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Abstract 
 
In northern hardwood-conifer forests, alternatives to conventional forest management 
practices are being developed in order to maintain biodiversity and ecosystem 
functioning while providing for timber revenue generation.  The understory layer of 
vegetation encompasses the majority of plant species diversity in forested ecosystems 
and may be sensitive to timber harvest disturbance.  Thus, monitoring the response of 
forest understories to new silvicultural techniques may provide a means for evaluating 
their intensity.  In this study, we hypothesize that i) uneven-aged, low-intensity 
silvicultural systems can maintain understory plant diversity and support late-
successional species through harvest disturbance; ii) retaining and enhancing stand 
structural complexity can increase understory plant diversity in northern hardwood-
conifer forests; and iii) plant responses are influenced by interactions between canopy 
structure, soils, and exogenous climate processes.  Experimental treatments include 
two conventional uneven-aged prescriptions (single-tree selection and group selection) 
modified to increase structural retention, and a third technique designed to promote 
late-successional forest structure and function, termed structural complexity 
enhancement (SCE). Four replications of each treatment were applied to 2 ha 
management units at three sites in Vermont and New York, U.S.A. Understory 
vegetation was monitored over 2 years pre- and 4 years post-treatment. We used a 
linear mixed effects model to evaluate the effects of treatment, soil properties, and 
drought stress on understory diversity and abundance.  Compositional changes among 
treatments were assessed with non-metric multidimensional scaling (NMS), an 
ordination technique.  Model results show that over time, understory responses were 
strongly affected by overstory treatment and less influenced by soil chemistry and 
drought stress. All treatments were successful in maintaining overall composition and 
diversity.  However, late-successional diversity increased significantly in SCE units 
compared to group selection units. These results indicate that while conventional 
uneven-aged systems are capable of maintaining understory plant diversity, variations 
that retain or enhance structural complexity may be more efficient at retaining late-
successional species. Increased microsite heterogeneity as a result of these techniques 
may also increase understory plant diversity, at least during the initial post-harvest 
recovery period.  
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Chapter 1.  Comprehensive Literature Review 
 

Understory plant communities are a species-rich component of forest 

ecosystems that contribute to ecosystem functioning and support higher trophic levels.   

Therefore, understanding the response of forest understories to silvicultural 

disturbance can help guide management strategies that aim to maintain ecological 

integrity.  This study examines understory plant responses to alternative, uneven-aged 

forestry practices in northern hardwood-conifer forests.  Three major themes are 

integrated in this research: disturbance and the successional dynamics of forest 

understories, conventional and alternative silvicultural systems, and understory 

responses to forest management practices.  This comprehensive literature review 

discusses the current understanding of these topics within the scientific community, 

and provides a brief overview of an experimental research program called the 

Vermont Forest Ecosystem Management Demonstration Project (FEMDP). 

1. Disturbance and the successional dynamics of forest understories  
 

There are many theories on the mechanisms driving succession and how plant 

assemblages respond to and reorganize following disturbance.  One of the earliest 

theories was the community concept, which described the plant community as a 

complex organism and succession as a temporal sequence of communities culminating 

in a climax assemblage for a given climatic region (Clements 1916).  The community 

concept was challenged by the individualistic plant species concept, which proposed 

that plants respond independently to their surroundings and their co-occurrence is 
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coincidental (Gleason 1917).  Building upon this idea, Egler (1954) defined the initial 

floristics model of succession, whereby individual species can arrive, colonize, and 

assume dominance at any time following disturbance.  Connell and Slatyer (1977) 

later described inhibition, facilitation, and tolerance as the important forces driving 

successional change, while Tilman (1988) argued that long-term successional 

dynamics were controlled by differences in species’ responses to multiple resources 

such as soil nutrients, moisture, and light.  

Recent studies examining different aspects of these theories on succession 

have revealed complex patterns, feedbacks, and interactions that influence post-

disturbance plant community composition (Halpern 1988; Tilman 1988; Halpern 

1989; Berger and Puettmann 2000; Marby et al. 2000; Roberts 2004).  Many of these 

models stress the controlling influence of natural disturbance regimes (Franklin et al. 

2002).  For example, succession is influenced by the type, frequency, intensity, and 

size of disturbance (White and Pickett 1985).  These factors determine the severity and 

extent of canopy, understory, and forest floor that is removed or disturbed and 

subsequently, how the understory vegetation responds.  Roberts (2004) defined eight 

factors that may influence understory response to natural disturbance, depending on 

the degree to which forest strata are disturbed.  These include: 1) competition with 

higher strata, 2) competition within the herb layer, 3) microclimate, 4) coarse woody 

debris substrate, 5) pits and mounds, 6) mineral soil substrates, 7) damage to pre-

existing plants, and 8) propagule availability.  The relative importance of these eight 

response factors changes over time.  In the initial stages of succession, direct effects of 
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the disturbance such as physical damage to plants and soil disturbance are likely to 

have the greatest influence on understory composition.  Over the long-term, indirect 

effects of stand structure, microclimate, and propagule availability may become more 

important (Halpern and Spies 1995).   

Post-disturbance vegetation dynamics are influenced by the plant strategies, 

life history traits, and functional characteristics of residual and colonizing species 

(Halpern 1989).  Plant strategies are the evolutionarily developed patterns of response 

to the elements of the environment encountered in a plant’s habitat (Bazzaz 1996).  

The r-K continuum described by MacArthur and Wilson (1967) identified r-strategists, 

species that occupy disturbed habitats, and K-strategists, density-dependent species 

that persist longer.  In the classification scheme of Grime (1977), species are identified 

as competitor, stress-tolerant, and ruderal according to their ability to deal with 

varying levels of stress and disturbance.  Disturbance response has also been linked to 

specific life history or functional characteristics, including life forms (Raunkiaer 

1934), vital attributes (Noble and Slatyer 1980), functional types (Smith et al. 1997) 

and life-history traits (McIntyre et al. 1995).  These characteristics influence a plant’s 

ability to compete and reestablish following disturbance, and are commonly used to 

model forest succession (Bazzaz 1996). 

Plant species composition and diversity are also controlled at broad scales by 

abiotic factors such as climate, elevation, topography, light, and soil resources (Leach 

and Givnish 1999) and with soil resource gradients, overstory characteristics, and 

microtopographic features at fine scales (Beatty 1984; Gilliam 2002).  By altering 



 

 
4

abiotic factors, disturbance can indirectly influence composition and distribution of 

understory plants.  For example, disturbances that uproot trees can create a complex 

pit and mound topography, and provide microhabitats for certain plant species by 

exposing large amounts of mineral soil and coarse woody debris substrate (Beatty 

1984).  Overstory removal can change the microclimate of a site, typically causing 

increases in solar radiation, mean temperature and temperature fluctuations, and 

decreases in relative humidity and moisture on the forest floor (Collins et al. 1985).  

The heterogeneity of light and coarse woody debris that develops later in succession 

has also been linked to spatial patterns of understory species (Scheller and Mladenoff 

2002).   

Studies have shown that nutrient availability can influence plant heterogeneity 

(Hutchinson et al. 1999; Fraterrigo et al. 2006).  For example, soil cation 

concentrations, particularly calcium, have been shown to control spatial distributions 

of understory plants (Gilliam and Turrell 1993; Kolb and Diekmann 2004; Graves et 

al. 2006), and plant growth is commonly limited by availability of nitrogen and 

phosphorus (Marschner 1995).  Disturbances can alter soil nutrient availability, 

although the intensity and duration of these changes vary with the soil and forest type, 

as well as the type of disturbance (Grigal 2000).  For example, disturbances that result 

in high organic matter inputs can lead to local increases in soil nutrient availability.  In 

contrast, a decrease in soil nutrients is often the result of disturbances that remove 

biomass and disturb forest soils (Johnson et al. 1997; Elliott and Knoepp 2005).  

While silvicultural disturbances frequently lead to an overall decline in soil nutrients, 
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elimination of overstory competition can also temporarily increase the availability of 

these nutrients (and light) to understory vegetation (Roberts 2004), resulting in 

increased productivity and diversity.   

Calcium is one of the elements most susceptible to depletion following timber 

harvesting because of its high concentration in tree wood and bark (Schaberg et al. 

2001).  In contrast, nitrogen supply to plants increases greatly following disturbance, 

and then may continue at low levels throughout succession (Matson and Vitousek 

1981; Robertson and Vitousek 1981).  Net nitrification and mineralization can 

increase following forest harvesting, leading to elevated concentrations of ammonium 

and nitrate, but also potential for overall nitrogen loss through leaching (Bormann et 

al. 1977).  Later in succession, accumulated organic matter can increase the ability of 

the soil to hold moisture and retain soil nutrients important to understory plants 

(Bazzaz 1996). 

The influence of soil nutrient availability on understory plant communities 

may change along successional gradients.  For example, Gilliam et al. (1995) observed 

that herb layer development was linked with soil characteristics in early-successional 

forests but that it declined with stand age.  In contrast, the patchy availability of soil 

resources, particularly nitrogen, that develops through succession has been shown to 

influence the abundance and pattern of understory plant species (Mladenoff 1990).  

Christensen and Gilliam (2003) argue that soil chemistry accounts for much of the 

variation in herbaceous species composition at nearly every stage of succession. 
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Anthropogenic land-use has also been shown to influence successional 

dynamics and forest stand development (McLachlan and Bazely 2001; Bellemare et al. 

2002; Foster et al. 2002; Hall et al. 2002).  Studies have demonstrated strong and 

persistent effects of historical land-use on vegetation composition and forest structure 

(Foster 1992; Foster et al. 1998; Fuller et al. 1998; Motzkin et al. 1999; Gerhardt and 

Foster 2002; Hall et al. 2002), as well as changes in the availability and heterogeneity 

of soil nutrients (Fraterrigo et al. 2006).  In the understory, the ability and rate of forest 

herbs to recolonize a site is a major factor driving vegetation patterns following 

natural and anthropogenic disturbances.  Forest herbs with limited dispersal 

mechanisms are well adapted for growth in stable forest ecosystems characterized by 

local, small-scale disturbances such as gap-phase dynamics, but are not able to rapidly 

recover following severe land-use changes, such as tilling for agriculture (Bellemare et 

al. 2002). 

The wide-ranging variability in disturbance and response factors has led to the 

concept of multiple pathways of succession for understory communities (Noble and 

Slatyer 1980; Pickett et al. 1987; Halpern 1988; Inouye and Tilman 1988; Collins 

1990; Frelich and Reich 1995; Bazzaz 1996; Frelich and Reich 1999).  The direction 

of a successional pathway depends on variation in the life history characteristics of the 

available species and competitive relationships, as well as the timing, intensity or 

frequency of disturbance, the availability of species, and the local environment 

(Halpern 1988).  Knowledge of disturbance and response factors for a specific forest 
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type can help forest managers predict changes in understory vegetation as a result of 

forest management practices. 

2. Forest management practices: Conventional silvicultural systems and 
proposed alternatives 

 
Conventional silvicultural systems include five standard methods used to 

regenerate forest stands.  The scale and intensity of the disturbance generated varies 

considerably among these different methods.  For example, clearcutting, seed tree, and 

shelterwood systems are relatively intensive methods that produce even-aged stands.  

