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ABSTRACT 
 

 
 The accurate determination of hydraulic conductivity is an important element of 
successful groundwater flow and transport modeling.  However, the exhaustive 
measurement of this hydrogeological parameter is quite costly and, as a result, 
unrealistic.  Alternatively, relationships between hydraulic conductivity and other 
hydrogeological variables less costly to measure have been used to estimate this crucial 
variable whenever needed.  Until this point, however, the majority of these relationships 
have been assumed to be crisp and precise, contrary to what intuition dictates. 
 
 The research presented herein addresses the imprecision inherent in hydraulic 
conductivity estimation, framing this process in a fuzzy logic framework.  Because 
traditional hydrogeological practices are not suited to handle fuzzy data, various 
approaches to incorporating fuzzy data at different steps in the groundwater modeling 
process have been previously developed.  Such approaches have been both redundant and 
contrary at times, including multiple approaches proposed for both fuzzy kriging and 
groundwater modeling.  This research proposes a consistent rubric for the handling of 
fuzzy data throughout the entire groundwater modeling process.  This entails the 
estimation of fuzzy data from alternative hydrogeological parameters, the sampling of 
realizations from fuzzy hydraulic conductivity data, including, most importantly, the 
appropriate aggregation of expert-provided fuzzy hydraulic conductivity estimates with 
traditionally-derived hydraulic conductivity measurements, and utilization of this 
information in the numerical simulation of groundwater flow and transport. 
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1: A REVIEW OF APPROXIMATE REASONING IN HYDROGEOLOGY 

 

1.1. Introduction 

  

 The research contained within this dissertation predominantly addresses the 

appropriate role of fuzzy sets (Zadeh, 1965) in hydrogeologic applications.  In addition, 

related mechanisms for the characterization of both expert knowledge and associated 

uncertainty are also addressed.  These related frameworks include fuzzy logic (Zadeh, 

1973), possibility theory (Zadeh, 1978), random set theory (Joslyn and Booker, 2004; 

Joslyn and Ferson, 2004; Joslyn and Kreinovich, 2005) and evidence theory (Dempster, 

1968; Shafer, 1976).  Though these tools perform distinct functions, they all share a 

common goal: the characterization of uncertainty.  Traditionally, probability theory has 

been the “go to” framework for uncertainty characterization.  As such, fuzzy set theory 

and fuzzy logic, especially, have faced significant criticism (Elkan, 1994; Garcia, 1994; 

Pelletier, 1994; de Silva and Attikiouzel, 1994) for attempting to challenge probability 

theory.  In fact, fuzzy and probability theories play complementary roles in the 

characterization of uncertainty.  In order to best comprehend how the mathematical tools 

listed above, collectively known as approximate reasoning, relate to probability theory 

and accomplish the task of uncertainty characterization from the perspective of 

hydrogeological investigations and modeling, the dual nature of uncertainty must first be 

introduced. 
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1.1.1. Uncertainty 
 

 Recent research into uncertainty has revealed a dichotomous nature to this 

property; uncertainty can be either aleatory or epistemic (Ferson and Ginzburg, 1996; 

Helton and Burmaster, 1996; Helton and Oberkampf, 2004).  Aleatory uncertainty, also 

called irreducible or stochastic uncertainty arises due to the random nature of a system 

(Helton and Oberkampf, 2004).  Epistemic, subjective, or reducible uncertainty is also 

referred to as state of knowledge and results, most often, from expert knowledge. 

 To best understand both types of uncertainty, it is most prudent and clarifying to 

consider them in concert.  Consider the following simple scenario.  Assume that the 

Environmental Protection Agency (EPA) wishes to determine the probability with which 

a certain contaminant will reach a target location within the next 50 years.  Rather than 

run a sophisticated model, the EPA wishes only to rely upon the input of a very well-

informed expert.  Since the fate and transport of contaminants are governed by a naturally 

random system, the uncertainty surrounding the future event in question is aleatory (i.e. 

the contaminant will reach the target location with a probability P) (Helton et al, 2000a, 

b).  However, the expert is additionally uncertain about the actual probability P.  With 

more knowledge of the site, and as time progresses, the expert becomes more certain of 

the value P.  For instance, perhaps at the present time, the expert is only able to specify 

an interval of values wherein he or she believes the exact probability value P lies.  With 

increasing time and information, this expert-provided interval will likely narrow.  As 

such, this latter uncertainty is epistemic in nature. 
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 Helton and Oberkampf (2004) provide an excellent introduction to and summary of 

the dual nature of uncertainty.  Moreover, in this dissertation, the chapter entitled 

Aleatoric and Epistemic Uncertainty in Groundwater Fate and Transport Simulation 

covers the topic in some depth. 

 Traditionally, probability theory has been employed in the characterization of both 

types of uncertainty.  However, the ease with which a human agent is able to capture 

subjective knowledge using a probability framework is suspect (Ganoulis, 1996; 

O’Hagan and Oakley, 2004).  As a result of this challenge rose the desire for a more 

facile manner of subjective knowledge characterization.  Depending upon the nature of 

the source of uncertain information, however, different approximate reasoning tools 

apply. 

 The following describes and provides literature reviews of some of the 

mathematical constructs that developed out of the desire for an alternative theory for the 

lucid definition of subjective (expert) knowledge and epistemic uncertainty.  For the sake 

of brevity, only those approximate reasoning theories and certain tools therein with 

relevance to this dissertation are introduced.  References are provided to suggest avenues 

of more thorough investigation for the motivated reader. 

 In addition to the concise journeys into approximate reasoning, the remaining 

chapters of this dissertation are each given individual attention in the form of mini-

literature reviews.  These applications of approximate reasoning tools and theories to 

hydrogeology are, of course, presented in more detail in the chapters that follow. 
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1.1.2. Classical Sets and Finite Multivalued Logics 
 

 It’s very warm today2.  Until the mid-1960’s (Zadeh, 1965), a declaration like this, 

formed by common parlance, provided little quantitative insight into the actual 

temperature outside.  To make use of such information, it is desirable to know what 

constitutes warm temperature to the speaker.  Intuitively, this human qualification 

(warm) of a measurable entity (temperature) is quite imprecise, and the manner in which 

such information was once quantified is quite awkward.  For example, consider the 

quantification of warm temperature, as provided by classical set theory.  By definition, a 

value x∈X can only belong to a set A with full membership, µA(x) = 1, or not belong at 

all, µA(x) = 0: 

 





=
0
1

)(xAµ else
if Ax∈

 ( 1-1 ) 

 

This formula is the mathematical representation of the law of excluded middle (Cooper, 

1978), a philosophical concept that states that an item (i.e. temperature value) either 

belongs or doesn’t belong in a set (i.e. the set warm).  In terms of the example above, a 

temperature is either warm or not warm.  A possible definition of warm temperature is 

provided in Figure 1.1, where any temperature in the interval [21, 27] is considered fully 

and equally representative of the notion warm.  However, a brief inspection of this 

quantification of warm reveals a glaring inconsistency in the law of excluded middle: 21 

                                                 
2 Since this dissertation was defended during a Vermont winter, this statement is both false and hopelessly 
optimistic. 
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degrees Celsius is considered to be warm, whereas 20.99 degrees Celsius is not defined 

as a warm temperature.  This disconnect defies intuition simply because humans think in 

an imprecise manner.  Thus, classical set characterizations of human knowledge imply a 

false sense of precision. 

 

 

Figure 1.1. Classical set interpretation of warm temperature 

 Oddly enough, shortcomings of two-valued logic and the law of excluded middle, 

were first highlighted by Aristotle, the “father of [classical] logic” (Hurley, 2006), who 

noted that this law did not apply to future events; events that have not yet occurred are 

neither true nor false (Klir and Yuan, 1995).  Nevertheless, it wasn’t until the 20th century 

(almost 2500 years after Aristotle’s death) that alternatives to Aristotelian logic were 

developed.  Such alternatives were, for the most part, limited generalizations of two-

valued logic, most notably three-valued logics, like those developed by Lukasiewicz (Klir 
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and Yuan, 1995), and the n-valued logics of Lukasiewicz and Tarski, Reichenbach, and 

Godel (Malinowski, 2001).  According to the three-valued logic, for example, a value 

could belong to a set with full, null or half membership. 

 Though certainly a step in the right direction these n-valued logics were still too 

unwieldy and unrealistic.  The fact that that set memberships are still discrete precludes 

them from accurately portraying human knowledge.  Fuzzy sets and fuzzy logic, 

however, introduced an infinite-valued logic that solved this problem. 

 

1.1.3. Fuzzy Sets and Fuzzy Logic 
 

 The introduction of fuzzy sets by Lofti Zadeh (1965) provided an intuitive 

approach to the quantification of imprecision, especially in human-provided information.  

A fuzzy set is a natural extension of the classical set, where the constraint in Equation ( 

1-1 ) no longer applies.  Rather, the membership function µA permits the partial 

membership of elements x∈X in a fuzzy set A that quantifies some human-provided 

notion.  Consider the fuzzy set characterization of warm temperature in Figure 1.1.  Note 

that the transition from temperature values with full membership to values with null 

membership is gradual.  Specifically, using the example above, 21 degrees Celsius has 

membership of 0.75, and, intuitively, 20.99 has slightly less membership, µwarm(20.99) = 

0.7475.  In this example, temperature is a linguistic variable, because its values are 

qualitative (i.e. warm) rather than quantitative (Zadeh, 1975).  Warm is called a linguistic 
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value of the variable temperature.  Linguistic values are generally specified by fuzzy 

numbers. 

 

 

Figure 1.2. Fuzzy set representation of warm temperature 

 A fuzzy number is arguably the most common form of a fuzzy set and is defined on 

the set of real numbers.  Though the most common fuzzy numbers are defined by 

triangular membership functions, the fuzzy set with the trapezoidal membership function 

in Figure 1.2 satisfies the three properties that define a fuzzy number (Klir and Yuan, 

1995): 

 

 1. A must be normal, 

 2. α-cuts on A must be closed interval for α ∈  (0, 1], 

 3. the support of fuzzy set A must be bounded 
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 The first property is easily understood: at least one value on the real number line 

must have full membership in the fuzzy set.  It is intuitive to expect at least one number 

to fully embody the notion being defined.  In the case of warm temperature, an interval of 

temperature values best exemplify that notion. 

 In order to understand the remaining two properties, an important aspect of the 

fuzzy set must be introduced.  Fuzzy set membership values (the vertical axis in Figure 

1.2) are also called α- (alpha) values.  For every fuzzy number, associated with any α-

value are two elements from the real number line (horizontal axis).  For instance, in the 

fuzzy set in Figure 1.2,  temperature values 20 and 28 degrees Celsius are associated with 

α = 0.5.  These two values comprise the lower and upper bounds, respectively, of an 

interval, or α-cut, created by horizontally cutting the fuzzy set at the 0.5 α-value.  In other 

words, the 0.5 α-cut for the fuzzy set in Figure 1.2 is the interval [20, 28].  In general, an 

α-cut, αA, is an interval of values that have membership greater than or equal to α, 

 

{ }αµα ≥= )(xxA A . ( 1-2) 

 

The second property of fuzzy numbers simply dictates that any α-cut in the interval (0, 1] 

must have real number upper and lower bounds.  The reason the lower bound of the 

interval of α-values is open at zero is because the zero α-cut is the set of real numbers. 

 A strong α-cut, α+A, is defined as any real number that has membership greater than 

α in a particular fuzzy set, 
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}.)({ αµα >=+ xxA A  ( 1-3 ) 

 

A strong α-cut taken at α = 0, is defined as the support of the fuzzy set.  The support of 

the fuzzy set in Figure 1.2, for example, is the interval [18, 30].  The third property of 

fuzzy numbers, as defined above, states that a fuzzy set must have a support that is a 

closed interval. 

 While fuzzy numbers provide an intuitive means of subjective knowledge 

characterization, permitting one to model epistemic uncertainty surrounding human-

provided information, the value of this tool is severely limited without any means of 

propagating this uncertainty through mathematical models to calculate output fuzzy 

numbers.  Fortunately, mechanisms exist whereby fuzzy numbers can be operated upon 

just like certain, crisp numbers in deterministic problems.  The extension principle 

(Dubois and Prade, 1991b), vertex method (Dong and Shah, 1987; Ross, 2004) and 

interval analysis (Moore, 1966) are tools that permit calculation with fuzzy numbers.  

Both interval analysis and the vertex method are predicated upon the discretization of a 

fuzzy set into a set of α-cuts and evaluation of the particular mathematical formulae via 

interval analysis.  The extension principle, however, operates in unique manner. 

 Consider the extension of a mathematical model Y = f(X), where X is a vector of 

fuzzy uncertain input parameters {A1,…, An}, whose membership functions are denoted 

by A1(x),…, An(x), x∈X=Reals and Y is the model output.  The purpose of applying the 

extension principle to a mathematical model is the calculation of the membership 
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function (i.e. B(y), y∈Y=Reals) of the fuzzy number output value given fuzzy number 

inputs.  In order to best understand how the extension principle accomplishes this, the 

mathematical form of the principle must first be revealed: 

(B

 

)}](),...([min{sup) 11
),...,( 1

nn
xxfy

xAxAy
n=

=  

 
∈∀ nxxy ,...,, 1 Reals 

( 1-4 ) 

 

(Klir and Yuan, 1995).  The following steps execute the extension principle: 

 

1. Select a value y from the real number line; 

2. find all input vectors xi = {x1,…,xn}, i = 1,…,m, such that y = f(x) = f(x1,…,xn); 

3. calculate the membership values {A1(x1),…,An(xn)} for each of the m vectors 

found in Step 2; 

4. select the minimum membership value from each of the above m vectors; 

5. of the resulting m membership values, select the maximum (supremum); 

6. this membership value is assigned to y in fuzzy set B. 

 

Consider the function f(x) and the input parameter defined by the discrete membership 

function A(x) in Figure 1.3. 
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Figure 1.3. The extension principle can be applied to determine the membership function B(y) of a 
fuzzy set that results from executing f(x) on the fuzzy value A. 

The steps to execute the extension principle are illustrated in Figure 1.4. 

 

 
A 

 
 

11



 
B 

 
C 
 

Figure 1.4. To apply the extension principle, (A) a possible output value y’∈Y is selected and all 
x∈X such that f(x)=y’ are found; (B) B(y’) is defined as the maximum membership value of {A(x1), 

A(x2), A(x3)}; (C) repeat for all y∈Y 

 The application of the extension principle involves slightly more computation 

intricacy in cases where inputs number more than one.  Consider the function f(x) = x1 + 

x2 and input parameters defined by the membership function A1(x) and A2(x) in Figure 

1.5.  In this case, the extension principle reduces to 

 

)}](),([min{sup)( 2211
21

xAxAyB
xxy +=

=  

 
( 1-5 ) 
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∈∀ 21,, xxy Reals. 
 

 
Figure 1.5. Fuzzy sets A1 (left) and A2 (right) are the fuzzy number input values to the function 

f(x)=x1 +x2 

Thus, one travels along the real line, selects a value y and finds all pairs {x1, x2} such that 

y = x1 + x2.  The fuzzy set memberships A1(x1) and A2(x2) are found for all pairs of 

values.  For each pair, the minimum of the two memberships is selected and the 

supremum of these representative memberships is assigned as the membership of the 

value y in the fuzzy set B.  Once the extension principle is executed on f(x), the resulting 

fuzzy set B in Figure 1.6 is calculated.  More information on the extension principle can 

be found in (Dubois and Prade, 1991b; Klir and Yuan, 1995) and in the chapter entitled 

Aleatoric and Epistemic Uncertainty in Groundwater Fate and Transport Simulation.  It 

is further applied to both kriging and Kalman filtering equations in the chapters Fuzzy 

Kalman Filtering of Hydraulic Conductivity and Kalman Filtering of Possibilistic 

Hydraulic Conductivity. 
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Figure 1.6. Fuzzy set B is the uncertain output parameter of the function y=f(x)=x1+x2 where A1 

and A2 are the input fuzzy numbers in Figure 1.5 

 Where the extension principle effectively propagates fuzzy uncertain data through a 

traditional mathematical model, there exists an alternative approach for accomplishing 

this end whereby the model itself is rooted in fuzzy logic (Zadeh, 1973), rather than 

traditional mathematical equations.  A fuzzy inference system is a collection of fuzzy 

rules that can be used to model a system.  The most common fuzzy if/then rule, a 

mamdani fuzzy rule (Mamdani, 1975), is framed as a conditional statement, relating one 

or more fuzzy values of independent variables to a fuzzy value of an output variable, 

 

If X is A, Then Y is B. ( 1-6 ) 

 

In this fuzzy rule, X and Y are the independent and dependent variables; A and B are 

fuzzy sets defined upon the respective variables. 
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 A fuzzy rule of this form can have different interpretations depending upon the 

operators used to evaluate the rules.  The most common interpretation is the conjunction 

based model (Klir and Yuan, 1995), where, for example, the rule above would be 

considered a fuzzy point (Zadeh, 1992) or patch (Kosko, 1993) A × B defined upon the 

Cartesian product X × Y.  Each patch is essentially a two-dimensional fuzzy set defining 

the the appropriateness of a particular rule for any pair of input and output values.  The 

higher membership a pair (x’,y’) ∈  X × Y  has in a two-dimensional fuzzy patch, the 

more representative this pair is of the mapping between X and Y.  A collection of fuzzy 

rules, or fuzzy rule base, creates a collection of these patches that approximately models 

the relationship between variables X and Y (Figure 1.7).  As with any mathematical 

relationship between independent and dependent variables, the fuzzy rule base, or series 

of overlapping patches (Figure 1.7), is used to estimate values of the dependent variable 

given values of the independent variables.  Inputs to a fuzzy rule base can be both fuzzy 

and crisp in nature.  Likewise, output estimates resulting from the execution of a fuzzy 

rule base can be fuzzy or crisp via defuzzification. 

 This fuzzy rule interpretation is most common in fuzzy control applications 

(Dubois and Prade, 1991a) that include the operation of systems such as cameras (So et 

al, 1993), washer/dryer systems (Berardinis, 1991), elevators (Zong et al, 2000), video 

games (Kosko, 1993), movies (Aitken et al, 2004), subway trains (Khanbaghi and 

Malhame, 1994) and helicopters (Amaral and Crisostomo, 2002).  Applications to 

environmental sciences also abound, particularly in geohydrology (Bardossy and Disse, 

1993; Nedungadi et al, 1994; Bardossy et al, 1995; Bagtzoglou et al, 1996; Bardossy, 
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1996; Fang and Chen, 1997; Schultz and Huwe, 1997; Dou et al, 1999; Coppolla et al, 

2002; Finol and Jing, 2002; Vernieuwe et al, 2002a,b; Shokir, 2003; Demmico, 2004; 

Vernieuwe et al, 2007).  Many such applications are summarized by Demmico and Klir 

(2004) and Ozbek and Pinder (2006), in chapter summaries below and in the three 

chapters entitled 1) Hydraulic Conductivity Estimation via Fuzzy Analysis of Grain Size 

Data, 2) General and Site-specific Means of Defining Fuzzy CPT-based Soil 

Classification and 3) Fuzzy Spatial Reasoning for Reservoir Characterization. 

 

 
Figure 1.7. The above rule base approximates the relationship between independent variable X to 

dependent variable Y via four fuzzy rules 

1.1.4. Evidence Theory 

 

 Uncertainty can result from a number of different sources (Klir, 1989), two of the 

most common being vagueness and randomness.  The former is best handled by fuzzy 
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sets and fuzzy logic, whereas the latter has been traditionally defined by probability 

theory.  Where imprecision and randomness are coupled, however, subjective knowledge 

uncertainty characterization via probability theory can be awkward (O’Hagan and 

Oakley, 2004).  As such, a quantitative framework of imprecise probabilities, called 

evidence theory, or Dempster-Shafer theory (Dempster, 1968; Shafer, 1976), has been 

developed for the definition of coupled epistemic and aleatoric uncertainties. 

 Evidence theory is primarily based upon the definition of focal elements (Wang 

and Klir, 1992).  A focal element {A, m(A)} has two components: a set A of elements 

x∈X, and a corresponding probability mass assignment m(A), which is a probability value 

applied to a set A.  This mass assignment can be interpreted as the proportion of evidence 

that gives credence to the claim that the unknown true value x’∈  X lies in set A (Klir and 

Yuan, 1995). 

 The properties of mass assignments should look familiar: 

 

]1,0[: →Am  

 

∑
=

=
n

i
iAm

1
1)( , 

( 1-7 ) 

 

 

where n is the number of focal elements in a given body of evidence (Wang and Klir, 

1992).  These properties are quite similar to those of a probability distribution.  In fact, 

the most significant difference between mass assignments and probability distributions is 
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the form of the elements to which they assign probabilities; where X is the domain of 

interest, mass assignments operate upon subsets of the power set of X and probabilities 

are defined upon x  X.  As such, a probability distribution is a special case of the 

probability mass assignment.  Likewise, probability theory is a special case of evidence 

theory (Klir and Yuan, 1995). 

∈

 A collection of focal elements {Ai, m(Ai)}, i = 1,…,n, such that Equation ( 1-7 ) 

holds, comprises a body of evidence, or random set (Joslyn and Booker, 2004; Joslyn and 

Ferson, 2004; Joslyn and Kreinovich, 2005), that characterizes the uncertainty regarding 

the true value x’∈X, essentially defining a probability distribution upon intervals Ai∈2X 

that are elements of the power set of X.  Thus, this uncertainty is both aleatoric 

(probability distribution) and epistemic (intervals).  In the special case where each of the 

sets Ai contains a singleton, the uncertainty is aleatoric only. 

 Consider a collection of measurements of some particular variable.  This set of 

measurements has a mean and variance, which, along with an assumption regarding the 

type of distribution, can be used to create a random variable representing the uncertainty 

in the set of measurements.  Assume, however, there is a reducible error associated with 

each of the measurements, where the actual true value is unknown but expected to lie 

within an order of magnitude of the measured value.  The resulting collection of 

uncertain measurements is a random set. 

 The information contained in a random set can be shown to bound from above and 

below the unknown true random variable.  These upper and lower bounds on the 

probability are called plausibility and belief, respectively.  Given the known probabilities 
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m(Ai) for the sets Ai∈2X in the body of evidence, the belief (Bel) and plausibility (Pl) for 

all subsets B of the power set of X are calculated as follows: 

 

∑
∅≠∩

=
BAA ii

AmBPl )()(  
( 1-8 a) 

∑
⊆

=
BAA

i
ii

AmBBel )()( . ( 1-8 b) 

 

Equations ( 1-8 a) and ( 1-8 b ) reveal the meanings behind belief and plausibility.  Bel is 

the total amount of evidence that supports the claim that unknown true value x’∈X is 

contained in B or any of its subsets, where Pl represents the evidence that x’ lies in B, its 

subsets and any intersecting sets.  From this, it follows that for any set B, Bel(B) ≤ Pl(B).  

Moreover, since Bel and Pl are lower and upper bounds on the probability P of event B, 

the following is also true: 

 

)()()( BPlBPBBel ≤≤ . 
( 1-9 ) 

 

Cumulative Bel and Pl functions (Yager, 2004; Druschel et al, 2006; Mathon et al, 2008) 

are also calculable from a body of evidence, providing a transparent representation of the 

relationships between belief, plausibility and probability.  Letting Lx denote a subset of X 

containing values less than or equal to x, the cumulative plausibility and belief of Lx can 

be calculated from focal elements {Ai, m(Ai)}, where the lower and upper bounds of Ai 

are ai and bi, respectively, using Equations ( 1-10 a) and ( 1-10 b ) (Yager, 2004): 
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 Given a certain body of evidence, the cumulative belief and plausibility in Figure 

1.8 (from the chapter Aleatoric and Epistemic Uncertainty in Groundwater Fate and 

Transport Simulation) were constructed and shown to bound an independently calculated 

cumulative distribution function (CDF).  In this case, the CDF was calculated from a set 

of concentration estimates, where the belief and plausibility functions resulted from a set 

of concentration focal elements. 

 
Figure 1.8. The cumulative belief and plausibility bound the known (in this case) cumulative 

distribution function (CDF) (from Ross et al, submitted to WRR) 
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1.1.5. Possibility Distributions 
 

 Where a body of evidence is comprised of a set of nested focal elements, like α-

cuts of a fuzzy set, evidence theory reduces to one of its sub-theories called possibility 

theory (Zadeh, 1978).  Though possibility theory is a special case of evidence theory, it is 

quite unique and warrants a short investigation, here, especially into its most commonly 

applied tool, the possibility distribution (Zadeh, 1978). 

 Figure 1.6 represents the uncertain output resulting from the application of the 

extension principle to the formula f(x) = x1 + x2, where the inputs to this function are 

fuzzy (Figure 1.5).  Though the uncertain value in Figure 1.6 appears to be a fuzzy 

number, it is, in fact, a possibility distribution. 

 The possibility distribution, a non-probabilistic means of capturing uncertainty, is 

the principal contribution of possibility theory (Zadeh, 1978).  Structurally identical to a 

fuzzy set, a possibility distribution can be expert-provided, though it represents a 

different facet of uncertainty.  Whereas a fuzzy set typically models linguistic variables 

(Zadeh, 1975) that are certain yet imprecise notions, a possibility distribution represents a 

lack of knowledge regarding the true value of some variable. 

 Consider a simple example involving a clay lens in the subsurface.  Two experts 

are available to opine upon the depth of this lens: one expert possessing substantial 

familiarity with the site and one expert who possesses only knowledge of a similar site, 

though not this site in particular.  The first expert is asked to specify the depth of the clay 

lens, and responds that that clay lens is deep, using a fuzzy set to characterize this 

linguistic variable (Figure 1.9).  The same information is requested of the second expert, 
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who can merely define what depths he perceives are possible based upon his knowledge 

of similar sites, employing a possibility distribution to do so (Figure 1.9).  In this case, 

the resulting characterizations of the expert knowledge are structurally identical, though 

intuitively, the experts are expressing two different sentiments.  Expert One interprets 

Figure 1.9 as a membership function, where 50 meters best represents his notion of deep.  

Expert Two, on the other hand, interprets 50 meters as the most possible depth of the clay 

layer. 

 More commonly, though, possibility distributions result from the operation of an 

input fuzzy number by a mathematical model.  Where fuzzy model inputs are most often 

certain yet imprecise expert-provided values, the execution of a mathematical model 

calculates uncertain values in the form of a possibility distribution. 

 
Figure 1.9. Expert One interprets this distribution as a membership function defining his notion 
Deep; Expert Two, on the other hand, provided this as a possibility distribution representing his 

knowledge of the clay lens’ depth 

 Because possibility distributions model uncertainty that results from a lack of 

knowledge as opposed to a lack of precision, they are more similar to probability 
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distributions than fuzzy sets.  Aside from direct possibility-probability transformations 

(Jumarie, 1995; Oussalah, 2000; Klir, 2006), where a possibility distribution can be re-

interpreted as a probability distribution (and vice versa) after an, oftentimes simple, 

functional transformation, possibility distributions are found to be naturally related to 

probability distributions via focal elements.  A possibility distribution can be transformed 

into a set of nested α-cut-like intervals, which are, in fact, focal elements.  Applying 

Equations ( 1-8 a), these nested focal elements are translated to necessity (Nec) and 

possibility (Pos), the possibility theory versions of Bel and Pl, respectively (Klir and 

Yuan, 1995). 

 

1.2. Hydrogeological Uncertainty 

 

 The predominant source of uncertainty in hydrogeological modeling originates 

from model parameter measurements and estimates.  This uncertainty can result from 

measurement error (Højberg, and Refsgaard, 2005), spatial and temporal heterogeneity 

(Gelhar, 1986; de Marsily et al, 1998; Nillson et al, 2007), error in the estimation 

procedures (Isaaks and Srivastava, 1989), expert knowledge (Piotrowski et al, 1996), 

amongst other sources.  Regardless of the source, though, uncertainty characterization in 

groundwater fate and transport modeling has predominantly been accomplished by 

probability theory (Gelhar, 1986; Ozbek and Pinder, 2006).  As such, groundwater model 

parameters are traditionally represented by stochastic, or random, variables.  In order to 

accommodate the randomness of model parameters (i.e. boundary conditions and state 
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variables), random versions of the groundwater model equations, called stochastic models 

(Freeze, 1975; Gelhar, 1986; Winter, 2004) are implemented.  The execution of these 

stochastic models usually relies upon the implementation of Monte Carlo methods 

(Metropolis and Ulam, 1949), which, in general terms, sample the probability 

distributions of input parameters (i.e. hydraulic conductivity), execute model equations to 

calculate model estimates (i.e. head and concentration) and aggregate these estimates into 

random variables (Gelhar, 1993). 

 However, as mentioned above, the probabilistic approach is not always adequate or 

appropriate (Ganoulis, 1996; O’Hagan and Oakley, 2004).  As a result I have applied the 

approximate reasoning methods introduced above throughout the entire groundwater fate 

and transport modeling process.  This will now be discussed. 

 

1.3. Groundwater Fate and Transport Modeling 

 

 The groundwater modeling process can be segmented into two broad stages: 1) 

hydrogeological aquifer characterization, and 2) implementation of a groundwater model.  

The first stage is comprised of hydrogeological parameter evaluation and spatial 

estimation.  This includes the delineation of distinct soil formations and the identification 

of groundwater model input values.  Arguably, the most commonly researched 

groundwater flow and transport model input parameter is hydraulic conductivity because 

of its significant impact upon the velocities with which water and contaminants travel 

(Bear, 1979; Sudicky, 1986; Domenico and Schwartz, 1990).  Conventional approaches 

 
 

24



to hydraulic conductivity measurement include pumping tests, slug tests and inverse 

methods.  However, such measurements are costly.  The geological characterization of an 

aquifer is helpful because hydraulic conductivity can be predicted from soil properties 

that are, in general, less costly to measure than hydraulic conductivity. 

 The second stage of the groundwater modeling process is the definition and 

implementation of a flow and transport model.  In practice, models are sets of differential 

equations whose solutions often require the application of numerical methods.  Moreover, 

since model inputs are random variables, sampling regimes facilitate the execution of 

model equations upon realizations of discrete values, drawn from the random variables.  

The resulting realizations of crisp model estimates are aggregated into random variables.  

Software to execute these modeling tasks are prevalent (i.e. Modflow/MT3D, Princeton 

Transport Code) in practice.  As such, innovative modeling techniques are fairly 

uncommon in real-world applications. 

 The bulk of this dissertation addresses the concepts behind the investigation of 

aquifer soil properties, the prediction of hydraulic conductivity from these properties, the 

accurate estimation of hydraulic conductivity throughout an aquifer, and the appropriate 

characterization of uncertainty throughout all of these properties.  Significant attention is 

also given to the considerations of modeling with imprecise hydrogeological parameters.  

