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ABSTRACT 

 

 

Many of the benefits that are generated by the natural environment are external to 

normal market transactions and are consequently undervalued and under-provisioned 

even though they substantially contribute to human welfare. One approach to valuing 

certain environmental goods and services is through a regression technique known as the 

property hedonic model. This model considers a property as a bundle of attributes where 

the total price of the property is decomposed into marginal, implicit prices for property-

specific attributes, the context or neighborhood in which a property resides and access to 

environmental amenities.  

 

The goal of this dissertation research is to estimate the value of proximity to the 

environmental amenities of parks and open spaces using a property hedonic model for the 

City of Baltimore and suburban areas of Baltimore County. While the property hedonic 

model has been commonly used to value environmental benefits, few of these studies 

have distinguished the spatial scales of neighborhood characteristics from the property-

specific characteristics within a regression model. In this research, a multilevel modeling 

approach to the typical property hedonic model was used to model the effects of 

attributes at different spatial scales. This approach also allowed the effect of 

environmental attributes to vary across geographic space and interact with attributes 

across spatial scales. Such methods provide a more realistic accounting of the dynamic 

spatial variation of the value of environmental goods and services. 

 

For parks in the City of Baltimore, the results of valuing proximity to parks 

showed a spatial dynamic not often captured in property hedonics. The overall fixed 

effect for distance to park was negative but insignificant. When allowed to vary by block 

group, the random effect for this variable indicated that only two-thirds of the 401 

neighborhoods positively valued increased proximity to parks. No interactions were 

found to be significant for the entire study. However, for the population of block groups 

whose properties did positively value proximity to parks, the results of interactions with 

neighborhood and park characteristics showed that smaller and more open parks were 

valued higher than larger and more wooded parks. A high population density also 

increased the value for a property in close proximity to a park. Finally, properties with 

smaller yards placed a higher value on proximity to parks than those properties with 

larger yards, indicating a substitution effect. 

 

For open space in Baltimore County, the results indicated that while higher 

proportions of privately-owned open space surrounding a property increased the value of 

that property, open space that was publicly-accessible was not significantly valued. 

Privately-owned open space that was potentially developable was less than half the value 

of the positive effect of private, open space under conservation easements or other 

development restrictions.  
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CHAPTER 1: LITERATURE REVIEW 

 

1.1. Environmental Attributes and Valuation Methods 

The natural environment provides a wide variety of goods and services that are 

crucial to human welfare. Ecosystem goods and services are often divided into four 

groups: supporting services; production services; regulation services; and cultural 

services (Assessment 2003; Costanza et al. 1997; de Groot et al. 2002). Supporting 

services refer to the primary services that are necessary for the existence of all other 

services such as soil formation, nutrient cycling and net primary production. Production 

services refer to the provision of food, fuels and raw materials and are services most 

readily included into market transactions. Regulation services refer to the ability of the 

environment to regulate climate, hydrologic and biological processes such as the 

sequestering of carbon to moderate global temperatures or the ability of wetlands to 

moderate flooding from storms. Finally, cultural services provide aesthetic and recreation 

opportunities as well as contributing to cultural or religious heritages.  

Most of the benefits that are generated by the natural environment, also referred to 

as “environmental externalities”, are external to normal market transactions and 

consequently, are often undervalued and under-provisioned even though they greatly 

impact the quality of people’s lives. Capturing the monetary value of these benefits can 

improve human welfare because it allows for more informed choices in weighing 

tradeoffs between conservation and economic development. Conflicts between the natural 

and built environment can occur through the outright conversion of natural areas into 
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developed ones or through the decline in quality of the natural environment from 

extraction or waste production related to the production and manufacture of goods. 

Consequently, the impacts of many environmental disamenities, or negative 

environmental externalities, such as air and water pollution, are over-provisioned when 

their costs are not captured in the market.  

The focus of this dissertation research is on valuing cultural services, specifically 

recreation and aesthetic amenities, provided by parks and open spaces in urban and 

suburban environments. The non-market, economic value of the benefits of 

environmental amenities and disamenities can be captured through stated or revealed-

preference techniques. With a stated-preference approach, such as Contingent Valuation 

or Contingent Choice, individuals specify their preferences (e.g. through willingness to 

pay) for specific changes to or combinations of environmental attributes within a 

hypothetical market (Mitchell and Carson 1989).  

The value for environmental attributes derived from these studies may be broadly 

categorized as either “use” or “non-use” values.  With use values, the benefits accruing to 

an individual are related to seeing or using the environmental amenity, such as the 

opportunity for recreation or providing aesthetically pleasing views. With non-use values, 

an individual may get satisfaction from, for example, the existence of wilderness or the 

ensured protection of rare and endangered species. Estimates of non-use values (also 

known as existence, intrinsic, preservation and passive-use values) can comprise a 

substantial proportion of the total economic value of ecosystem goods and services and 

ignoring such values can cause serious misallocations for the provision of these attributes 
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(Freeman 2003). For example, Carson and others (1999) found that lost non-use values 

resulting from the Exxon Valdez oil spill amounted to $2.8 billion dollars for the United 

States. 

In contrast to the stated preference approach, revealed-preference techniques only 

capture those environmental attributes that are directly usable to the individual. With this 

method, use values can be inferred from information on market transactions for related 

goods (Freeman 2003). One such revealed preference method is known as the property 

hedonic model in which an individual can choose a level of use of an environmental 

attribute through their choice of location where they purchase a property. This type of 

valuation method is the focus of this dissertation research. 

 

1.2. Background to the Property Hedonic Model 

The foundation for the property hedonic model was presented by Rosen (1974) 

who showed the existence of a property market equilibrium where consumers and 

suppliers maximize their respective utility and profits by choosing to purchase and 

produce properties with distinct combinations of desirable attributes. While the value of 

each attribute is implicit and therefore not directly observed in the property transaction, 

the marginal economic contribution of each of these attributes to the total transaction can 

be estimated from a regression model using property sales data from an area with varying 

combinations of these attributes. Etymologically, the term “hedonics” is derived from the 

Greek word for pleasure, “hedonikos”. In the context of the property market, it refers to 



 

4 

the utility or satisfaction one derives through the consumption of goods and services 

related to the purchase of property. 

These characteristics can be broadly grouped into three categories: property-

specific (including both the land and structural improvements); contextual neighborhood-

specific (the socio-economic context); and environmental (locational) (Freeman 2003). 

Structural attributes refer to the tangible qualities of a dwelling and parcel such as lot 

size, house size (square footage), quality, age, number of bathrooms. Contextual 

attributes are those shared by a neighborhood such as crime rate, ethnicity, income and 

other socio-economic factors. Locational attributes refer to the proximity and/or 

accessibility of various land uses and buildings such as hospitals, schools, highways, 

industrial areas, shopping centers as well as proximity to environmental amenities such as 

urban green spaces of parks and golf courses. A traditional property hedonic model can 

be written in terms of the house price as function of a vector of these structural 

characteristics (S), neighborhood characteristics (N) and environmental or locational 

characteristics (L) (Equation 1.1). 

 

P = f (L, S, N) Eq. 1.1 

 

The price of the house is the sum of the implicit prices for the attributes that are 

contained in the hedonic model. The implicit marginal price of any single attribute is 

revealed in the regression coefficient as the additional amount that must be paid for an 

individual buyer to move to a housing bundle with a higher level of that characteristic, 

ceteris paribus (Freeman 2003).  
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1.3.1 Structural Attributes 

A large amount of the variation in house price can be explained by the structural 

characteristics of that house, especially the number of rooms and bathrooms, the amount 

of floor space and the lot size. 

Residential properties with greater floor space are desired by big families and 

buyers who can afford a better standard of living. However, house and lot size are often 

log transformed to represent the declining marginal value of these features. A home buyer 

may greatly value large amounts of floor space but the incremental value of each 

additional square foot between 500ft
2
 and 1,000ft

2
 will be greater than for the incremental 

difference between 1,000ft
2
 and 1, 500ft

2
. Research has also found that the age of a house 

is often negatively related to the house price. This is because ceteris paribus, older 

houses are worth less because they have obsolete fixtures and appliances, have higher 

annual maintenance and repair costs, and typically require more energy to heat and cool 

the living space (Clapp and Giaccotto 1998; Knight and Sirmans 1996). The value of a 

house is expected to depreciate with age but at a declining rate. This suggests that a log 

transformation is most suitable for this characteristic. However, other research has found 

that after a number of years, age will often be positively associated with house price. This 

may be due to unknown renovations or the “vintage effect” (Goodman and Thibodeau 

1995) of older properties. For a study area with a considerable proportion of vintage 

houses, a quadratic transformation is preferable to a log transformation. 
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The quality of the construction of the house is also an important attribute in the 

property hedonic model. However, it is difficult to find a single objective metric for this 

characteristic and as a consequence most researchers tend to exclude this characteristic 

from their models. For the State of Maryland, where quality of construction is a measure 

within the state’s appraisal database, some studies have found that higher quality leads to 

a significantly positive effect on house price that is approximately double that of the 

effect of average quality construction (Geoghegan 2002; Troy and Grove 2008). 

 

1.3.2. Neighborhoods Attributes 

The neighborhood where a house is located also plays an important role in the 

valuation of a house. The distinction between neighborhood and locational characteristics 

is somewhat artificial as both groups are related to the spatial context that surrounds a 

property. However, neighborhood attributes are often considered as such because they are 

“relative locational” attributes (Orford 2002), such as socio-economic characteristics, that 

are shared by a contiguous geographic area and cannot be disaggregated to the property 

level (although they may be aggregated further). The effects of “fixed locational” 

attributes, on the other hand, are characteristic that uniquely effect and can be measured 

for every individual property (Orford 2002). These unique, fixed locational attributes, 

such as distance to an amenity, can also be aggregated to the neighborhood level and 

have a separate effect from the effect at the property level. This aspect is discussed 

further in the section on multilevel modeling. 
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The quality of the public school district in which a property resides has been 

found to have an impact on house prices, with characteristics such as high test scores 

showing significant positive benefits to the house price (Brasington 1999; Clapp et al. 

2007; Downes and Zabel 2002; Goodman and Thibodeau 1998; Sedgley et al. 2008).  

Both actual and perceived levels of crime have been found to negatively affect 

property prices. Gibbons (2004) found that high levels of vandalism had a much greater, 

negative impact on property prices than high levels of burglary. He posited the argument 

that the visibility of vandalism motivated fear of crime in a community even when levels 

of robbery are relatively low. Lynch and Rasmussen (2001) found a significant drop in 

house price in areas with high levels of violent crime but no effect from high levels of 

burglary. They attributed this lack of significance to higher reporting rates in wealthier 

communities. 

Other socio-economic variables, such as percent unemployment, population 

density, demographic distribution and median household income have been found to 

significantly affect house prices (Anderson and West 2006).  

 

1.3.3 Locational Attributes 

Many of the original property hedonic studies included distance to the Central 

Business District (CBD) as the primary and often sole measure of location. Increasing 

distances to the CBD were expected to reduce accessibility and increase travel costs, 

thereby reducing the value of a house. However, Coulson (1991) observed that prior 

research had great difficulty in finding that prices significantly declined with distance 
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from the CBD. Since then, many studies have included distances to multiple employment 

centers (McDonald and McMillen 1990; Orford 2000; Ottensmann et al. 2008) and other 

measures of accessibility such as distance to highway interchanges or rail hubs 

(McMillen and McDonald 1998; Troy and Grove 2008). Many of these studies found 

distances to secondary employment centers to be significant, with their inclusion in the 

models improving predictions beyond those obtained by using only distance to the CBD. 

Des Rosiers and others (2000) estimated travel times from each property to the CBD and 

to highways, shopping centers, schools, and universities as a better metric for 

accessibility than just distances. 

Other studies have focused on the relation of residential housing prices to 

environmental externalities in addition to measures of accessibility. Some of the 

environmental amenities that have been researched are discussed in the next section, 

while others have examined the effects of negative environmental externalities such as: 

hazardous waste sites (Deaton and Hoehn 2004; McCluskey 2003); landfills (Hite et al. 

2001); superfund sites (Gayer et al. 2000); air pollution (Kim et al. 2003) and flood risk 

(Bin and Polasky 2004). There are also studies that found the externality of noise from 

traffic provided a significant negative effect on property values (Palmquist 1992; 

Wilhelmsson 2000). 

 

1.3. Environmental Attributes and the Property Hedonic Model 

The research by Ridker and Henning (1967) was one of the first property hedonic 

studies that attempted to use residential property values as a measure of the economic 
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benefits that accrue to individuals from improvements to the environmental attribute of 

air quality. By regressing Census tract property values on a measure of sulfate air 

pollution, they found that a change in pollution level was significantly related to a change 

in property value. They argued that a change in the value for multiple, individual 

residences could be summed to measure the total benefits that accrue to a geographic area 

as a result of improvements to air quality.  

In the decades that followed, the property hedonic model was used to estimate the 

value of numerous environmental attributes, particularly of different land uses and the 

changes in the quality or quantity of those areas. Some of the more recent environmental 

amenities that property hedonic models have attempted to estimate are: urban parks 

(Bolitzer and Netusil 2000; Morancho 2003; Orford 2002; Troy and Grove 2008); 

greenbelts (Lee and Linneman 1998); forest preserves (Garrod and Willis 1992; Thorsnes 

2002; Tyrväinen and Miettinen 2000); wetlands (Mahan et al. 2001); and agriculture 

(Bastian 2002). The general theory and findings from this research is that undeveloped, 

open spaces, especially in urban built environments, provide substantial benefits to 

residential property values. However, the magnitude of this impact or even whether this 

impact is beneficial or negative varies across studies and depends upon the type and 

characteristics of the open space and the surrounding context of the neighborhood.  

With respect to the type of urban green space, Bolitzer and Netusil (2000) found 

that urban parks and golf courses both have positive impacts, while cemeteries have an 

insignificant, negative impact on properties. Anderson and West (2006) found that urban 

park and golf course proximity provides a significant benefit while proximity to 
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cemeteries has a negative impact. Smith and others (2002) found a negative effect with 

proximity to suburban parks and positive impact with proximity to golf courses. 

Park characteristics such as size, vegetation cover and crime have also been found 

to affect the proximity-price relationship. Lutzenhiser and Netusil (2001) found that 

small, urban parks have a negative impact on nearby properties but larger, natural 

(wooded) areas have a positive impact for homes in Portland, Oregon. Their findings 

suggest that the size of the green space has an important effect on price-proximity 

relationship. They theorize that the benefits from large parks outweigh the negative 

externalities of traffic and noise that may be associated with smaller, urban parks. 

Anderson and West (2006) found the same, beneficial effect of size for natural areas 

(special parks) but a detrimental effect of size for neighborhood parks. Garrod and Willis 

(1992) found that parks primarily consisting of conifers have a negative impact while 

deciduous tree cover created a positive impact. Tyrväinen (2000) and Thorsnes (2002) 

found that proximity to forested views and access is beneficial to property prices 

although for small wooded strips, Tyrväinen found a negative impact.  

Neighborhood specific factors may also affect the value of proximity to park. 

Anderson and West (2006) found that urban parks are generally more beneficial to 

nearby properties than suburban parks in the area around Minneapolis-St. Paul, 

Minnesota. High income and high density neighborhoods increased the value of 

proximity to these urban parks. Dehring and Dunse (2006) found that home buyers in 

high density neighborhoods favored proximity to urban parks while there was no 

significant effect for lower density neighborhoods. Troy and Grove (2008) found that 
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higher levels of crime in the areas around parks reduced the positive impact of park 

proximity to the point where there was a negative impact of park proximity on properties 

near high-crime parks. 

Other research has focused on values related to water such as: proximity to water 

bodies (Lansford and Jones 1995) changes in water quality (Leggett and Bockstael 2000; 

Poor et al. 2007) and river restoration from dam removal and riparian enhancement 

(Lewis et al. 2008; Mooney and Eisgruber 2001). Leggett and Bockstael (2000) reported 

that improvement to water quality at beaches in Maryland, using fecal coliform bacteria 

as the metric for pollution, has a significant, positive effect on property values. On the 

other hand, Mooney and Eisengruber (2001) found that lowering in-stream water 

temperature, by increasing riparian tree cover and shade, reduced nearby home values. 

Such discrepancies may be related to whether it is the recreational opportunities or the 

aesthetic amenities which are most important to nearby properties. 

The most common approach to estimating the value of these environmental 

amenities has been to include a measure of distance from a property to the amenity as a 

proxy for use values of aesthetics (usually visual) or recreational opportunities provided 

by the environments. However, the visual aesthetics of an environmental attribute may 

either be experienced at the amenity location or from the view of that location from a 

property. It may be beneficial to include both distance and visual metrics into a property 

hedonic model, especially in the case of the use values for water. Benson and others 

(1998) examine the effect of mountain, lake and ocean views on property values in 

Washington State and found that both full and partial views added a significant benefit 
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over houses at similar distances from these attributes but were without a view. Bourassa 

and others (2004) also found that ocean views in New Zealand provide a significant 

benefit over view-less properties that were the same distance from the coast. Paterson and 

Boyle (2002) and Muller (2009) argue that including only a measure of distance to an 

environmental attribute and ignoring a metric for view to that same attribute may result in 

a mis-specification of the model and consequently a bias in the resulting coefficient for 

the distance metric.  

In addition to the commonly-studied distance and view metrics of environmental 

attributes, some researchers have measured the composition and spatial distribution of 

land use. Geoghehan and others (1997) found that having a relatively high amount of 

immediately adjacent visual and recreation amenities is considered to be beneficial by 

local residents but that a high proportion of open space within 1km of their property 

reduces the conveniences associated with developed areas such as shopping and 

entertainment. Acharaya and Bennett (2001) and Kestens and others (2004) reported 

similar results on the difference between high levels of open space in the immediate 

neighborhood of a property versus less-valued open areas that are a short driving-distance 

from a residence. 

 

1.4. Technical Issues with the Property Hedonic Model 

The property hedonic regression results is questioned by the numerous statistical 

issues which must be carefully considered and controlled for before a valid interpretation 

of regression results can be made. The model may be mis-specified as a result of the 
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functional form of the model, collinearity among variables and omitted determinants of 

property value. There are also spatial issues of dependency, non-stationarity and scale 

that exist in a housing market composed of interrelated sub-markets. 

 

1.4.1. Functional Form 

In estimating a relationship between environmental amenities and property prices, 

the choice of functional form is not always clear. Rosen (1974) stressed that economic 

theory fails to indicate that any particular form is appropriate and a variety of functional 

forms have been used in the hedonic literature. A linear form assumes that an individual’s 

preferences are linear, implying that perfect repackaging of property characteristics is 

possible (Freeman 2003). However, in property markets, individual house characteristics 

are inseparable; an individual cannot mix characteristics in any other level than is already 

available in each house (Garrod and Willis 1992). Also, since the price function is an 

equilibrium relationship determined in the marketplace by the interactions of individual 

buyers and sellers (Taylor 2003), the existence of a linear relationship is unlikely.  

Early research tried using alternative forms such as the log-linear or double-log 

forms where the best form was chosen based on the goodness of fit (Freeman 2003). 

While the form that is chosen should ideally improve the model fit and help to satisfy 

important assumptions of OLS regressions, such as normally distributed residuals and 

homoscedasticity, this is not the main issue with choosing functional forms. The goal of 

finding a proper functional form is to overcome problems associated with the non-

linearity that is often found in hedonic regression equations (Goodman and Thibodeau 
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1995). Substantively, this means that the proper functional form should be chosen so that 

marginal value for any given property attribute does not vary across the range of house 

prices.  

Halvorsen and Pollakowski (1981) recommended allowing both for 

transformation of the dependent variable and for different transformations of each 

independent variable using a quadratic Box-Cox transformation (Box and Cox 1964). 

However, Freeman (2003) suggests this approach is more cumbersome than necessary 

while Palmquist (1992) recommends only transforming the dependent variable and the 

independent variables that are the main effects. Cropper and others (1988) suggest that in 

models with missing or proxy variables, a common occurrence in property hedonic 

studies, that simple functional forms ( linear, quadratic, log-log and log-linear) or linear 

Box-Cox transformations are preferred over quadratic Box-Cox forms. This is because 

omitted variable bias will affect more coefficients in the quadratic forms than in simpler 

functional forms. Halstead and others (1997) note that the choice of functional form can 

affect both variable significance and the magnitude of the coefficients. 

Since the purpose of these estimated regression functions is to generate amenity 

values, it may be preferable to use a relatively simple form (Freeman 2003). A log-linear 

form allows the marginal effect of each independent variable to vary with the level of the 

dependent variable. Thus, the marginal effects of independent variables change as house 

price varies. The double-log form, in which both the dependent variable and the main 

effects are transformed using the natural logarithm, may provide the most interpretable 
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results. With this form, a coefficient is interpreted as an elasticity; the percentage change 

in the dependent variable given the percentage change in an explanatory variable.  

A Box-Cox transformation analysis can be used to provide guidance on whether 

such simple forms are adequate for satisfying regression assumptions. The Box-Cox 

transformation of the dependent variable is shown as: 

 

 

Eq. 1.1 

 

With this test, the parameter, λ, is estimated through maximum likelihood to find the 

optimal transformation of the dependent variable.  This parameter can then be tested for 

significant differences between the optimal value of λ and three cases of λ that 

correspond to simpler functional forms: a reciprocal transformation, where λ=-1; a log 

transformation, where λ=0; and a linear (untransformed) form, where λ=1. Some 

researchers have compared Box-Cox transformations with simpler functional forms and 

found that a log transformation of the dependent variable (semi-log) or of both dependent 

and independent variables (double-log) performed the best (Anderson and West 2006; 

Anthon et al. 2005).  

 

1.4.2 Submarkets 

Rosen’s (1974) development of the theory for the property hedonic model 

assumed that both supply and demand factors were mobile and elastic and that an entire 
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city could be viewed as having a single housing market in equilibrium. Equilibrium 

occurs when the market settles on a hedonic price supply-demand curve that ensures 

households (within their budget constraints) cannot increase their utility by choosing a 

different property and sellers cannot increase their profits by increasing the property’s 

price or changing its characteristics. With this assumption, the price of a property and the 

availability and contribution of its constituent characteristics are invariant across 

geographic space (Goodman and Thibodeau 1998). Since Rosen work, most researchers 

have found that housing markets are typically not in equilibrium and that the assumption 

of a single market is unrealistic except for very small study areas. The use of a single 

regression model for an entire city should therefore be considered inappropriate. Once a 

house is built, its characteristics are fixed (ignoring the potential for costly renovation) 

and it likely shares similar characteristics as the surrounding properties. Although more 

elastic than house supply, consumer preferences can also create market segmentation. 

People of different ethnicities, generations, incomes or social classes may desire 

particular combinations of property, neighborhood and locational characteristics when 

seeking to purchase a residence (Borjas 1998). Consumer driven segmentation can be 

further exaggerated through information constraints such as the tendency of the real 

estate agent to profile a potential buyer (racially or by income status) and selectively 

present properties of specific types or in specific types of neighborhoods depending on 

the characteristics of the potential buyers (Orford 2000).  

While the existence of housing submarkets is commonly accepted, there has been 

little agreement on the method of identifying housing submarkets.  Some researchers 
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segment the market by sectors, that is, differentiating the housing stock by structural 

attributes such as dwelling type (Ekeland et al. 2002). Other researchers focus on markets 

based on locational-contextual attributes such as income classes or ethnicities. Orford 

(2000) argues that rather than distinguishing between sector-defined or context-defined 

submarkets, there is a joint influence of sector and context attributes that should be 

modeled simultaneously. Day and others (2004) used aspatial clustering methods to 

group properties as a function of either the housing stock/structural attributes or by 

neighborhood characteristics. They found that the property market was best segmented by 

socio-economic characteristics rather than housing stock. Even when segmenting by 

context rather than sector, there has been little consistency of the spatial units used to 

define these sub-markets. Many researchers use Census units to delineate the boundaries. 

Bourassa and others (2003) found that geographic, sub-market boundaries defined by real 

estate appraisers provided a better model than aspatial clustering techniques. Goodman 

and Thibodeau (1998) found that school districts were appropriate for determining sub-

markets. 