These silvicultural treatments are often used to regenerate pioneer or early-

successional species, although in the northern forest region they are adapted for 

intermediate and shade-tolerant regeneration purposes through either patch cutting or 

higher levels of shelterwood retention.  Clearcutting, the most severe method, involves 

removing all trees within a designated boundary, resulting in an area with the light and 

temperature regime of an open field.  The seed tree method is a slight variation of the 

clearcut, with remnant mature trees left to provide a seed source for regeneration.  The 

shelterwood system involves retaining a sheltering overstory to protect regenerating 

seedlings and saplings in addition to providing a seed source for a new cohort.  

Depending on the amount of overstory retained, shelterwoods are often described as 

two-aged systems, and can be used to regenerate mid- to late-successional species 

(McEvoy 2004).   

 In contrast, uneven-aged stands contain trees with a wide range of ages 

and have more than two age classes, or cohorts (Nyland 1996).  Examples of uneven-



 

 
8

aged silvicultural systems include group selection, in which small patches (usually 

0.05 to 0.25 ha) of trees are removed, and single-tree selection, in which individual 

trees are removed from the stand.  The diversity of age structures maintained in 

uneven-aged systems results in a complex stand structure.  For example, uneven-aged 

stands typically contain vertically differentiated canopies and considerable horizontal 

heterogeneity resulting from a mosaic of open canopy gaps and closed-canopy interior 

forest patches.  In northern hardwood-conifer forests, uneven-aged systems more 

closely approximate the naturally occurring structural characteristics of unmanaged 

late-successional forest stands than even-aged systems (McGee et al. 1999; Seymour 

et al. 2002). 

 The recognition of the global loss of biodiversity (Wilson 1988; Ehrlich 

and Wilson 1991; Noss and Cooperrider 1994) has led to the development of forest 

management strategies that include objectives for ecological conservation.  These 

strategies are often focused on the creation of large reserves; however, nonreserve 

matrix lands can also play an important role in biodiversity conservation by providing 

habitat, buffering reserved areas, and increasing connectivity across the landscape 

(Lindenmayer and Franklin 2002).  Thus, the development of ecologically sustainable 

techniques for managing the matrix of unprotected forest land is essential to the 

conservation of forest biodiversity at multiple scales.  A number of variations of 

uneven-aged stand management strategies have been proposed and variously termed 

green tree retention (Franklin et al. 1997), ecological silviculture (Benecke 1996), 

continuous cover forestry (Garfitt 1995), near-natural forestry (Benecke 1996), multi-
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aged (O'Hara 1996) and multicohort (Oliver and Larson 1996) forestry.  These 

techniques offer alternatives to conventional silvicultural systems that provide for 

ecological functions as well as timber productivity. 

Structural enrichment (Franklin et al. 1997) or structure-based (Franklin et al. 

2002; Keeton 2006) forestry is another alternative that has been proposed for the 

sustainable management of matrix lands.  Structure-based forestry involves active 

management of stands to create spatial heterogeneity and specific structures that 

represent the different stages of stand development.   The goal is to create a managed 

landscape with forest structures and age classes represented in densities and spatial 

distributions similar to those associated with natural disturbance and successional 

dynamics (Aplet and Keeton 1999; Franklin et al. 2002; Seymour et al. 2002).  

Structure-based approaches currently applied in some managed forests include 

structural retention, longer rotations, and active creation of structural complexity 

(Carey et al. 1999; Franklin et al. 2002; Keeton 2006).   

Variable retention harvesting is another approach based on the concept of 

retaining structural elements of the harvested stand to achieve specific management 

objectives.  This approach provides structures that support functions similar to those 

provided by biological legacies left by natural disturbances (Franklin et al. 2002). 

Specifically, variable retention harvest systems can retain species and processes 

through the silvicultural disturbance, enrich forest stands with structural features that 

would otherwise be absent, and enhance connectivity in the managed landscape.  

Retained structures can include live trees, snags, coarse woody debris, and intact 
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patches of forest floor that serve as biological legacies in the regenerating forest 

(Franklin et al. 1997).  Structures are retained indefinitely (e.g. over multiple rotations 

or entry cycles), in contrast to shelterwood methods, which only retain structures until 

a new cohort has regenerated. 

Another proposed alternative to conventional forest management is 

disturbance-based forestry, which involves modeling silvicultural systems after the 

scale, frequency, and pattern of natural disturbances (Mitchell et al. 2002; Seymour et 

al. 2002).  In northern hardwood forests, common forms of disturbance including 

wind, pathogens, and insect herbivory create small canopy openings (Seymour et al. 

2002).  Numerous studies have investigated the size, frequency, and spatial 

distribution of these natural canopy gaps in hardwood-hemlock forests (Runkle 1982; 

Foster and Boose 1992; Kimball et al. 1995; Dahir and Lorimer 1996; Ziegler 2000; 

Boose et al. 2001; Seymour et al. 2002; Ziegler 2002, 2004), providing a guideline for 

the development of silvicultural analogues.   

In addition to considering the pattern and intensity of harvesting practices, 

ecologically sustainable forest management practices involve mitigating the negative 

impacts of harvesting.  This entails adopting methods that prevent soil erosion, soil 

compaction, and damage to residual trees.  For example, careful design of the access 

system, choice of harvesting equipment, and the seasonality of logging can minimize 

the impacts of silvicultural disturbance (McEvoy 2004).  The degree to which negative 

impacts are avoided, the specific level and pattern of retention, and the type of 

structural features retained can be altered depending on the forest type and the 
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management plan.  This flexibility inherent in uneven-aged forestry alternatives 

enables them to encompass a broad spectrum of ecological and economic objectives.   

3. Understory responses to forest management practices 
 

Silvicultural disturbances in managed forests vary in spatial pattern, intensity, 

and frequency of application.  Because of their sensitivity to disturbance, the response 

of forest understories to these variations can be a useful tool in assessing their 

ecological impact (Gilliam 2002).  To date, research in North America has focused on 

evaluating understory composition and diversity following conventional treatments, 

including plantation forestry (Ramovs and Roberts 2005), clearcutting (Gilliam et al. 

1995; Halpern and Spies 1995; Liu and Ashton 1999), fire (Halpern and Spies 1995), 

and thinning and fertilization (Thomas et al. 1999).  In northern hardwood forests of 

North America, understory plant responses to opening size and age in experimental 

canopy gaps (Collins and Pickett 1988a, 1988b) and in even- and uneven-aged 

conventional silvicultural treatments (Jenkins and Parker 1999; Scheller and 

Mladenoff 2002) have been evaluated.   

A common finding in studies of understory response is that plant communities 

are largely resilient to silvicultural disturbance.  Studies of even-aged approaches 

frequently show immediate post-harvest increases in diversity (Gilliam et al. 1995; 

Halpern and Spies 1995), followed by return to a state similar to the pre-harvest 

condition (Metzger and Schultz 1984; Jenkins and Parker 1999; Ruben et al. 1999).  In 

northern hardwood forests in Michigan, Metzger and Schultz (1984) found that 

composition and diversity showed the greatest change four to five years after even- 
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and uneven-aged harvest, whereas after 50 years, vegetation was similar to initial 

conditions.  Similarly, Ruben et al. (1999) found substantial residual effects of 

clearcutting in northern hardwood forests after 25 years, but not after 60 years.  

However, opening size may be more important than opening age in determining 

species composition, as the size of the initial opening affects the rate of recovery 

(Collins and Pickett 1988a).  For example, forest understory composition in a northern 

hardwood forest in Wisconsin recovered after 10 years in uneven-aged stands and 

after 40 years in even-aged stands (Kern et al. 2006).   

Although the resiliency of forest understories has been widely reported, their 

sensitivity to silvicultural disturbance has also been documented.  The degree of 

overstory removal influences availability of light and nutrients for understory plants 

(Palik and Engstrom 1999; Berger and Puettmann 2000) and subsequently their rates 

and patterns of persistence, colonization, and establishment.  Studies have identified 

relationships between overstory structure and understory species diversity, 

composition, and spatial patterning (Berger and Puettmann 2000; Gilliam 2002; 

Scheller and Mladenoff 2002).  The pattern and intensity of soil disturbance can also 

influence the recovery of understory plant communities (Berger et al. 2004).  A study 

by Reader (1987) found that both soil disturbance and loss of understory species 

increased with cutting intensity in mature deciduous forests of Ontario.  Post-harvest 

inventories in a number of forest types have documented declines in species richness 

(Hix and Barnes 1984; Duffy and Meier 1992; Goebel et al. 1999; Moola and Vasseur 
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2004), decreased abundance (Roberts 2002; Moola and Vasseur 2004), and local 

extirpations (Ruben et al. 1999; Halpern et al. 2005; Ramovs and Roberts 2005).   

Loss of diversity and lack of recovery in the understory following logging may 

be due to a number of factors, including physical damage, physiological stress, 

competition with ruderal species, low reproduction, slow growth rates, limited 

dispersal capabilities, and loss of suitable habitat (Meier et al. 1995).  In particular, 

forest management has been shown to affect uncommon and vernal plant species 

(Metzger and Schultz 1981, 1984; Meier et al. 1995; Ruben et al. 1999; McLachlan 

and Bazely 2001).  Rare species and small populations may be particularly susceptible 

to genetic degradation, as well as the direct impacts of forest management such as 

physical damage and altered resource conditions (Roberts and Zhu 2002).   

Late-successional species have also exhibited sensitivity to harvest disturbance 

(Moola and Vasseur 2004; Halpern et al. 2005).  Post-harvest increases in diversity are 

commonly due to an increase in ruderal species and may mask the loss of late-

successional species (Halpern and Spies 1995).  Late-successional species often 

reproduce clonally or have biotic modes of dispersal, causing them to recover slowly 

from disturbance (Moola and Vasseur 2004).  While once comprising 60-80% of the 

forested landscape (Lorimer and Frelich 1994; Lorimer 2001; Lorimer and White 

2003), there are very few old-growth forests left in eastern North America and typical 

late-successional microhabitats such as canopy gaps or decayed coarse woody debris 

are rare (Runkle 1981).  These remnants have been shown to be important refugia for 

late-successional plants (Bratton et al. 1994).  As a result, logging methods that mimic 
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natural gap-phase dynamics may be less damaging than clearcutting for sensitive and 

rare plant species (Meier et al. 1995).  Forest management alternatives that retain 

structural legacies, such as intact areas of forest floor and coarse woody debris, may 

also provide a means for maintaining understory diversity and retaining late-

successional species.  

The inconsistent results of post-disturbance studies that describe vegetation 

communities as either resilient or sensitive may reflect the site-specific nature of 

understory responses to forest management.  For this reason, Roberts and Gilliam 

(1995) emphasize the importance of in-depth studies of understory responses for 

different forest types and different management practices.  The intensity, frequency, 

and seasonality of the sampling scheme employed in studies of post-harvest 

understory response can also influence the study outcome (Ristau et al. 2001).   

Measures of species richness and diversity can differ in their sensitivity to sampling 

techniques and sample sizes, but generally tend to increase with sampling intensity 

(Magurran 2004).  In some instances, observations of local extirpations of understory 

species following timber harvesting may be the product of a low sampling intensity 

(e.g. Meier et al. 1995).  In addition, because the aboveground abundance of many 

understory plant species varies seasonally, the time of sampling can also greatly affect 

study results (Ristau et al. 2001). 

