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Abstract

The dynamical evolution of an ultrawideband electromagnetic pulse as it propagates through
a temporally dispersive and attenuative medium is a classical problem in electromagnetic
wave theory with considerable practical importance dating back to seminal works conducted
in 1914. With the use of modern asymptotic theory and numerical techniques, propagation
of canonical pulses into complex (attenuative and dispersive) media have been analyzed
and recently extended to nonlinear materials. The materials of interest for this research are
modeled after realistic biological tissues. The mathematically rigorous and more accurate
physical model of electromagnetic energy transfer into the biological materials modeled
will be used as input to the FitzHugh-Nagumo circuit equivalent model for an excitable
neuron. This detailed analysis will provide a new point of view to working groups and
standardization committees in the field of non-ionizing radiation safety that is based on
so-called athermal effects.
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Notation

Notation Description

x(t) Scalar time domain
x (r, t) Scalar space-time domain
x(t) Vector time domain
x (r, t) Vector space-time domain
n̂ Unit vector
x̃(ω) Temporal Fourier transform of scalar
˜̃x(k, ω) Spatio-Temporal Fourier transform of scalar
x̃(ω) Temporal Fourier transform of vector
˜̃x(k, ω) Spatio-Temporal Fourier transform of vector
x̂(t) Time domain representation of frequency domain function
<{·} Real component of complex function
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Table 1: Commonly used notation.
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Chapter 1

Introduction

1.1 Motivation

Researches have been actively interested in the interactions of electromagnetic fields and

biological tissues for some time. The original discovery of X-rays in the late 1800’s (Röntgen

1895) and their applications to diagnostic radiology revolutionized medicine. However, this

new kind of ray that Röntegen had discovered is now known to be ionizing and has since

been shown to cause damage to living tissues. Exposure limits to ionizing radiation such as

Röntegen’s X-rays have been established by the United States Department of Labor under

Occupational Safety and Health Administration (OSHA) standard 1910.1096 for general

industry. However, OSHA does not have specific standards for non-ionizing radiation for the

regions of the electromagnetic spectrum including radiofrequency and microwave radiation

but does acknowledge that research is ongoing.

The interactions of non-ionizing radiation with biological tissues are of large concern

today and much is to be studied about the athermal, anything but heating, effects of

such interactions. It is largely believed that non-ionizing radiation is harmless below ex-

posures were heating occurs (Adair 2003) but the research provided assumes a continuous,

monochromatic signal with no mention of transient phenomena or pulsed fields associated

with radar and mobile communications. Pulsed fields and transient phenomena are of

1



central importance to biological response to applied fields since action potential threshold

response is dependent on the rate of rise of the applied voltage (Cole 1955) and it has been

shown that exposure to stimuli can cause (Carpenter, Sage, et al. 2007):

1. Direct molecular effects

• DNA damage

• Membrane perturbations

• Protein function alterations

2. Indirect molecular effects

• Cell signal transduction

• Gene expression

3. Phenotypic effects

• Cell apoptosis

• Cell cycle perturbation

• DNA repair

• Differentiation and development

• Carcinogenesis

• Growth

This dissertation examines membrane perturbations leading to membrane breakdown, and

cell signal transduction. A neuron is an example of an excitable cell that creates an action

potential when its membrane voltage is perturbed beyond a threshold, as discussed in chap-

ter 4. These action potentials are a voltage signal that propagates down an axon allowing

the cell to communicate with other neurons.

The current limits for non-ionizing radiation are set by the IEEE C95.1 Standard for

Safety Levels With Respect to Human Exposure to Radio Frequency Electromagnetic Fields,

2



3kHz to 300GHz and are illustrated in Fig. 1.1. This standard is based solely on the thermal
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Figure 1.1: IEEE C95.1 standard for non-ionizing radiation.

interactions provided by specific absorption rates (SAR) defined as

SAR =
σ

%
|ERMS |2 W/kg, (1.1)

where σ is the conductivity of the tissue, % is the mass density and ERMS is the root

mean square value of the electric field. The specific absorption rate expresses how much

power is absorbed by the tissue in Watts/kg. For frequencies up to 10GHz field strengths

of 1W/cm2 for 100 seconds will burn the skin. However, as frequencies are increased more

energy is absorbed closer to the surface, resulting in skin burns from a power density of

only 200mW/cm2 for 100 seconds, for frequencies in the tens of gigahertz (Taylor and Giri

1994).

Far from being a theoretical concept Brillouin precursors are being utilized in recent

ultrawideband imaging technologies and in USAF research on improved airborne surveil-

lance (Slesin 2002c). Despite evidence for the existence of Brillouin precursors being of

3



biological significance, however, they were rejected for consideration by the IEEE’s stan-

dard setting committee. The committee’s reason was because there was no “evidence in

the peer-reviewed scientific literature supporting Brillouin precursors as being biologically

important at radio frequencies” (Slesin 2002b). Physicist Robert Adair went further in

claiming that Brillouin precursors were far too weak to ever effect biology and that Al-

banese and Oughstun were practicing voodoo science. Adair also stated that the claims

of possible hazards from Brillouin precursors were “damaging to the Air Force and in its

role in defense of the United States – my country – and my Air Force” (Slesin 2002a).

Independent research (Maisch 2010) has concluded

It can be argued that on one level Adair is correct about the danger posed

by work of Albanese and Oughstun on Brillouin Precursors. If their alleged

bioeffect on the human body was established by further research/replication

studies and peer reviewed publishing it would invalidate the whole concept of

safety through SAR calculations that lay at the foundations of both IEEE C95.1

and International Commission on Non-Ionizing Radiation Protection (ICNIRP).

Additionally, since Brillouin precursors carry energy further into dispersive materials and

would provide pulses for biological imaging as well as therapy.

In a January 11, 2001, letter from Senator Edward M. Kennedy to the Secretary of

the Air Force, F. Whitten Peters, Kennedy asked that the Air Force fund an independent

study through the National Research Council of the National Academies “to examine the

health effects of the PAVE PAWS system.” This recent study (Barnes 2005) conducted

by The National Research Council of the National Academies was requested by Senator

Edward Kennedy and has explored possible health effects of exposure to PAVE PAWS

(Precision Acquisition Vehicle Entry Phased Array Warning System) a low-level phased-

array radio frequency energy radar system located at Cape Cod Air Force Station in Cape

Cod, Massachusetts. The report describes physical mechanisms for radiofrequency effects

on biological systems and begins with noting the depth of penetration into typical biological
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materials being 3-4 cm but up to 16 cm in bone at 433MHz. What the report fail to mention

is the reflection coefficients for these materials and the possible biological significance of

precursor fields. However, the committee did acknowledge that precursors can be formed

at radio and microwave frequencies in water, a large component of biological tissues.

The newly completed ten year INTERPHONE study (Cardis, Deltour, Vrijheid, Com-

balot, Moissonnier, Tardy, Armstrong, Giles, Brown, Siemiatycki, et al. 2010) shows that

there is an increased risk of malignant tumors in the tissues of the nervous system by 40%

with 1640 hours or more of use on the side of the head used most for communications with

mobile devices. The report concludes

Overall, no increase in risk of glioma or meningioma was observed with use of

mobile phones. There were suggestions of an increased risk of glioma at the

highest exposure levels, but biases and error prevent a causal interpretation.

The possible effects of long-term heavy use of mobile phones require further

investigation.

this succinct communication further stresses the necessity for additional research.

In contrast to this longterm study a separate experimental trial (Volkow, Tomasi, Wang,

Vaska, Fowler, Telang, Alexoff, Logan, and Wong 2011) was conducted in which the glucose

metabolism of the brain in 47 healthy participants was monitored while a cell phone was

either in the on or off state. The subjects of the study were placed in a fMRI (functional

magnetic resonance imaging), which was used to measure glucose metabolism throughout

the brain. Glucose metabolism is an indication of neuron activity as the cells requires the

energy provided by the glucose to pump ions across their membranes. Additionally, the

subjects in the study did not know if the mobile communication device was in the on or off

state. Their results

Whole-brain metabolism did not differ between on and off conditions. In con-

trast, metabolism in the region closest to the antenna (orbitofrontal cortex

and temporal pole) was significantly higher for on than off conditions (35.7 vs
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33.3µmol/100 g per minute; mean difference, 2.4 [95% confidence interval,0.67−

4.2]; P = .004). The increases were significantly correlated with the estimated

electromagnetic field amplitudes both for absolute metabolism (R = 0.95, P <

.001) and normalized metabolism (R = 0.89;P < .001).

show statistical evidence that there is an intimate coupling between between radio frequency

fields transmitted by mobile communication devices operating inside current FCC standards

and human physiology.

1.2 Historical Overview

1.2.1 Quantitative Physiology

The earliest experiments and theory on the role of electricity in biological systems were

the works of Luigi Galvani who stimulated the muscle in frog legs with electricity. The

experimental setup is shown in Fig. 1.2. His first successful forced contraction of the frog leg

occurred when he touched the nerve with a pair of scissors during a lightning storm in 1786.

Galvani reassured himself that electricity was responsible for these muscular contractions

by repeated experimentation and eventually published his findings in 1791 as De viribus

electricitatis in motu musculari commentarius (“Commentary on the Force of Electricity

on Muscular Motion”).

Hodgkin and Huxley, along with others, generated a series of papers (Hodgkin, Hux-

ley, and Katz 1952; Hodgkin and Huxley 1952d; Hodgkin and Huxley 1952a; Hodgkin and

Huxley 1952c; Hodgkin and Huxley 1952b) from their empirical studies of the giant squid

axon for which they received the 1963 Noble Prize in Physiology or Medicine. This well

known work was instigated by theoretical work (Bernstein and Tschermak 1906) that was

presented almost half a century earlier. With the understanding that the cellular mem-

brane created ion gradients across its barrier and with the knowledge that the potassium

concentration inside the cell was relatively higher than in the extracellular fluid, Bernstein
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Figure 1.2: Galvani’s frog leg experiment.

was able to theoretically predict that the resting membrane potential of a cell would be

around −70mV using Nernst’s theory. Bernstein also knew that during active cellular com-

munications, potassium concentrations approached equilibrium. He assumed this was true

because of some form of breakdown in the cellular membrane, increasing permeability to

all ion species and hypothesized that the membrane voltage would tend to 0.

It was not until over 30 years later that the membrane potential was directly measured

(Curtis and Cole 1940). Not only did the membrane potential approach 0 during the

generation of an action potential but there was a significant transient overshoot in which

the membrane became hyperpolarized. This overshoot could not be explained by Berstein’s

hypothesis together with qualitative reasoning for the changes in the permeability of the

cellular membrane. Electrodes for measuring transient behavior in the squid giant axon

saw incredible improvement during this time period along with the development of the

space clamp technique (Marmont 1949). In this procedure, Marmont was able to virtually

eliminate longitudinal resistance of the axoplasm by threading a silver wire in the interior

of the axon, effectively shorting the internal resistance. The result of this is that a patch of
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the axon was at a potential equilibrium, thereby allowing for an uncorrupted measurement

of the axial membrane current.