The chapter entitled Fuzzy Spatial Reasoning for Reservoir Characterization introduces a 

means of aquifer soil formation mapping that is predicated upon expert knowledge.  A 

fuzzy logic-based method of hydraulic conductivity prediction from soil grain size and 

borehole log analyses is presented in Hydraulic Conductivity Estimation via Fuzzy 
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Analysis of Grain Size Data.  The chapter, General and Site-specific Means of Defining 

Fuzzy CPT-based Soil Classification, introduces a fuzzy logic estimator of hydraulic 

conductivity that is reliant upon cone penetration test (CPT) data, rather than expert 

knowledge.  The accurate estimation of hydraulic conductivity, where measurements 

and/or the aquifer’s spatial continuity are imprecisely known, is addressed in the chapters 

Fuzzy Kalman Filtering of Hydraulic Conductivity and Kalman Filter Updating of 

Possibilistic Hydraulic Conductivity.  Practical considerations are given to alternative 

characterization of uncertainty in hydraulic conductivity by random sets and the 

modeling with such uncertain parameters in Aleatoric and Epistemic Uncertainty in 

Groundwater Simulation.  Finally, a method of modeling with imprecise hydraulic 

conductivity values, reminiscent of stochastic modeling, is introduced in Respecting 

Correlation While Modeling with Possibilistic Data. 

 

1.3.1. Fuzzy Spatial Reasoning for Reservoir Characterization 

 

 Borehole logs (Chapellier, 1992; Temples and Waddell, 1996), soil grain size 

analyses and cone penetration tests are the hallmarks of soil-based aquifer investigations.  

In general, borehole logs provide a qualitative assessment of an aquifer’s vertical 

geological make-up at various point locations.  Cone penetration tests are similar to 

borehole logs in the sense that they provide insight into the vertical soil profile at a finite 

number of locations in an aquifer.  On the other hand, a soil grain size analysis, or grain 
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size distribution, provides quantitative information on the composition of a soil sample 

extracted from an aquifer, rather than an entire vertical profile. 

 Though these tools of soil investigations are relatively inexpensive, they are 

invasive and provide a limited amount of information relative to an entire aquifer’s soil 

composition.  Nevertheless, there are methods of expanding upon this information, such 

as kriging (Matheron, 1971; Isaaks and Srivastava, 1989) to provide a more complete 

characterization of an aquifer’s soil properties.  These procedures for spatially estimating 

soil data, however, require the crisp classification of properties whose boundaries are 

naturally gradual. 

 Alternative methods of mapping soil properties, or soil classification (Burrough et 

al, 1997) are, interestingly enough, predominantly fuzzy-based.  Such soil mapping 

utilities are largely reliant upon fuzzy logic (Zhu et al, 1996; Zhu, 1997; Zhu et al, 2001) 

and fuzzy classification (De Gruijter and McBratney, 1988; McBratney and De Gruiter, 

1992; McBratney et al, 1992; Odeh et al, 1992; Mazaheri et al, 1995;  De Gruijter et al, 

1997; Mazaheri et al, 1997; Bragato, 2004).  The fuzzy logic-based methods utilize a soil 

similarity model (Zhu, 1997) to relate soil environmental conditions, available throughout 

an entire spatial domain, to predefined soil classes.  Fuzzy classification approaches are 

quite similar to fuzzy logic based approaches, though they utilize fuzzy k-means 

classification (Bezdek and Pal, 1992) as well as kriging. 

 Whereas the above approaches depend upon measurements of a number of different 

soil properties, expert knowledge is, for the most part, merely used to map these soil 

properties to predefined soil classes.  This is a limited use of expert knowledge, a vast 

 
 

27



resource, relative to the soil mapping method proposed herein.  Rather than apply expert 

knowledge to determine soil classes and then interpolate these classes in a separate step, a 

novel approach would apply expert knowledge, in the form of fuzzy rules, to determine 

the location and extent of soil formations in one step.  Such an algorithm would employ 

fuzzy spatial reasoning. 

 Fuzzy spatial reasoning is, quite simply, the application of fuzzy rules in a spatial 

context.  Though the application of fuzzy techniques to the description of spatial objects 

is hardly novel (Leung, 1983; Leung, 1984; Altman, 1994; Wang and Keller, 1997; Wang 

and Keller, 1999; Keller and Wang, 2000; Bordogna and Chiesa, 2003; Li and Li, 2004) 

and the expression fuzzy spatial reasoning has been used to label algorithms for the fuzzy 

characterization of spatial concepts (i.e. Near) as linguistic variables (Robinson, 1990; 

Esterline et al, 1997; Schockaert et al, 2006), these approaches do not define logical 

relationships in the form of fuzzy rules. 

 In geohydrological terms, fuzzy spatial reasoning is a fuzzy rule-based approach to 

the delineation of soil formations based upon the location of known soil formations.  The 

purpose of this methodology is to utilize soil data on a large scale, such as for the 

approximate location of an already-identified soil formation, in conjunction with 

generally applicable hydrogeological relationships, in order to identify the approximate 

soil composition of an entire aquifer.  Aside from hydrogeological applications, this 

algorithm has utility in mineral potential mapping (Taylor and Steven, 1983; Carranza 

and Hale, 2001). 
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1.3.2. General and Site-specific Means of Defining Fuzzy CPT-based Soil 
Classification 
 

 Cone penetration tests have been applied to stratigraphy definition for over 80 

years, though modern CPTs were developed in the 1950s (Begemann, 1953).  A 

penetrometer is a cone-shaped device that is forced vertically downward into the 

subsurface, measuring the friction along the side of the device (sleeve friction) and the 

resistance experience by the device’s tip (cone resistance). 

 Though the use of these two variables to classify soil types was first formalized by 

Begemann (1963), numerous methods were developed afterward (Schmertmann, 1978; 

Douglas and Olsen, 1981; Robertson, 1990).  The resulting wealth of soil classification 

charts represents a variety of mappings between the CPT-based variables and soil type; 

little consensus is evident on the formulation of these charts.  However, the soil 

classification charts possess at least one characteristic in common: it is assumed that the 

transitions between different soil types are crisp and abrupt. 

 Rather, in reality, soil types change gradually.  The transition from silty soils to 

sandy soils is imprecise, and can be best modeled by fuzzy sets (Demmico, 2004; Ross et 

al, 2007).  As such, it makes sense to fuzzify the classification of soil when using CPT-

based variables. 

 Artificial intelligence-based techniques applied to CPT-based soil classification 

have used fuzzy logic (Zhang and Tumay, 1999, 2003; Titi and Tumay; 2000), and 

artificial neural networks (Kurup and Griffin, 2006) or both (Romo and Garcia, 2003).  

Nevertheless, the fuzzy approaches classify soils into non-traditional classes, and though 
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the soil classes predicted by the artificial neural networks are more common (i.e. sand, 

silt, clay), they are also crisp and non-overlapping, contradicting the true overlapping 

nature of soil types (Demmico, 2004; Ross et al, 2007). 

 A fuzzy logic approach to soil classification from CPT variables should apply 

fuzzy rules relating sleeve friction and cone resistance, or some functional transformation 

of those variables into the soil classes sand, silt and clay.  Ideally, the fuzzy rule-based 

method would produce overlapping soil classes, like that which is evidenced in nature 

(see Figure 3.8 in the chapter entitled General and Site-specific Means of Defining Fuzzy 

CPT-based Soil Classification). 

 However, rather than rely upon expert knowledge, a novel approach to fuzzy set 

and fuzzy rule definition would rely strictly upon the wealth of CPT-based data available 

at any given site.  Where CPT tests and borehole investigations were performed at 

identical locations, a data set is compiled where CPT data and corresponding soil types 

are available.  Using this known input and output data, a genetic algorithm can be applied 

to optimize an ideal fuzzy rule base (Herrera et al, 1995; Reyes, 2004; Hong et al, 2006) 

to classify soil.  A comparison to another data-driven classification tool, a kernel-based 

fuzzy c-means classifier (Zhang and Chen, 2003), is also warranted. 

 

1.3.3. Hydraulic Conductivity Estimation via Fuzzy Analysis of Grain Size Data 

 

 The combination of the wealth of soil data and the relative dearth of hydraulic 

conductivity data at sites of hydrogeological investigation has given rise to the prediction 
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of the hydraulic conductivity by soil analysis data.  A number of different formulae have 

been developed toward this end.  The most recognizable of these formulae for predicting 

hydraulic conductivity are the van Genuchten formula (van Genuchten, 1980), for 

unsaturated soil, and Kozeny-Carman equation (Carman, 1937; Carman, 1939), which 

calculates hydraulic conductivity from soil pore properties (Chapuis and Aubertin, 2003). 

 However, the majority of prediction equations are predicated upon the correlation 

between hydraulic conductivity and soil grain size (Masch and Denny, 1966; El-Kadi, 

1985; Mishra et al, 1989; Shepherd, 1989; Uma et al, 1989; Sen, 1992; Alyamani and 

Sen, 1993; Koltermann and Gorelick, 1995; Arya et al, 1999; Boadu, 2000; Hwang and 

Powers, 2003; Cronican and Gribb, 2004).  Though in some cases the prediction 

accuracies are quite promising, with R2 values as high as 0.99 (Krumbein and Monk, 

1943), where unity is perfect correlation, special attention must be given to both the range 

of soil grain sizes for which hydraulic conductivity is predicted and the size of the data 

sets used to create and evaluate the predicting equations.  For example, Shepherd (1989) 

shows that the models with the most promising results were developed and tested with 

small data sets. 

 Neural network-based attempts to predict hydraulic conductivity from soil data are 

also prevalent (Tamari et al, 1996; Schaap and Leij, 1998; Schaap et al, 2001; Minasny et 

al, 2004; Parasuraman et al, 2006).  However, these methods suffer from the same 

shortcoming as the regression models, above.  They reduce the wealth of information 

available in a grain size distribution to, in many cases, a single representative variable 
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(i.e. D10, D50, percent sand, percent clay).  As yet, no methodology exists that utilizes a 

soil sample’s entire grain size distribution to predict hydraulic conductivity. 

 The relationship between grain size and hydraulic conductivity is quite imprecise 

and cannot be captured by the consideration of only a handful of variables.  Different 

texts reveal distinct mappings between soil type and hydraulic conductivity (Bear, 1979; 

Domenico and Schwartz, 1990).  An intuitive means of capturing this imprecise 

relationship is with fuzzy logic.  A set of fuzzy rules relating fuzzy grain size values to 

fuzzy hydraulic conductivity values has the potential to effectively and accurately predict 

hydraulic conductivity.  Moreover, given that a grain size distribution is essentially a 

discrete cumulative distribution function and, as such, can easily be converted into a 

discrete probability density function, a possibilistic grain size distribution is calculable 

via the application of one of many probability-possibility transformations (Oussalah, 

2000).  An entire grain size possibility distribution, instead of one representative grain 

size value, can be an input value to a fuzzy rule-base relating grain size to hydraulic 

conductivity. 

 By modeling the imprecise soil-hydraulic conductivity correlation with fuzzy rules, 

qualitative information, such as borehole investigations, can also be viable input.  

Characterizing borehole descriptions of soil samples, such as, Silt to Medium Clay Silt, 

trace Fine Sand, as a fuzzy set permits the use of borehole data to estimate hydraulic 

conductivity. 

 The use of fuzzy logic to predict hydraulic conductivity has precedent (Fang and 

Chen, 1997; Finol and Jing, 2002; Shokir, 2003; Demmico, 2004).  However, the 
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development of a fuzzy rule base to facilitate the use of entire grain size distributions and 

qualitative borehole soil descriptions is novel. 

 

1.3.4. Fuzzy Kalman Filtering of Hydraulic Conductivity and Kalman Filter 

Updating of Possibilistic Hydraulic Conductivity 

  

 As mentioned above, because the direct measurement of hydraulic conductivity can 

be costly, alternative methods of obtaining hydraulic conductivity values have been 

developed (Carman, 1937; Carman, 1939; Krumbein and Monk, 1943; Masch and 

Denny, 1966; van Genuchten, 1980; Mishra et al, 1989; Shepherd, 1989; Uma et al, 

1989; Sen, 1992; Alyamani and Sen, 1993; Koltermann and Gorelick, 1995; Tamari et al, 

1996; Schaap and Leij, 1998; Arya et al, 1999; Boadu, 2000; Schaap et al, 2001; Hwang 

and Powers, 2003; Cronican and Gribb, 2004; Minasny et al, 2004; Parasuraman et al, 

2006; Ross et al, 2007).  With the increasing popularity of fuzzy logic to capture expert 

knowledge, fuzzy set-based hydraulic conductivity values are becoming more prevalent 

in hydrogeological applications (Bardossy et al, 1988; Bardossy et al, 1989; Bardossy et 

al, 1990a,b,c; Piotrowski, 1996; Demicco, 2004; Ross et al, 2007) as is the use of fuzzy 

sets to describe other hydrogeological variables (Bardossy et al, 1995; Dou et al, 1995; 

Bagtzoglou et al, 1996; Piotrowski et al, 1996; Dou et al, 1997a,b). 

 The traditional mode of interpolating hydrogeological variable measurements is 

kriging (Matheron, 1971), ordinary kriging being the most commonly applied set of 

equations (Isaaks and Srivastava, 1989).  However, aside from the developments of 
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kriging algorithms for soft and uncertain data (Journel, 1983; Kulkarni, 1984), these 

equations were once only operable upon certain and precise (non-fuzzy) values.  In order 

to accommodate data sets comprised of both crisp and fuzzy measurements, extensions of 

the kriging equations were developed and tested on such data sets (Bardossy et al, 1988; 

Bardossy et al, 1989; Diamond, 1989; Bardossy et al, 1990b,c; Piotrowski, 1996; 

Piotrowski et al, 1996; Bandemer and Gebhardt, 2000; Passarella et al, 2003; Pham, 

2005;). 

 Collecting fuzzy and traditional crisp measurements in a single data set and 

estimating using kriging simultaneously inherently assumes that fuzzy and crisp data are 

of the same quality.  However, it can be argued that the nature of a fuzzy measurement, 

especially one that is a fuzzy number provided directly by an expert, is that of an 

educated guess of the true value.  If expert-provided fuzzy data is considered prior 

information, and crisp measurements updating information, a Bayesian framework seems 

appropriate.  Attempts to merge Bayesian updating with kriging (Omre, 1987; Bandemer 

and Gebhardt, 2000) have failed to provide an intuitive means of combining fuzzy and 

crisp measurements. 

 A straightforward means of updating fuzzy data with crisp measurements is the 

fuzzy kalman filter.  A number of fuzzy kalman filtering algorithms exists (Hsiao, 1997, 

1999; Chen et al, 1998; Zhang and Wunsch, 2003; Matia et al, 2006), though the version 

most germane to this research is the application of the extension principle to the static 

kalman filter (Ross et al, 2006). 
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 Consider the case where an expert provides fuzzy hydraulic conductivity values.  A 

prior hydraulic conductivity field is created via fuzzy kriging (Bardossy et al, 1990b,c).  

Using the fuzzy kalman filter, crisp measurements are used to update the prior hydraulic 

conductivity field, creating a field of posterior hydraulic conductivity estimates that both 

reflects the expert’s insight and respects the crisp measurements. 

 

1.3.5. Respecting Correlation While Modeling with Possibilities 

 

 A running theme throughout this dissertation is the inappropriateness of 

characterizing expert knowledge with probability theory.  The prevalence of applying 

fuzzy set theory to the expert definition of hydrogeological model parameters has also 

been demonstrated herein.  The question of how to execute groundwater flow and 

transport models with fuzzy number inputs, however, still remains. 

 References for the application of the extension principle and fuzzy rules to the 

execution of mathematical models have been provided above.  In addition to 

computational concerns, none of these methods respect the spatial correlation of the 

model inputs. 

 A more practical method of propagating fuzzy information should be based upon 

stochastic techniques.  For example, Latin hypercube sampling (McKay et al, 1979) is a 

Monte Carlo method (Metropolis and Ulam, 1949) whereby random variables are 

sampled, the resulting realizations are passed through a mathematical model, and the 

model estimates are aggregated as random variables.  The motivation behind an extended 
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Latin hypercube sampling algorithm (Zhang and Pinder, 2003) is to ensure that the 

realizations sampled from the random variables possess a correlation matrix 

approximately equal to the spatial correlation of the model inputs.  By modifying this 

Latin hypercube sampling algorithm such that realizations are drawn from fuzzy data, a 

practical means of groundwater flow and transport modeling with fuzzy and possibilistic 

data is developed. 

 The fuzzy-numerical simulation algorithm (Chanas and Nowakowski, 1988) 

permits the repeated sampling of single values from fuzzy sets or possibility distributions 

such that mathematical models do not need to be extended to produce fuzzy outputs.  

Executing this algorithm M times produces M realizations of a particular model input 

parameter, such as hydraulic conductivity.  Applying certain steps from Latin hypercube 

sampling ensures that this realization matrix respects the spatial correlation of hydraulic 

conductivity. 

 Each of the M crisp realizations can be used as input to groundwater flow and 

transport model equations in a deterministic fashion.  This produces M realizations of the 

desired model output, such as concentration, throughout the spatial domain.  A detailed 

step-by-step explanation of this algorithm is provided in Chapter 7.  At each location, a 

concentration random variable can easily be calculated.  However, because the model 

inputs are fuzzy and/or possibilistic, the uncertain concentration estimates should be 

modeled as possibility distributions. 

 A number of possibility-probability transformations are available in the literature 

(Jumarie, 1995; Oussalah, 2000; Klir, 2006).  For the most part, though, they dictate the 
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conversion of a continuous possibility distribution to a continuous probability distribution 

(or vice-versa).  A method introduced by Dubois et al (1991, 2004) constructs a 

possibility distribution from empirical data.  Aggregating the M concentration estimates 

at each location into a histrogram, the corresponding possibility distribution is readily 

constructed. 

 Thus, by coupling the theory behind Latin hypercube sampling with a novel fuzzy 

sampling algorithm, realizations may be drawn from a fuzzy hydraulic conductivity field 

such that they respect the spatial correlation of the fuzzy hydraulic conductivity field.  

These individual realizations may be operated upon via commonly applied numerical 

approximation codes to calculate concentration throughout a spatial domain.  These 

concentrations are interpreted as possibility distributions; crisp concentration values can 

be deduced by defuzzification or by simply considering only the most possible 

concentration value at each node in the discretized spatial domain. 

 

1.3.6. Aleatoric and Epistemic Uncertainty in Groundwater Fate and Transport 

Modeling 

 

  As mentioned previously, stochastic groundwater modeling is the traditional 

approach to propagating probabilistic uncertainty from model inputs to the models 

estimates such as concentration and head.  However, the inappropriate use of probability 

theory to characterize some epistemic, or subjective, uncertainty has also been suggested 

above (Ganoulis, 1996; O’Hagan and Oakley, 2004).  In cases where expert knowledge is 
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most appropriately characterized by fuzzy hydrogeological variable values, two 

alternatives exist to propagate this fuzzy uncertainty through a model to output estimates: 

the application of extension principles to numerical approximations of groundwater flow 

and transport model equations (Dou et al, 1995; Dou et al, 1997a,b; Larue and Tyagi, 

1997, 1998; Faybishenko, 2004) and the approximation of groundwater physics by a 

fuzzy logic-based model (Bardossy and Disse, 1993; Nedungadi et al, 1994; Bardossy et 

al, 1995; Bagtzoglou et al, 1996; Bardossy, 1996; Schultz and Huwe, 1997; Dou et al, 

1999; Coppolla et al, 2002; Vernieuwe et al, 2002a,b; Vernieuwe et al, 2007). 

 Nevertheless, the fuzzy set characterization of epistemic uncertainty surrounding a 

model parameter is inappropriate where aleatory uncertainty also exists for the same 

parameter.  Consider a simple case where a remediation site is subdivided into a small 

number of geohydrological zones, within each are available a small number of hydraulic 

conductivity measurements.  The mean and variance of each zone’s measurement data 

sets can be used to define a representative random variable for that zone. 

 However, in reality each of the hydraulic conductivity measurements are inherently 

epistemically uncertain.  An expert can define such epistemic uncertainty for each 

measurement by specifying an interval about the measured value in which the true value 

is expected to lie.  In a given zone, the resulting set of uncertain measurements gives rise 

to a random set, rather than a random variable.  The random set characterizes both the 

aleatory uncertainty resulting from the stochasticity of hydraulic conductivity within the 

zone as well as the epistemic uncertainty about the accuracy of the individual 

measurements. 
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 Because the extension of a groundwater flow and transport model to random sets  

(Dubois and Prade, 1991b) is computationally cumbersome, the most reasonable protocol 

for propogating the aleatory and epistemic uncertainty conveyed by the random sets 

involves approximating each random set (a set of non-nested focal elements) by a 

possibility distribution (a set of nested focal elements) (Dubois and Prade, 1990).  The 

extension of groundwater flow and transport model equations to operate on possibility 

distributions is much less computationally intensive than the random set extension.  

Resulting model estimates can be represented as possibility distributions, upper and lower 

probability bounds, or defuzzified (Klir and Yuan, 1995) crisp values. 
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2: FUZZY SPATIAL REASONING FOR RESERVOIR 

CHARACTERIZATION 

 

 While both seismic and geologic data are utilized in the process of groundwater 

reservoir characterization, expert knowledge is, for the most part, a heretofore untapped 

resource.  Such knowledge can offer insight into the extent and nature of soil formations, 

based upon both a geohydrologic understanding of a particular reservoir and a general 

knowledge of depositional processes.  This paper introduces a fuzzy spatial reasoning 

approach employing expert knowledge for reservoir characterization.  The discussed 

algorithm produces possibility distributions identifying the estimated location of soil 

formations.  Relevant applications demonstrate the utility of the proposed strategy. 

 

2.1. Introduction 

 

 Expert insight provides an intuitive means to describe the geologic structure of an 

aquifer.  Historically, the use of expert insight in groundwater reservoir definition has 

been hampered by a lack of both formalism and structure. 

 With the introduction of fuzzy sets and fuzzy logic (Zadeh, 1965), however, the 

utilization of expert knowledge and reasoning has become formalized.  Fuzzy sets 

provide a means by which imprecise linguistic variables, which are used in human 

discourse, can be characterized.  In addition fuzzy rules can model human reasoning with 

conditional statements. 
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 Applications of fuzzy set theory and fuzzy logic to hydrogeological problems have 

been documented (McBratney and Odeh, 1997).  Most relevant to this article are those 

applicable to reservoir characterization and soil mapping. In those instances fuzzy sets 

and fuzzy logic have been applied to the definition of soil regions in the subsurface based 

upon the use of available hard geologic data (McBratney and De Gruijter, 1992; Odeh et 

al, 1992; Zhu et al, 1996; De Gruijter et al, 1997; Zhu et al, 2001; Sunila and 

Horttanainen, 2003; Triantifilis et al, 2003; Allen et al, 2007).    

Where measured data is scarce, expert knowledge may be available.  Appropriate 

expert knowledge may include both site-specific and general geologic and hydrologic 

information.  It is presumed, herein, that knowledge is available regarding the relative 

locations and extents of soil regions.  Such data can be quantified using fuzzy logic 

through the creation of rules aimed at identifying the location of a soil region based upon 

the known location of another soil region, or a known history of depositional processes.  

This formalism is referred to as fuzzy spatial reasoning. 

  The notion of applying fuzzy techniques to describe spatial objects has been 

reported in (Leung, 1983; Leung, 1984; Altman, 1994; Wang and Keller, 1997; Wang 

and Keller, 1999; Bordogna and Chiesa, 2003; Li and Li, 2004).  In fact, fuzzy rules have 

been developed using arguments similar to those proposed in this paper (Keller and 

Wang, 2000) though they were applied to automated scene description in a given image, 

i.e. a photograph.  Moreover, the term “fuzzy spatial reasoning” has been applied to at 

least two different algorithms (Robinson, 1990; Esterline et al, 1997; Schockaert et al, 

2006).  Herein, however, fuzzy spatial reasoning refers to the use of fuzzy rules to relate 
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variables that imply distance or direction; the goal is to define the location and extent of 

objects, such as the areal extent of distinct lithologic units. 

 The paper is organized as follows.  A brief discussion of fuzzy rules and how a 

fuzzy rule can have spatial meaning is presented in Section 2.2.  In Section 2.3, fuzzy 

spatial reasoning is explained using very basic examples.  Applications to 

hydrogeological reservoir characterization are introduced in Section 2.4.  A summary of 

the important points introduced herein concludes the paper. 

 

2.2. Multi-Dimensional Fuzzy Inference 

 

 Fuzzy reasoning is the process by which human logic, expressed in the form of 

language and thereby inherently imprecise, is formalized in a mathematical framework 

via fuzzy rules (Klir and Yuan, 1995).  In this work the fuzzy-reasoning tools include the 

standard min and max operators for capturing the concepts of the conjunction `and’ and 

disjunction `or’ respectively and the Mamdani-type fuzzy inference formalism is used. 

 Fuzzy rules are comprised of two components: 1) conditional statements relating at 

least one independent variable to at least one dependent variable, and 2) fuzzy sets 

characterizing the values of the variables appearing in the conditional statements.  For 

example, the conditional statement, 

 

IF X is A THEN Y is B, 
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is a fuzzy rule as long as A is an antecedent fuzzy set defined by a membership function 

A(x), x  X, and B is a consequent fuzzy set defined by the membership function B(y), y 

 Y.  A simple example of a fuzzy rule relates the distance one is standing from a 

baseball player to the speed with which one should throw the ball: 

⊆

⊆

 

IF Distance from Player is Small THEN Arm Speed is Slow. 

 

In this fuzzy rule, the independent antecedent and dependent consequence variables are 

distance from player and arm speed, respectively.  The fuzzy sets are Small (Figure 2.1A) 

and Slow (Figure 2.1B).  Employing fuzzy reasoning one can input a fuzzy distance and 

determine, via defuzzification (Klir and Yuan, 1995), a crisp speed value with which 

one’s arm should hurl the ball. 
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Figure 2.1. Using the fuzzy sets A) “Small” and B) “Slow” a fuzzy rule can estimate the desired 
arm speed for a given distance between two baseball players 

 The independent variable distance from player, in the preceding example, implies a 

spatial component to the fuzzy rule.  In this work, the fuzzy rules relating variables 

implying distance or direction are the basis for our fuzzy spatial reasoning.   

  

2.3. Fuzzy Spatial Reasoning 

 

2.3.1. One Dimension 

  

 In the above, it is implied that, in the context of this paper, the purpose of fuzzy 

spatial reasoning is to delineate the approximate location of an object relative to another 

object.  The key to accomplishing this task is working with adjectives that define distance 

or direction, such as near, far, about 20 feet, northeast, southwest, left, right, etc.  These 
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adjectives are relative, which means that they can only provide the approximate, or fuzzy, 

location of an object relative to another object, the location of which is known.   

Consider the statement, 

 

The bike is near. 

 

Unless one knows a reference object to which the bike is near, as assumed in Altman’s 

(1994) fuzzy spatial relations, this statement is meaningless.  A complete spatial relation 

is 

 

The bike is near the tree. 

 

Knowing the tree’s location, as well as a fuzzy definition of the adjective near, it is 

possible for one to deduce the approximate distance to the bike.  Consider the one-

dimensional example in Figure 2.2, where the tree’s location is known exactly (Figure 

2.2A) and the fuzzy characterization of the adjective near (Figure 2.2B) is defined.  

Using the Euclidean distance and fuzzy arithmetic (Klir and Yuan, 1995), the 

approximate location of the bike can be calculated as a possibility distribution (Zadeh, 

1978).  The most commonly applied tool of fuzzy arithmetic is the extension principle 

(Klir and Yuan, 1995), 

)(sup)(
)(

xAyB
xfyx =

=
.

 
( 2-1 ) 

which permits the use of fuzzy numbers as arguments in otherwise traditional equations.   
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Figure 2.2. Given the location of the tree (A) and the characterization of the linguistic variable 
“Near” (B), knowing that the bike is near the tree can provide insight into an approximate 

quantitative location of the bike (C) 
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The principle in Equation Error! Reference source not found. dictates for each 

dependent variable value y’, one considers all values x of the independent variable X that, 

when evaluated by the function y = f(x), produces the value y’.  The greatest membership 

value of these values x, such that f(x) = y’, in fuzzy set A(x) is designated as the 

possibility value of y’ in possibility distribution B(y).  In this case, the equation is the sum 

of the distance of the bike from the tree, x, to the location of the tree, t, in order to 

determine the location of the bike, y: 

 

xtxfy +== )( . ( 2-2 ) 

 

The fuzzy argument, quantified in Figure 2.2C, is the distance of the bike from the tree, 

near, denoted here as A(x).  Thus, the purpose of Equation ( 2-2 ) becomes the 

determination of the possibility distribution, B(y), defining the location of the bike.  

Applying the extension principle to Equation ( 2-2 ) produces the possibility distribution 

B(y) in Figure 2.2C, which characterizes, for each location along the horizontal axis, the 

possibility that the bike is situated there.  For example, inspection of the distribution in 

Figure 2.2C reveals that the possibility is greatest that the bike is 5 feet from the origin 

and it is impossible that the bike is more than 6 feet or less than 4 feet from the origin. 

 In order to generalize fuzzy spatial relations such that they can be applied in many 

circumstances, they should be framed as fuzzy rules, rather than extended equations.  

Consider a scenario where one knows that there is a bike by a tree, but there are many 
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trees in the area.  The bike’s location is contingent upon the identification of the correct 

tree.  A statement like 

 

IF the tree is two feet from the building THEN the bike is Near the tree, 

 

provides a general description of the bike’s location that holds true for some specified 

area.  This statement is a fuzzy rule whose independent variable is distance between the 

tree and building and dependent variable is distance between the bike and tree.  The 

antecedent fuzzy set is a crisp value 2 feet, and the consequent fuzzy set is defined (by an 

appropriate agent) in Figure 2.2B. 

 

2.3.2. Multiple Dimensions 

 

 The importance of this theory is more evident when applied to multiple spatial 

dimensions.  However, in order to produce meaningful results, more information should 

be furnished in the fuzzy spatial relations.  Consider the case of the bike and tree again.  

This time, the purpose of the rule is to approximately locate the bike’s easting and 

northing.   

Given the fuzzy rule, above, relating the bike and the tree, a two-dimensional 

possibility distribution, which delineates the approximate location of the bike, forms a 

ring around the tree (Figure 2.3). 
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Figure 2.3. This two-dimensional ring-shaped possibility distribution provides a very imprecise 
idea of the true location of the bike compared to the one-dimensional version in Figure 2.2C 

This region is created in the following manner.  First, the spatial domain is discretized 

into a number of grids and a tree is found that satisfies the antecedent condition.  Once 

this tree is found, the distance between each nodal location in the spatial domain and the 

tree is calculated using the Minkowski Lp-metric (Altman, 1994).  In this case, p = 2, 

specifying conventional Euclidean distance: 

 

22 )()()),(),,(( jtreeitreejitreetree yyxxyxyxdist −+−=  

 

for i = 1,…,m and j = 1,…,n, where m is the number of nodes in the x direction and n is 

the number of nodes in the y direction.  For each node, the membership value in the fuzzy 

set Near, associated with the node’s distance from the tree, is assigned as that node’s 
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possibility value, πBike(xi, yj), in the region defining the possible location of the bike 

(Figure 2.3). 