 

1.4.3. Spatial Dependency, Non-Stationarity and Scale 

This issue of market segmentation raises spatial statistical concerns of spatial 

dependency, non-stationarity and inappropriate scale for the property hedonic model.  

Spatial dependency (association or correlation) refers to the likelihood that the values of 

observations for a particular variable become more similar with spatial proximity. Real 

estate agents and appraisers price and assess homes based on the value and characteristics 
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of nearby homes, leading to further spatial dependency in house price and important 

characteristics such as house size (Orford 2000). Since residuals capture unexplained 

variation in the model, spatial error autocorrelation reveals the existence of a spatial 

association that has not been incorporated into the model (Paez and Scott 2004).  The 

problem with the presence of spatial error auto-correlation in a regression model is that 

the statistical assumption regarding the independent distribution of errors is violated. As a 

consequence of these spatial dependencies (lags and error), parameter estimates will be 

biased and inefficient, respectively (Anselin 1988). This leads to artificially smaller 

standard errors and the possibility of finding a spurious significance of an effect when 

one does not actually exist (Type I error). Much of this dependency can be attributed to 

and controlled for by market segmentation and the use of multilevel models as discussed 

in the section below. The Moran’s I statistic (Cliff and Ord 1981) can be used to test 

whether the final model has sufficiently accounted for spatial error autocorrelation. 

However, Lauridsen and Kosfeld (2006) suggest that the a high Moran’s statistic may 

result from both strong positive spatial correlation and spatial non-stationarity. The 

Lagrange Multiplier test is recommended for distinguishing between these two processes 

(Anselin 1988; Lauridsen and Kosfeld 2006; Mueller and Loomis 2008). 

Non-stationarity refers to the existence of a heterogeneous (non-constant) 

relationship between dependent and independent variables across geographic space 

(Fotheringham et al. 2002). Global approaches to hedonic modeling, such as using OLS, 

do not accommodate local, spatial variations in these relationships. A coefficient that is 

reported as insignificant within a global regression model may be the result of highly 
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significant positive relationships cancelling out the effect of significant negative 

relationships in others areas. 

Spatial scale is commonly viewed as being composed of two components: grain 

and extent (Allen and Hoekstra 1992; Turner et al. 1989). Grain is the fundamental unit 

of measurement or observation and is also referred to as resolution or unit of analysis 

while “extent” refers to the boundary of the area or system that is being studied. The use 

of property hedonic models to capture the value environmental attributes requires that 

observations come from a single housing market (Rosen 1974), which suggests that the 

ability to define what is an appropriate extent or boundary to a hedonic study is an issue 

that itself requires further research. However, the focus of this discussion is on the scale 

component of grain. Issues with spatial dependencies and non-stationarity are 

complicated by spatial scale because by simply changing the resolution it may be 

possible to make homogeneity out of heterogeneity and vice versa (Polsky and Easterling 

2001). A classic example of this is problem was presented by Openshaw and Taylor 

(1979) in which the relationship between percent elderly voters and percent republican 

votes varied from a significant positive to a significant negative relationship depending 

on the resolution (and configuration) of the political boundaries used in the analysis. 

This sensitivity to changes in unit size in the relationships between: the 

independent and dependent variable (and the issue of non-stationarity); individual 

observations (spatial lag); and the residuals (spatial error autocorrelation) is also known 

as “scalar dynamics” (Geoghegan et al. 1998). While much of the more recent research 

on property hedonic models has attempted to control for or explicitly model issues of 
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spatial dependencies and non-stationarity, few have attempted to explicitly analyze the 

scalar dynamics of these issues because they cannot be effectively modeled with standard 

regression techniques. 

The context in which a property resides is one example of exhibiting scalar 

dynamics. Both individual property attributes and their neighborhood averages can 

differentially affect house prices. In addition, cross-scale interactions can occur where 

large scale attributes such as neighborhood socio-economic characteristics mediate or 

constrain the preference for environmental goods, such as proximity to open space that is 

occurring at the individual level. This higher-level constraint is viewed as an important 

aspect of hierarchy theory (O'Neill et al. 1986), which suggests that modeling of different 

scales should occur simultaneously.  

Explicitly modeling multiple scales is useful for accounting for these statistical 

issues as well as accounting for the change in the value of environmental attributes due to 

scales of human perception. While knowledge and appreciation of the environment can 

originate from unique occasions, much of how an individual interprets and values 

environmental attributes is determined by their daily activities and experiences that 

spatially bind the individual into “life spaces” (Reginster and Edwards 2001). This notion 

of “embedding” or place-based experiences will vary with a particular “audience” or 

consumer group (e.g. lifestyles, ethnicities, cultures,  and generations) and consequently 

the value that is placed on a particular environmental attribute will vary with these 

different audiences (Hein et al. 2006).  
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1.5. A Multilevel Approach to Property Hedonic Models 

With the multilevel approach to developing a property hedonic model, individual 

properties are nested within neighborhoods within a city (Brown and Uyar 2004; Gelfand 

et al. 2007; Goodman and Thibodeau 1998; Orford 2000, 2002). The goals of these 

models is to allow the simultaneous examination of the effects of group-level and 

individual-level variables on individual-level outcomes (the property price) while 

accounting for the non-independence of observations within groups (the neighborhoods).  

Multilevel models were initially developed by educational researchers to examine 

the effects of context, such as classroom and school characteristics, on individual 

scholastic achievement (Goldstein 1993; Raudenbush 1991). More recently, the use of 

multilevel models has grown rapidly in geographic-orientated research such as 

relationships of socio-economic conditions and individual health (Beland et al. 2002; 

Diez-Roux et al. 2000; Fone and Dunstan 2006; Klassen et al. 2005; Langford et al. 1998; 

Moon 2003; Mujahid et al. 2007; Robert 2004; Soobader 2006; Subramanian 2001), 

epidemiology (Mauny et al. 2004), environmental justice (McLeod et al. 2000), criminal 

activity (Browning et al. 2004) and land use (Hoshino 2001; Overmars 2006; Pan 2005). 

This is an important development because geographical analyses are intrinsically spatial 

and involves the grouping of elementary units of interest (e.g. households or individuals) 

into higher-level spatial clusters such as neighborhoods (Orford 2000), communities 

(Moon 2003) or travel analysis zones (Bhat 2000).  

There are several statistical and substantive reasons for explicitly modeling 

individual properties as belonging to neighborhoods. First, spatial dependencies (either 
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correlation in variables or the residual) are likely to be common in property hedonic 

analyses since individual properties in the same neighborhood are likely to be similar in 

ways not fully accounted for by the property and neighborhood variables included in a 

single-level model (Jones and Bullen 1993). With a multilevel model, the house price and 

other important house characteristics found at the property level can be included at the 

neighborhood level to control for dependencies in house price and characteristics (spatial 

lag processes). In the property market, this type of dependency is known as a 

compositional effect whereby the neighborhood averages of individual property attributes 

affect the value of a individual property (Orford 2002). Multilevel models also account 

for the spatial error autocorrelation (dependence of the residuals) by differentiating 

between-individual errors from between-neighborhood errors (Orford 2000). If this 

dependency was not modeled, the standard errors of the independent variables would be 

biased downwards (underestimated), which results in spuriously significant effects 

(Snijders and Bosker 1999). 

Second, it is possible that an average effect for a particular attribute does not 

represent local conditions that may occur in different areas of a study area; the issue of 

non-stationarity in property hedonic studies (Cho et al. 2006; Troy and Grove 2008). A 

possible outcome of estimating an average effect, also known as a global effect, is that 

contrasting relationships in different areas of the study may cancel each other out, leading 

to a globally insignificant estimate for that variable’s coefficient (Fotheringham et al. 

2002). By considering a variable as a random effect, instead of a global fixed effect, that 

variable is allowed to vary across neighborhoods. While it is possible to build OLS 
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regressions to determine this effect for each neighborhood, there will be the problem that 

there are insufficient observations within any given neighborhood leading to unreliable 

estimates. In multilevel models, random effects are constructed with Empirical Bayesian 

techniques which borrow strength across neighborhoods and shrink or smooth estimates 

for unreliable neighborhoods (those with few observations) towards the overall mean 

(Raudenbush and Bryk 2002). This means that the implicit prices of certain attributes 

(those that are considered random effects) are optimally weighted averages that combine 

information derived from the group itself with the mean from all other neighborhoods 

(Diez-Roux 2002). While unreliable submarket estimates are differentially shrunk 

towards the global estimate, submarkets with many properties will not be affected by this 

shrinkage. The Empirical Bayesian variation in slopes between neighborhoods is added to 

the global fitted value to reveal areas of positive and negative relationships and is one of 

the fundamental advantages of multilevel modeling (Subramanian 2001). 

The reason for the existence of non-stationarity can then be examined by allowing 

that variable to interact with neighborhood-level variables (Steenbergen and Jones 2002). 

By specifying cross-level interactions, it is possible to determine whether the effect of a 

level-1 variable is conditioned or moderated by a group-level variable and is termed, 

“causal heterogeneity” by Western (1998). For example, neighborhood population 

density may change across a study area and have a direct effect on house prices. Also 

allowing this variable to interact with a locational variable, such as distance to park, may 

moderate the park-price relationship so that in areas with high population density, 
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proximity to parks may be more highly valued than areas with a much lower population 

density. 

Third, heterogeneity (varying relationships) between neighborhoods needs to be 

distinguished from the heterogeneity among individual properties. Ignoring this 

differentiation and modeling the behavior of interest at a single level invites the pitfalls of 

ecological or atomistic fallacies. Atomistic and ecological fallacies are avoided because 

the predictors and unexplained variation are modeled at the appropriate level (Jones and 

Duncan 1996).  When group-level data, such as Census data, is included in an OLS 

model whose focus is the individual, the interpretation of the results may lead to the 

ecological fallacy.  With this situation, data (and the processes they measure) that are 

collected at a broader scale are assumed to have the same importance, associations and 

interactions at the individual level as at the higher level. Conversely, the atomistic fallacy 

refers to inferences about the significance, associations and the variability of higher, 

group levels are based on data originating from individuals (Allen and Starr 1982; O'Neill 

et al. 1986). This fallacy can also refer to higher-level data that is simply an aggregation 

of individual-level observations (Hox 2002). For example, the association between price 

and house size or age at the property level may differ from the association between these 

variables that have been aggregated to the group level. With multilevel models, the 

variation in house price due to the effects of individual-level, property attributes is 

separated from price differences between areas that are related to neighborhood-level 

contextual effects. With multilevel models, the user is not forced to model at one level or 

the other, both (indeed several) levels are be modeled simultaneously. 
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Hedonic models often suffer from heteroscedasticity (unequal variation in the 

residuals) across neighborhoods, leading to inefficient estimates(Goodman and 

Thibodeau 1995). Heteroscedasticity can be caused by omitting important variables from 

the models or from the modeled individual property characteristics and potential 

interactions. For instance, the variance associated with the implicit price of floor area 

may be greater in larger houses than smaller houses and additionally, may be greater in 

homes rather than townhouses. If a neighborhood has larger houses then its variance will 

be greater than other neighborhoods. If that same neighborhood has a greater proportion 

of homes to townhouses than the average, then this non-constant variance will be further 

exaggerated. Multilevel models can control for heteroscedasticity in the level-1 residual 

by expanding the random part of the model with an additional random term for floor size. 

Each level-1 coefficient can be allowed to vary across neighborhoods either randomly, 

through the interaction with level-2 variables or through both of these options (Orford 

2000). 

Multilevel models are not the only means of addressing issues of spatial 

dependencies and non-stationarity. Spatial autoregression models (Anselin 2003; Dubin 

1998; Paez and Scott 2004) can be utilized to compensate for the problem of biased 

coefficients resulting from spatial lags and inefficient standard errors from spatially 

autocorrelated errors. Geographically-Weighted Regression (Brunsdon et al. 1996; 

Fotheringham et al. 2002) can be used to examine the issue of non-stationarity. The 

advantage of using a multilevel approach for property hedonic models is that they can 

analyze variables from different scales simultaneously, while also accounting for issues 
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of spatial dependencies and non-stationarity. Individual properties are nested within 

neighborhoods, with both individual and neighborhood characteristics explaining the 

variation in house price. 
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CHAPTER 2: A PRIMER ON MULTILEVEL, PROPERTY HEDONIC 

MODELING 

 

2.1. Abstract 

The property hedonic model estimates implicit prices for different structural, 

neighborhood and environmental attributes that are related to a property. A multilevel 

approach to the hedonic model accounts for the spatial effects of dependencies, non-

stationarity and scale that are often not captured in typical hedonic regressions.  This 

study provides a methodological review of multilevel modeling of property hedonics, 

using properties in the city of Baltimore as a practical example of this approach. Issues 

specific to valuing environmental attributes are also considered in this study. 

 

2.2. Introduction 

Many beneficial aspects of the environment, known as ecosystem goods and 

services, are external to normal market transactions and consequently, are often 

undervalued and under-provisioned even though they affect the quality of people’s lives. 

Conversely, the impacts of many environmental disamenities, or negative externalities, 

such as air and water pollution, are over-produced when their costs are not captured in the 

market. The non-market, economic costs and benefits of these environmental amenities 

and disamenities can be captured through revealed-preference techniques such as the 

property hedonic model. In contrast to stated-preference techniques, property hedonic 
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methods use market transactions to estimate the implicit use-values of environmental 

attributes. Use values for environmental attributes, as the name implies, pertain only to 

amenities such as recreation and aesthetics in contrast to other, non-use environmental 

benefits such as waste regulation, maintaining biodiversity and carbon sequestration 

(Freeman 2003).  

The hedonic approach for estimating the benefits or impacts of the environment 

has been the focus of research in numerous locations and circumstances. Some 

environmental attributes that have recently been examined are: urban parks (Bolitzer and 

Netusil 2000; Morancho 2003; Orford 2002; Troy and Grove 2008); greenbelts (Lee and 

Linneman 1998); forest preserves (Garrod and Willis 1992; Thorsnes 2002; Tyrväinen 

and Miettinen 2000); wetlands (Mahan et al. 2001); agriculture (Bastian 2002); water 

quality (Leggett and Bockstael 2000; Poor et al. 2007) and river restoration (Lewis et al. 

2008). Others have examined the effects of negative environmental externalities such as: 

hazardous waste sites (Deaton and Hoehn 2004; McCluskey 2003); landfills (Hite et al. 

2001); superfund sites (Gayer et al. 2000); air pollution (Kim et al. 2003) and flood risk 

(Bin and Polasky 2004). 

While much of this more recent research has attempted to control for or explicitly 

model issues of spatial scale such as spatial autocorrelation (dependency) and non-

stationarity (heterogeneity in the dependent-independent variable relationship) and 

heteroscedasticity (systematic patterns in variance), few have attempted to account for the 

presence of attributes simultaneously occurring at and interacting across multiple spatial 
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scales. Explicitly modeling multiple scales is useful for accounting for these statistical 

issues.  

The foundation for the property hedonic model was presented by Rosen (1974) 

who showed the existence of a property market equilibrium where consumers and 

suppliers maximize their respective utility and profits by choosing to purchase and 

produce properties with distinct combinations of desirable attributes. While the value of 

each attribute is implicit and therefore not directly observed in the property transaction, 

the marginal economic contribution of each of these attributes to the total transaction can 

be estimated from a regression model using property sales data from an area with varying 

combinations of these attributes. These characteristics can be broadly grouped into three 

categories: property-specific (including both the land and structural improvements); 

neighborhood-specific (the socio-economic context); and locational (Freeman 2003). 

Structural attributes refer to the tangible qualities of a dwelling and parcel such as lot 

size, house size (square footage), quality of construction, age, number of bathrooms. 

Contextual attributes are those shared by a neighborhood such as crime rate, ethnicity, 

income and other socio-economic factors. Locational attributes refer to the proximity 

and/or accessibility of various land uses and buildings such as hospitals, schools, 

highways, industrial areas, shopping centers as well as proximity to environmental 

amenities such as urban green spaces of parks and golf courses. 

However, the property hedonic model is challenged by statistical issues which 

complicate its implementation and interpretation. The model may be mis-specified as a 

result of the functional form of the model, collinearity among variables and omitted 
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determinants of property value. There are also spatial issues of dependency, non-

stationarity and scale that exist in a housing market composed of interrelated sub-

markets.  

Rosen’s (1974) development of the property hedonic model assumed that both 

supply and demand factors were mobile and elastic and that an entire city could be 

viewed as having a single housing market in equilibrium. Equilibrium occurs when the 

market settles on a hedonic price supply-demand curve that ensures households (within 

their budget constraints) cannot increase their utility by choosing a different property and 

sellers cannot increase their profits by increasing the property’s price or changing its 

characteristics. With this assumption, the price of a property and the availability and 

contribution of its constituent characteristics are invariant across geographic space. Since 

Rosen’s work, most researchers have found that housing markets are typically not in 

equilibrium and that the assumption of a single market is unrealistic except for very small 

study areas. Once a house is built, its characteristics are fixed (ignoring the potential for 

costly renovation) and it likely shares similar characteristics as the surrounding 

properties. Although less locationally fixed than house supply, consumer preferences can 

also create market segmentation. People of different ethnicities, generations, incomes or 

social classes may desire particular combinations of property and locational 

characteristics when seeking to purchase a residence. Consumer driven segmentation can 

be further exaggerated through information constraints such as the tendency of the real 

estate agent to profile a potential buyer (racially or by income status) and selectively 
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present properties of specific types or in specific types of neighborhoods depending on 

the characteristics of the potential buyers (Orford 2000).  

While the existence of housing submarkets is commonly accepted, there has been 

little agreement on the method of segmenting areas into housing submarkets.  Some 

researchers segment the market by sectors, that is, differentiating the housing stock by 

structural attributes such as dwelling type (Ekeland et al. 2002). Other researchers focus 

on markets based on locational-contextual attributes such as income classes or ethnicities. 

Orford (2000) argues that rather than distinguishing between sector-defined or context-

defined submarkets, there is a joint influence of sector and context attributes that should 

be modeled simultaneously. Day and others (2004) used aspatial clustering methods to 

group properties as a function of either the housing stock/structural attributes or by 

neighborhood characteristics. They found that the property market was best segmented by 

socio-economic characteristics rather than housing stock. Even when segmenting by 

context rather than sector, there has been little consistency of the spatial units used to 

define these sub-markets. Many researchers use Census units to delineate the boundaries. 

Bourassa and others (2003) found that geographic, sub-market boundaries defined by real 

estate appraisers provided a better model than aspatial clustering techniques. Goodman 

and Thibodeau (1998) found that school districts were appropriate for determining sub-

markets. 

This issue of market segmentation raises spatial statistical concerns of spatial 

dependency, non-stationarity and inappropriate scale for the property hedonic model.  

Spatial dependency (association or correlation) refers to the likelihood that the values of 
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observations for a particular variable become more similar with spatial proximity. Since 

many houses are built as part of a development, the housing stock will be very similar for 

neighboring houses, which leads to spatial dependencies in the regression model. Real 

estate agents and appraisers also price and assess homes based on the value and 

characteristics of nearby homes, leading to further spatial dependency in house price and 

important characteristics such as house size (Orford 2000). Since residuals capture 

unexplained variation in the model, spatial error autocorrelation reveals the existence of a 

spatial association that has not been incorporated into the model (Paez and Scott 2004).  

The problem with the presence of spatial error auto-correlation in a regression model is 

that the statistical assumption regarding the independent distribution of errors is violated. 

As a consequence of these spatial dependencies (lags and error), parameter estimates will 

be biased and inefficient, respectively (Anselin 1988). This leads to artificially smaller 

standard errors and the possibility of finding a spurious significance of an effect when 

one does not actually exist (Type I error). Much of this dependency can be attributed to 

and controlled for by market segmentation and the use of multilevel models as discussed 

in the section below. The Moran’s I statistic (Cliff and Ord 1981) is one of several 

metrics that can be used to test whether the final model has sufficiently accounted for 

spatial error autocorrelation.  

Non-stationarity refers to the existence of a heterogeneous relationship between 

dependent and independent variables across geographic space (Fotheringham et al. 2002). 

Global approaches to hedonic modeling such as using OLS, do not accommodate local, 

spatial variations in these relationships. A coefficient that is reported as insignificant 
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within a global regression model may be the result of highly significant positive 

relationships cancelling out the effect of significant negative relationships in others areas. 

With respect to the effect of individual attributes on house price, it is often useful to map 

the existence of non-stationarity and to attempt to model the reason for its existence by 

allowing the coefficient to interact with other variables.  

Issues with spatial dependencies and non-stationarity are further complicated by 

the scale at which attributes are measured or aggregated. If the values of these spatial 

properties change with the choice of unit used in a model, then the model exhibits scaling 

challenges that cannot be effectively modeled with standard regression techniques. Thus, 

the variance of the outcome, the relationship between the independent and dependent 

variable and the relationship between individual observations all may be sensitive to unit 

size.  

With the multilevel approach, individual properties are nested within 

neighborhoods within a city (Brown and Uyar 2004; Gelfand et al. 2007; Goodman and 

Thibodeau 1998; Orford 2000, 2002). These models allow the simultaneous examination 

of the effects of group-level and individual-level variables on individual-level outcomes 

(the property price) while accounting for the non-independence of observations within 

groups (the neighborhoods). Multilevel models were initially developed by educational 

researchers to examine the effects of context, such as classroom and school 

characteristics, on individual scholastic achievement (Goldstein 1993; Raudenbush 

1991). More recently, the use of multilevel models has grown rapidly in geographic-

orientated research such as relationships of socio-economic conditions and individual 
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health (Beland et al. 2002; Diez-Roux et al. 2000; Fone and Dunstan 2006; Klassen et al. 

2005; Langford et al. 1998; Moon 2003; Mujahid et al. 2007; Robert 2004; Soobader 

2006; Subramanian 2001), epidemiology (Mauny et al. 2004), environmental justice 

(McLeod et al. 2000), criminal activity (Browning et al. 2004) and land use (Hoshino 

2001; Overmars 2006; Pan 2005).This is an important development because geographical 

analyses are intrinsically spatial and involves the grouping of elementary units of interest 

(e.g. households or individuals) into higher-level spatial geographies such as 

neighborhoods (Orford 2000), communities (Moon 2003) or travel analysis zones (Bhat 

2000).  

There are several statistical reasons for explicitly modeling this clustering of 

individual properties within neighborhoods. First, spatial autocorrelation of independent 

variables and error autocorrelation (spatial dependencies) are likely to be common in 

property hedonic analyses since individual properties in the same neighborhood are likely 

to be similar in ways not fully accounted for by the property and neighborhood variables 

included in a single-level model (Jones and Bullen 1993). The house price and other 

important house characteristics are included at the neighborhood level to control for 

dependencies in house price and characteristics (spatial lag processes). Multilevel models 

account for the spatial error autocorrelation (dependence of the residuals) by 

differentiating between-individual errors from between-neighborhood errors (Orford 

2000). If this dependency was not modeled, the standard errors of the independent 

variables would be biased downwards (underestimated), which results in spuriously 

significant effects (Snijders and Bosker 1999). 
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Second, it is possible that an average effect for a particular attribute does not 

represent local conditions that may occur in different areas of a study area; the issue of 

non-stationarity in property hedonic studies (Cho et al. 2006; Troy and Grove 2008). A 

possible outcome of estimating an average effect, also known as a global effect, is that 

contrasting relationships in different areas of the study may cancel each other out, leading 

to a globally insignificant estimate for that variable’s coefficient (Fotheringham et al. 