Based upon their own experimental works, Hodgkin and Huxley then formulated an

analytical description of the membrane potential

Cm
dV

dt
= −gNa(V − VNa)− gK(V − VK)− gK(V − VL) + Iapp. (1.2)

Here Cm is the membrane capacitance, gNa is the sodium conductance, V is the transmem-

brane potential, VNa is the potential due to sodium, gK is the potassium conductance, VK

is the potential due to potassium, gL is the leakage conductance, VL is the potential due

to leakage, and Iapp is the externally applied current. The conductances can be summed to

form an effective conductance as geff = gNa + gK + gK and by taking the inverse of this

quantity the time constant for the parallel RC circuit representing the membrane is given

by τm = CmRm (Keener and Sneyd 1998).

In order to determine the complex dynamics of these species specific conductances

Hodgkin and Huxley employed the the voltage clamp technique. This clamp imposes a new

biased transmembrane voltage on the cell in a step like fashion and measures the trans-

membrane current being supplied that is necessary to keep the voltage offset. This new

empirical data created a new hypothesis and about the kinetics of the ionic currents. From

these data Hodgkin and Huxley were able to determine the analytical forms of conductances

and the behavior of their associated ion gates.

The Hodgkin-Huxley model for action potential propagation is quite complex and was

reduced from a four dimensional phase space to a two dimensional phase space (Fitzhugh

1960; Fitzhugh 1961; Fitzhugh 1969). The slow variable, the membrane voltage, has a

linearly increasing nullcline in the fast-slow phase plane while the fast variable, the capacitor

current, is nonlinear with a cubic shape. Shortly after FitzHugh published his work Nagumo,

an electrical engineer from Japan, built the circuit (Nagumo, Arimoto, and Yoshizawa 1962)

shown in Fig. 1.3 that FitzHugh had quantitatively described. This model is now known

as the FitzHugh-Nagumo model. The circuit consists of capacitor Cm, a nonlinear current-
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voltage element F (V ) represented by a tunnel diode, a passive resistance R, inductor L and

battery V0. With the use of Kirchhoff’s circuit laws the circuit is completely described as

Cm
dV

dt
+ F (V ) + i = −I0, (1.3)

L
di

dt
+Ri = V − V0, (1.4)

where Nagumo used Cm = 0.01µF, L = 4mH, V0 = 100mV, and R=500Ω.

Figure 1.3: Nagumo circuit for an excitable neuron.

1.2.2 Electromagnetics

The dynamical evolution of an ultrawideband, that is the rise or fall time of the pulse

exceeds the relaxation time of the media, electromagnetic pulse as it propagates through

a temporally dispersive and attenuative medium is a classical problem (Sommerfeld 1914;

Brillouin 1914; Brillouin 1960; Stratton 1941; Jackson 1999; Oughstun and Sherman 1994;

Oughstun 2006a; Oughstun 2009a) in electromagnetic wave theory with considerable prac-

tical importance (Bertoni, Carin, and Felsen 1993; Carin and Felsen 1995; Baum, Carin,

and Stone 1997; Heyman, Mandelbaum, and Shiloh 1999; Smith and Cloude 2002; Mokole,
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Kragalott, and Gerlach 2003), most recently being applied to airborne surveillance and

ground penetrating radar (Slesin 2002c), with seminal work conducted in 1914. These ini-

tial works due to Brillouin and Sommerfeld showed the evolution of forerunners or precursor

fields. This early work has been expanded on with modern asymptotic and numerical tech-

niques due to Oughstun and Sherman (Oughstun and Sherman 1989; Oughstun and Sher-

man 1990; Oughstun 1991; Oughstun and Sherman 1994; Oughstun and Sherman 1988).

The more recent description of the propagated field has corrected erroneous conclusions

of Brillouin and Sommerfeld that the amplitudes of these precursor fields are negligible

in comparison to the main signal component of the field. The plot in Fig. 1.4 shows an

input ultrawideband pulse Heaviside step function sine wave. The pulse was propagated
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Figure 1.4: Step function (dashed) modulated pulse of f(t) = sin(ωct) (solid) with ωc =
3× 1016r/s with turn on time equal to 10% of the carrier frequency period.

through a single resonance Lorentz model dielectric with model parameters ω0 = 4×1015r/s,

δ0 = 0.28× 1016r/s,b0 =
√

20× 1016r/s which were the values chosen by Brillouin (Brillouin

1914; Brillouin 1960). The propagated pulse, Fig. 1.5, shows the formation of both a Som-
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merfeld and Brillouin precursor field as well as the absence of the steady state signal. These

precursor fields are characteristic of the lossy, dispersive medium that the pulse propagates

through, with the input pulse providing the requisite energy for their formation.
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Figure 1.5: Propagated field structure at z = 20zd ∼ 1.19µm showing both Sommerfeld
and Brillouin precursor fields as well as the absence of the main signal.

In a medium that is nondispersive all spectral components of the input field would

propagate at the same phase velocity and attenuate at the same rate, that is the shape of

the field would be unaltered as it moved through this nondispersive medium only decaying

in amplitude. However, in a causal, dispersive medium each spectral component is absorbed

at its own rate increasing with distance into the material so that the relative energy of each

spectral component changes with propagation distance. Additionally, each monochromatic

component of this initial pulse propagates through the medium with its own phase velocity

causing a change in the phasal relation of each of the monochromatic spectral components.

It is these two simple, physical and necessary effects that dynamically modify the input

field as it propagates through a dispersive medium. These two effects are not independent
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but rather coupled in a very intimate manner by the requirement of causality (Toll 1956;

Nussenzveig 1972). When the initial pulse incident on the medium is sufficiently wideband,

that is has a sufficiently rapid rise-time, fall-time or amplitude change, these physical traits

of the dispersive, attenuative medium are manifested into the formation of these precursor

fields with the initial pulse providing the requisite energy (Oughstun 2006a).

Electromagnetic pulse propagation in dispersive, attenuative media continues to be an

area of much interest to not only academia but also industry. For example, dispersion

effects play a central role in the development of modern optical communication networks.

Accurate analysis of propagation of pulses used in optical communications often requires

the inclusion of nonlinear terms (Agrawal 1989). As the data rates of optical systems

continue to increase with commercially available products achieving rates over 300 Tbps

the temporal pulse widths will exceed the characteristic optical relaxation times and these

precursor fields will dominate the propagated signal (Oughstun 2006a).

Biological tissues are known to be highly dispersive with most tissues showing a similar

dispersion curve to that of water. Dispersion in water, as well as biological tissues, is due

to orientational polarization (Bohren and Huffman 1983) for frequencies f < 300GHz. For

higher frequencies f > 300GHz resonance polarization will dominate. Orientational polar-

ization is described by the Debye model (Debye 1929) or its Rocard-Powles extension (Mc-

Connel 1980). Brillouin precursor fields do dominate the evolution of an electromagnetic

pulse propagating through Debye like materials (Oughstun 2005) but have been ignored in

analysis of bioelectromagnetics until this point.

Recent work in bioelectromagnetics (Foster 2000) makes the statement that precursors

“do not have any apparent biological significance”. Foster does admit that biological tis-

sues are dispersive and that (ultra)wideband pulses experience an evolution leading to an

overall change in the profile of the pulse due to the complicated phasal and attenuative rela-

tions. Other researchers have created (Chen and Wang 1994) an anatomically correct voxel

based whole body model for calculating specific absorption rate (SAR) using numerical
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techniques. This model is compromised of 45, 000 cells and the input is an ultrawideband

half-cycle 40MHz sine wave with 1kV/m peak with a 12.5nS turn on time. The model

found maximum induced currents of 3.9A, 3.0A and 1.6A in the ankles, heart and neck,

respectively. However, the numerical simulation did not result in the creation of precursor

fields but this is excepted as the authors inappropriately ignored the known material dis-

persion by fixing their values at the carrier frequency of 40MHz. Even with exclusion of

precursor fields, which carry more energy into these materials, Chen found that 33% of the

external field is transmitted into the whole body model.

1.3 Thesis Overview

This thesis provides a theoretical description of the dynamical evolution of an ultrawide-

band electromagnetic pulse as it propagates through a temporally dispersive and attenuative

medium. Through the use of modern asymptotic theory and numerical techniques, prop-

agation of canonical pulses into complex media are analyzed and extended to nonlinear

materials. The materials of interest for this research are modeled after realistic biological

tissues. The mathematically rigorous and physically accurate model description of elec-

tromagnetic energy transfer into the biological materials modeled are used to determine

necessary field strengths for membrane breakdown and excitation. This detailed analysis

provides a new point of view to working groups and standardization committees in the field

of non-ionizing radiation safety that is based on so-called athermal effects.

Chapter 2 provides a necessary introduction to the mathematics and language used to

describe electromagnetics. It begins with Maxwell’s equations and the necessary material

(constitutive) relations then proceeds to describe the electrical properties of materials. After

this the boundary conditions are presented for an electromagnetic plane wave propagating

across a boundary of two materials with differing refractive indices. The chapter concludes

with the describing of precursor formation in dispersive dielectrics. In all chapters after this

the language is slightly different as each is its own independent paper.
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Chapter 3 shows the reflection and transmission of ultrawideband electromagnetic pulses

through multilayered biological media consisting of three biological tissue layers representing

skin, fat and muscle. The frequency dependent reflection and transmission coefficients of

the multilayer stack are computed using the transfer matrix method. Each of the three

tissues is modeled as a homogeneous, isotropic, linear, dispersive, attenuative, dielectric with

frequency dispersion described by a multiple relaxation Rocard-Powles-Debye model fit to

experimental data. This chapter also provides the dynamical evolution of an ultrawideband

electromagnetic pulse incident upon a planar layered system of lossy, temporally dispersive,

biological tissues. The frequency dispersion of each biological medium is described by the

Rocard-Powles-Debye model with a static conductivity σ0. The transmitted field structure

consists of multiple pulses due to the series reflections inside the layered system, each

dominated by leading and trailing edge Brillouin precursors. The peak amplitude of the

transmitted pulse in the substrate decays algebraically and not exponentially as described

by Beer’s Law.

Chapter 4 includes the analysis of an ultrawideband pulse incident on an anatomically

realistic system of layered biological tissues is presented. The analysis demonstrates what

portion of the incident energy can be transmitted through the layered system into the bio-

logical substrate. Embedded in the substrate of muscle is an idealized biological, spherical

cell whose dispersive material properties are taken to be that of water. The cell’s dynamics

are taken to be that modeled by the Fitzhugh-Nagumo model for an excitable neuron.