By including just one more piece of information, this possibility distribution can be 

made considerably more insightful.  For instance, by including direction in the fuzzy rule, 

 

IF the tree is two feet from the building THEN the bike is Near to and Northwest of the 

tree, 

 

along with a fuzzy set representing the term Northwest (Figure 2.4A), a more precise 

location of the bike is defined.  The determination of this more informative possibilistic 

region is quite similar to that of the ring-shaped regions as described above.  However, 

two regions must first be delineated.  The ring-shaped region, describing a region that is 

near to the tree is calculated as above.  Another region, representing areas northwest of 

the tree, is calculated in a similar manner.  For each nodal location, the angle (in degrees) 

from the northing, or azimuth, is calculated, and the membership of this azimuth in the 

fuzzy set Northwest is tabulated.  The membership value is assigned to that node and 

represents the possibility that the node is northwest of the tree, πBike(x, y) (Figure 2.4B).  

In order to determine the approximate location of the bike, the two regions, one 

representing areas near the tree and the other representing areas northwest of the tree, 

must be combined.  Since the bike is deemed, by the above rule, to be both near and 

northwest of the tree, the ideal combination of the possibilistic regions is intersection 
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(Klir and Yuan, 1995).  Intersection dictates that the minimum possibility value at each 

node is assigned to that node as the possibility that the bike is located there, 

 

)},(),,(min{),( jiNorthwestjiNearjiBike yxyxyx πππ =  i = 1,…,m; j = 1,…,n, 

 

resulting in the bike’s approximate location in Figure 2.4C. 

 

2.4. Fuzzy Spatial Reasoning 

 

 Though there are many problems to which this theory can be applied, the area of 

most interest to the authors is hydrogeological reservoir characterization.  Specifically, 

we want to use fuzzy spatial reasoning to encapsulate and expert knowledge regarding 

the spatial relationships between different geologic formations and to express it 

quantitatively.  We wish to show that as a complement to the Soil Land Inference Model 

(Zhu et al, 1996, 2001), which uses fuzzy logic to identify near-surface soil formations 

based upon environmental conditions, fuzzy spatial reasoning can identify the presence of 

one or more classes of soil for each cell in a spatial grid.  Coupled with a mechanism to 

estimate hydraulic conductivity from soil data (Ross et al, 2007), the hydrological 

characteristics of a reservoir can be then identified. 
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Figure 2.4. The inclusion of additional information regarding direction (A), delineating a region 
that is northwest of the bike (B), to identify the bike’s possible location provides a more insightful 

result (C) than that in Figure 2.3 
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2.4.1. Soil Spatial Relations 

 

 Although the deposition of soils in the subsurface is a function of many surface 

geologic processes, and the identification and modeling of these processes is a science 

unto itself, it is plausible, if not possible, to characterize expert knowledge of these 

processes as they are applicable to the geohydrologic composition of a site. 

 For instance, consider the identification of the extent of a coarse-grained soil 

deposit in the subsurface.  Hydrologic intuition would suggest that finer-grained deposits 

would be carried further downstream by surface water than would coarse-grained 

deposits.  Perhaps a fuzzy rule describing this process could read 

 

IF surface water historically flowed Northwest, THEN a fine-grained deposit 

should be located About 200 feet downstream of the coarse-grained deposit. 

( 2-3 ) 

 

Note that this rule is very precise and may be unrealistic.  Nevertheless, it demonstrates 

the ability with which natural processes can be described by fuzzy rules.  Here, the fuzzy 

sets are Northwest (Figure 2.4A) and About 200 feet (Figure 2.5A).  Evaluation of the 

rule using the same procedure as above produces the possibility distribution of the fine-

grained soil formation in Figure 2.5B. 

 Ideally, most sites will have a number of different rules stipulated to identify the 

locations of various soil regions.  In such cases, it is quite possible that at least one grid 

location will have more than one possibility distribution identifying the existence of more 
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than one soil.  Where a cell grid has a vector of possibility values defining the existence 

of a number of different soils, Zhu et al (1996, 2001) introduced the notion of a soil 

similarity vector (SSV).   
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Figure 2.5. The characterizations of the notions “Northwest” in Figure 2.4A and “About 200” feet 
(A), in conjunction with the fuzzy rule in Equation ( 2-3 ), produces the approximate fine-grained 

soil region (B) 
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For instance, in addition to the rule above, another rule might define the location of a 

coarse-grained soil region.  If this region were to overlap with the fine-grained soil 

regions, logically some grid locations will have two possibility values, one associated 

with fine-grained soil and associated with coarse-grained soil.  The cell grid’s SSV in this 

two rule example will have two possibility values.  If it is ultimately desired that only one 

soil type be determined to exist at any one grid location, the soil corresponding to the 

greatest SSV will be identified as the soil at that location. 

 Intuitively, the geologic formations of interest are characterized by other than soil 

type.  The occurrence of mineral deposits, for example may be a suitable application for 

fuzzy spatial reasoning such as presented herein. In fact, fuzzy techniques have already 

been applied to mapping gold mineralization potential (Carranza and Hale, 2001) 

 Expert knowledge-derived hydrologic regions are also realized in practical 

applications with multiple-point geostatistics (Strebelle, 2000).  The geostatistical 

approach was developed to overcome the limitations of two-point geostatistics and is 

predicated upon the existence of training images.  A training image is a Boolean 

representation, traditionally drawn by a geologist in order to represent structural patterns 

present in the subsurface, from which the geostatistics are derived, in combination with 

available parameter measurements.  Some training images (Figure 2.6, from Caers and 

Zhang, 2002) contain hand-drawn regions that are very similar to that produced by fuzzy 

logic in Figure 2.4C.  Thus, instead of relying upon an arbitrarily drawn image, a 

collection of fuzzy rules defining various soil type regions might be used to construct a 

training image. 
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Figure 2.6. Example of a training image (from Caers and Zhang, 2002) 

2.4.2. Hydrologic Extensions 

 

 Relationships between soil characteristics and parameters describing an aquifer are 

intuitive, and there are means by which hydrologic data can be estimated from soil data  

(Shepherd, 1989; Fogg et al, 1998; Arya et al, 1999; Boadu, 2000; Hwang and Powers, 

2003; Cronican, 2004; Parasuraman, 2006;).  However, it is not immediately evident how 

knowledge of the locations of soil formations can lead to quantitative hydrologic aquifer 

characterization.  The question at hand is how to take advantage of the knowledge that, to 

a certain degree, a given cell grid is found to be occupied by one or more soil types, 

where the soil data is qualitative in nature only.  Fuzzy logic provides an answer. 

 
 

84



 Ross et al (2007) have developed a means by which hydraulic conductivity can be 

estimated from knowledge of a sample’s soil class.  Relating fuzzy set soil classes to 

hydraulic conductivity, theirs is a mechanism by which the data output from fuzzy soil 

spatial reasoning can lead to estimates of hydraulic conductivity (K).  Consider a rule of 

the form 

 

IF soil type is Fine-Grained THEN hydraulic conductivity is Low ( 2-4 ) 

 

where low hydraulic conductivity is defined as in Figure 2.7A.  Given the possibilistic 

fine-grained soil region in Figure 2.5B, the possibility value at each grid node can be 

interpreted as the degree to which this rule pertains there.  After defuzzification, the log 

hydraulic conductivity estimates are given in Figure 2.7B. 
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Figure 2.7. Using the fuzzy set in (A) defining “Low” hydraulic conductivity the fuzzy rule in 
Equation ( 2-4 ) produces the hydraulic conductivity estimates in (B) 

 
Figure 2.8. Two overlapping possibilistic regions representing fine-grained in Figure 2.5B and 

coarse-grained soil regions (pictured here), coupled with the fuzzy rules in Equations ( 2-4 ) and ( 
2-5 ), produces estimates of hydraulic conductivity, like for that of location [E-100, N150] (K = 1.76 

× 10-5 cm/s) 
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 In a case where a grid location possessed a SSV with n possibility values 

corresponding to n different soil types, n different rules are applicable.  The possibility 

value for each soil will then dictate the degree to which the corresponding rule will fire 

for that grid location.  The outputs of the n rules are aggregated and a single estimated 

hydraulic conductivity value is deduced.  Thus, for any one location, it is quite possible to 

have a rule base. 

 Assume that the two soil regions in Figure 2.5B and Figure 2.8 resulted from the 

determination and application of two rules, one identifying the locations of a fine-grained 

soil region and one delineating a coarse-grained soil region.  At location (-100, 150), the 

rules found that it is possible that fine-grained soil exists to degree 0.35 and coarse-

grained soil exists to degree 0.45. 
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Figure 2.9. The characterization of “High” hydraulic conductivity can be used to estimate 

hydraulic conductivity when a component of a fuzzy rule like that in Equation ( 2-5 ) 
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Given the rule 

 

IF soil type is Coarse-Grained THEN hydraulic conductivity is High, ( 2-5 ) 

 

and using the high hydraulic conductivity fuzzy set in Figure 2.9, the evaluation of the 

rule base produces a hydraulic conductivity value of 1.76 × 10-5 cm/sec at location (-100, 

150). 

 

2.5. Conclusions 

 

 The application of fuzzy inference to the definition of spatial relations, herein 

referred to as fuzzy spatial reasoning, is well suited for reservoir characterization.  It has 

been demonstrated that fuzzy sets and fuzzy logic can capture expert knowledge 

regarding the spatial relationship between objects as well as the relationship between 

hydrologic parameters and soil formations.   

Arguably, the value of expert data relies greatly upon the experts who opine on the 

desired topic.  Experience shows that it is important that the proper questions are posed to 

the experts in order to obtain the desired information in an efficient manner.  In this vein, 

a considerable amount of research has been directed toward data acquisition for fuzzy 

system definition (Onisawa and Anzai, 1999). 

 The greatest value of fuzzy spatial reasoning would be realized in the application to 

the comprehensive modeling of the effect of glacial, aeolian and hydrologic dynamics 
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upon geology.  Again, the knowledge capture process toward this end would likely be an 

arduous task.  Nevertheless, it is possible that a series of simple rules can approximately 

capture the physics of complex depositional processes.  Such an endeavor is well beyond 

the scope of this paper, though the groundwork was certainly laid above. 
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3: GENERAL AND SITE-SPECIFIC MEANS OF DEFINING FUZZY CPT-

BASED SOIL CLASSIFICATION 

 

 

 Though their primary use is to identify a soil’s structural qualities, data from cone 

penetrometer tests are commonly used to delineate the soil composition in a vertical 

column of soil without the need of boreholes and grain size analyses.  Soil classification 

is imprecise and traditional classification procedures often fail to produce accurate and 

consistent results.  Two classification approaches using fuzzy set theory and fuzzy logic 

are presented whereby the soil composition is deduced using values of cone resistance 

and sleeve friction.  One classification method relies upon field data to define a soil 

classification chart with fuzzy soil boundaries, while the other method applies fuzzy rules 

to model the physics governing the underlying relationship between CPT data and soil 

type. 

 

3.1. Introduction 

 

 The in situ application of cone penetrometers has existed for over 80 years.  The 

predecessor of current penetrometers, which allowed for the measurement of both cone 

resistance (Qc) and sleeve friction (Fs), was developed in the early 1950s (Begemann, 

1953).  The application of these measured parameters to the classification of subsurface 

soil types was formalized shortly thereafter by Begemann (1963).   
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 The ratio of sleeve friction to cone resistance, known as friction ratio (Rf), was also 

viewed as a viable classification tool (Begemann, 1963).  Classification charts that 

followed plotted friction ratio against cone resistance (Schmertmann, 1978; Douglas and 

Olsen, 1981; Robertson, 1990) in order to deduce both the soil types and geotechnical 

characteristics of a sample. 

A number of site specific approaches to soil classification based on cone penetration 

tests (CPT) were developed.  The majority of these focused on determining soil 

properties, such as liquefaction and shear strength, (Romo and Garcia, 2003; Zhang and 

Tumay, 1999); only a few utilized CPT data for soil type classification (Zhang and 

Tumay, 1999; Kurup and Griffin, 2006; Mullarkey and Fenves, 1986; Vos, 1982). 

Most relevant to this research are the CPT-based soil classifiers developed by Kurup 

and Griffin (2006) and Zhang and Tumay (1999), which produce soil classes through 

non-traditional transformations of cone resistance and sleeve friction data.  The 

algorithms presented herein rely upon the most appealing aspects of these two classifiers, 

one offering a data-driven approach to soil classification, while the other utilizes expert 

logic to classify soils. 

The artificial neural network (ANN) soil classification method, developed by Kurup 

and Griffin (2006), passed cone resistance and sleeve friction values through a general 

regression neural network to estimate percentages of clay, sand and silt.  ANN training 

was predicated upon the existence of CPT soundings and grain size distribution analyses 

performed at identical locations.  The use of a regression ANN to classify soils assumes 

that the process of soil classification is precise. 
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Zhang and Tumay (1999) accomplished classification by first redefining CPT 

sounding data using a soil engineering classification index U.  Using this index fuzzy sets 

were defined, one for each of three distinct soil types, appropriately delineated by 

imprecise boundaries: Highly Probable Clayey soil, Highly Probable Mixed soil and 

Highly Probable Sandy soil.  The membership value of a soil sample’s index value u∈U 

in the three fuzzy sets defined the composition of the soil sample.  However, these 

classifications are not definitive declarations.  Most notably, the imprecise term Highly 

Probable is never quantified, nor is the classification Mixed Soil explicitly defined. 

CPT-based soil classification is inherently imprecise.  Fuzzy set theory and fuzzy 

logic are two related frameworks by which imprecision can be modeled.  The two soil 

classification algorithms presented herein rely on these two frameworks separately.  The 

first algorithm presented applies a fuzzy kernel-based C-means classifier to develop site-

specific fuzzy soil classification charts.  This approach is purely data-driven.  The second 

algorithm presented herein utilizes a genetic algorithm to develop a fuzzy logic-based 

classifier that defines soil composition based upon cone resistance and sleeve friction 

values.  Unlike the first method, this approach is logic-driven rather than strictly data-

driven.  Borehole logs are used to evaluate the accuracy of both algorithms. 

In the following section, arguments are presented for the non-generality of soil 

classification techniques based upon cone penetration data, accentuated by examples of 

the inaccuracies of common classification charts, and also for the modeling of 

imprecision in the soil classification process.  In the third section, the data-driven fuzzy 

kernel-based classifier is presented along with results.  In the fourth section the genetic 
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algorithm-optimized fuzzy classifier is explained and results are provided.  A discussion 

of the two classifiers concludes the paper. 

 

3.2. Practical CPT-based Soil Classification 

 

3.2.1. Conflicting Classifications 
 

 A number of distinct soil classification charts are available for use with cone 

resistance and sleeve friction data.  As mentioned previously, Begemann (1963) devised 

the first classification chart by plotting sleeve friction in kiloPascals against cone 

resistance in MegaPascals (Figure 3.1A).  More recently, Douglas and Olsen (1981) 

devised a classification chart using cone resistance and friction ratio data from an 

electrical cone penetrometer (Figure 3.1B). 

 

 
     A      B 

Figure 3.1. The Begemann (1963) classification chart (A) plots sleeve friction against cone 
resistance; and the Douglas and Olsen (1981) classification chart (B) considers the relationship 

between friction ratio and cone resistance, and identifies general relationships between fines 
content, grain size, void ratio and soil type 
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 These two charts have been used interchangeably, suggesting the same general 

relationships between the independent variables cone resistance and sleeve friction and 

the dependent variable soil grain size.  By inspection of these charts it is evident that 

grain size gradually increases with increasing cone resistance and decreasing sleeve 

friction.  Nevertheless, assessment using some randomly selected cone resistance and 

sleeve friction data pairs reveals that the classification charts produce quite distinctly 

different results (Table 3.1).  The classifications in Table 3.1 determined from the two 

charts are entirely at odds with each other. 

 

Table 3.1. Five randomly chosen CPT data (cone resistance Qc in tons per square foot and 
MegaPascals, sleeve friction Fs in kiloPascals and friction ratio Rf), the corresponding soil 

descriptions, Begemann classification and Douglas and Olsen classification.  Note how neither 
classification chart produces consistently accurate classifications 

Qc 

(tsf) 

Qc 

(MPa) 

Fs 

(kPa) 

Rf 

(%) 

Boring Log 

Description 
Begemann Class. Douglas/Olsen Class.

261.81 28.08 207.79 0.74 
sand (90% fine sand, 

10% fines) 

No Classification 

(more coarse than 

coarse sand with 

gravel 

Non-cohesive coarse-

grained sand 

112.78 12.10 309.65 2.56 
sandy clay (70% 

fines, 30 fine sand) 
silt-clay-sand 

More coarse than 

coarse-grained soil 

62.95 6.75 147.18 2.18 
lean clay (80% fines, 

20% fine sand) 

Between Loam and 

silt-clay-sand 

Non-cohesive coarse-

grained sand 

185.34 19.88 163.00 0.82 
silty sand (55% fine 

sand, 45% fines) 

No Classification 

(more coarse than 

than coarse sand with 

gravel 

Non-cohesive coarse-

grained sand 
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 In applications where the soil classification is known for one or more CPT 

soundings, the most accurate classification method can be deduced.  Note from Table 3.1 

that Begemann’s chart was more accurate than that of Douglas and Olsen in classifying a 

sandy clay sample as a sand-silt-clay. 

In Figure 3.2A are plotted the cone resistance and sleeve friction values for soils that 

are predominantly (greater than 80%) sand, silt or clay, overlain by the Begemann chart; 

and in Figure 3.2B are plotted the cone resistance and friction ratio values for the same 

soils overlain by the Douglas and Olsen chart.  Note that the great majority of the sand 

samples are predominantly fine sand.  The Begemann chart reasonably classifies clay 

samples and the Douglas and Olsen chart performs reasonably well with silt samples.  

However, neither chart provides an accurate means of soil classification overall; the 

Douglas and Olsen chart almost completely misclassifies this particular set of field data.  

Moreover, crisp classification of the same data performs poorly, classifying 119 out of 

125 of the data pairs as clay soil samples. 

By employing more extensive data sets, improvements in soil classification charts 

were made by Robertson et al (1986) and Robertson (1990).  For instance, consider the 

classification chart in Figure 3.2C, developed by Robertson (1986).  It is evident that this 

classification chart correctly identifies the clay and silt soil samples from the data set in 

most cases.  The Robinson classification chart is a marked improvement over older 

charts.  Nevertheless, the sand soil samples are incorrectly classified as sensitive fine 

grained soils and 23 CPT data pairs do not lie within any of the 12 soil regions.  

Obviously, there is still room for improvement in soil classification with CPT data. 
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Figure 3.2. CPT data from clay, silt and sand samples plotted against (A) the Begemann chart and 
(B) the Douglas and Olsen chart.  The Roberston chart (C) classifies more accurately. 
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3.2.2. Fuzzy Set Considerations 
 

 These above noted inaccuracies call into question the validity of broadly applied 

classification techniques.  Alternatively, site- or region-specific classification algorithms 

admit the non-generality of CPT-based soil classification; but they generally fail to 

acknowledge inherent imprecision.  In other words, false precision is forced upon the 

classification process when using crisp delineations between distinct soil types. 

It has previously been recognized that the distinctions between soil types are more 

imprecise (McBratney and Odeh, 1997; Zhang and Tumay, 1999; Demmico and Klir, 

2004; Lagacherie, 2005; Ross et al, 2007).  For instance, there is no crisp line that 

separates silty sand from fine sand.  Rather, one soil type should gradually transition into 

the other.  Consider, for example, the cone resistance and sleeve friction field data plotted 

in Figure 3.2B, where the sand (●), silt (■) and clay (×) data clusters overlap each other 

to some degree.  Such overlapping clusters are best modeled by fuzzy sets (Zadeh, 1965). 

 Fuzzy sets provide an intuitive means by which boundaries between imprecisely 

defined subjects can be modeled as gradual.  The boundaries of a fuzzy set are defined by 

a membership function.  Previous applications of this theory to soil type definition have 

been one-dimensional in nature (Ross et al, 2007) though the definition of soil type fuzzy 

sets for CPT-based classification would be two-dimensional. 

This representation of a fuzzy classification chart is an improvement over traditional 

crisp charts because of the fuzzification of the boundaries between soil classes.  The 

algorithms described below offer mechanisms for defining such fuzzy soil classes, one 

using site-specific data and the other applying fuzzy logic. 
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3.3. Fuzzy Kernel-Based Soil Classifying 

 

3.3.1. Theory 
 

 Let us first consider fuzzy c-means clustering (Bezdek, 1981), a generalization of 

traditional statistical clustering whereby elements xk (k = 1,…, n) are classified into fuzzy 

groups with gradual, overlapping boundaries, defined by a membership function Ai(xk), as 

opposed to crisp groups with non-overlapping boundaries, like those seen in the 

classification charts in Figure 3.2.  The algorithm dictates that a fuzzy partition P (or, 

pseudopartition, due to the overlapping nature of the clusters) of the problem space (i.e. 

the plot of the friction ratio and cone resistance data) is defined such that, for a given 

number of clusters c, a performance index Jm(P) is minimized.  The performance index is 

defined in Eq. ( 3-1 ), 

 

∑∑
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where vi (i = 1,…,c) are the cluster centers and m is a parameter related to the degree of 

fuzzification (m=1.25 provided the best results in this work).  Jm(P) measures the 

weighted sum of the squared Euclidean norm (||xk – vi||) between cluster centers and 

elements in the corresponding fuzzy cluster (Klir and Yuan, 1995). 
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Intuitively, the minimization of this performance index produces the most ideal 

spherically shaped fuzzy clusters for a given set of data.  In reality, plausible data clusters 

are rarely spherical, the kernel-based fuzzy clustering algorithm (Zhang and Chen, 2003) 

permits the mapping of data into higher dimensional spaces that generate non-spherical 

fuzzy clusters. 

The iterative process of kernel-based fuzzy c-means clustering (KFCM) begins with 

an initial, uninformed definition of the pseuodpartition.  This entails defining a 

preliminary membership Ai(xk) for every data vector xk (k = 1,…, n) in each of the c fuzzy 

clusters.  Care must be taken to ensure that the sum of the memberships for each data 

vector equals unity, 
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Based upon this initial fuzzy pseuodopartition, fuzzy clusters are calculated using the 

following equation, where the influence of kernel transformation is first evident: 
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In Equation ( 3-2 ), the kernel function κ(xk, vi) measures the similarity between the 

cluster centroid and a data vector.  The further a data vector is from the cluster center, the 

lower the value of the corresponding kernel function.  By using this function to weight 

the x values in both Equations ( 3-2 ) and ( 3-3 ), the clusters are transformed into non-

spherical shapes.  A number of functions can be applied as the kernel function.  In this 

work the Gaussian function is used. 

 Once the cluster centers are calculated, the membership degrees for every data 

vector in all clusters are updated by applying Equation ( 3-3 ): 
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(Zhang and Chen, 2003).  If, when this updated pseudopartition is compared to the 

previously defined pseuodpartition, the difference between the two is greater than some 

prescribed threshold ε, new cluster centers are calculated and the process is repeated until 

the absolute value of the difference between two consecutive pseudopartitions, |Pt+1 – Pt| 

is below the threshold, 

 

ε≤−+ tt PP 1 .  
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This difference may be obtained by finding the maximum difference in membership 

amongst all data vectors in all clusters, i.e. the formula in Equation ( 3-4 ),  
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as suggested by Klir and Yuan (1995).  In this equation, the membership values of all 

data vectors in every cluster are compared to the previous time step.  The maximum of all 

of these differences provides a measure of the difference between the pseuodpartitions of 

consecutive time steps. 

 

 

3.3.2. Data 
 

 As alluded to in the introduction, both CPT soundings and borehole investigations 

were made at a number of coincident locations.  Out of the 304 friction ratio-cone 

resistance data pairs, 125 were associated with soil samples that were comprised of at 

least 70% of one soil type: clay, silt or sand (boring log descriptions were limited to these 

three soil types).  These data are plotted in Figure 3.3, along with an approximate outline 

of a crisp soil class that each defines.  These boundaries were drawn by hand, since, as 

mentioned earlier, crisp classification results were sub-par. 
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Figure 3.3. Overlapping crisp clusters are drawn upon the plot of friction ratios and cone 
resistance values.  The overlapping clusters signify that some soil samples are comprised of more 

than one soil type (i.e. the large dot to which the arrow points is mostly sand with some silt) 

Notice how these intuitively sketched clusters overlap each other and how some data 

belong to multiple clusters.  This is likely due to the fact that most soil samples have 

grain sizes that would be interpreted as elements of different soils.  For example, consider 

the data point (1.16, 106.57) identified by the large dot to which the arrow is pointing.  

This data point resides in both the sand and silt clusters.  Appropriately so, the borehole 

investigation found the soil to be a silty sand. 
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3.3.3. Results 
 

 Applying the kernel-based fuzzy c-means algorithm with 3 clusters to the 125 data 

vectors plotted in Figure 3.3 results in the fuzzy soil classes plotted in Figure 3.4.  The 

identification of the soil classes as identifiers for the clusters (i.e. sand as the cluster in 

Figure 3.4 (top left), silt as the cluster in Figure 3.4 (top right) and clay as the final cluster 

in Figure 3.4 (bottom left)) is accomplished by a simple examination of the plotted data 

in Figure 3.3 with the clusters.  Note, in Figure 3.4, how the sand samples are associated 

with low friction ratios and moderate-to-high cone resistance values, clay sample with 

moderate-to-high friction ratios and high cone resistance values, and silt with low-to-

moderate friction ratios and low-to-moderate cone resistance value.  Thus, by using these 

facts, for example, the fuzzy cluster whose maximum memberships are associated with 

low friction ratios and high cone resistance value is identified as sand.  The remaining 

two clusters were identified in a similar manner.  Figure 3.5 shows the 0.6 alpha-cuts for 

the 3 clusters.  It is interesting to note that the 0.6 alpha-cuts resemble, to a reasonable 

degree, the hand-drawn clusters drawn about the CPT data in Figure 3.3.  The degree of 

overlap between the clusters changes with alpha-cuts, lower alpha-cuts showing to more 

overlap. 
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Figure 3.4. The fuzzy clusters representing (A) sand, (B) silt and (C) clay were produced by kernel-
based fuzzy c-means clustering.  All of the clusters are plotted together (D) to demonstrate a 

structure similar to the overlapping clusters in Figure 3.3 

1

10

100

1000

0 1 2 3 4 5 6

Friction Ratio (%)

C
on

e 
R

es
is

ta
nc

e 
(T

SF
)

Silt

Sand

Clay

7

 

Figure 3.5. Approximate 0.6 degree alpha-cuts for the fuzzy clusters in Figure 3.4 
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 When tested on the data used to form the fuzzy clusters, the fuzzy classification 

chart identified the predominant soil 50% of the time, which is significantly better than 

the classification charts in Figure 3.2.  That is, in cases where a soil was classified as a 

silty sand via a borehole investigation, the corresponding friction ratio – cone resistance 

data pair belongs to the fuzzy sand cluster with the greatest membership.  In addition, like 

the neural network approach (Zhang and Tumay, 1999), this fuzzy classification chart 

provides an estimate of the percentages of clay, silt and sand comprising the soil sample, 

by interpreting the membership values in each of the three regions as percentages.  When 

the remaining 174 data pairs are tested, the accuracy of the classifier in identifying the 

predominant soil type reduces to 32%. 

 

3.4. Genetic Algorithm Optimized Fuzzy Logic Soil Classifier 

 

3.4.1. Theory 
 

 While data-driven fuzzy c-means clustering results in a fuzzy version of a soil 

classification chart (Figure 3.4 (bottom right)), it is accomplished without any formal 

expert logic.  Douglas and Olsen (1981) identified relationships between soil properties 

(grain size, fines content) and the CPT parameters on their classification chart, as 

signified by the arrows (Figure 3.1B).  Similar logic can be captured by fuzzy rules 

relating sleeve friction and cone resistance to the soil types clay, silt and sand in order to 

define soil classifications. 
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 While the classification charts in Figure 3.1 are visibly dissimilar, there are some 

consistencies.  Clayey soils are associated with higher friction ratio (sleeve friction) 

values and low cone resistance values, moderate friction ratio and cone resistance values 

result from penetration of silty soils, and sandy soils lead to low friction ratio and high 

cone resistance values.  These observations can be framed as conditional statements, such 

as 

 

If friction ratio is high and cone resistance is low, then soil type is clay, 

If friction ratio is moderate and cone resistance is moderate, then soil type is silt, 

If friction ratio is low and cone resistance is high, then soil type is sand. 

 

These statements act as general guidelines by which CPT-based soil classification can be 

governed. 

 

A 

 
 

112



 
B 

Figure 3.6. Arbitrary pseuodopartitioning of the variables (A) friction ratio and (B) cone resistance 
by fuzzy sets low, medium and high.  Because the membership functions were arbitrarily defined, 

the estimates produced by the corresponding fuzzy rules are inaccurate 

Consider the partitioning by fuzzy sets of the two CPT parameters in Figure 3.6A 

and Figure 3.6B.  By combining these fuzzy sets with the conditional statements, fuzzy 

rules (Klir and Yuan, 1995) are constructed (Figure 3.7). 
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Figure 3.7. The fuzzy rules corresponding to the fuzzy partitions in Figure 3.6 and conditional 
statements that capture the general physics underlying CPT-based soil classification 
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When this fuzzy rule base is executed for all plausible values of cone resistance and 

friction ratio, clay, sand and silt fuzzy soil regions are delineated (Figure 3.8).  For any 

given pair of values, one simply reads the membership value of the data pair in each 

fuzzy region and normalizes the three soils’ membership values so they sum to one.  The 

soil compositions are estimated for the same pairs of values as in Table 3.1, showing that 

the fuzzy rule base is a poor classifier (Table 3.2), achieving only one correct 

classification. 

 

 

Figure 3.8. Fuzzy soil clusters produced by the evaluation of the fuzzy rules in Figure 3.7 

 

The reason for the inaccuracies is primarily caused by the shape and location of the 

membership functions in Figure 3.6.  In order to improve estimates, the membership 
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functions must be fine-tuned to the particular data set of interest.  In order to optimize the 

membership functions for best results, a genetic algorithm is employed. 

 The genetic algorithm, so named by Holland (1975) because of its simulation of 

biological evolutionary processes, is a general optimization tool that has applications in a 

number of facets of applied science and engineering.  A number of such applications 

have been directed toward the optimization of fuzzy logic-based models (Herrera et al, 

1993, 1995; Ho et al, 2000; Reyes, 2004; Castro and Camargo, 2005; Hong et al, 2006).  