The variation in study outcomes may also be partially explained by 

methodological differences.  Chronosequencing, which involves sampling vegetation 

in stands that are in varying stages of post-harvest recovery, is the most common 
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method used to evaluate the impact of silvicultural treatments on understory 

vegetation.  This approach assumes comparable initial site conditions, harvesting 

techniques, and post-disturbance influences, and may not capture the dynamics of 

short-lived species or populations with episodic fluctuations (Halpern 1989).  Few 

studies of understory vegetation response in northern hardwood forests have utilized 

pre-disturbance data to evaluate actual changes over time (see Metzger and Schultz 

1984; Hughes and Fahey 1991).  This approach can minimize external variability and 

allow forest managers to assess the resilience of individual species and plant 

communities.  Variability in abiotic factors, including soil properties and climatic 

conditions, may also be contributing to the divergent findings in studies of post-

disturbance forest understories.   Several years of pre-treatment data collection can 

establish a baseline for environmental conditions particular to a site and help isolate 

effects of disturbance, thus providing a more accurate picture of understory responses 

to forest management practices.     

4. The Vermont Forest Ecosystem Management Demonstration Project (FEMDP)   
 
   The Vermont Forest Ecosystem Management Demonstration Project 

(FEMDP) is an on-going study that explores a balanced management approach by 

integrating ecological and economic objectives.  The FEMDP is testing the hypothesis 

that “structure-based” and “disturbance-based” forestry practices can sustain a broader 

array of biodiversity and ecological functions, while providing opportunities for 

timber revenue generation (Keeton 2006).  
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Three modified uneven-aged silvicultural techniques that include aspects of 

both structure- and disturbance-based forestry are being tested by the FEMDP.  

Treatments include two conventional uneven-aged prescriptions, single-tree selection 

and group selection, which have been modified to increase structural retention and 

approximate the scale and pattern of natural disturbances.  Modifications were based 

on a target residual basal area of 18.4 m2/ha, maximum diameter of 60 cm, and a q-

factor of 1.3.  This prescription was applied in a dispersed (single-tree selection) or 

aggregated (group selection) spatial pattern (Keeton 2006).  The approximate size of 

individual group selection patches (0.05 ha) was based on estimates of fine-scale 

natural disturbances in New England (Seymour et al. 2002).  In both of the 

conventional treatments, slash and unmerchantable tree boles were retained.    

The third treatment is “structural complexity enhancement” (SCE), a technique 

that promotes accelerated development of late-successional forest structure and 

function.   This is achieved through the development of vertically differentiated 

canopies and variable horizontal density, re-allocation of basal area to larger diameter 

classes, and increased large snag and downed log densities (Keeton 2006).  These 

attributes were encouraged with several methods.  A target basal area (34 m2/ha) and 

maximum diameter (90 cm) characteristic of old-growth structure were used to 

develop a guiding curve (Keeton 2006).  The curve was also based on a rotated 

sigmoid target diameter distribution, one possible distribution of eastern old-growth 

forests (Goodburn and Lorimer 1999).   The distribution was applied as a non-constant 

q-factor: 2.0 in the smallest size classes, 1.1 for medium sized trees, and 1.3 in the 
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largest size classes.  Accelerated growth in larger trees was promoted with full and 

partial crown release.  Snag and coarse woody debris (CWD) volume was enhanced 

based on stand potential and literature derived targets, and in some cases involved 

uprooting trees to mimic the pit and mound topography characteristic of natural 

disturbance in old-growth northern hardwood-conifer forests (Dahir and Lorimer 

1996).  The occurrence of these important structural characteristics is limited in forests 

managed with conventional even- and uneven-aged silvicultural systems (Gore and 

Patterson 1985; McGee et al. 1999; Crow et al. 2002; Angers et al. 2005). 

Late-successional structure was historically more prevalent in the northern 

hardwood region (Davis 1996; Cogbill 2000); widespread forest clearing for 

agricultural land-use during the 19th century resulted in the current predominance of 

young to mature forests across the landscape.  Forest management techniques such as 

SCE that promote late-successional structural characteristics can re-establish the 

variable age structures characteristic of northern hardwood forests (Keeton 2006), and 

may be important for a number of other reasons.  For example, research has shown 

that the structural heterogeneity provided by older forests promotes some aspects of 

biodiversity and sustains ecosystem processes (Lindenmayer and Franklin 1997; 

McGee et al. 1999; Lindenmayer et al. 2006).  Increasing late-successional forest 

structure can also improve wildlife habitat (Keddy and Drummond 1996; McGee et al. 

1999), carbon storage (Harmon et al. 1990; Krankina and Harmon 1995; Turner et al. 

1995; Houghton et al. 1999), and riparian functions (Keeton et al. 2007).  Horizontal 

heterogeneity and complexity of vertical structures increase as forests mature, directly 
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affecting food availability and habitat for plants and animals.  Complex vertical 

structure affects stand microclimates by influencing light, wind, humidity, and 

temperature, factors which directly and indirectly affect multiple forest taxa.  The 

diverse microclimates and microhabitats created by multi-layered canopies can 

support more biological diversity (Brokaw and Lent 1999).   

The understory layer of vegetation represents the majority of plant species 

diversity in forested ecosystems (Roberts 2004) and can be an important 

indication of the intensity of forest harvesting (Lindenmayer et al. 2000).  The 

FEMDP provides a unique opportunity to assess changes in understory diversity 

and composition as a result of alternative forest management practices.  Greater 

retention of overstory structure and limited soil disturbance associated with these 

techniques may reduce physical damage and physiological stress for established 

plants.  In addition, the late-successional stand structure created by SCE may 

increase heterogeneity of light and resources and provide greater variation in 

microtopography on the forest floor, potentially diversifying microhabitats for 

understory plants.  Botanical diversity and its associated ecological functions may 

be sustained and even augmented as a result of these structural changes.  

Consequently, research associated with the FEMDP’s low-impact silvicultural 

approaches may contribute to the development of conservation-oriented 

management strategies in the northern hardwood region. 

 
 



 

 
19

Chapter 2.  Understory plant responses to alternative forestry 
practices in northern hardwood-conifer forests 

Abstract 
The understory layer encompasses the majority of plant species diversity in forested 
ecosystems and may be sensitive to timber harvest disturbance. We hypothesize that i) 
uneven-aged, low-intensity silvicultural systems can maintain understory plant 
diversity and support late-successional species following harvest disturbance; ii) 
retaining and enhancing stand structural complexity can increase understory plant 
diversity in northern hardwood-conifer forests; and iii) plant responses are influenced 
by interactions between canopy structure, soils, and exogenous climate processes.  
Experimental treatments include two conventional uneven-aged prescriptions (single-
tree selection and group selection) modified to increase structural retention, and a third 
technique designed to promote late-successional forest structure and function, termed 
structural complexity enhancement (SCE). Four replications of each treatment were 
applied to 2 ha management units at three sites in Vermont and New York, U.S.A. 
Understory vegetation was monitored over two years pre- and four years post-
treatment. We used a linear mixed effects model to evaluate the effects of treatment, 
soil chemistry, and drought stress on understory diversity and abundance.  
Compositional changes among treatments were assessed with non-metric 
multidimensional scaling (NMS), an ordination technique.  Model results show that 
over time, understory responses were strongly affected by overstory treatment and less 
influenced by soil chemistry and drought stress. All treatments were successful in 
maintaining overall composition and diversity. However, late-successional diversity 
increased significantly in SCE units compared to group selection units. These results 
indicate that while conventional uneven-aged systems are capable of maintaining 
understory plant diversity, variations that retain or enhance structural complexity may 
be more efficient at retaining late-successional species.  Increased microsite 
heterogeneity as a result of these techniques may also increase understory plant 
diversity, at least during initial post-harvest recovery period.  

 

1. Introduction 
 

Understory vegetation comprises the majority of plant species diversity in 

forested systems and affects ecosystem-level processes such as nutrient cycling and 

energy exchange (Roberts 2004).  Intensive silvicultural systems can alter the 

composition and diversity of understory communities by influencing the availability of 
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light and nutrients, creating soil disturbance, and introducing vigorous competitors 

(Meier et al. 1995).  Species adapted to late-successional forest stand structure or with 

limited modes of dispersal may be particularly sensitive to harvest disturbance 

(Halpern and Spies 1995; Roberts 2002).  There is considerable previous research on 

understory responses to conventional even- and uneven-aged silvicultural treatments 

in northern hardwood forests (Metzger and Schultz 1984; Jenkins and Parker 1999; 

Scheller and Mladenoff 2002; Kern et al. 2006).  These studies have primarily 

compared silvicultural systems with relatively dramatic differences in post-harvest 

canopy retention.  Recent silvicultural research is exploring more subtle differences in 

post-harvest canopy structure associated with variable levels of retention (Franklin et 

al. 1997; Aubry et al. 1999) and uneven-aged approaches modified to enhance 

structural retention (Seymour 2005; Keeton 2006).  Understory responses to these 

approaches are less well understood. 

Management strategies for forested ecosystems are increasingly focused on 

promoting biodiversity conservation and ecosystem functioning while sustaining 

economic productivity (Lindenmayer et al. 2006).  To meet this objective, silvicultural 

models that attempt to mimic the natural disturbance regimes and structural 

complexity of forested ecosystems are being developed (Franklin et al. 2002; Mitchell 

et al. 2002; Seymour et al. 2002; Keeton 2006).  In Vermont, researchers from the 

Forest Ecosystem Management Demonstration Project (FEMDP) are testing a 

technique that utilizes disturbance-based forestry principles (see Mitchell et al. 2002) 

to accelerate development of late-successional structural characteristics, termed 
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Structural Complexity Enhancement (SCE) (Keeton 2006).  The FEMDP study 

compares SCE against conventional uneven-aged approaches also modified to increase 

post-harvest structural retention.  A central question of this research is whether 

different types of uneven-aged prescriptions can be modified to achieve similar 

biodiversity objectives, or if even slight modifications of the type, magnitude, and 

spatial configuration of structural retention will alter biodiversity responses.  New 

silvicultural systems are often specifically designed to minimize impacts on 

biodiversity; effects on plant communities can be a key indicator of their effectiveness 

in this regard. 

Studies evaluating the response of understory plants to silvicultural 

manipulations in northern hardwood forests have commonly found understory 

vegetation to be very resilient (Hughes and Fahey 1991; Scheller and Mladenoff 2002; 

Kern et al. 2006).  Species richness and diversity are often maintained and even 

increase following harvest disturbance (Metzger and Schultz 1984; Jenkins and Parker 

1999).  However, diversity as a measure of community response can be deceiving if 

there are compensatory increases and decreases in different plant groups.  For 

example, the loss or decline of late-successional species, defined here as species that 

reach maximum abundance in mature, closed-canopy, interior forests, may be 

obscured by increases in ruderal species (Halpern and Spies 1995).  In many forest 

types, decreased abundance or local extirpation of late-successional species has been 

observed following intensive harvest disturbance, indicating that certain species may 
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be sensitive to overstory removal and soil disturbance (Ruben et al. 1999; Halpern et 

al. 2005; Ramovs and Roberts 2005).   

Post-harvest composition of the understory layer is influenced by the 

interaction of disturbance intensity, timing, and extent, as well as the life history 

characteristics of persisting and colonizing species (Halpern 1989; Ramovs and 

Roberts 2005).  Similar complex interactions affect recovery dynamics and 

regeneration responses following natural disturbances (Carlton and Bazzaz 1998; 

Franklin and MacMahon 2000).  Environmental site factors such as climate, elevation, 

topography, light, and soil resources can also shape the composition and diversity of 

the understory layer (Huebner et al. 1995; Schumann et al. 2003; Roberts 2004).  In 

particular, the influence of overstory structure on understory vegetation has been 

demonstrated in many forest types (Rubio et al. 1999; Moola and Vasseur 2004; 

Halpern et al. 2005; Macdonald and Fenniak 2007), including northern hardwood-

conifer forests (Huebner et al. 1995; Brosofske et al. 2001).  Disturbance can alter 

overstory characteristics and microtopographic features, such as coarse woody debris, 

that influence microsite conditions for plant species (Beatty 1984; Gilliam 2002).  