2002). By considering a variable as a random effect, instead of a global fixed effect, that 

variable is allowed to vary across neighborhoods. While it is possible to build OLS 

regressions to determine this effect for each neighborhood, there will be the problem that 

there are insufficient observations within any given neighborhood leading to unreliable 

estimates. In multilevel models, random effects are constructed with Empirical Bayesian 

techniques which borrow strength across neighborhoods and shrink or smooth estimates 

for unreliable neighborhoods (those with few observations) towards the overall mean 

(Raudenbush and Bryk 2002). This means that the implicit prices of certain attributes 

(those that are considered random effects) are optimally weighted averages that combine 

information derived from the group itself with the mean from all other neighborhoods 

(Diez-Roux 2002). While unreliable submarket estimates are differentially shrunk 

towards the global estimate, submarkets with many properties will not be affected by this 

shrinkage. The Empirical Bayesian variation in slopes between neighborhoods is added to 

the global fitted value to reveal areas of positive and negative relationships and is one of 

the fundamental advantages of multilevel modeling (Subramanian 2001). 
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Third, heterogeneity (varying relationships) between neighborhoods needs to be 

distinguished from the heterogeneity among individual properties. Ignoring this 

differentiation and modeling the behavior of interest at a single level invites the pitfalls of 

either the ecological or atomistic fallacy. Atomistic and ecological fallacies are avoided 

because the predictors and unexplained variation are modeled at the appropriate level 

(Jones and Duncan 1996).  When group-level data, such as Census data, is included in an 

OLS model whose focus is the individual, the interpretation of the results may lead to the 

ecological fallacy.  With this situation, data (and the processes they measure) that are 

collected at a broader scale are assumed to have the same importance, associations and 

interactions at the individual level as at the higher level. Conversely, the atomistic fallacy 

refers to inferences about the significance, associations and the variability of higher, 

group levels are based on data originating from individuals (Allen and Starr 1982; O'Neill 

et al. 1986). This fallacy can also refer to higher-level data that is simply an aggregation 

of individual-level observations (Hox 2002). For example, the association between price 

and house size or age at the property level may differ from the association between these 

variables that have been aggregated to the group level. With multilevel models, the 

variation in house price due to the effects of individual-level, property attributes is 

separated from price differences between areas that are related to neighborhood-level 

contextual effects. With multilevel models, the user is not forced to model at one level or 

the other, both (indeed several) levels are be modeled simultaneously. 

Hedonic models also often suffer from heteroscedasticity (unequal variation in the 

residuals) across neighborhoods, leading to inefficient estimates(Goodman and 
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Thibodeau 1995). Heteroscedasticity can be caused by omitting important variables from 

the models or from the modeled individual property characteristics and potential 

interactions. For instance, the variance associated with the implicit price of floor area 

may be greater in larger houses than smaller houses and additionally, may be greater in 

homes rather than townhouses. If a neighborhood has larger houses then its variance will 

be greater than other neighborhoods. If that same neighborhood has a greater proportion 

of homes to townhouses than the average, then this non-constant variance will be further 

exaggerated. Multilevel models can control for heteroscedasticity in the level-1 residual 

by expanding the random part of the model with an additional random term for floor size. 

Each level-1 coefficient can be allowed to vary across neighborhoods either randomly, 

through the interaction with level-2 variables or through both of these options (Orford 

2000). 

 

2.3. Objectives 

This study reviews the steps involved in building a multilevel property hedonic 

model using property data from the City of Baltimore as an example. Modeling the 

spatial effects of dependencies, non-stationarity and scale are discussed. Statistical 

assumptions that are necessary for all regression models are also reviewed. I also 

compare OLS and multilevel models for differences in structural and socio-economic 

parameters, their standards errors and the model residuals. This will demonstrate how a 

multilevel model avoids the violation of assumptions inherent to an OLS model. Finally, 

I discuss some issues that are specific to the valuation of environmental attributes. 
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2.4. Data 

Property sales and attributes were obtained from the MD Property View 2004 

database, a private company which compiles sales transaction data with a property’s 

location and structural characteristics from the state of Maryland's property-appraisal 

database. Transactions for the city of Baltimore for a 5-year period (1998-2002) were 

used in this analysis.  

Selling prices were standardized to the year 2000 with the OFHEO (Office of 

Federal Housing Enterprise Oversight) housing price index for the Baltimore 

Metropolitan Statistical Area. This index accounted for both annual and seasonal 

(quarterly) fluctuations of property sales. This standardization removed the need for 

adding dummy variables for year and season while allowing for a sufficiently large 

dataset of properties that would be consistent with the 2000 Census attributes used to 

describe the neighborhood. 

Property records were selected if they followed numerous criteria, whose values 

were specified within the property database: “arms-length” transactions only; single, 

detached homes or townhouses; total, appraised property value was within ±50% 

agreement of the selling price; zoning was classified as either residential or residential-

commercial; and values of key variables used in the analyses were not missing. The total 

square footage for each house accounted for floor area for each story, excluding 

basements and attics. Although lot size (land area) was available in the property database, 

these values were recalculated within a GIS through the association of the individual 

transaction records with their corresponding, spatially-delineated parcels. These 
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properties were also re-located to the center of their parcels in order to adjust for location 

errors in the property database. Basements and garage sizes were converted to dummy 

variables (presence or absence). The quality of the original construction was converted to 

3 dummy variables of poor, average and high quality. The number of bathrooms and half-

bathrooms were recombined into one attribute (e.g. one full bath and one half bath equals 

“1.5”). Following the example of Cho (2006) and Troy and Grove (2008), records with 

low property prices (less than $50,000 in this case) were considered as either database 

errors or non, arms-length transactions and were excluded from the analysis. 

Additionally, records with house size or lot size less than 500 ft
2
 were considered to be 

database errors and were excluded. These and other property variables as well as their 

means and range are listed in Table 2.1. All of these variables, except for age, are 

expected to have a positive impact on property price. 

Block group attributes from the Census 2000 were used as proxies for 

neighborhood characteristics that nearby properties shared. Median household income 

and percent unemployment were used to capture the relative economic status of a 

neighborhood. While median household income is expected to provide a positive 

contribution to property price, percent unemployment is expected to be negative. Median 

house value was expected to capture some of the spatial dependency in price that nearby 

properties shared. The percent of the neighborhood having a high school diploma or 

college degree was used as a proxy of the social status of the neighborhood. A well 

educated neighborhood is expected to be associated with higher property values. 

Population density (per hectare) was a measure of the demand for and relative scarcity of 
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land available for development. Higher population densities are expected to drive land 

price (and overall property prices) higher. Mean travel time to work (in minutes) was 

used as a proxy for distance to the nearest employment center.  

Only Census block groups with at least 5 sales transactions during the 5-year 

period were included in this research. This resulted in a final dataset of 13,793 properties 

distributed among 405 block groups. 

 

Table 2.1. Regression Variables 

Variables Description Min Max Mean 

Property     

Price00
ab 

Sale price converted to Yr 2000 $50,000 $1,238,298 $107,615 

EnclsFt
b
 Total area of interior (square ft.) 510 10,185 1,475 

LandHa
b
 Lot size of property (hectares) 0.002 2.04 0.04 

Bathnum Number of full and half baths 1.0 10.0 1.6 

Age
c
 Age of house at the time of sale  0 199 67 

HouseDum Detached home vs. townhouse  0 1 0.3 

AirDum Presence central air-conditioning 0 1 0.3 

Basedum Presence of finished basement 0 1 0.4 

FireDum Presence of a fireplace 0 1 0.2 

GarDum Presence of garage or carport 0 1 0.2 

QualDumAvg Avg. quality of construction 0 1 0.2 

QualDumHigh High quality of construction 0 1 0.1 

     

Block group      

pUnemploy Percent unemployment 0.1 19.3 4.9 

MedValHouse Median house value $32,500 $596,300 $91,249 

pHSDiploma Percent with high school diploma 15.8 63.4 39.8 

TravelMean Mean, travel time to work (min) 17 53 31 

PopDens
b
 Population density (per hectare) 1.3 190.2 50.9 

pVacancy
b 

Percent vacant residences 1.1 65.1 9.8 

MedHsInc
b
 Median household income $12,095 $170,428 $38,858 

a:dependent variable, b:natural log transformation, c:quadratic transformation 
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2.5. Review of Issues General to all Property Hedonic Models 

 

2.5.1. Functional Form 

In estimating a relationship between environmental amenities and property prices, 

the choice of functional form is not always clear. Rosen (1974) stressed that economic 

theory fails to indicate that any particular form is appropriate and a variety of functional 

forms have been used in the hedonic literature. A linear form assumes that an individual’s 

preferences are linear, implying that perfect repackaging of property characteristics is 

possible (Freeman 2003). However, in property markets, individual house characteristics 

are inseparable; an individual cannot mix characteristics in any other level than is already 

available in each house (Garrod and Willis 1992). Also, since the price function is an 

equilibrium relationship determined in the marketplace by the interactions of individual 

buyers and sellers (Taylor 2003), the existence of a linear relationship is unlikely.  

Early research tried using alternative forms such as the log-linear or double-log 

forms where the best form was chosen based on the goodness of fit (Freeman 2003). 

While the form that is chosen should ideally improve the model fit and help to satisfy 

important assumptions of OLS regressions, such as normally distributed residuals and 

homoscedasticity, this is not the main issue with choosing functional forms. The goal of 

finding a proper functional form is to overcome problems associated with the non-

linearity that is often found in hedonic regression equations (Goodman and Thibodeau 

1995). Substantively, this means that the proper functional form should be chosen so that 
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marginal value for any given property attribute does not vary across the range of house 

prices.  

Halvorsen and Pollakowski (1981) recommended allowing both for 

transformation of the dependent variable and for different transformations of each 

independent variable using a quadratic Box-Cox transformation (Box and Cox 1964). 

However, Freeman (2003) suggests this approach is more cumbersome than necessary 

while Palmquist (1992) recommends only transforming the dependent variable and the 

independent variables that are the main effects. Cropper and others (1988) suggest that in 

models with missing or proxy variables, a common occurrence in property hedonic 

studies, that simple functional forms ( linear, quadratic, log-log and log-linear) or linear 

Box-Cox transformations are preferred over quadratic Box-Cox forms. This is because 

omitted variable bias will affect more coefficients in the quadratic forms than in simpler 

functional forms. Halstead and others (1997) note that the choice of functional form can 

affect both variable significance and the magnitude of the coefficients. 

Since the purpose of these estimated regression functions is to generate amenity 

values, it may be preferable to use a relatively simple form (Freeman 2003). A log-linear 

form allows the marginal effect of each independent variable to vary with the level of the 

dependent variable. Thus, the marginal effects of independent variables change as house 

price varies. The double-log form, in which both the dependent variable and the main 

effects are transformed using the natural logarithm, may provide the most interpretable 

results. With this form, a coefficient is interpreted as an elasticity; the percentage change 

in the dependent variable given the percentage change in an explanatory variable.  



 

50 

A Box-Cox transformation analysis can be used to provide guidance on whether 

such simple forms are adequate for satisfying regression assumptions. The Box-Cox 

transformation of the dependent variable is shown as: 

 

 

Eq. 2.1 

 

With this test, the parameter, λ, is estimated through maximum likelihood to find the 

optimal transformation of the dependent variable.  This parameter can then be tested for 

significant differences between the optimal value of λ and three cases of λ that 

correspond to commonly used functional forms: a reciprocal transformation, where λ=-1; 

a log transformation, where λ=0; and a linear (untransformed) form, where λ=1. Some 

researchers have compared Box-Cox transformations with simpler functional forms and 

found that a log transformation of the dependent variable (semi-log) or of both dependent 

and independent variables (double-log) performed the best (Anderson and West 2006; 

Anthon et al. 2005).  

 In this research, a left-hand (LHS) Box–Cox test using Stata software tested for 

the optimal transformation for price and found a Lambda value of -0.4. A chi-square test 

found this to be significantly different from zero indicating that a natural log 

transformation was not an optimal transformation for the dependent variable. However, 

for the purposes of this review and for better interpretation of results, I use the log 

transformation for the dependent variable.  
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A log transformation was also used on the continuous property variables of house 

size and lot size. In the hedonic literature, this is a common method to account for the 

(non-linear) declining marginal value of house and lot size. Houses are also expected to 

depreciate with age at a declining rate but after a number of years, age will often be 

positively associated with house price. This may be due to unknown renovations or the 

“vintage effect” (Goodman and Thibodeau 1995) of older properties. Therefore, a 

quadratic transformation is used for the age variable. The inflection point where there 

was a positive effect of age on price was approximately 63 years old.  

 

2.5.2. Testing for Collinearity and Other Regression Assumptions 

The regression model was then checked for collinearity within an OLS regression. 

A general rule of thumb is that variance inflation factors (VIF) greater than 10 are 

thought to be highly correlated and should be cause for further assessment before 

proceeding (O'Brien 2007). This research found VIF’s below 4 for all variables except 

Age and Age-Squared. However, Shieh and Fouladi (2003) found that even in the 

presence of multicollinearity, for level-1 variables, the fixed-effect parameter estimates 

produce relatively unbiased values. Diagnostics were also used to check for the normal 

distribution of residuals, the existence of homogeneity of variances in the residuals, and 

the potential for heteroscedasticity and/or non-linear trends in the independent variable-

price relationship. 
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2.6. Methods and Results for Building Multilevel Models 

While the analysis of multilevel models can be performed with a number of 

statistical packages, the details of using multilevel modeling with HLM (Hierarchical 

Linear Modeling version 6) software are discussed below and follow the work of 

Raudenbush and Bryk (2002). While it is possible to model more than just two levels of 

hierarchical data, this review focuses on the property level and the block group 

(neighborhood) level to illustrate the use of multilevel models.  

 

2.6.1. Do Neighborhoods Matter? 

In the first step of building a multilevel model, I examined whether property price 

varied among neighborhoods. Constructing a hierarchical model, unlike a simple linear 

model, explains variation in the dependent variable differently at different scales. By 

creating a “null” or “unconditional” model, I was able to examine the baseline variation 

in house price at each level in the absence of explanatory variables (Raudenbush and 

Bryk 2002). This determines the appropriateness of defining submarkets through 

multilevel regression versus using a single housing market with OLS regression to model 

property prices in Baltimore. The variation in house price is simply decomposed into 

variation at the property level and variation at the neighborhood level. Mathematically, 

this model (known as the “null” or “unconditional” model) is described as: 

 

Level 1: Yij = ß0j + rij  

Level 2: ß0j   = γ00 + U0j 
Eq. 2.2 

Combined, the null model is: 
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Yij =  γ00 +  U0j +  rij Eq.2.3 

 

Where Yij is house i’s price in neighborhood j and each neighborhood has its own 

intercept (ß0j) composed of a mean price (γ00) and an error term (U0j) with a between-

group variance (τ00) that is separate from the individual-level error (rij) and its within-

group variance (σ
2
). It is this additional, level-2 error term that accounts for much of the 

non-independence between the individual observations that are nested within the level-2 

units. A finding of significant between-group variance (τ00) indicates that it is preferable 

to use multilevel regression over the simpler OLS regression. This step is statistically 

equivalent to conducting a one-way ANOVA for determining whether there are 

significant differences between groups and is determined in HLM from a chi-square test 

statistic (Raudenbush and Bryk 2002). Therefore, finding significant group variance 

indicates that house prices do vary by neighborhoods within the city as previously 

suggested in the discussion on market segmentation. 

Table 2.2 provides the estimates for both the fixed effects and the random effects 

in this model. The maximum likelihood estimate of the grand mean price (γ00) is 11.345 

($84,577) with a standard error of 0.020. Under the assumption of normally distributed 

block group errors (U0j), a 95% confidence interval for the block group mean price is  

between 10.556 and 12.132 ($38,522-$185,691)  (specified by the equation: (γ00 / 

1.96(τ00)
1/2

). This indicates that there is a substantial range in mean price among 

Baltimore’s block groups. The random effects section of Table 2.2 shows the 

decomposition of the variance into its house-level and neighborhood-level components. 
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The p-value of 0.000 shows that the variance at the neighborhood level is statistically 

significant at better than the 1% level of significance. 

 

Table 2.2. Results of the Null Model 

Fixed Effect Coef SE P-value 

Intercept (γ00) 11.345419 0.020155 0.000 

Random Effects Variance Df  

Single/L1 (rij) 0.0667   

Group/L2 (U0j) 0.16099 404 0.000 

 

 

2.6.2. Are Properties within a Neighborhood Correlated? 

This null model is also useful for examining the amount of non-independence 

(spatial autocorrelation) of the unexplained variation in house prices and provides one 

justification for using multilevel models. If the variance of the level-2 intercept is zero, 

there is no autocorrelation and only a single-level model is needed (Orford 2000). A 

single-level model, such as an OLS regression, assumes that the data does not have a 

hierarchical structure, that all the relevant variation is at one scale, that there is no 

autocorrelation and that there is a single general relationship across space (Jones and 

Bullen 1993).  

The degree of autocorrelation in multilevel models can be examined with the 

intra-class correlation coefficient (ICC), which is the ratio of variation at the higher level 

(τ00) to the total variation of all levels (τ00 + σ
2
) (Diez-Roux 2002). A high coefficient 

indicates that individual observations within a group are much more similar (spatially 
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correlated) than individuals between neighborhoods. As discussed previously, such 

correlation violates the OLS assumptions of independence of residuals with the potential 

for spurious significance of individual variables. Thus a high coefficient will indicate that 

it is worthwhile to model individual properties as belonging to a particular neighborhood. 

However, Kreft and de Leeuw (1998) argue that even a value as low as 0.05 will indicate 

that it would be beneficial to use multilevel models over OLS regressions. 

Using information from Table 2.2, the resulting Intraclass Correlation Coefficient 

(0.16/(0.16 + 0.07)) shows the proportion of variance in house prices that is attributable 

to differences at the neighborhood level. The ICC of 0.71 indicates that 71% of the total 

variance in house price is due to differences at the block group level. This suggests that 

there is a much greater degree of similarity for properties within a block group than 

between them and therefore, the use of a multilevel model can be justified. 

 

2.6.3. What are the Important Property-Specific Variables? 

After determining that neighborhoods are in fact important in accounting for 

variation in house price, models can be built to explain the variation at both the property 

and neighborhood scales. Explaining the variation at the property level requires 

constructing a model (“structural attributes” model) with property-specific (level-1) 

variables. This model is similar to a one-way ANCOVA model except that the group 

effect is considered to vary randomly (Raudenbush and Bryk 2002) . First, individual 

variables are added sequentially and a significant reduction in the Deviance Statistic (-2 

Log Likelihood) is examined to determine the most efficient model in terms of 
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minimizing complexity (number of variables) while maximizing the explanatory power 

of the model. The Deviance Statistic is used to compare two models that differ only in the 

number of variables included in the equation. In HLM, a likelihood ratio test compares 

the Deviance Statistics of the two models and tests whether this difference is statistically 

significant. If it is, this indicates that the less restrictive model (the one with more 

variables) fits the data significantly better than the more restrictive model. This 

comparison test is distributed chi-squared with degrees of freedom equal to the difference 

in the number of degrees of freedom between the two models (i.e., the number of 

variables added to the model). 

Because these sub-models have a different number of fixed effects (the 

independent variables), this test needs to be performed with Full Maximum Likelihood 

estimation (MLF) rather than restricted (MLR) (Hox 2002). These two estimation 

methods are discussed in a later section.  

A lack of finding a significant effect of a particular variable may be due to non-

stationarity in the relationship with the house price. This means that a significant 

reduction in the Deviance Statistic after adding a variable justifies the inclusion of that 

variable even if it does not show a significant effect.  Maximum Likelihood estimation 

and the Deviance Statistic are discussed at the end of section describing the multilevel 

steps. Mathematically, the model that includes only level-1 variables is: 

 

Level 1: Yij  = ß0j  +  ß1jXij+…ßnjXij+ rij 

Level 2: ß0j   =  γ00  +  U0j 

  ß1j   =  γ10  

Eq. 2.4 
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The results of this estimation are shown in Table 2.3. A chi-square test comparing 

each successive Deviance Statistic with the previous, simpler model’s Deviance Statistic 

showed that the increase in the model’s explanatory power did not come at the cost of an 

overly complex model. The estimates of these fixed effects are all significant at better 

than the 1% level (shown in the full model in Table 2.6).  

 

Table 2.3. Level-1 Model 

Fixed Effect Fixed Effect Fixed Effect Fixed Effect Fixed Effect 

Intercept Intercept Intercept Intercept Intercept 

  lnEnclsFt lnEnclsFt lnEnclsFt lnEnclsFt 

 LandHa LandHa LandHa LandHa 

  Bathnum Bathnum Bathnum Bathnum 

   Age Age Age 

    AgeSqd AgeSqd AgeSqd 

    HouseDum HouseDum 

    GarDum GarDum 

    AvgQualDum AvgQualDum 

    HighQualDum HighQualDum 

      AirDum 

       Basedum 

      FireDum 

Deviance Deviance Deviance Deviance Deviance 

3481.106274 -3334.067164 -3775.719443 -9592.073827 -10165.56647 

Df Df Df Df Df 

2 6 8 11 15 

 

 

2.6.4. What is the Proportion of Level-1 Variance Explained? 

The proportion of variance explained at level-1 is an indication of how much the 

level-1 residual has been reduced by including these level-1 variables relative to the null 
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model (σ
2
 Null Model- σ

2
Level-1 Model) / σ

2
 Null Model). The outcome of 0.56 (from 

(0.0667- 0.02905)/ 0.0667) indicates that 56% of the variance of the between-properties 

sale price (level-1 variance) has been accounted for by including these property-level 

variables. 

 

Table 2.4. Variances of Random Effects from the Level-1 Model 

Random Effect Variance Df P-Value 

Single/L1 (rij) 0.02905   

Group (U0j) 0.02537 404 0.000 

 

 

2.6.5. What are Important Neighborhood Characteristics? 

The next step is to construct models containing only level-2 variables. This is 

known as a “means as outcomes” model as it is the group means (the intercept) which is 

predicted by the level-2 (group-level) variables. The purpose here is to determine which 

of the coefficients are significant and to compare the deviance statistic from several 

models in order to obtain the most efficient model. Mathematically, the level-2 model is: 

 

Level 1: Yij  = ß0j  + rij  

Level 2: ß0j   =  γ00 + γ01Wj+.. γ0nWj+ U0j 

Eq. 2.5 

 

So that (γ01) is the effect of a level-2 variable (Wj) on the group intercept (ß0j), 

which is the average sale price for a given neighborhood. The process of sequentially 
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adding level-2 variables and comparing the resulting Deviance Statistic is the same as 

discussed for building the level-1 model and is not illustrated further in this article. 

 

2.6.7. What is the Proportion of Level-2 Variance Explained? 

The proportion of variance explained at second level is an indication of how much 

the level-2 residual has been reduced by including these level-2 variables.  This compares 

the level-2 variance (τ00) between this model and the previous, null model (τ00 Null 

Model- τ00Level-2 Model) / τ00Null Model). The outcome of 0.75 (from (0.16099- 

0.03955)/ 0.16099) indicates that 75% of the variance of the mean neighborhood property 

price has been accounted for by including these neighborhood-level variables. 

 

Table 2.5. Variances of Random Effects of the Level-2, “Means-as-Outcomes” Model 

Random Effect Variance Df P-Value 

Single/L1 (rij) 0.0667   

Group (U0j) 0.03955 404 0.000 

 

 

2.6.8. How does the Full Multilevel Model Compare to an OLS Model? 

The final step is to create a full model where variables for both levels are 

included. This is known as an “intercepts and slopes as outcomes” model. 

Mathematically, this full model is: 

 

Level 1:Yij  =  ß0j  +  ß1jXij+…ßnj Xij+ rij 

Level 2:ß0j   =  γ00  + γ01Wj+.. γ0nWj + U0j 
Eq. 2.6 
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 ß1j   =  γ10  

 ßnj   =  γn0  

 

The results of the full OLS and Multilevel models are presented in Table 2.6. The 

property structural characteristics are all highly significant and show the expected signs. 