A thorough review of such applications is provided by Cordon et al (2004). 

 

Table 3.2. The same data vectors from Table 3.1 are classified using the fuzzy rule base approach 

Qc 

(tsf) 

Friction 

Ratio (%) 
Boring Log Fuzzy Estimated Composition 

261.81 0.74 sand (90% sand, 10% fines) sandy silt (0% clay, 62% silt, 38% sand) 

112.78 2.56 
sandy clay (70% fines, 30% 

sand) 
silt (0% clay, 100% silt, 0% sand) 

62.95 2.18 
lean clay (80% fines, 20% 

sand) 
silt (0% clay, 100% silt, 0% sand) 

185.34 0.82 
silty sand (55% sand, 45% 

fines) 
silty sand (0 % clay, 21% silt, 79% sand) 

 

 The application of genetic algorithms in this work is focused upon the 

determination of the parameters (vertices of the triangular fuzzy sets) that govern the 

shape and location of the fuzzy sets low, moderate and high friction ratio and low, 
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moderate and high cone resistance such that the soil composition estimates are accurate.  

A particular instance of these fuzzy set parameters comprises an individual, in genetic 

algorithm terms.  For each individual, the fuzzy rule base is evaluated and the difference 

between the estimated soil composition is compared to the actual soil composition.  A 

fitness score is assigned to each individual in this initial population, signifying the 

accuracy of the estimates it produced.  Individuals with high fitness scores are permitted 

to reproduce via cross breeding, producing a second generation of individuals (Beasley et 

al, 1993).  This process is repeated until a prescribed maximum number of generations is 

reached or until the genetic algorithm reaches an optimal solution, which in this case is a 

minimum difference between estimated and actual soil composition percentages.  The 

parameters encoded in the optimal individual define the fuzzy sets in the above three 

fuzzy rules. 

 

3.4.2 Data 
 

 The cone resistance and friction ratio data values with corresponding soil 

composition percentages were used for genetic algorithm fuzzy rule base tuning were 

gleaned from borehole logs.  The ideal source of soil composition data are grain size 

distributions, as utilized in Zhang and Tumay (1999).  However, borehole logs are 

generally far more numerous in practical applications, and as such, are applied herein.  In 

some cases the borehole log soil descriptions are also accompanied by clay, silt and sand 

percentages.  In this case, however, the data did not possess such specificity, merely 
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providing percentages of fines and sand in each soil sample.  Thus, the qualitative soil 

descriptions derived from the borehole logs were translated into soil percentages via the 

Burmeister classification. 

 Over 300 cone resistance and friction ratio data pairs were known for the soil 

samples described in 6 boreholes.  Data from two boreholes, roughly 40% of the entire 

data set, were used to optimize the fuzzy set parameters in the fuzzy rule base.  The 

percentage of clay, silt and sand were deduced from the borehole log descriptions.  Using 

the optimal fuzzy rules, the soil compositions were estimated for the remaining 4 

boreholes and compared to the actual soil composition values. 

3.4.3 Results 
 

 The optimal fuzzy sets for low, moderate and high friction ratio and cone resistance 

are shown in Figure 3.9.  The fuzzy sets are far from intuitive and, with such elevated 

possibility values (Zadeh, 1978), convey a certain degree of ignorance.  For friction ratio, 

every value in the range [0, 6] has high membership in each fuzzy set. 

 

A 
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B 

Figure 3.9. Genetically optimized membership function for the fuzzy sets low, medium and high 
partitioning the variables (A) friction ratio and (B) cone resistance 

Such a circumstance is likely due to the data used to optimize the fuzzy set parameters.  

The data are plotted in Figure 3.10 showing the percentage of clay, silt and sand in each 

data pair.  Notice that there is little organization in the data and the soil types associated 

with each, though areas of high sand percentages are distinguishable in Figure 3.10 

(bottom).  Had the data exhibited more distinct clay, silt and sand regions on the plot, the 

membership functions of the fuzzy sets in Figure 3.8 would provide more appealing 

partitions of the CPT variables. 

 In spite of the data quality, the fuzzy logic soil classifier correctly identified the soil 

types present in a sample 82% of the time (143 correct out of 174 total samples).  

Nevertheless, the percentage of each soil type was less often correctly identified.  Though 

a certain degree of this error is due to the fuzzy classifier, other sources of error include 

the quantification of borehole logs and the omnipresence of silty sand in the borehole 

logs.   
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Figure 3.10. These plots illustrate the percentages of clay (top left), silt (top right) and sand 
(bottom), as determined by borehole investigations, for the over-300 friction ratio – cone resistance 

data pairs.  Notice how difficult it would be to differentiate clusters of clay, silt and sand 

 

3.5. Discussion of Results 

 

 In this paper, two new approaches to identifying soil classes based upon CPT 

sounding data are introduced.  The site-specific approach utilizes kernel-based fuzzy 

clustering, whereas a more another soil classifier was attempted using fuzzy rules. 

The improvements of the new approaches over traditionally employed charts for the 

classification of soil samples are meaningful and demonstrate promise in fuzzy-based 
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classification tools.  The most significant characteristic of the new methods, however, is 

the representation of soil classes with gradually changing boundaries.  With such 

boundaries, one can represent a number of the soil types in the Robertson chart (i.e. silty 

clay, sandy silt) with just three fuzzy soil classes (clay, silt and sand).  For example, a 

data point that has membership in both the clay and silty classes, greater in the former 

than the latter, can be classified as a silty clay. 

While the performance of the kernel-based fuzzy classification was inferior to that of 

the fuzzy rule-based classification, it is appealing in its strict dependence upon the site 

data.  At any site, a unique fuzzy classification chart can be constructed.  Moreover, the 

kernel-based approach marks a first attempt to fuzzify soil classification charts in the vein 

of Begemenn (1963) and Douglas and Olsen (1981). 

 The fuzzy rule-based approach, however, is considered more promising due to its 

higher classification success rate over both the kernel-based approach and traditional 

classification charts.  It is expected that, with the consideration of more data, the rules 

would frame a logic that provides a more universal appeal.  Furthermore, the generality 

and transparency of the fuzzy rule-based approach make it an attractive classification 

method. 
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4: HYDRAULIC CONDUCTIVITY ESTIMATION VIA FUZZY ANALYSIS 

OF GRAIN SIZE DATA 
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 A measure of hydraulic conductivity is arguably the most important variable to 

practicing hydrogeologists.  However, the amount of readily available hydraulic 

conductivity data at any site is generally small, given the resources required to adequately 

sample a spatial domain.  However, other hydrogeologic data, such as grain size 

distributions and soil descriptions, are often rather easy to determine.  Here, a fuzzy 

reasoning algorithm is used to define a relationship between soil grain size and hydraulic 

conductivity.  By introducing soil grain distributions and qualitative borehole log 

descriptions into this fuzzy inference system, hydraulic conductivity can be estimated.  

Herein the theory is defined, and an application to data from a Superfund site is provided, 

where the inference procedure produces accurate hydraulic conductivity estimates. 

 

4.1. Introduction 

 

 Large amounts of information often result from a hydrogeologic investigation, 

whereas hydraulic conductivity data comprise a relatively small subset because the tests 

required to determine it are generally both time consuming and expensive.  Consequently, 

regional estimates of hydraulic conductivity are inherently uncertain.  Since significant 
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uncertainty in hydraulic conductivity estimates lead to uncertainty in groundwater flow 

and transport models, less costly means of acquiring hydraulic conductivity data have 

been explored.  Specifically, several attempts have been made to relate other more easily 

measured hydrogeologic parameters to hydraulic conductivity.  Porosity, particle sorting, 

texture and soil type have all been related to hydraulic conductivity.  Such relationships 

have intuitive appeal. 

 The determination of porosity requires little effort and expense when compared to 

that of hydraulic conductivity, and relationships between it and hydraulic conductivity 

have been modeled (Selley, 1985).  The degree of sorting can be evaluated from the soil's 

grain size distribution curve and related to hydraulic conductivity through an empirical 

equation (Demmico and Klir, 2004).  Textural characteristics (i.e. grain size, ductility) 

are determined by the examination of a soil sample and have been related to hydraulic 

conductivity in sandstone through fuzzy relations (Fang and Chen, 1997).  In a very 

general sense, an understanding of the ranges of likely hydraulic conductivity values for 

various soil types has been used to map these two variables (Domenico and Schwartz, 

1990).  Further, fuzzy sets have been used to characterize an expert's notion of the 

hydraulic conductivity at unsampled locations (Bardossy et al, 1989), essentially 

providing opinion-based imprecise values of hydraulic conductivity at different locations 

in a spatial domain.  More appropriate to the theory presented herein, attempts have been 

made to relate porosity and grain size distributions to hydraulic conductivity through 

petrophysical relations, the Kozeny-Carman Equation and other pedotransfer functions 

(Uma et al, 1989; Sen, 1992; Alyamani and Sen, 1993; Koltermann and Gorelick, 1995). 
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 Though the above methods differ in their approaches, they share a common goal: to 

expand available hydraulic conductivity data with that derived from complementary 

sources. However, these approaches suffer from various shortcomings. Porosity data, 

although easily measured in the laboratory, are not commonly available in practical 

applications; the degree of sorting is simply a convenient measure of considerably greater 

information from a soil grain distribution curve; the relationship of the textural measure 

to hydraulic conductivity has only been evaluated for sandstone; the soil type-to-

hydraulic-conductivity relationship is highly uncertain; fuzzy set hydraulic conductivities 

provide little help, as fuzzy kriging algorithms produce fuzzy estimates (Diamond, 1989; 

Bardossy et al, 1989, 1990).  Finally, attempts to relate hydraulic conductivity to grain 

size distributions and porosity have not considered the high degree of uncertainty implicit 

in such a relationship, as they have, thus far, relied upon deterministic equations.  Such a 

relation is however generally recognized as fuzzy and should be modeled as such. 

 In this paper, a method is defined whereby hydraulic conductivity values are 

estimated from grain size distribution curves and qualitative descriptions of soil samples 

(i.e. describing a soil sample as “a silty fine sand with some clay”).  The approach 

recognizes that the grain size distribution curve implicitly contains some of the measures 

noted above, such as grain size and sorting.  Soil type is also often implicitly defined 

when common soil classifications are plotted along the horizontal axis of the grain size 

distribution graph. 

 However, this crisp representation of soil types, which states that a grain size 

diameter of 0.002 mm characterizes clay, but a grain size diameter of 0.0021 mm is 
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characteristic of a silt, implies unwarranted accuracy.  If the soil grain size axis is 

partitioned so that the soil classification avoids sharp boundaries (i.e. is fuzzy), and there 

is a fuzzy rule base that defines an imprecise relationship between soil type to hydraulic 

conductivity, the grain size distribution curve can be used to estimate a hydraulic 

conductivity value for the sample. 

 The above defined estimate of hydraulic conductivity can be enhanced further 

using an independent qualitative field description of a soil sample provided by a 

groundwater professional.  Such descriptions by, for example, a geologist are done by 

inspecting soil samples taken at borehole locations.  The adjectives used to describe a soil 

sample in the field, such as sandy or clayey, are inherently imprecise.  However, such 

subjective information reflects valuable insight into the sample's makeup and 

complements the information obtained by a grain size distribution. This qualitative 

information, converted into fuzzy sets, will produce results similar to, and that augment 

the soil grain distribution data.  The information from the grain size distribution curves 

and field assessments can be combined to produce a knowledge base that facilitates 

hydraulic conductivity estimates.  Such an integration of subjective and objective fuzzy 

geological data is well founded in mineral potential mapping (Cheng and Agterberg, 

1999; Brown et al, 2003; Porwal et al, 2003).  This method is developed herein and tested 

using data from the CIBA-Geigy Superfund site in Toms River, New Jersey. 

 In the following sections, the creation of the fuzzy sets is discussed first. The 

introduction and transformations of the qualitative field data (Table 4.1) and grain size 

distributions into fuzzy data are explained next, as is the juxtaposition of the fuzzy data 
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with fuzzy rules.  Finally, an example with results from the application of this reasoning 

mechanism to Toms River data is provided. 

 

Table 4.1. Qualitative field data in the form of borehole log descriptions of the four soil samples 
used in the application, below 

Sample Borehole Log Description 

1 Silty Fine Sand 

2 Silt to Medium Clay Silt, trace Fine Sand 

3 Fine Sand, some Clayey Silt, trace Medium Sand 

4 Fine Sand, some Silt, trace Medium Sand 

 

 

4.2. Defining Sets and Distributions 

 

 The definition of soil grain fuzzy sets is integral to defining the relationship 

between soil grain size and hydraulic conductivity.  If the soil grain fuzzy sets are poorly 

defined, then the entire relationship is poorly defined and will produce disappointing 

estimates.  The fuzzy sets defined on the domain soil grain size (mm) will be named after 

the soil types that are generally found on soil grain distribution curves (Coarse Sand, 

Medium Sand, Fine Sand, Silt, Clay). 

 The fuzzy sets that are provided herein are defined by membership functions and 

aim to capture the imprecision inherent in soil type names, like fine sand and clay.  These 

functions, typically piecewise linear to create triangular or trapezoidal fuzzy sets, 
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represent, for every soil grain size on the abscissa, the degree to which that soil grain size 

belongs to a particular fuzzy set.  Given that the fuzzy sets represent soil types, the 

membership functions stipulate the degree to which a given soil grain size belongs to the 

concepts coarse sand, medium sand, etc. 

As a rule of thumb, fuzzy sets should both overlap each other and, together, cover 

the range of reasonable domain values.  This serves two purposes.  First is semantic 

continuity, where a realistic definition of soil types must have gradual and overlapping 

boundaries.  Secondly, overlapping fuzzy sets make for continuous results when used in a 

rule base. That is, for gradually changing input soil grain size values, the hydraulic 

conductivity estimates that result from the rule-based reasoning mechanism also 

gradually change. 

 

0

0.2

0.4

0.6

0.8

1

-5 -4 -3 -2 -1 0 1 2

Log-Normalized Soil Grain Size (mm)

M
em

be
rs

hi
p 

D
eg

re
e

Clay Silt FS M C

0

0.2

0.4

0.6

0.8

1

-35 -30 -25 -20 -15 -10 -5 0
Log-Normalized Hydraulic Conductivity (m/s)

M
em

be
rs

hi
p 

D
eg

re
e

Clay Silt FS M C

 
     A       B 

Figure 4.1. Fuzzy sets defined by an expert to characterize A, common soil types, and B, their 
corresponding hydraulic conductivities.  The soil types considered are clay, silt, fine sand (FS), 

medium sand (MS), and coarse sand (CS) 

The soil type fuzzy sets based on soil grain size are shown in Figure 4.1A.  Notice 

that they both overlap and overlay the range of reasonable soil grain sizes.  These soil 
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type fuzzy sets, defined with an understanding of the aforementioned rules of thumb, 

relied upon traditional crisp delineations of soil types as guidelines.  Though there is 

precedent for fuzzy soil type definitions (Hsieh et al, 2005), such fuzzy sets did not guide 

the definitions of the soil types in Figure 4.1A.  The hydraulic conductivity fuzzy sets are 

defined in a similar manner (Figure 4.1B), though the expertise of a hydrogeologist was 

the only guide in their construction.  Information regarding the soil type and hydraulic 

conductivity fuzzy sets are provided in Table 4.2. 

 

Table 4.2. Parameters for the soil type and hydraulic conductivity fuzzy sets in Figure 4.1 

Fuzzy Set 

Name 

Soil Type Parameters 

(mm) 

Log Soil Type 

Parameters (log mm) 

Log Hydraulic Conductivity 

Parameters (log m/s) 

Clay 
[0.0001, 0.0001, 0.005, 

0.063] 
[-4, -4, -2.3, -1.2] [-33, -26, -22, -18] 

Silt [0.005, 0.032, 0.2] [-2.3, -1.5, -0.7] [-22, -18, -14, -12] 

Fine Sand [0.1, 0.4, 1] [-1, -0.4, 0] [-15, -12, -10, -8] 

Medium Sand [0.4, 1, 4] [-0.4, 0, 0.6] [-10, -8, -7, -5] 

Coarse Sand [1, 4, 10] [0, 0.6, 1] [-7, -5, -3, -2] 

 

The data in this table describe the parameters, described below, of the fuzzy sets.  For 

triangular fuzzy sets the middle value is the median (full membership), while the left and 

right parameters are the upper and lower bounds of the fuzzy set (zero membership).  

Trapezoidal fuzzy sets differ by having two median parameters that define an interval of 

values with full membership.   
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 Fuzzy rules are the means by which an estimate is actually produced for a given 

input value.  Each rule relating a soil type fuzzy set to a hydraulic conductivity fuzzy set 

defines a vaguely defined “point” that, when plotted along with a number of other rules 

relating the same variables, defines an imprecise relationship between these variables. 

The fuzzy rules provided are very simple in this case.  Since the soil grain fuzzy sets 

share the same names as the hydraulic conductivity fuzzy sets, the rules essentially match 

like-named fuzzy sets.  The rules are structured as follows: 

 

If Soil Grain Size is Coarse Sand THEN Hydraulic Conductivity is that of Coarse Sand. 

If Soil Grain Size is Medium Sand THEN Hydraulic Conductivity is that of Medium Sand. 

etc. 

  

 The collection of the five rules provided is the rule base, and the heart of the fuzzy 

reasoning process.  The reasoning will be discussed later. 

 The input into each rule is derived from a grain size distribution curve, resulting 

from sieve and hydrometer analyses.  A grain size distribution is a representation of the 

distribution of soil grain sizes for a given sample of soil (Figure 4.2).  They are 

cumulative distribution functions (CDF), which are structurally and theoretically distinct 

from fuzzy sets.  The vertical axis is analogous to a probability value in that it records 

what fraction of the soil sample (by weight) is less or equal in size to each grain size 

value along the horizontal axis.  Thus, the grain size distribution must be transformed 
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from a probabilistic form to one that is consistent with a fuzzy set representation, without 

changing or losing the information contained in the original distribution. 
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Figure 4.2. Grain size distribution curves for the four samples used in the application section, 
below.  The vertical axis is analogous to probability 

 To achieve this goal, the discrete CDF must first be converted to a discrete 

probability density function (PDF).  The probability values represent the prevalence of 

each soil grain size. 

 Next, a tool from Possibility Theory, a probability-possibility transformation 

(Oussalah, 2000) is used to transform the PDF to a possibility distribution (PD), π(x), on 

the variable X (Zadeh, 1978).  Such a transformation converts uncertain data in 

probabilistic form to uncertain data in possibilistic (related to fuzzy logic) form.  The PD 

is the sister distribution to the PDF, as it is able to characterize the same data with a 

different interpretation. 
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The possibility value for a soil grain size represents the degree to which the soil grain 

size is possible, given some background information.  Possibility distributions are 

generally used to characterize a person’s knowledge regarding a matter about which there 

is no available evidence from which to make a certain conclusion.  Thus, while fuzzy sets 

characterize certain but imprecise information, possibility distributions define uncertain 

information.  Total uncertainty (or ignorance) would be represented by a possibility 

distribution where every value along the abscissa has a possibility of one (everything is 

possible and nothing can be discounted). 

However, interpretation is not of significance in this algorithm, as only the structure 

of the PD is important here.  Fuzzy sets and possibility distributions are generally defined 

on the same scale, and the two differ only in interpretation.  As such, they are defined on 

the same range, since their scales are consistent. 
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Figure 4.3. Possibility distribution of the four samples used in the application, below, transformed 
from the grain size distribution data 
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The transformation used is the most obvious and most common PDF-PD 

transformation.  Each probability value is merely divided by the maximum probability 

value, which satisfies the constraint that a possibility distribution needs to have at least 

one domain value that is entirely possible, π(x)=1, (Dubois and Prade, 1988).  The results 

of the transformation of the soil grain PDFs into soil grain PDs for the four soil samples 

considered in the Application Section are in Figure 4.3.  With the soil grain data now 

characterized by a PD, reasoning may begin. 

Juxtaposing the PD with the soil grain fuzzy sets, it is evident that the former 

intersects many of the fuzzy sets.  Figure 4.4 provides insight into how the PD for one 

sample intersects each of the five soil grain fuzzy sets, which, in turn, reveals how each 

of the rules, described earlier, will operate when estimating hydraulic conductivity.  The 

maximum degree of intersection with each fuzzy set is important.  That is to say, if one 

visualizes the intersection of the PD and a certain fuzzy set, the maximum degree of 

membership of the intersection is the degree to which the corresponding rule will operate.  

This is further explained in the following section. 

It is interesting to note first, however, looking at the left-hand graphs in Figure 4, 

that it seems rather straightforward to qualitatively describe the soil.  For the example 

given, this soil sample maximally intersects the Fine Sand and Silt fuzzy sets more so 

than the others.  Knowing this, one might describe the soil sample as fine sandy silt, with 

trace amounts of clay and medium sand. Consider now an alternative strategy to 

describing this soil. 
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Often soil samples are described via visual inspection by the groundwater 

professional resident during drilling.  Based on this a soil type identification is recorded 

in a borehole log.  This information is helpful provided that it can be presented in a 

manageable framework. 
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(figure continued on next page) 
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Figure 4.4. The possibility distribution representing the grain size distribution data for sample 1 is 
intersected with the fuzzy sets (A) coarse sand; (B) medium sand; (C) fine sand; (D) silt; and (E) 
clay (left-most figures.  The maximum degree of intersection between the PD and each fuzzy set 
defines where each fuzzy set is cut and as well as the corresponding cut hydraulic conductivity 

fuzzy sets (shaded regions in right-most figures) 

 

 
 

138



Fuzzy sets offer a unique approach to exploiting these subjective descriptions, as 

they generally define linguistic variables.  The geologist's description of the soil sample 

is a linguistic variable of sorts.  It may be converted into a fuzzy set by the person 

preparing the log or an appropriate expert. For instance, if a soil sample is described as 

being a silty fine sand, a fuzzy set resembling that in Figure 4.5 (situated between the Silt 

and Fine Sand fuzzy sets) may be defined by an expert using a basic understanding of 

membership functions.  In general, one may feel as though the soil sample is best 

represented by: 1) a single soil grain size (full membership), 2) may be characterized by 

other grain size values to a lesser degree (membership decreases from unity), and 3) 

would not be characterized by other soil grain sizes (zero membership).  Thus, a 

geologist, knowing the predefined Fine Sand and Silt fuzzy sets in Figure 4.1, could feel 

comfortable characterizing a soil sample deemed to be a silty fine sand by sketching the 

triangular membership function labeled Sample 1 (Figure 4.5). 
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Figure 4.5. Expert’s interpretation of borehole log data for sample 1 (Table 4.1), shown in 
reference to fuzzy sets Silt and Fine Sand (FS) 
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 Training and experience would be needed to avoid arbitrary definitions. Therefore, 

experts rather than novices should create such fuzzy sets from qualitative descriptions. 

 In this example, most experts would agree that a sample described as a silty fine 

sand would be comprised predominantly of fine sand, although the influence of silt 

should shift the resulting fuzzy set slightly towards the Silt set.  It is important to note 

that an expert-defined fuzzy number must have at least one value with full membership 

and any horizontal cuts through the fuzzy set must create closed and finite intervals along 

the domain.  For example, the Silt fuzzy set in Figure 4.1 has at least one log grain size 

value (-1.5) with full membership, and a horizontal cut at the zero degree membership 

results in the closed and finite interval [-2.7, -0.3].  A horizontal cut through the fuzzy set 

at any other membership value would produce subsets of this interval.  The manner in 

which this borehole log information is combined with the grain size distribution data is 

explained in the next section. 

 

4.3. Reasoning 

 

 The approach taken to reasoning is that which is most common in interpreting 

fuzzy IF-THEN rules, the ‘conjunction-based’ model.  Such models are desirable because 

they treat a rule as defining a fuzzy point in a fuzzy relationship between two or more 

variables.  A collection of such rules becomes a series of fuzzy points that, together, 

define a complete imprecise relationship such that any feasible input value will produce a 
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reasonable output value.  This is the precise intention of this algorithm, where the two 

variables are soil grain size and hydraulic conductivity. 

 Once the possibility distribution is intersected with each fuzzy soil type, the degree 

to which each rule operates is determined by the maximum point of intersection between 

the possibility distribution and each predefined fuzzy set.  Since the rules relate soil grain 

size to hydraulic conductivity, the membership of the horizontal ‘cuts’ of the soil grain 

fuzzy sets direct the ‘cuts’ of the hydraulic conductivity fuzzy sets.  For example, if the 

PD intersects the Silt soil fuzzy set to a degree of 0.6, then the Silt hydraulic conductivity 

fuzzy set is cut at degree 0.6 membership.  This membership at which maximum 

intersection occurs between the PD and a soil type fuzzy set dictates the degree to which 

the corresponding rule pertains to the soil sample represented by the PD.  That this degree 

of intersection between the PD and soil grain fuzzy sets guides the degree to which the 

corresponding hydraulic conductivity fuzzy set operates should be intuitive.  If one views 

the intersection as the degree to which the soil type applies to the given soil sample, then 

the hydraulic conductivity fuzzy set should only apply, or contribute, to the soil sample's 

true hydraulic conductivity value to the same degree (Figure 4.4). 

 Each rule will operate to a degree between zero and unity, depending upon how 

strongly each soil grain fuzzy set matches the soil sample's PD.  What results are five 

hydraulic conductivity fuzzy sets, whose peaks are cut off at various degrees (right-hand 

side of Figure 4.4).  These abridged fuzzy sets are combined to produce a fuzzy hydraulic 

conductivity value for the soil sample, using the union operator.  The union operator 

works by assigning to each hydraulic conductivity value along the abscissa the maximum 
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membership degree from the five cut sets for that hydraulic conductivity value (Klir and 

Yuan, 1995).  The formula is 

 
)}({max)( kKkK iiU = , (4-1) 

 
for all k, i = 1,...,5.  KU represents the union of the five cut hydraulic conductivity fuzzy 

sets, Ki, resulting from the rules, and k are the hydraulic conductivity values along the 

abscissa over which this operation is performed.  For example, given the five rules 

relating the soil types and hydraulic conductivities in Figure 4.1, the union operator in 

Equation (4-1) produces the fuzzy hydraulic conductivity value in Figure 4.6A based on 

the cut hydraulic conductivity fuzzy sets on the right-hand side of Figure 4.4. 

 The fuzzy input from the borehole log data provided by the groundwater 

professional resident at the drilling will produce another fuzzy hydraulic conductivity 

result (Figure 4.6B) when its soil grain fuzzy set is transposed over the soil type fuzzy 

sets, as had been done with the PD in Figure 4.4. 
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Figure 4.6. Fuzzy sets resulting from inputting A, the grain size distribution PD, and B, the fuzzy 
characterization of the borehole log data, into each fuzzy rule and aggregating the resulting cut 

hydraulic conductivity fuzzy sets using the union operator 
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 The two hydraulic conductivity fuzzy results need to be combined to produce a 

single result.  This is accomplished through a weighted mean, which aggregates the two 

fuzzy sets to produce a single representative fuzzy value. The weighted mean equation, 

acting on fuzzy sets, is a function on a domain element's (k) membership values (µK(k)) 

from different fuzzy sets (Ki): 

 
∑ ⋅=

i
KiK kk

i
),()( µσµ  (4-2) 

 
for all hydraulic conductivity values k along the domain, where σi represents the weight 

given to the ith fuzzy set.  This weight measures how influential each information source 

(borehole log and soil grain distribution) will be to the final answer.  These weights must 

have a value of between zero and unity, and they must sum to one. 

 Intuitively, the soil grain distribution data, an objective characterization of the soil 

sample should be weighted more heavily than the subjective characterization from the 

borehole log data. However, the latter should not be discounted completely, as it is viable 

data.  As such, reasonable weights would be the following: 

 

σBorehole Log = 0.4, 

 

σGrain Size Distribution = 0.6. 
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Applying these weights and Equation (4-2), a fuzzy hydraulic conductivity value that 

represents both sources of hydraulic conductivity values, a weighted average of the fuzzy 

sets in Figure 4.6, is generated (Figure 4.7). 

 While this fuzzy result in Figure 4.7 provides a vague understanding of the 

estimated hydraulic conductivity value for the given soil sample, and is, itself, considered 

a fuzzy estimate, its use in geostatistical estimation is not obvious and requires non-

traditional estimation procedures (Bardossy et al, 1989, 1990; Diamond, 1989). 

 Inasmuch as ordinary and simple kriging are considerably more prevalent and 

popular approaches to estimation than those founded in fuzzy logic, it is convenient if the 

hydraulic conductivity value that results from the above reasoning mechanism is a crisp 

value.  To achieve this goal the fuzzy estimate must be defuzzified, or reduced to a crisp 

(non-fuzzy) value.  The most common defuzzification method is called the Center of 

Gravity (COG) method.  In this approach the fuzzy set is considered to be a uniformly 

thin sheet of metal, and the horizontal component of the center of gravity is the 

defuzzified value.  The finite form of the COG equation is 

 

∑
∑ ⋅

=

j
jK

j
j

jK

k

kk
COG

)(

)(

µ

µ
 (4-3) 

 
where µK is the membership function of the hydraulic conductivity fuzzy set, and kj are 

the finite number of domain values used in the calculation.  In the case of the fuzzy set in 

Figure 4.7, the defuzzified value, or log hydraulic conductivity estimate for this soil 

sample is -16.85. The exponential applied to this value (e-16.85) give a hydraulic 

 
 

144



conductivity estimate of 4.8×10-8 m/s. The defuzzified value will change with the 

discretization of the K-axis (kj∈K) in Equation (4-3). 
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Figure 4.7. Aggregate fuzzy hydraulic conductivity estimate for sample 1, from the combination of 
the individual fuzzy results from grain size data and borehole log data (Figure 4.6) 

 

4.4. Application 

 

 The reasoning described above was applied to four soil samples from the CIBA-

Geigy Superfund site in Toms River, New Jersey, for which both soil grain distribution 

data and hydraulic conductivity values were available.  At this site, many borehole logs 

were available, a number of which were accompanied by soil grain distribution curves.  

