]. A

vortex was generated via a pair of rotating flaps in a cylindrical water tank. The flow

structure was observed using a combination of planar laser-induced florescence and

digital particle image velocimetry. It was found that a toroidal recirculation region

forms when a vortex interacts with a no-slip wall. The toroidal structure was not the

result of the vortex itself but instead the result of the end wall boundary structure.

Phillips et al. (1987) experimentally investigated turbulent vortex boundary layers

[22]. A vortex was generated by rotating a cylindrical water tank about its axis of

symmetry. A stationary surface was positioned in the bottom of the tank to provide

a no-slip boundary. Through the use of laser-Doppler anemometer, radial mean-

velocity distributions were captured. Reynolds number flows ranging from 5,000 to

30,000 were explored. Two opposing factors were determined to effect the stability

of the vortical flow. The inflection point in the crossflow velocity profile acts as a

source of dynamic instability, while the pressure gradient acts to stabilize the flow.

It was concluded that at high enough Re the pressure gradient near the surface will

not be able to overcome the dynamic instability. As a result the flow will become and

remain turbulent.

Wen et al. (2003) studied the impingement of a swirling jet on a flat surface [27]. A

tube with a helical insert provided a means of producing swirling flow. The tube was

positioned above a heated impingement surface. A vortical flow was produced on the

impingement surface by the swirling flow developed in the tube. The cooling effects

were evaluated both with and without a swirling insert. Reynolds numbers between

500 and 27,000 were investigated. Smoke flow visualization was implemented to

visualize the flow behavior of the impinging jet. The swirling flow was found to provide
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superior surface cooling performance. It was observed that the cooling performance

increased with and increase in Reynolds number. Heat transfer enhancement varied

between 9% and 14%.

Swirling jet impingement on a flat plate was characterized by Abrantes et al.

(2006) [2]. A swirling flow was produced using an array of tangentially angled ports

in a swirl generating cylinder. The flow was then passed through a 22 mm tube

where it was directed at a flat plate. Swirl intensity was adjusted by making the tube

longer. Jet to plate distances of 2 and 0.25 times the jet diameter were explored. All

experimental configurations correspond to a Reynolds number of 21,000. The swirl

velocity on the impinged surface significantly impacts the local heat transfer distri-

bution. For a 44 mm jet-to-plate spacing, the added swirl caused fluctuations in the

heat transfer distribution and a large recirculating flow region at the jet stagnation

region. The result was a decrease in heat transfer. For a 5.5 mm jet-to-plate spacing,

the presence of swirl produced an enhancement of heat transfer from the plate. The

enhanced heat transfer was contributed to the stronger axial momentum that pre-

cluded the formation of the recirculating flow zone at the stagnation region and the

stronger circumferential component.

The impingement of a swirling jet on a heated flat plate has also been studied

by Ichimiya et al. (2010) at lower Reynolds numbers [12]. Flow and heat transfer

characteristics were gathered both numerically and experimentally. Temperature dis-

tribution and velocity vectors were gathered at various locations from the nozzle exit

to the impinged surface. Numerous swirl numbers were evaluated for flows with a

Reynolds number of 2,000. A swirling impinging jet was determined to both enhance

and depress heat transfer. Flow acceleration and flow mixing near the impinged

surface caused enhanced heat transfer. Rising and recirculating flow depressed heat

transfer. Heat transfer on the impinged surface reached a maximum at a specific swirl
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number.

1.4 Bound Vortex Flow

In this study we investigate an active mechanism designed to enhance the removal

of particles adhered to surfaces. A nozzle configuration was designed to generate

a bound vortex flow condition. Through the impingement of a bound vortex, shear

stress on a surface is amplified, increasing particle transportation. Dislodged particles

can be drawn through a central negative pressure port and safely contained. Using

computational fluid dynamic simulations, the effectiveness of various vortex-inducing

conditions is evaluated. Shear stress on the impinged surface is used to indirectly

evaluate particle removal capacity. The effect of particle charge on the removal process

is neglected in this study. Through a parametric study, an optimal range of key

geometric and pressure parameters are identified to create bound vortex flow. A set of

computational conditions were recreated experimentally to confirm vortex formation

and enhanced particle removal.
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(a) A photograph of lunar regolith simulant (JSC-II)

(b) An image of lunar regolith simulant (JSC-II) under an optical

microscope

Figure 1.1: Lunar regolith simulant particles are nonuniform, sharp, and abrasive.
Martian and Lunar dust particles can negatively impact human health and reduce
the mechanical longevity of equipment.
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Chapter 2

Methodology

2.1 Nozzle Design

The essential element in the bound vortex generation is a complex nozzle featuring a

combination of positive pressure inlets and a central negative pressure outlet (Figure

2.1). Acting together, this combination of positive and negative pressure inlets/outlet

establishes, with proper parametric conditions, the possibility of a closed flow struc-

ture (bound vortex). For the inlet ports, both the radial and tangential components

represent independent geometric features of the nozzle that can be used to control

and refine the structure of the vortical flow. To see this, consider the radial com-

ponent of the inlet interacting with the negative pressure core: the radial angle will

clearly impact the extent of the vortex beneath the nozzle. The role of the tangential

component is, in contrast, to add swirl to the flow structure. In this work it is posited

that there exists an optimal configuration(s) that maximize shear stress on a surface

interacting with the bound vortex.

To explore the nozzle operating characteristics and performance, computational

domains were developed for a broad range of bound vortex flow conditions. As seen
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in Figure 2.1, each nozzle consists of a central negative pressure port surrounded by

an array of positive pressure jets. A total of twelve nozzles were created, each share

the common characteristic of a single 5 mm central port and ten equally spaced 1.5

mm jets which are aligned along a circle 15 mm in diameter. The height of nozzle

above the impingement surface was chosen to be 10 mm, as it would provide adequate

surface flow interaction. Variations in nozzle geometry were determined by the radial

and tangential components of the jet array. Radial components of 15 ◦, 30 ◦, 45 ◦, 60 ◦

and tangential components of 0 ◦, 30 ◦, 60 ◦ were explored.