The log transformation of floor space means that this coefficient is interpreted as an 

elasticity, controlling for other coefficients, so that property price increases by .3% (.4% 

HLM) for every 1% increase in floor space. There is a semi-log relationship between 

price and most variables, so what is estimated is the percent change in property price with 

a 1-unit change of that particular variable. For lot size, there is an approximate 40% (59% 

HLM) increase in sale price from an additional hectare of land. There is an approximate 

5% (4% HLM) increase in sale price with the addition of a half bath. Property price falls 

by .38% for every additional year of house age until the house becomes older than 63 

years, at which point property value increases by a slight but significant amount. For the 

dummy variables, there is: an approximate 11% (13% HLM) increase in sale price if the 

building is a single, detached dwelling (vs. a townhouse); a 9% (6% HLM) increase in 

sale price with the presence of central air conditioning;  a 3% (4% HLM) increase in sale 

price with the presence of a finished basement; a 1% (2% HLM) increase in sale price 

with the presence of a fireplace; and an approximate 4% (4% HLM) increase in sale price 

with the presence of a garage. There is a 40% (32% HLM) and 67% (61% HLM) increase 

in the sale price if the property was built with average or high quality materials, 

respectively, rather than poor quality materials. 
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Table 2.6. Property-Specific Coefficients for the Full HLM and OLS Models 

Model: OLS Model: HLM  

Variables Coef SE Sig Variables Coef SE Sig 

Property    Property    

lnEnclsFt 0.30290 0.0074987 0.000 lnEnclsFt 0.37433 0.00690 0.000 

lnLandHa 0.39553 0.0492366 0.000 lnLandHa 0.58923 0.04420 0.000 

BathNum 0.04719 0.0030855 0.000 BathNum 0.04031 0.00268 0.000 

Age -0.00334 0.0002388 0.000 Age -0.00301 0.00023 0.000 

AgeSqd 0.00002 0.0000016 0.000 AgeSqd 0.00001 2.0E-06 0.000 

HouseDum 0.11209 0.0051051 0.000 HouseDum 0.12761 0.00529 0.000 

AirDum 0.09424 0.0039648 0.000 AirDum 0.06115 0.00356 0.000 

BaseDum 0.02575 0.0035998 0.000 BaseDum 0.03998 0.00326 0.000 

FireDum 0.00730 0.0050149 0.145 FireDum 0.01704 0.00446 0.000 

GarDum 0.03679 0.0044992 0.000 GarDum 0.04345 0.00408 0.000 

QualDumAvg 0.40400 0.0055572 0.000 QualDumAvg 0.32136 0.00606 0.000 

QualDumHigh 0.67471 0.0079183 0.000 QualDumHigh 0.61793 0.00822 0.000 

 

 

Many of the estimated coefficients for the property’s neighborhood characteristics 

are significant with the expected signs (Table 2.7). There is a 0.6% (0.7% HLM) decrease 

in sale price with a 1-unit increase in neighborhood (percent) unemployment; a 0.1% 

increase for every $10,000 increase in median house value; a 0.2% (non-significant 0.1% 

HLM) increase in sale price with a 1-unit increase in a neighborhood’s percent of 

population with (at least) a high school diploma; a 0.4% (0.6% HLM) decrease for every 

additional minute in a neighborhood’s mean travel time to work; and a 0.004% (0.005% 

HLM) decrease for every 1-unit increase in a neighborhood’s crime index for robberies. 

The log transformation of the last three neighborhood characteristics means that these 

coefficients are interpreted as the elasticity of sales price, so that there is a property price 
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increase of: 0.03% (0.04% HLM) for every 1% increase in population density; 0.01% 

(non-significant 0.004% HLM) for every 1% increase in percent vacant residences; 

and.13% for every 1% increase in median household income. The theory that high 

vacancy is a sign of a declining neighborhood suggests a negative coefficient for this 

variable. However, this was positive in both regressions in this research (although 

insignificant in HLM). This unexpected sign could be caused by omitted variable bias. 

Since the variables for percent vacancy and percent with high school diplomas were 

insignificant in HLM, they were dropped from further analyses. 

 

Table 2.7. Neighborhood-Specific Coefficients for HLM and OLS models 

Model:OLS Model:HLM 

Variables Coef SE Sig Variables Coef SE Sig 

Neighborhood    Neighborhood    

(Constant) 7.44678 0.0883266 0.000 (Constant) 7.13554 0.24954 0.000 

pUnemploy -0.00577 0.0005827 0.000 pUnemploy -0.00692 0.00204 0.001 

MedValHouse 1.3E-06 0.0000001 0.000 MedValHouse 1.0E-06 1.0E-07 0.000 

pHSDiploma 0.00236 0.0002430 0.000 pHSDiploma 0.00103 0.00089 0.251 

TravelMean -0.00399 0.0003712 0.000 TravelMean -0.00609 0.00122 0.000 

Robbery -0.00004 0.0000050 0.000 Robbery -0.00005 0.00002 0.010 

lnPopDens 0.02692 0.0028778 0.000 lnPopDens 0.03601 0.00935 0.000 

lnpVacancy 0.01394 0.0036203 0.000 lnpVacancy 0.00422 0.01235 0.733 

lnMedHsInc 0.13137 0.0064201 0.000 lnMedHsInc 0.12558 0.02257 0.000 

 

A test for spatial autocorrelation of the residuals using the global Moran’s I 

statistic shows that there is moderate and positive correlation in the OLS model’s 

residuals (Moran’s = 0.15) while the HLM has only a slight amount  (Moran’s = 0.01). 

Upon comparison of the above results, it appears that there is little difference between the 
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regression coefficients estimated with conventional OLS regression and multilevel 

regression. However, with single–level regressions, it is assumed that the observations 

are independently and identically distributed, even though properties are shown to be 

correlated.  With this correlation, OLS regressions do not produce correct standard errors; 

therefore, HLM needs to be used as it takes the issue of correlated errors into 

consideration and provides more realistic and conservative statistical testing. Standard 

errors are larger for HLM than OLS, as HLM considers sources of errors more rigorously 

than OLS. Conversely, standard errors are underestimated in OLS, which can result in 

potentially spuriously significant effects. 

 

2.6.9. What is the Amount of Correlation in the Full Model? 

The ICC (Intraclass Correlation Coefficient) is now at .37 (from 

(0.01508/(0.01508 + 0.02536)), indicating that 37% of the remaining total variation in 

house price is due to differences between block groups after accounting for all the 

property-level and neighborhood-level variables in the full model (Table 2.8). 

 

Table 2.8. Variances and ICC’s for the Null and Full models 

 Null Model Full Model 

Random Effect Variance Variance 

Single/L1 (rij) 0.0667 0.02536 

Group (U0j) 0.16099 0.01508 

ICC 0.71 0.37 
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2.6.10. Why Allow Level-1 Variables to Randomly Vary?  

The steps previously discussed only considered the level-1 attributes as fixed 

effects. While the intercept was allowed to randomly vary between level-2 units, the 

coefficients of these fixed effects remain the same across all groups in the study (i.e. a 

global effect). An important feature of multilevel models is to reconsider some or all of 

these level-1 variables as random effects. This separates a variable into a fixed 

component, whose resulting coefficient applies to all of these observations for this 

variable, and a random component that expresses each group’s deviation from that global 

effect.  

By allowing control variables to randomly vary across groups, the level-1 

variance in the error term is further portioned into the variances for these random effects. 

This helps control for the problem of heteroscedasticity (discussed in the introduction) in 

the level-1 residual by attributing some of the problematic (heteroscedastistic) variation 

in the residual to variation in specific, independent variables such as house size and age. 

If these new random terms have significant variance, as indicated by a chi-square test in 

HLM, the model is likely to be an improvement over the model with only fixed effects. A 

significant reduction in the Deviance Statistic of the random coefficients model compared 

to the previous, fixed effects model (using MLR) indicates the added complexity (from 

introducing random effects) is appropriate.  

The previous equation (2.6) becomes: 
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Level 1:Yij  =  ß0j  +  ß1jXij+…ßnj Xij+ rij 

Level 2:ß0j  =  γ00  + γ01Wj+.. γ0nWj + U0j 

 ß1j  =  γ10 + U10j 

 ßnj  =  γn0 + Un0j 

Eq. 2.7 

 

Table 2.9 shows the sequential addition of random coefficients and the 

comparison of the deviance statistic with the previous model. The chi-square tests 

comparing the deviances statistics showed that the improvement to the model by adding 

these random effects was justified. The results of the chi-square tests show that all of 

these variances were statistically significant and that collinearity between the variances 

was eliminated. 
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Table 2.9. Successive Models for Variances and Deviance Statistics 

Rand Effect Var Rand Effect Var Rand Effect Var 

Intercept 0.01471 Intercept 0.01495 Intercept 0.01521 

  lnEnclsFt 0.0491 lnEnclsFt 0.04366 

      Age 0.00001 

        

         

        

Level-1 Var. 0.02536   0.02259   0.02188 

        

Deviance -10211.2   -11281.1   -11477.2 

Df 2   4   7 

Chi-Test    Reject Ho   Reject Ho 

      

Rand Effect Var Rand Effect Var   

Intercept 0.01518 Intercept 0.01549   

lnEnclsFt 0.03983 lnEnclsFt 0.03585   

Age 0.000004 Age 0.000004   

LandHa 0.68624 LandHa 0.63009   

   BathNum 0.00181   

        

 Level-1 Var. 0.02155   0.02111   

        

 Deviance -11595.7   -11708.9   

 Df 11   16   

 Chi-Test Reject Ho   Reject Ho   
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2.6.11. What is the Difference Between Group- and Grand-Centering? 

When moving to a model containing level-1 random effects, some other 

diagnostics need to be performed to ensure the model’s validity. HLM provides a Tau-as-

correlations matrix to see whether there is any collinearity between the random 

coefficients. Collinearity between the variances of a predictor and the intercept term is 

represented in the matrix by a column (off-diagonals) of 1's. In the context of hierarchical 

linear models, the existence of strong correlations between level-1 variables and the 

intercept is a well-known cause of instability in the model (Kreft et al. 1995; Raudenbush 

and Bryk 2002). Such models have compromised estimates of uncertainty as well as 

possible bias (Gelman et al. 2007; Paccagnella 2006). One way of dealing with this 

problem is by centering predictors entered into the model. One type of centering, grand-

mean centering, is equivalent to the type of centering normally performed in OLS 

regressions. However, grand-mean centering is often not appropriate because the estimate 

of the slope of the independent variable becomes an uninterpretable blend of within and 

between-group effects (Raudenbush and Bryk 2002). On the other hand, group-mean 

centering minimizes any confounding of individual-level effects with neighborhood-level 

variables (Gelman et al. 2007). With this type of centering, the previous equation (2.7) is 

re-specified as: 

 

Level 1: Yij  = ß0j  +  ß1j(Xij-Xj)+…ßnj Xij+ rij Eq. 2.8 
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Where, for example, the Xij is the area of house i in neighborhood j and Xj  is the 

average area for all houses in neighborhood j, thus expressing this coefficient as the 

deviation from the group average for that coefficient. The interpretation of this group-

centered coefficient is thought of as a “frog-pond” effect by which individuals compare 

their standing relative to other members of a group (Paccagnella 2006).  

Centering is also useful to control for collinearity between the variables of a 

quadratic, as is the case with age. Aside from statistical issues, Enders and Tofighi (2007) 

recommend choosing between grand- and group- mean centering depending on the 

theoretical questions that are to be addressed in one’s research. If the research focuses on 

a main effect at the first level, then group-centering is preferred. If the main effect is 

found at the second level, then grand-centering is preferable. 

Table 2.10 shows that without group-mean centering the variances for house size 

and age were highly correlated with the variance of the group mean (off-diagonals close 

to -1). This created the situation where the variance of the group means (the level-2 

intercept) becomes greatly inflated when the uncentered age or house size was allowed to 

randomly vary. This situation did not occur with the variables for number of bathrooms 

or lot size but they were group-centered anyways to account for the fact that they did not 

have meaningful zero points on their original scales. When group mean centering is used, 

the correlations between neighborhood variables and property variables, represented as 

off-diagonals in the Tau-as-correlations matrix, converge towards zero. The example in 

Table 2.11, shows the variance of the intercept becomes greatly inflated when the 

uncentered variable of house size is allowed to vary across neighborhoods. 
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Table 2.10. Tau-as-Correlations Matrices, Centered Versus Uncentered 

Intercept 1.000 -0.997  Intercept 1.000 -0.816 

lnEnclsFt, Uncentered -0.997 1.000  Age, Uncentered -0.816 1.000 

Intercept 1.000 0.410  Intercept 1.000 0.228 

lnEnclsFt,  Group-centered 0.410 1.000  Age, Group-centered 0.228 1.000 

 

 

Table 2.11. Effect of Uncentered vs. Group-Centered Random Effect on Intercept Variance 

Random Effects Variance DF P-value 

Full Model-Random Intercept Only 

Single/L1 (rij) 0.02536   

Group (U0j) 0.01235 397 0.000 

Full Model-Uncentered Random Effect of lnEnclsFt 

Single/L1 (rij) 0.02269   

Group (U0j) 2.20917 380 0.000 

lnEnclsFt(U10j) 0.04358 387 0.000 

Full Model-Group-mean Centered Random Effect of 

lnEnclsFt 

Single/L1 (rij) 0.02259   

Group (U0j) 0.01273 380 0.000 

lnEnclsFt(U10j) 0.04884 387 0.000 

 

 

2.6.12. Why Include an Attribute’s Group Mean at Level-2? 

In addition to considering certain property-level variables as random effects and 

group-mean centering these variables, the neighborhood means for age, house size and lot 

size were all added to the level-2 model. This tested whether there were compositional 

effects of place in addition to the contextual effects that were previously included in the 

full model. With respect to multilevel property hedonic models, the contextual effects -- 

the difference a place makes on price (e.g. neighborhood effects of unemployment, crime, 
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median income, etc.) -- are potentially confounded with the compositional effects -- the 

differences produced by the housing attributes (e.g. house size, age) within each place 

(Orford 2000). So for example, the strongest effect of house size on price will likely 

occur at the property level (level 1). However, as a compositional effect, house size may 

have a different influence on the house price at the neighborhood level (level 2).  

The results, shown in Table 2.12, indicate that mean house size and age were both 

significant. Mean lot size was not found to be significant and was dropped from further 

analyses. There was a 0.009% increase in mean property price with each additional, 

square foot increase in a neighborhood’s mean house size. There was also a 0.1% 

increase in mean property price with each additional year in a neighborhood’s mean 

house age. This positive impact of neighborhood age is a good example of avoiding the 

ecological-atomistic fallacies where the relationship at one level is expected to be the 

same as that of another level. Property value clearly depreciates as a house ages (to a 

certain point) simply through deterioration of the structure from wear-and-tear. In 

contrast, as a neighborhood matures (as represented by mean house age), other features of 

the neighborhood become well developed and improve the value of an individual home. 

An obvious example of this is the growth of trees and vegetation improving the amenity 

value of the area. 

 

Table 2.12. Neighborhood Effects of Compositional Characteristics on Mean Price 

L2 Variables Coef SE Sig 

mnEnclsFt 0.000093 0.0000180 0.000 

mnAge 0.001019 0.0003520 0.004 
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mnLandHa 0.305624 0.2353810 0.195 

 

 

2.6.13. What is the Estimation Method Used by HLM? 

The HLM multilevel approach to estimating the regression coefficients and 

variance components is with maximum likelihood estimation (ML) (Raudenbush and 

Bryk 2002).Maximum Likelihood estimators estimate the parameters of a model by 

providing estimates for the population values that maximize the Likelihood Function: the 

function that maximizes the probability of finding the sample data that has actually been 

found (Hox 2002). The assumption of normally distributed errors informs this likelihood 

function and therefore violation of this assumption should be avoided.  However, if the 

number of level-2 units is large (greater than 30), the ML remains consistent in the 

estimation of the fixed effects even when the normality assumption is violated (Maas and 

Hox 2004). In contrast, the standard errors may become slightly biased downwards 

leading to a spurious significance of the effect. In HLM, robust standard errors are also 

reported, but may overcorrect for the violation of the normality assumption, leading to a 

spurious lack of significance of the fixed effect. Both Maas and Hox (2004) and 

Raudenbush and Bryk (2002) suggest that the robust errors should be used as a diagnostic 

tool where a large discrepancy between robust and normal standard errors is an indication 

of the violation of the normal distribution of residuals.  

In HLM, the user has the option to choose between restricted (RML) and full 

(FML) maximum likelihood estimation. With FML, both the variance components and 

the coefficients are included in the likelihood function while with RML, only the variance 
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components are included (Raudenbush and Bryk 2002). These two often lead to the same 

results particularly when there are a large number of groups. However, when there are 

few level-2 units or there are a large number of coefficients in the model, FML variance 

components tend to be biased downwards creating the potential of finding non-significant 

variance component. The default option of using RML in HLM corrects for situations 

where there are few groups. However, when building the level-1, structural model 

(described above in step 2), FML estimation must be used to compare the Deviance 

Statistic between models with successively greater number of coefficients (Hox 2002; 

Kreft and de Leeuw 1998). With RML, only differences in the random part between two 

models can be tested with the deviance statistic. Therefore, RML is used when testing 

whether the improved model fit (by allowing a successively greater number of 

coefficients to randomly vary) is worth the increase in model complexity as determined 

by the deviance statistic. 

 

2.6.14. How can the Assumption of Normally Distributed Errors be Tested? 

Normally distributed errors are another OLS assumption that must be satisfied in 

multilevel models at all levels. This assumption was visually assessed using histograms 

of all variances for both the log transformation of price and the Box-Cox transformation. 

The level-1 residuals appeared normally distributed while the level-2 residuals (intercept 

and independent variables) were normally distributed with a small amount of right hand 

skew. While Maas and Hox (2004) found that non-normal residuals at level 2 have little 

effect on parameter estimates, the distribution of these residuals is further examined. The 
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residuals of the level-2 intercept were further examined visually with a Q-Q plot of the 

Chipct versus Mahalanobis distance (MDist). MDist is a measure of the distance of a 

unit’s Empirical Bayesian estimate from the global, fitted value for the intercept, while 

Chipct is a measure of the expected values of variance from a population with a chi-

square distribution (Raudenbush and Bryk 2002). If the Q-Q plot resembles a 45 degree 

line, the random effect for the intercept is normally distributed. Block groups where the 

MDist deviates dramatically from this 45 degree line are considered as outliers. Although 

the log transformation showed a little more deviation from normality than the Box-Cox 

transformation, both had the same four block groups which deviated significantly from 

the normal distribution for both transformations (Figure 2.1). The reason that these block 

groups are outliers are unknown and should be investigated further. One possibility is the 

presence of coding or other database errors for properties in these block groups 

(Raudenbush and Bryk 2002).  
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Figure 2.1. Chipct vs. MDist Q-Q Plots for Log and Box-Cox Transformations of Price 

Price log transformed 

 

Price Box-Cox transformed 
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2.6.15. What is an Optimal “Neighborhood”? 

Orford (2000) and Goodman and Thibodeau (1998) suggests that the 

neighborhood is best thought of not as a single entity, but rather as a hierarchy of 

progressively more inclusive residential groupings. The inclusion of a third level, in 

which block groups are clustered by similar socio-economic conditions, might be a useful 

avenue of research that is not considered in this primer.  

In addition, to the issue of including another level in multilevel models, there is 

also the issue of whether the block group is the most ideal unit for delineating the level-2 

boundaries. In the presence of submarkets it can be difficult to segment their boundaries. 

With multilevel models it is necessary to determine a priori, geographic units for 

modeling these submarkets. However, models with different geographic units can be 

separately run and the results can be compared to each other. The goal of this 

segmentation is to distinguish areas where the mean price and the marginal prices of 

property characteristics differ markedly. Besides the block group, the level-2 units 

examined are: the Census tract, Baltimore city “neighborhoods” and PRIZM™ (Potential 

Rating index for Zip code Markets) classes.  

Census tracts are the next level of aggregation in the census hierarchy. Block 

groups (an average of three) are perfectly nested within their respective census tract. 

PRIZM classes were developed by Claritas, Inc. and use factor analysis and U.S. Census 

data about housing, employment, education, income, ethnicity and consumer spending 

patterns to classify block groups into several categories. There are 3 levels of categorical 
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resolution with this system. This research uses the 62-group resolution which further 

expands the characterization from Census data with information on household 

composition and housing characteristics. Baltimore (BNIA) Neighborhoods were 

developed from the Baltimore Neighborhood Indicators Alliance and are not a hierarchy 

within the census classification. There are about 265 BNIA Neighborhoods within the 

city of Baltimore. 

Table 2.13 compares ICC’s, residuals, stability of parameter estimates and error 

autocorrelation in order to find the most suitable grouping structure for a property 

hedonic model of Baltimore. The size of the Intraclass Correlation Coefficient (33 to 

65%), which is the ratio of between-unit variation to total variation, shows that, 

regardless of grouping method, some manner of grouping is superior to no grouping at 

all. This indicates that it is important to conceptualize the hedonic model as being 

composed of sub-markets. A higher value ICC indicates greater agreement between 

properties within a neighborhood. Because these different units have different number of 

average observations per group it is not possible to directly compare them statistically. 

Smaller areas (Block Groups) have higher ICCs than larger geographic areas (PRIZM 

clusters). Larger geographic areas are likely to contain more heterogeneity in the 

characteristics being assessed, leading to less agreement among properties within a 

group. Therefore, Block Groups should have the largest ICC’s and PRIZM clusters the 

smallest. However, it appears that BNA Neighborhoods provide the best agreement 

between properties. The results from the Moran’s I coefficient indicate that grouping by 

Block Groups reduce spatial error autocorrelation by the greatest amount. BNA 
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Neighborhoods and Census Tracts also have little remaining residual dependencies. The 

comparison between normal and robust standard errors shows that Block Groups have the 

least difference in standard errors for age and house size. This indicates that the 

assumptions of normally distributed errors and homoscedasticity are best met by using 

Block Groups as the areal unit. While the BNA Neighborhoods have a higher ICC than 

Block Groups, the Block Groups have better statistical properties with respect to 

assumptions of the residuals. 



 

78 

 

Table 2.13. Comparison of Grouping Units 

    Block Group     

Full Model Variance ICC L1 Var Expl l2 Var Exp 

Single/L1 0.03126 0.54800463 0.57927322 0.78710257 

Group 0.0379     

Moran's I 0.01     

l1 Varbs coeff SE robust SE diff 

lenclft 0.411272 0.007439 0.017344 0.009905 

age -0.003191 0.00025 0.000468 0.000218 

    BNA Neighborhood     

Full Model Variance ICC L1 Var Expl l2 Var Exp 

Single/L1 0.03373 0.65079201 0.60106446 0.68706128 

Group 0.06286     

Moran's I 0.023297     

l1 Varbs coeff SE robust SE diff 

lenclft 0.412101 0.007445 0.025743 0.018298 

age -0.003875 0.000244 0.000465 0.000221 

   Tract    

Full Model Variance ICC L1 Var Expl l2 Var Exp 

Single/L1 0.03556 0.50999035 0.6215008 0.77448053 

Group 0.03701     

Moran's I 0.03     

l1 Varbs coeff SE robust SE diff 

lenclft 0.402078 0.007615 0.022181 0.014566 

age -0.003925 0.000245 0.000633 0.000388 

    Prizm Clusters    

Full Model Variance ICC L1 Var Expl l2 Var Exp 

Single/L1 0.04449 0.33097744 0.6531535 0.92362942 

Group 0.02201     

Moran's I 0.123854     

l1 Varbs coeff SE robust SE diff 

lenclft 0.366417 0.007895 0.026334 0.018439 

age -0.004738 0.000252 0.001352 0.0011 
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2.7. Issues When Including Environmental Attributes 

 

2.7.1. Why Allow a Main Effect to Randomly Vary? 

The main effects of the study (i.e. the research variables of main interest such as 

distance to an environmental attribute) can also be considered as random effects. This 

allows the researcher to determine: whether there is statistically significant deviation 

from the fixed effect across groups; the range of this deviation; and where this deviation 

occurs by mapping the Empirical Bayesian (EB) coefficients for these groups. By 

mapping these EB coefficients, non-stationarity is visualized to reveal localized patterns 

in this deviation. This mapping can be considered to be an EDA (exploratory data 

analysis) that may help to determine whether there are group-level variables that will 

interact with this random effect to explain the deviation from the fixed effect. Such cross-

level interactions are discussed in the next section. 