Similarly, relationships between understory vegetation and climatic and edaphic 

factors have been established (Pregitzer et al. 1983; Graves et al. 2006).  Fratterigo et 

al. (2006) demonstrated that disturbance history influences patterns of soil nutrient 

availability in cove-hardwood forests, which in turn affect the spatial heterogeneity of 

understory plants.  Plant community composition is also affected by moisture 

availability (Davis et al. 1998; Hutchinson et al. 1999; Schumann et al. 2003); 
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extended periods of drought have been shown to induce declines in plant species 

richness and cover (Yurkonis and Meiners 2006).  While these findings have 

contributed to a broad understanding of the factors controlling plant responses, few 

studies have investigated the relative importance of below-ground (e.g. soil nutrient 

availability) and above-ground (e.g. canopy structure) influences on post-harvest 

understory composition and diversity (Brosofske et al. 2001; Gilliam 2002; 

Macdonald and Fenniak 2007).   

The most common technique used to evaluate the impact of silvicultural 

treatments on understory vegetation is chronosequencing, which involves sampling 

vegetation in stands that are in varying stages of post-harvest recovery.  This approach 

assumes comparable initial site conditions, harvesting techniques, and post-harvest 

disturbance history, and may not capture the dynamics of short-lived species or 

populations with episodic fluctuations (Halpern 1989).  In northern hardwood-conifer 

forests, few studies of understory vegetation response have utilized pre-harvest data 

combined with post-harvest data from more than one year (e.g. Metzger and Schultz 

1984).  Here we report on a data set spanning six years, including four years of post-

treatment monitoring, which provides a comparatively longer time period over which 

to assess recovery dynamics, such as lagged responses.  Furthermore, there is little 

information available on plant responses to low-intensity, uneven-aged systems with 

variable levels and spatial patterns of post-harvest structural retention.  Assessing 

initial understory responses to these variations may help to identify which 

combinations are capable of meeting criteria for biodiversity conservation, and if there 
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is a critical threshold for the local persistence of certain plant species (Halpern et al. 

2005). 

Our research objective was to evaluate changes in the diversity, composition, 

and abundance of understory plant communities following three uneven-aged forestry 

practices modified to increase post-harvest structural retention: single-tree selection, 

group selection, and SCE.  Pre- and post-disturbance understory communities were 

monitored to assess initial compositional changes including species persistence and 

colonization, as well as local extirpations of sensitive species.  To further understand 

the factors driving changes in the understory, we explored the relationships between 

plant responses and overstory structure, soil properties, and drought stress.  We 

hypothesize that i) variants of uneven-aged, low-intensity silviculture can maintain 

understory plant diversity and support late-successional species through harvest 

disturbance; ii) retaining and enhancing stand structural complexity can increase 

understory plant diversity in northern hardwood-conifer forests; and iii) plant 

responses are influenced by interactions between canopy structure, soils, and 

exogenous climate processes. 

2. Methods 

2.1. Study Areas 
 

The study was conducted at three study areas: the Mount Mansfield State 

Forest, the University of Vermont’s Jericho Research Forest, and the Forest 

Ecosystem Research Demonstration Area (FERDA) in Paul Smiths, New York.  The 

FERDA is a collaborative research effort among the Northern Research Station of the 
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USDA Forest Service, Paul Smith’s College, and the Adirondack Park Agency Visitor 

Interpretive Center.  The Vermont Forest Ecosystem Management Demonstration 

Project (FEMDP) established the experimental treatments and long-term monitoring 

project at Mount Mansfield State Forest and the Jericho Research Forest.  All three 

sites are mature (ca. 70-100 years), multi-aged northern hardwood-conifer forests with 

a documented history of timber management.  Mount Mansfield State Forest is 

situated on the western slopes of Mount Mansfield in northern Vermont at elevations 

ranging from 470 to 660 m; soils are primarily Peru extremely stony loams.  The 

Jericho Research Forest is located in the foothills of the northern Green Mountains of 

Vermont at 200 to 250 m; soils are Adams and Windsor loamy sands or sandy loams.  

The FERDA sites are located at approximately 500 m elevation in the northwestern 

section of the Adirondack Park in New York.  The soils are Adams loamy sands.  At 

all three study sites, the dominant overstory species include sugar maple (Acer 

saccharum), American beech (Fagus grandifolia), and yellow birch (Betula 

alleghaniensis).  At the Jericho Research Forest and the FERDA, eastern hemlock 

(Tsuga canadensis) is also co-dominant and there are minor components of red maple 

(Acer rubrum) and red oak (Quercus rubra).  Red spruce (Picea rubens) is a minor 

element of the canopy at Mount Mansfield State Forest.   

2.2. Experimental Design 
 

Four replicates of each treatment and eight untreated controls were established 

across the three study areas.  Treatments included two conventional uneven-aged 

manipulations, single-tree selection (STS) and group selection (GS), and structural 
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complexity enhancement (SCE).  Experimental units were 2 ha in size and separated 

by 50 m (minimum) unlogged buffers to minimize cross-contamination of treatment 

effects.  All three treatments were designed to retain a high degree of post-harvest 

forest stand structure.  However, the treatments have different effects in terms of 

spatial patterning, level of retention and the specific type of features retained (see 

Keeton 2006). 

At the FEMDP sites, logging was conducted on frozen ground in winter of 

2003.  Experimental units received one of three manipulative treatments or were 

designated as an untreated control.  The conventional treatments were modified to 

increase post-harvest structural retention.  Modifications were based on a target 

residual basal area of 18.4 m2/ha, maximum diameter of 60 cm, and a q-factor of 1.3.  

This prescription was applied in a dispersed (single-tree selection) or aggregated 

(group selection) spatial pattern (Keeton 2006).  The approximate size of individual 

group selection patches (0.05 ha) was based on estimates of average fine-scale natural 

disturbance pattern in New England (Seymour et al. 2002) and resulted in eight to nine 

groups per experimental unit.  In both of the conventional treatments, slash and 

unmerchantable tree boles were retained.    

SCE is designed to promote late-successional structural characteristics, 

including vertically differentiated canopies, elevated large snag and coarse woody 

debris (CWD) volumes and densities, variable horizontal density (including small 

canopy gaps), and reallocation of basal area to larger size classes.  FEMDP researchers 

used several silvicultural methods to accelerate development of these attributes as 
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described in Keeton (2006).  A target basal area (34 m2/ha) and maximum diameter at 

breast height (90 cm) characteristic of old-growth structure were used to develop a 

target diameter distribution to which stands were cut (Keeton 2006).  The diameter 

distribution was also based on a rotated sigmoid form, which is typical of some eastern 

old-growth forests, depending on disturbance history, species composition, and other 

variables (Goodburn and Lorimer 1999).   The sigmoidal distribution was applied as a 

non-constant q-factor: 2.0 in the smallest size classes, 1.1 for medium sized trees, and 

1.3 in the largest size classes. Accelerated growth in larger trees was promoted with 

full and partial crown release.  Downed coarse woody debris (CWD) volumes were 

enhanced 140% on average over pre-harvest levels.  In two of the four SCE units (one 

per study area), CWD enhancement involved uprooting trees to mimic the pit and 

mound topography characteristic of natural disturbance in old-growth northern 

hardwood-conifer forests (Dahir and Lorimer 1996). 

The FERDA consists of fourteen 2 ha units treated with a variety of even-aged, 

multi-aged, and uneven-aged silvicultural methods during the winter of 1999-2000 

(Rechlin et al. 2000).  Data from eight units (two single-tree selection, two group-

selection, and four controls) were included in this study.  Approximately 30% of tree 

volume was removed, leaving approximately 18 m2/ha in the treatment units, slash 

was left on site and treated to keep all branches below 1.3 m, and all standing dead 

trees were retained.  Individual patches in the group selection units were 

approximately 0.04 ha in size (Wade et al. 2003).  Structural retention and spatial 

pattern of single-tree selection and group selection units at the FERDA and FEMDP 
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sites were similar; as a result, data from these treatment types were combined in the 

analyses.   

2.3. Data Collection 
 

In the FEMDP study areas, five randomly placed 0.1 ha permanent sampling 

plots were established within each 2 ha treatment unit, buffered by a 15 m minimum 

distance from the edge of the unit.  We inventoried overstory structural characteristics 

by permanently tagging all live and dead trees (> 5 cm dbh and >1.37 m tall) within 

the sampling plots.  Species and diameter were recorded for each tagged tree.  

Thirteen 1 m2 quadrats were established systematically along transects running north-

south and east-west within each plot.  Percent cover of all vascular and non-vascular 

species was estimated within the quadrats.  Data were collected annually during the 

month of June in an attempt to capture the maximum diversity of spring ephemerals 

and later developing species.  Two years of pre-treatment and four years of post-

treatment data are included in this study.   

In the FERDA study areas, eight 0.04 ha permanent plots for sampling 

overstory structure were systematically located within each 2 ha treatment unit.  

Four 1 m2 quadrats were established within each permanent plot for monitoring 

understory vegetation.  Percent cover of all vascular species was estimated in 

each quadrat during May-June for two years pre-treatment and three years post-

treatment.  At all of the study areas we used an ocular method for percent cover 

estimation designed to increase precision and reduce error. 



 

 
29

Soil macronutrients were sampled from four 2 m2 subplots within each 

monitoring plot at the FEMDP study sites.  A randomly located 10 cm diameter 

core was taken of the organic horizon (O horizon) down to the mineral layer.  

Samples were kept cool and prepared for processing within 24 hours.  Soils 

analyses were conducted at the University of Vermont Agricultural Testing Lab 

according to the methods described in Wolf and Beegle (1995).  Soil samples 

were dried at 55°C, ground in a mortar and pestle, and sieved through a 2-mm 

sieve.  Available nutrients and reactive aluminum were extracted with Modified 

Morgan solution (ammonium acetate at pH 4.8, with a 5:1 solution:soil ratio, 

shaken for 15 minutes). Available P was determined colorimetrically (molybdate 

blue, reduced with SnCl2); major cations (Ca, K, Mg, Na, Al) and micronutrients 

(Fe, Mn, B, Cu, Zn, S) were determined by Inductively Coupled Plasma 

Spectroscopy (ICP).  Total % C and % N were determined by combustion 

analysis (Thermo Finnegan FlashEA Analyzer, Milan, Italy) as described in 

Bremner (1996).  For ammonium (NH4
+) and nitrate (NO3

-), 5 g dried and sieved 

soil was extracted with 1M KCl.  Analysis was by automated colorimetric 

analyzer (NH4
+ by  salicylate, NO3

- by cadmium reduction followed by 

diazotized sulfanilamide).  Organic matter was estimated by weight loss on 

ignition (2 hr at 375°); pH was measured in a 2:1 suspension. 

Climate data were obtained from the National Climatic Data Center 

(NCDC 2007).  We utilized Palmer Drought Severity Index (PDSI) data for 

Vermont climate division 1 (western) and for New York division 8 (St. Lawrence 
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Valley).  PDSI is a time bias corrected monthly value that indicates prolonged 

moisture deficiency or excess for a region and has been shown to reflect 

fluctuations in soil moisture (Mika et al. 2005).  Temperature, evapotranspiration, 

soil moisture loss, soil moisture recharge, runoff, and precipitation are parameters 

used to calculate the index (Oliver and Fairbridge 1987).  Use of a single index 

rather than multiple climatic parameters allowed us to reduce the number of 

explanatory variables, simplifying analyses and increasing statistical power.  