Chapter 5 demonstrates that optical precursors persist when the field strengths require

the inclusion of nonlinear terms. It has been previously suggested, although not formally,

that nonlinearities would extinguish precursor fields reducing their significance in the prop-

agated field. It is important to realize that this work is carried out in the optical domain,

far above the microwave and radio frequencies the rest of this dissertation is concerned

with. This is because nonlinearities are much more significant in optical frequencies com-

pare to the lower microwave frequencies. This chapter also reiterates the contributions of
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this research and outlines future work.

Appendix A appears as published (Palombini and Oughstun 2011) showing the formula-

tion of layered, dispersive, lossy biological materials and the resultant frequency dependent

Fresnel coefficients.

Appendix B is the abstract which has been accepted at the 2012 IEEE International

Symposium on Antennas and Propagation and USNC-URSI National Radio Science Meeting

discussing the use of precursor fields to detect low observables.

Appendix C shows a derivation of the Fresnel reflection and transmission coefficients for

lossy materials.

Appendix D provides a succinct overview of the Lorentz gauge and the Hertz potential.

This is included since the Hertz potential is utilized as a solution to the wave equation in

spherical coordinates.
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Chapter 2

Fundamental Electromagnetic

Formalism

2.1 Macroscopic Maxwell’s Equations

The macroscopic Maxwell equations relate the interdependence of the electric field E (r, t)

and magnetic field B (r, t) through a set of coupled equations given (in differential form) by

∇ ·D (r, t) = ρ (r, t) , (2.1)

∇ ·B (r, t) = 0, (2.2)

∇×E (r, t) = − ∂

∂t
B (r, t) , (2.3)

∇×H (r, t) = J (r, t) +
∂

∂t
D (r, t) , (2.4)

where D (r, t) is the electric displacement vector (coloumb/m2), ρ (r, t) is the charge density

(coloumb/m3), E (r, t) is the electric field intensity vector (volt/m), B (r, t) is the magnetic

induction vector (tesla), H (r, t) is the magnetic field intensity vector (ampere/m) and

J (r, t) is the vector current density (ampere/m2). The two divergence relations Eqs. (2.1)-

(2.2) are known as Gauss’s law for the electric and magnetic fields, respectively, and the

pair of curl relations Eqs. (2.3)-(2.4) are known, respectively, as Faraday’s law and Ampére’s
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law as generalized by Maxwell (Maxwell 1873) through the inclusion of the displacement

current ∂/∂tD (r, t).

By the law of conservation of charge, the charge density ρ (r, t) and current density

J (r, t) (which describes the flow of charge) are related by the equation of continuity

∇ · J (r, t) +
∂

∂t
ρ (r, t) = 0. (2.5)

The equation of continuity is contained in Maxwell’s equations, as can be seen by substitu-

tion of the divergence of Eq. (2.4) into Eq. (2.1). This set of field equations is connected

to physical measurements through the Lorentz force relation (Lorentz 1906),

F (r, t) = q

(
E (r, t) + v (r, t)×B (r, t)

)
, (2.6)

where F (r, t) is the force acting on a point charge q moving with velocity v (r, t), in vacuum.

2.2 Constitutive Relations in Linear Electromagnetics

The macroscopic Maxwell’s equations are completed by the the constitutive (material) re-

lations relating the induced fields D (r, t), H (r, t) and Jc (r, t) to the primitive fields E (r, t)

and B (r, t). For all materials considered here the magnetic field effects are entirely neg-

ligible in comparison to effects produced by the electric field, that is µ ∼ µ0. Along with

the additional assumption that the field strengths in question are sufficiently small that

nonlinear terms unless explicitly stated to the contrary (as in Chapter 5) can be appro-

priately ignored then each material response may be expressed in the form of the general

constitutive relation

G (r, t) =

∫ ∞

−∞
d3r′

∫ t

−∞
dt′ζ̂(r′, t′, r, t) · F(r′, t′), (2.7)

where the volume integration is taken over all space the and the upper limit t in the tem-

poral integral is bounded by causality. Here ζ̂(r′, t′, r, t) denotes the dielectric permittivity

response tensor ε̂(r′, t′, r, t) when F (r, t) = E (r, t), the inverse of the magnetic permeability
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response tensor µ̂(r′, t′, r, t) when F (r, t) = B (r, t), or the electric conductivity response

tensor σ̂(r′, t′, r, t) when F (r, t) = E (r, t) and G (r, t) = Jc (r, t), where Jc (r, t) is the

macroscopic conduction current density. The linear properties of the material are then

determined by the analytical properties of each of the material tensors.

A material is said to be spatially locally linear , with regard to a specific property, if

and only if ζ̂(r′, t′, r, t) = ζ̂(r′, t′, r, t)δ(r− r′). Physically the statement of spatial local

linearity says that every molecule is uncoupled from every other molecule in the material.

A material is said to be spatially homogeneous if and only if its properties do not vary

with position within the material as ζ̂(r′, t′, r, t) = ζ̂(r− r′, t′, t). If this property is not

satisfied then the material is said to be spatially inhomogeneous. Similarly, a material is

said to be temporally homogeneous if and only if its properties do not vary with time as

ζ̂(r′, t′, r, t) = ζ̂(r′, r, t− t′). If this mathematical property is not satisfied then the material

is said to be temporally inhomogeneous.

The spatiotemporal Fourier transform of Eq. (2.7) for a spatially and temporally homo-

geneous medium then yields, with application of the convolution theorem

˜̃G(k, ω) =
˜̃
ζ(k, ω) · ˜̃F(k, ω), (2.8)

here the spatiotemporal Fourier transform of F (r, t) is given by,

˜̃F(k, ω) =

∫ ∞

−∞
d3r

∫ ∞

−∞
dtF (r, t) e−ı(k·r−ωt) (2.9)

with inverse transform,

F (r, t) =
1

(2π)4

∫ ∞

−∞
d3k

∫ ∞

−∞
dω ˜̃F(k, ω)eı(k·r−ωt). (2.10)

A temporally dispersive medium is one whose material tensor
˜̃
ζ(k, ω) is explicitly depen-

dent upon the temporal angular frequency ω, a property which is observed in all physically

realizable materials. As a consequence, a material that is said to be nondispersive possess

an instantaneous response to an electromagnetic stimulus and consequently is nonphysical

(excluding vacuum).
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The response tensor for a material that is locally linear, spatially inhomogeneous and

temporally dispersive becomes ζ̂(r′, t′, r, t) = ζ̂(r, t− t′)δ(r− r′). This leads to the constitu-

tive relation for a locally linear, spatially homogeneous, spatially nondispersive, temporally

dispersive material is seen to be given completely by G̃ (r, ω) = ζ(ω) ·F̃ (r, ω) in which there

is no dependence of the position in the material.

The final material property to be considered is that of isotropy . A material is said

to be isotropic if and only if the components of the response tensor satisfy the rela-

tion ζ̂ij(r
′, t′, r, t) = ζ̂(r′, t′, r, t)δij where δij is the Kronecker delta function and where

ζ̂(r′, t′, r, t) is independent of the indices i, j. If the material does not satisfy the relation

above it is then said to be anisotropic.

The system response for a spatially homogeneous, isotropic, locally linear, temporally

dispersive material is given by the convolution

G (r, t) =

∫ t

−∞
ζ̂(t− t′)F(r, t′)dt′, (2.11)

with the temporal Fourier transform G̃ (r, ω) = ζ(ω)F̃ (r, ω). The output field G (r, t) is

strictly dependent on the past behavior of the input field F(r, t′) and the past behavior of

the material response tensor ζ̂(t′). Because of this, it is appropriate to express F(r, t′) in a

Taylor series expansion about the time t′ as

F(r, t′) =
∞∑

n=1

1

n!

∂n

∂tn
F (r, t) (t′ − t)n, (2.12)

which is valid assuming that F(r, t′) and all of its derivates with respect to time exist for

each t ≤ t′. Substitution of the above Taylor series expansion into the constitutive relation

given in Eq. (2.11) results in the expansion

G(r, t′) =

∞∑

n=1

1

n!
ζ̂(n)

(
∂n

∂tn
F (r, t)

)
(t′ − t)n, (2.13)

where

ζ̂(n) ≡ (−1)n

n!

∫ ∞

0
ζ̂(τ)τndτ (2.14)
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is proportional to the nth moment of the material response tensor. Upon taking the temporal

Fourier transform of Eq. (2.13), the temporal Fourier transform of the material response

function is found to be given by the Maclaurin series

ζ(ω) =
∞∑

n=0

ζ̂(n)(−ıω)n. (2.15)

This expression shows that the real part of ζ(ω) is an even function of ω whereas the

imaginary part is an odd function of ω. The above expression for ζ(ω) also provides the

material expansion coefficients as

ζ̂(n) =
ın

n!

∂n

∂ωn
ζ(ω)

∣∣∣∣
ω=0

, (2.16)

as shown in (Oughstun 2006a).

2.3 Causality and Dispersion Relations

Causality at its roots is the simple principle stating that the effect cannot precede the

cause. This fundamental statement is the most basic form of causality known as primitive

causality (Nussenzveig 1972; Toll 1956). A more modern statement is the principle of

relativistic causality which states that no signal can propagate with a velocity greater than

the speed of light in vacuum c. These two principles are necessary when developing models

for material dispersion dealing with ultrashort pulses.

Following the analysis by Hu (Hu 1989), given that the material response tensor satisfies

the conditions given in Eq. (2.11), then the material response can be represented as a

linear system with input signal fin(t) having temporal Fourier transform f̃in(ω), and output

signal fout(t) having temporal Fourier transform f̃out(ω) that are related through the system

transfer function χ(ω) as

f̃out(ω) = χ(ω)f̃in(ω). (2.17)

With primitive causality imposed, the causal impulse response function can be constructed

as

χ̂(t) = U(t)Ψ̂(t), (2.18)
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where U(t) = 0 for t < 0 and U(t) = 1 for t > 0 is the Heaviside unit step function and

where Ψ̂(t) ≡ χ̂(t) for t > 0. The temporal Fourier transform of the Heaviside unit step

function can be shown to be Ũ(ω) = P
{
ı
ω

}
+ πδ(ω), where P denotes that the Cauchy

principle value is to be taken.