However, hydraulic conductivity measurements were few compared to the number of soil 

grain distribution curves.  Since there were numerous sample locations with soil grain 

distribution curves but without hydraulic conductivity values, it was an ideal site for the 

practical application of the method described herein. 
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     C       D 

Figure 4.8. Fuzzy sets that result from inputting the transformed soil grain distribution from (A) 
sample 1; (B) sample 2; (C) sample 3; and (D) sample 4, into the fuzzy rule base 

 

 The particle size distributions of the four soil samples for which hydraulic 

conductivity measurements were available had been determined by both sieve and 

hydrometer methods, so that the soil grain distribution curves were complete.  In cases 

where hydrometer analysis has not been performed on a soil sample, a geologist can use 

expert judgment to complete the curve. 
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 The soil type and hydraulic conductivity fuzzy sets have been defined, therefore, 

the fuzzy relationship is already in place.  The input, however, needed to be transformed 

into the appropriate possibility distributions for the inferential reasoning.  Each of the 

four soil grain distribution curves (Figure 4.2) were changed into PDF form and then PD 

form (Figure 4.3) using the aforementioned transformation.  Each of these inputs 

activated the five rules in different ways, resulting in a set of four fuzzy hydraulic 

conductivity output values (Figure 4.8). 
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Figure 4.9. Fuzzy sets that result from inputting the fuzzy characterizations (Table 4.3) of the 
borehole log data from (A) sample 1; (B) sample 2; (C) sample 3; and (D) sample 4, into the fuzzy 

rule base 
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Similarly, an expert characterized the borehole log descriptions of these soil samples 

using fuzzy sets (Table 4.3), simply by applying his or her understanding of such 

descriptions and a basic understanding of triangular membership functions.  These fuzzy 

set versions of borehole log data were also fed through the fuzzy rule base to produce 

another set of four fuzzy hydraulic conductivity estimates (Figure 4.9).  Corresponding 

fuzzy hydraulic conductivity estimates (resulting from the grain size distribution curve 

and borehole log description of each soil) were combined (Figure 4.10) using the 

weighted mean approach, described in the previous section. 

Table 4.3. Shapes and parameters of expert-provided fuzzy sets interpreted from borehole log 
descriptions 

Sample Fuzzy Set Shape Parameters (log Grain Size) 

1 Triangular [-1.5, -0.85, -0.4] 

2 Trapezoidal [-2.8, -1.8, -1.5, -0.7] 

3 Trapezoidal [-2.3, -1.1, -0.85, 0.2] 

4 Trapezoidal [-1.35, -0.7, -0.45, 0] 

 

4.5. Results and Conclusions 

 

Crisp estimates were obtained by defuzzification of the fuzzy estimates (Table 4.4).  

TThe table also gives the measured hydraulic conductivity values for the samples.  All 

estimated values are within two orders of magnitude of the corresponding measured 

value, which is considered reasonable inasmuch as hydraulic conductivity values may 
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vary by up to five orders of magnitude if there are small differences in the percentages of 

the fine fractions (Koltermann and Gorelick, 1995). 

Table 4.4. Hydraulic conductivity estimates from the combination of two types of soil data and the 
corresponding measurements from pump tests 

Sample Aggregate Estimate (m/s) Measurement (m/s) 

1 4.8 × 10-8 2.5 × 10-7 

2 2.3 × 10-9 1.6 × 10-9 

3 7.8 × 10-8 1.8 × 10-6 

4 3.6 × 10-7 1.6 × 10-6 

 

 Also relevant is the interpretability of the results.  With the fuzzy reasoning 

process, one can understand how the estimates are calculated.  For instance, it is evident 

that the second hydraulic conductivity estimate in Table 4.5 is lower-valued than the 

other three estimates because the aggregate estimated hydraulic conductivity fuzzy set in 

Figure 4.10B has high memberships for lower hydraulic conductivity values. 

Table 4.5. Hydraulic conductivity estimates from borehole log and grain distribution data 

Sample Borehole Log Grain Distribution Measurement 

1 3.2 × 10-8 6.5 × 10-8 2.5 × 10-7 

2 1.1 × 10-9 5.2 × 10-9 1.6 × 10-9 

3 2.6 × 10-8 3.5 × 10-7 1.8 × 10-6 

4 7.5 × 10-7 1.9 × 10-7 1.6 × 10-6 
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Thus, when this fuzzy set is defuzzified, the lower values of hydraulic conductivity are 

weighted more heavily than in the other samples’ estimated hydraulic conductivity fuzzy 

sets in Figure 4.10.  The higher memberships for lower-valued hydraulic conductivity 

values in this fuzzy set directly result from the significant overlapping of the grain size 

distribution and borehole log description fuzzy sets with the Clay soil type fuzzy set 

during inference. 
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Figure 4.10. Fuzzy sets that result from the combination of the fuzzy sets from borehole log data 
and grain size distribution data for (A) sample 1; (B) sample 2; (C) sample 3; and (D) sample 4 

 In many applications, borehole log data are not only more prevalent than grain size 

data, but often are the only types of data available.  Considering this, an investigation was 
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made into the reliability of estimates resulting from just the expert fuzzy characterization 

of borehole log descriptions of the soil samples.  For completeness, the scenario where 

only grain size distribution data are available was also evaluated.  The results of these 

investigations are summarized in Table 4.5.  In general, for this set of data, it is difficult 

to distinguish which form of data is more accurate.  However, estimates stemming from 

both forms of data are still within two orders of magnitude of the measurements.  Both 

types of data are not required to produce acceptable estimates.  It has been shown that the 

use of only one data type in the fuzzy reasoning process can still lead to relatively 

accurate results. 

 Ideally, for the generation of realizations in groundwater modeling, measures of 

uncertainty should accompany hydraulic conductivity estimates.  However, the issue of 

uncertainty in the results is not addressed since this is a budding area of fuzzy logic, and 

definitive answers regarding the uncertainty of the fuzzy estimates are unavailable.  A 

thorough description of uncertainty of fuzzy sets would be requisite and is beyond the 

scope of this research. 

 The soundness of this approach to hydraulic conductivity estimation relied greatly 

upon the definition of the original soil type and hydraulic conductivity fuzzy sets that 

were used for reasoning.  More accurate estimates could be produced had more data from 

the CIBA-Geigy Superfund site been available.  With more data, the soil type and 

hydraulic conductivity fuzzy sets could have been constructed to respect the site data, 

thus producing better hydraulic conductivity estimates for that particular site.  This would 

be true for any site with sufficient soil data.  However, given that experts in 
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hydrogeology defined these fuzzy sets, the reasoning process is considered sound and 

generally applicable to any site with reasonable accuracy. 
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5: FUZZY KALMAN FILTERING OF HYDRAULIC CONDUCTIVITY 

 

 This paper addresses the utilization of expert information in groundwater 

hydrology.  Given that a fuzzy model of hydraulic conductivity can be provided by 

appropriate experts for some spatial domain, crisp measurements can be used to update 

the fuzzy model using a fuzzy Kalman filter.  The motivation behind this algorithm is to 

respect the relative integrity of each data source, while still taking advantage of both 

forms of data. 

 

5.1. Introduction 

 

The characterization of imprecise information in hydrogeological applications has 

frequently been achieved using fuzzy logic, a non-frequentist methodology; and, in a 

number of these applications, fuzzy sets are used to define imprecise values of a variable.  

Too often, though, fuzzy data are assumed to have the same relative reliability as crisp 

(non-fuzzy) data.  The former are generally provided by an appropriate expert, and can be 

rather imprecise.  Such data should be used to provide a starting point for most problems.  

In hydrogeological applications, crisp data are acquired through in- or ex-situ testing.  If 

an initial fuzzy guess is available, the crisp data should update the fuzzy data, rather than 

be used in conjunction. 

Consider the problem of estimating hydraulic conductivity.  Such a task is as crucial to 

groundwater modeling as it is difficult to perform accurately.  This difficulty is tied to the 
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high cost identified with groundwater sampling, which often limits the number of 

hydraulic conductivity measurements at a given site.  A small number of crisp 

measurements, combined with preferential sampling can make estimates, namely kriged 

estimates, relatively uninformed and unrealistic.  Thus, data derived from expert 

knowledge to supplement the available measured data could be quite valuable in 

procuring hydraulic conductivity estimates of considerable accuracy. 

 However, in contrast to methods where fuzzy and crisp data are kriged together to 

develop a fuzzy hydraulic conductivity model for the spatial domain, the work described 

herein views fuzzy and crisp data in different lights, utilizing each toward an end 

respective of its relative reliability.  Namely, expert-derived data are used to define a 

starting point for a hydraulic conductivity model, namely an imprecise idea of what the 

hydraulic conductivity field is for a site.  Available crisp data update this fuzzy model 

using a fuzzy Kalman filter.  Presuming that the fuzzy model is sufficiently accurate, the 

crisp data fine-tune the model and produce accurate, yet fuzzy, estimates of hydraulic 

conductivity.  An example is provided to illustrate the usefulness of this algorithm. 

 

5.2. Fuzzy Logic 

 

Fuzzy logic provides a theory by which non-traditional sources of data can be 

characterized to facilitate use with more traditional data.  Specifically, in this case, expert 

knowledge is considered to be a non-traditional data type that, without fuzzy logic, is 
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difficult to accurately capture.  The fuzzy set is the trademark feature of fuzzy logic and 

is the mechanism by which imprecise human input is reflected. 

A fuzzy set is defined by a membership function, µ(x), which, for the variable of 

interest, X, stipulates to what degree certain variable values belong to a given imprecise 

notion.  For instance, it is possible for an appropriate expert to claim with certainty, based 

upon some evidential motivation, that the hydraulic conductivity at some location is 

about 3 millidarcies.  The expert is certain but imprecise. 

Without fuzzy sets, defining the notion of about 3 (Figure 5.1) would be a dubious 

enterprise.  In fact, Figure 1 is an example of a particular type of fuzzy set, called the 

fuzzy number.  A fuzzy number is a fuzzy set that satisfies three criteria (Klir and Yuan, 

1995): 

 

(i) The fuzzy set must have at least one value with full membership 

(normality); 

(ii) α-cuts (see below) are closed intervals for 0 < α ≤ 1; 

(iii) The support of the fuzzy set, the zero-level cut, must be bounded. 

 

It should be evident, from the about 3 example that fuzzy numbers are the imprecise 

counterpart of traditional (crisp) numbers. 

Definitions of fuzzy sets are quite subjective.  In scientific applications, only 

appropriate experts should be petitioned to provide data in the form of fuzzy sets.  By 
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utilizing expert knowledge in scientific applications, it is expected that variability in 

fuzzy set definition, due to subjectivity, is reduced to an acceptable amount. 

An important feature of the fuzzy set is the α-cut.  Membership values, along the 

vertical axis in Figure 1, are also referred to as α-values.  Horizontally cutting a fuzzy set 

at a given α-value produces an interval of values, called an α-cut. 
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Figure 5.1. One expert’s definition of “About 3,” defined for hydraulic conductivity 

 
 Fuzzy numbers can be operated upon using the same equations that operate on crisp 

numbers.  This is possible through the extension principle (Zadeh, 1965).  The extension 

principle retrofits traditional formulae for use with fuzzy numbers. 
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5.3. Fuzzy Variogram 

 

 For a given site, knowledgeable hydrogeologists can provide their impression of 

hydraulic conductivity values as fuzzy numbers at various locations throughout the 

spatial domain.  Geostatistical kriging is used to create estimates at regular intervals 

throughout the entire domain.  As long as the measurements are fuzzy numbers, fuzzy 

kriging is required.  The kriging approach uses weighted sums of available fuzzy 

“measurements” to calculate fuzzy estimates at un-sampled locations. 

 The fuzzy kriging method used herein is rather straightforward, and requires only a 

slight change to the determination of the sample semivariogram (Bardossy et al, 1989), 

which is a representation of the spatial covariance structure.  This slight change is, in fact, 

the calculation of fuzzy sample semivariance values, rather than traditional crisp values.  

The most important step in constructing the sample variogram is the calculation of the 

squared differences between pairs of measurements.  However, one must apply the 

extension principle in order to find the fuzzy squared difference between a pair of fuzzy 

measurements.  

 For each pair of measurements, there is a calculated squared difference and a 

known physical distance between their measurement locations.  Measurement pairs with 

sufficiently similar separation distances are grouped together, their squared differences 

and separation distances averaged.  The resulting averaged distance, h, and average fuzzy 

squared difference, γ(h), are plotted to produce the sample variogram.  To this sample 

semivariogram is fit a crisp model semivariogram selected from a prescribed set of 
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possible positive definite models.  The significance of this is that the weights calculated 

by the kriging equations are crisp values.  Multiplying the crisp weights by the fuzzy 

values produces a fuzzy estimate at each desired location in the spatial domain. 

 

5.4. Kalman Filter 

 

The Kalman filter is a series of predicting and updating steps generally employed to 

estimate the state of a dynamic system, such as the location of some projectile object.  

The filter, named for Rudolf Kalman, relies upon measurements of the state variable 

(location, in the projectile object scenario) to perform the updating steps, while an 

understanding of the processes that govern the dynamics are requisite for prediction. 

Typically, the Kalman filter algorithm begins with an educated guess as to what the 

state of the system is.  After acquiring measurements of the state variable, the educated 

guess is refined (updating step).  Employing an understanding of the system dynamics, 

the state of the system is forecasted for the next time step (prediction step).  A new set of 

measurements incites more updating, and the process ensues until measurements are no 

longer made (Welch and Bishop, 2001). 

 However, in this particular application, the system is static (no prediction step 

required), only one updating step is performed for the one set of crisp measurements, and 

the educated guess that incites the algorithm is the set of fuzzy hydraulic conductivity 

estimates that result from the fuzzy kriging.  Thus, crisp measurements are used to update 

the fuzzy model in this fuzzy Kalman filter. 
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There has been a significant amount of research into the use of fuzzy logic in Kalman 

filtering (Chen et al, 1998; Chiang, 2003).  However, no evident research has applied the 

extension principle strictly to the updating step, especially in a hydrogeological setting. 

 In a Kalman filter, the prior model (ŷ-) is updated (ŷ) by adding to the prior model 

values a weighted difference between the measurements and the prior model values at 

those measurement locations: 

 

             y  
  y  z  Hy ( 5-1 ) 

 

where κ is the Kalman gain, a matrix that minimizes the covariance of the estimation 

error, z is a vector of measurements, and H is a matrix of ones and zeros that pulls the 

prior model values at measurement locations out of ŷ-.  The algorithm for extending this 

equation requires individually updating each element of ŷ- by the measurement values.  

Thus, there are n implementations of the above equation, one for each value updated.  For 

each element ŷi
- (i = 1,..,n) of ŷ-, Equation ( 5-1 ) becomes 

 

             
y i 

y i
   iz  Hy  ( 5-2 ) 

 

where κi represents the ith row of the Kalman gain matrix.  The extension principle is 

applied to Equation ( 5-2 ) in order to produce an a posteriori fuzzy number estimate.  

Repeating this for every ŷi
- in ŷ- provides one with the complete updated fuzzy model. 
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5.5. Example 

 

 The example application provided here is comprised of synthetic values.  To begin, 

an appropriate expert provides fuzzy hydraulic conductivity values at sparsely sampled 

areas.  Possible information the expert could use to opine upon the hydraulic conductivity 

values might pertain to soil type, geologic history, or knowledge of a similar site.  

Regardless of the evidential motivation behind the expert “measurements,” it is assumed 

that they were provided independent of the crisp measurements at sampling locations.  

Figure 5.2 shows a plan view of the site, signifying the locations of fuzzy expert values 

with triangles and measurement locations with circles.  Units of length are given in 

meters.  All samples are taken at the same depth in this two-dimensional example. 

 

 

Figure 5.2. Plan view of example problem; triangles are fuzzy value locations, circles are crisp 
measurement value locations 

 
 

163



 

 The fuzzy numbers used to describe the expert’s knowledge of the hydraulic 

conductivity values are all defined by triangular membership functions.  As such, the 

fuzzy numbers can be defined by three parameters: 1) the lower bound of the base of the 

fuzzy set, 2) the upper bound of the base, and 3) the median value (value with full 

membership).  The locations and said parameters of the fuzzy hydraulic conductivity 

values are given in Table 5.1, while the locations and values of the crisp measurements 

are provided in Table 5.2. 

 

Table 5.1. Fuzzy number IDs, locations, and parameters 

ID Easting Northing 
Log Lower 

Bound (m/s) 

Log Median 

(m/s) 

Log Upper 

Bound (m/s) 

F1 20 0 -12 -11 -10 

F2 10 10 -17 -15 -14 

F3 30 10 -9 -7 -6 

F4 5 20 -13 -12 -11 

F5 35 20 -20 -19 -18 

F6 10 30 -10 -8 -7 

F7 30 30 -9 -8 -7 

F8 20 40 -5 -3 -2 
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Table 5.2. Crisp measurement IDs, locations, values and errors (variance) 

ID Easting Northing 
Log Measurement 

(m/s) 
Variance (m2/s2) 

A 0 0 -9 3 

B 40 0 -6 4 

C 20 20 -25 4 

D 0 40 -3 4 

E 40 40 -4 3 

 

 A sample semivariogram was constructed from the available fuzzy hydraulic 

conductivity measurements.  This semivariogram, with fuzzy semivariance values for 

different separation distances, h, is shown in Figure 5.3.  The α-cuts plotted for each 

fuzzy number are α = {0, 0.5, 1}, the actual plotted values being the upper and lower 

bounds of each fuzzy set’s α-cuts.  The model semivariogram fit to this sample is 

Gaussian with a sill of 30 and a range of 40.  It is superimposed upon the sample 

variogram in Figure 5.3.  No nugget is given to the model, because no “measurement” 

variance is assumed for the expert’s input. 

 With the crisp model variogram defined, the fuzzy values are kriged and a field of 

fuzzy hydraulic conductivity estimates is generated.  This fuzzy model is best represented 

by a series of contour plots for various α-cuts, as in (Bardossy et al, 1990).  These 

contour plots, for α = {0, 1} are provided in Figure 5.4. 
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Figure 5.3. Fuzzy sample and crisp model variogram, as prescribed by the fuzzy hydraulic 
conductivity data 

 
    A       B 

 
C 

Figure 5.4. Contour plots of kriged fuzzy estimates of log hydraulic conductivity for (A) lower 
bound of the zero α-cut, (B) the median values (α = 1), (C) upper bound of the zero α-cut 
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 Having the fuzzy hydraulic conductivity model in hand, the next step is to 

incorporate the crisp measurements in order to update the fuzzy model.  Applying the 

updating step of the fuzzy Kalman filter, the fuzzy model is updated by those crisp 

measurements in Table 5.2.  The resulting contours corresponding to those in Figure 5.4 

are shown in Figure 5.5. 

 

 
          A       B 

 
C 

Figure 5.5. Contour plots of updated fuzzy estimates for (A) lower bound of the zero α-cut, (B) the 
median values (α = 1), (C) upper bound of the zero α-cut 
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5.6. Results and Conclusions 

 

 By contrasting the corresponding contours in Figure 5.4 and Figure 5.5, two 

differences are evident.  The first difference is intuitive.  When crisp measurements are 

introduced to update the fuzzy estimates, the fuzziness of the estimates (how wide the α-

cuts are) can only be reduced since the crisp measurements contain no fuzziness, making 

the fuzzy model more precise.   

 Secondly, in the contour plots of Figure 5.4, there are axes of symmetry, roughly 

illustrated by the dashed black lines in Figure 5.4A.  This symmetry, however, is missing 

from the corresponding contour plot in Figure 5.5A.  This is due to the influence the crisp 

measurements have upon the final estimates, presumably defining a posterior model that 

more accurately represents the true trends present at the site. 

 At measurement locations, the fuzzy estimates are made very precise and close in 

value to the corresponding crisp measurements.  However, unlike the traditional Kalman 

filter algorithm, these posterior estimates at measurement locations are not made identical 

in value to the crisp measurements.  This is a byproduct of the difference in data types 

between the measurements and prior estimates, and is not considered an inconsistency.  

As Figure 5.6 shows, the posterior fuzzy estimates are quite similar to the corresponding 

crisp values. 

 Presented here was an alternative to using fuzzy information in conjunction with 

crisp data in a hydrogeological setting.  By using Kalman filtering, each data type is used 

in a manner that respects its relative credibility.  What results is a rather precise fuzzy 

 
 

168



field that presumably captures the trends inherent in the model.  This fuzzy model may be 

defuzzified to create a crisp hydraulic conductivity field for input into traditional 

groundwater flow models, or may be left fuzzy to be used in fuzzy-friendly groundwater 

flow models (Dou et al, 1995; Dou et al, 1999).  Further investigation is provided in the 

next chapter. 

 

Figure 5.6. Posterior estimates at all measurement locations; Measured values are: -25(A), -9(B), -

6(C), -4(D), -3(E) 
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6: KALMAN FILTER UPDATING OF POSSIBILISTIC HYDRAULIC 

CONDUCTIVITY 
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Authors: Ross, J., Ozbek, M.M., and Pinder, G.F. 

  

 Preferential sampling regimes too often leave hydrogeological site characterization 

in need of hydraulic conductivity data.  Furthermore, faith in a kriged hydraulic 

conductivity field (K-field) wanes when viable data are few.  A straightforward solution 

to this problem is the application of expert knowledge to the identification of hydraulic 

conductivity at specified locations.  However, the nature of this supplementary data 

suggests that its use should be limited to the initial estimation of a K-field.  Available 

hydraulic conductivity measurements are used to update the initial estimate of the K-field 

in a fuzzy Kalman filtering procedure.  The results are fuzzy and can be defuzzified into 

traditional crisp estimates.  An application of these protocols to the CIBA-Geigy site in 

New Jersey is provided to illustrate the ease of the procedure and the impact of viable 

expert input. 

 

6.1. Introduction 

 

 The characterization and propagation of uncertainty in hydrogeological applications 

is important in groundwater flow system modeling.  Though inappropriate groundwater 

model selection is a significant source of model uncertainty, so to is the uncertainty 
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surrounding hydraulic conductivity (K) that is introduced primarily via measurement and 

interpolation. 

Traditionally, uncertainty in hydrogeology has been framed in probabilistic terms.  

Nevertheless, fuzzy set and possibility theories, as well as fuzzy logic, have recently 

provided more intuitive means of uncertainty characterization (Zadeh, 1965; Zadeh, 

1978).  In fact, the introduction of such frameworks has revealed new sources and 

enhanced upon traditional sources from which viable hydrogeological data may be 

extracted, including the facilitation of direct expert knowledge extraction (Bardossy et al, 

1989; Piotrowski, 1996).  In this latter approach, an expert opines upon the value of 

hydraulic conductivity at specific locations, utilizing only an implicit understanding of 

the particular site’s characteristics drawn from available field information, education and 

experience, information which cannot otherwise be explicitly and mathematically 

defined.  The use of possibility theory to accomplish this task is considerably more 

flexible and intuitive than permitting the petitioned expert to frame his/her knowledge in 

a probabilistic framework. 

 The hydrological site characterization process using non-traditional data forms has 

two distinct issues.  Hydraulic conductivity estimates determined through the site 

characterization process using non-traditional data forms can incorporate soil physical 

measurements as well as expert knowledge.  These different data sources possess 

different degrees of integrity.  While the physically-based methods are reliant upon 

relatively precise hard data, expert knowledge is a very imprecise data source, perhaps 

implying a lower degree of quality. 
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This paper suggests an approach to hydrogeological site characterization that not only 

accommodates the use of imprecise data, but also sets guidelines governing how data 

from physical measurements and expert knowledge can be properly utilized.  

Specifically, the authors propose that 1) hydraulic conductivity measurements resulting 

from direct expert input be interpolated using fuzzy kriging (Bardossy et al, 1989; 

Bardossy et al, 1990a,b) to produce an initial estimate of the K-field;  2) a static fuzzy 

Kalman filter (Ross et al, 2006) be used to update this first estimate with available 

measurement data to produce the final K-field for a site.  This fuzzy Kalman filtering 

approach is considered to be an alternative to Bayesian fuzzy kriging (Bandemer and 

Gebhardt, 2000).  In the latter, experts are required to frame their knowledge as 

expectation values and covariance matrices of trend parameters, rather than membership 

functions and possibility distributions representing uncertain hydraulic conductivity 

values (Figure 6.2). 

 In the next section, the application of possibility theory to hydrogeological site 

characterization is discussed.  Section 6.3 highlights the major implications of fuzzy 

kriging.  The fuzzy Kalman filter is introduced in Section 6.4, followed by a field 

application of the algorithm presented herein, in Section 6.5.  Introductions to pertinent 

tools of fuzzy set and possibility theories are provided in the Appendix. 

While fuzzy sets and fuzzy numbers are inherent in the groundwater flow modeling 

process, there has been no discussion, as far as the authors are aware, regarding the best 

use and propagation of fuzzy data relative to the data source.  Such a discussion follows. 
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Figure 6.1. This fuzzy set is a possible characterization of the expert’s notion of low log 

hydraulic conductivity (cm/sec).  The 0.5 level α-cut produces the interval [-9.5, -8.5]. 

 

6.2. Expert Judgment 

 

As noted, data sources in hydrogeological site characterization can be partitioned into 

two groups: physical measurement and expert knowledge.  The former data source 

produces hydraulic conductivity values based upon direct measurements of that variable 

or through translations of secondary variable measurements, while the latter dictates that 

an expert armed with geological knowledge of a given site, can identify, via his/her 

understanding, the hydraulic conductivity values at various spatial locations.  Hydraulic 

conductivity data derived from expert knowledge may be considered somewhat less 

reliable than physics-based data and perhaps should be treated as such. 
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Traditionally, hydraulic conductivity measurements are made via indirect methods.    

Indirect methods include both inverse approaches, where head measurements lead to 

hydraulic conductivity values, and functional transformations of secondary data, most 

often derived from soil sample analyses (Alyamani and Sen, 1993; Uma et al, 1989; Sen, 

1992; Masch and Denny, 1966).  Estimated K-fields rely upon the number and location of 

hydraulic conductivity measurements made throughout the site under study.  However, 

the spatial distribution of measurement locations is often not conducive to accurate 

spatial estimation regionally, and measurements are often too few for the accurate 

estimation of a K-field (Piotrowski, 1996). 

Numerous approaches have been devised to correct some of the deficiencies resulting 

from sparse sampling (Gotway and Hartford, 1996; Odeh et al, 1999; Asli and Marcotte, 

1995).  Of these, cokriging (Isaaks and Srivastava, 1989) is most often encountered in 

practice.  Though the use of secondary data in this context improves an understanding of 

the spatial correlation of the site, it requires the modeling of multiple semi-variograms 

and may not positively impact the quality of the values being interpolated.  Moreover, in 

cases where the primary variable is hydraulic conductivity (as it is in this research) and 

secondary data results from soil analysis, certain information must either be discarded or 

simplified.  For instance, grain size distributions may need to be reduced to a single 

representative value and qualitative data resulting from borehole investigations must be 

transformed into crisp soil classes.  As such, the quality of primary variable estimates is 

arguably more positively impacted by the availability of more primary data rather than 

secondary data. 
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A much more straightforward solution to the problem of too few measurement data is 

the application of expert intuition to the identification of hydraulic conductivity values at 

various locations throughout the spatial domain.  In this work, an expert is any agent 

familiar with the hydrogeological aspects of the site of interest.  It is assumed here that 

such an appropriate expert could roughly estimate, without sampling, the approximate 

hydraulic conductivity value or representative soil grain size at any number of locations 

throughout the spatial domain.  Expert knowledge applied toward this end is arguably 

quite valuable.  With an assumed minimal loss of accuracy, a well-informed expert can 

provide much the same information as would be obtained through the installation of a 

pumping or observation well. 

Obviously, varying amounts of uncertainty cloud the expert-provided hydraulic 

conductivity values.  Traditionally, uncertainty in hydrogeological applications is 

characterized via probability theory.  However, humans do not think probabilistically and 

generally, the delineation of a probability density function (PDF) from scratch is an 

arduous task (Ganoulis, 1996; O’Hagan and Oakley, 2004), requiring the expert to know 

what mean, variance and distribution model together define the best stochastic (random) 

number.  Because humans do not explicitly characterize their understanding with these 

parameters in mind, possibility distributions seem to be a logical choice for uncertainty 

characterization.  The use of possibility distribution in this circumstance is reasonable 

since they are easy to define and implicitly bracket the PDF that best represents the 

stochasticity of hydraulic conductivity at a given location (Klir and Yuan, 1995). 
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In sparsely sampled domains, expert-provided fuzzy number or possibilistic hydraulic 

conductivity values can be applied at locations that would minimize the overall 

uncertainty, or kriging variance, in a kriged K-field (Piotrowski, 1996).  Also, the expert 

can apply his/her knowledge to identify zones of anomalously high or low hydraulic 

conductivity.  Consider Figure 6.2, showing a horizontal slice of the subsurface.  The 

black dots represent well locations, where hydraulic conductivity measurements are 

available. 

 

 

Figure 6.2. In this image of a hypothetical subsurface slice, the silty clay unit (diagonal lined region) 
has gone unpenetrated (and unsampled) by the pumping and/or observation wells (black dots) 

 

Notice that in the clayey silt region, no measurements are made, though this is a region of 

potentially low hydraulic conductivity.  An appropriate agent, armed with an implicit 

understanding of the site geology may know that such a region exists; and, assuming 
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additional wells cannot be drilled, using fuzzy numbers, an expert can identify, at one or 

more locations in this region, hydraulic conductivity values representative of that soil 

type.  Alternatively, borehole investigations may be available in that region; and a 

hydrogeologist can deduce approximate hydraulic conductivity values from the 

qualitative borehole information. 

The value of expert insight is not limited to hydraulic conductivity data.  In the 

previous example referencing Figure 6.2, the petitioned expert may feel that it is much 

more straightforward and intuitive to identify the soil grain size representative of the 

unsampled geologic units than a value of hydraulic conductivity.  In essence, this entails 

the specification of a fuzzy number grain size.  A mechanism by which such information 

can be translated into hydraulic conductivity data is provided by Ross et al (2007).  This 

approach produces hydraulic conductivity estimates from fuzzy soil grain size data by 

means of a fuzzy rule base. 

Though the benefit to such K-value specification is the identification of hydraulic 

conductivity at any particular location throughout the spatial domain with reasonable 

accuracy and precision, hydraulic conductivity values (both fuzzy and crisp) strictly 

based upon an expert’s insight regarding the site may, in fact, be flawed.  For instance, an 

expert-based estimate at a particular location may not be a fuzzy version of that location’s 

true hydraulic conductivity value.  It can be assumed without risk, however, that the 

expert-derived values are, at the very least, similar to the corresponding true values.  

Consider a case where the expert defines the fuzzy number in Figure 6.1 as the log K-

value at some location.  In reality, the unknown true log hydraulic conductivity value 
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may be -10 cm/s, though the expert claimed a value of -9 cm/s was most plausible.  Note 

that two orders of magnitude of variation in hydraulic conductivity, as shown in Figure 

6.1, is a reasonable scenario (Druschel et al, 2006; Mathon et al, 2008). 

Based upon the potential error associated with estimates of hydraulic conductivity data 

and soil data provided by experts, these expert-based estimates should be treated quite 

differently from measurements achieved through more traditional means.  Specifically, 

expert-provided data are essentially educated estimates, and an estimate K-field kriged 

from such data is at best, a first approximation of a site’s true K-field.  Any available 

measurements resulting from both direct and indirect approaches should be used to 

update the best first estimate of the K-field.  Fuzzy kriging is used to perform spatial 

interpolation of the expert-provided data and provide a possibilistic K-field, while a fuzzy 

Kalman filter updates the approximate K-field. 