2.4. Data Analysis 

2.4.1. Understory responses  
 

Quadrat-level sample data for pre- and post-harvest years at all three study 

sites were input into a Microsoft Access relational database.  The final dataset spanned 

six years and included over 16,000 observations.  Quality control involved evaluating 

each observation to ensure positive identifications and consistency across the years.  

Several species with inconsistent identifications were collapsed to genera.  Individual 

species were classified into habitat guilds defined by habitat preference classes 

described by Ramovs and Roberts (2005).  We equate their “forest class” with late-

successional and their “disturbed class” with early-successional species as employed 

in this analysis.  Habitat guilds include late-successional (species reach maximum 

abundance in mature, closed-canopy, interior forest), intermediate (species occupy 

young to mature, open or closed canopy forest but not excessively disturbed habitats) 

and early-successional (species reach maximum abundance in open-canopy, disturbed 

areas).  Habitat preferences were determined according to Gleason and Cronquist 
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(1991).  We calculated plot level means for Hill’s (1973) series of diversity indices 

(N0, N1, and N2), where N0 represents species richness, N1 the exponential Shannon-

Weiner index and N2 the reciprocal Simpson Index (Hill 1973).  The sequence 

progressively downweights rare species; diversity measures are arranged according to 

their tendency to emphasize either species richness (weighting towards uncommon 

species) or dominance (weighting toward abundant species) (Magurran 2004).  The 

indices are calculated as follows: 

N0 = # of species per quadrat 

N1 =  exp(-Σpilogpi) 

N2 = 1/Σpi
2 

where pi is equal to the proportional abundance of the ith species.  The series of 

indices, as well as percent cover, were calculated for all species and for the habitat 

guilds.  Treatment level means of the diversity and abundance response variables were 

calculated for pre- and post harvest years within each of the habitat guilds (Table 1). 

2.4.2. Analyses of treatment effects 
 

Multivariate analyses were used to determine if treatment had an effect on 

trends in the understory response variables over time.  We used a linear mixed effects 

model (LME) in SAS version 9.1 (SAS Institute Inc. 2003) to model diversity 

response variables for all species and the habitat guilds.  Treatment, site, and year 

were modeled as fixed effects and plots and units as random effects.  Plots were nested 

within units and units within sites.  The model output includes parameter estimates for 
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the fixed effects (e.g. treatment*year interaction) and covariance estimates for the 

random effects.  

Analysis of variance (ANOVA) models were used to further explore the effect 

of treatment on understory response variables.  The first hypothesis, that late-

successional species can persist through low-intensity treatments, was tested by 

calculating unit-level means of the diversity and abundance response variables for the 

late-successional guild and running ANOVAs on the percent change of each variable 

from pre- to post-harvest years.  We tested for differences between the two pre-harvest 

years to determine if there was significant interannual variability in the pre-treatment 

baseline data.  Because there were no significant differences between the two pre-

harvest years, we defined pre-harvest as one year before harvest.  Post-treatment was 

defined as three years after harvest, the longest time period available for all study 

areas.  If significant treatment effects were detected, ANOVAs were followed by 

Tukey multiple comparison tests.  The same technique was applied to the diversity and 

abundance response variables for species of all habitat guilds combined to determine if 

treatments maintained species diversity and to test the second hypothesis, that SCE 

increases understory plant diversity.  This method was repeated for the early-

successional and intermediate habitat guilds to identify other notable pre- to post-

treatment trends. 

We used the multi-response permutation procedure (MRPP) in PC-ORD 

Version 4.41 (McCune and Mefford 1999) to test for differences in overall species 

composition among treatments and between pre- and post harvest years within 
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treatments using the Sørenson distance measure.  Nonmetric multidimensional scaling 

(NMS), a non-parametric ordination method, was also applied in PC-ORD to interpret 

compositional patterns among the treatment units.  The main advantages of NMS are: 

(i) it avoids the assumption of linear relationships among variables, (ii) it allows the 

use of any distance measure, and (iii) its use of ranked distances tends to linearize the 

relationship between distances in environmental space, relieving the “zero-truncation 

problem” in most ordination methods.  For these reasons, NMS is considered the most 

effective ordination method for ecological community data  (McCune and Grace 

2002).  We ran NMS on a species-by-sample matrix for pre- and post-treatment data 

with random starting configurations.  Both ordinations used a Sørenson distance 

measure and each included 20 runs of real data.  Dimensionality of the data was 

assessed using the Monte Carlo permutation procedure in PC-ORD with 30 runs of 

randomized data. 

To determine if any species were declining or absent from treatment units in 

post-harvest years, presence-absence and abundance of individual species were 

evaluated throughout the study period.  Species initially present in low frequencies (< 

2 quadrats) or at low densities (<0.5%) were not included in this assessment. 

2.4.3. Sub-analysis of overstory structure and soil properties 
 

As an indicator of pre- and post-harvest stand structure, we calculated relative 

density (RD) following Curtis (1982).  This form of RD integrates quadratic mean 

diameter and stem density, and is thus indicative of multiple attributes of overstory 

structure, such as total occupation of growing space based on both tree density and 
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size.  The index is appropriate to both even- and uneven-aged stands (Curtis 1982).  

We used RD as a surrogate for treatment in this sub-analysis.  Plot and unit-level 

means for the required component forest inventory metrics were generated using the 

Northeast Ecosystem Management Decision Model (NED-2) (Twery et al. 2005).   

A subset of the data from the FEMDP sites was used to evaluate the effects of 

soil properties on understory response variables and to determine whether local 

differences in soil characteristics may have confounded treatment effects.  Five soil 

chemical characteristics thought to be important to understory vegetation were 

selected based on earlier studies (Pregitzer et al. 1983; Hutchinson et al. 1999; Gilliam 

2002; Kolb and Diekmann 2004).  These were percent organic matter (% OM), total 

nitrogen (% N), calcium (Ca), available phosphorus (P), and pH.  Due to a strong 

relationship in the dataset between Ca and pH (p = <0.001, r2 = 0.339), pH was not 

included in the analyses.  Percent organic matter was included because it can be 

reflective of local soil moisture and cation exchange capacity (Johnson et al. 1997).  

Soil cation concentrations, particularly calcium, have been shown to control 

distributions of understory plants (Gilliam and Turrell 1993; Kolb and Diekmann 

2004; Graves et al. 2006), and plant growth is commonly limited by availability of 

nitrogen and phosphorus (Marschner 1995).  Samples from the organic layer (first 10 

cm) were used as this layer encompasses the bulk of the rooting zone of the 

understory.  Plot and unit-level means were generated for each soil variable.   

Pre- to post-harvest percent change was calculated for all variables and a 

correlation matrix used to identify relationships among the soil variables, RD, and the 
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diversity and abundance response variables (N0, N1, N2, and % cover) for all species 

and for the habitat guilds.  The LME model was run for each response variable with 

treatment, site, and year as fixed effects, unit and plot as random effects, and soil 

characteristics as covariates.   

 The effects of site variables on overall species composition were 

assessed using the NMS ordination in PC-ORD.  We calculated the percent of 

variance explained by each ordination axis and generated Kendall’s Tau correlations 

to identify associations between ordination scores and overstory and soil 

characteristics, both before and after treatment.  Overlays were created in PC-ORD to 

interpret the results. 

2.4.4. Analysis of Moisture stress 
 

Moisture stress in the study areas was assessed using the Palmer Drought 

Severity Index (PDSI).  Monthly PDSI values were averaged into two time periods 

when moisture stress would likely influence understory vegetation.  PDSI_1 represents 

a mean monthly value for July-September of the year prior to sampling.  PDSI_2 

represents a mean monthly value for April-June of the sampling year.  For diversity 

and abundance response variables (all species and habitat guilds), pre-treatment data 

were removed and unit means were standardized to +/- mean for each treatment/site.  

For each treatment, simple linear regressions were used to identify relationships 

between PDSI_1 and PDSI_2 and standardized annual means of the response 

variables. 
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3. Results 

3.1. Treatment effects 
 
 Analysis of understory response trends over time using the LME model 

showed a significant treatment*time interaction on diversity and abundance response 

variables for all species (N0: p = <0.001; N1: p = <0.001; N2: p = 0.004; % cover: p = 

<0.001).  The same interaction effect was found for late-successional and early-

successional species, but not for intermediate species (Table 2).  Further exploratory 

analyses using ANOVA models revealed differences in diversity and abundance 

responses among treatments from 1 year before harvest (pre) to 3 years after harvest 

(post) (Table 3).  Multiple comparison tests showed that for all species combined, 

percent change in N0 (p = 0.032), N1  (p = 0.004), N2 (p = 0.010) and percent cover (p 

= 0.031) were significantly higher in SCE treatment units than in control units.  

Percent change in N2 for all species was also significantly higher in STS units than in 

the controls (p = 0.010).   

When responses were analyzed separately for habitat guilds, we found that 

SCE units maintained significantly higher N0 than GS units (p = 0.010), higher N1 and 

N2 than control units (N1: p = 0.009; N2: p = 0.016) and higher percent cover than GS, 

STS or control units for late-successional species (p = 0.010).  Diversity responses of 

intermediate species were not different among treatments, but abundance increased 

significantly in SCE units compared to GS or STS units (p = 0.03).  All three 

treatments showed a minor increase in early-successional species diversity and 
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abundance, but only the conventional treatments increased significantly (N1: p = 

0.011; N2: p = 0.006; % cover: p = 0.015).    

In the pre-treatment dataset, NMS found a three-dimensional solution (32 

iterations; final stress of 9.17; Monte Carlo test, p = 0.03).  The variation in species 

composition was explained by Axis 1 (44.8%), Axis 2 (33.2%) and Axis 3 (12.0%); 

the three ordination axes accounted for 90% of the total variation.   The first two axes 

are displayed in Figure 1a.  The NMS ordination and the results of the MRPP (A = 

0.009, p =  0.320) indicated that there were no significant compositional differences 

among treatments.  NMS also found a three-dimensional solution (23 iterations; final 

stress of 12.2; Monte Carlo test, p = 0.03) in the post-treatment dataset.  The three 

axes accounted for a total of 75.9% of the variation in species composition: 38.2%, 

25.1% and 12.6% respectively.  The first two axes are displayed in Figure 1b.  

Although the ordination depicted stronger clustering of experimental units by 

treatment group, the results of the MRPP indicated that there was no significant 

difference in species composition among treatments (A = 0.026, p = 0.142).  However, 

the average distance between SCE units (δ = 0.778) was greater than the control (δ = 

0.582), GS (δ = 0.560) or STS (δ = 0.609) units, reflecting the greater compositional 

heterogeneity among post-treatment SCE units.  The results of the MRPP within 

treatments revealed no significant differences in overall species composition from pre- 

to post-harvest years in the control or treatment units (control: A =  -0.046, p = 1.00; 

GS: A = 0.028, p = 0.232 ; STS: A = 0, p = 0.458; SCE: A = -0.049 , p = 0.855). 
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In total, 108 vascular understory species were recorded in the pre-treatment 

monitoring plots.  Twenty of these were absent from one or more units in the post-

treatment surveys.  Of the eleven species that were absent from treatment units, 

excluding controls, all were classified as late-successional species and ten had biotic 

(animal-mediated) modes of dispersal (Table 4).  All treatment and control units 

experienced some local species losses.  GS units lost a greater mean percentage of 

species (14.1%) than STS (7.3%), SCE (4.8%) or control (4.5%) units; however, there 

were no significant differences in mean percent species loss among treatments (p = 

0.07). 