Initial nozzle geometries were created in SolidWorks Corp.’s SolidWorks 2009

three-dimensional solid modeling software. SolidWorks was chosen for its ability to

create and quickly modify complex models parametrically. Nozzle geometries were ex-

ported as a STEP file and imported into ANSYS Inc.’s GAMBIT 2.1 grid generation

software.

A computational domain was created around each nozzle geometry. The domain

consisted of a cylinder 80 mm in diameter, centered on the nozzle and extending

10 mm beyond the nozzle tip. The size of the domain was chosen to insure all

surface impingement characteristics were captured. The size of the domain was chosen

to ensure the absence of boundary effects in the flow field region of interest. A

Boolean subtraction was applied to remove the positive nozzle geometry from the

computational domain resulting in a purely fluid domain. The computational domain

was sub-divided to facilitate flexibility in the grid refinement process. Tetrahedral

elements were applied throughout the entire domain. The number of tetrahedral

elements ranged from approximately 3,500,000 to 4,000,000 due to variations in nozzle

geometry. An example of a completed grid can be seen in Figure 2.2, which depicts

varying tetrahedral grid spacing with the greatest refinement at the nozzle exit.
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2.2 Computational Model

The completed grid was imported into ANSYS Inc.’s Fluent 6.3 computational fluid

dynamics flow modeling software to obtain a solution to the governing incompressible

Navier-Stokes equations (Appendix A.1). Reynolds numbers were calculated for the

proposed range of inlet and outlet pressures and determined to reside within the

turbulent regime. Small density changes and relativity low velocities motivated the

choice of an incompressible model.

A realizable k − ε turbulence model was utilized for its superior performance in

flows involving rotation, vortices, recirculation, and strong streamline curvature. The

standard k− ε model, developed by Launder and Spalding (1972), is a semi-empirical

model based on model transport equations for the turbulence kinetic energy (k) and

its dissipation rate (ε) [16]. The model, developed by Shih et al. (1995), differs from

the standard k − ε model in that it contains a new formulation for the dissipation

rate equation and a new realizable eddy viscosity formulation [25]. The dissipation

equation is based on the dynamic equation of the mean-square vorticity fluctuation

at large turbulent Reynolds number. The eddy viscosity formulation incorporates the

constraint of a positive normal Reynolds stress and the Cauchy-Schwarz inequality

for turbulent shear stress. The model improves the numerical stability in turbulent

flow calculations when used with a second order closure scheme. It also removes the

spreading rate abnormality of planar and round jets, such as the jets present in the

bound vortex nozzle design. Further details on the formulation of the realizable k− ε

turbulence model can be viewed in Appendix A.2.

The SIMPLE algorithm was used for pressure-velocity coupling and a second-order

upwind scheme was used for spatial discretization. A second-order upwind scheme

provided higher-order accuracy at cell faces through a Taylor series expansion of the
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cell-centered solution [3]. Additional details on the Fluent’s implementation of the

SIMPLE algorithm and second-order upwind scheme can be found in Appendix A.5

and Appendix A.6. A steady state solution was obtained using a pseudo time stepping

iterative process. Global residual monitors of Continuity, X-Velocity, Y-Velocity, Z-

Velocity, Turbulent Kinetic Energy, and Turbulent Dissipation were monitored for

convergence. Surface shear stress point monitors were applied along the impinged

surface and monitored for convergence.

A pressure inlet and pressure outlet boundary condition was applied to the nozzle

jet inlet and central port respectively. Pressure boundary conditions were chosen to

accurately represent the final application in which a constant positive or negative

pressure would be supplied to the nozzle. Pressures were applied in terms of gauge

pressure in contrast to absolute pressure. The upper surface and sides of the cylin-

drical domain were defined as a pressure outlet of zero gauge pressure to represent

a nozzle in an open environment. Internal and external nozzle surfaces and lower

impingement surface were defined as walls with a no slip condition. The working

fluid for this application was air at a pressure of 101.3 kPa which is intended for our

current laboratory conditions; this would also be appropriate for operation within a

human occupied Lunar or Martian habitat. Boundary conditions and locations can

be viewed in Figure 2.2.

The flow field was initialized to zero velocity for the first computational permu-

tation. The previous converged solution was then used as the initial condition for

each successive study. This method decreased computational demand by reducing

the iterations required to reach a converged solution.

A formal grid refinement study was performed to ensure that spatial discretization

errors were minimized. Average and peak shear stress on the impinged surface was

monitored for a constant geometry of 60 ◦ tangential component and 15 ◦ radial com-
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ponent. The inlet pressure was held at 10 kPa and the outlet pressure at -40 kPa. By

monitoring average and peak surface shear stress over a range of grid resolutions, it

was determined that a resolution of 4,000 elements per meter was sufficient to provide

grid independent results. A plot depicting the grid refinement study can be viewed

in Figure 2.3.

2.3 Experimental Methods

In order to support the numerical simulations, an experimental test fixture was de-

veloped to accommodate all nozzle geometries and distribute positive and negative

pressures to the nozzle inlet and outlet respectively. A solid model of each nozzle

and the experimental fixture were exported from SolidWorks 2009 as a STL (Stereo

Lithography) file and prototyped in ABS (Acrylonitrile Butadiene Styrene) plastic

using a fused deposition rapid prototype machine (Figure 2.4). Internal nozzle di-

mensions were chosen to compliment the resolution limitations of the rapid prototype

machine. A nozzle with a 30 ◦ tangental and 15 ◦ radial component geometry was

attached to the experimental fixture. As seen in Figure 3.18, the fixture and nozzle

were suspended 10 mm over a clear acrylic surface to reproduce the geometry of the

computational domain. A Lunar simulant (JSC-II) was evenly applied to an acrylic

surface until complete coverage was obtained.