 

6.3. Interpolating Fuzzy Measurements 

 

6.3.1. Variogram Calculations 
 

 The expert-provided fuzzy and crisp hydraulic conductivity values can be spatially 

interpolated using a fuzzy kriging algorithm.  Fuzzy kriging is the result of applying the 

extension principle to the standard kriging system.  By this algorithm, fuzzy number 

values are interpolated spatially to produce possibilistic estimates everywhere throughout 
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the spatial domain.  Via kriging each log hydraulic conductivity estimate, K(xj), is a 

weighted linear combination of the b available values K(xi),  (i = 1,…, b), 

 

∑
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In Equation ( 6-1 ), the individual weights wi (i = 1,…, b) depend upon the spatial 

continuity of the field and are recalculated for each estimate K(xj).  The spatial continuity, 

or covariance, is measured by the semivariogram, which is a plot of distance h versus 

semivariance γ(h) 
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The separation distance hab in Equation ( 6-2 ) is the spatial distance between two 

measurements K(xa) and K(xb).  The number of values separated by a distance h is 

denoted Nh.  As the distance between two values increases, their correlation decreases, 

and the semivariance increases.  Because available measurements are finite, the 

semivariance calculated from these values generates a discontinuous relationship and 

must be modeled in order to provide a smooth curve representing the semivariance for 

any separation distance and to produce a positive definite covariance matrix. 

 Variogram models are the continuous positive definite functions fit to sample 

variograms in order to provide a complete understanding of a site’s spatial continuity.  

However, measurements are often too few to instill confidence in any one variogram 
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model; the larger the number of measurements, the more reliably a variogram model can 

be fit to the sample (Webster and Oliver, 1992).  Kravchenko (2003) and Wang and Qi 

(1998) have illustrated that the number of available measurements and their locations can 

have significant effects upon the sample variogram’s functional form and, in turn, upon 

the accuracy of the model variogram.  Few and randomly sampled measurements produce 

chaotic sample variograms that prove difficult to model. 

For example, Figure 6.3 shows the locations of 17 hydraulic conductivity 

measurements.  The log measurements do not vary much with a mean log measurement 

of -1.628 and a variance of 0.246.  However, the sample variogram produced from these 

measurements (Figure 6.4) does not suggest any obvious model, as would be expected 

with so few measurements.  A conservative solution would be a pure nugget model, 

which admits no spatial correlation.  However, this model fails to respect the spatial 

correlation implicit in Figure 6.4 at low lag distances. 

Despite this, in practice, a crisp model would be fit to this data in order to crisply 

model the spatial correlation.  Because these data do not lend themselves to such 

accuracy, an informative variogram should reflect uncertainty resulting from the 

incomplete sample data.  In this archetypical case of an uncertain sample variogram, the 

precision implied by a crisp model variogram is unwarranted and must be considered a 

possible misstep in the kriging process. 
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Figure 6.3. The 2-D spatial locations of hydraulic conductivity measurements at a remediation site 

show a relatively thorough sampling of the field 
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Figure 6.4. The sample variogram produced by the log hydraulic conductivity measurements, whose 

locations are plotted in Figure 6.3, does not imply any crisp variogram model 
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6.3.2. Fuzzy Variogram 
 

 A second level of uncertainty is introduced to the sample variogram when the 

hydrogeological parameter measurements at selected locations are expert-provided fuzzy 

numbers, rather than crisp values.  The expert determines a value at a point and its 

inherent uncertainty based largely upon 1) the distance the point of interest is from 

locations where geohydrological observations have been made, 2) knowledge of the 

anticipated heterogeneity in the subsurface, 3) knowledge of the lithofacies in the unit of 

interest, and other similar qualitative information.  The sample variogram in Figure 6.4 

was computed using crisp measurements, whereas the sample variogram in Figure 6.5 

was computed from fuzzy values.  In such cases where measurements are fuzzy numbers, 

the sample variogram can be considered second-level uncertain due to the uncertainty 

imposed by the dispersion of the sample variogram data cloud compounded by the 

fuzziness of the individual semivariance values introduced by the expert fuzzy parameter 

estimates. 

A model (pre-specified mathematical function) must be fit to the fuzzy second-level 

uncertain data like that in Figure 6.5 so as to assure that the variogram exhibits certain 

attractive mathematical properties. An expert fits the variogram to the fuzzy binned 

values and in the process generates a third level of uncertainty that is associated with the 

adequacy of the fit of the selected model to the discontinuous sample variogram. The 

bounding curves seen in Figure 6.6 illustrate this concept.  This process of defining of 

fuzzy variogram model is accomplished by the modeler specifying fuzzy variogram 

parameters (nugget, sill, range). 
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Figure 6.5. This sample variogram in the upper right is comprised of fuzzy semivariance values.  The 
modal value for each fuzzy number is represented as a black dot.  The interval created by the upper 

and lower bounds of each triangular fuzzy number is delineated by the vertical black line.  An 
example of what the fuzzy numbers look like is provided in the lower left. 

 

Admittedly, like traditional crisp variogram modeling, fuzzy variogram modeling is a 

trial and error process.  Fuzzy variogram parameters are refined until an adequate model 

(elaborated below) is determined.  Applying the extension principle to Gaussian model 

equation with fuzzy parameters produces the fuzzy variogram model (Bardossy et al, 

1989, 1990a,b) represented by the median and bounding curves in Figure 6.6. 
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Figure 6.6. The upper bound, mode, and lower bounds of a fuzzy Gaussian variogram model for the 
sample variogram in Fig. 5.  The nugget is a fuzzy number with parameters [0, 0.2, 0.4]; the sill is a 

fuzzy number with parameters [0.3, 1.0, 1.5]; and the range is a fuzzy number with parameters [300, 
600, 800]. 

 

According to Uddameri (2004) a model is deemed adequate as long it bounds a 

majority of the data.  While accomplishing this, the Gaussian model in Figure 6.6 both 

reveals the modeler’s intuition regarding the spatial continuity of the field and neither 

imposes gratuitous precision nor excessive imprecision.  An example of excessive 

imprecision, where the variogram model provides no information, is a fuzzy nugget 

model with parameters [0, 1.0, 2.0] that would totally encompass the sample data yet 

abandon all precision and reveal nothing of the perceived spatial continuity of the field.   

Using the variogram model, with the total uncertainty expressed in terms of the fuzzy 

variogram model parameters listed in Figure 6.6, one can compute the kriging weights wi 
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that appear in Equation ( 6-1 ).  To obtain estimates at locations other than those points 

where initial a priori estimates are available one uses the formula shown in Equation ( 

6-1 ).  The values at the initial sites impose level-two uncertainty and are interpolated to 

other locations using the fuzzy kriging algorithm that exhibits level-three uncertainty 

(which implicitly also contains level-one and level-two uncertainty).  Thus, the 

interpolated values exhibit all forms of uncertainty known to the problem.  Such 

uncertainty is expressed in terms of possibility distributions.  The interested reader is 

directed to (Bardossy et al, 1989, 1990a,b) , (Diamond, 1989) and (Piotrowski et al, 

1996) for more information on fuzzy kriging. 

 

6.4. Fuzzy Kalman Filtering 

 

6.4.1. Updating Equations 
 

 The first estimate of the K-field is produced using expert generated estimates at 

selected points without the use of any physically-based (hard) hydraulic conductivity 

data.  Hard data is based upon either traditional measurements or empirical 

transformations of measured secondary data into hydraulic conductivity values, and can 

be used to update the prior guess (or simply, prior) K-field and the prior spatial 

correlation structure.  This updating is accomplished through the application of the 

corrector equations of a Kalman filter. 
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 A Kalman filter (Kalman, 1960) is comprised of two sets of equations, one set 

predicting the state at the next time step, and the other set correcting, or updating, these 

predicted values with available state measurements.  In this work, the state is a particular 

site’s K-field, and does not change with time.  Thus, only the updating equations are 

applied in this work (static Kalman filter).  There are three steps to Kalman filter 

updating, the first being the calculation of the Kalman gain κ in Equation ( 6-3 ).  The 

Kalman gain is merely an error minimization tool, whereby calculation of the optimal 

Kalman gain ensures that the updated estimates have the least mean squared error 

possible. 

 

1)( −−− += VHHCHC TTκ  ( 6-3 ) 

 

 If m is the number of updating measurements and n is the number of prior estimates, then 

C- is the covariance matrix [n×n] for the entire prior K-field, V is a diagonal matrix [m x 

m] of updating measurement variances and H is a matrix [m x n] of ones and zeros that 

identifies the measurement locations in the prior K-field (Welch and Bishop, 2001).  The 

form of Equation ( 6-3 ) results from the minimization of the estimate error covariance, 

and produces a matrix [n x m] requisite for covariance and estimate updating.   

 The estimate vector K [n x 1] and covariance matrix are updated in Equations ( 6-4 

) and ( 6-5 ), where Z is the vector [m x 1] of updating measurements and I is an identity 

matrix [n x n]. 

)( −− −+= HKZKK κ  ( 6-4 ) 
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−−= CHIC )( κ  ( 6-5 ) 

 

6.4.2. Fuzzy Considerations 
 

 The method of fuzzy Kalman filtering applied as an extension of standard static 

Kalman filtering is quite similar in its function as that developed by Oussalah and De 

Schutter (2000), whereby state variable values are possibilistic as opposed to 

deterministic values.  In this work, though, the Kalman filtering updating equations are 

simply extended by Equation ( 6-6 ) in order to operate on the fuzzy number and 

possibilistic prior estimates K- and covariance matrix C- in Equations ( 6-4 ) and ( 6-5 ).  

The posterior estimates K and the elements of the covariance matrix C are, in turn, 

characterized by possibility distributions.  However, with regard to the calculation of the 

Kalman gain κ in a fuzzy Kalman filter, there are certain considerations. 

Notice in Equation ( 6-3 ) that the Kalman gain matrix is determined knowing the 

prior covariance matrix C- and the vector of updating measurement variances V.  In the 

aforementioned geostatistical protocols, this work recommends the application of fuzzy 

model variograms, which lead to prior covariance matrices with possibilistic elements, a 

fuzzy prior covariance matrix.  Where the prior covariance is comprised of possibilistic 

matrix elements, so to is the resulting Kalman gain a possibilistic matrix; all resulting 

uncertainty in the Kalman gain is due solely to the admitted uncertainty in the spatial 

continuity defined by the model variogram. 
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  Examination of Equation ( 6-4 ) reveals that calculation of the posterior estimates 

matrix relies upon the Kalman gain matrix, as well as the prior estimates and updating 

measurements.  The uncertainties in the Kalman gain and prior estimates, as modeled by 

possibility distributions, are conveyed to the posterior estimates, which are likewise 

calculated as possibility distributions. 

 However, while the Kalman gain transfers uncertainty in the spatial continuity of 

the field to the posterior estimates, the prior estimates convey the same uncertainty in 

addition to expert measurement uncertainty.  Thus, the uncertainty due to the fuzzy 

model variogram is unnecessarily double counted.  The same is true for the calculation of 

the posterior covariance in Equation ( 6-5 ), where uncertainty from the prior covariance 

matrix is passed on to the posterior covariance by both the possibilistic Kalman gain and 

the possibilistic prior covariance. 

 Since the Kalman gain is simply a means to minimum square error estimation and 

due to the superfluous double-counting of uncertainty in the updating equations, in this 

approach the Kalman gain is calculated with a defuzzified covariance matrix.  That is, 

before calculation of the Kalman gain in Equation ( 6-3 ), the possibilistic elements of the 

prior covariance matrix C- are reduced to crisp numbers by defuzzification (Klir and 

Yuan, 1995).  Though uncertainty is eliminated from the Kalman gain, the posterior 

estimates and covariance matrix still exhibit the intended uncertainty due to the 

imprecision in spatial continuity and expert-provided measurements. 
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6.4.3. Posterior Estimates 
 

 Commensurate with traditional Kalman filter theory, the updated K-field will 

respect the updating measurement values.  In fact, nearly the entire prior K-field will 

change as a result of the updating process.  Consider a case with a prior estimate K-field 

comprised of n possibilistic numbers and a set of m updating measurements that are all 

crisp in form.  Based upon the precision of the updating measurements, the uncertainty in 

the updated estimates should, in general, be less than that of the prior estimates.  This 

means that throughout the estimated K-field, the possibilistic posterior estimates should 

have narrower possibility distributions than their corresponding possibilistic prior 

estimates.  At the very least, the average possibility distribution should be narrower in the 

updated field due to the presence of the crisp updating measurements at specified 

locations.  This is investigated in the field application, below. 

 

6.5. Field Application 

 

Superfund remediation has been ongoing at the CIBA-Geigy (Figure 6.7) site since 

1982.  The equalization basins on site were a part of the wastewater treatment process 

and were contaminated predominantly by 1,2,4-trichlorobenzene and 1,2-

dichlorobenzene.  The contaminated aquifer, comprised, with relative homogeneity, of 

yellow sand, is called the Primary Cohansey. 
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Figure 6.7. Map of the CIBA-Geigy site; the equalization basins are delineated (from 
www.cibageigysite.org) 

 

The area overlying the Primary Cohansey is roughly 2 000 feet by 4 000 feet, from 

which 17 viable hydraulic conductivity measurements are available in addition to 41 

borehole logs.  The locations of the measurements and boreholes are shown in Figure 6.8, 

where it is clear that boreholes fill in many areas of the spatial domain where 

measurements are unavailable.  Out of the 17 hydraulic conductivity measurements, 9 

have corresponding borehole logs.  Alone, the 17 hydraulic conductivity measurements 

would fail to adequately estimate the true hydraulic conductivity.  However, the 

consideration of the additional soil data via fuzzy Kalman filtering can produce more 

accurate hydraulic conductivity estimates. 
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Figure 6.8. The locations of hydraulic conductivity measurements (.) are plotted along with the more 
numerous and more dispersed borehole locations (*) 

 

 Borehole quantification is the process by which a geologist interprets borehole soil 

descriptions and determines the percent contribution of various soil types to the soil 

samples described in the borehole log.  Considering 7 soil types (Clay, Silt, Fine Sand, 

Medium Sand, Coarse Sand, Fine Gravel, Medium Gravel and Coarse Gravel), the 

borehole description, 

Light gray coarse-medium-fine SAND, little Silt and Clay, 

 

was translated by the geologist into the data vector in Table 6.1, where each value 

represents the proportion each soil class contributes to the soil sample described by the 

borehole entry.  This was repeated for all 41 borehole descriptions. 
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Table 6.1. Expert-provided quantification of a borehole log description; each value represents the 
contribution of the soil class to the overall soil sample’s composition 

 

Clay Silt Fine Sand Med Sand 

Coarse 

Sand 

Fine 

Gravel 

Med 

Gravel 

Coarse 

Gravel 

1 3 32 32 32 0 0 0 

 

 A fuzzy rule base, relating soil type to hydraulic conductivity, was developed by 

Ross et al (2007) in order to estimate hydraulic conductivity from soil data.  This rule 

base was tailored for the study site using a genetic algorithm (Pena Reyes, 2004) guided 

by the 9 quantified borehole log-hydraulic conductivity pairs.  With this fuzzy rule base, 

hydraulic conductivity was estimated for the remaining 32 quantified borehole 

descriptions.  One of the resulting fuzzy numbered hydraulic conductivity values is 

shown in Figure 6.9. 
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Figure 6.9. The fuzzy hydraulic conductivity estimate that results from a fuzzy rule base (pictured) 
does not resemble traditional fuzzy sets 
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 In order to apply the Kalman filtering algorithm, as intended above, these fuzzy K 

values need to be interpolated to produce a possibilistic estimated K-field.  As such, the 

fuzzy K values were interpolated throughout the entire spatial domain, using fuzzy 

kriging (Bardossy et al, 1989, 1990a,b), resulting in a possibilistic K value at each 

estimations location.  These resulting possibilistic estimates were updated by 17 

hydraulic conductivity measurements (plotted in Figure 6.3) using the fuzzy Kalman 

filtering algorithm described above.  As anticipated, the posterior possibilistic estimates 

were, in general, more narrow than the corresponding prior estimates (Figure 6.10). 
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Figure 6.10. The posterior estimate (solid lines) at Easting 221 620 and Northing 420 800 was much 
less fuzzy (had a more narrow base) than the corresponding prior fuzzy estimate (dashed lines) 
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These posterior possibilistic estimates were defuzzified to produce a crisp estimated K-

field (Figure 6.11A).  In situations where prior hydraulic conductivity possibility 

distributions are symmetric, the defuzzified K-field would be the same as the posterior K-

field resulting from non-fuzzy priors. 

 

 
   A        B 
Figure 6.11. The log K-field (cm/sec) produced by fuzzy Kalman filtering, (left), exhibits phenomena 
not present in the K-field produced by kriging the 16 hydraulic conductivity measurements, (right) 

 

6.6. Results and Conclusions 

 

 The posterior estimated crisp K-field (Figure 6.11A) reveals some phenomenon 

that are absent from the estimated K-field that resulted from simply kriging the 17 

hydraulic conductivity measurements (Figure 6.11B).  The fuzzy Kalman filtering K-field 

shows that the area of low hydraulic conductivity in the northeast section of the spatial 

domain is larger than that produced by the K-field produced by kriging crisp 
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measurements.  Furthermore, the updated K-field reveals less continuity of higher 

hydraulic conductivity than is evident in the kriging-only K-field.  An additional patch of 

high hydraulic conductivity is evident in the east of the updated figure.  These results are 

confirmed by the soil samples evaluated in boreholes in those respective areas of the 

domain (Table 6.2). 

Table 6.2. Borehole descriptions used to predict hydraulic conductivity; locations plotted in Figure 
6.11 

Well Borehole Description 

A Light gray c-m-f SAND, little Silt & Clay, slightly micaceous, 
medium dense 

B Very dark gray m-f SAND, trace Silt, slightly micaceous, 
medium dense 

C Light gray to brown, c-m-f SAND, trace f Gravel, trace Silt and 
Clay, loose. 

D Orange c-m-f SAND 
E Black organic m-f SAND, some to little Silt 
F f Sand 
G f Sand 
H f Sand, little f Gravel, Clay 
I Light gray c - f Sand, some m - f Gravel, trace Silt 
J Gray brown fine Sand, little Silt 
K Light gray c - f Sand and m - f Gravel, little Silt 
L Wet brown Sand and Peat with trace Gravel 
M Wet coarse orange Sand 
N Medium coarse Sand and Gravel, streaks yellow, white, blue Clay 
O f brown Sand 
P f brown Sand 
Q f brown Sand 
R f brown Sand 
S f brown Sand 
T f brown Sand 
U f brown Sand 
V f brown Sand 
W brown Sand and grits 
X reddish brown Sand 
Y yellowish Sand 
Z reddish brown Sand 

AA dark brown fine Sand 
BB Light brown Sandy Clay 
CC Dark brown Silt 
DD medium brown Sand 
EE Light brown Sandy Clay 
FF Brown Sand and Gravel 
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The summary statistics mathematically confirm the differences between the K-fields 

in Figure 6.11 (Table 6.3).  Lower K values implied by the boreholes lead to a lower 

mean value for the updated K-field than for the traditionally determined K-field.  

Nevertheless, expert knowledge suggests a greater range of K values for the K-field in 

Figure 6.11A.  Certainly, the differences between a traditionally determined K-field and a 

K-field augmented by expert knowledge should be greater where soil data and expert 

knowledge reveal hydrogeological formations not identified by traditional hydraulic 

conductivity measurements. 

 

Table 6.3. Summary statistics for the posterior K-field and the K-field estimated using only crisp 
measurements. 

 Posterior K-Field Crisp K-Field 

Mean -2.4711 -1.6848 

Standard Deviation 0.9474 0.4204 

Minimum -5.9320 -2.4164 

Q1 (0.25 quartile) -3.0386 -2.0506 

M -2.1809 -1.7745 

Q3 (0.75 quartile) -1.7274 -1.2775 

Maximum -0.0357 -0.8761 

 

 

Nevertheless, the consideration of additional data sources can certainly enhance site 

characterization.  By incorporating the additional soil data in the form of quantified 

boring logs in this case, fuzzy Kalman filtering permitted both an appropriate approach to 

aggregate fuzzy and crisp data and a more accurate hydrogeological characterization of 

the CIBA-Geigy remediation site. 
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 Previous approaches to incorporating fuzzy and crisp data in hydrogeological site 

characterization have suggested that fuzzy and crisp data be used in conjunction.  

Generally, fuzzy data results from expert knowledge.  The nature of expert knowledge 

suggests that it should be used to produce a best first guess of the hydraulic conductivity 

field to be updated by more certain and precise data resulting from direct measurements.  

The fuzzy Kalman filtering algorithm presented herein takes this more intuitive approach 

to hydrogeological site characterization with expert knowledge.  Nevertheless, it is not 

the first and only method to attempt to treat expert knowledge in this manner. 

 Algorithms have been developed to update kriged priors with additional data in a 

Bayesian context (Omre, 1987; Bandemer and Gebhardt, 2000).  While a comparison 

between the proposed Kalman filtering approach and the Bayesian fuzzy kriging method 

herein may seem prudent, the two methods are quite dissimilar in their intentions.  

Whereas the fuzzy Kalman filtering algorithm uses expert knowledge of hydraulic 

conductivity directly in the form of fuzzy numbers, Bayesian fuzzy kriging is built for 

expert knowledge regarding the first and second moments of trend parameters.  As such, 

further research is necessary to develop a Bayesian updating scheme that revises expert-

provided fuzzy K values with crisp measurements. 

 

A6.1. Fuzzy Sets 

 

 The fuzzy set, A, a generalization of the classical set, is defined by a membership 

function, A(x), on the particular variable of interest X (x ∈  X).  The membership 
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function defines, for each value within the variable’s domain, the belongingness of that 

value in the notion conveyed by the fuzzy set.  Fuzzy sets are traditionally applied to the 

characterization of imprecise notions and linguistic variables (Zadeh, 1965).  For 

instance, if an appropriate expert were to specify the notion of the hydraulic conductivity 

at some location in a spatial domain as low, this notion is an imprecise linguistic variable 

and could be characterized with a membership function like that shown in Figure 6.1.  In 

this fuzzy set, the log hydraulic conductivity value -9 has full membership in the 

prescribed hydraulic conductivity fuzzy set.  Membership steadily decreases toward -10 

on the lower bound and -8 on the upper bound.  Alternatively, the fuzzy set can be 

represented as a collection of nested intervals, or α-cuts.  An α-cut of fuzzy set A, αA, is 

an interval of elements that have membership degrees greater than or equal to α, created 

by horizontally cutting the fuzzy set at some membership, or α, value.  In Fig. 1, the 0.5 

level α-cut is found to be [-9.5, -8.5]. 

 Though membership functions can take many shapes, that which is given in Fig. 1 

is triangular.  Triangular fuzzy sets are commonly employed, and they can be represented 

by three parameters, a lower bound (LB), upper bound (UB), and modal value (M), [LB, 

M, UB].  The fuzzy set in Fig. 1 can be denoted [-10, -9, -8]. 

 
A6.2. Fuzzy Numbers 

 

 While fuzzy sets define adjectives and partition a variable’s domain, fuzzy numbers 

are a particular type of fuzzy set that satisfy certain conditions: 
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a.) At least one value has full membership, ∃ x s.t. A(x) = 1; 

b.) αA must be closed and bounded∀ α ∈(0, 1]3. 

 

 Fuzzy numbers are fuzzy sets defined on the real number line, prescribed by a 

possibility distribution, thereby representing imprecise numerical values.  For example a 

fuzzy -9, perhaps labeled about -9, could be defined by a possibility distribution identical 

to the membership function in Figure 6.1, as an expert-provided solution to the question, 

“What is the hydraulic conductivity?” for some specified location.  As a fuzzy number, 

the possibility distribution, π(k), stipulates, for each element on the domain (k∈K), the 

possibility that k is the true log hydraulic conductivity at that particular location.  Thus, 

while similar in structure, fuzzy numbers and fuzzy sets differ in interpretation and use.  

Fuzzy sets define imprecise notions, most often as a means of fuzzy inference via fuzzy 

rule bases, while fuzzy numbers are most appropriate for the possibilistic quantification 

of a numerical value. 

 

A6.3. Possibility and Probability 

 
 The constraints that govern the definition of a possibility distribution are those 

provided above for fuzzy numbers; and the information that guides such definition is 

generally born of the intuition of an appropriate expert.   

 The possibility distribution, a non-probabilistic means of capturing uncertainty, is 

the principal contribution of possibility theory (Zadeh, 1978).  Structurally identical to a 

                                                 
1 An α-cut at the zero level is the real number line, and, as such, is not a closed interval 
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fuzzy number, a possibility distribution can be expert-provided, though it represents a 

different facet of uncertainty.  Whereas a fuzzy set typically models linguistic variables 

(Zadeh, 1975), which are certain yet imprecise notions, a possibility distribution 

represents a lack of knowledge regarding the true value of some variable.   

 Because possibility distributions model uncertainty that results from a lack of 

knowledge as opposed to a lack of precision, they are more similar to probability 

distributions than fuzzy sets.  Aside from direct possibility-probability transformations 

(Jumarie, 1995; Oussalah, 2000; Klir, 2006), where a possibility distribution can be re-

interpreted as a probability distribution (and vice versa) after an, oftentimes simple, 

functional transformation, possibility distributions are found to be naturally related to 

probability distributions via evidence theory (Yager, 2004; Klir and Yuan, 1995). 

 As such, a possibility distribution is not necessarily a replacement for a probability 

distribution. Rather, a possibility distribution is more general.  For instance, the area 

contained within the possibility distribution need not equal unity.  In fact, the probability 

distribution is a special case of a possibility distribution approximation of the random 

number that best defines the true value in question (Klir and Yuan, 1995).  A possibility 

distribution actually induces upper and lower bounds on the unknown true cumulative 

probability distribution (Yager, 2004; Druschel et al, 2006; Mathon et al, 2008).  When 

information, requisite for probability distribution definition, is absent, a possibility 

distribution appears to be an intuitive means of providing a representation of the 

uncertain value, implicitly bracketing a probability distribution.  Klir and Yuan (1995), 
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Klir (2006) and Yager (2004) provide a thorough treatment of the equivalence between a 

possibility distribution and upper and lower probability bounds. 

 

A6.4. Extension Principle 

 

 Just like crisp numbers, fuzzy numbers can arise as arguments in functions.  In such 

circumstances, the extension principle (Klir and Yuan, 1995) must be applied in order for 

the desired functions to operate upon fuzzy numbers.  The frequent application of the 

extension principle reinforces its appropriateness for propagating fuzzy information 

through both linear and non-linear functions (Dubois and Prade, 1991).  If the 

independent variables (Xi, i = 1,…, n) are each valued by a fuzzy number (Ai, i = 1,…, n), 

the extension principle stipulates the corresponding fuzzy number B of the dependent 

variable Y, the values of which are calculated using the particular function being 

extended.  The form of the extension principle is 

 

)}](),...,([min{sup)(
),...,(,...,

ni
yxxfxx

xAxAyB
nini =

=  ( 6-6 ) 

 

∀ y∈Y, where both X and Y are often ℜ , the real number line.  Eq. ( 6-6 ) states for a 

given element of Y, y∈Y all combinations of xi,…, xn are found that satisfy f(xi,…,xn) = y.  

For each combination, the membership values A(xi) are determined and the minimum 

membership value is selected.  Then, over all the combinations, the maximum 

membership value is attributed to the dependent variable value y.  This is repeated for all 
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y∈Y; thereby a membership function is obtained for the variable Y.  The extension 

principle, though intricate in its operation, has greatly simplified the means by which 

fuzzy numbers can be utilized in otherwise non-fuzzy functions.  The fuzzy kriging 

algorithm summarized above results from the application of the extension principle to the 

crisp kriging system of equations 
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7: RESPECTING CORRELATION WHILE MODELING WITH 

POSSIBILISTIC DATA 

 

 Stochastic groundwater modeling involves the propagation of probabilistic 

uncertainty from model input parameters to model estimates usually via a Monte Carlo 

method.  However, with the increasing reliance upon expert knowledge to define model 

inputs, such as hydraulic conductivity, and fuzzy set theory to characterize this expert 

knowledge, alternative means of executing model equations were developed.  In this 

approach, a novel methodology for propagating fuzzy-based uncertainty is presented.  

Fuzzy sets are sampled to produce a number of realizations in a manner analogous to 

Latin Hypercube sampling.  The resulting realizations are passed through numerically 

approximated groundwater flow and transport equations.  The resulting concentration 

estimates are assembled as possibility distributions. 

 

7.1. Introduction 

 

 The natures of the measurement, estimation, and natural spatial variability of an 

aquifer’s hydrogeological properties account for some of the uncertainty in the 

groundwater flow and transport modeling process (Gelhar, 1986; Isaaks and Srivastava, 

1989; de Marsily et al, 1998; Højberg, and Refsgaard, 2005; Nillson et al, 2007;).  Such 

uncertainty has traditionally been characterized by probabilities (Gelhar, 1993).  As a 

result, generally employed stochastic groundwater modeling (Gelhar, 1993; Winter, 
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2004) has combined groundwater model equations with Monte Carlo analyses.  The 

result is a commonly accepted method of uncertainty propagation in groundwater fate and 

transport modeling. 

 Expert knowledge is a potentially important source of data on aquifer properties 

(Bardossy et al, 1988; Bardossy et al, 1989; Bardossy et al, 1990a,b,c; Piotrowski, 1996; 

Dhiman and Keshari, 2003; Demicco, 2004; Ross et al, 2006; Ross et al, 2007;).  Though, 

as noted, parameter uncertainty has traditionally been characterized by probability theory, 

it is cumbersome to describe expert knowledge probabilistically (Ganoulis, 1996; 

O’Hagan and Oakley, 2004).  As a result, alternative methodologies have been used to 

capture expert knowledge and associated uncertainties.  Evidence theory (Dempster, 

1968; Shafer, 1976) characterizations of expert knowledge in groundwater applications 

constitutes one approach (Druschel et al, 2006; Mathon et al, 2008), but more common 

are fuzzy set based characterizations.  A thorough review of such applications is provided 

by Ozbek and Pinder (2006). 

 In spite of the ease with which expert knowledge can be framed using fuzzy sets, 

groundwater model equations cannot be solved directly when fuzzy numbered input 

parameters are used.  Two popular methods for accomodating fuzzy-based uncertainty in 

a groundwater model are the extension principle (Dou et al, 1995; Dou et al, 1997a,b; 

Larue and Tyagi, 1997, 1998; Faybishenko, 2004; Prasad and Mathur, 2007) and fuzzy 

logic model approximations (Bardossy and Disse, 1993; Nedungadi et al, 1994; Bardossy 

et al, 1995; Bagtzoglou et al, 1996; Bardossy, 1996; Schultz and Huwe, 1997; Dou et al, 

1999; Coppolla et al, 2002; Vernieuwe et al, 2002a,b; Vernieuwe et al, 2007).  The 
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extension principle wraps around a crisp equation, or set of equations, generalizing them 

to operate upon fuzzy numbers.  A fuzzy rule-based model, on the other hand, is 

comprised of a set of conditional statements relating fuzzy values of an independent 

variable, such as hydraulic conductivity, to fuzzy values of a dependent variable, such as 

head. 