Since U(t) = 0 for t < 0 the behavior of Ψ̂(t) for t < 0 can be freely chosen. There are

two obvious choices, the first being Ψ̂(−|t|) = Ψ̂(t), thereby making it an even function of

t and resulting in a purely real Fourier spectrum Ψ(ω) = 2<{χ(ω)}, so that

={χ(ω)} = − 1

π
P
∫ ∞

−∞

<{χ(ω′)}
ω′ − ω dω′, (2.19)

where <{·} denotes the real part of the expression is to be taken, and ={·} denotes the

imaginary party of the expression is to be taken. For the second choice, let Ψ̂(−|t|) =

− ˆΨ(t) so that Ψ̂(t) is an odd function of t and its Fourier spectrum is purely imaginary

Ψ(ω) = 2ı={χ(ω)}, so that

<{χ(ω)} =
1

π
P
∫ ∞

−∞

={χ(ω′)}
ω′ − ω dω′. (2.20)

This pair of relations shows that the real and imaginary parts of the impulse response

function form a Hilbert transform pair in a causal system. Taken together, these two

equations together are known as the Plemelj formulae (Plemelj 1908) or the disperion

relations and can be generalized as Titchmarsh’s theorem (Nussenzveig 1972; Titchmarsh

1939; Oughstun 2006a):

Titchmarsh’s Theorem. Any square-integrable function χ(ω) with inverse Fourier

transform x̂(t) that satisfies one of the following four conditions satisfies all four of them:

1. χ̂(t) = 0 ∀ t < 0

2. χ(ω′) = limω′′→0+ {χ(ω′ + ıω′′)} for almost all ω′, where χ(ω) is holomorphic1 in the

upper-half of the complex ω = ω′ + ıω′′ plane and is square-integrable over any line

parallel to the ω′-axis in the upper-half plane.

1A function f of the complex variable z is said to be holomorphic in an open set if it has a derivative at

each point in that set, that is it is analytic.
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3. <{χ(ω)} and ={χ(ω)} satisfy the first Plemelj formula Eq. (2.19).

4. <{χ(ω)} and ={χ(ω)} satisfy the second Plemelj formula Eq. (2.20).

2.3.1 The Dielectric Permittivity

For a spatially homogeneous, isotropic, locally linear, temporally dispersive medium, the

constitutive relation Eq. (2.11) for the electric displacement vector is

D (r, t) =

∫ t

−∞
ε̂(t− t′)E(r, t′)dt′, (2.21)

having temporal Fourier transform

D̃ (r, ω) = ε(ω)Ẽ (r, ω) , (2.22)

where ε(ω) is the temporal Fourier transform of the dielectric response function ε̂(t). For a

simple polarizable dielectric

D (r, t) = ε0E (r, t) + P (r, t) , (2.23)

the electric susceptibility χe(ω) is related to the dielectric permittivity as

ε(ω) = ε0

(
1 + χe(ω)

)
, (2.24)

= ε′(ω) + ıε′′(ω), (2.25)

such that the electric displacement vector in the Fourier domain is given by

D̃ (r, ω) = ε0

(
1 + χe(ω)

)
Ẽ (r, ω) . (2.26)

In addition the material relation for the macroscopic polarization density is

P (r, t) = ε0

∫ t

−∞
χ̂e(t− t′)E(r, t′)dt′, (2.27)

with temporal Fourier transform

P̃ (r, ω) = ε0χe(ω)Ẽ (r, ω) . (2.28)
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The material transfer functions for the macroscopic polarization density and electric

displacement vector share the spectral symmetry relation

χ∗e(ω) = χe(ω), (2.29)

ε∗(ω) = ε(−ω), (2.30)

provided ω is purely real. Because it describes the fundamental response, Titchmarsh’s

theorem applies to the electric susceptibility χ̂e(t). The dispersion relations for the dielectric

permittivity are given by

<{ε(ω)− ε0} =
1

π
P
∫ ∞

−∞

={χ(ω′)}
ω′ − ω dω′, (2.31)

={ε(ω)} = − 1

π
P
∫ ∞

−∞

<{χ(ω′)}
ω′ − ω dω′. (2.32)

These two equations are collectively known as the Kramers–Kronig relations (Kramers 1927;

Kronig 1926).

2.3.2 The Electric Conductivity

For a spatially homogeneous, isotropic, locally linear, temporally dispersive conducting or

semiconducting material, the constitutive relation Eq. (2.11) for the current conduction

density vector becomes

Jc (r, t) =

∫ t

−∞
σ̂(t− t′)E(r, t′)dt′ (2.33)

having the temporal Fourier Transform

J̃c (r, ω) = σ(ω)Ẽ (r, ω) , (2.34)

where

σ(ω) =

∫ ∞

−∞
σ̂(t)eıωtdt, (2.35)

is the electric conductivity . Because Jc (r, t) and E (r, t) are purely real vector fields the

symmetry relation

σ∗(ω) = σ(−ω∗) (2.36)
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holds for complex ω = ω′ + ıω′′.

The electric conductivity enters the dispersive material properties through the temporal

Fourier transform of the macroscopic form of Ampére’s law Eq. (2.4) in a semiconducting

material, given by

∇× H̃ (r, ω) = J̃ (r, ω)− ıωD̃ (r, ω) , (2.37)

where J̃ (r, ω) = J̃ext (r, ω) + J̃c (r, ω) with J̃ext (r, ω) describing any externally applied

current source. The substitution of D̃ (r, ω) = ε(ω)Ẽ (r, ω) into this result then yields

∇× H̃ (r, ω) = J̃ext (r, ω)− ıωεc(ω)Ẽ (r, ω) , (2.38)

where

εc(ω) ≡ ε(ω) + ı
σ(ω)

ω
(2.39)

is called the complex permittivity of the material. Note that the permittivity ε(ω) = ε′(ω)+

ıε′′(ω) and conductivity σ(ω) = σ′(ω) + ıσ′′(ω) are complex functions.

2.4 The Debye Model of Orientational Polarization

The relaxation equation due to Debye (Debye 1929)

d

dt
p (r, t) +

1

τm
p (r, t) = aEeff (r, t) , (2.40)

describes the microscopic orientational polarization due to permanent molecular dipole mo-

ments p (r, t), where a is a constant in time and where τm is the characteristic expo-

nential relaxation time of the molecular dipole moment in the absence of any externally

applied field Eext (r, t), and where the effective electric field from the dipole is Eeff (r, t) =

Eext (r, t) + 1/(3ε0)P (r, t). The dipolar relaxation time is given by

τm =
ζ

2KBT
, (2.41)

through rotational Brownian motion theory (McConnel 1980), where KB is Boltzmann’s

constant, T is the absolute temperature, and where ζ is a constant describing the resistance
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to dipolar rotation in the medium. The temporal frequency transform of the spatial average

of Eq. (2.40) then yields

〈〈p̃ (r, ω)〉〉 =
aτm

1− ıωτm

〈〈
Ẽeff (r, ω)

〉〉
, (2.42)

with 〈〈·〉〉 denoting the spatial average. The spatial average of a microscopic function f (r, t)

of position and time is defined as

〈〈f (r, t)〉〉 ≡
∫
w(r′)f(r− r′, t)d3r′, (2.43)

where w(r) is a real-valued, positive, sufficiently well-behaved function that is nonzero

only in some nonvanishing region of space surrounding the point r = 0. This “weighting”

function is normalized to unity over all of space as

∫ ∞

−∞
w(r)d3r = 1, (2.44)

and varies sufficiently slowly such that the local series approximation

w(r + d) ≈ w(r) + (d · ∇)w(r) +
1

2
(d · ∇)2w(r), (2.45)

is well satisfied for d = |d| of the order of molecular sizes.

The molecular polarizability for the Debye model is then seen to be

α(ω) =
aτm

1− ıωτm
. (2.46)

The electric susceptibility is then given by

χe(ω) =
1

ε0

Naτ

1− ıωτ , (2.47)

where τ ≡ τm/(1 − (1/3ε0)Naτm), and N is the number density of the molecular species,

so that the dielectric permittivity is

ε(ω) = ε0 +
Naτ

1− ıωτ . (2.48)
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By evaluating this expression at ω = 0, one finds that a = εs−ε0
Nτ , where εs = ε(0) is the static

permittivity. With this identification, the single relaxation Debye model for permittivity

becomes

ε(ω) = ε0

(
1 +

εsr − 1

1− ıωτ

)
, (2.49)

where εsr = εs/ε0 is the relative static permittivity.

A generalization of this expression is required to capture polarization mechanisms at

higher frequencies (ω >> 1/τ) and is given as

ε(ω)/ε0 = ε∞ +
εsr − ε∞
1− ıωτ , (2.50)

where ε∞ ≥ 1 is the high frequency limit of the relative dielectric permittivity. This

expression can be further generalized to account for multiple relaxation modes and for any

polarization mechanisms at higher frequencies as

ε(ω)/ε0 = ε∞ +
∑

j

aj
1− ıωτj

, (2.51)

where aj is the strength of the jth relaxation mode and is conserved as
∑

j aj = εsr − ε∞,

and τj is the relaxation time of the jth relaxation mode.

The Debye model as expressed in Eq. (2.51) has a nonvanishing absorption coefficient

at high frequencies ω >> 1/τ1, where the relaxation times τj are ordered in decreasing

value. A first order correction to the Debye model of orientational polarization is provided

by Rocard (Rocard 1933) and Powles (Powles 1948) as

α(ω) =
aτm

(1− ıωτm)(1− ıωτmf )
, (2.52)

where τmf = I/ζ is the associated friction time, with I the moment of inertia of the polar

molecule and ζ the frictional appearing in Eq. (2.41). With this correction factor, the single

mode Rocard-Powles-Debye model for permittivity becomes

ε(ω) = ε0

(
1 +

εsr − 1

(1− ıωτ)(1− ıωτf )

)
, (2.53)
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where τ is still the relaxation time as appears in Eq. (2.50) and τf is the effective friction

time. Again, this expression can be generalized as in Eq. (2.50) to become

ε(ω)/ε0 = ε∞ +
εsr − ε∞

(1− ıωτ)(1− ıωτf )
, (2.54)

and further expanded to include multiple relaxation modes and additional higher frequency

effects as

ε(ω)/ε0 = ε∞ +
∑

j

aj
(1− ıωτj)(1− ıωτjf )

. (2.55)

For a material with a nonzero static conductivity the above model can be extended as

εc(ω)

ε0
= ε∞ +

N∑

j=1

aj
(1− ıωτj)(1− ıωτfj)

+ ı
σ0

ωε0
, (2.56)

where ε∞ is the high frequency limit of the relative permittivity of the model, ε0 ≈ 8.854×

10−12F/m is the permittivity of free space, τj is the jth relaxation time, τfj is the associated

jth friction time, aj is strength of the jth relaxation mode, and σ0 ≡ σ(0) is the static

conductivity of the (semi-)conducting medium.