The Empirical Bayesian variation in slopes between neighborhoods is added to 

the global fitted value to reveal areas of positive and negative relationships. Modeling 

random coefficients to investigate the effects of place on the relation between the main 

effect and the dependent variable is one of the fundamental advantages of multilevel 

modeling (Subramanian 2001). While it is possible to build OLS regressions to determine 

this effect for each neighborhood, there will be the problem that there are insufficient 

observations within a particular neighborhood. One approach to dealing with this 

problem is to construct Empirical Bayes estimates which borrow strength across 
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neighborhoods and shrink estimates for neighborhoods with few observations towards the 

overall mean (Raudenbush and Bryk 2002). This means that the implicit prices of certain 

attributes (those that are considered random effects) are optimally weighted averages that 

combine information derived from the group itself with the mean from neighborhoods 

with similar characteristics (Diez-Roux et al. 2000). Unreliable submarket estimates are 

differentially shrunk towards the global estimate, whereas submarkets with many 

properties will not be affected by this shrinkage. This pooling of information and 

borrowing of strength is more analogous with the definition of submarkets as being 

quasi-independent and functionally related (Orford 2000). 

 

2.7.2. What are Cross-Level Interactions? 

In multilevel models, interactions can occur between variables at the same level 

or between variables at different levels. In a cross-level interaction, a neighborhood-level 

variable can be used to moderate the relationship between a level-1 environmental 

variable and the house price. Hox (2002) recommends that if there is a significant 

interaction found between one of these neighborhood characteristics and the 

environmental coefficient, then the direct effects of that characteristic must also be 

included even if it is found to be insignificant.  

The issue of centering is also important when interactions are included in a 

multilevel model. Enders and Tofighi (2007) found that use of grand mean centering 

(when the main effect is a level-1 variable) can artificially produce a significant effect 

from the interaction of either another level-1 variable or a level-2 variable (single-level or 
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cross-level interactions) when in reality one does not exist. They conclude that group-

mean centering is more appropriate when (either cross-level or same-level) interactions 

are the research interest. 

 

2.7.3. What is the Purpose of a Non-Hierarchical, Cross-Classified Model? 

The multilevel approach to valuing environmental amenities may be flawed in 

that market segmentation through common property and neighborhood characteristics 

might not create ideal neighborhood boundaries with respect to the valuation of park 

proximity. In the case of locational amenities, there is a spatial diffusion of 

environmental externalities which may cross the market boundaries. Diffusion occurs 

because the effect of an externality weakens with distance. The spatial dependency of 

externalities implies that neighboring properties will capture a similar impact from the 

externality because of their similarity in proximity to the amenity. However, these 

properties that share similar proximity to a local amenity may not be located in the same 

neighborhood. They may be located in the next, contiguous neighborhood or in a 

neighborhood on the other side of an amenity such as urban parks. This potential for 

misalignment might be corrected by considering the cross-classification of properties into 

both neighborhood groups and the parks to which they are closest. However, in the case 

of locational amenities such as those generated by a park, there is a spatial diffusion of 

environmental externalities which may cross the sub-market boundaries. Diffusion occurs 

because the effect of an externality weakens with distance. The spatial dependency of 

externalities implies that neighboring properties will capture a similar impact from the 
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externality because of their similarity in proximity to the amenity. These neighboring 

properties may not be located in the same neighborhood defined through market 

segmentation. They may be located in the next, contiguous neighborhood or in a 

neighborhood on the other side of a park. 

 

2.8. Conclusion 

Although this primer focuses on building multilevel models with control variables 

commonly used in property hedonic studies, it is my intention that the information 

presented here will facilitate an explicit use of spatial scale into regression models for 

environmental economic research. Orford’s (2000) paper on multilevel property hedonics 

is another source that details the use of this methodology. Raudenbush and Bryks’ book 

on Hierarchical Linear Models (2002), though examining non-spatial, educational data, is 

an excellent source on the numerous statistical issues associated with multilevel models. 
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CHAPTER 3: A MULTILEVEL APPROACH TO MEASURING THE 

CONTRIBUTION OF BALTIMORE PUBLIC PARKS TO PROPERTY 

VALUES 

 

3.1. Abstract 

This study measures the contribution of public parks to the value of properties in 

the city of Baltimore that were sold between 1998 and 2002. Multilevel models were 

used to define the submarkets for the city and to reveal important spatial variations for 

the effect of park proximity on property prices. Maps of this variation in the park-price 

relationship showed that only two-thirds of neighborhoods showed a positive preference 

for park proximity. This effect was then allowed to vary as a function of several property, 

neighborhood and park characteristics. The results of property-specific interactions 

indicate that a property’s lot size provided a strong substitution effect to the beneficial 

impact of park proximity on property price. Smaller and more open parks also interact 

with park proximity to significantly increase the benefits to nearby properties (compared 

to larger, wooded parks). Only the neighborhood characteristic of population density was 

found to have a significant effect with higher densities showing an increased preference 

for park proximity. 

 

3.2. Introduction 

Public parks and other green spaces provide numerous benefits to an urban 

population, such as recreation, scenery, improved water quality, habitat for wildlife, a 

reduction in the “heat island effect” and much more. Most of these environmental 



 

89 

benefits, also known as environmental externalities or “ecosystem goods and services” 

(ES) are external to normal market transactions and consequently, are often undervalued 

and under-provisioned even though they impact the quality of people’s lives. Capturing 

the monetary value of these benefits is important for improving people’s welfare and for 

urban planning issues such as zoning, development, land conservation acquisitions, 

property taxation and improvements to and maintenance of existing parks.  

One method for capturing the benefits of parks is the property hedonic model in 

which an individual can choose a level of use of an environmental attribute through their 

choice of location where they purchase a property. However, this method only captures 

those benefits that are directly usable to the individual such as recreation and aesthetics 

(Freeman 2003). Though there are many other ecosystem services that are provided by 

the existence of parks these cannot be valued with the property hedonic model. 

With this approach, an individual property is considered to be composed of a 

bundle of characteristics, each of which implicitly contributes to the price of the property. 

These characteristics can be broadly grouped into three categories: property-specific 

(including both the land and structural improvements); contextual neighborhood-specific 

(the socio-economic context); and environmental (locational) (Freeman 2003). Structural 

attributes refer to the tangible qualities of a dwelling and parcel such as lot size, house 

size, quality, age, number of bathrooms. Contextual attributes are those shared by a 

neighborhood such as crime rate, ethnicity, income and other socio-economic factors. 

Locational attributes refer to the proximity and/or accessibility of various land uses and 
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buildings such as schools, highways, industrial areas, shopping centers and green spaces 

such as parks and golf courses. 

The hedonic approach has been used to value urban parks (Cho et al. 2006; Espey 

and Owusu-Edusei 2001; Morancho 2003; Orford 2002; Troy and Grove 2008), a 

mixture of urban-suburban green spaces, such as parks, natural areas, green belts, golf 

courses, wetlands and cemeteries (Acharya and Bennett 2001; Anderson and West 2006; 

Bolitzer and Netusil 2000; Do and Grudnitski 1995; Kong et al. 2007; Lee and Linneman 

1998; Lutzenhiser and Netusil 2001; Mahan et al. 2001; Tyrväinen and Miettinen 2000),  

or a mixture of open spaces in suburban-rural areas (Bastian et al. 2002; Garrod and 

Willis 1992; Geoghegan et al. 1997; Irwin 2002a; Irwin 2001; Smith et al. 2002). The 

general theory and findings from this research is that parks and green spaces contribute 

positively to property values but this benefit rapidly declines with increasing distance 

from the property. However, the magnitude of this impact or even whether this impact is 

beneficial or negative varies across studies and depends upon the type of green space, the 

green space characteristics, and the location of that space with respect to land use and 

neighborhood characteristics.  

With respect to the type of urban green space, Bolitzer and Netusil (2000) found 

that urban parks and golf courses both have positive impacts, while cemeteries have an 

insignificant, negative impact on properties. Anderson and West (2006) found that urban 

park and golf course proximity provides a significant benefit while proximity to 

cemeteries has a negative impact. Smith and others (2002) found a negative effect with 

proximity to suburban parks and positive impact with proximity to golf courses. 
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Park characteristics such as size, vegetation cover and crime have also been found 

to affect the proximity-price relationship. Lutzenhiser and Netusil (2001) found that 

small, urban parks have a negative impact on nearby properties but larger, natural 

(wooded) areas have a positive impact for homes in Portland, Oregon. Their findings 

suggest that the size of the green space has an important effect on price-proximity 

relationship. They theorize that the benefits from large parks outweigh the negative 

externalities of traffic and noise that may be associated with smaller, urban parks. 

Anderson and West (2006) found the same, beneficial effect of size for natural areas 

(special parks) but a detrimental effect of size for neighborhood parks. Garrod and Willis 

(1992) found that parks primarily consisting of conifers have a negative impact while 

deciduous tree cover created a positive impact. Tyrväinen (2000) and Thorsnes (2002) 

found that proximity to forested views and access is beneficial to property prices 

although for small wooded strips, Tyrväinen found a negative impact.  

Neighborhood specific factors may also affect the value of proximity to park. 

High income neighborhoods or neighborhoods with a high proportion families with 

children may place a higher value on recreation opportunities (from being proximate to 

parks) than low income neighborhoods or neighborhoods with a high proportion of 

elderly people. Anderson and West (2006) found that urban parks are generally more 

beneficial to nearby properties than suburban parks in the area around Minneapolis-St. 

Paul, Minnesota. High income and high density neighborhoods increased the value of 

proximity to these urban parks. Dehring and Dunse (2006) found that high density 
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neighborhoods favored proximity to urban parks while there was no significant effect for 

lower density neighborhoods.  

The lot size of a property may be expected to act as a substitute to the value of a 

park proximity (Henderson and Song 2008). However, Anderson and West (2006) found 

that lot size was positively correlated with the value of proximity to parks, suggesting 

that lot size is a complement to rather than a substitute for parks. 

Proximity to public parks is generally expected to provide a positive contribution 

to property values. This is primarily a function of the visual and recreation amenities a 

park provides. There may also be indirect benefits which are captured by park proximity 

such as the absence of negative externalities (for example noise, traffic, pollution ) 

associated with other land uses such as industrial areas or shopping centers. However, a 

park’s positive externalities may be mitigated or overwhelmed by negative externalities 

associated with the park, which may reduce or even overwhelm the positive benefits to 

the local property values. Examples of such negative impacts are the potential for 

increased car traffic and noise (especially near a park’s parking lot or entrances), noise 

from team sports and providing a refuge for criminals or homeless people. Troy and 

Grove (2008) found that higher levels of crime in the areas around parks reduced the 

positive impact of park proximity to the point where there was a negative impact of park 

proximity on properties near high-crime parks. 

These negative impacts may have different distance –decay rates than the decay 

rate of the park’s positive externalities. Espey and Owusu-Edusei (2001) found a positive 

impact with proximity to small or medium urban parks (less than 9 hectares) in 



 

93 

Greenville, South Carolina for distances between 100 to 500 meters but a negative impact 

for properties less than 100 meters from a park. 

The interaction of these contextual elements with the park’s distance variable can 

be expected to create a localized and spatially-varying price-proximity relationship even 

within the geographic area of a single city. These elements can generally be grouped into 

characteristics related to individual properties, socio-economic or vegetation 

characteristics of the neighborhood and park-specific characteristics.  

The foundation for the property hedonic model was presented by Rosen (1974) 

who showed the existence of a property market equilibrium where consumers and 

suppliers maximize their respective utility and profits by choosing to purchase and 

produce properties with distinct combinations of desirable attributes. Although this 

approach has been used to address a wide variety of environmentally-related issues in 

since Rosen’s work, there are numerous statistical and econometric issues that need to be 

accounted for before a valid interpretation of regression results can be made. The model 

may be mis-specified as a result of the functional form of the model, collinearity among 

variables and omitted determinants of property value. There are also spatial issues of 

dependency, non-stationarity and scale that exist in a housing market composed of 

interrelated sub-markets.  

Rosen’s (1974) development of the property hedonic model assumed that both 

supply and demand factors were mobile and elastic and that an entire city could be 

viewed as having a single housing market in equilibrium. Equilibrium occurs when the 

market settles on a hedonic price supply-demand curve that ensures households (within 
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their budget constraints) cannot increase their utility by choosing a different property and 

sellers cannot increase their profits by increasing the property’s price or changing its 

characteristics. With this assumption, the price of a property and the availability and 

contribution of its constituent characteristics are invariant across geographic space.  

Since Rosen’s work, researchers have found that housing markets are typically 

not in equilibrium and that the assumption of a single market is unrealistic except for 

very small study areas (Bourassa et al. 2003; Day et al. 2004; Ekeland et al. 2002; 

Goodman and Thibodeau 1998, 2003; Orford 2000). With property hedonic models there 

are also spatial statistical concerns of spatial dependency, non-stationarity and 

inappropriate scales of analysis.  Spatial dependency (association or lags) refers to the 

likelihood that the values of observations for a particular variable are more similar for 

observation in close spatial proximity to each other. An example of this spatial 

dependency in the housing market is the compositional effect of neighboring property 

characteristics (e.g. house age, size and value) influencing the selling price of an 

individual residence (Orford 2000). Spatial error autocorrelation, on the other hand, refers 

to the existence of spatial associations that have not been incorporated into the regression 

model (Paez and Scott 2004).  The problem with the presence of spatial error 

autocorrelation in a regression model is that the statistical assumption regarding the 

independent distribution of errors is violated. As a consequence of these two types of 

spatial dependencies (lags and error), parameter estimates will be biased and inefficient, 

respectively (Anselin 1988). Inefficient standard errors leads to the possibility of finding 

a spurious significance of an effect when one does not actually exist (Type I error).   
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Non-stationarity refers to the existence of a heterogeneous relationship between 

dependent and independent variables across geographic space (Fotheringham et al. 2002). 

Global approaches to hedonic modeling such as using OLS do not accommodate local, 

spatial variations in these relationships. A coefficient that is reported as insignificant 

within a global regression model may be the result of highly significant localized 

relationships cancelling out the effect of significant negative relationships in others areas. 

With respect to the effect of locational amenities on house price, it is often useful to 

determine the existence of non-stationarity and to attempt to model the reason for its 

existence by allowing the coefficient to interact with other variables.  

Issues with spatial dependencies and non-stationarity are further complicated by 

the scale at which attributes are measured or aggregated. If the values of these spatial 

properties change with the choice of unit used in a model, then the model exhibits scaling 

challenges that cannot be effectively modeled with standard regression techniques. Thus, 

the variance of the outcome, the relationship between the independent and dependent 

variable and the relationship between individual observations all may be sensitive to unit 

size. 

This research uses a multilevel modeling framework for addressing the challenges 

of the property hedonic model. With the multilevel approach, individual properties are 

nested within submarkets (neighborhoods) within a city (Brown and Uyar 2004; Gelfand 

et al. 2007; Goodman and Thibodeau 1998; Orford 2000, 2002). These models allow the 

simultaneous examination of the effects of group-level and individual-level variables on 
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individual-level outcomes (the property price) while accounting for the non-

independence of observations within groups (the neighborhoods).  

There are several statistical and substantive reasons for explicitly modeling 

individual properties as belonging to neighborhoods. First, spatial dependencies (either 

correlation in variables or the residual) are likely to be common in property hedonic 

analyses since individual properties in the same neighborhood are likely to be similar in 

ways not fully accounted for by the property and neighborhood variables included in a 

single-level model (Jones and Bullen 1993). With a multilevel model, the house price and 

other important house characteristics found at the property level can be included at the 

neighborhood level to control for dependencies in house price and characteristics (spatial 

lag processes). In the property market, this type of dependency is known as a 

compositional effect whereby the neighborhood averages of individual property attributes 

affect the value of a individual property (Orford 2002). Multilevel models also account 

for the spatial error autocorrelation (dependence of the residuals) by differentiating 

between-individual errors from between-neighborhood errors (Orford 2000). If this 

dependency was not modeled, the standard errors of the independent variables would be 

biased downwards (underestimated), which results in spuriously significant effects 

(Snijders and Bosker 1999). 

Second, it is possible that an average effect for a particular attribute does not 

represent local conditions that may occur in different areas of a study area; the issue of 

non-stationarity in property hedonic studies (Cho et al. 2006; Troy and Grove 2008). A 

possible outcome of estimating an average effect, also known as a global effect, is that 
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contrasting relationships in different areas of the study may cancel each other out, leading 

to a globally insignificant estimate for that variable’s coefficient (Fotheringham et al. 

2002). By considering a variable as a random effect, instead of a global fixed effect, that 

variable is allowed to vary across neighborhoods. While it is possible to build OLS 

regressions to determine this effect for each neighborhood, there will be the problem that 

there are insufficient observations within any given neighborhood leading to unreliable 

estimates. In multilevel models, random effects are constructed with Empirical Bayesian 

techniques which borrow strength across neighborhoods and shrink or smooth estimates 

for unreliable neighborhoods (those with few observations) towards the overall mean 

(Raudenbush and Bryk 2002). This means that the implicit prices of certain attributes 

(those that are considered random effects) are optimally weighted averages that combine 

information derived from the group itself with the mean from all other neighborhoods 

(Diez-Roux 2002). While unreliable submarket estimates are differentially shrunk 

towards the global estimate, submarkets with many properties will not be affected by this 

shrinkage. The Empirical Bayesian variation in slopes between neighborhoods is added to 

the global fitted value to reveal areas of positive and negative relationships and is one of 

the fundamental advantages of multilevel modeling (Subramanian 2001). 

Third, heterogeneity (varying relationships) between neighborhoods needs to be 

distinguished from the heterogeneity among individual properties. Ignoring this 

differentiation and modeling the behavior of interest at a single level invites the pitfalls of 

either the ecological or atomistic fallacy. Atomistic and ecological fallacies are avoided 

because the predictors and unexplained variation are modeled at the appropriate level 
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(Jones and Duncan 1996).  When group-level data, such as Census data, is included in an 

OLS model whose focus is the individual, the interpretation of the results may lead to the 

atomistic fallacy.  With this situation, data (and the processes they measure) that are 

collected at a broader scale are assumed to have the same importance, associations and 

interactions at the individual level as at the higher level. With multilevel models, the 

variation in house price due to the effects of individual-level, property attributes is 

separated from price differences between areas (contextual effects), while also avoiding 

the risk of ecological fallacies by using disaggregate data. Corresponding to this is the 

ecological fallacy where inferences about the significance, associations and the 

variability of higher, group levels are based on data originating from individuals (Allen 

and Starr 1982; O'Neilll et al. 1986).  This fallacy can also refer to higher-level data that 

is simply an aggregation of individual-level observations (Hox 2002). For example, the 

association between price and house size or age at the property level may differ from the 

association between these variables that have been aggregated to the group level. With 

multilevel models, the variation in house price due to the effects of individual-level, 

property attributes is separated from price differences between areas that are related to 

neighborhood-level contextual effects. With multilevel models, the user is not forced to 

model at one level or the other, both (indeed several) levels are be modeled 

simultaneously.  

Hedonic models also often suffer from heteroscedasticity (unequal variation in the 

residuals) across neighborhoods, leading to inefficient estimates (Conway et al. 2008). 

Heteroscedasticity can be caused by omitting important variables from the models or mis-
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specified individual property characteristics and potential interactions. For instance, the 

variance associated with the implicit price of floor area may be greater in larger houses 

than smaller houses and additionally, may be greater in homes rather than townhouses. If 

a neighborhood has larger houses then its variance will be greater than other 

neighborhoods. If that same neighborhood has a greater proportion of homes to 

townhouses than the average, then this non-constant variance will be further exaggerated. 

Multilevel models can control for heteroscedasticity in the level-1 residual by expanding 

the random part of the model with an additional random term for floor size. Each level-1 

coefficient can be allowed to vary across neighborhoods either randomly, through the 

interaction with level-2 variables or through both of these options (Orford 2000).  

 

3.3. Objectives 

This research uses multilevel property hedonic models to explore the value of 

park proximity and the contextual characteristics that may mediate this value.  The effect 

of proximity to park on property values is first allowed to vary across neighborhoods as a 

random effect. As a random effect, the park coefficient is separated into a fixed 

component, whose resulting coefficient applies to all of these observations for this 

variable, and a random component that expresses each group’s deviation from that global 

effect. This deviation is then mapped to determine where and by how much the effect of 

park proximity varies across the city.  

I then attempt to explain this variation by creating interactions with a number of 

property-level, neighborhood and park characteristics. The property specific 
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characteristic of lot size is expected to act as a substitute for nearby parks and therefore 

diminish the value of proximity. Concerning neighborhood characteristics, I expect that 

the value of recreation and aesthetic opportunities will be greater for densely-populated 

and higher income neighborhoods. Households in high crime areas may be reluctant to 

utilize public spaces so that the value of park proximity will be less for these areas. With 

respect to park characteristics, high-crime parks should have a strong negative effect on 

proximity to parks. I expect that size and openness of a park will positively impact the 

value of park proximity. 

 

3.4. Data 

Property sales and attributes were obtained from the MD Property View 2004 

database, a private company which compiles sales transaction data with a property’s 

location and structural characteristics from the state of Maryland's property-appraisal 

database. Transactions for the city of Baltimore for a 5-year period (1998-2002) were 

used in this analysis.  

Selling prices were standardized to the year 2000 with the OFHEO (Office of 

Federal Housing Enterprise Oversight) housing price index for the Baltimore 

Metropolitan Statistical Area. This index accounted for both annual and seasonal 

(quarterly) fluctuations of property sales. This standardization removed the need for 

adding dummy variables for year and season while allowing for a sufficiently large 

dataset of properties that would be consistent with the 2000 Census attributes used to 

describe the neighborhood. 
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Property records were selected if they followed numerous criteria, whose values 

were specified within the property database: “arms-length” transactions only; single, 

detached homes or townhouses; total, appraised property value was within ±50% 

agreement of the selling price; zoning was classified as either residential or residential-

commercial; and values of key variables used in the analyses were not missing. The total 

square footage for each house accounted for floor area for each story, excluding 

basements and attics. Although lot size (land area of the property) was available in the 

property database, these values were recalculated within a GIS by associating individual 

transaction records with their corresponding, spatially-delineated parcels. These 

properties were also re-located to the center of their parcels in order to adjust for location 

errors in the property database. Finished basements and garage sizes were converted to 

dummy variables (presence or absence). The quality of the original construction was 

converted to 3 dummy variables of poor, average and high quality. The number of 

bathrooms and half-bathrooms were recombined into one attribute (e.g. one full bath and 

one half bath equals “1.5”). Following the example of Cho (2006) and Troy and Grove 

(2008), records with low property prices (less than $50,000 in this case) were considered 

as either database errors or non, arms-length transactions and were excluded from the 

analysis. Additionally, records with house and lot sizes less than 500 ft
2
 were considered 

to be database errors and were excluded. These and other property variables as well as 

their means and range are listed in Table 3.1. All of these variables, except for age, are 

expected to have a positive impact on property price. 
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Block group attributes from the 2000 Census were used as proxies for 

neighborhood characteristics that nearby properties shared. Median household income 

and percent unemployment were used to capture the relative economic status of a 

neighborhood. While median household income is expected to provide a positive 

contribution to property price, percent unemployment is expected to be negative. Median 

house value was expected to capture some of the spatial dependency in price that nearby 

properties shared. The percent of neighborhood residents having a high school diploma or 

college degree was used as a proxy of the social status of the neighborhood. A well 

educated neighborhood is expected to be associated with higher property values. 

Population density (per hectare) was a measure of the demand for and relative scarcity of 

land available for development. Higher population densities are expected to drive land 

price (and overall property prices) higher. Mean travel time to work (in minutes) was 

used as a proxy for distance to the nearest employment center.  

The robbery index was a proxy for the social decay of a neighborhood. This 

variable was obtained from Tetrad, Inc.’s Crime database for Baltimore. The various 

crime statistics compiled in this database were initially reported in the FBI’s Uniform 

Crime Report. These reports were grouped for the years 1996 through 2003 and 

standardized through a number of procedures described at the company’s website. The 

final crime indices were calculated by Tetrad, Inc using a modeling procedure that 

adjusted for socio-economic variables and reported the results for any given block group 

as a number relative to the national total. With the national average index of 100, 

Baltimore’s mean robbery index of over 700 indicates that it has a much higher level of 
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crime, which can affect both house prices and the benefits of park proximity. The robbery 

index was the only crime statistic used in this research as it was felt that this would be 

one of the more visible and frequent crime indices that would affect property values in 

relation to both neighborhoods and nearby parks.  