A constant positive and negative pressure source was attached to the test fixture.

A set of ball valves allowed for simple on or off control of the pressure sources. A

regulator was used to adjust the magnitude of positive pressure. The negative pres-

sure was controlled by diverting a portion of the pressure to the ambient environment

through a needle valve. In the first experiment, negative pressure alone was applied

to the nozzle. A second experiment consisted solely of positive pressure application.
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The third experiment incorporated a combination of both positive and negative pres-

sure application simultaneously. In each circumstance, pressure was applied until no

further particle movement was observed.
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Component
Radial 

15 mm

5 mm1.5 mm Component
Tangential

Figure 2.1: A drawing depicting a basic nozzle geometry consisting of a single 5
mm central port and ten equally spaced 1.5 mm jets. The positive pressure jets are
defined by a tangential and radial component.
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Figure 2.2: A computational grid comprised of tetrahedral elements is shown. Tetra-
hedral grid density increases within the domain as the impinged surface is approached.
Boundary conditions are defined by the following color key: Blue - Pressure Outlet;
Red - No-Slip Wall; Green - Positive Pressure Inlet; Yellow - Negative Pressure Outlet.
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Figure 2.3: Average and peak shear stress on the impinged surface is shown for a
constant geometry of 60 ◦ tangential component and 15 ◦ radial component. The inlet
pressure is held at a constant 10 kPa and the outlet pressure at a constant -40 kPa.
The value of peak and average shear stress remain constant at a grid resolution at or
greater than 4000 elements per meter.
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20 mm 

Figure 2.4: Twelve nozzles rapid-prototyped in ABS (acrylonitrile butadiene
styrene) plastic are presented. The twelve nozzles result from a combination of 15 ◦,
30 ◦, 45 ◦, 60 ◦ radial components and 0 ◦, 30 ◦, 60 ◦ tangential components.
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Chapter 3

Results

3.1 Computational Results

A parametric study was performed to evaluate the flow characteristics for each nozzle

geometry over a range of inlet and outlet gauge pressure conditions. The inlet pressure

was held at 10 kPa while the outlet pressure varied from -10 kPa to -70 kPa in

increments of 10 kPa. All nozzle configurations and pressure conditions can be seen

in Table 3.1 and Table 3.2 respectively. The nozzle height was fixed at 10 mm above

the surface. The pressure outlet boundary condition on the side and top of the

cylindrical domain was set to 0 kPa gauge pressure to simulate a nozzle releasing

into an open environment. The lower boundary was prescribed as a no slip wall

condition to represent the impinged surface. A converged solution was obtained for

each pressure permutation.

Shown in Figure 3.1 are pathline visualizations for the different flow conditions

for a fixed nozzle geometry. Also appearing below each pathline visualization is the

associated shear stress distribution on the surface. For this case of varying pressure

conditions, a fixed geometry of 60 ◦ tangental component and 15 ◦ radial component
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was used.

If a weak negative outlet pressure (0 kPa to -20 kPa) is applied, flow exits the ring

of jets, strikes the surface, and the majority of the flow exits through the side of the

domain. This would not be advantageous, as it would cause particles on the impinged

surface to accelerate away from the central vacuum port preventing them from being

captured. As a result of strong negative outlet pressure (-50 kPa to -70 kPa), the flow

exits the ring of jets and is captured by the central vacuum port before it contacts

the lower surface. This is not a beneficial result because it prevents the jets from

inducing higher shear stress at the impinged surface, limiting particle transportation.

If a medium negative outlet pressure (-20 kPa to -50 kPa) is applied, the flow exits the

ring of jets, creates a bounded vortex, impinges on the surface and exits the central

port. Bound vortex impingement increases surface shear stress, which enhances the

removal of particles adhered to the surface. The vortex would dislodge, levitate and

entrain loosened particles while the central port applies the negative pressure required

to remove them.

Next, the corresponding pathline and surface shear stress distributions have been

computed for different nozzle geometries with a fixed pressure condition of 10 kPa

inlet and -40 kPa outlet (Figures 3.2 and 3.3). Bound vortex formation has a clear

dependence on radial and tangential jet components. In permutations with zero

tangential components, no vortex was formed. The rotational strength of the vortex

increased with an increase in the tangential jet component. The radial component

dictated the depth of vortex penetration. As the radial component increased, the

vortex deviated less from the nozzle exit plane.

For the optimal geometry suggested from Figures 3.4, 3.5, 3.6, and 3.7, shear stress

distributions were then computed for several outlet conditions and appear in Figure

3.8. This data has been further reduced to key statistics of mean and peak shear stress
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in Figure 3.9. Shear stress created at the impinged surface provides the mechanism for

enhanced particle removal [29]. From this data it is found that an overall optimizing

condition exists for this nozzle height of 10 mm. A nozzle with a 60 ◦ tangental

and 15 ◦ radial component provided the greatest shear stress while maintaining a

controllable axisymmetric vortex. Average and peak stress distributions presented in

Figure 3.8 confirm that both average and peak shear stress over the impinged surface

reach a maximum at the optimum pressure condition of 10 kPa inlet and -40 kPa

outlet.

A depiction of all 84 permutations is summarized as a function of peak shear stress

in Figure 3.10. The optimal nozzle configuration far outperforms the remaining 11

designs. A plateau is formed between the outlet pressures of -40 kPa and -60 kPa

with a maximum peak shear stress at a condition of -40 kPa.

The bi-peaked radial shear stress distribution is largely axisymmetric but does

contain a slight azimuthal variation. Figure 3.11 shows two radial shear stress distri-

butions along the impinged surface for the optimal configuration. One distribution

is along a 0 degree azimuthal direction and the other is along a 90 degree direction.