3.2. Effect of overstory structure and soil properties 
 

The effects of treatment and soil properties on overall trends in diversity 

responses over time were assessed with the LME model.  The interaction of 

treatment*time had a strong effect on understory response variables for all species, 

early-successional species and late-successional species, while the effects of the soil 

covariates were not significant (Table 2).  Conversely, for the intermediate species 

guild, the treatment*time interaction was not significant for any of the diversity or 

abundance response variables, while % OM and total % N did show significant effects 

(% OM: N1, p = 0.001, N2, p = 0.002; total % N: N0, p =  0.004, N1, p = 0.001, N2, p = 

0.036).  

The correlation matrices did not reveal any consistent relationships between 

pre- to post-harvest percent change in soil properties and understory response 

variables.  At the plot level, soil variables were generally not associated with diversity 
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and abundance responses, with a few exceptions.  Change in % OM was positively 

correlated with intermediate species N0 (r2 = 0.174, p = 0.008) and early-successional 

N2 (r2 = 0.205, p = 0.014), and negatively correlated with early-successional N1 (r2 = 

0.510, p = 0.009).  Negative correlations were found between change in total % N and 

early-successional N0 (r2 = 0.180, p = 0.022), and between change in Ca and late-

successional N2 (r2 = 0.097, p = 0.022).  In contrast, overstory structure, represented 

by change in RD, was negatively correlated with changes in all response variables at 

the plot level, excluding late successional N0 (r2 = 0.000, p = 0.976).  At the unit level, 

no pre- to post-harvest changes in soil nutrients were associated with the response 

variables.  Change in RD was also not correlated with response variables, with the 

exception of a negative association with changes in N1 (r2 = 0.209, p = 0.043) and N2 

(r2 = 0.252, p = 0.024) for all species. 

Kendall rank correlation coefficients (τ) for the five selected overstory and soil 

variables on the NMS ordination axes before and after treatment are listed in Table 5.  

Before treatment, none of the variables were significantly correlated with Axis 1, 

which accounted for most of the variation in species composition.  RD (τ = .439) and 

OM (τ = -0.336) were strongly correlated with Axis 2, and RD was strongly correlated 

with Axis 3 (τ = -0.435) (Figure 1a).  After treatment, RD (τ = 0.368), OM (τ = -

0.362) and N (τ = -0.336) were significantly correlated with Axis 1 and all of the soil 

variables (OM, τ = 0.441; Ca, τ = 0.520; N, τ = 0.338; P, τ = 0.494) were significantly 

correlated with Axis 2 (Table 5).   
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3.3. Effect of climate variability 
 
 Drought indices were not strongly correlated (p < 0.05) with 

standardized diversity response variables for all species or for the habitat guilds in the 

control units.  In the treatment units, there were no significant correlations between 

PDSI_1 and diversity responses or between PDSI_2 and diversity responses, with the 

exception of late-successional N0.  PDSI_2 was correlated with late-successional N0 in 

units treated with GS (p = 0.012, r2 = 0.747), STS (p = 0.018, r2 = 0.703) and SCE (p = 

0.024, r2 = 0.602). 

4. Discussion 

4.1. Understory plant responses to experimental treatments 

4.1.1. General responses 
 
 The results of this study support our hypothesis that in northern 

hardwood-conifer forests, understory plant species diversity can be maintained 

through uneven-aged forestry practices that retain or enhance stand structural 

complexity.  Experimental units treated with group selection (GS), single-tree 

selection (STS), and structural complexity enhancement (SCE) all showed increases in 

diversity measures (N0, N1, and N2) during the four years following harvest 

disturbance (Figure 2).  We observed a significant increase in diversity response 

variables in the SCE units from one year pre-harvest to three years post-harvest, 

suggesting that enhancement of stand structural complexity may increase overall 

species diversity, at least during the initial post-disturbance recovery period.  The lack 

of significant differences in post-harvest species composition among treatments and 
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from pre- to post-harvest within treatments indicates that all three treatments were 

generally capable of preserving the integrity of the understory layer.  In evaluating 

short-term responses, it can be difficult to discern the immediate effects of disturbance 

from the direct and indirect effects of residual overstory structure, which may become 

increasingly important over time (Halpern et al. 2005).  Nevertheless, initial responses, 

such as the ability of certain species or guilds to persist through the disturbance, may 

be indicative of the intensity of silvicultural systems and could have important 

implications for biodiversity conservation.  

4.1.2. Response of habitat guilds 
 

Previous studies of post-harvest forest understories have documented diversity 

increases immediately following silvicultural disturbance (Gilliam et al. 1995; Halpern 

and Spies 1995; Jenkins and Parker 1999).  These increases are often attributed to an 

influx of early-successional species as a result of changes in light and resource 

availability on the forest floor.  Dominance of early-successional species is generally 

short-lived, but with periodic disturbance their presence may impact recovery of the 

understory (Scheller and Mladenoff 2002).   We detected an increase in early-

successional species diversity and abundance in all three treatments; however, only the 

conventional treatments increased significantly.  This may be due to increased light 

availability in the conventional treatment units, which retained significantly less 

overstory structure (e.g. canopy closure and leaf area index) than SCE treatment units 

(Keeton 2006).  There was no difference in soil compaction among treatments, yet 

higher levels of scarification in the conventional treatment units (Keeton, unpubl. data) 
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may also have contributed to post-harvest increases in early-successional species.  

Additionally, greater retention and enhancement of late-successional structural 

characteristics in the SCE treatment units (Keeton 2006) may have reduced the 

amount of early-successional habitat available for post-harvest colonization.   

Understory diversity commonly increases with light availability (Brosofske et 

al. 2001).  The diversity increases in all three treatment types in this study support this 

relationship.  However, SCE units experienced less overstory removal and showed 

greater increases in understory diversity than conventional treatment units, suggesting 

that heterogeneity may be more important for diversity response than total availability 

of light in the understory.  The spatial heterogeneity of light created by small canopy 

gaps, as well as other structural characteristics such as coarse woody debris, may be 

particularly important for late-successional species.  A study by Scheller and 

Mladenoff (2002) on the spatial patterning of understory communities in northern 

hardwood forests showed that old-growth had smaller understory community patch 

sizes and greater patch heterogeneity than younger forests.  Community patch size was 

correlated with both coarse woody debris and light heterogeneity (Scheller and 

Mladenoff 2002).  The application of SCE in this study attempted to approximate the 

structural heterogeneity of old-growth forests (Keeton et al. 2007) by retaining large 

diameter trees, harvesting trees in a variable density pattern to create a range of small 

gap sizes as well as undisturbed patches, creating pit and mound topography, and 

increasing levels of coarse woody debris (Keeton 2006).  These changes may have 

increased microsite heterogeneity and reduced interspecific competition of understory 



 

 
43

plants after harvest, allowing a greater diversity of understory species to persist, 

particularly those that require late-successional habitat.  Although overall changes in 

species composition were not significantly different among treatments, post-treatment 

increases in late-successional species richness, diversity and cover were significantly 

higher in SCE treatment units than control units (Figure 3).  This trend could become 

more pronounced over longer time periods, as the primary influence on understory 

communities shifts from the initiating disturbance to the residual structure (Halpern et 

al. 2005).  However, although late-successional richness continued to increase, the two 

measures of late-successional diversity decreased slightly from post-harvest year 3 to 

year 4 in the SCE treatment units, suggesting that the initial increase may be unstable 

or transient.  Alternatively, the slight decrease may represent inter-annual variability 

attributable to other environmental controls. 

4.1.3. Local extirpations 
 

Local extirpations of species that are sensitive to disturbance have been 

observed in intensively managed forests (Halpern et al. 2005; Ramovs and Roberts 

2005).  Species that reproduce clonally or have biotic dispersal mechanisms may be 

particularly sensitive to silvicultural disturbance (Meier et al. 1995; Mabry et al. 

2000).  In this study, the percentage of species lost in treatment units was not 

significantly different from the percentage lost in control units, although the identity 

and habitat preference of these species differed.  Macdonald et al. (2007) suggest that 

the threshold for a “lifeboating” effect of variable-retention harvesting must be 

between 20 and 75% retention.  The levels of basal area retention in the treatments 
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employed in this study were within or above this range (GS, STS: 64-70% retained; 

SCE: 81% retained; see Keeton 2006).  The greater mean percentage of species lost 

from conventional units (GS: 14.1%, STS: 7.3%) than SCE or control units (4.8% and 

4.5%, respectively) indicates that the level of retention may influence the persistence 

of understory species.  Reader (1987) also found that percent of understory species 

lost increased with cutting intensity in hardwood forests of Southern Ontario.  

However, in contrast to our study, Reader (1987) demonstrated that size of the 

silvicultural openings did not influence loss of understory species.  Based on our 

findings, the difference between GS and STS units, while not significant, suggests that 

the spatial pattern of retention may also be important.   

The majority of species locally extirpated from one or more experimental 

treatment units following harvest disturbance were late-successional, perennial herbs 

or shrubs with biotic modes of dispersal (Table 4).  Three of these species, Lonicera 

canadensis, Oxalis acetosella, and Trientalis borealis, have been previously identified 

as sensitive to disturbance (Ruben et al. 1999; Ramovs and Roberts 2005; Wiegmann 

and Waller 2006).  Many similar studies (e.g. Halpern and Spies 1995) have proposed 

that investigations of diversity responses alone can obscure important compositional 

changes.  Our study supports this viewpoint by demonstrating that although low-

intensity, uneven-aged treatments can support late-successional understory plant 

diversity, populations of sensitive species may still be adversely impacted, even by 

timber harvests that retain very high levels of post-harvest stand structure.   
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We recognize several uncertainties related to the observed loss of species from 

treatment units.  The loss of species from control units suggests that irrespective of 

treatment, there are fluctuations in the presence and abundance of understory species.  

The mean pre-harvest abundances of impacted species were all very low (< 9%), 

suggesting that species initially present in low densities are more likely to be affected 

by forest management practices.  The absence of a particular species in post-harvest 

years may be due to climatic variation, site conditions, plant life history 

characteristics, as well as variable sampling techniques.  Species classified as locally 

extirpated may have been dormant or simply not detected in the four post-harvest 

sampling years.  Others that persisted through the harvest disturbance may be 

gradually extirpated as a result of disturbance-related stress, inability to adapt to 

microclimate changes, and increased competition with ruderal species (Meier et al. 

1995; Halpern et al. 2005).  Finally, it is uncertain whether continued monitoring will 

indicate that local extirpations are only short-term in nature if recolonization proceeds 

from clonal expansion and seed rain from surrounding areas.   

4.2. Influence of overstory structure and soil properties 
 

Composition and diversity of forest understories are known to be related to 

local environmental and edaphic factors and can vary at different spatial scales 

(Brosofske et al. 2001).   For instance, soil nutrient availability has been shown to 

influence patterns of understory vegetation (Kolb and Diekmann 2004; Fraterrigo et 

al. 2006).  Plant distributions are affected by soil cation concentrations, particularly 

calcium (Gilliam and Turrell 1993; Graves et al. 2006).  The soil characteristics 
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evaluated in this study appeared to have some influence on understory responses, yet 

the relationships we detected were highly variable and did not reveal consistent trends.  