 Whereas the application of the extension principle leaves the groundwater model 

equations intact, the development of a fuzzy rule-based groundwater model not only 

requires significant insight into the physics of groundwater and contaminant flow, but an 

in depth understanding of fuzzy set theory and fuzzy logic.  A drawback of these 

approaches is that both fail to respect the spatial correlation of model input parameters. 

 Commonly applied flow and transport codes (i.e. Princeton Transport Code) lack 

fuzzy set and fuzzy logic-based computations, in spite of the increasing use of fuzzy and 

possibilistic data in groundwater flow and transport modeling.  Thus, the propagation of 

fuzzy-based parameter uncertainties by the extension principle and fuzzy rule-based 

models is impractical.  A novel method that facilitates the use of fuzzy set groundwater 

parameters in a traditional groundwater model is presented herein.  The new method, 

introduced below, modifies an extended Latin Hypercube sampling algorithm (Zhang and 

Pinder, 2003) to effectively sample a fuzzy set.  In this application realizations are drawn 

from a set of hydraulic conductivity possibility distributions.  These realizations are 

passed through a groundwater flow and transport model (the Princeton Transport Code), 

resulting in a set of uncertain concentration estimates.  Due to the possibilistic nature of 
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the input hydraulic conductivity values, the computed concentration values are framed as 

possibility distributions. 

 This paper is organized in the following manner.  A brief introduction into the 

construction of fuzzy sets and their relationship to possibility distributions is provided 

first.  Next, the new Latin Hypercube sampling (LHS) algorithm is described including a 

brief illustration.  The proposed algorithm is then applied to the simplified Woburn, MA 

site.  Included is an explanation of the characterization of the concentration estimates as 

possibility distributions.  Conclusions follow the field application. 

 

7.2. Fuzzy Sets and Possibility Distributions 

 

  The fuzzy set was introduced by Zadeh (1965) as a generalization of the 

classical set, in order to more appropriately characterize the imprecision inherent in 

human-provided information.  In hydrogeological applications, fuzzy sets have often 

been applied to the characterization of expert knowledge regarding hydraulic 

conductivity (Bardossy et al, 1988; Bardossy et al, 1989; Bardossy et al, 1990a,b,c; 

Piotrowski, 1996; Demicco, 2004; Ross et al, 2006; Ross et al, 2007).  In these instances, 

the fuzzy number hydraulic conductivity values were regarded as measurements to be 

used in a kriging model to spatially estimate a fuzzy hydraulic conductivity field.  The 

kriged estimates of hydraulic conductivity are most appropriately interpreted as 

possibility distributions (Zadeh, 1978).  Whereas fuzzy sets are intended to measure the 

imprecision inherent in a human notion, a possibility distribution, structurally identical to 
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a fuzzy number, identifies uncertainty resulting from a certain level of ignorance.  The 

distinction lies in the information used to construct the distribution.  An expert defines a 

fuzzy set if he/she is certain of the true approximate value of hydraulic conductivity, and 

specifies a possibility distribution when little to no information is available regarding the 

true value of hydraulic conductivity.  A kriged estimate of hydraulic conductivity is a 

possibility distribution, since no information about the true approximate value of 

hydraulic conductivity at the estimate location was used to determine the uncertain 

hydraulic conductivity value.  Moreover, in cases where fuzzy groundwater parameter 

values are employed in a groundwater flow and transport model (Dou et al, 1995; Dou et 

al, 1997a,b; Larue and Tyagi, 1997, 1998; Faybishenko, 2004; Prasad and Mathur, 2007), 

the resulting state variable estimates are possibility distributions for the same reason – no 

prior insight into the state variable values is used to estimate them. 

 Though the extension principle is a common approach to sampling a fuzzy set for 

the purpose of propagating fuzzy data through a mathematical model, an alternative 

sampling regime, introduced by Chanas and Nowakowski (1988), inspires the sampling 

procedure in the fuzzy Latin Hypercube sampling algorithm to be presented in this paper.  

By this fuzzy-numerical simulation method, realizations comprised of crisp numbers can 

be drawn from a set of fuzzy numbers and ultimately used directly in a crisp 

mathematical model.  In this approach, for a fuzzy number A, the following steps are 

repeated for each of the desired number of realizations M.  A value t is sampled from the 

uniform random variable over the interval (0, 1].  An α-cut is taken at the membership 

value t, and from a uniform distribution over this α-cut is sampled a value x, such that the 
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membership of x in A is greater than or equal to t.  This value is considered to be a 

representative of the fuzzy set A and is passed through the set of equations comprising 

the mathematical model.  These steps are modified for the fLHS algorithm, as presented 

in the next section. 

 

7.3. Fuzzy Latin Hypercube Sampling (fLHS) 

 

 McKay et al (1979) introduced LHS in order to deterministically estimate a random 

variable Y resulting from the evaluation of some function Y = f(X) with an input vector of 

n random variables X = {X1,…,Xn}, by sampling M realizations from the stochastic 

independent variables.  Zhang and Pinder (2003) extended LHS to ensure that the 

correlation of the M realizations approximates the correlation of the independent 

variables.  The probability density function of each random variable is segmented into M 

non-overlapping equi-probable areas (Figure 7.1, from Dokou, 2008). 

 

 

Figure 7.1. A probability density function segmented into M = 5 areas of equal probability, from 
Dokou, 2008 
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From each of these areas is sampled a single value, creating a discrete random variable 

comprised of M sampled values. 

 Likewise, a possibility distribution can be segmented into M equi-probable areas.  

Analogous to an α-cut of a fuzzy set, a horizontal cut through a possibility distribution 

produces an interval called a focal element (Klir and Yuan, 1995).  A focal element is 

comprised of an interval and associated probability mass assignment.  Where the unit 

interval of possibilities is discretized into M equally-spaced values, a possibility 

distribution is segmented into M equi-probable intervals (Figure 7.2), or M intervals each 

with an associated probability equal to 1/M.  On each of these intervals is defined a 

uniform probability distribution. 

 Whereas the equi-probable areas of a probability density function do not overlap, a 

possibility distribution’s focal elements are nested.  In other words the interval 

corresponding to a possibility value t contains the interval created by a cut at t + ε, where 

ε is some small value.  If one were to follow the fuzzy-numerical sampling algorithm, it is 

possible to sample the same value from each of the M nested focal elements.  Thus, the 

fuzzy-numerical sampling algorithm, as applied to fuzzy Latin Hypercube sampling, must 

be amended.  Instead of sampling just once over each focal element, fuzzy Latin 

Hypercube sampling dictates that one randomly samples J values from a focal element.  

By sampling in this manner, the resulting L = M×J realizations adequately represent the 

sampled possibility distribution.  The entire algorithm can be summarized by the 
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following steps, some of which are illustrated in Figure 7.2, for a field of N possibility 

distributions with a spatial correlation defined by C*: 

 

a. Specify the number of desired realizations M. 

b. Segment the N possibility distributions into M equi-probable nested intervals. 

c. Define a uniform probability distribution over each interval, and randomly 

select J values. 

d. Assemble the L = M×J sampled values from each of the N possibility 

distributions in a realization matrix X [L × 4]. 

e. Calculate the correlation matrix C for X. 

f. Determine the cholesky decompositions for C and C* and use these 

decompositions to calculate a new realization matrix X*.  The correlations for 

X* should closely approximate the target correlation matrix C*. 

g. Permute the values in each column of X according to the rank order of the 

corresponding column of X*.  This newly permuted realization matrix D is that 

which is employed in stochastic modeling.  Each row represents a unique 

realization of the parameter field. 

h. Realizations are passed through the numerical model as in a Monte Carlo 

approach. 
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          A            B 

    
             C 

Figure 7.2. Once the desired number of realizations is selected (A), the possibility distribution is 
cut M times (B), creating M equiprobable intervals (C) 

 
Figure 7.3. Possibilistic uncertain parameters used for the brief demonstration of the efficacy of 

the fLHS; their correlation matrix is given in Table 7.1 
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 Consider a simple example (interpreted from Zhang and Pinder, 2003) comprised 

of four possibilistic variables (Figure 7.3) with associated correlation matrix (Table 7.1). 

 

Table 7.1. Correlation matrix for triangular fuzzy values in Figure 7.3 

 1 2 3 4 

1 1.0 0.702 0.702 0.606 

2 0.702 1.0 0.606 0.702 

3 0.702 0.606 1.0 0.702 

4 0.606 0.702 0.702 1.0 

 
Table 7.2. Ranks for realization matrix X 

X1 Rank(X1) X2 Rank(X2) X3 Rank(X3) X4 Rank(X4) 

6.1104 7 7.5179 8 6.2355 4 9.5814 8 

6.6611 8 8.662 10 6.4742 5 7.387 4 

7.3574 9 5.592 5 8.5267 8 9.0127 7 

4.3499 4 5.3516 4 9.3041 9 6.5987 3 

3.0495 2 3.1713 1 7.1762 6 6.085 2 

3.6422 3 8.2007 9 4.2103 1 10.116 9 

4.6855 5 4.0303 2 5.6789 3 10.6198 10 

2.0148 1 4.7727 3 8.0275 7 5.2887 1 

5.1863 6 6.0738 6 5.0687 2 8.1518 6 

7.4761 10 6.9277 7 9.554 10 7.5058 5 
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Each possibility distribution is discretized into M nested intervals.  Beginning with the 

base interval of each possibility distribution, a unique value (J = 1 and L = 4 in this 

simple example) is selected for each variable.  These four values are placed into the first 

row of a realization matrix [L × 4].  This is repeated for the remaining focal elements.  

With each interval, a new row of the realization matrix is filled in, resulting in realization 

matrix X (Table 7.2).  Through traditional LHS computation (step f., above), a matrix X* 

is calculated (Table 7.3), whose correlation matches that of the target correlation matrix 

(Table 7.1). 

Table 7.3. Ranks for X* matrix 

X1* Rank(X1*) X2* Rank(X2*) X3* Rank(X3*) X4* Rank(X4*) 

        

-12.1419 3 2.7076 7 7.6613 7 14.6802 9 

-9.9547 9 4.7016 10 7.5007 6 13.2059 5 

-10.4627 6 3.1094 8 9.9854 9 15.2794 10 

-11.1128 4 2.1448 5 7.8495 8 11.4371 3 

-9.4333 10 0.5283 2 6.2353 3 9.4371 2 

-14.4532 1 0.9471 4 4.8713 1 13.2452 6 

-12.4346 2 -0.306 1 7.3249 5 14.2562 7 

-10.9687 5 0.9022 3 5.4411 2 8.4645 1 

-10.0293 7 2.1538 6 6.4597 4 12.391 4 

-10.0116 8 4.547 9 10.0086 10 14.378 8 
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The ranks of each column of X* are recorded and used to permute the original realization 

matrix X, creating a new matrix D (Table 7.4).  The correlation matrix of this new 

realization matrix D closely approximates that of the original possibilistic variables.  The 

target correlation matrix (Table 7.1) is approximated well by the matrix is in Table 7.5. 

 

Table 7.4. New realization matrix D; note that the ranks match those of X* in Table 7.3 

D1 Rank(D1) D2 Rank(D2) D3 Rank(D3) D4 Rank(D4) 

        

3.6422 3 6.9277 7 8.0275 7 10.116 9 

7.3574 9 8.662 10 7.1762 6 7.5058 5 

5.1863 6 7.5179 8 9.3041 9 10.6198 10 

4.3499 4 5.592 5 8.5267 8 6.5987 3 

7.4761 10 4.0303 2 5.6789 3 6.085 2 

2.0148 1 5.3516 4 4.2103 1 8.1518 6 

3.0495 2 3.1713 1 6.4742 5 9.0127 7 

4.6855 5 4.7727 3 5.0687 2 5.2887 1 

6.1104 7 6.0738 6 6.2355 4 7.387 4 

6.6611 8 8.2007 9 9.554 10 9.5814 8 

 

 While it has already been demonstrated through the above example that the 

correlation matrix of the realizations closely approximates that of the original variables, 

other facets of LHS must be considered in order to validate the fLHS algorithm as an 

appropriate proxy where uncertainty is either fuzzy or possibilistic.  For one, traditional 
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LHS is an unbiased sampling algorithm for probabilistic data (Zhang and Pinder, 2003).  

Figure 7.4 shows that fLHS is an unbiased sampling technique for fuzzy and possibilistic 

data. 

 
Table 7.5. Approximation of the target correlation matrix in Table 7.1 

 1 2 3 4 

1 1.0 0.704 0.695 0.606 

2 0.704 1.0 0.585 0.688 

3 0.695 0.585 1.0 0.680 

4 0.609 0.675 0.680 1.0 

 

In this figure, it is evident that the means of realizations of the parameters are very good 

approximations of median values (values with full membership or possibility).  

Moreover, it is expected that as the number of realizations increases, the correlation 

matrix for the realizations will more closely approximates the true correlation matrix.  

The root mean square error between the the approximate and target correlation matrices 

remains relatively constant regardless of the number of values drawn from each interval, 

though does decrease as the total number of intervals decreases. 

 

7.4. Field Application 

 

 A simplified version of the Woburn, Massachusetts site was employed to 

demonstrate the practicality of the proposed algorithm.  The domain is shown in Figure 
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7.5 and is roughly 3900 feet north to south and about 3500 feet west to east at its widest 

expanse .  Two contaminant source locations are present, in the northeast (4000 ppb) and 

southwest (1500 ppb) areas of the domain.  Two pumping wells, G and H, pump 150,000 

ft3/day and 250,000 ft3/day, respectively.  The northern boundary has a constant head of 

65 feet and the southern boundary of 50 feet. 

 

 
Figure 7.4. The errors in the means resulting from the fLHS algorithm decrease as the number of 

realizations increases, demonstrating unbiasedness 

 The locations of crisp hydraulic conductivity measurements are shown in Figure 

7.5 (●).  Notice that, for such a large domain, the available hydraulic conductivity 

measurements in this simplified case are quite few.  Because hydraulic conductivity is so 

sparsely sampled (11 measurements), without additional data, kriged estimates of 

hydraulic conductivity will likely be highly uncertain.  Moreover, estimates of 

concentration would be of little value.  As such, an additional 40 boring logs (▲ in 

Figure 7.5) were provided to a hydrogeologist charged with the task of translating the 

qualitative boring log data into fuzzy hydraulic conductivity values (Ross et al, 2007). 
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Figure 7.5. Domain outline for the simplified Woburn site; crisp hydraulic conductivity 

measurements (●) are few relative to the fuzzy measurements (▲) 

  Using a fuzzy Kalman Filtering algorithm (Ross et al, 2006), the resulting 

fuzzy hydraulic conductivity measurements were kriged in order to produce an estimated 

fuzzy hydraulic conductivity field (K-field) for the spatial domain.  This fuzzy K-field 

was then updated with the 11 crisp measurements in order to produce a more precise 

posterior estimated K-field. 

 The numerical discretization of the areal, two-dimensional spatial domain produced 

434 triangular finite element nodes, each of which is associated with a possibility 

distribution representing the uncertain hydraulic conductivity value at that location.  Each 

of these possibility distributions was segmented into M = 50 nested intervals each 

sampled J = 10 times for L = 500 realizations, according to the fLHS algorithm 
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described above.  The mean hydraulic conductivity field is shown in Figure 7.6 (left) 

alongside the contours of the most possible hydraulic conductivity field (right).  As can 

be seen in the figure, the two plots are practically identical, illustrating the unbiasedness 

of the fLHS algorithm (RMSE = 0.2).  Each realization of 434 hydraulic conductivity 

values was used as input to groundwater fate and transport model (run for 5000 days), 

which, in turn, was used to estimate concentration at all nodes.  Ultimately, 500 values of 

concentration are estimated at each node. 

 

 
 

Figure 7.6. The means of the hydraulic conductivity realizations (left) are identical to the most 
possible values of the hydraulic conductivity possibility distributions (right) 

 

 Though the mean concentrations determined from the stochastic sampling of the 

possibility distributions can be calculated and plotted.  However, because the original 
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input parameters are characterized by possibility distributions it is appropriate that the 

uncertain concentration estimates be characterized in a possibilistic manner. 

 A number of formulae are available to calculate a possibility distribution from a 

probability distribution (Delgado and Moral, 1987; Dubois et al, 1991, 2004; Oussalah, 

2000; Klir, 2006).  However, the problem of inferring a possibility distribution from a 

data set is uncommon.  An approach to accomplish such an inference was provided by 

Masson and Denœux (2006) when data are relatively few.  Fortunately, in most 

groundwater flow and transport models, the number of nodes, and consequently, the 

number of sampled values per node, is many. 

 As such, a less computationally intensive alternative approach to possibility 

distribution calculation (Dubois et al, 1991, 2004) from histrogram data is employed 

herein.  A histrogram, representing the uncertain concentration at node 300 

(approximately 300 feet southeast of well H) and given in Figure 7.7, is comprised of 

vectors of bin values Ω = {ω1,…, ωK} and frequencies associated with each bin {n1,…, 

nK}.  In order to calculate the possibility πi for each bin value, one follows the following 

steps: 

 

a. Normalizes the frequencies of the bin values to probabilities {p1,…, pK} 

b. Defines a permutation σ of the indices 1,…,J such that pσ(1) < pσ(2) < … < pσ(K). 

c. The reverse transformation σ -1 of the permutation facilitates the calculation of 

the possibility values.  A reverse transformation records the ascending rank of 
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the probabilities in {p1,…, pK} (Masson and Denœux, 2006).  For instance, if K 

= 10, and p1 is the greatest probability, then σ -1(1) = 10. 

 

∑
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d. Apply Equation ( 7-1 ) to calculate the possibilities associated with each bin. 

 

 Following these steps for the histogram in Figure 7.7 produces the discrete 

possibility distribution in Figure 7.8.  The most possible concentration estimates at each 

node are plotted in Figure 7.9. 

 

 
Figure 7.7. Histogram of concentration estimates for node 300 with 27 bins (model run for 5000 

days) 
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Figure 7.8. Discrete possibility distribution characterizing the uncertainty in the concentration 
estimate at node 300, as calculated from the histogram in Figure 7.7 (model run for 5000 days) 

7.5. Conclusions 

 

 The use of expert knowledge in engineering applications is easily used when such 

information is characterized with fuzzy sets.  This is evident in groundwater flow and 

transport modeling, where fuzzy valued model input parameters such as hydraulic 

conductivity have been defined by experts.  Whereas fuzzy set- and fuzzy logic-based 

approaches to propagating the uncertainty characterized by fuzzy sets and possibility 

distributions are adequate in some applications, they are impractical for groundwater 

modeling because they are strongly rooted in fuzzy set theory and fuzzy logic.  The fLHS 

algorithm offers an alternative approach to uncertainty modeling that borrows some 

techniques from stochastic modeling. 

 By taking advantage of the properties of a possibility distribution, the fLHS 

algorithm used a modified fuzzy numerical sampling scheme to sample from equi-

probable focal elements.  In cases where the number of realizations is high, the fLHS 
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algorithm essentially amounts to sampling the convex hull of the possibilistic model 

parameters.  Though this process sounds similar to the vertex method and interval 

analysis, these methods, like the extension principle, fail to respect the correlation of the 

spatially distributed model inputs.  In order to respect this spatial correlation, steps were 

borrowed from LHS, whereby the sample realization matrix is operated upon and 

permuted.  The result is M individual realizations that are consistent with the physics of 

the field. 

 It is clear that the error between the most possible values of the model parameters 

and the calculated means of the sampled realizations is minimal after a small number of 

realizations (Figure 7.4).  The convergence of the model concentration estimates was 

confirmed by sampling 10000 realizations for the simplified Woburn example; the 

contour plot of the most possible nodal concentration values was identical to Figure 7.9. 

 

 
Figure 7.9. Most possible concentration values (model run for 5000 days) 
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 Even though concentration estimates are easily reduced to means and variances, 

this is inconsistent with the manner in which input model uncertainty is characterized.  

As such, each node’s concentrations estimates are interpreted in a possibilistic manner.  

Since concentration estimates defined by possibility distributions may not be ideal, the 

most possible value at each node is taken, in order to plot the resulting concentration 

field.  In stochastic modeling, this is analogous to considering only the most probable 

value at each node, as determined from a histogram.  The analogy to mean values in 

possibility distribution amounts to defuzzifying (Klir and Yuan, 1995) the possibility 

distributions. 
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8: ALEATORIC AND EPISTEMIC UNCERTAINTY IN GROUNDWATER 

SIMULATION 

 

 The characterization of aleatory hydrogeological parameter uncertainty has 

traditionally been accomplished using probability theory.  However, when consideration 

is given to epistemic, as well as aleatory uncertainty, probability theory is not necessarily 

appropriate for capturing the uncertainty in parameter uncertainty. 

 This is especially the case where expert opinion is regarded as an appropriate 

source of information.  When experts opine upon the uncertainty of a parameter value, 

both aleatoric and epistemic uncertainties are introduced and must be modeled 

appropriately. 

 Herein, we propose a novel approach to expert-provided parameter uncertainty 

characterization, where random sets formalize expert knowledge and fuzzy sets are used 

to propagate this uncertainty to model estimates of contaminant transport.  The resultant 

random set-based concentration estimates are shown to be more general than the 

corresponding random variable estimates.  In some cases, the random set-based results 

are shown as upper and lower probabilities that bound the corresponding random 

variable’s cumulative distribution function. 
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8.1. Introduction 

 

 Uncertainty in groundwater flow and transport modeling comes in two forms: 

aleatory and epistemic.  Such distinctions in uncertainty are most often identified in risk 

assessment and reliability engineering (Helton et al, 2000a,b; Hofer et al, 2002; Helton 

and Oberkampf, 2004; Helton et al, 2004; Oberkampf et al, 2004).  Aleatory uncertainty, 

also called stochastic or variable uncertainty, refers to uncertainty that cannot be reduced 

by more exhaustive measurements or a better model.  Epistemic uncertainty, or subjective 

uncertainty, on the other hand, refers to uncertainty that can be reduced. 

 Despite these apparent distinctions in uncertainty, probability theory alone has 

traditionally been used to characterize both forms of uncertainty in engineering 

applications (Apostolakis, 1990; Helton et al, 2004); and, while it is commonly accepted 

that probability theory is ideal for the characterization of aleatory uncertainty (Ganoulis, 

1996), the facility with which probability theory effectively captures epistemic 

uncertainty has been called into question (O’Hagan and Oakley, 2004), especially with 

the introduction of a number of alternative methods of epistemic uncertainty 

characterization (Choquet, 1954; Zadeh, 1965; Shafer, 1976; Zadeh, 1978).  Of the 

alternate methods, random set theory (Zadeh, 1965) provides an intuitive means for both 

epistemic and aleatory uncertainty characterization. 

 Whereas probability theory’s basic tool for uncertainty characterization is the 

probability density function (PDF), random set theory is predicated upon the assignment 

of probabilities to intervals, rather than point values.  The PDF has been commonly 
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applied to the characterization of subjective knowledge, despite the fact that human 

thought and discourse do not operate in the form of means, variances and probabilistic 

models.  While some probability theorists suggest that the Dutch Book, an alternative 

framework for identifying subjective probabilities, is more intuitive, it does not 

necessarily apply to all engineering problems. 

 Random set theory (Helton and Oberkampf, 2004; Joslyn and Kreinovich, 2005), 

however, is a general approach to subjective knowledge characterization, and, in 

addition, random sets can be transformed into fuzzy sets (Joslyn and Booker, 2004; 

Joslyn and Ferson, 2005), with little difficulty.  The transformation from random sets to 

fuzzy sets facilitates solution of groundwater flow and transport model equations 

characterized by uncertainty. 

 Though a few applications of fuzzy set theory to expert knowledge characterization 

in geohydrologic applications have been identified (Bardossy et al, 1989; Bardossy et al, 

1990a,b,c; Dou et al, 1995; Bagtzoglou et al, 1996; Dou et al, 1997a,b; Fang and Chen, 

1997; Dou et al, 1999; Demmico and Klir, 2004; Guan and Aral, 2004; Ross et al, 2006; 

Ross et al, 2007), an explanation of the distinctions between probability and fuzzy set 

theories in the characterization of epistemic knowledge is lacking.  Moreover, the 

clarification of the roles played by aleatory and epistemic uncertainties in geohydrology 

is needed. 

 The purpose of this paper is to frame uncertain hydraulic conductivity information 

in terms of aleatory and epistemic uncertainty, propagate this uncertainty in space and 

time using a groundwater flow and transport model and compare the resulting two forms 
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of uncertainty in the calculated concentration values.  In the aleatory case, traditional 

probability theory is used to characterize the uncertainty in hydraulic conductivity 

measurements.  In the epistemic case, random set theory captures expert knowledge 

regarding this uncertainty in addition to the epistemic uncertainty implicit in expert 

knowledge.  The alternative uncertainty characterizations are discussed in this paper in 

terms of the model’s hydraulic conductivity input and concentration output values. 

 

8.2. Probabilistic Uncertainty 

 

 In groundwater modeling problems where few hydraulic conductivity 

measurements are few, a hydraulic conductivity field is assumed to be comprised of a 

few large subdomains of equal hydraulic conductivity, like the representation of the 

Woburn, Massachusetts site presented in Figure 8.1, simplified from the model developed 

by the U.S Geological Survey (Lima and Olimpio, 1989). 

 

 
 

Figure 8.1. Inversely estimated hydraulic conductivity field; different numbers identify fields with 
distinct hydraulic conductivity values; gray ovals represent contaminant source locations.  Dots 

denoted as A and B are pumping wells 
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A small number of hydraulic conductivity measurements are available in each of these 

hydraulic conductivity subdomains.  For a given patch, a representative random variable 

hydraulic conductivity value can be constructed from the mean and variance of that 

subdomains’s measurement data set.  However, these measurements are inherently 

uncertain and both the mean and variance of the measurement data set may not be 

representative of the subdomain’s random variable hydraulic conductivity.  That is, 

because the measurements are uncertain, the variance of the measurement data set may 

likely be a low estimate of the uncertainty of the subdomain’s hydraulic conductivity 

random variable.  In order to obtain a better estimate of the uncertainty surrounding a 

subdomain’s representative hydraulic conductivity value, an appropriate expert is asked 

to provide some measure of uncertainty in the form of a 95% confidence interval.  This 

interval defines two values between which the expert is 95% certain the true value of 

hydraulic conductivity lies.  Given a mean value, the assumption of hydraulic 

conductivity’s lognormality and this 95% confidence interval a PDF defining the 

hydraulic conductivity random variable can be constructed. 

 The mean hydraulic conductivity values associated with the domain in Figure 8.1 

are provided in Table 8.1.  Also provided are the expert provided confidence intervals for 

the five formations and the resulting calculated variances.  The intervals for three of the 

formations were specified to approximate two orders of magnitude variation in hydraulic 

conductivity in three of the formations.  The remaining two formations were assigned 

zero variation for computational convenience.  Total correlation was assumed within each 

formation and zero correlation is assumed between the units.  Constant head boundaries 
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were specified on the left (75 ft) and right (125 ft) boundaries, and no-flow boundary 

conditions were specified along the top and bottom of the domain.  Contaminant sources 

(grey ovals in Figure 8.1) are located in formations four and five at concentrations of 

2000 ppb and 1500 ppb, respectively.  Finally, two pumping wells were placed in 

formation two.  Wells A and B pump at 2500 feet3/day and 1500 feet3/day, respectively. 

 

Table 8.1. Hydraulic conductivity random variable properties for the domain in Figure 8.1 

Unit Number Mean Ln(K), ft/day Confidence Interval Variance 

1 -6.101874888 [-7.9, -4.3] 0.834001 

2 0.693147181 [0.69, 0.69] 0 

3 0.311704003 [-1.4, 2.1] 0.794899 

4 4.514645016 [2.3, 6.7] 1.255079 

5 7.60090246 [7.6,7.6] 0 

 

 Monte Carlo analysis (Metropolis and Unam, 1949) was performed to propagate 

uncertainty through the groundwater model and produce stochastic concentration values 

throughout the spatial domain.  The concentration mean and variance values are 

contoured in Figure 8.2.  Four of the calculated cumulative distribution functions (CDF) 

of the concentration random variables are plotted in Figure 8.3 (Case 1), along with the 

CDFs for two other cases with different variances (see below).  The pertinent data for 

these random variables are provided in Table 8.2. 
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A 
 

 
B 

Figure 8.2. Concentration mean (A) and variance (B) contours show the contaminant source in the 
upper right-most spreading more than the lower left contaminant source; variances are greater for 

concentrations resulting from this source 

The probabilistic form of these results is significantly dependent upon the certainty with 

which the expert can define the confidence intervals and the appropriateness of the 

lognormality assumption, amongst other factors. In fact, the longstanding assumption of 
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lognormality for hydraulic conductivity may not be correct in all cases (Ricciardi et al, 

1998; Mathon et al, 2008).   The true random variable may actually be best defined by 

any one of an infinite number of alternative probability functions, two of which are 

plotted in Figure 8.3 (* and + curves).  The taller, steeper distributions (Case 2, * curves) 

result from the smaller hydraulic conductivity confidence intervals in Table 8.2. 

 

 

    A       B 

 

    C       D 
Figure 8.3. Random variables representing the concentrations at locations {1107E, 635N} (A), 
{1590E, 1030N} (B), {1450E, 682N} (C), {1420E, 634N} (D).  Intuitively, the variance changes 
through out space and as the expert-provided hydraulic conductivity confidence intervals are 

narrow (Case 2) relative to the case of interest (Case 1) and relatively wide (Case 3).  The data for 
these random variables are given in Table 8.1.  The confidence intervals for the three cases are 

provided in Table 8.2 
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 Table 8.2. Expert-provided confidence intervals for the base case (Case 1), a high-certainty 
case (Case 2) and a low-certainty (Case 3) 

Unit Number 
Confidence Interval, 

Case 1 

Confidence Interval, 

Case 2 

Confidence Interval, 

Case 2 

1 [-7.9, -4.3] [-6.88, -5.32] [-9.04, -3.16] 

2 [0.69, 0.69] [0.69, 0.69] [0.69, 0.69] 

3 [-1.4, 2.1] [-0.47, 1.10] [-2.43, 5.06] 

4 [2.3, 6.7] [2.92, 6.08] [0.98, 8.04] 

5 [7.6,7.6] [7.6,7.6] [7.6,7.6] 

 

 

The longer, wider distributions (Case 3, + curves) are the random variables resulting from 

a less certain expert, who provided wider confidence intervals.  It is evident that 

variances depend significantly upon the confidence intervals provided by the expert.  