Biological materials are semiconducting with a frequency dependent dielectric permit-

tivity ε(ω) and electric conductivity σ(ω). These two aspects combine in electromagnetic

theory to form the complex permittivity,

εc(ω) ≡ ε(ω) + ı
σ(ω)

ω
, (2.57)

where ε(ω) = ε′(ω)+ ıε′′(ω) and σ(ω) = σ′(ω)+ ıσ′′(ω). Upon combining real and imaginary

parts of ε(ω) and σ(ω), the complex permittivity may be expressed as

εc(ω) =

(
ε′(ω)− σ′′(ω)

ω

)
+ ı

(
ε′′(ω) +

σ′(ω)

ω

)
. (2.58)

This form of the complex permittivity is appropriate for analyzing empirical data where all

of the measured loss is improperly assumed to be conductive (Gabriel, Lau, and Gabriel

1996) with an effective conductivity σeff (ω) = σ′(ω) + ωε′′(ω) and effective permittivity

εeff (ω) = ε′(ω)− σ′′(ω)/ω.
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2.5 Select Material Examples

2.5.1 Triply-Distilled H20

A material of particular interest that has been well studied from low frequencies up through

optical frequencies is that of triply-distilled (σ0 = 0) water at 25oC. Casual models of the

dielectric material dispersion have been shown to fit experimental data well, for frequencies

from static (ω=0r/s) in to the infrared (ω ∼ 1012r/s), using a composite model for the

material dispersion. For this low frequency band Oughstun (Oughstun 2006a) provides

best-fit parameters for a double relaxation time Rocard-Powles-Debye model of water

ε(ω)

ε0
= ε∞ +

2∑

j=1

aj
(1− ıωτj)(1− ıωτfj)

, (2.59)

with parameters given in Table 2.1 here. The resultant frequency dispersion is illustrated

in Fig. 2.1 along with collected experimental data provided by the United States Air Force

Office of Scientific Research (AFOSR).

j aj τj (sec) τfj (sec)

1 74.1 8.44× 10−12 4.62× 10−14

2 3 4.77× 10−14 6.53× 10−14

Table 2.1: Rocard-Powles-Debye model parameters for triply-distilled water at 25oC.
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Figure 2.1: Real (solid) and imaginary (dashed) parts of the relative dielectric permittivity
described by the Rocard-Powles-Debye model for water compared with experimental data.

2.5.2 Biological Tissues

The following semi-conducting Rocard-Powles-Debyle models for the biological tissues of

skin, fat and muscle are based on experimental data (Gabriel, Lau, and Gabriel 1996) from

10Hz to 20GHz. To cover such a large frequency domain required the use of three sepa-

rate impedance analyzers. For 10Hz to 10MHz the authors used an HP4192A impedance

analyzer, for 300kHz to 3GHz an HP8753C was utilized and for the high frequency mea-

surements from 130MHz to 20GHz an HP8720 was used. The samples were interfaced to

the measurement equipment by use of an open-ended co-axial probe. The techniques and

instrumentation used in this study gave random reproducibility of 1% across the entire fre-

quency range. Uncertainty in the data is higher at frequencies below 1kHz where electrode

polarization may have been undercorrected allowing for a factor of two or three in errors of

the permittivity values below 100Hz.
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Skin

The best-fit Rocard-Powles-Debyle model for skin is comprised of four relaxation modes

(N = 4) as

ε(ω)

ε0
= ε∞ +

4∑

j=1

aj
(1− ıωτj)(1− ıωτfj)

+ ı
σ0

ωε0
. (2.60)

The high frequency relative permittivity for dry skin is found to be ε∞ = 15 and the

static conductivity to be σ0 = 3× 10−5S/m; the remaining model parameters are given in

Table 2.2. Notice that the j = 1 and j = 3 modes provide the dominant structure of the

frequency dispersion model fit depicted in Fig. 2.2, where the relative dielectric permittivity

ε(ω) and electric conductivity σ(ω) plotted there are the effective permittivity εeff (ω) and

conductivity σeff (ω) as expressed in Eq. (2.58).

j aj τj (sec) τfj (sec)

1 600 1× 10−6 1× 10−14

2 75 1× 10−4 1× 10−12

3 550 1× 10−8 1× 10−12

4 28 1× 10−10 1× 10−13

Table 2.2: Rocard-Powles-Debye model parameters for dry skin.

Fat

The best-fit Rocard-Powles-Debyle model for fat is composed of seven relaxation modes

(N = 7) as

ε(ω)

ε0
= ε∞ +

7∑

j=1

aj
(1− ıωτj)(1− ıωτfj)

+ ı
σ0

ωε0
. (2.61)

The higher number of terms that are required to describe the frequency dispersion of this

biological medium is due to the relatively small value of the Debye relaxation time combined

with several faster relaxation times exhibited in the data. The high frequency permittivity
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Figure 2.2: Comparison of Rocard-Powles-Debye model (solid curve) and empirical data
(circles) of the relative complex dielectric permittivity of dry skin.

for fat was found to be ε∞ = 3 and the static conductivity to be σ0 = 1 × 10−3S/m; the

remaining model parameters are given in Table 2.3. The frequency dispersion for fat is illus-

trated in Fig. 2.3, where the relative dielectric permittivity εeff (ω) and electric conductivity

σeff (ω) plotted are the effective permittivity and conductivity as expressed in Eq. (2.58).

Muscle

The best-fit Rocard-Powles-Debyle model for muscle is composed of four relaxation modes

(N = 4) as

ε(ω)

ε0
= ε∞ +

4∑

j=1

aj
(1− ıωτj)(1− ıωτfj)

+ ı
σ0

ωε0
. (2.62)

The high frequency permittivity for fat was found to be ε∞ = 28.3 and the static conduc-

tivity to be σ0 = 3× 10−2S/m; the remaining model parameters are described in Table 2.4.

The frequency dispersion for muscle is illustrated in Fig. 2.4, where the relative dielectric

permittivity εeff (ω) and electric conductivity σeff (ω) plotted are the effective permittivity
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j aj τj (sec) τfj (sec)

1 3× 107 1× 10−1 1× 10−15

2 5× 105 1× 10−2 1× 10−10

3 1× 104 1× 10−3 1× 10−10

4 7× 102 1× 10−4 1× 10−20

5 100 1× 10−5 1× 10−15

6 9 1× 10−7 1× 10−15

7 3 1× 10−10 1× 10−15

Table 2.3: Rocard-Powles-Debye model parameters for fat.
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Figure 2.3: Comparison of Rocard-Powles-Debye model (solid curve) and empirical data
(circles) of the relative complex dielectric permittivity of fat.
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and conductivity as expressed in Eq. (2.58).

j aj τj (sec) τfj (sec)

1 2.05× 107 6× 10−3 1× 10−15

2 1.5× 104 9× 10−6 1× 10−10

3 7× 103 1.5× 10−6 1× 10−10

4 45 1× 10−10 1× 10−20

Table 2.4: Rocard-Powles-Debye model parameters for muscle transverse to fibers.

2.5.3 Hypothetical Radar Absorbing Material (H-RAM)

A hypothetical radar absorbing material is constructed to block a specific carrier frequency

ωc such that the dielectric loss ={k(ω)} = α(ω) = ω/c ni(ω) has a maximum at ωc, where

c α′ = ni(ω) + ωn′i(ω) = 0 with the superscript ′ denoting the derivate with respect to ω.

Because the material is designed to be highly lossy in the neighborhood of ωc, the material

will be highly dispersive in that frequency band as well. The material is nonconducting

(σ ≡ 0) and modeled as a single relaxation Debye-type dielectric

ε(ω)

ε0
= ε∞ +

a

(1− ıωτ)(1− ıωτf )
, (2.63)

with material parameters given in Table 2.5. The real and imaginary parts of the resultant

dielectric frequency dispersion are depicted in Fig 2.5(a) and the corresponding frequency

dependent loss in Fig. 2.5(b).

a τ (sec) τf (sec)

9 1× 10−9 1× 10−11

Table 2.5: Rocard-Powles-Debye model parameters for H-RAM.
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Figure 2.4: Comparison of Rocard-Powles-Debye model (solid curve) and empirical data
(circles) of the relative complex dielectric permittivity of muscle transverse to fibers.

2.6 The Electromagnetic Boundary Conditions

Consider a continuous, smooth surface S forming the boundary between two separate ho-

mogeneous, isotropic, locally linear, temporally dispersive materials, across which a rapid

change occurs in the material parameters ε(ω), µ(ω), and σ(ω) at almost every frequency2.

When viewed from the macroscopic level, the changes across S appear to be discontinu-

ous and accordingly the macroscopic field vectors are considered to change discontinuously

across the interface. A more realistic, physical description consists of a thin transition layer

of thickness ∆l, across which the complex material parameters ε(ω), σ(ω), and µ(ω) change

rapidly, but continuously as ε1(ω) → ε2(ω), σ1(ω) → σ2(ω), and µ1(ω) → µ2(ω) where

the observation point progresses from medium 1 to medium 2. The rapid but continuous

change through this transition layer is assumed to be sufficiently smooth such that both the

2By almost every frequency it is meant that, because of frequency dispersion there may exist isolated

frequency values at which one or more of the material parameters is identical in value in the two media.
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Figure 2.5: Rocard-Powles-Debye model of the relative dielectric permittivity and loss
factor of H-RAM.

field vectors and their first derivatives are continuous, bounded functions in both time and

space. The abrupt, discontinuous change across the interface S is then constructed from

the limiting case as ∆l→ 0 as illustrated in Fig. 2.6 (Oughstun 2006a).

The integral form of Gauss’ law in the temporal frequency domain for the electric and

magnetic fields are respectively

∮

Σ
D̃ (r, ω) · ds =

∫

R
%̃ (r, ω) d3r, (2.64)

∮

Σ
B̃ (r, ω) · ds = 0, (2.65)

where the simply-connected closed surface Σ encloses the region R, and where ds denotes

the outward-oriented differential element of surface area on Σ. The Gaussian surface Σ is

constructed as a circular cylinder whose generators are normal to the interface S and whose

upper and lower end-caps (each with area ∆a) lie respectively in medium 2 and medium 1

such that they are separated by the transition layer of thickness ∆l. Let B̃1 (r, ω) denote

the magnetic field vector at the center of the cylinder base with outward normal unit vector

n̂1, and let B̃2 (r, ω) denote the magnetic field vector at the center of the cylinder top with

outward normal unit vector n̂2. In the limit ∆l→ 0 and ∆a→ 0 the magnetic field vectors

B̃1 (r, ω) and B̃2 (r, ω) are evaluated at the same point but on opposite sides of S such

that n̂1 = −n̂ and n̂2 = n̂, where n̂ is directed from medium 1 to medium 2. In this limit
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Figure 2.6: Transition layer about the interface S separating two dispersive, homogeneous,
isotropic, locally linear media. At each point on the interface S, the unit vector n̂ is normal
to S and directed from medium 1 into medium 2, and the mutually orthogonal unit vectors
τ̂ and ν̂ are tangent to S, where τ̂ = ν̂ × n̂.