A negative relationship between calcium and late-successional N2 was detected at a 

fine spatial scale (plot-level); however, there were no correlations between calcium 

and other response variables at the fine scale, or between calcium and response 

variables at a coarser spatial scale (unit-level).   

Total percent nitrogen and percent organic matter were also related to certain 

diversity responses for intermediate and early-successional species at a fine scale; 

however, the directionality of these associations was inconsistent and they were not 

observed at a coarser scale.  Previous studies have also documented negative 

relationships between nutrient availability and plant species diversity at fine scales 

(Rosenzweig 1995; Brosofske et al. 2001; Gilliam 2002).  Tilman (1993) hypothesized 

that increased productivity as a result of greater nutrient availability suppressed 

diversity in grasslands by reducing germination sites available to colonizing species, 

an idea that may also be applicable to forested systems.  In this study, the negative 

association between certain soil nutrients and plant species diversity may be attributed 

to effects of the silvicultural disturbance.  Forest management activities often alter soil 

properties, although the intensity and duration of these changes vary with the soil and 

forest type, as well as the type of management employed (Grigal 2000).  Depending 

on the intensity of harvest, soil nutrient availability can increase as a result of high 

organic matter inputs or decrease due to biomass removal and leaching (Johnson et al. 

1997; Elliott and Knoepp 2005).    
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While forest management may lead to a short-term decline in soil nutrients, 

elimination of overstory competition may temporarily increase the availability of these 

nutrients (and light) to understory vegetation (Roberts 2004), leading to increased 

productivity and diversity.  Calcium is one of the elements most susceptible to 

depletion following timber harvesting because of its high concentration in tree wood 

and bark (Schaberg et al. 2001).  In this study, we observed decreases in soil calcium 

in both treated and control units, indicating that soil calcium depletion, a widespread 

phenomenon in northeastern forests linked to acid deposition (Federer et al. 1989; 

Likens et al. 1998), is occurring in the study areas irrespective of timber harvesting.  

Increases in plant species diversity were limited to treated areas, suggesting that the 

negative association between calcium and late-successional plant species diversity 

involves some interaction with treatment.  Similar to our study, Gilliam et al. (2002) 

found a negative correlation between calcium and plant species diversity, but only in 

clearcut stands.   

The relative strength of the influence of overstory structure versus soil 

properties on understory vegetation is unclear.  Studies have demonstrated that both 

timber harvest and soil properties strongly influence the understory layer (Elliott and 

Knoepp 2005; Macdonald and Fenniak 2007).  In some instances, soil properties exert 

a greater control on forest understories than stand structure (Gilliam 2002), while in 

others, the influence of overstory characteristics can override local site factors 

(Brosofske et al. 2001).  We observed strong relationships between pre- to post-

harvest change in RD and all response variables at the fine scale, and with change in 
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N1 and N2 for all species at the coarser scale, indicating that changes in overstory 

structure were strongly related to understory response.  Results of the LME model 

support this conclusion; over time, understory response variables for all species, early-

successional and late-successional species were strongly affected by treatment and less 

influenced by soil properties (Table 2).  Model results also suggest that the influence 

of overstory structure is less important to intermediate species, which can occupy both 

open and closed canopy forests; for these species, soil covariates may be more 

important.  The ordination indicates that both overstory and soil characteristics are 

useful in explaining some of the variation in species composition, although much of 

the variation is left unexplained.  As in similar studies (e.g. Macdonald and Fenniak 

2007), it is likely that plant species composition was also influenced by unmeasured 

factors, such as elevation and microtopography, as well as historical patterns of 

disturbance and recovery.   

4.3. Effect of Drought Stress 
 

Moisture availability is often cited as a significant factor influencing 

vegetation dynamics in forest understories (Huebner et al. 1995; Hutchinson et al. 

1999; Kolb and Diekmann 2004).  In this study, periods of moderate to severe drought 

occurred during the pre-harvest years at the sites in Vermont and in both pre- and post-

harvest years at the sites in New York (Figure 4).  However, there were no significant 

relationships between the PDSI drought indices and understory response variables for 

all species or for the habitat guilds in the control units, indicating that independent of 

changes in overstory structure, drought stress did not have a strong influence on 
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understory response.  The relationships between late-successional species richness and 

PDSI_2 observed in the treatment units suggest that by exposing the understory to 

higher light levels and desiccation, silvicultural disturbance may exacerbate the effects 

of drought stress on late-successional species.  The relationships we observed between 

moisture stress and declines in late-successional species richness were stronger in 

conventional treatments that experienced a greater reduction in canopy closure 

compared to the SCE units.  This indicates that these effects may vary with the size 

and spatial clustering of canopy openings.  Uneven-aged practices like SCE that retain 

high levels of canopy closure and vertical canopy complexity (Keeton 2006) may 

expose understory plant communities to less post-harvest moisture stress and 

associated changes in plant community composition. 

Recovery from pre-harvest drought conditions is one possible explanation for 

the large post-harvest increases in diversity and abundance in the SCE treatment units.  

However, in order to return to pre-drought levels, N0 would need to increase by 

18.5%, N1 by 15.7%, N2 by 10.2% and percent cover by 12.2%.  The increases we 

observed, 44.9% for N0, 42.6% for N1, 47.5% for N2 and 14.2% for percent cover, are 

much larger, indicating that while recovery from drought may have been partially 

responsible for the increases in understory response variables, the majority of the 

changes can be attributed to treatment effects.  This conclusion is supported by the 

absence of significant relationships between drought indices and understory response 

variables in the control units.   
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5. Management Implications 
 

Sustainable forest management practices aim to maintain biodiversity and 

ecosystem functioning, while providing opportunities for timber revenue generation.  

Experimental research at the scale of individual forest stands provides an opportunity 

to assess the contribution of these practices to broader, landscape-scale conservation 

efforts.  Assessments of how plant species respond to silvicultural treatments informs 

our understanding of the aggregate representation of different elements of plant 

biodiversity (e.g. early vs. late-successional) provided by the mix of treatments and 

stand conditions present at larger spatial scales.  The results of our study will be useful 

in this context. 

Our results generally support previous studies that demonstrate the capacity for 

uneven-aged silvicultural systems to maintain understory plant diversity in northern 

hardwood-conifer forests (Jenkins and Parker 1999; Scheller and Mladenoff 2002; 

Kern et al. 2006).  The treatments in this study were modified to retain or enhance 

post-harvest structure, and it appears that even subtle differences in type, magnitude, 

and spatial configuration of the silvicultural prescription can result in varying 

understory vegetation responses.  Techniques that enhance stand structural complexity 

may increase microsite variability on the forest floor and, as a result, sustain higher 

levels of understory plant diversity.  By retaining biological legacies (see Franklin et 

al. 2002) in the form of undisturbed patches of forest canopy and forest floor, these 

techniques may preserve late-successional species and those that are slow to 

recolonize formerly occupied sites.    
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Despite overall maintenance of diversity under all of the low impact treatments 

investigated in this study, including conventional selection systems, we did observe 

local extirpations of certain plant species, predominantly those with an affinity for 

late-successional habitat, within experimental units of all treatment types, including 

the controls.  However, during the four year post-treatment study period, GS units lost 

a greater percentage of species (14.1%) than STS (7.3%), SCE (4.8%), or control 

(4.5%) units.  SCE experienced less overstory removal than the conventional 

treatments; the only difference between the GS and STS prescriptions was dispersed 

versus aggregated harvesting (see Keeton 2006).  These results suggest that both the 

magnitude and spatial pattern of structural retention are important for retaining 

understory plant species through a harvest disturbance.  This finding emphasizes the 

need to better predict compositional changes in understory plant communities 

following different types and intensities of silvicultural disturbance.   

Where risks to plant populations, such as local extirpations of rare, threatened, 

or sensitive species, are deemed unacceptable, efforts can be made to minimize 

deleterious impacts on soils and plant communities.  Choice of harvesting machinery 

as well as skidding and yarding practices are important considerations in this respect 

(Vossbrink and Horn 2004).  Patch retention standards, no entry zones around selected 

locations with sensitive plants, greater post-harvest structural retention (i.e. reduced 

percent basal area removals), and logging during the dormant season are possible 

alternatives for minimizing impact (Berger et al. 2004).  Other researchers have 

recommended that, despite the best practices of sustainable forestry, reserves may be 
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necessary to conserve all elements of biodiversity, including sensitive plant species 

(Poiani et al. 2000).  

Although we did not observe many strong relationships between soil properties 

and understory responses in this study, other studies have documented soil-vegetation 

relationships (Pregitzer et al. 1983; Hutchinson et al. 1999; Graves et al. 2006).  Forest 

management practices can indirectly affect understory plant communities by 

influencing the availability of soil nutrients (Gilliam 2002; Fraterrigo et al. 2006).  

Silvicultural disturbance often leads to loss of soil nutrients through biomass removal 

and leaching (Johnson et al. 1997; Adams et al. 2000; Grigal 2000).  Thus, 

management approaches similar to those employed in this study that involve increased 

retention of tree biomass, minimal soil disturbance, and even augmentation of coarse 

woody debris inputs may have important implications for nutrient cycling and site 

productivity. 

6. Conclusions 
 
 In this study, changes in understory plant species diversity and 

abundance following timber harvest were primarily driven by changes in stand 

structure, rather than changes in soil properties or moisture availability.  Species 

composition was influenced by both overstory and soil characteristics and did not 

differ significantly among treatments three years after disturbance.  Our results 

suggest that while conventional, uneven-aged treatments are capable of maintaining 

understory plant diversity, variations that retain or enhance structural complexity may 

be more efficient at preserving late-successional species.  Over time, increased 
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microsite heterogeneity as a result of these techniques may also increase understory 

plant diversity.  

This analysis reflects understory response over four years post-harvest and 

interpretations are therefore limited in scope to the initial recovery period.  Continued 

monitoring of understory vegetation, particularly sensitive species, will help 

differentiate initial disturbance effects from the effects of residual structure, 

contributing to a more complete understanding of understory vegetation dynamics 

following modified uneven-aged forestry practices in northern hardwood-conifer 

forests.   
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Table 1.  Diversity and abundance response variables by treatment for all species and for habitat guilds.  Diversity response 
variables include species richness (N0), the exponential Shannon diversity index (N1), and the reciprocal Simpson index 
(N2).  Abundance is expressed as percent cover.  Treatments include group selection (GS), single-tree selection (STS), 
structural complexity enhancement (SCE) and untreated controls (CON).  Values expressed are treatment means (± 1 SE) 
for one year before harvest (pre) and three years after harvest (post).  Sample sizes are control: n = 8; SCE, GS, and STS: n 
= 4. 
 