A variation in the peak shear stress value is most apparent. While little variation is

seen in the remainder of the shear stress distribution.

Additional flow visualization for the optimal geometric and pressure configuration

is provided by Figure 3.12 and Figure 3.13. Velocity vectors perpendicular to the

impingement surface and parallel to the nozzle’s axis of symmetry clearly depict fluid

motion from the positive pressure jets to the impinged surface and out through the

negative pressure port. Toroidal flow patterns can be seen each side of the nozzle’s

axis of symmetry in Figure 3.12. Velocity vectors at the impinged surface represent

a classic vortex pattern centered about the nozzle’s axis (Figure 3.13).

For the optimal configuration and pressure condition, an iso-surface plot of vor-

21



ticity is shown in Figure 3.14. A well defined central vortex can be seen between the

nozzle exit and impinged surface. Contours plots of vorticity are also depicted on

the impinged surface and a vertical plane intersecting the axis of rotation. A nearly

axisymmetric vorticity pattern can be seen on the impinged surface with the greatest

magnitude present at the vortex core.

An annular transition region exists on the impinged surface, at which the shear

stress acting on the surface changes from an inward radial component to an outward

radial component. This region can be seen in Figure 3.15, which depicts stress lines

on the impinged surface for the optimal nozzle configuration and pressure condition.

The transition region is nearly axisymmetric and resides just outside the face of the

nozzle. The region coincides with a toroidal vortex formation shown in Figure 3.12.

The wall shear stress contour plot, seen in Figure 3.15, is presented on the impinged

surface where the circumference of the nozzle’s exit face is shown as a dashed red line.

The vast majority of enhanced shear stress resides interior to the transition region.

Consequently, particle removal and transportation is limited outside the transition

region and the dominate removal mechanism is in the inward radial direction.

Having determined an optimal geometric and pressure condition, a study was

performed to characterize the effect of pressure magnitude. A fixed pressure ratio of

1 inlet to 4 outlet was chosen and applied to a geometry of 15 ◦ radial component

and 60 ◦ tangential component. The assigned inlet pressure varied from 1 kPa to

10 kPa in increments of 1 kPa. The outlet pressure varied from 4 kPa to 40 kPa

with increments chosen to maintain the desired 1:4 ratio. Pressure conditions and

corresponding Reynolds numbers are shown in Table 3.3. Reynolds numbers were

calculated for the positive pressure jets based on a diameter of 1.5 mm. A plot

depicting shear stress as a function of pressure magnitude can be seen in Figure 3.16.

The relationship between the magnitude of pressure applied and shear stress on the
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impinged surface was found to be nearly linear.

A study was also performed to evaluate the effect of nozzle impingement height on

surface shear stress. Figure 3.17 depicts both peak and average surface shear stress

as a function of nozzle-to-surface height, where an inlet pressure of 10 kPa and outlet

pressure of -40 kPa were applied. Nozzle-to-surface height ranged from 2 mm to 20

mm in increments of 2 mm. A nonlinear relationship between height and shear stress

can be seen for both average and peak shear stresses. Surface shear stress increased

rapidly as nozzle height decreased.

3.2 Experimental Results

Experimental results indicate that the addition of bound vortex flow clearly has a

positive effect on the removal of particles from a surface. Lunar simulant particles

remained adhered to the acrylic substrate when only negative pressure was applied

to the nozzle’s central port, as seen in Figure 3.18. Almost no particle movement

was observed, apart from slight particle oscillations near the central port. When

only positive pressure was applied to the ring of outer jets, particles were violently

accelerated away from the center of the nozzle. Particles were thrown far from the

impinged surface, as seen in Figure 3.19. When positive pressure was applied to the

ring of outer jets in conjunction with negative pressure applied to the central port,

particles were dislodged and removed through the central port. In approximately 1

to 2 seconds, particles were removed from the acrylic surface leaving a clear circular

pattern, as seen in Figure 3.19.

The flow velocities and particle removal process occur much too rapidly to capture

via standard video frame rates. The use of a high-speed camera is needed to provide

sufficient resolution to capture particle lift-off and entrainment. Through the use of
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high-speed photography, the evolution of particle removal was captured. Frame rates

ranging from 60 to 2000 frames per second were explored. Lower frame rates were

well suited to visualizing the progression of particle removal as seen in Figure 3.20,

which depicts the scouring of a layer of dust from a transparent surface. Higher frame

rates allowed individual particles to be tracked from the impingement surface to the

nozzle outlet. The high-speed experimental apparatus is shown in Figure 3.21.
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Table 3.1: Geometric nozzle parameters resulting in 12 nozzle configurations.

Nozzle Configurations

Configuration Tangential Component ( ◦) Radial Component ( ◦)

1 0 15

2 0 30

3 0 45

4 0 60

5 30 15

6 30 30

7 30 45

8 30 60

9 60 15

10 60 30

11 60 45

12 60 60
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Table 3.2: Seven pressure conditions applied to each nozzle.

Pressure Conditions

Pressure Condition Inlet Pressure (kPa) Outlet Pressure (kPa)

1 10 -10

2 10 -20

3 10 -30

4 10 -40

5 10 -50

6 10 -60

7 10 -70
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(a) 10 kPa inlet, -10 kPa outlet (b) 10 kPa inlet, -20 kPa outlet (c) 10 kPa inlet, -30 kPa outlet

(d) 10 kPa inlet, -40 kPa outlet (e) 10 kPa inlet, -50 kPa outlet (f) 10 kPa inlet, -60 kPa outlet

(g) 10 kPa inlet, -70 kPa outlet

Figure 3.1: Velocity pathlines and corresponding shear stress plots are shown for a
fixed geometry of 60 ◦ tangental component and 15 ◦ radial component. Shear stress
plots are evaluated at the impinged surface. Pathlines are released from the positive
pressure inlet and tracked until they exit the computational domain.
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(a) 0 ◦ Tangential, 15 ◦ Radial (b) 0 ◦ Tangential, 30 ◦ Radial (c) 0 ◦ Tangential, 45 ◦ Radial