Eq. (2.65) becomes

n̂ ·
(
B̃2 (r, ω)− B̃1 (r, ω)

)
= 0, r ∈ S. (2.66)

This result shows that the normal component of the magnetic induction field vector is

continuous across any surface of discontinuity in the material parameters.

The response of the normal component of the electric displacement vector across the

interface S is determined though a similar analysis of Eq. (2.64) with

n̂ ·
(
D̃2 (r, ω)− D̃1 (r, ω)

)
= lim

∆l→0
lim

∆a→0

∫

R
%̃ (r, ω) d3r. (2.67)

The physical realization of the limit ∆l → 0 is that the charge enclosed in the region R

approaches %s (r, ω) ∆a with %s (r, ω) being the surface charge density on S, whose

%s (r, ω) ≡ lim
∆l→0

{% (r, ω) ∆l} . (2.68)

With this identification the boundary condition becomes

n̂ ·
(
D̃2 (r, ω)− D̃1 (r, ω)

)
= %s (r, ω) , r ∈ S (2.69)
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provided that the limit ∆l→ 0 and the integration over R can be interchanged. This result

shows that the normal component of the electric displacement vector is discontinuous across

any surface of discontinuity in the material parameters, with the amount of the discontinuity

being proportional to the free surface charge density at that point .

The integral form of Faraday’s and Ampére’s laws are respectively given by

∮

C
Ẽ (r, ω) · dl = ıω

∫

Σ
B̃ (r, ω) · ν̂d2r, (2.70)

∮

C
H̃ (r, ω) · dl = −ıω

∫

Σ
D̃ (r, ω) · ν̂d2r +

∫

Σ
J̃ (r, ω) · ν̂d2r, (2.71)

in the temporal frequency domain, where Σ denotes the surface region enclosed by the

contour C, and where ν̂ denotes the positive unit normal vector to the surface Σ, the

direction of which is determined by the direction of integration about the contour C using

the right-hand rule. The contour C is chosen to be an infinitesimally small plane rectangular

loop whose sides (of length ∆l) are perpendicular to the interface S and whose top and

bottom (of length ∆s) respectively lie in the upper and lower surfaces of the transition

layer about the interface S. Let τ̂1 and τ̂2 denote the unit vectors in the direction of

circulation about and tangent to the contour C along the lower (medium 1) and upper

(medium 2) sides, respectively, of the rectangular contour at the edge of each transition

layer. In addition, let Ẽ1 (r, ω) denote the electric field vector at the midpoint of the lower

side of C in medium 1 with circulation vector τ̂1, and let Ẽ2 (r, ω) denote the electric field

vector at the midpoint of the upper side of C in medium 2 with circulation vector τ̂2. In

the limit as both ∆l → 0 and ∆s → 0, the electric field vectors Ẽ1 (r, ω) and Ẽ2 (r, ω) are

evaluated at the same point but on opposite sides of the interface S, where as τ̂1 → −τ̂ and

τ̂2 → τ̂ where,

τ̂ ≡ ν̂ × n̂ (2.72)

defines the unit tangent vector to the surface S at that point. In this limit, Faraday’s law

Eq. (2.70) becomes

ν̂ ·
[
n̂×

(
Ẽ2 (r, ω)− Ẽ1 (r, ω)

)
− ıω lim

∆l→0
B̃ (r, ω) ∆l

]
= 0, r ∈ S, (2.73)
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after application of the vector indentity (ν̂ × n̂) · Ẽ = ν̂ · (n̂× Ê). Because the orientation

of the contour C, and hence the direction of the unit vector ν̂, is entirely arbitrary, then

n̂×
(
Ẽ2 (r, ω)− Ẽ1 (r, ω)

)
= ıω lim

∆l→0
B̃ (r, ω) ∆l, r ∈ S. (2.74)

Finally, because the field vectors and their first derivatives are assumed to be bounded, the

right-hand side of this relation vanishes with ∆l, resulting in the boundary condition

n̂×
(
Ẽ2 (r, ω)− Ẽ1 (r, ω)

)
= 0, r ∈ S. (2.75)

Hence, the tangential component of the electric field intensity vector is continuous across

any surface of discontinuity in the material parameters.

In order to analyze the behavior of the tangential component of the magnetic intensity

vector across a surface S of discontinuity in the material parameters, a similar analysis is

applied to Ampére’s law Eq. (2.71), which results in the limiting expression

n̂×
(
H̃2 (r, ω)− H̃1 (r, ω)

)
= lim

∆l→0
J̃ (r, ω) ∆l − ıω lim

∆l→0
D̃ (r, ω) ∆l, r ∈ S. (2.76)

Because D̃ (r, ω) and its first derivatives are bounded, the second term on the right-hand

side of this expression vanishes in the limit as ∆l → 0. However, the first term on the

right-hand side of this expression does not necessarily vanish as it is proportional to the

current J = J (r, t) · ν̂∆s∆l flowing through the rectangular loop C. In the limit as ∆l→ 0,

the current J approaches the limiting value JS (r, t) · n̂∆s, where

J̃S (r, ω) ≡ lim
∆l→0

J̃ (r, ω) (2.77)

is the temporal frequency spectrum of the surface current density on the interface S between

the two media. With this identification, the above boundary condition becomes

n̂×
(
H̃2 (r, ω)− H̃1 (r, ω)

)
= J̃S (r, ω) , r ∈ S. (2.78)

Hence, the presence of a surface current on the interface S across which the material param-

eters change discontinuously, results in a discontinuous change in the tangential component
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of the magnetic field intensity vector, the amount of the discontinuity being proportional to

the surface current density at that point .

Notice that surface charge and current densities are not independent, but rather are

related through the equation of continuity given in Eq. (2.5). In the limit as ∆l → 0, the

temporal Fourier transform of Eq. (2.5) becomes

∇ · J̃S (r, ω)− ıω%̃S (r, ω) = 0. (2.79)

Because of this relationship, it is necessary only to apply the boundary conditions given

in Eqs. (2.75) and (2.78) on the tangential components of the electric and magnetic field

vectors, the boundary conditions given in Eqs. (2.66) and (2.69) then being automatically

satisfied (Oughstun 2006a).

2.7 Conclusions

This chapter introduces the terminology and provides adequate background necessary for

comprehension of the following chapters. The presentation of the constitutive relations

for a spatially homogeneous, isotropic, locally linear and temporally dispersive material

is necessary in order to understand how electromagnetic radiation interacts with matter.

The material descriptions presented here will be used throughout the remaining chapters

to provide numerical examples of this interaction.
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Chapter 3

Reflection and Transmission of

Pulsed Electromagnetic Fields

Through Multilayered Media

3.1 Introduction

The interaction of non-ionizing radiation with biological tissue remains a problem of great

concern as much remains to be understood about the athermal effects of such interac-

tions. It is largely believed that non-ionizing radiation is harmless below exposure levels

where heating first occurs (Adair 2003). However, this conclusion assumes a continuous,

monochromatic signal without any mention of either transient phenomena or pulsed fields

that are typically associated with both radar and mobile communications. Pulsed fields

and their associated transient phenomena are of central importance in the proper analysis

of the biological response to applied external fields since the action potential threshold re-

sponse in biological cellular signaling is dependent on the rise time (submillisecond) of the

incident field (Cole 1955). In addition, it has been shown that exposure to such stimuli can

cause both molecular effects as well as phenotypic effects that are a visible manifestation of
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genetics (Barnes 2005).

The recently published study conducted by The National Research Council of the Na-

tional Academy of Sciences (Barnes 2005) has explored possible health effects of pulsed,

low-level phased-array radio frequency energy exposure due to the PAVE-PAWS (Precision

Acquisition Vehicle Entry-Phased Array Warning System) radar system located at Cape

Cod Air Force Station at Otis Air Force Base in Massachusetts. The study raises several

important questions regarding the possible health effects of such non-ionizing radiation,

describing physical mechanisms for radio frequency effects on biological systems. How-

ever, what the report fails to address are the effects of multiple reflection and transmission

through layered biological materials. Results presented here, based on empirical data, sug-

gest penetration depths much greater than that previously described by simple theoretical

results.

The specific absorption rate threshold set by the Federal Communications Commission

(FCC) on hand-held mobile phones is 1.6W/kg, as measured over any one gram of tissue.

Recently published research (Volkow, Tomasi, Wang, Vaska, Fowler, Telang, Alexoff, Logan,

and Wong 2011) has shown that mobile communication devices operating within these radio-

frequency limits increase glucose metabolism in the region of the brain closest to the antenna

but admits that “the finding is of unknown clinical significance”. This then raises concern

about the efficacy of this safety standard when applied to ultrawideband (uwb) pulsed fields.

The analysis presented in this and later chapters provides a mathematically rigorous,

physical model description of the propagation of pulsed electromagnetic fields into realistic

biological tissues in order to investigate the possible indirect molecular effects such fields

have on cellular signaling. The first step in this formulation is a systematic description

of the interaction a plane wave encounters at a boundary between a lossless nondispersive

medium and a lossy dispersive medium as well as when both media are lossy and dispersive.

Recent work (Roy 2003) provides some explanation of how a uniform plane wave in a lossless

media incident on a boundary with a lossy media results in the transmission of a nonuniform
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plane wave in the second media. However, this work does not consider dispersive media

and does not include insight as to how pulsed energy is reflected and transmitted at such

an interface.

Finally, it is now known that when electromagnetic signals that are ultrawideband with

respect to the material dispersion propagate through a dispersive medium, electromagnetic

precursors emerge in the propagated signal (Oughstun 2005). Of particular importance is

the fact that increased energy transmission, on the scale of multiple orders of magnitude,

occurs due to this precursor field formation. Such pulses may then be used for biological

imaging and therapy and are the impetus for this research.

3.2 Transfer Matrix Formulation for Multilayered Dispersive

Absorptive Media

The transfer matrix method (Yeh 1988) is used here for the description of reflection from

and transmission through a system of N parallel plane stacked layers illustrated in Fig. 3.1.

The jth layer has thickness ∆zj with dispersive properties described by complex index

of refraction nj(ω) in the temporal frequency domain. It has been shown (Pereyra and

Robledo-Martinez 2009) that this approach is equivalent to the Fresnel formulation leading

to the Airy formula but is less cumbersome to deal with when there is more than one

sandwiched layer.