    GS STS SCE CON 
    pre post pre post pre post pre post 

N0 7.12 (0.68) 7.88 (0.94) 8.04 (0.66) 10.15 (0.76) 8.35 (1.02) 13.85 (1.13) 8.27 (0.58) 7.87 (0.57) 
N1 3.63 (0.32) 4.60 (1.17) 3.64 (0.68) 5.60 (1.14) 3.75 (0.68) 6.94 (0.82) 4.12 (0.43) 3.61 (0.54) 
N2 2.99 (0.24) 3.83 (0.92) 2.91 (0.55) 4.71 (0.93) 3.22 (0.42) 5.53 (0.65) 3.37 (0.3) 2.90 (0.36) 

All Species 

% cover 15.35 (2.76) 18.29 (6.60) 22.35 (4.87) 19.41 (4.14) 11.77 (4.40) 19.84 (5.90) 19.32 (0.68) 14.84 (3.11) 
          

N0 11.50 (0.65) 9.75 (1.80) 10.75 (1.60) 17.00 (2.04) 12.50 (2.02) 17.00 (2.04) 12.13 (1.49) 12.25 (1.44) 
N1 2.95 (0.33) 2.89 (0.70) 2.93 (0.57) 3.61 (0.88) 2.80 (0.61) 3.98 (0.67) 3.01 (0.32) 2.64 (0.36) 
N2 2.52 (0.23) 2.72 (0.63) 2.50 (0.48) 3.37 (0.84) 2.47 (0.46) 3.62 (0.40) 2.70 (0.28) 2.32 (0.32) 

Late-
successional 

Species 
% cover 12.24 (1.57) 7.92 (0.96) 18.65 (2.27) 11.74 (1.69) 6.69 (1.39) 10.33 (1.88) 18.13 (2.57) 12.63 (1.5) 

          
N0 1.75 (0.25) 2.00 (0.41) 2.75 (0.63) 3.25 (0.48) 3.25 (0.85) 3.75 (0.95) 3.00 (0.50) 3.00 (0.53) 
N1 1.00 (0.00) 1.03 (0.03) 1.11 (0.05) 1.15 (0.05) 1.21 (0.09) 1.35 (0.12) 1.24 (0.07) 1.19 (0.06) 
N2 0.47 (0.05) 0.56 (0.10) 0.78 (0.12) 0.79 (0.13) 0.86 (0.20) 1.12 (0.18) 1.01 (0.15) 0.97 (0.12) 

Intermediate 
Species 

% cover 0.56 (0.32) 0.15 (0.03) 1.5 (0.95) 0.85 (0.52) 0.91 (0.34) 1.75 (0.73) 1.61 (0.59) 1.49 (0.54) 
          

N0 2.00 (0.41) 3.00 (0.58) 1.50 (0.65) 3.25 (0.48) 2.00 (0.00) 3.50 (0.29) 1.88 (0.48) 1.50 (0.27) 
N1 1.03 (0.02) 1.50 (0.24) 1.07 (0.05) 1.42 (0.18) 1.04 (0.02) 1.44 (0.10) 1.13 (0.05) 1.02 (0.02) 
N2 0.59 (0.08) 1.21 (0.35) 0.34 (0.17) 1.31 (0.19) 0.63 (0.19) 1.30 (0.17) 0.45 (0.14) 0.44 (0.14) 

Early-
successional 

Species 
% cover 1.32 (0.62) 5.85 (3.46) 0.44 (0.23) 3.60 (1.13) 2.50 (1.75) 3.19 (1.90) 0.48 (0.26) 0.39 (0.18) 
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Table 2. Linear mixed effects model results for diversity indices (N0, N1, and N2) and percent cover for all species and by 
habitat guilds. 
 

     Treatment*time  OM  Ca  N  P 
     F p  F p  F p  F p  F p 

N0  4.58 <0.001  2.66 0.104  0.04 0.838  1.90 0.169  1.76 0.186
N1  3.29 <0.001  0.07 0.791  0.00 0.971  1.15 0.284  0.00 0.948
N2  2.55 0.004  0.06 0.802  0.53 0.468  0.14 0.705  0.01 0.920

All Species 

% cover  3.36 <0.001  0.48 0.490  0.01 0.906  1.00 0.319  1.93 0.166
                 

N0  2.73 0.002  0.00 0.976  0.00 0.946  0.02 0.876  0.47 0.496
N1  2.02 0.024  0.59 0.442  0.87 0.351  0.53 0.466  2.47 0.117
N2  1.81 0.047  0.08 0.778  0.23 0.629  0.13 0.721  0.50 0.478

Late-
Successional 

Species 
% cover  3.08 <0.001  0.46 0.498  1.83 0.177  5.25 0.023  0.93 0.336

                 
N0  1.12 0.348  4.55 0.034  0.67 0.414  8.52 0.004  0.43 0.514
N1  1.52 0.117  11.32 0.001  0.01 0.905  11.26 0.001  0.87 0.351
N2  1.31 0.217  5.31 0.022  0.18 0.676  4.46 0.036  0.12 0.734

Intermediate 
Species 

% cover  0.98 0.467  0.22 0.640  0.28 0.597  1.62 0.204  1.22 0.271
                 

N0  3.77 <0.001  0.12 0.733  0.00 0.987  0.01 0.909  3.22 0.074
N1  3.45 <0.001  1.19 0.276  0.22 0.637  0.05 0.830  2.46 0.118
N2  2.87 0.001  0.72 0.397  0.00 0.958  0.20 0.652  4.59 0.033

Early-
Successional 

Species 
% cover  3.50 <0.001  0.43 0.511  1.35 0.247  1.44 0.231  2.58 0.110
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Table 3. ANOVA results of changes in diversity and abundance response variables for 
all species and for habitat guilds from one year pre-harvest to three years post-harvest.  
Treatment types include group selection (GS), single-tree selection (STS), structural 
complexity enhancement (SCE), and untreated controls (CON). 
 

     Multiple comparisons 
    MS F p (α = 0.05) 

N0 2233 3.75 0.032 SCE > CON 
N1 7175 6.63 0.004 SCE > CON 
N2 5506 5.32 0.010 SCE, STS > CON 

All Species 

% cover 6775 3.82 0.031 SCE > CON 
      

N0 1842 5.06 0.012 SCE > GS 
N1 1868 5.4 0.009 SCE > CON 
N2 2201 4.67 0.016 SCE > CON 

Late-successional 
Species 

% cover 5940 9.27 0.001 SCE > CON, GS, STS
      

N0 842 0.37 0.774  
N1 61.3 1.23 0.333  
N2 267 1.18 0.350  

Intermediate 
Species 

% cover 3479 3.84 0.030 SCE > GS, STS 
      

N0 14389 1.92 0.167  
N1 969 5.12 0.011 GS > CON 
N2 5694 6.06 0.006 STS > CON 

Early-successional 
Species 

% cover 58694 4.75 0.015 STS > CON 
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Table 4. Understory species recorded pre-harvest and absent post-harvest.  X indicates the species was absent from two or 
more units of this treatment type for all four post-harvest years.  Treatment types include group selection (GS), single-tree 
selection (STS), structural complexity enhancement (SCE), and untreated controls (CON).  Life history characteristics were 
determined from Gleason and Cronquist (1991), Handel et al. (1981), and Mabry et al. (2000).   
 Treatment Growth form Fruit type Dispersal Habitat preference 
Scientific Name GS SCE STS CON         
Actaea alba  X   perennial herb berry biotic late-successional 
Adiantum pedatum    X fern spore abiotic late-successional 
Aralia nudicaulis X  X X perennial herb drupe biotic late-successional 
Arisaema triphyllum X  X  perennial herb berry biotic late-successional 
Asarum canadense  X  X perennial herb capsule biotic late-successional 
Coptis trifolia X    perennial herb follicle biotic late-successional 
Eupatorium rugosum    X perennial herb achene abiotic intermediate 
Lonicera canadensis X  X  shrub berry biotic late-successional 
Medeola virginiana X    perennial herb berry biotic late-successional 
Osmunda claytoniana X  X  fern spore abiotic late-successional 
Oxalis acetosella  X   perennial herb capsule biotic late-successional 
Panax trifolia    X perennial herb drupe biotic late-successional 
Polygonatum pubescens  X   perennial herb berry biotic late-successional 
Polygonum cilinode    X perennial herb achene biotic intermediate 
Pyrola elliptica    X perennial herb capsule abiotic late-successional 
Sambucus racemosa X   X shrub berry biotic early-successional 
Smilacina racemosa   X  perennial herb berry biotic late-successional 
Trientalis borealis X    perennial herb capsule biotic late-successional 
Trillium erectum X    perennial herb berry biotic late-successional 
Viburnum alnifolium   X     shrub drupe biotic late-successional 
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Table 5. Kendall's tau correlations (τ) between the ordination axes and site variables.  The pre-harvest ordination included 
data from 1 year before harvest and the post-harvest ordination contained data from 3 years after harvest.  Bold values 
indicate a significant correlation at P < 0.05. 
 
 

  Pre-harvest  Post-harvest 
 Axis 1 (44.8%) Axis 2 (33.2%) Axis 3 (12.0%)  Axis 1 (38.2 %) Axis 2 (25.1%) Axis 3 (12.6%) 

Site 
variable 

           
RD   -0.099  0.439 -0.345   0.368 -0.135 -0.170 
OM  -0.072 -0.336  0.072  -0.362  0.441  0.230 
Ca  -0.230 -0.257 -0.112  -0.204  0.520  0.178 
N  -0.086 -0.323  0.086  -0.336  0.388  0.283 
P   -0.165 -0.323 -0.072  -0.283  0.494  0.151 
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Figure 1. Relationship of species composition to forest structure and soil variables 
using nonmetric multidimensional scaling (NMS): a) pre-treatment (% of variation in 
species data: Axis 1 = 44.8; Axis 2 = 33.2), and b) post-treatment (% of variation in 
species data: Axis 1 = 38.2; Axis 2 = 25.1).   
 

RD

OM

Ca

N
P

Axis 1

Ax
is

 2

CON

GS

SCE

STS

RD

OM

Ca
N P

Axis 1

Ax
is

 2

a)

b)

RD

OM

Ca

N
P

Axis 1

Ax
is

 2

CON

GS

SCE

STS

CON

GS

SCE

STS

RD

OM

Ca
N P

Axis 1

Ax
is

 2

a)

b)



 

 
72

-4

0

4

8

12

-1 1 2 3 4

N
0

CON
GS
SCE
STS

a)

-1

0

1

2

3

4

-1 1 2 3 4

N
1

b)

-1

0

1

2

3

4

-1 1 2 3 4

N
2

c)

-15

-10

-5

0

5

10

15

-1 1 2 3 4
%

 c
ov

er

d)

years years 

-4

0

4

8

12

-1 1 2 3 4

N
0

CON
GS
SCE
STS

a)

-1

0

1

2

3

4

-1 1 2 3 4

N
1

b)

-1

0

1

2

3

4

-1 1 2 3 4

N
2

c)

-15

-10

-5

0

5

10

15

-1 1 2 3 4
%

 c
ov

er

d)

years years 
 

Figure 2. Change in treatment means of overall a) species richness (N0), b) the exponential Shannon diversity index (N1), c) 
the reciprocal Simpson’s diversity index (N2) and d) percent cover from one year pre-harvest to four years post-harvest.  
Data is normalized to one year pre-harvest.  Year 3 is used as post-harvest in ANOVAs.  Sample sizes are control: n = 8 for 
all years; SCE: n = 4 for all years; GS and STS: n = 4 for years -1 through 3, n = 2 for year 4.   
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Figure 3. Change in treatment means of late-successional a) species richness (N0), b) the exponential Shannon diversity 
index (N1), c) the reciprocal Simpson’s diversity index (N2) and d) percent cover from one year pre-harvest to four years 
post-harvest.  Data is normalized to one year pre-harvest.  Year 3 is used as post-harvest in ANOVAs.  Sample sizes are 
control: n = 8 for all years; SCE: n = 4 for all years; GS and STS: n = 4 for years -1 through 3, n = 2 for year 4. 
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Figure 4. Fluctuations in the Palmer Drought Severity Index (PDSI) in the Vermont (VT) and New York (NY) study areas 
from three years pre-harvest to four years post-harvest.   
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