(d) 0 ◦ Tangential, 60 ◦ Radial (e) 30 ◦ Tangential, 15 ◦ Radial (f) 30 ◦ Tangential, 30 ◦ Radial

Figure 3.2: Velocity pathlines and corresponding shear stress plots are shown for
a fixed pressure of 10 kPa inlet and -40 kPa outlet. Shear stress plots are evaluated
at the impinged surface. Pathlines are released from the positive pressure inlet and
tracked until they exit the domain.
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(a) 30 ◦ Tangential, 45 ◦ Radial (b) 30 ◦ Tangential, 60 ◦ Radial (c) 60 ◦ Tangential, 15 ◦ Radial

(d) 60 ◦ Tangential, 30 ◦ Radial (e) 60 ◦ Tangential, 45 ◦ Radial (f) 60 ◦ Tangential, 60 ◦ Radial

Figure 3.3: Velocity pathlines and corresponding shear stress plots are shown for
a fixed pressure of 10 kPa inlet and -40 kPa outlet. Shear stress plots are evaluated
at the impinged surface. Pathlines are released from the positive pressure inlet and
tracked until they exit the domain.
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Figure 3.4: A radial distribution of shear stress on the impinged surface is shown
for various tangential components and a fixed 15 ◦ radial component. Inlet and outlet
pressures are held constant at 10 kPa and -40 kPa respectively for all combinations.
Maximum shear stress is present for a geometry of 60 ◦ tangential component and 15 ◦

radial component. The dashed lines indicate the minimum shear stress required to
initiate particle rolling.
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Figure 3.5: A radial distribution of shear stress on the impinged surface is shown
for various tangential components and a fixed 30 ◦ radial component. Inlet and out-
let pressures are held constant at 10 kPa and -40 kPa respectively for all combina-
tions. The dashed lines indicate the minimum shear stress required to initiate particle
rolling.
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Figure 3.6: A radial distribution of shear stress on the impinged surface is shown
for various tangential components and a fixed 45 ◦ radial component. Inlet and out-
let pressures are held constant at 10 kPa and -40 kPa respectively for all combina-
tions. The dashed lines indicate the minimum shear stress required to initiate particle
rolling.
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Figure 3.7: A radial distribution of shear stress on the impinged surface is shown
for various tangential components and a fixed 60 ◦ radial component. Inlet and out-
let pressures are held constant at 10 kPa and -40 kPa respectively for all combina-
tions. The dashed lines indicate the minimum shear stress required to initiate particle
rolling.
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Figure 3.8: A radial distribution of shear stress on the impinged surface is shown
for a constant geometry of 60 ◦ tangential component and 15 ◦ radial component. The
inlet pressure is held at a constant 10 kPa and the outlet pressure ranges form -30
kPa to -50 kPa in increments of 10 kPa. Maximum shear stress occurs at a condition
of 10 kPa inlet pressure and -40 kPa outlet pressure. The dashed lines indicate the
minimum shear stress required to initiate particle rolling.
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Figure 3.9: Average and peak shear stress on the impinged surface is shown for a
constant geometry of 60 ◦ tangential component and 15 ◦ radial component. The inlet
pressure is held at a constant 10 kPa and the outlet pressure ranges form -10 kPa
to -70 kPa in increments of 10 kPa. A maximum average shear stress and maximum
peak shear stress occurs at a condition of 10 kPa inlet pressure and -40 kPa outlet
pressure.
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Outlet Pressure Condition with a Fixed 10 kPa Inlet Pressure (kPa)
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Figure 3.10: All parametric permutations are summarized as a function of peak
shear stress. The optimal configuration is shown in bold.
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Figure 3.11: Azimuthal variation is shown for two perpendicular radial shear stress
distributions. The distributions correspond the the optimal configuration of 60 ◦

tangential component and 15 ◦ radial component. A slight variation can be seen in
the peak shear stress values. The dashed lines represent the outer diameter of the
nozzle face.
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Figure 3.12: Velocity vectors are shown for a geometry of 60 ◦ tangental component
and 15 ◦ radial component. The inlet pressure is defined as 10 kPa and outlet pressure
is defined as -40 kPa. The background plot is flooded with contours of velocity
magnitude. The velocity vectors depict fluid motion from the positive pressure jets
to the impinged surface and out through the negative pressure port.
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Figure 3.13: Velocity vectors are shown at impinged surface for a geometry of 60 ◦

tangental component and 15 ◦ radial component. The inlet pressure is defined as 10
kPa and outlet pressure is defined as -40 kPa. A clockwise rotating vortex pattern
can be seen centered about the nozzle’s negative pressure port.
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Figure 3.14: An iso-surface of vorticity is shown for a geometry of 60 ◦ tangental
component and 15 ◦ radial component. The inlet pressure is defined as 10 kPa and
outlet pressure is defined as -40 kPa. The iso-surface is drawn at a vorticity magnitude
of 15,000. Contour plots of vorticity are depicted on the impinged surface and a
vertical plane intersecting the axis of rotation.
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Figure 3.15: Stress lines are shown along the impinged surface for a geometry of
60 ◦ tangental component and 15 ◦ radial component. The inlet pressure is defined
as 10 kPa and outlet pressure is defined as -40 kPa. A contour plot of wall shear
stress is depicted on the impinged surface. Nearly all enhanced surface shear stress
is contained within the annular transition region. The dashed red line represents the
circumference of the nozzle tip.
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Table 3.3: Pressure conditions and corresponding Reynolds numbers are shown
for a fixed pressure ratio and varying pressure magnitude. Reynolds numbers were
calculated for the positive pressure jets based on a diameter of 1.5 mm.