Two locational dummy variables were also included in this research to control for 

noise-related, negative externalities. If a property was less than 50m from the edge of a 

major road or highway (Census Feature Class Codes A11-A39) then it was expected that 

the noise-related externalities would have a negative impact on house prices that would 

outweigh the convenience of increased accessibility (to work, shopping, etc.). This 

dataset was derived from the GDT Inc.’s (Geographic Data Technologies) Dynamap™ 

road network. Similarly, a property less than 50m from an area zoned as commercial or 

industrial would be expected to be negatively impacted due to noise-externalities. 

Commercial and industrial sites were determined from a combination of Maryland’s 

Land Use Land Cover 2000 dataset and the USGS 2001 National Land Cover Database. 

Only Census block groups with at least 5 sales transactions during the 5-year 

period were included in this research. This resulted in a final dataset of 13,633 properties 

distributed among 401 block groups. 
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Table 3.1. Description of Regression Variables 

Variables Description Min Max Mean 

Property     

Price00ab Sale price converted to Yr 2000 $50,000 $1,238,298 $107,615 

EnclsFtb Total floor space (square feet) 510 10,185 1,475 

LandMb Lot size (square meters) 47 20,369 412 
Bathnum Number of full and half bathrooms 1.0 10.0 1.6 

Agec Age of house at the time of sale  0 199 67 

HouseDum Detached home vs. townhouse  0 1 0.3 

AirDum Presence of central air-conditioning 0 1 0.3 

Basedum Presence of basement 0 1 0.4 

FireDum Presence of a fireplace 0 1 0.2 

GarDum Presence of garage or carport 0 1 0.2 

QualDumAvg Avg. quality of original construction 0 1 0.2 

QualDumHigh High quality of original construction 0 1 0.1 

     

Block group      

pUnemploy Percent unemployment 0.1 19.3 4.9 

MedValHouse Median house value $32,500 $596,300 $91,249 

pHSDiploma Percent with a high school diploma 15.8 63.4 39.8 

TravelMean Mean, travel time to work (min) 17 53 31 

Robbery Crime risk index for robbery 24 1707 756 

PopDens Population density (per hectare) 1.3 190.2 50.9 

MedHsInc Median household income $12,095 $170,428 $38,858 

     

Location     
ComIndDum Within 50m of Comm./Ind. LULC 0 1 0.1 

MjRDDum Within 50m of a major road/hwy 0 1 0.2 

a:dependent variable, b:natural log transformation, c:quadratic transformation 

 

Parks data were obtained primarily from several data sources: official city parks 

from Baltimore’s Department of Recreation and Parks; large open spaces created by the 

Parks and People Foundation where public green spaces were adjacent to official parks 

were re-designated as parks; and Baltimore County parks that were within a kilometer of 

the city boundary. The park boundaries were modified in a GIS to match parcel 

boundaries and aerial photos. Many of the features designated as official parks were 
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actually very small slivers of open space associated with roads, intersections and 

medians. Following previous research by Troy and Grove (2008) and Bolitzer and 

Netusil (2000) open space less than 2 hectares were excluded from this research. The 

majority of these “parks” that were less than 2 hectares were actually just undevelopable 

open spaces such as grassy medians on boulevards or at the intersections of transportation 

arteries. Other large “parks” that were primarily built environments (e.g. sport complexes 

and parking lots) were also excluded from this research. Parks were further characterized 

within a GIS by describing the percent grass (i.e. open) and wooded, the area of the park 

(in hectares) and the robbery index for block groups to which that park belonged.  Since a 

park often crossed multiple block group boundaries, the robbery index for individual 

parks was calculated from the area-weighted average of their block group values. While 

the level of park crime is expected to affect (interact with) the park-price relationship, the 

level of neighborhood crime is expected to directly affect the price of the property. 

Depending on the locations of both a property and its nearest park, the values of the two 

robbery indices may be very different from each other. The further a house is from the 

nearest park the less likely they belong to the same block group. A correlation test for the 

potential collinearity between these two crime variables indicated only a 0.25 Pearson’s 

Correlation Coefficient.  

Distance to park was calculated in a GIS as both a Euclidean distance from a 

property’s point location to the nearest park boundary and a network distance defined by 

distance travelled along the road network (excluding highways) from the property to the 

edge of the nearest park. While network distance was the primary variable considered in 
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this research, this value was replaced for properties less than 30m Euclidean distance 

from a park. It was felt that these properties were immediately adjacent to park 

boundaries and the network distance would be a larger and less accurate representation of 

their proximity. This replacement affected approximately 200 properties. The park 

distance variable was also log transformed, which suggests declining marginal impacts of 

park proximity with increasing distance to the park (the distance-decay effect) (Bin and 

Polasky 2004; Cho et al. 2006; Mahan et al. 2001; Orford 2002; Troy and Grove 2008). 

That is, the impact of increasing the distance to park from 100 to 200m will be greater 

than the impact from 500 to 600m. The actual form of the decay rate can be tested 

through model calibration as in Orford (2002) but was not performed in this research. 

With the general expectation of a park providing positive benefits to nearby properties, 

the resulting coefficient will be negative. Figure 3.1 shows the distribution of parks and 

block groups used for this research. 
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Figure 3.1. Map of Baltimore’s Research Block Groups and Parks 

 

 

 

Table 3.2. Park Characteristics 

Park Variables Description Min Max Mean 

DPark Distance to nearest park (meters) 1 2265 640 

SzParkHa Area of park (hectares) 2 380 55 

pOpenPark Percent without tree cover 0 100 58 

RobPark Crime Risk Index for parks 3 1544 680 
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3.5. Methods 

In estimating a relationship between environmental amenities and property prices, 

the choice of functional form is not always clear. Rosen (1974) stressed that economic 

theory fails to indicate that any particular form is appropriate. Consequently, a variety of 

functional forms have been used in the hedonic literature. A linear form assumes that an 

individual’s preferences are linear, implying that perfect repackaging of property 

characteristics is possible (Freeman 2003). However, in property markets, individual 

house characteristics are inseparable; an individual cannot mix characteristics in any 

other level than is already available in each house (Garrod and Willis 1992).  

While the form that is chosen should ideally improve the model fit and help to 

satisfy important assumptions of OLS regressions, such as normally distributed residuals 

and homoscedasticity, this is not the main issue with choosing the proper functional form. 

The goal of finding a proper functional form is to overcome problems associated with the 

non-linearity that is often found in hedonic regression equations (Goodman and 

Thibodeau 1995). Substantively, this means that the proper functional form should be 

chosen so that marginal value for any given property attribute does not vary across the 

range of house prices.  

A Box-Cox transformation analysis can be used to provide guidance on whether 

such simple forms are adequate for satisfying regression assumptions. The Box-Cox 

transformation of the dependent variable is shown as: 
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Eq. 3.1 

 

With this test, the parameter, λ, is estimated through maximum likelihood to find the 

optimal transformation of the dependent variable.  This parameter can then be tested for 

significant differences between the optimal value of λ and three cases of λ that 

correspond to simpler functional forms: a reciprocal transformation, where λ=-1; a log 

transformation, where λ=0; and a linear (untransformed) form, where λ=1.  

In this research, a left-hand (LHS) Box–Cox test found that the optimal 

transformation for price was indicated by Lambda value of -0.4. A chi-square test found 

this to be significantly different from zero indicating that a natural log transformation was 

not an optimal transformation for the dependent variable. However, results are reported 

for both of these transformations. Since the purpose of these estimated regression 

functions is to generate amenity values, it may be preferable to use a relatively simple 

form (Freeman 2003). The double-log form, in which both the dependent variable and the 

main effects are transformed using the natural logarithm, may provide the most 

interpretable results. With this form, a coefficient is interpreted as an elasticity; the 

percentage change in the dependent variable given the percentage change in an 

explanatory variable.  

A log transformation was also used on the continuous property variables of house 

size and lot size. In the hedonic literature, this is a common method to account for the 

(non-linear) declining marginal value of house and lot size. Houses are also expected to 
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depreciate with age at a declining rate but after a number of years, age will often be 

positively associated with house price. This may be due to unknown renovations or the 

“vintage effect” (Goodman and Thibodeau 1995) of older properties. Therefore, a 

quadratic transformation is used for the age variable. The inflection point where there 

was a positive effect of age on price was approximately 63 years old. 

The regression model was then checked for collinearity within an OLS regression. 

A general rule of thumb is that variance inflation factors (VIF) greater than 10 are 

thought to be highly correlated and should be cause for further assessment before 

proceeding (O'Brien 2007). This research found VIF’s below 4 for all variables except 

Age and Age-Squared. However, Shieh and Fouladi (2003) found that even in the 

presence of multicollinearity, for level-1 variables, the fixed-effect parameter estimates 

produce relatively unbiased values. Diagnostics were also used to check for the normal 

distribution of residuals, the existence of homogeneity of variances in the residuals, and 

the potential for heteroscedasticity and/or non-linear trends in the independent variable-

price relationship. 

While the analysis of multilevel models can be performed with a number of 

statistical packages, the details of using multilevel modeling with HLM (Hierarchical 

Linear Modeling) software are discussed below and follow the work of Raudenbush and 

Bryk (2002). A traditional property hedonic function (Equation 3.2) under the assumption 

of a single market can be written in terms of a vector of structural characteristics (Si), 

neighborhood characteristics (Ni) and environmental or land use characteristic (Li) and 

includes a single error term (ri). 
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 Yi = Si + Ni +Li + ri Eq. 3.2 

 

With multilevel models, the property market is assumed to be composed of sub-

markets where within-place property attributes (S) at the first level are separated from 

between-place, neighborhood characteristics (N) at the second level.  The intercept of the 

level-1 equation becomes the dependent variable of the level-2 equation.  The error term 

is also expanded so that there is unexplained variation at both levels (Equation 3.3). 

 

Level 1: Yij  =  ß0j  +  ß1jSij+…ßnj Sij+ rij 

Level 2: ß0j  =  γ00  + γ01Nj+.. γ0nNj + U0j  
Eq. 3.3 

 

Where Yij is house i’s price in neighborhood j and each neighborhood has its own 

intercept (ß0j) composed of a mean price (γ00) and an error term (U0j) with a between-

group variance (τ00) that is separate from the individual-level error (rij) and its within-

group variance(σ
2
). Since the model contains more than one error term, it cannot be 

estimated using OLS regression. Instead, an iterative maximum likelihood procedure is 

used (Raudenbush and Bryk 2002). 

Property hedonic models often suffer from the effects of heteroscedasticity, or 

non-constant variance in the residuals. The presence of heteroscedasticity can create a 

downward bias to standard errors, which may create a spurious significance of a 

coefficient (Type I error). Multilevel models help mitigate this problem by separating the 

error term into two levels (Orford 2000). In addition, attributes that contribute most to the 

problem of heteroscedasticity in property hedonic models, such as age of dwelling 
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(Goodman and Thibodeau 1998), can be allowed to randomly vary across level-2 units 

(Equation 3.3). This distributes some of the unexplained variation expressed by the level-

1 error term to variation specific to a random effect variable and helps to reduce the 

problem of heteroscedasticity that may be found in the residuals (Raudenbush and Bryk 

2002). The presence of heteroscedasticity can be tested in HLM and if significant 

heteroscedasticity remains, then it is recommended that robust, “Huber-corrected” 

standard errors be used instead (Poor et al. 2007; White 1980).  

In order to remove the problem of heteroscedasticity in this research, the 

structural variables of age, bathroom, house size and lot size were allowed to vary across 

block groups. However, the results from the HLM test for heteroscedasticity rejects the 

null hypothesis of homogeneity of level-1 variances. This indicates that 

heteroscedasticity still exists in the model and as such, only robust standard errors are 

reported in this research. 

 

Level 1: Yij   =  ß0j  +  ß1jSij+…ßnj Sij+ rij 

Level 2: ß0j   =  γ00  + γ01Nj+.. γ0nNj + γ0nSj + U0j 

  ß1j   =  γ10 + U1j 

Eq. 3.4 

 

Collinearity between the variances of the random effects of independent variables 

and the variance of the intercept term is a well-known cause of instability in the model 

(Kreft et al. 1995; Raudenbush and Bryk 2002). Such models have compromised 

estimates of uncertainty as well as possible bias (Gelman et al. 2007; Paccagnella 2006). 

One way of dealing with this problem is by group-mean centering those predictors 
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entered into the model as random effects (Gelman et al. 2007; Raudenbush and Bryk 

2002) (Equation 3.5). An examination of the Tau-As-Correlations matrix (Raudenbush 

and Bryk 2002) both before and after centering these random effects showed that group-

mean centering removed this collinearity between the intercept variance and the variance 

of the independent variables that were modeled as random effects. 

 

Level 1: Yij  =  ß0j  +  ß1j(Sij-Sj)+… ßnj Sij+ rij 

Level 2: ß0j  =  γ00  + γ01Nj+.. γ0nNj + γ0nSj + U0j 

  ß1j  =  γ10 + U1j 

Eq. 3.5 

 

In addition to considering certain property-level variables as random effects and 

group-mean centering these variables, the neighborhood means for age, house size and lot 

size were all added to the level-2 model. This tested whether there were compositional 

effects of place in addition to the contextual effects that were previously included in the 

full model. With respect to multilevel property hedonic models, the contextual effects -- 

the difference a place makes on price (e.g. neighborhood effects of unemployment, crime, 

median income, etc.) -- are potentially confounded with the compositional effects -- the 

differences produced by the housing attributes (e.g. house size, age) within each place 

(Orford 2000). So for example, the strongest effect of house size on price will likely 

occur at the property level (level 1). However, as a compositional effect, house size may 

have a different influence on the house price at the neighborhood level (level 2).  

With multilevel property hedonics, spatial autocorrelation can be treated as the 

norm since individual houses in the same sub-market are likely to be more similar, in 
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some way, than houses drawn from the entire housing market at random. Hence, 

autocorrelation is to be expected in hierarchical data, and the multilevel approach exploits 

this dependence to derive improved estimates, while the standard errors of the estimates 

are adjusted to take into account the autocorrelation (Goldstein 2003; Orford 2000). A 

test for spatial autocorrelation of the residuals using the global Moran’s “I” statistic 

(Moran 1948) shows that there is a significant but slight amount of positive correlation 

remaining in the multilevel model’s level-1 residuals (Moran’s = 0.15) after including all 

regression variables except for land use. This is half the spatial autocorrelation that exists 

for the same model under OLS regression (Moran’s I=0.3). 

The variation of the park distance-price relationship across Baltimore is modeled 

by re-estimating the regression model with park distance as a random effect. The 

Empirical Bayesian variation in slopes between neighborhoods is added to the global 

fitted value to reveal areas of positive and negative relationships. Modeling random 

coefficients to investigate the effects of place on the relation between the main effect and 

the dependent variable is one of the fundamental advantages of multilevel modeling 

(Subramanian 2001). While it is possible to build OLS regressions to determine this 

effect for each neighborhood, there will be the problem that there are insufficient 

observations within a particular neighborhood. One approach to dealing with this 

problem is to construct Empirical Bayesian estimates which borrow strength across 

neighborhoods and shrink estimates for neighborhoods with few observations towards the 

overall mean (Raudenbush 2002). This means that the implicit prices of certain attributes 

(those that are considered random effects) are optimally weighted averages that combine 
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information derived from the group itself with the mean from neighborhoods with similar 

characteristics (Diez-Roux et al. 2000). Unreliable submarket estimates are differentially 

shrunk towards the global estimate, whereas submarkets with many properties will not be 

affected by this shrinkage. This pooling of information and borrowing of strength is more 

analogous with the definition of submarkets as being quasi-independent and functionally 

related (Orford 2000). 

In multilevel models, interactions can occur between variables at the same level 

or between variables at different levels. In this research, the interest is on whether there is 

a mediating effect of certain property, park and neighborhood characteristics on the park 

proximity-price relationship. Following Hox (2002), if there is a significant interaction 

found between one of these characteristics and the park coefficient, then the direct effects 

of that characteristic must also be included even if it is found to be insignificant. There is 

also the decision on whether to group-mean center the park variable. Enders and Tofighi 

(2007) found that use of grand mean centering can artificially produce a significant effect 

from the interaction between variables (single-level or cross-level) when in reality one 

does not exist. They conclude that group-mean centering is more appropriate when 

(either cross-level or same-level) interactions are the research interest. 

 

3.6. Results 

The results of the multilevel models are presented in Table 3.3. The property 

structural characteristics are all highly significant (at the 99% confidence level) and show 

the expected signs. The log transformation of floor space and lot size means that these 
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coefficients are interpreted as the elasticity of sales price, controlling for other 

coefficients, so that property price increases by 0.29% and 0.06% for every 1% increase 

in floor space and lot size, respectively. There is a semi-log relationship between price 

and most variables, so what is estimated is the percent change in property price with a 1-

unit change of that particular variable. There is an approximate 4% increase in sale price 

with the addition of a half bath. Property price falls by .28% for every additional year of 

house age until the house becomes older than 63 years, at which point property value 

increases by a slight but significant amount. For the dummy variables, there is: an 

approximate 11%  increase in sale price if the building is a single, detached dwelling (vs. 

a townhouse); a 6% increase in sale price with the presence of central air conditioning;  a 

4% increase in sale price with the presence of a basement; a 3% increase in sale price 

with the presence of a fireplace; and a 4%  increase in sale price with the presence of a 

garage. There is a 33% and 59% increase in the sale price if the property was built with 

average or high quality materials, respectively, rather than poor quality materials. 
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Table 3.3. Regression Results 

Model 1: Log transformed Price Model 2:  Box-Cox Price ((Price
−0.4

 −1)/−0.4) 

Variables Coef. S.E. Sig.  Variables Coef. S.E. Sig. 

Property      Property     

HouseDum 0.105757 0.009656 0.000  HouseDum 0.001151 0.000094 0.000 

AirDum 0.056331 0.004245 0.000  AirDum 0.000570 0.000042 0.000 

BaseDum 0.039594 0.003690 0.000  BaseDum 0.000410 0.000036 0.000 

FireDum 0.029402 0.005391 0.000  FireDum 0.000345 0.000049 0.000 

GarDum 0.039586 0.004912 0.000  GarDum 0.000391 0.000049 0.000 

QualDumAvg 0.328124 0.014903 0.000  QualDumAvg 0.003363 0.000153 0.000 

QualDumHigh 0.588582 0.019238 0.000  QualDumHigh 0.005485 0.000189 0.000 

BathNum 0.028686 0.003728 0.000  BathNum 0.000260 0.000036 0.000 

Age -0.002842 0.000439 0.000  Age -0.000030 0.000004 0.000 

AgeSqd 0.000010 0.000003 0.001  AgeSqd 0.000000 0.000000 0.000 

lnEnclsFt 0.288438 0.012723 0.000  lnEnclsFt 0.002856 0.000114 0.000 

lnLandM 0.062850 0.005689 0.000  lnLandM 0.000635 0.000056 0.000 

Block Group     Block Group    

Intercept 10.791893 0.058301 0.000  Intercept 2.467887 0.000633 0.000 

MedHsInc 0.000001 0.000001 0.588  MedHsInc 0.000000 0.000000 0.701 

pUnemploy -0.008082 0.001783 0.000  pUnemploy -0.000098 0.000019 0.000 

MedValHouse 0.000002 0.000000 0.000  MedValHouse 0.000000 0.000000 0.001 

pHSDiploma 0.001803 0.000748 0.017  pHSDiploma 0.000025 0.000008 0.002 

TravelMean -0.003041 0.001054 0.005  TravelMean -0.000041 0.000011 0.000 

Robbery -0.000040 0.000015 0.006  Robbery -0.000001 0.000000 0.001 

PopDens 0.000444 0.000221 0.044  PopDens 0.000004 0.000002 0.068 

mnEnclsFt 0.000092 0.000026 0.001  mnEnclsFt 0.000001 0.000000 0.000 

mnAge 0.001264 0.000407 0.002  mnAge 0.000012 0.000004 0.008 

mnLandM 0.000028 0.000030 0.343  mnLandM 0.000000 0.000000 0.297 

Location     Location    

ComIndDum -0.013940 0.006199 0.024  ComIndDum -0.000162 0.000063 0.010 

MjRdDum -0.025466 0.005845 0.000  MjRdDum -0.000232 0.000057 0.000 

Main Effect     Main Effect    

lnDistToPark -0.003336 0.002718 0.220  lnDistToPark -0.000047 0.000028 0.091 
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Although many of the estimated coefficients for the property’s neighborhood 

characteristics are significant (at the 90% confidence level) with the expected signs, 

median household income was found to be insignificant and excluded from further 

analyses. There is a 0.8% decrease in sale price with a 1-unit increase in neighborhood 

(percent) unemployment; a 0.2% increase for every $10,000 increase in median house 

value; a 0.2% increase in sale price with a 1-unit increase in a neighborhood’s percent of 

population with (at least) a high school diploma; a 0.3% decrease for every addit ional 

minute in a neighborhood’s mean travel time to work; a 0.004% decrease for every 1-unit 

increase in a neighborhood’s crime index for robberies; and a 0.04% increase for every 1-

unit increase in population density.  

The results from including block group averages for house size, lot size and age 

indicate that mean house size and age were both positive and significant. Mean lot size 

was not found to be significant and was dropped from further analyses. There was a 

0.009% increase in mean property price with each additional, square foot increase in a 

neighborhood’s mean house size. There was also a 0.1% increase in mean property price 

with each additional year in a neighborhood’s mean house age.  

The estimated coefficient for distance to park, although negative as expected, is 

non-significant in the first model (log transformed price) while significant (at the 90% 

confidence level) with a Box-Cox transformation of the dependent variable. With the first 

model, there is an elasticity between the park coefficient and price (i.e. both are log 
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transformed) and the result can be interpreted as a 0.003% decrease in price with every 

1% increase in distance.  

The variance component for the random park coefficient (as well as for the other 

random effects) indicates that there is significant variation in the slopes across 

neighborhoods (Table 3.4).  The maps of the variation in the park coefficient by block 

group (Figure 3.2) do not appear to show any consistent spatial pattern to this variation.  

 

Table 3.4. Variance Components for Model 1 

Random Components SD Variance df Chi-Square Sig. 

Level-1, r 0.14357 0.02061    

Intercept, U0 0.11575 0.01340 362 9437.9 0.000 

BathNum, U8 0.04107 0.00169 372 561.0 0.000 

Age, U9 0.00183 0.00000 372 705.3 0.000 

lnEnclsFt, U11 0.16581 0.02749 372 771.6 0.000 

lnLandM, U12 0.04783 0.00229 372 497.7 0.000 

lnDistToPark, U15 0.02354 0.00055 372 568.8 0.000 
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Figure 3.2. Maps of the Variation of the Park Coefficient Across Block Groups 

 Model 1: Log transformed Price 

 
Model 2:  Box-Cox Price ((Price

−0.4
 −1)/−0.4) 
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The effect of park proximity on property price is further modeled with 

interactions between the park variable and several property, park or neighborhood 

characteristics. None of these interactions were found to be significant for the entire 

model. However, it is possible that the variables that mediate the park effect may be 

different between properties that positively value proximity to parks and those that 

negatively value this proximity. Therefore, the dataset is split into those two population 

groups and reexamined for interactions. The dataset of properties for neighborhoods that 

positively value proximity to parks contains 8,667 properties distributed among 283 

block groups and comprises approximately two-thirds of the original dataset. The dataset 

of properties for neighborhoods that do not appear to value proximity to parks contains 

4,966 properties distributed among 118 block groups. None of these interactions are 

significant for the population of properties in neighborhoods that value being farther 

away from parks. The results of significant interactions for those properties that 

positively value proximity to parks are shown in Table 3.5. 
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Table 3.5. Significant Interactions for Properties in Block Groups that Positively Value Proximity to 

Parks 

Model 3: Log transformed Price Model 4:  Box-Cox Price ((Price
−0.4

 −1)/−0.4) 

Variables Coef. S.E. Sig.  Variables Coef. S.E. Sig. 