The analysis begins with the electromagnetic boundary conditions for the tangential

components of the fields [see Eqs. (2.75) and (2.78)] at the planar interface separating

medium j from medium j + 1, j = 0, 1, 2..., N , given by

n̂×
(
Ẽj+1(r, ω)− Ẽj(r, ω)

)
= 0, (3.1)

n̂×
(
H̃j+1(r, ω)− H̃j(r, ω)

)
= J̃s(r, ω), (3.2)

across a planar interface with unit normal vector n̂ directed from the incident (j) to the

transmitted (j + 1) medium. The coupled equations for the electric field vectors at the
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n0=1 n1 n2 nN-1 nN

...

Δz1 Δz2 ΔzN-1
z=z1 z=z2 z=zN-2 z=zN-1z=z0

Figure 3.1: Parallel plane layered media with nj the refractive index and ∆zj the thickness
of the jth layer, j = 1, 2, ..., N − 1.

interface are then given by

(
Ẽj + Ẽ′j

)
· ν̂ =

(
Ẽj+1 + Ẽ′j+1

)
· ν̂, (3.3)

(
Ẽj − Ẽ′j

)
· ν̂nj =

(
Ẽj+1 − Ẽ′j+1

)
· ν̂nj+1 + J̃s, (3.4)

where ν̂ is the unit tangent vector to the surface, and where Ẽj and Ẽ′j respectively denote

the right (transmitted) and left (reflected) moving wave in the jth layer. The surface current

density J̃s (r, ω) is confined to a transition layer of thickness ∆l which spans each interface

and extends an equal distance into each medium. Over this transition layer the frequency

dependent conductivity is varied with some interpolating function in order to continuously

connect the two layers.

3.2.1 Single Layer Case

For the case of a single layer of finite thickness ∆z the system of equations can be solved

analytically. The principle time-harmonic field components within the incident medium

traveling in the z direction are

Ei = E0e
ı(k0z−ωt), Hi =

k0

ωµ0
Ei, (3.5)

Er = E1e
−ı(k0z+ωt), Hr = − k0

ωµ0
Er, (3.6)
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where the subscript i denotes the incident field and the subscript r denotes the reflected

field, and where k0 = n0ω/c is the wavenumber in the incident medium. The first (j = 1)

layer 0 ≤ z ≤ ∆z will contain both a right and left moving wave, where the left moving

wave is indicated with a superscript ′ as

Em =
(
E2e

ık1z + E′2e
−ık1z

)
e−ıωt, (3.7)

Hm =
k1

ωµ1

(
E2e

ık1z − E′2e−ık1z
)
e−ıωt, (3.8)

where k1 = n1ω/c is the wavenumber in the layer. The fields in the substrate layer z ≥ ∆z

will only have a right moving component as it is semi-infinite and are given by

Et = E3e
ı(k2z−ωt), (3.9)

Ht =
k2

ωµ2
Et, (3.10)

where the subscript t denotes the transmitted field, and where k2 = n2ω/c is the wavenum-

ber in this medium. It will be convenient at this point to introduce the complex intrinsic

impedance of the homogeneous, isotropic, temporally dispersive medium, which is defined

as the magnitude ratio of the electric field intensity to the magnetic field intensity as

ηj(ω) =
Ej
Hj

(3.11)

=

[
µj(ω)

εcj (ω)

]1/2

. (3.12)

Additionally, impedance ratios between the jth and kth layer are defined here as

ηjk(ω) =
ηj(ω)

ηk(ω)
. (3.13)

Notice that ηjk = η−1
kj .

Application of the boundary condition for the tangential component of the electric field

given in Eq. (2.75) at the interface between the first and second media at z = 0, results in

(
E0e

ık0z + E1e
−ık0z

)
e−ıωt =

(
E2e

ık1z + E′2e
−ık1z

)
e−ıωt, (3.14)
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where E0 is the amplitude of the incident electric field, E1 is the amplitude of the reflected

field, E2 is the amplitude of the right moving wave in the second layer, and E′2 is the

amplitude of the left moving in that layer. Upon canceling the common e−ıωt dependence,

evaluating this expression at z = 0 relates the electric field amplitudes as

E0 + E′1 = E2 + E′2. (3.15)

Application of the same boundary condition at the interface separating the second and third

medium at z = ∆z results in

(
E2e

ık1z + E′2e
−ık1z

)
e−ıωt = E3e

ık2ze−ıωt, (3.16)

where E3 is the amplitude of the transmitted field in the third medium occupying the half-

space z > ∆z. After canceling the time dependence and substituting z = ∆z, one obtains

Stratton’s result [(Stratton 1941) pg. 512 Eq. (8)]

E2e
ık2∆z + E′2e

−ık2∆z = E3e
ık3∆z. (3.17)

This result is incorrect as the right-hand side of the equation states that the transmitted

wave has already propagated a distance z = ∆z into medium 3 which is not the case

because the wave has just entered the third medium. The correct result here is subtly

different, relating the field amplitudes as

E2e
ık2∆z + E′2e

−ık2∆z = E3, (3.18)

where the absence of the eık3∆z shows that the energy has not yet entered substrate layer

but is still at the interface z = ∆z.

Analysis of the magnetic intensity field follows in a similar fashion by starting with the

boundary condition given in Eq. (2.78). Application of the boundary conditions at the first

interface separating the first and second medium results in the set of relations

H1 = H2, (3.19)

Hi +Hr = Hm, (3.20)

1

η0(ω)

(
E0e

ık1z − Eie−ık1z
)
e−ıωt =

1

η1(ω)

(
E2e

ık1z − E′2e−ık1z
)
e−ıωt. (3.21)
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Upon removing the common time dependent factor eıωt and evaluating the result at z = 0,

the above equation relates the field amplitudes as

E0 − E1 = η01(ω)
(
E2 − E′2

)
, (3.22)

where η01(ω) is the impedance ratio defined in Eq. (3.13). The same boundary condition

is used to relate the field amplitudes across the second interface at z = ∆z separating the

second and third mediums as

H2 = H3, (3.23)

Hm = Ht, (3.24)

1

η1(ω)

(
E2e

ık1z − E′2e−ık1z
)
e−ıωt =

1

η2(ω)
E3e

ık2(z−∆z)e−ıωt. (3.25)

Upon removing the common time dependent factor e−ıωt and substituting z = ∆z results

in Stratton’s incorrect result [(Stratton 1941) pg. 513 Eq. (8)]

E2e
ık2∆z + E′2e

−ık2∆z = η23(ω)E3e
−ık3∆z, (3.26)

again suggesting that the transmitted wave has already traveled a distance ∆z into the

third medium. The correct result is

E2e
ık1∆z + E′1e

−ık1∆z = η12(ω)E3. (3.27)

The solution of this system of equations for the reflected field E1 and the transmitted

field E3 in terms of the material properties and incident field amplitude E0 gives

E1

E0
=

r01 + r12e
ık1∆z

1 + r01r12eık1∆z
, (3.28)

E3

E0
=

1

(1 + η01)(1 + η12)

4eık1∆z

1 + r01r12eı2k1∆z
, (3.29)

where r01 and r12 are, respectively, the Fresnel reflection coefficients for lossy media (Can-

ning 2011) at the first and second interfaces. For normal incidence the corrected (allowing
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for material loss) Fresnel reflection and transmission coefficients are respectively given by

rij =
2µjki

µjki + µi [<{kj}+ ı={kj}]
, (3.30)

tij =
µjki − µi [<{kj}+ ı={ki}]
µjki + µi [<{kj}+ ı={ki}]

, (3.31)

where <{kj} and ={kj} respectively denote the real and imaginary components of the prop-

agation factor in the jth medium (see Appendix C for derivation). Notice that Stratton’s

result [(Stratton 1941) pg. 492 Eq. (14)] is obtained in the lossless medium case when

={ki} = ={kj} = 0.

3.2.2 Multilayer Case

These boundary conditions at the jth interface Sj , separating the jth from the (j + 1)th

layer can be compactly represented in matrix form as

Dj(ω)




Ẽj(ω)

Ẽ′j(ω)


 = Dj+1(ω)




Ẽj+1(ω)

Ẽ′j+1(ω)


 , (3.32)

where Dj(ω) is the dynamical matrix

Dj(ω) =




1 1

nj(ω) + σ σ − nj(ω)


 . (3.33)

In addition, a propagation matrix Pj may be defined for each layer j of finite thickness ∆zj

as

Pj(ω) =




ei∆zj k̃j(ω) 0

0 e−i∆zj k̃j(ω)


 . (3.34)

The transfer matrix

M(ω) =




m11(ω) m12(ω)

m21(ω) m22(ω)


 , (3.35)

for the entire N -layer system is then given by

M(ω) = D−1
0



N−1∏

j=1

DjPjD−1
j


DN , (3.36)
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where D0 is the dynamical matrix for free space and DN is that for the substrate material

(muscle in the biological case) and will have no left moving wave.

From the transfer matrix M the inverse problem presents as

Minv = D−1
N



N−1∏

j=1

DN−2+jPN−2+jD−1
N−2+j


D0, (3.37)

where now the substrate in the forward case is the incident medium in the inverse case, and

the incident medium in the forward case is now the substrate in the inverse case. Using the

identity that the transpose of a matrix product is the product of the transposes in reverse

order as

(ABC)T = CTBTAT , (3.38)

allows to reverse the order of matrix multiplication as

MT = DTN



N−1∏

j=1

DjPjD−1
j



T

(D−1
0 )T . (3.39)

The right hand side of the expression in Eq. (3.39) differs from that in Eq. (3.37) by the

inverse on the last time (D−1
0 )T and the lack of the inverse on the first term DTN . The

knowledge of M solely does not allow for straight forward computation of the inverse

problem as no inverse or symmetry relations exist, in general, for the transfer matrix M.

This transfer matrix also provides the Fresnel reflection and transmission coefficients as

r = m21/m11 and t = 1/m11 , respectively.

The frequency dependence of the Fresnel coefficients for a layered biological system of

skin, fat, and substrate muscle, as illustrated in Fig. 3.2, whose dispersive properties are

shown in Figs. 2.2–2.4, is illustrated in Fig. 3.3. Notice that the passband in the biological

system presented here is centered about f ' 600MHz. The reflected Ẽr and transmitted

Ẽt field vectors are then expressed as

Ẽr(z = 0, ω) = r(ω)Ẽ0 (r, ω) , (3.40)

Ẽt (zN−1, ω) = t(ω)Ẽ0 (r, ω) , (3.41)
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Air Skin Fat Muscle

∆z1 ∆z2
Figure 3.2: Biological multilayer with layer thicknesses ∆z1, ∆z2 and semi-infinite sub-
strate of muscle.

where

zN−1 =
N−1∑

j=1

∆zj , (3.42)

and where Ẽ0 (r, ω) is the temporal Fourier transform of the incident field E0 (r, t). The

reflected field given is present at the air-skin interface while the transmitted field is present

at the fat-muscle interface. Upon taking the inverse temporal Fourier transform of Eq. (3.40)

one obtains either the time-harmonic reflected

Er (r, t) =
1

2π

∫
Ẽr (r, ω) e−ıωtdω, (3.43)

and the time-harmonic transmitted field as

Et (r, t) =
1

2π

∫
Ẽt (r, ω) e−ıωtdω. (3.44)

The dependence of the dispersion curves for the Fresnel reflection (solid curves) and

transmission (dashed curves) coefficients of an anatomical multilayer system with N = 3

on the thickness of ∆z2 is illustrated in Fig. 3.4. The propagation distance ∆z2 in the

second layer (fat) is varied from ∆z2 = 0 to ∆z2 = λ in quarter wavelength increments.