Pressure Magnitude Study

Inlet Pressure (kPa) Outlet Pressure (kPa) Reynolds Number

1 4 2581

2 8 3137

3 12 4477

4 16 5162

5 20 5778

6 24 6334

7 28 6840

8 32 7306

9 36 7733

10 40 8190
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Figure 3.16: A plot of surface shear stress is shown for a geometry of 60 ◦ tangental
component and 15 ◦ radial component. The applied pressure was fixed at a 1:4 inlet to
outlet ratio. The inlet pressure varied from 1 kPa to 10 kPa while the outlet pressure
was adjusted to maintain the desired 1:4 ratio.
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Nozzle Height (mm)
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Figure 3.17: A plot of surface shear stress is shown for varying nozzle heights. The
applied inlet pressure is prescribed at 10 kPa and outlet pressure is defined as -40
kPa. A nonlinear relation between nozzle heigh and surface shear stress is shown.
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Figure 3.18: Left: The experimental apparatus and nozzle are suspended 10 mm
above an acrylic substrate evenly coated with Lunar simulant (JSC-II). Right: The
acrylic substrate and Lunar simulant after only negative pressure is applied to the
nozzle’s central port.

Figure 3.19: Left: The acrylic substrate and Lunar simulant after only positive
pressure is applied to the ring of outer jets. Right: The acrylic substrate and Lunar
simulant after positive and negative pressure is simultaneously applied to the ring of
outer jets and central port respectively.
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Figure 3.20: A progressive set of photographs depicting the particle removal process
is shown. The impingement surface is imaged from the underside of a transparent
impingement surface. Initially the surface is evenly covered with a regolith simulant.
As negative and positive pressures are applied, the particles are dislodged and removed
from the impingement surface. As particles are removed, the surface of the nozzle
and ports become visible.
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Figure 3.21: The experimental high-speed photography apparatus consists of a
prototype nozzle positioned above a glass impingement surface. The removal process
is imaged from beneath the impingement surface using a high-speed camera. The
left image shows the surface before particle removal. The right image illustrates the
surface after the removal process.
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Chapter 4

Estimation of Micro-Particle

Removal Efficiency

The removal process of an adhered particle consists of two essential stages. First,

threshold shear conditions must exist such that the initially stationary particle is

freed from the surface and begins to roll and dynamically interact with other par-

ticles, as described by Schmeeckle et al. (2003) [24]. Once in motion, the moving

particle is lifted from the surface and transported away by aerodynamic drag forces.

Previous studies have indicated that of these two stages, ‘rolling’ and ‘lift-off’, it is

the initiation of rolling that establishes the critical flow conditions for particle re-

moval. Put another way, flow conditions sufficient to initiate rolling will also prove

sufficient for aerodynamic lift-off. Thus, to estimate the particle removal efficiency of

the bound-vortex flow one must compare the expected wall shear stress distribution

with critical shear stress levels for initiation of the adhered particle rolling.
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4.1 Derivation of Critical Shear Condition for Par-

ticle Removal

To develop the critical flow condition, consider a stationary, spherical particle adhered

to the surface solely by van der Waal’s force. Dynamically, a stationary particle will

begin rolling when there is a non-zero torque about contact point with the surface.

There are two essential sources of torque present: (1) an aerodynamic torque arising

from the drag force acting through the particle centroid; and (2) an adhesive torque

arising from surface contact forces. The aerodynamic drag force for micro-particles

can be predicted in terms of a modified Stokes drag law of the form

FD = 6πµRUf (4.1)

where µ is the fluid dynamic viscosity, R is the particle radius, U is the fluid velocity

at the particle centroid and f is a correction factor that accounts for wall effects. It

is convenient to write U in terms of a shear rate γ̇ as

U = γ̇ R (4.2)

The correction factor is known to be dependent on the Reynolds number (based on

the particle size); a classical correlation is given by Schiller and Naumann (1933) [23]

as

f = 1 + 0.15Re0.687
P (4.3)

and a more recent empirical formulation based on numerical simulations by Sweeney

and Finlay (2007) [26] is given as

f = 1.7005

[
1− 0.2817

Re0.0826
P

sin−1(0.238ReP )

]−1

(4.4)

Opposing this aerodynamic torque is a resistive torque linked to the surface adhe-

sion which arises when a particle first begins to roll. The adhesive torque MA takes
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the form (Dominik and Tielens, 1995) [8]

MA = −kRRθ, (4.5)

Here kR is a resistive rolling coefficient and Rθ represents a rolling displacement. The

coefficient kR is a complicated quantity that depends on a combination of parameters

including the contact region radius for the particle, the particle’s elastic modulus and

the adhesive surface energy density σ. Experimentally, it has been found that adhe-

sive torque reaches a maximum, critical value that can alternatively be represented

by a ‘critical rolling angle’ θcrit; for micro-sized particles these values have been ex-

perimentally characterized by Ding et al. (2008) [7] and found to be on the order of

tens of milli-radians.

It follows that rolling will be initiated when the aerodynamic torque exceeds the

critical adhesive torque, that is, when FD > kRθcrit. Using the relations given above

and the known expression for kR, this rolling condition can be estimated in the fol-

lowing form for the wall shear stress:

τ critw ' 2σθcrit
fR

(4.6)

In deriving this result, the simplifying approximation has been made that the aero-

dynamic lift essentially negates the particle weight. Noting that the correction factor

f and the shear stress τw both depend on the Reynolds number, it follows that this

equation must be solved numerically.

4.2 Critical Shear Values for Micro-Particles

Equation (4.6) can be solved with knowledge of the critical rolling angle and the

adhesive surface energy. The studies by Ding et al. (2008) [7] and Benz et al. (2006)
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[4] have been used to approximate θcrit ≈ 0.04mrads and σ ≈ 60mJ/m2 with the

understanding that these parameter estimates are subject to significant uncertainty.