Main 

Effect 
    

Main 

Effect 
   

DistPark -0.017612 0.002740 0.000  DistPark -0.000195 0.000027 0.000 

Property      Property     

lnLandM 0.031809 0.011997 0.009  lnLandM 0.000209 0.000129 0.107 

lnLandM 

*lnDPark 
0.008091 0.003169 0.011  

lnLandM 

*lnDPark 
0.000082 0.000033 0.013 

Park     Park    

ParkSize -0.000258 0.000142 0.068  ParkSize -0.000002 0.000002 0.176 

ParkSize* 

lnDPark 
0.000048 0.000023 0.032  

ParkSize* 

lnDPark 
0.000000 0.000000 0.074 

pOpen 0.000615 0.000640 0.337  pOpen 0.000003 0.000006 0.608 

pOpen* 

lnDPark 
-0.000162 0.000096 0.090  

pOpen* 

lnDPark 
-0.000001 0.000001 0.269 

pWod -0.000792 0.000649 0.223  pWood -0.000005 0.000007 0.456 

pWood* 

lnDPark 
0.000179 0.000097 0.065  

pWood* 

lnDPark 
0.000001 0.000001 0.203 

Block 

Group 
    

Block 

Group 
   

PopDens 0.000104 0.000235 0.659  PopDens 0.000000 0.000003 0.851 

PopDens* 

lnDPark 
-0.000186 0.000090 0.039  

PopDens* 

lnDPark 
-0.000002 0.000001 0.053 

mnLand 0.000038 0.000032 0.245  mnLand 0.000001 0.000000 0.138 

mnLand* 

lnDPark 
0.000013 0.000008 0.101  

mnLand* 

lnDPark 
0.000000 0.000000 0.089 
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For Model 3, the interaction of a property’s lot size (lnLandM*lnDPark) is 

positive and significant at the 95% confidence level, indicating that as lot size increases 

there is a decline in the value of being in close proximity to a park.  

Park characteristics are also expected to have an effect on the park-price 

relationship. For Model 3, the results of the direct effect of park size on property price are 

negative and significant at the 90% confidence level. A 1-hectare increase in park size 

decreases the value of properties by 0.03%. The interaction with park distance is positive 

and significant, indicating that there is a 0.005% increase in property price with every 1-

unit increase in the product of the logged park distance and park size. The results of the 

direct effect of percent openness of a park (i.e. the proportion that is not wooded) on 

property price are positive and significant at the 95% confidence level. A 1-unit increase 

in percent openness increases the value of properties by 0.06%. The interaction with park 

distance is negative and significant, indicating that there is a 0.02% decrease in property 

price with every 1-unit increase in the product of the logged distance and percent 

openness (Figure 3.3). The level of crime, as indicated by the robbery index, was not 

found to provide a significant interaction effect with the park variable. 
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Figure 3.3. Interactions with Park Size and Openness for Model 3 
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Neighborhood characteristics are also expected to have an effect on the park-price 

relationship. However, only the neighborhood’s population density and mean lot size 

were found to have significant interactions with park variable. For Model 3, the results of 
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the direct effect of population density have a negative and insignificant effect on price 

while the effect is positive and significant in Models 1 and 2. The interaction with park 

distance is negative and significant, indicating that there is a 0.02% decrease in property 

price with every 1-unit increase in the product of the logged park distance and population 

distance. The results of the interaction with park distance and the average lot size for a 

neighborhood are similar to the results found in the interaction with individual lot sizes.  

 

3.7. Discussion 

The inclusion of an average block group for age, house size and lot size tested 

whether there were compositional effects of place in addition to the neighborhood’s 

contextual effects that were previously included. This positive impact of neighborhood 

age is a good example of the avoiding the ecological-atomistic fallacies where the 

relationship at one level is expected to be the same as that of another level. Property 

value clearly depreciates as a house ages (to a certain point) simply through deterioration 

of the structure from wear-and-tear. In contrast, as a neighborhood matures (as 

represented by mean house age), other features of the neighborhood become well 

developed and improve the value of an individual home. An obvious example of this is 

the growth of trees and vegetation improving the amenity value of the area. 

The non-significant effect of the level-1 park coefficient may be due to local 

variation (non-stationarity) in the price-park distance relationship. A strongly negative 

park-price relationship in some areas of the city may negate the existence of a significant 

and positive relationship across the city. This possibility is examined by allowing the 
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park coefficient’s slopes to vary across neighborhoods. The maps of the variation in park 

distance suggest that the global estimate of the park coefficient may underestimate or 

overestimate the amenity value of parks in particular neighborhoods by a substantial 

margin although there does not seem to be a clear spatial trend to this variation. The 

degree of local heterogeneity found in this research suggests that the many previous 

studies that have found a positive, global effect of park proximity may not be adequately 

describing the complex spatial dynamics involved in property markets and the valuation 

of environmental amenities. 

The park coefficient was also allowed to interact with property, neighborhood and 

park characteristics to determine possible reasons for this dramatic variation in the park-

price relationship. The positive interaction of a property’s lot size with the park 

coefficient indicates that as lot size increases there is a decline in the value of being in 

close proximity to a park. This suggests that a large yard acts a substitute for the 

recreational and aesthetic opportunities provided by parks. While this substitution effect 

was expected, it is in contrast to the complementary effect found by Anderson and West 

(2006).  

The results of park characteristics of size and percent open space suggest that 

smaller and more open parks command a higher value for nearby properties than those 

larger, wooded parks maintained in a more natural state. This is in contrast to the findings 

of Bolitzer and Netusil (2000) who found that larger, natural parks in Portland, Oregon 

provided a greater contribution to the value of a house. One possible explanation is that 

Baltimore residents have a heightened level of fear of being victims of crime because 
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most crime indices for Baltimore are much higher than the national average.  Larger, 

natural parks can buffer criminals from law enforcement and neighborhood watch groups 

who can better monitor conditions in small, open parks. While the interaction with 

neighborhood and park crime was found to be insignificant, this study only examined the 

crime index for robbery. It is possible that including other crimes such as rape and 

murder may show a more significant interaction with proximity to parks. 

While most neighborhood interactions were found to be insignificant, population 

density provided a negative and significant effect. This suggests that properties found in 

neighborhoods with the highest population densities command the largest premium for 

park proximity. Such results are expected and are inversely correlated with the effect of 

large lot sizes; a densely populated neighborhood will have fewer private open spaces, 

thus increasing the value of local parks. 

Unfortunately, none of these interactions examined in this study could 

significantly explain why a third of the neighborhoods had properties that negatively that 

valued close proximity to parks. As this is in contrast to the many studies that found a 

positive global effect for park proximity, further research is necessary to determine 

whether this is an anomaly related to unidentified characteristics of the City of Baltimore 

or whether this is a result of multilevel modeling that explicitly captures the spatial 

variation in the valuation of environmental amenities.  

The multilevel approach used in this research may be flawed in that market 

segmentation through common property and neighborhood characteristics might not 

create ideal neighborhood boundaries especially concerning the valuation of park 
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proximity. The spatial nature of the environmental amenities from parks implies that 

neighboring properties will capture a similar impact from the externality because of their 

similarity in proximity to the amenity. However, these properties that share similar 

proximity to a local amenity may not be located in the same neighborhood. They may be 

located in the next, contiguous neighborhood or in a neighborhood on the other side of a 

park. This potential for misalignment might be corrected by considering the cross-

classification of properties into both neighborhood groups and the parks to which they are 

closest.  

Orford (2000) and Goodman and Thibodeau (1998) suggests that the 

neighborhood is best thought of not as a single entity, but rather as a hierarchy of 

progressively more inclusive residential groupings. Under this reasoning, the inclusion of 

a third level such as the Tract or PRIZM cluster might have created different results than 

those found. 

 

3.8. Conclusion 

This research uses multilevel modeling to the hedonic approach of estimating the 

effect of proximity to parks on sales price in Baltimore, Maryland. The multilevel 

approach first modeled the neighborhoods or submarkets of the city’s housing market as 

a function of property-level and socio-economic, neighborhood-level factors. The effect 

of parks was then allowed to vary by neighborhoods and mapped to reveal the complex 

spatial variation found with this variable. These maps showed that only two-thirds of the 

neighborhoods examined in this research positively value being in close proximity to 
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parks. The remaining one-third of the neighborhoods show a preference for being more 

distant from parks. 

Separating these neighborhoods into two datasets, I then tested whether the effects 

of park proximity were moderated by property, park and neighborhood characteristics. 

The results indicated that larger lots at both individual and average neighborhood levels 

acted as strong substitutes for parks. Park characteristics also seem to have some effect 

on the park-price relationship. Smaller and more open parks increased the value of nearby 

parks. Only the neighborhood characteristic of population density seemed to affect the 

park-price relationship. The value for being in close proximity to parks increased with 

increasing population densities. However, these interaction effects were only significant 

for the population of properties in neighborhoods that showed a preference for being 

close to parks. The reason that the remaining one-third of properties did not value park 

proximity was not explained by the interactions examined in this research. 

While the property hedonic model can be used to estimate the value of some 

ecosystem goods and services, it is important to remember that the method provides only 

a limited measure of total economic benefits. Parks provide many services in addition to 

the amenities of view and recreation. Parks also provide recreation to visitors as well as 

to the local residents. This research only studied the effects of park proximity on home 

and townhouse prices. The potential, property hedonic benefits to condominiums, 

apartments, and businesses was not observed. For these reasons, estimates from hedonic 

house price models will generally under-represent the total, non-market value of the 

ecosystem goods and services that are provided by parks. 
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CHAPTER 4: A MULTILEVEL PROPERTY HEDONIC APPROACH TO 

MEASURING THE CONTRIBUTION OF OPEN SPACE TO PROPERTY 

VALUES IN SUBURBAN AREAS OF BALTIMORE COUNTY 

 

4.1 Abstract 

Undeveloped open spaces, both private and public, provide numerous social and 

ecological benefits that are not fully apparent in the property-land market. Further 

development of such areas may result in welfare losses. This study uses multilevel 

models to estimate the contribution of open space to the value of properties in the 

suburban areas of Baltimore County that were sold between 1998 and 2000. The area of 

three different types of open space: private-conserved; private-developed and public, 

were measured within 100m,500m and 1000m distances of an individual property and for 

the block group in which each property resides. The results show that, after controlling 

for structural and neighborhood characteristics, privately-owned open space significantly 

increase property values, while public open space provides a lesser and statistically 

insignificant benefit. In addition, private open space that is permanently preserved 

provides a higher premium than potentially developable open space. The difference 

between private conserved versus potentially-developable open space suggest that 

residents negatively value the uncertainty about the future status of the latter, with the 

potential for higher levels of negative externalities than currently exist. The large 

difference in benefit between private and public open space suggests that negative 

externalities of public open space may outweigh its positive recreational or aesthetic 
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value. The implications for open space funding suggest that purchasing the development 

rights, through conservation easements might be preferable to outright public acquisition 

of undeveloped land. 

 

4.2 Introduction 

Open spaces provide numerous benefits to the local population in a suburban 

setting, including recreation opportunities, habitat and scenic amenity, improvement of 

water quality, mitigation of flooding, preservation of agricultural and forestry jobs and 

more. Most of the environmental benefits related to open space are external to normal 

market transactions and consequently are often undervalued and under-provisioned even 

though they enhance the quality of people’s lives. Capturing the monetary value of these 

benefits is important for improving individual and social welfare and for urban planning 

issues such as zoning, development, land conservation acquisitions, property taxation and 

improvements to and maintenance of existing open spaces.  

One approach for estimating these non-market environmental values uses a 

revealed-preference technique, known as the property hedonic model. With this 

approach, an individual property is considered to be composed of a bundle of 

characteristics, each of which implicitly contributes to the price of the property. These 

characteristics can be broadly grouped into three categories: property-specific (including 

both the land and structural improvements); contextual neighborhood-specific (the socio-

economic context); and locational (Freeman 2003). The composition of open space and 
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competing land uses are important location characteristics that can have a significant 

impact on property values.  

The hedonic approach for estimating the impact of open spaces on property value 

has been researched in numerous locations and circumstances. Much of this previous 

research has focused on how distance to a specific type of open space affected the 

property price. In general, the recreational opportunities and visual amenities provide 

positive but declining benefits with increasing distance between open space and local 

residences. Some of the various types of open space that have been examined are: urban 

parks (Bolitzer and Netusil 2000; Morancho 2003; Orford 2002; Troy and Grove 2008), 

golf courses (Do and Grudnitski 1995; Lutzenhiser and Netusil 2001), greenbelts (Lee 

and Linneman 1998), forest preserves (Garrod and Willis 1992; Thorsnes 2002; 

Tyrväinen and Miettinen 2000), wetlands (Mahan et al. 2001) and agriculture (Bastian 

2002). Many of these types are permanently undeveloped, publicly owned and publicly 

accessible. The emphasis in these studies has been to estimate the value of accessibility, 

often using Euclidean distance  as a proxy for the accessibility to the closest open space. 

However, the composition (amount) of all types of land uses surrounding a property will 

likely have important effects that are not fully captured by distance metrics. For example, 

finding the distance to the closest park ignores the existence of other parks that are 

slightly further from the residence. 

The value of these various and competing land uses may also be tied to the issue 

of spatial scale. The potential amenities or negative impacts from the presence of nearby 

open spaces on residences will depend on the spatial extent of the externalities of various 
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land uses that spillover onto a property. Rather than defining the neighborhood at one 

scale, it would be better to interpret this space at multiple scales that may be hierarchical 

or overlapping depending on the particular variable of interest. For the suburban region 

surrounding Baltimore, one would expect that a diversity of land types would be valuable 

to a residence because it increases the number of nearby destinations such as working, 

shopping and recreation. However, in the immediate neighborhood of a home, mixed 

uses may be less desirable because it may increase the level of negative externalities. It 

would therefore seem important to capture this variation in impacts by examining the 

effects at multiple scales (hierarchical and/or non-hierarchical) within a property hedonic 

model.  

Geoghehan and others (1997) researched the issue of the effects of multiple 

spatial scales of certain types of open space on property values. The authors theorized 

that the amount of open space within 100m of a property would have a different impact 

on property values than the amount of open space within 1km of the same property. They 

find that within the 100m buffer, the proportion of open space positively impacts property 

values, but within a 1-km buffer this variable negatively influences land prices. Their 

findings suggest that having a relatively high amount of immediately adjacent visual and 

recreation amenities is considered to be beneficial by local residents but that a high 

proportion of open space within 1km of their property reduces the conveniences 

associated with developed areas such as shopping and entertainment.  

Acharaya and Bennett (2001) also research this differential effect of spatial scales 

on the impact open space on property values, using 1/4-mile and 1 mile buffers to 
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distinguish between visual and neighborhood impacts within a walk-able distance from 

the home. They found that proportion of open space for both buffers generated a positive 

effect on house price. Including a variable for the percentage squared (that is, a quadratic 

form), they find that an increase in the percentage of open space around a house increases 

the value of the property but at a decreasing rate (the coefficient on the squared term is 

negative).   

Kestens and other (2004) also examine the effects of land use at several spatial 

scales. They used buffers of 40m and 100m to represent the visual space surrounding a 

property. Their 500m buffer represented the walking space around the property and their 

1km buffer represented the overall effect of a neighborhood. They theorize that visual 

impacts would be the most important to an individual residence and therefore the benefits 

of nearby open space and natural vegetation would be greatest in the immediate area 

surrounding a property.  

In addition to the issue of spatial scale, the type of open space used in a hedonic 

study will affect the estimated coefficients. Open space in previous research has been 

described by cover type (e.g. deciduous vs. coniferous forest), land use (e.g. pasture vs. 

park), ownership (e.g. private vs. public), accessibility (e.g. open to the public vs. semi-

public open vs. public no-trespass) and the potential for development (e.g. land conserved 

in perpetuity vs. potentially developable). Smith and others (2002) classify this last 

element of open space as being “fixed” (permanent) or “adjustable” (potentially 

developable).  Because fixed open space is somewhat permanent, the effect on properties 

should be consistent across time (controlling for shifts in cultural values, socio-economic 
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conditions and the property market).  However, the price effect of adjustable open space 

(those areas that could potentially be developed) will be less clear because different 

residents will have different expectations about the future use of this land. Potential 

property purchasers may expect that this open space will be developed in the near future, 

thus diminishing the value that this open space provided to a property in the first place. 

Therefore, the amenity value of adjustable open space should be less than fixed open 

space but will vary according to buyers’ knowledge and expectations, which are 

dependent on the local development conditions for an area. If there is visual evidence of 

nearby open areas currently being developed into residences then a buyer is likely more 

aware of the potential for conversion of open space nearby their prospective homes.  

Geoghegan (2002) researched the differential effects of developable vs. 

permanently-conserved open space and found that permanent open space was three times 

more valuable than developable open space. This research used only one 1600m buffer 

distance from each home interpreted as a 20 minute walk from one’s home.  Irwin 

(2002b) also distinguishes between nearby, developable agricultural lands from those 

with conservation easements. The author includes the areal proportions of ten types of 

land uses within 400 m of a home and examines the marginal value of these land uses on 

the log transformed price of the property. She finds that conserved agricultural land and 

public open spaces were positive, cropland was positive but insignificant and forests were 

negative.   

This study draws on previous research concerning the value of preserved and 

developable open space at multiple spatial scales.  Proportions of different types of open 
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space are measured at four spatial scales. These scales are defined by 100m, 500m and 

1km distance buffers around each individual property as well as the census block group 

in which each property is located. The 100m distance was chosen to represent the 

immediate visual and auditory space that an individual perceives while on their property. 

The 500m distance represents the area of frequent walking distances from a residence, 

while the 1km buffer approximated a larger activity space that an individual frequently 

travels through during their daily routines. Open space is separated into private lands that 

are developable, private lands that are restricted from development, and a combination of 

publicly-owned and publicly-accessible lands such as parks, golf courses, cemeteries and 

school athletic fields. These open spaces are not likely to be owned by the individual 

properties that are examined in this research but are nonetheless expected to provide 

differential benefits to these properties depending on the type of open space and the scale 

at which they are examined. The size of the coefficients for public lands and private, 

conserved lands are expected to be greater than the coefficient for developable open 

spaces.  

The foundation for the property hedonic model was presented by Rosen (1974) 

who showed the existence of a property market equilibrium where consumers and 

suppliers maximize their respective utility and profits by choosing to purchase and 

produce properties with distinct combinations of desirable attributes. Although this 

approach has been used to address a wide variety of environmentally-related issues in 

since Rosen’s work, there are numerous statistical and econometric issues that are not 

fully accounted for. Rosen’s (1974) development of the property hedonic model assumed 
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that both supply and demand factors were mobile and elastic and that an entire city could 

be viewed as having a single housing market in equilibrium. Equilibrium occurs when the 

market settles on a hedonic price supply-demand curve that ensures households (within 

their budget constraints) cannot increase their utility by choosing a different property and 

sellers cannot increase their profits by increasing the property’s price or changing its 

characteristics. With this assumption, the price of a property and the availability and 

contribution of its constituent characteristics are invariant across geographic space.  

Since Rosen’s work, most researchers have found that housing markets are 

typically not in equilibrium and that the assumption of a single market is unrealistic 

except for very small study areas (Bourassa et al. 2003; Day et al. 2004; Ekeland et al. 

2002; Goodman and Thibodeau 1998, 2003; Orford 2000). With property hedonic models 

there are also spatial statistical concerns of spatial dependency, non-stationarity and 

inappropriate scales of analysis.  Spatial dependency (association or lags) refers to the 

likelihood that the values of observations for a particular variable are more similar for 

observation in close spatial proximity to each other. An example of this spatial 

dependency in the housing market is the compositional effect of neighboring property 

characteristics (e.g. house age, size and value) influencing the selling price of an 

individual residence (Orford 2000). Spatial error autocorrelation, on the other hand, refers 

to the existence of spatial associations that have not been incorporated into the regression 

model (Paez and Scott 2004).  The problem with the presence of spatial error 

autocorrelation in a regression model is that the statistical assumption regarding the 

independent distribution of errors is violated. As a consequence of these two types of 
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spatial dependencies (lags and error), parameter estimates will be biased and inefficient, 

respectively (Anselin 1988). Inefficient standard errors leads to the possibility of finding 

a spurious significance of an effect when one does not actually exist (Type I error).   

Non-stationarity refers to the existence of a heterogeneous relationship between 

dependent and independent variables across geographic space (Fotheringham et al. 2002). 

Global approaches to hedonic modeling such as using OLS do not accommodate local, 

spatial variations in these relationships. A coefficient that is reported as insignificant 

within a global regression model may be the result of highly significant positive 

relationships cancelling out the effect of significant negative relationships in others areas. 

With respect to the effect of locational amenities on house price, it is often useful to 

determine the existence of non-stationarity and to attempt to model the reason for its 

existence by allowing the coefficient to interact with other variables.  

Issues with spatial dependencies and non-stationarity are further complicated by 

the scale at which attributes are measured or aggregated. If the values of these spatial 

properties change with the choice of unit used in a model, then the model exhibits scaling 

challenges that cannot be effectively modeled with standard regression techniques. Thus, 

the variance of the outcome, the relationship between the independent and dependent 

variable and the relationship between individual observations all may be sensitive to unit 

size. 

This research uses a multilevel modeling framework for addressing the challenges 

of the property hedonic model. With this approach, individual properties are nested 

within neighborhoods (Brown and Uyar 2004; Gelfand et al. 2007; Goodman and 
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Thibodeau 1998; Orford 2000, 2002). These models allow the simultaneous examination 

of the effects of group-level and individual-level variables on individual-level outcomes 

(the property price) while accounting for the non-independence of observations within 

the neighborhoods. Multilevel models also account for the spatial error autocorrelation 

(dependence of the residuals) by differentiating between-individual errors from between-

neighborhood errors (Orford 2000). If this dependency was not modeled, the standard 

errors of the independent variables would be biased downwards (underestimated), which 

results in spuriously significant effects (Snijders and Bosker 1999). Multilevel models 

also allow independent variables to vary across geographic space. Deviations from the 

global relationship between price and the variable can be mapped to determine the 

magnitude and location of this non-stationarity in the relationship. Each level-1 

coefficient can be allowed to vary across neighborhoods either randomly, through the 

interaction with level-2 variables or through both of these options (Orford 2000). 

 

4.3. Objectives 

This research focuses on measuring the value of open space that contributes to the 

price of nearby residential properties while controlling for residential and commercial 

land uses as well as structural and neighborhood characteristics. Specifically, I examine 

the effect on property value of proximity to privately conserved, privately developable 

and public open spaces at four spatial scales: 100m, 500m and 1km distances from the 

individual residence and the block group in which the property is located.  
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4.4. Data 

The study area for this hedonic model contains those areas of Baltimore County 

surrounding the city of Baltimore and extending to an urban boundary defined by the 

extent of the urban sewer infrastructure.  Using this urban sewer boundary as the study 

extent helps to distinguish between the housing markets for rural properties and suburban 

properties and is considered a de facto urban growth boundary for the Baltimore 

metropolitan area. These markets differ with respect to zoning, types of properties and 

the consumers of these properties. Due to the inaccuracy with the actual boundary, 

properties were included if at least 50% of the area of their corresponding block group 

fell within the urban boundary. Properties located within block groups whose center was 

within 2km of the coast of Chesapeake Bay were also excluded. Coastal neighborhoods 

were excluded because of the potential for confounding the effects of the value of open 

land with the value of proximity to water. 

Property sales and attributes were obtained from the MD Property View 2004 

database, a private company which compiles sales transaction data with a property’s 

geographic location, lot size and structural characteristics from the state of Maryland's 

property-appraisal database. Sales transactions for a 3-year period (1998-2000) were used 

in this analysis. This created a dataset with 12,196 properties distributed among 295 

block groups. The properties and boundaries used in this research are shown in Figure 

4.1. 
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Figure 4.1. Study Area in Baltimore County 

 

 

 

Selling prices were standardized to the year 2000 with the OFHEO (Office of 

Federal Housing Enterprise Oversight) housing price index for the Baltimore 

Metropolitan Statistical Area. This index accounted for both annual and seasonal 

(quarterly) fluctuations of property sales. This standardization removed the need for 

adding dummy variables for year and season while allowing for a sufficiently large 

dataset of properties that would be consistent with the 2000 Census attributes used to 

describe the neighborhood. 