Lower variances are associated with tighter confidence intervals provided by the expert 

for the hydraulic conductivity data, and higher variances with wider confidence intervals.  

More importantly, small variations in the expert’s certainty regarding model input 

parameters can produce larger changes in the model output random variables (Figure 

8.3). 

8.3. Random Set Uncertainty 

 

 An approximation of a hydraulic conductivity subdomain’s uncertain hydraulic 

conductivity is the discrete CDF calculated from the available measurements in that 
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subdomain.  However, as stated above, these individual measurements are, themselves, 

uncertain.  Intuitively, then, this measurement error warrants characterization before the 

subdomain’s hydraulic conductivity random variable can be defined.  Rather than restrict 

an expert to a single interval in an attempt to capture both the measurement error as well 

as the stochasticity of hydraulic conductivity throughout a particular hydraulic 

conductivity zone, it is more intuitive to permit the expert to opine upon the uncertainty 

in the measurement values that helped determine the random variable in the Monte Carlo 

approach, above.  It has been demonstrated that an appropriate expert can opine upon the 

uncertainty of hydrogeological measurements simply by assigning an interval in which 

the true value is expected to lie (Mathon et al, 2008).  For example, knowing the 

measuring device (i.e. pump test, slug test), and expert can simply define such an interval 

by stating that the true value lies within x orders of magnitude of the measured value.  

Thus, in any one hydraulic conductivity subdomain with m equiprobable measurements, a 

collection of m equiprobable intervals is defined, representing m uncertain measurements.  

Where the measurements are used to construct a discrete CDF, these expert-provided 

intervals essentially bracket the unknown true random variable hydraulic conductivity 

(i.e. Figure 8.4).  A collection of these random intervals (Helton and Oberkampf, 2004; 

Joslyn and Kreinovich, 2005), or random sets, are isomorphic to a Dempster-Shafer body 

of evidence (Joslyn and Booker, 2004).  In this framework, a random set A and associated 

probability function m are collectively referred to as a focal element {A, m)}.  A random 

set can be transformed into upper and lower probability bounds, around the unknown true 

random variable, called belief, bel(A), and plausibility, pl(A). 
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    A       B 

 

             C 
Figure 8.4. Cumulative random set hydraulic conductivity values for Zone 1 (A), Zone 2 (B) and 

Zone 5 (C), determined by the +/- two orders of magnitude uncertainty on available measurements 

Because the random set definition requires less precision from the opining expert, the 

resulting belief and plausibility functions do not impose false precision in the parameter 

uncertainty characterization and avoid any inaccuracies that result from forcing an expert 

to provide a single random variable.  Moreover, no probability model need be selected or 

assumed, which is desirable in light of the above-mentioned inaccuracies in the 

lognormality assumption for hydraulic conductivity. 
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 Formally, a hydraulic conductivity random set (A, mA), is defined on the 

Cartesian product K=K1×…×Kn1, where Kj denotes the domain of the hydraulic 

conductivity value and n1 is the number of uncertainty hydraulic conductivity zones (in 

the trial case, n1 = 3).  In this formal definition, mA is a function mapping elements, IA ∈  

A, of A to the interval [0, 1], 
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Since the conductivity zones are assumed uncorrelated in the trial case presented herein, 

the n1-dimensional random sets are marginalized to random sets (Aj, ), j = 1,…,n1, 

defined solely upon the individual domains K

j
Am

j.  In other words, one can specify (A, mA) 

by means of n1 stochastically independent random sets. 

 Each of these random sets is comprised of a finite number of intervals , jAI ∈
jAI

)

Aj, 

or focal elements, each associated with a probability mass assignment .  The 

propagation of the random set-based hydraulic conductivity values necessitates the use of 

a tool to extend the flow and transport model such that it can operate upon these focal 

elements.  Such an extension would permit the calculation of concentration focal 

elements that can be aggregated into a concentration random set at each location 

throughout the spatial domain. 

( AIm
j
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 Consider the extension of the transport model y = f(x), where x = (x1,…,xn1) is the 

vector of uncertainty conductivities in n1 zones and y = (y1,…,yn2) is the vector of 

uncertain concentration values at n2 nodes.  Assuming, without loss of generality, that n1 

= 1 and K1 = Ω = {k1,…,kL}, the domain of L possible hydraulic conductivity values, 

where focal elements are subsets of Ω.  The random set extension principle (Dubois and 

Prade, 1991) defines the random set concentration (B, m) at node i as 

 

})({ AIIfB AA ∈=  

 

and 

 

)}()({)( ABAB IfIImIm ==  

 

where IB represents a focal set of concentrations that is an image of a hydraulic 

conductivity focal element IA through the transport model f.  This concentration focal 

element is defined by 
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A significant drawback to the random set extension principle is its computational 

intensity, since a random set uses the power set of its domain rather than the domain 

itself.  Therefore, an approximation of the random set hydraulic conductivities, such that 
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the extended transport model can be carried out over Ω rather than its power set, is 

prudent. 

In general, simplifying or approximating a random set means approximating it by 

another random set, in which the number of subsets containing relevant informations is 

reduced (Bauer, 1996).  One approach to approximate a random set that, presented in 

Dubois and Prade (1990), is adopted in this paper.  This approximation uses the following 

steps: 1) formation of a collection of subsets of the original hydraulic conductivity 

domain Ω, and 2) allocation of basic probability masses to the sets from the first step 

using a process that is optimal in the sense that the resulting hydraulic conductivity focal 

elements of the approximating random set are the smallest in size, effectively minimizing 

the amount of imprecision introduced by the approximation. 

Approximating a random set by the method above results in nested focal 

elements, which comprise a fuzzy set F (Klir and Yuan, 1995), a special type of random 

set.  This fact permits the solution of the transport model over the domain Ω, rather than 

its power set.  For the exact representation of the approximating conductivity fuzzy set on 

Ω, the membership function is calculated by the one-point coverage function (Goodman 

and Nguyen, 1985) for random sets: 
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where Ci are the focal elements of the approximating hydraulic conductivity random set 

and µF denotes the membership function of the fuzzy set F.  This fuzzy set representation 
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of the uncertain hydraulic conductivity values allows for the use of the special case of the 

extension principle, described above, for fuzzy sets (Dubois and Prade, 1991): 

 

for all y  f(Ω): )}()(sup{)()( kfyky FFf == µµ   

 

where µf(F) represents the membership function of the fuzzy concentration at a given 

node. 

 Where fuzzy sets are used to approximate random sets, the application of the 

extension principle (Klir and Yuan, 1995) to the model equations is relatively 

straightforward and has precedent in hydrogeological applications (Dou et al, 1995; Dou 

et al, 1997a,b; Prasad and Mathur, 2007).  Nevertheless, in this case the vertex method 

(Ross, 2004), an approximation to the extension principle, was applied.  The vertex 

method results in, for each α-cut (an interval created by the horizontal cut of a fuzzy set 

at a given α, or membership value), eight concentration values at each location due to the 

eight possible permutations of the three lower and three upper hydraulic conductivity 

bounds (from three uncertain hydraulic conductivity values) of the α-cut.  The minimum 

of these eight values is taken as the lower bound of the concentration α-cut, and the 

maximum is assigned as the upper bound.  If the function being extended (i.e. the 

transport model) is nonlinear with respect to its variables (in our case three hydraulic 

values) then there is a possibility that the function will take smaller or larger values for a 

combination of three hydraulic conductivity values that are not necessarily a permutation 

of the bounds, but rather sampled anywhere within their respective α-cuts.  If one 
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computes with the eight concentration values, one essentially assumes that the 

concentration at that node cannot get any smaller than the minimum of the eight values 

and it can not get any larger than the maximum of the eight values.  In other words one 

admits that there is no need to investigate the entire hydraulic conductivity α-cuts in order 

to determine the α-cut bounds of the concentration at any node.  In this exercise, it is 

assumed that the concentration variation over the α-cuts of the fuzzy hydraulic 

conductivities is essentially monotonic. Therefore, it suffices to evaluate the 

concentrations at the bounds of the hydraulic conductivity α-cuts, as accomplished by the 

vertex method. 

 Figure 8.5 provides examples of a fuzzy set defining an uncertain hydraulic 

conductivity value.  The interpretation of these fuzzy sets in Figure 8.5 that is most 

pertinent to this topic is that of a possibility distribution (Zadeh, 1978).  Where model 

inputs are defined as fuzzy sets, model estimates of concentration are interpreted as 

possibility distributions.  A possibility distribution defines for each value along the 

horizontal axis the degree to which that value is possible, given available evidence.  In 

Figure 8.5 (top left), for instance, the hydraulic conductivity value 9.9 × 10-4 feet/day is 

most possible.  This is similar to probability theory, whereupon inspection of the discrete 

probability distribution in Figure 8.3 reveals that the concentration at location {1107E, 

635N} is most probably 237.71 ppb. 
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    A       B 

       

           C 
Figure 8.5. Possibilistic approximations for the random set provided by the expert for the 
hydraulic conductivity values associated with Zone 1 (A), Zone 2 (B) and Zone 5 (C).  The 

hydraulic conductivity values for Zones 3 and 4 are considered certain and precise 

 

 Whereas, through the transformation to fuzzy sets, random sets offer a relatively 

facile strategy to computation with uncertainty, the most significant advantage to the 

random set approach is its potential to characterize both aleatory and epistemic 

uncertainty.  Their foundation lies in probability theory, which, as mentioned above, is 

ideally suited for aleatory uncertainty characterization.  On the other hand, random sets 

are less specific, or less precise, than random variables (Joslyn and Booker, 2004).  This 
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imprecision is a form of epistemic uncertainty.  An expert who provides a body of 

evidence to characterize the uncertainty regarding some hydraulic conductivity 

measurement actually admits these two forms of uncertainty.  The natural randomness 

(aleatory uncertainty) of hydraulic conductivity is captured by the stochastic nature of 

random sets.  Due to an expert’s inability (epistemic uncertainty) to precisely define this 

natural randomness, a random set merely provides bounds on the exact random variable, 

imprecisely defining the random variable. 

 The starting point for the application of random set-based uncertainty 

characterization is similar to the probabilistic approach above.  Given the measurements 

in each zone in Figure 8.1, the expert, armed with knowledge of the measurement 

technique and aquifer characteristics, provides the afore-mentioned intervals on the each 

measured value by specifying that the true hydraulic conductivity value lies within +/- 

two orders of magnitude of the measurement.  As mentioned above, where the 

measurements in a particular zone are used to construct an approximate CDF, these 

expert-provided intervals become upper and lower bounds on the zone’s true random 

variable hydraulic conductivity.  Figure 8.4 shows these upper and lower bounds for 

zones one, two and five.  As in the Monte Carlo approach, the hydraulic conductivity 

values for zones three and four are considered certain and precise.  The possibility 

distribution approximations of these random sets are shown in Figure 8.5. 

 Though the set of intervals and associated probabilities provided by the expert are a 

natural extension of the confidence interval in the Monte Carlo approach above, they 

comprise a greater amount of information.  As such, the bodies of evidence in provided 
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by the expert capture both the uncertainty surrounding the mean hydraulic conductivity 

values and the imprecision with which the expert can truly characterize this uncertainty. 

 Using the transformations summarized above, the bodies of evidence for each 

formation were ultimately converted to possibility distributions (Figure 8.5).  The vertex 

method (Ross, 2004), an approximation to the extension principle, was applied to the 

finite element approximation equations of the groundwater flow and transport model in 

order to propagate the possibilistic uncertainty through to the concentrations values.  As a 

result, uncertain concentration estimates are described by possibility distributions.  The 

possibilistic concentration values can be transformed into upper and lower bounds on the 

unknown random variable.  The resulting bounds for the nodes of interest are plotted in 

Figure 8.6 with the corresponding random variables in cumulative distribution function 

form (dashed lines) from Figure 8.3. 

 

8.4. Discussion of Results 

 

 The outcomes of the two approaches to uncertainty characterization are 

significantly distinct.  Intuitively, the strictly probabilistic approach produces random 

variable concentration values, whereas the random set-based approach results in upper 

and lower probability bounds.  Assuming that uncertainty in both approaches was 

characterized by the same expert or different experts with the same understanding of 

pertinent data, the upper and lower probabilities should bracket the corresponding 

probability distribution (produced by the stochastic approach) at a given location. 
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    A       B 

 

    C       D 
Figure 8.6. The cumulative belief and plausibility curves are quite narrow and do not entirely 

bound the corresponding cumulative distribution function for nodes 234 (B) and 162 (C), but are 
rather wide and do bound the cumulative distribution functions for nodes 400 (A) and 190 (D) 

 

 Consider the same nodal locations whose random variables are plotted in Figure 

8.3.  The upper and lower probabilities for these same nodal locations are plotted in 

Figure 8.6.  Note that, at some nodes, the upper and lower probabilities entirely bound the 

corresponding random variable, whereas, other nodes do not entirely bound the 

corresponding cumulative distribution function. 
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 Upon inspection of the variance contours in Figure 8.2 and the probability 

distributions in Figure 8.3, it is evident that the uncertainty (variance) associated with 

concentration values changes throughout the spatial domain.  Those concentration values 

with lower variances are presumably more certain than those values with high variances, 

though higher variances may also be associated with means of greater magnitude.  

Random set-based probability bounds, however, are independent of the magnitude of the 

concentration values and provide a true means of uncertainty identification.  Wider 

intervals signify more uncertainty in concentration estimates, and, as a result, locations 

where more data is warranted.  For instance, the estimate in Figure 8.6D is more 

uncertain than that in Figure 8.6B and, as such, is in need of additional data. 

 

8.5. Conclusions 

 

 Because thorough hydrogeological investigations cost significant amounts of 

money and time, an efficient means of data acquisition is valuable.  One such means is 

expert knowledge extraction for uncertainty characterization.  Uncertainty has two forms, 

aleatory and epistemic, and expert insight has generally applied to the characterization of 

aleatory, or irreducible, uncertainty.  However, inherent in human thought, is a certain 

degree of epistemic, or reducible, uncertainty.  Thus, appropriate characterizations of 

expert knowledge should represent both uncertainty types. 

 Probability theory requires extraordinary precision of an expert and is not well 

suited for uncertainty characterization.  The hazard associated with applying traditional 
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probability theory is that the opining expert may provide inaccurate and artificially 

precise characterizations of the random variable that best captures the naturally stochastic 

nature of hydraulic conductivity. 

 Random sets were introduced in this paper as a more appropriate means to the 

characterization of both aleatory (the random variable) and epistemic (expert-

characterized measurement error) uncertainty.  This method of uncertainty 

characterization provides a means of bounding this true, yet unknown random variable, 

accurately capturing the imprecise nature of expert knowledge.  It is important to 

reiterate, as well, that uncertainty characterization via random sets eliminates the need for 

any model definition or assumption. 

 Computationally, the application of the vertex method provides a direct approach to 

operating upon fuzzy-based transformations of random set data with standard modeling 

equations.  Because the vertex method is based upon interval arithmetic, little knowledge 

of fuzzy set theory is required for its implementation.  Though the extension principle 

provides greater accuracy, it is more computationally intensive than the vertex method, 

and the latter approach is a fair approximation to the extension principle given the 

perceived monotonicity of the concentration values with α-cuts of the input hydraulic 

conductivity values. 

 While the representation of model concentration estimates as upper and lower 

probabilities provides a transparent comparison between the random variable and random 

set approaches defined above, the utility of data in such a form may not be immediately 

obvious. Nevertheless, the representation of concentration estimates as possibility 
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distributions, a form equivalent to the probability bounds, user-friendly.  Inspection of a 

possibility distribution reveals not only the most possible concentration value, but also a 

range of concentrations that are also possible to lesser and varying degrees.  In fact, 

algorithms have been developed to complement and update possibilistic model estimates 

with updated information (Fruhwirth-Schnatter, 1993; Pan and Klir, 1996; Yang, 1997; 

Ross et al, 2007). 
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CONCLUSIONS 

(These conclusions are the individual conclusions copied from each of the Chapters 2 through 8) 
 
 

Fuzzy Spatial Reasoning for Reservoir Characterization 

 

 The application of fuzzy inference to the definition of spatial relations, herein 

referred to as fuzzy spatial reasoning, is well suited for reservoir characterization.  It has 

been demonstrated that fuzzy sets and fuzzy logic can capture expert knowledge 

regarding the spatial relationship between objects as well as the relationship between 

hydrologic parameters and soil formations.   

Arguably, the value of expert data relies greatly upon the experts who opine on the 

desired topic.  Experience shows that it is important that the proper questions are posed to 

the experts in order to obtain the desired information in an efficient manner.  In this vein, 

a considerable amount of research has been directed toward data acquisition for fuzzy 

system definition (Onisawa and Anzai, 1999). 

 The greatest value of fuzzy spatial reasoning would be realized in the application to 

the comprehensive modeling of the effect of glacial, aeolian and hydrologic dynamics 

upon geology.  Again, the knowledge capture process toward this end would likely be an 

arduous task.  Nevertheless, it is possible that a series of simple rules can approximately 

capture the physics of complex depositional processes.  Such an endeavor is well beyond 

the scope of this paper, though the groundwork was certainly laid above. 
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General and Site-Specific Means of Defining Fuzzy CPT-Based Soil Classification 

 

 In this paper, two new approaches to identifying soil classes based upon CPT 

sounding data are introduced.  The site-specific approach utilizes kernel-based fuzzy 

clustering, whereas a more another soil classifier was attempted using fuzzy rules. 

The improvements of the new approaches over traditionally employed charts for the 

classification of soil samples are meaningful and demonstrate promise in fuzzy-based 

classification tools.  The most significant characteristic of the new methods, however, is 

the representation of soil classes with gradually changing boundaries.  With such 

boundaries, one can represent a number of the soil types in the Robertson chart (i.e. silty 

clay, sandy silt) with just three fuzzy soil classes (clay, silt and sand).  For example, a 

data point that has membership in both the clay and silty classes, greater in the former 

than the latter, can be classified as a silty clay. 

While the performance of the kernel-based fuzzy classification was inferior to that of 

the fuzzy rule-based classification, it is appealing in its strict dependence upon the site 

data.  At any site, a unique fuzzy classification chart can be constructed.  Moreover, the 

kernel-based approach marks a first attempt to fuzzify soil classification charts in the vein 

of Begemenn (1963) and Douglas and Olsen (1981). 

 The fuzzy rule-based approach, however, is considered more promising due to its 

higher classification success rate over both the kernel-based approach and traditional 

classification charts.  It is expected that, with the consideration of more data, the rules 
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would frame a logic that provides a more universal appeal.  Furthermore, the generality 

and transparency of the fuzzy rule-based approach make it an attractive classification 

method. 

 

Hydraulic Conductivity Estimation via Fuzzy Analysis of Grain Size 

 

 Crisp estimates were obtained by defuzzification of the fuzzy estimates (Table 4.4).  

TThe table also gives the measured hydraulic conductivity values for the samples.  All 

estimated values are within two orders of magnitude of the corresponding measured 

value, which is considered reasonable inasmuch as hydraulic conductivity values may 

vary by up to five orders of magnitude if there are small differences in the percentages of 

the fine fractions (Koltermann and Gorelick, 1995).  Also relevant is the interpretability 

of the results.  With the fuzzy reasoning process, one can understand how the estimates 

are calculated.  For instance, it is evident that the second hydraulic conductivity estimate 

in Table 4.5 is lower-valued than the other three estimates because the aggregate 

estimated hydraulic conductivity fuzzy set in Figure 4.10B has high memberships for 

lower hydraulic conductivity values.  Thus, when this fuzzy set is defuzzified, the lower 

values of hydraulic conductivity are weighted more heavily than in the other samples’ 

estimated hydraulic conductivity fuzzy sets in Figure 4.10.  The higher memberships for 

lower-valued hydraulic conductivity values in this fuzzy set directly result from the 

significant overlapping of the grain size distribution and borehole log description fuzzy 

sets with the Clay soil type fuzzy set during inference. 
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In many applications, borehole log data are not only more prevalent than grain size data, 

but often are the only types of data available.  Considering this, an investigation was 

made into the reliability of estimates resulting from just the expert fuzzy characterization 

of borehole log descriptions of the soil samples.  For completeness, the scenario where 

only grain size distribution data are available was also evaluated.  The results of these 

investigations are summarized in Table 4.5.  In general, for this set of data, it is difficult 

to distinguish which form of data is more accurate.  However, estimates stemming from 

both forms of data are still within two orders of magnitude of the measurements.  Both 

types of data are not required to produce acceptable estimates.  It has been shown that the 

use of only one data type in the fuzzy reasoning process can still lead to relatively 

accurate results. 

 Ideally, for the generation of realizations in groundwater modeling, measures of 

uncertainty should accompany hydraulic conductivity estimates.  However, the issue of 

uncertainty in the results is not addressed since this is a budding area of fuzzy logic, and 

definitive answers regarding the uncertainty of the fuzzy estimates are unavailable.  A 

thorough description of uncertainty of fuzzy sets would be requisite and is beyond the 

scope of this research. 

 The soundness of this approach to hydraulic conductivity estimation relied greatly 

upon the definition of the original soil type and hydraulic conductivity fuzzy sets that 

were used for reasoning.  More accurate estimates could be produced had more data from 

the CIBA-Geigy Superfund site been available.  With more data, the soil type and 

hydraulic conductivity fuzzy sets could have been constructed to respect the site data, 
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thus producing better hydraulic conductivity estimates for that particular site.  This would 

be true for any site with sufficient soil data.  However, given that experts in 

hydrogeology defined these fuzzy sets, the reasoning process is considered sound and 

generally applicable to any site with reasonable accuracy. 

 

Fuzzy Kalman Filtering of Hydraulic Conductivity 

 

 By contrasting the corresponding contours in Figure 5.4 and Figure 5.5, two 

differences are evident.  The first difference is intuitive.  When crisp measurements are 

introduced to update the fuzzy estimates, the fuzziness of the estimates (how wide the α-

cuts are) can only be reduced since the crisp measurements contain no fuzziness, making 

the fuzzy model more precise.   

 Secondly, in the contour plots of Figure 5.4, there are axes of symmetry, roughly 

illustrated by the dashed black lines in Figure 5.4A.  This symmetry, however, is missing 

from the corresponding contour plot in Figure 5.5A.  This is due to the influence the crisp 

measurements have upon the final estimates, presumably defining a posterior model that 

more accurately represents the true trends present at the site. 

 At measurement locations, the fuzzy estimates are made very precise and close in 

value to the corresponding crisp measurements.  However, unlike the traditional Kalman 

filter algorithm, these posterior estimates at measurement locations are not made identical 

in value to the crisp measurements.  This is a byproduct of the difference in data types 

between the measurements and prior estimates, and is not considered an inconsistency.  
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As Figure 5.6 shows, the posterior fuzzy estimates are quite similar to the corresponding 

crisp values. 

 Presented here was an alternative to using fuzzy information in conjunction with 

crisp data in a hydrogeological setting.  By using Kalman filtering, each data type is used 

in a manner that respects its relative credibility.  What results is a rather precise fuzzy 

field that presumably captures the trends inherent in the model.  This fuzzy model may be 

defuzzified to create a crisp hydraulic conductivity field for input into traditional 

groundwater flow models, or may be left fuzzy to be used in fuzzy-friendly groundwater 

flow models (Dou et al, 1995; Dou et al, 1999).  Further investigation is provided in the 

next chapter. 

 

Kalman Filter Updating of Possibilistic Hydraulic Conductivity 

  

 The posterior estimated crisp K-field (Figure 6.11A) reveals some phenomenon 

that are absent from the estimated K-field that resulted from simply kriging the 17 

hydraulic conductivity measurements (Figure 6.11B).  The fuzzy Kalman filtering K-field 

shows that the area of low hydraulic conductivity in the northeast section of the spatial 

domain is larger than that produced by the K-field produced by kriging crisp 

measurements.  Furthermore, the updated K-field reveals less continuity of higher 

hydraulic conductivity than is evident in the kriging-only K-field.  An additional patch of 

high hydraulic conductivity is evident in the east of the updated figure.  These results are 

confirmed by the soil samples evaluated in boreholes in those respective areas of the 
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domain (Table 6.2).  The summary statistics mathematically confirm the differences 

between the K-fields in Figure 6.11 (Table 6.3).  Lower K values implied by the 

boreholes lead to a lower mean value for the updated K-field than for the traditionally 

determined K-field.  Nevertheless, expert knowledge suggests a greater range of K values 

for the K-field in Figure 6.11A.  Certainly, the differences between a traditionally 

determined K-field and a K-field augmented by expert knowledge should be greater 

where soil data and expert knowledge reveal hydrogeological formations not identified 

by traditional hydraulic conductivity measurements.  Nevertheless, the consideration of 

additional data sources can certainly enhance site characterization.  By incorporating the 

additional soil data in the form of quantified boring logs in this case, fuzzy Kalman 

filtering permitted both an appropriate approach to aggregate fuzzy and crisp data and a 

more accurate hydrogeological characterization of the CIBA-Geigy remediation site.  

 Previous approaches to incorporating fuzzy and crisp data in hydrogeological site 

characterization have suggested that fuzzy and crisp data be used in conjunction.  

Generally, fuzzy data results from expert knowledge.  The nature of expert knowledge 

suggests that it should be used to produce a best first guess of the hydraulic conductivity 

field to be updated by more certain and precise data resulting from direct measurements.  

The fuzzy Kalman filtering algorithm presented herein takes this more intuitive approach 

to hydrogeological site characterization with expert knowledge.  Nevertheless, it is not 

the first and only method to attempt to treat expert knowledge in this manner. 

 Algorithms have been developed to update kriged priors with additional data in a 

Bayesian context (Omre, 1987; Bandemer and Gebhardt, 2000).  While a comparison 
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between the proposed Kalman filtering approach and the Bayesian fuzzy kriging method 

herein may seem prudent, the two methods are quite dissimilar in their intentions.  

Whereas the fuzzy Kalman filtering algorithm uses expert knowledge of hydraulic 

conductivity directly in the form of fuzzy numbers, Bayesian fuzzy kriging is built for 

expert knowledge regarding the first and second moments of trend parameters.  As such, 

further research is necessary to develop a Bayesian updating scheme that revises expert-

provided fuzzy K values with crisp measurements. 

 

Respecting Correlation While Modeling with Possibilistic Data 

 

 The use of expert knowledge in engineering applications is easily used when such 

information is characterized with fuzzy sets.  This is evident in groundwater flow and 

transport modeling, where fuzzy valued model input parameters such as hydraulic 

conductivity have been defined by experts.  Whereas fuzzy set- and fuzzy logic-based 

approaches to propagating the uncertainty characterized by fuzzy sets and possibility 

distributions are adequate in some applications, they are impractical for groundwater 

modeling because they are strongly rooted in fuzzy set theory and fuzzy logic.  The fLHS 

algorithm offers an alternative approach to uncertainty modeling that borrows some 

techniques from stochastic modeling. 

 By taking advantage of the properties of a possibility distribution, the fLHS 

algorithm used a modified fuzzy numerical sampling scheme to sample from equi-

probable focal elements.  In cases where the number of realizations is high, the fLHS 
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algorithm essentially amounts to sampling the convex hull of the possibilistic model 

parameters.  Though this process sounds similar to the vertex method and interval 

analysis, these methods, like the extension principle, fail to respect the correlation of the 

spatially distributed model inputs.  In order to respect this spatial correlation, steps were 

borrowed from LHS, whereby the sample realization matrix is operated upon and 

permuted.  The result is M individual realizations that are consistent with the physics of 

the field. 

 It is clear that the error between the most possible values of the model parameters 

and the calculated means of the sampled realizations is minimal after a small number of 

realizations (Figure 7.4).  The convergence of the model concentration estimates was 

confirmed by sampling 10000 realizations for the simplified Woburn example; the 

contour plot of the most possible nodal concentration values was identical to Figure 7.9. 

 Even though concentration estimates are easily reduced to means and variances, 

this is inconsistent with the manner in which input model uncertainty is characterized.  

As such, each node’s concentrations estimates are interpreted in a possibilistic manner.  

Since concentration estimates defined by possibility distributions may not be ideal, the 

most possible value at each node is taken, in order to plot the resulting concentration 

field.  In stochastic modeling, this is analogous to considering only the most probable 

value at each node, as determined from a histogram.  The analogy to mean values in 

possibility distribution amounts to defuzzifying (Klir and Yuan, 1995) the possibility 

distributions. 
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Aleatoric and Epistemic Uncertainty in Groundwater Simulation  

 

 Because thorough hydrogeological investigations cost significant amounts of 

money and time, an efficient means of data acquisition is valuable.  One such means is 

expert knowledge extraction for uncertainty characterization.  Uncertainty has two forms, 

aleatory and epistemic, and expert insight has generally applied to the characterization of 

aleatory, or irreducible, uncertainty.  However, inherent in human thought, is a certain 

degree of epistemic, or reducible, uncertainty.  Thus, appropriate characterizations of 

expert knowledge should represent both uncertainty types. 

 Probability theory requires extraordinary precision of an expert and is not well 

suited for uncertainty characterization.  The hazard associated with applying traditional 

probability theory is that the opining expert may provide inaccurate and artificially 

precise characterizations of the random variable that best captures the naturally stochastic 

nature of hydraulic conductivity. 

 Random sets were introduced in this paper as a more appropriate means to the 

characterization of both aleatory (the random variable) and epistemic (expert-

characterized measurement error) uncertainty.  This method of uncertainty 

characterization provides a means of bounding this true, yet unknown random variable, 

accurately capturing the imprecise nature of expert knowledge.  It is important to 

reiterate, as well, that uncertainty characterization via random sets eliminates the need for 

any model definition or assumption. 
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 Computationally, the application of the vertex method provides a direct approach to 

operating upon fuzzy-based transformations of random set data with standard modeling 

equations.  Because the vertex method is based upon interval arithmetic, little knowledge 

of fuzzy set theory is required for its implementation.  Though the extension principle 

provides greater accuracy, it is more computationally intensive than the vertex method, 

and the latter approach is a fair approximation to the extension principle given the 

perceived monotonicity of the concentration values with α-cuts of the input hydraulic 

conductivity values. 

 While the representation of model concentration estimates as upper and lower 

probabilities provides a transparent comparison between the random variable and random 

set approaches defined above, the utility of data in such a form may not be immediately 

obvious. Nevertheless, the representation of concentration estimates as possibility 

distributions, a form equivalent to the probability bounds, user-friendly.  Inspection of a 

possibility distribution reveals not only the most possible concentration value, but also a 

range of concentrations that are also possible to lesser and varying degrees.  In fact, 

algorithms have been developed to complement and update possibilistic model estimates 

with updated information (Fruhwirth-Schnatter, 1993; Pan and Klir, 1996; Yang, 1997; 

Ross et al, 2007). 
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