Table 4.1 lists critical shear stress for particle sizes ranging from 10µm to 100µm.

Shear stress values as a function of particle size can be viewed in a plot form in

Figure 4.1. The minimum shear stress required for particle rolling decreases rapidly

as particle size increases. With the mean fluid velocity acting on the centroid of the

particle, a larger particle offers a greater moment arm. Thus, providing a lower value

of critical shear stress.

Critical shear stress values can be used to predict regions of particle removal

on the impinged surface. Critical shear stress values for 10µm, 20µm, and 30µm

particles have been overlaid in Figures 3.4, 3.5, 3.6, 3.7, and Figure 3.8. Sections

where surface shear stress exceeds the critical value, represented by the dashed lines,

will provide sufficient shear stress to initiate rolling and eventually liftoff. For most

nozzle configurations, an annular region of removal below the nozzle tip is predicted.

JSC-1A lunar mare regolith simulant contains a broad range of particle sizes which

can be viewed in Figure 4.2. The particles were measured by NASA using a laser

diffraction particle size analyzer [19]. The average particle diameter was determined

to be 24.89 µm with a median particle diameter of 23.72 µm. A critical shear stress

of 8.9 Pascal was calculated using the average particle diameter of 24.89 µm. The

critical shear stress was then compared with the radial shear stress distribution for the

optimal nozzle configuration to determine a predicted removal radius of 0.012 m. The

experimental radius was measured to be 0.009 m. A radial shear stress distribution

with an overlay of critical shear stress can be seen in Figure 4.3. A graphical compar-

ison between the predicted removal radius and observed experimental removal radius

can be seen in Figure 4.4. The larger predicted removal radius could be the result of

irregular particle shapes which were not included in the analytical calculation.
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Table 4.1: Critical shear stress is shown as a function of particle size.

Critical Shear Stress as a Function of Particle Size

Particle Size (µm) Critical Shear Stress (Pa)

10 20.3

20 10.6

30 7.2

40 5.5

50 4.4

60 3.7

70 3.2

80 2.8

90 2.5

100 2.3
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Figure 4.1: Critical shear stress is shown as a function of particle size. Particle size
ranges from 10 micron to 100 micron. Critical shear stress scales nonlinearly with
particle size.
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Figure 4.2: A particle size distribution is shown for Lunar simulant JSC-1A. The
distribution was calculated by NASA using a laser diffraction particle size analyzer
[19].
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Figure 4.3: A radial shear stress distribution for the optimal nozzle configuration
and pressure condition is shown with an overlay of critical shear stress.
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Figure 4.4: A comparison between the experimental removal radius and the pre-
dicted radius is shown. The experimental radius is shown in red and the predicted
radius is shown in blue.

56



Chapter 5

Conclusions

In this work we have introduced the concept of an impinging, bound vortex flow struc-

ture as a means for removing dust particles from a surface in a controlled manner.

The motivating application for this methodology is the need for removing microscopic

dust particles from surfaces in lunar and Martian environments. To create the desired

flow structure, a composite nozzle device has been designed featuring a ring of angled

positive-pressure jets surrounding negative-pressure, central core. The positive pres-

sure jets are defined by a radial and tangential component. Through specific nozzle

configurations and pressure conditions, the combination of positive pressure jets and

negative pressure core can create a bound vortex flow condition where shear stress on

the impinged surface is enhanced. The rotational strength of the vortex was found

to increase with an increase in the tangential jet component. The radial component

governed the depth of vortex penetration. As the radial component increased, the

vortex deviated less from the nozzle’s exit plane.

A detailed parametric study of the turbulent 3-D flow structures resulting from

varying pressure conditions and nozzle configurations has been performed and utilized

to identify design conditions yielding the maximum shear stresses on the impinged

57



surface for purposes of dust removal. An ‘optimal’ nozzle configuration of 60 ◦ tan-

gential component and 15 ◦ radial component was determined to create the greatest

shear stress on the impingement surface. A pressure condition of 10 kPa inlet and

-40 kPa outlet was determined to provide the greatest shear stress enhancement. The

surface shear stress distribution for the ‘optimal’ design is largely axisymmetric and

is characterized by sharp peaks slightly offset from the central core that quickly decay

towards zero at the edge of the nozzle device. Supporting flow visualization experi-

ments with uncharged lunar regolith simulant have demonstrated the efficacy of this

methodology: dust particles are efficiently and controllably removed beneath the de-

vice leaving other dust particles essentially unperturbed. In summary, the results of

this study are encouraging and provide support for the continued development of this

concept.

5.1 Future Work

The integration of acoustic radiation would be a logical progression to further enhance

surface shear stress and improve particle removal. The work of Chen et al. (2009)

[6] could provide insight into appropriate frequency ranges and magnitudes. Ideally

a self contained nozzle design could be developed to simultaneously deliver fluid flow

and acoustic radiation.

To aid in flow visualization, the impingement surface could be heated to a uni-

form temperature and imaged with a thermal camera. The cooling effects could be

visualized as the surface is impinged by the nozzle under various flow conditions. The

magnitude of heat transfer could be correlated to a magnitude of surface shear stress.

PIV measurements of current flow fields could be captured to further support

computational results. The nozzle inlet could be seeded with highly reflective par-
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ticles. Flow field velocity distributions could be sampled along planes both parallel

and perpendicular to the axis of rotation.

Particle removal efficiencies could be evaluated using the current nozzle design.

Martian or Lunar regolith simulant could be distributed on various surfaces and then

removed using bound vortex impingement. A microscope could be used to collect

data on remaining particle size distributions. Experiments could be repeated using

charged particles to characterize the effect of particle charge on the removal process.
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Appendix A

Fluent Formulation [3]

A.1 Navier-Stokes Equations

Continuity / Conservation of Mass:

∂ρ

∂t
+5 · (ρ−→ν ) = Sm (A.1)

Where Sm is the mass added to the continuous phase.