Property records were selected if they followed numerous criteria: “Arm’s length” 

transactions only; single, detached homes or townhouses; appraised, total property value 
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was within ±50% agreement of the selling price; zoning was classified as either 

residential or residential-commercial; and values of key variables used in the analyses 

were not missing. The total square footage for each house accounted for floor area for 

each story, excluding basements and attics. Basements and garages were converted to 

dummy variables (presence or absence) rather than using the area of the features because 

of the numerous omissions and errors within the database. The field denoting quality of 

construction, initially specified with nines codes ranging from “low cost” to “luxurious 

plus”, was converted to 3 dummy variables of poor, average and high quality. The 

number of bathrooms and half-bathrooms were recombined into one attribute (e.g. one 

full bath and one half bath equals “1.5”). Following the example of Cho (2006) and Troy 

and Grove (2008), records with low property prices (less than $50,000) were considered 

as either database errors or non,-arm’s length transactions and were excluded from the 

analysis. Approximately 0.5% of properties were excluded from further research for this 

reason. Additionally, a few records with house size or lot size less than 500 ft
2
 were 

considered to be database errors and were excluded. These and other property variables 

as well as their means and range are listed in Table 4.1. All of these variables, except for 

age of structure, are expected to have a positive impact on property price. 

A large number of Census attributes, obtained at the block group level from the 

2000 Census, were available for use in this research. These were used as proxies for 

neighborhood characteristics that nearby properties shared. The percent of the 

neighborhood with a bachelor’s degree or higher was used as a proxy of the social status 

of the neighborhood. A well educated neighborhood is expected to be associated with 
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higher property values. Population density (per hectare) was a measure of the demand for 

and relative scarcity of land available for development. Higher population densities are 

expected to drive land price (and overall property prices) higher. Percent vacancy is 

included as an indicator of property market conditions for the neighborhood. A higher 

vacancy rate is expected to have a negative impact on property prices. Mean travel time 

to work (in minutes) was used as a proxy for distance to the nearest employment center. 

As increased commuting time represents increased opportunity cost of time and travel 

expenses (e.g. fuel), an increase in this variable is expected to reduce the value of a 

property. Conversely, wealthy people tend to live further from downtown Baltimore, 

where they can access higher-quality amenities (e.g. better schools, public services, 

cleaner environment) and avoid urban blight externalities such as crime. Thus the 

variable for distance to downtown Baltimore is also included and is expected that greater 

distances will have a positive association with property prices. Median house value was 

expected to capture some of the spatial dependency in price that nearby properties shared.  

In addition, the property-level variables of age, house size and lot size were 

group-mean centered and their block groups means were added to the model at the 

neighborhood level. This group-mean centering approach minimizes the confounding of 

individual-level effects of structure with neighborhood-level, compositional effects 

(Gelman et al. 2007; Orford 2000). This compositional effect of place is a form of spatial 

dependency where the individual attributes (the level-1 independent variables) of all the 

properties in a neighborhood have a combined influence on the value of an individual 

house separate from the effects of the individual attributes for that house. 
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Table 4.1. Property and Neighborhood Regression Variables  

Variables Description Min Max Mean 

Property      

Price00ab Sale price converted to Yr 2000 $50,062  $1,754,793  $147,730  

EnclsFt b Total area of interior (ft2) 561 8,492 1,556 

LandM b Lot size of property (m2) 63 19,950 740 

Bathnum Number of full and half bathrooms 1 8.5 2.0 
Age b Age of house at the time of sale  0 201 31 

HouseDum Detached home vs. townhouse  0 1 0.5 

Basedum Presence of basement 0 1 0.6 

GarDum Presence of garage or carport 0 1 0.3 

QualDumAvg Avg. quality of construction 0 1 0.6 

QualDumHigh High quality of construction 0 1 0.1 

       

Block Group       

MedValHouse Median house value $76,100  $422,100  $135,366  

pBachDiploma Percent with a college degree 0 45 20 

TravelMean Mean travel time to work 17 41 29 
PopDens Population density per hectare 0.3 103.6 20.6 

DistBaltKm Distance to downtown Baltimore 5 27 13 

pVacancy Percent vacant houses 0.4 15.2 3.8 

mnAge Mean age of residences 1 89 39 

mnEnclsFt Mean house size (ft2) of residences 1,509 884 3,086 

mnLandM Mean lot size (m2) of properties 190 5,170 894 

a: dependent variable b:natural log transformed in regressions 

 

The land use/land cover data for this research was derived from a number of 

sources. The public open space variable was a combination of parks, natural areas, golf 

courses, cemeteries, public school athletic fields and open areas of college campuses. 

Officially designated parks, natural areas and publicly-owned golf courses were obtained 

from county, state and federal agencies. Other parks, cemeteries, golf courses and public 

school athletic fields were identified and delineated from the USGS Geographic Names 

Information System (GNIS), parcel boundaries and aerial photos. All of these were 

combined into the “public” category because they all allowed some sort of public access 

and were maintained as manicured, landscaped or natural open spaces. Only open spaces 
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that were greater than 2 hectares were included in this category. Approximately 20% of 

the total land for the study area was composed of public open space.  

Forests were mapped (1997) into nine categories ranging in degrees of 

conservation by the Baltimore County Department of Environmental Protection and 

Resource Management (Appendix x). These categories were: publicly-owned forests, 

which were subsequently added to the public open space category; private forests with no 

development restrictions; and private forests that were under conservation easements, in 

resource conservation areas or were within 100 feet of a stream and unlikely to be 

developed due to zoning and environmental regulations. Other forests identified by the 

USGS 2001 National Land Cover Database (NLCD01) that were not already included in 

the forests described above were added to the private, developable open space category. 

Areas of agricultural open space were defined by a combination of the NLCD01 and the 

Maryland Department of Planning’s 2000 Land use/Land Cover (MDLULC00) datasets 

for agricultural and pastoral land with a minimum mapping unit of 10 acres. These 

agricultural areas were added to the private, developable open space category. 

Approximately 5% and 15% of the total land for the study area was composed of 

agricultural and private forests, respectively. 

Commercial lands were defined from the NLCD’s high-density class that was 

located within the MDLULC02 commercial areas. Low-medium density residential lands 

were combined from NLCD01 low and medium-density developed areas and 

MDLULC00 residential areas that were not already considered as open space from the 

previous data processing. Residential land use was considered last because of the high 
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amount of classification error associated with these NLCD01 categories (Irwin et al. 

2006). Approximately 5% and 38% of the total land for the study area was composed of 

commercial and low/medium-density residential, respectively. 
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Figure 4.2. Land Use Classes 
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Table 4.2. Land Use Regression Variables 

Variables Description Min Max Mean 

100m     

pPrvCon Private open space, conserved 0 0.54 0.01 

pPrvDev Private open space, developable 0 1 0.07 

pPublic Public open space 0 1 0.03 

pLMRes Low-med density residential 0 1 0.51 

pComm Commercial area 0 0.95 0.06 

pPrvOpen Private open spaces combined 0 1 0.06 

500m     

pPrvCon Private open space, conserved 0 0.4 0.02 

pPrvDev Private open space, developable 0 0.71 0.09 

pPublic Public open space 0 0.79 0.1 

pLMRes Low-med density residential 0 1 0.46 

pComm Commercial area 0 0.5 0.03 

pPrvOpen Private open spaces combined 0 0.76 0.1 

1km     

pPrvCon Private open space, conserved 0 0.27 0.02 

pPrvDev Private open space, developable 0 0.54 0.1 

pPublic Public open space 0 0.76 0.13 

pLMRes Low-med density residential 0 0.89 0.43 

Commercial Commercial area 0 0.26 0.04 

pPrvOpen Private open spaces combined 0 0.73 0.12 

Block Group     

pPrvCon Private open space, conserved 0 0.19 0.02 

pPrvDev Private open space, developable 0 0.43 0.06 

pPublic Public open space 0 0.63 0.11 

pLMRes Low-med density residential 0 1 0.48 

Commercial Commercial area 0 0.55 0.05 

pPrvOpen Private open spaces combined 0 0.49 0.08 

 

 

4.5. Methods 

In estimating a relationship between environmental amenities and property prices, 

the choice of functional form is not always clear. Rosen (1974) stressed that economic 

theory fails to indicate that any particular form is appropriate. Consequently, a variety of 
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functional forms have been used in the hedonic literature. A linear form assumes that an 

individual’s preferences are linear, implying that perfect repackaging of property 

characteristics is possible (Freeman 2003). However, in property markets, individual 

house characteristics are inseparable; an individual cannot mix characteristics in any 

other level than is already available in each house (Garrod and Willis 1992).  

While the form that is chosen should ideally improve the model fit and help to 

satisfy important assumptions of OLS regressions, such as normally distributed residuals 

and homoscedasticity, this is not the main issue with choosing the proper functional form. 

The goal of finding a proper functional form is to overcome problems associated with the 

non-linearity that is often found in hedonic regression equations (Goodman and 

Thibodeau 1995). Substantively, this means that the proper functional form should be 

chosen so that marginal value for any given property attribute does not vary across the 

range of house prices.  

A Box-Cox transformation analysis can be used to provide guidance on whether 

such simple forms are adequate for satisfying regression assumptions. The Box-Cox 

transformation of the dependent variable is shown as: 

 

 

Eq. 4.1 

 

With this test, the parameter, λ, is estimated through maximum likelihood to find the 

optimal transformation of the dependent variable.  This parameter can then be tested for 
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significant differences between the optimal value of λ and three cases of λ that 

correspond to simpler functional forms: a reciprocal transformation, where λ=-1; a log 

transformation, where λ=0; and a linear (untransformed) form, where λ=1.  

In this research, a left-hand (LHS) Box–Cox test found that the optimal 

transformation for price was indicated by Lambda value of -0.018. A chi-square test did 

not find this to be significantly different from a lambda value of zero, indicating that a 

natural log transformation was suitable for the dependent variable. The regression 

residuals and the dependent variable were found to be normally distributed after using 

this transformation for property price.  

A log transformation was also used on the continuous property variables of house 

size, lot size and age. In the hedonic literature, this is a common method to account for 

the (non-linear) declining value of each additional increment of house and lot size. 

Houses are also expected to depreciate with age at a declining rate. While the addition of 

a quadratic term for age often helps to account for unknown renovations or the “vintage 

effect” of older properties (Goodman and Thibodeau 1995), this was not included in this 

study. 

The regression model was then checked for collinearity within an OLS regression. 

A general rule of thumb is that variance inflation factors (VIF) greater than 10 are 

thought to be highly correlated and should be cause for further assessment before 

proceeding (O'Brien 2007). This research found VIF’s below 4 for all property and 

neighborhood variables. Because the 3 buffer distances used for the land use variables 

were not exclusive of each other (e.g. the 500m buffer included the information from the 
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100m buffer), collinearity diagnostics showed a moderate amount of collinearity between 

some of the same type of land use at different buffer distances. For this reason, 

regressions and results for land use variables are performed and reported separately for 

each of these buffer distances. Diagnostics were also used to check for the normal 

distribution of residuals, the existence of homogeneity of variances in the residuals, and 

the potential for heteroscedasticity and/or non-linear trends in the independent variable-

price relationship. 

While the analysis of multilevel models can be performed with a number of 

statistical packages, the details of using multilevel modeling with HLM (Hierarchical 

Linear Modeling) software are discussed below and follow the work of Raudenbush and 

Bryk (2002). A traditional property hedonic function (Equation 4.2) under the assumption 

of a single market can be written in terms of a vector of structural characteristics (Si), 

neighborhood characteristics (Ni) and environmental or land use characteristic (Li) and 

includes a single error term (ri). 

 

 Yi = Si + Ni +Li + ri Eq. 4.2 

 

With multilevel models, the property market is assumed to be composed of sub-

markets where within-place property attributes (S) at level 1 are separated from between-

place, neighborhood characteristics (N) at level 2.  The intercept of the level-1 equation 

becomes the dependent variable of the level-2 equation.  The error term is also expanded 

so that there is unexplained variation at both levels (Equation 4.3). 
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Level 1: Yij  =  ß0j  +  ß1jSij+…ßnj Sij+ rij 

Level 2: ß0j  =  γ00 + γ01Nj+.. γnjNnj + U0j  
Eq. 4.3 

 

The level-1 structural attributes such as house size, lot size and age may be group-

mean centered and the group average included at level 2 to account for the compositional 

effects of place as described previously.  In addition, level-1 attributes can be allowed to 

vary across submarkets (Equation 4.4). Since the model contains more than one error 

term, it cannot be estimated using OLS regression. Instead, an iterative maximum 

likelihood procedure is used (Raudenbush and Bryk 2002). 

 

Level 1: Yij  = ß0j  +  ß1j(Sij-Sj)+…ßnj Sij+ rij 

Level 2: ß0j  =  γ00  + γ01Nj+.. γ0nNj + γ0nSj + U0j 

  ß1j  =  γ10  

Eq. 4.4 

 

With multilevel property hedonics, spatial autocorrelation can be treated as the 

norm since individual houses in the same sub-market are likely to be more similar, in 

some way, than houses drawn from the entire housing market at random. Hence, 

autocorrelation is to be expected in hierarchical data, and the multilevel approach exploits 

this dependence to derive improved estimates, while the standard errors of the estimates 

are adjusted to take into account the autocorrelation (Goldstein 2003; Orford 2000). A 

test for spatial autocorrelation of the residuals using the global Moran’s “I” statistic 

(Moran 1948) shows that there is a significant but slight amount of positive correlation 

remaining in the multilevel model’s level-1 residuals (Moran’s = 0.15) after including all 
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regression variables except for land use. This is half the spatial autocorrelation that exists 

for the same model under OLS regression (Moran’s I=0.3). 

Property hedonic models often suffer from the effects of heteroscedasticity, or 

non-constant variance in the residuals. The presence of heteroscedasticity can create a 

downward bias to standard errors, which may create a spurious significance of a 

coefficient (Type I error). Multilevel models help mitigate this problem by separating the 

error term into two levels (Orford 2000). In addition, attributes that contribute most to the 

problem of heteroscedasticity in property hedonic models, such as age of dwelling 

(Goodman and Thibodeau 1998), can be allowed to randomly vary across level-2 units. 

This distributes some of the unexplained variation expressed by the level-1 error term to 

variation specific to a random effect variable and helps to reduce the problem of 

heteroscedasticity that may be found in the residuals (Raudenbush and Bryk 2002). The 

presence of heteroscedasticity can be tested in HLM and if significant heteroscedasticity 

remains, then it is recommended that robust, “Huber-corrected” standard errors be used 

instead (Poor et al. 2007; White 1980).  

In order to remove the problem of heteroscedasticity in this research, the 

structural variables of age, bathroom, house size and lot size were allowed to vary across 

block groups. However, the results from the HLM test for heteroscedasticity rejects the 

null hypothesis of homogeneity of level-1 variances. This indicates that 

heteroscedasticity still exists in the model and as such, only robust standard errors are 

reported in this research. 
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4.6. Results 

The first model examines structural and neighborhood variables without including 

variables related to the main effects of land use. The property structural characteristics 

are all highly significant and show the expected signs (Table 4.3). The log transformation 

of floor space, lot size and age means that these coefficient are interpreted as the 

elasticity of sales price, controlling for other coefficients, so that property price increases 

by approximately 0.4% and 0.1% and decreases by 0.1% for every 1% increase in floor 

space, lot size and age, respectively.  

There is a semi-log relationship between price and most variables, so coefficients 

can be interpreted as the percent change in property price with a 1-unit change of that 

particular variable, all else constant. There is an approximate 4% increase in sale price 

with the addition of a half bath. For the dummy variables, there is: an approximate 14% 

increase in sale price if the building is a single, detached dwelling (vs. a townhouse); a 

6% increase in sale price with the presence of a basement; and a 6% increase in sale price 

with the presence of a garage. There are approximate 8% and 26% increases in the sale 

price if the property was built with average or high quality materials, respectively, rather 

than poor quality materials.  

Concerning neighborhood characteristics, there is: a 2% increase for every 

$10,000 increase in median house value; a 0.5% increase in sale price with a 1-unit 

increase in a neighborhood’s percent of population with a Bachelor’s degree or higher; 

and a 0.7% decrease in sale price with a 1-unit increase in a neighborhood’s percent 
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vacant houses; and an insignificant decrease in sale price with increasing population 

density. 

Concerning the location characteristics, there is a 0.3% decrease in sale price with 

every 1-minute increase in a neighborhood’s mean travel time to work while there is a 

0.4% increase in sale price with every 1km increase in distance to downtown Baltimore. 

The block group’s mean age and house size of the properties indicates that there is 

a compositional effect of neighboring houses on the price of a single home. A 

neighborhood with large houses will increase the price of a single home while an older 

neighborhood reduces the price of a single home. The block group variable for lot size 

was not found to be significant. 
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Table 4.3. Regression Results 

Variables Coef SE Sig 

Property Level       

lnEnclsFt 0.401 0.011 0.000 

lnLandM 0.081 0.005 0.000 

BathNum 0.041 0.003 0.000 

lnAge -0.078 0.004 0.000 

HouseDum 0.148 0.013 0.000 

BaseDum 0.063 0.003 0.000 

GarDum 0.056 0.005 0.000 

QualDumAvg 0.083 0.010 0.000 

QualDumHigh 0.258 0.022 0.000 

Block Group       

(Constant) 10.932 0.057 0.000 

MedValHouse 2.000E-06 0.000E+00 0.000 

pBachDegree 0.005 0.001 0.000 

pVacancy -0.007 0.002 0.002 

TravelMean -0.003 0.001 0.019 

PopDens -6.170E-04 3.840E-04 0.109 

DistBaltKm 0.004 0.001 0.004 

mnAge -0.002 3.680E-04 0.000 

mnEnclsFt 2.840E-04 3.300E-05 0.000 

mnLandM -1.200E-05 1.100E-05 0.277 

 

 

The next set of models examines the main effects of land use from each of the 

four spatial scales of neighborhood that were considered: 100m; 500m; 1km; and the 

block group. All the variables in the previous model, except for the non-significant 

population density and mean lot size, were included in all subsequent models. Table 4.4 

presents the results of the models for each of these four spatial scales.  
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Concerning the results of both privately-conserved and developable, open space, 

the estimated coefficients are positive and significant across all spatial scales except for 

the block group. The coefficient for privately-conserved space is substantially greater 

than developable open space across all four spatial scales. The differential benefit 

between these two types increases from being almost twice as beneficial at the 100m 

buffer, to 4 times as beneficial at the 500m buffer, to 7 times as beneficial at the 1km 

buffer. Public open space does not have a significant effect on property value in this 

research. 

 

Table 4.4. Regression Results for Land Use Variables 

Land Variables Coef SE(robust) Sig   Land Variables Coef SE(robust) Sig 

                  

100m Buffer         1km Buffer       

PrvCon 0.122 0.044 0.006   PrvCon 0.960 0.299 0.002 

PrvDev 0.065 0.016 0.000   PrvDev 0.134 0.076 0.080 

PubCon 0.030 0.022 0.173   PubCon 0.046 0.058 0.426 

Residential 0.023 0.009 0.006   Residential 0.047 0.042 0.265 

Commercial -0.074 0.033 0.026   Commercial 0.091 0.086 0.288 

PrvOpen 0.074 0.015 0.000   PrvOpen 0.259 0.031 0.000 

                  

500m Buffer         Block Group       

PrvCon 0.570 0.241 0.018   PrvCon 0.497 0.304 0.103 

PrvDev 0.136 0.051 0.008   PrvDev 0.018 0.076 0.814 

PubCon 0.028 0.036 0.393   PubCon -0.005 0.037 0.897 

Residential 0.035 0.020 0.081   Residential -0.030 0.023 0.184 

Commercial -0.070 0.039 0.074   Commercial 0.041 0.064 0.520 

PrvOpen 0.203 0.039 0.000   PrvOpen 0.102 0.053 0.058 
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4.7. Discussion 

These results suggest that there is a preference for conserved areas over 

developable open spaces, which indicates that individuals recognize the potential for 

these areas to be developed in the near future. 

The insignificant effect of public open space seems contrary to expected theory. It 

is reasonable to expect that the negative externalities of public open space (e.g. increased 

traffic and crowd noises) may compete with the benefits (e.g. recreation and aesthetics) 

when these areas are in close proximity to a residence, resulting in an insignificant or 

even negative effect. However at the block group or 1km level, it would be expected that 

the convenience of having nearby recreation opportunities would provide a positive and 

significant benefit to homes. This unexpected result may be due to the inclusion of 

cemeteries, golf courses and athletic fields into the category of open space. 

The effect of commercial and residential land across these scales is consistent 

with the expectations. In the immediate area (100m or 500m from a home), residents 

dislike the negative externalities associated with commercial areas. However, there is 

likely a distance-decay effect for these negative externalities so that at 1km, the positive 

aspects of commercial areas (e.g. the convenience of shopping) begin to outweigh the 

negative aspects. Conversely, the benefits of having more residential areas become 

insignificant at 1km and negative but insignificant at the block group. This suggests that 

the inconvenience of increased travel time to work and shopping are competing with the 

benefits of being surrounded by other homes. 
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These results show that the effect of different types of land use surrounding an 

individual residence, changes with the spatial scale at which these land uses are 

measured. This may be due to the different scales at which individual perceive various 

positive and negative externalities. Individuals are likely to value being surrounded by 

other residences or open space in the immediate visual and auditory distances from their 

homes. At larger scales, there appears to be a greater preference for increasing the 

opportunities associated with an individual’s daily activities. 

 

4.8. Conclusion 

Both the type of open space and the scale at which the amount of open space is 

measured can influence the outcome of a property hedonic model. Concerning the type of 

open space, both conserved and potentially developable private lands appear to hold more 

value to residents than public open space. Public open space was not found to provide a 

significant benefit for two possible reasons. First, this category included a mix of open 

space types from actual public parks to golf courses, cemeteries and school athletic fields. 

Some of these types, particularly cemeteries, may be negatively valued to a degree that 

overwhelms the benefits from other types of open space, particularly parks. Second, the 

negative externalities potentially associated with these features, such as increased crowd 

noise and traffic may overwhelm the aesthetic and recreation benefits of these places. 

However, the much larger coefficients of private open space compared to public space 

suggest that it may be the absence of negative externalities associated with developed 

areas rather than specific open space amenities, such as recreation, that are most valuable 
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to local residents. As local and county governments develop policy initiatives to preserve 

open space in the suburban area around Baltimore, this research suggests that purchasing 

the development rights, through conservation easements might be preferable to outright 

public acquisition of undeveloped land.  

Concerning the difference between private conserved areas and potentially 

developable areas, it appears that residents do perceive the potential for increased 

negative externalities from the conversion of open space to developed areas. Given this 

recognition of potential development it would seem that the price differential between 

these types would be greatest for the immediate areas around a house where the negative 

externalities of development would be greatest. However, it may be that residents also 

recognize the existence of zoning laws that likely prevent disparate development from 

occupying nearby areas. Given the greater likelihood of this open space in the immediate 

area of a residence being developed into other residences, rather than commercial or 

industrial uses would mean that the differential between conserved and developable open 

space might be less in the immediate area of a residence. 

While the property hedonic model can be used to estimate the value of some 

ecosystem goods and services associated with open space it is important to remember that 

this method provides only a limited measure of total economic benefits. Public open 

spaces provide recreation to visitors and other residents as well as to the local property 

owners.  The potential, property hedonic benefits to condominiums, apartments, and 

businesses was not observed. Open spaces, both public and private, also provide 

numerous non-use benefits to the entire population of the area such as protecting water 
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quality through storage, filtration and mitigation of runoff and providing habitat for local 

wildlife. For these reasons, estimates from hedonic house price models will generally 

under-represent the total non-market value of these open spaces. 
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