Conservation of Momentum:

∂

∂t
(ρ−→ν ) +5 · (ρ−→ν −→ν ) = −5 p+5 · (¯̄τ) + ρ−→g +

−→
F (A.2)

Where p is the static pressure, ¯̄τ is the stress tensor, and ρ−→g and
−→
F are the gravita-

tional body force and external body forces. ¯̄τ is defined as:

¯̄τ = µ[(5−→ν +5−→ν T )− 2

3
5 ·−→ν I] (A.3)

Where µ is the molecular viscosity, and I is the unit tensor.
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A.2 Realizable k − ε Turbulence Model

Transport equations:

∂

∂t
(ρk) +

∂

∂xj
(ρkuj) =

∂

∂xj
[(µ+

µt
σk

)
∂k

∂xj
] +Gk +Gb − ρε− YM + Sk (A.4)

∂

∂t
(ρε)+

∂

∂xj
(ρεuj) =

∂

∂xj
[(µ+

µt
σε

)
∂ε

∂xj
]+ρC1Sε−ρC2

ε2

k +
√
νε

+C1ε
ε

k
C3εGb+Sε (A.5)

C1 = max[0.43,
η

η + 5
], η = S

k

ε
, S =

√
2SijSij (A.6)

Where Gk is the generation of turbulent kinetic energy due to mean velocity gradi-

ents. Gb is the generation of turbulent kinetic energy due to buoyancy. Ym is the

contribution of the fluctuating dilatation in the compressible turbulence to the over-

all dissipation rate. The terms C2 and C1ε are constants. The terms σk and σε are

the turbulent Prandtl numbers for k and ε. Sk and Sε are user defined source terms [3].

Turbulent Viscosity:

The eddy viscosity is computed from:

µ = ρCµ
k2

ε
(A.7)

Where

Cµ =
1

A0 + As
kU∗

ε

(A.8)

and
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U∗ =

√
SijSij + Ω̃ijΩ̃ij (A.9)

and

Ω̃ij = Ωij − 2εijωk (A.10)

Ω̃ij = Ω̄ij − εijωk (A.11)

Ω̄ij Is the mean rate of rotation tensor with an angular velocity of ωk. A0 and As are

the model constants [3]:

A0 − 4.04, As =
√

6cosφ (A.12)

Where

φ =
1

3
cos−1(

√
6W ),W =

SijSjkSki

S̃3
, S̃ =

√
SijSij, Sij +

1

2
(
∂uj
∂xi

+
∂ui
∂xj

) (A.13)

The model constraints used in Fluent’s formulation are:

C1ε = 1.44, C2 = 1.9, σk = 1.0, σε = 1.2 (A.14)

A.3 Pressure-Based Solver∮
ρ−→υ −→υ · d

−→
A = 0 (A.15)

∮
ρ−→υ −→υ · d

−→
A = −

∮
ρI · d

−→
A +−

∮
¯̄τ · d
−→
A +−

∮ −→
F dV (A.16)

where I is the identity matrix, ¯̄τ is the stress tensor, and
−→
F is the force vector [3] .
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A.4 Discretization of the Continuity Equation

Nfaces∑
f

JfAf = 0 (A.17)

where Jf is the mass flux through face f , ρυn [3] .

Jf may be written as:

Jf = ρf
ap,c0υn,c0 + ap,c1υn,c1

ap,c0 + ap,c1
+df ((pc0+(5p)c0·~r0)−(pc1+(5p)c1·~r1))) = Ĵf+df (pc0−pc1)

(A.18)

The terms pc0 , pc1 and υn,c0 , υn,c1 are the pressures and normal velocities and Ĵf

contains the influence of velocities in these cells. The term df is a function of āp,

which is the average of the momentum equation ap coefficients for the cells on either

side of face f [3] .

A.5 Pressure-Velocity Coupling

The SIMPLE algorithm uses a relationship between velocity and pressure corrections

to enforce mass conservation and to obtain the pressure field [3] .

If the momentum equation is solved with a guessed pressure field p∗, the resulting

face flux, J∗f [3] .

J∗f = Ĵ∗f + df (p
∗
c0
− p∗c1) (A.19)

does not satisfy the continuity equation. A correction J ′f is added to the face flux J∗f

so that the corrected face flux, Jf [3] .

Jf = J∗f + J ′f (A.20)
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satisfies the continuity equation. The J ′f be written as

J ′f = df (p
′
c0
− p′c1) (A.21)

where p′ is the cell pressure correction[3].

The SIMPLE algorithm substitutes the flux correction equations into the discrete

continuity equation to obtain a discrete equation for the pressure correction p′ in the

cell [3]:

aPp
′ =
∑
nb

anbp
′
nb + b (A.22)

where the source term b is the net flow rate into the cell:

b =

Nfaces∑
f

J∗fAf (A.23)

Once a solution is obtained, the cell pressure and the face flux are corrected using

p = p∗ + αpp
′ (A.24)

Jf = J∗f + df (p
′
c0
− p′c1) (A.25)

Here αp is the under-relaxation factor for pressure. Jf is the corrected face flux [3] .

A.6 Second-Order Upwind Scheme

The face value φf is computed using the following expression [3] :

φf,SOU = φ+5φ · −→r (A.26)
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Where φ and 5φ are the cell-centered value and its gradient in the upstream cell. −→r

is the displacement vector from the upstream cell centroid to the face centroid. The

gradient 5φ is determined in each cell. [3] .
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Figure A.1: A technical drawing of the experimental nozzle assembly is shown. The
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tial and radial configuration. A 0 ◦ tangential component and 15 ◦ radial component
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Figure A.2: A technical drawing of the ‘optimal’ experimental nozzle is shown. A
60 ◦ tangential component and 15 ◦ radial component is depicted.
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