As suggested by the preceding analysis, as the propagation distance in the second layer is

increased, the pass-band of the multi-layer system is down-shifted.

49



10
7

10
8

10
9

10
10

10
11

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Frequency (Hz)

M
a
g
n
it
u
d
e

 

 

Reflection

Transmission

Figure 3.3: Frequency dependence of the complex Fresnel reflection (solid) and trans-
mission (dashed) coefficients for a layered biological system of skin (∆z1 = 5mm), fat
(∆z2 = 20mm) and semi-infinite substrate muscle.
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Figure 3.4: Magnitude of the Fresnel reflection, at the air-skin interface, (solid curves)
and transmission, at the fat-muscle interface, (dashed curves) coefficients at 1GHz in fat
where λ ∼ 12.5cm.
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3.3 Quarter-Wave Layer with a Radar Absorbing Material

The effects of material dispersion on the reflected electromagnetic wave field due to an in-

cident ultrawideband pulse on a multilayer dielectric stack is presented for the particular

case when the system contains a single layer of finite thickness ∆z placed on top of a perfect

electric conductor (PEC), as illustrated in Fig. 3.5. The Salisbury Screen (Salisbury 1952)

shows the first time that this interference pattern was constructed in order to reduce the

reflection from a radar system. The nonmagnetic (µ = µ0), nonconducting (σ = 0) dielec-

tric layer is assumed to be highly absorptive, and thus highly dispersive, as might be found

∆z=λ/4

n=1 n(ω) PEC (σ = ∞)

Figure 3.5: Quarter-wave plate (∆z = λ/4) on perfect electric conductor (PEC) substrate.

in a radar absorbing material (RAM), with a frequency dependent complex permittivity

ε(ω) and complex refractive index n(ω) = (ε(ω)/ε0)1/2 = nr(ω) + ıni(ω) described by the

Rocard-Powles extension (McConnel 1980) of the Debye model (Debye 1929) of orienta-

tional polarization. The hypothetical radar absorbing material is designed to have an e−1

absorption depth zd ≡ c/(ωcni(ωc)) equal to a wavelength λ = (2πc)/(ωcnr(ωc)) at the

input pulse carrier frequency ωc = 2πfc, and the thickness of the layer ∆z is nominally

chosen at a quarter wavelength at the carrier frequency and varied up to a wavelength,

where the incident and reflected pulses are in vacuum. Numerical examples are presented

here for an incident rectangular enveloped pulse of time duration T that is chosen to be

either ultrashort (a single cycle) or long (many cycles) in order to investigate the effects

of destructive interference on the reflected steady-state component. The reflected signal is

shown to contain multiple pulses from the repeated reflections inside the dielectric layer
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with the multiple reflected pulses connected in time since the layer’s thickness is on the

order of or less than a wavelength. The Brillouin precursor is known to dominate the signal

as twice the layer thickness 2∆z increases above zd and may then be used to detect the low

observable surface.

The analysis of the quarter wave plate is a classic problem in optics (Born and Wolf

1980) with direct application to antireflection coatings. The reflectivity R = |r|2 of an

interface is a measure of the power reflected from that surface and relates to the energy

density

Uem (r, t) =
1

2

(
εE2 (r, t) + µH2 (r, t)

)
. (3.45)

where H̃∗(r) is the complex conjugate of the magnetic intensity vector. The energy density

per unit area incident upon the interface for a time harmonic field at normal incidence in

vacuum (satisfied in all cases presented here) is given by

Ui = |A|2, (3.46)

where A is the amplitude of the time harmonic wave and the subscript i denotes inci-

dent. The energy densities reflected and transmitted from the boundary are then given,

respectively, by (Born and Wolf 1980)

Ur = |R|2, (3.47)

Ur = ε2(ω)|T |2, (3.48)

where ε2(ω) is the (real-valued) dielectric permittivity in the second medium. When ε2(ω)

is complex-valued (as required when medium 2 is attenuative) the energy density of the

transmitted field looses physical meaning, as such this description is only applicable when

the substrate is purely real. The ratios of these quantities

R =
Ur
Ui

=
|R|2
|A|2 = |r|2, (3.49)

T =
Ut
Ui

= ε2(ω)
|T |2
|A|2 = ε2(ω)|t|2, (3.50)
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are respectively known as the reflectivity and transmissivity .

The reflectivity of the three layer system is most generally expressed as

R =
r2

01 + r2
12 + 2r01r12 cos(2β)

1 + r2
01r

2
12 + 2r01r12 cos(2β)

, (3.51)

where β = 2π/λ0n1∆z for normal incidence and, for a purely real substrate, ={ε2(ω)} ≡ 0.

For a system of three layers the reflection coefficients, at normal incidence, for the interface

separating the first and second media, and the second and third are respectively

r01 =
n0 − n1

n0 + n1
, (3.52)

r12 =
n0 − n2

n1 + n2
, (3.53)

where n0, n1, and n2 are refractive indices for the incident, second, and substrate medium

respectively. As such, the reflectivity for the system is expressed as

R =

(
n0n2 − n2

1

n0n2 + n2
1

)2

. (3.54)

When the middle layer has a thickness given by

∆z =
λ0

2 cos θ1
,

2λ0

2 cos θ1
,

3λ0

2 cos θ1
, ..., (3.55)

then cos(2β) = 1 and the reflectivity for the system is then found to be independent of n1

as (Born and Wolf 1980)

R =

(
n0 − n2

n0 + n2

)
. (3.56)

The maxima and minima of R(∆z) are found by differentiation of Eq. (3.51) with respect

to ∆z and occur when ∆z = mλ0/4 (m = 1, 2, 3, ...). A second differentiation then provides

the condition for a minimum of R when d2R/d∆z2 < 0, showing that for a system with

n1 > n2, the reflectivity R is minimized for ∆z = mλ0/4 (m = 1, 3, 5..), and in the case of

n2 < n3 R is minimized when ∆z = mλ0/4 (m = 2, 4, 6..).

An idealized hypothetical case of a quarter-wave plate is obtained when the incident and

transmitted media are characterized by vacuum with n(ω) = 1 ∀ ω and the permittivity of
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the quarter-wave plate is purely real but dispersive. In that case, one may use the Debye

model to describe εr(ω) as

εr(ω)

ε0
= ε∞ +

εsr − ε∞
1 + ω2τ2

, (3.57)

with the parameters εs = 10, ε∞ = 1, and τ = 1× 10−10s which provide sets the absorption

depth zd = α−1(ωc) = 2.52cm at ωc = 1.26 × 1010r/s if loss is included, while artificially

setting εi(ω) ≡ 0. In the case considered, the reflected field from the back interface is

in perfect destructive interference with the reflected field from the first interface due to

the π/2 phase shift when ∆z = λ0/4 where λ0 = c/f = 15cm is the vacuum wavelength

for f = 2GHz. The frequency dependence of the Fresnel reflection coefficient r is shown

in Fig. 3.6 where it is seen that r vanishes at the isolated frequency ωc. However, due to

dispersion the subsequent zeros of the reflection coefficient are not at the locations predicted

by the monochromatic analysis, but in this case are up-shifted from them.
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Figure 3.6: Magnitude |r| of the frequency dependent Fresnel reflection coefficient at
normal incidence for a λ/4 wave plate.

The magnitude of the Fresnel reflection coefficient for the specific frequency ω = 1.26×
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1010r/s vanishes completely, thereby entirely extinguishing this component of the field in

the steady state, continuous wave case, as shown in Fig. 3.7. The incident pulse f(t) =

u(t) sin (ωct) (solid curve) where ωc = 1.26 × 1010r/s, u(t) = 0 for t < 0 and t > T and

u(t) = 1 for 0 < t < T . Notice that is rectangular envelop pulse can be represented as the

difference between a pair of time delayed Heaviside step-function signals. The numerically

determined reflected field, described by the solid curve in Fig. 3.7, is seen to have no steady

state component, as expected from the usual continuous wave analysis of a quarter-wave

plate (Born and Wolf 1980). The continuous wave analysis assumes a purely monochromatic

incident field that is oscillating for all time. For a finite duration rectangular envelope wave-

field, however, there are large leading and trailing edge transients evident in the reflected

field depicted in Fig. 3.7.
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Figure 3.7: Incident (dashed) and reflected (solid) pulses from a fictitious non-absorbing,
dispersive dielectric layer with incident and substrate mediums being vacuum.

When the associated dispersive loss is included by allowing the permittivity of the

dielectric layer to be complex, the refractive index then being complex as well, the quarter
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wave layer no longer provides a complete extinction of any frequency near the carrier ωc

as it did in the idealized case previously treated. Even when the incident and transmitted

media are both vacuum, there is no frequency component in the bandwidth of interest

whose Fresnel reflection coefficient vanishes. The effects of a dielectric whose loss cannot

be ignored is then seen to fundamentally alter the continuous wave analysis of the quarter

wave plate for perfect destructive interference.

Since the Debye model of orientational polarization overestimates the loss factor for high

frequencies, use of this dispersion model will underestimate the magnitude of the Fresnel

reflection coefficient (dashed curve) at high frequencies, as illustrated in Fig. 3.8. With the

loss being improperly over-estimated by the Debye model, it then appears that the lossy

layer absorbs more energy at higher frequencies than would be expected. This is corrected

by using the Rocard-Powles extension (McConnel 1980) to the Debye model, as described

by the solid curve depicted in Fig. 3.8.
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Figure 3.8: Resultant frequency dependent Fresnel coefficients for the Debye-model
(dashed curve) and its Rocard-Powles extension (solid curve).
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When the transmitted media is replaced by a good conductor, in this case modeled as

aluminum with static conductivity σ0 = 2.82× 108 S/m, all of the energy is reflected back

into the dielectric layer since no field can be sustained within the conductor. Again, if loss

was neglected throughout the system, all of the incident energy would be reflected back

into the incident medium since there wouldn’t be any transmission into the substrate nor

would there be any loss in the system. By properly modeling the dispersive dielectric layer

as having causally related dispersive loss in the neighborhood of the carrier frequency ωc

by including the full Rocard-Powles-Debye dispersion model given in Eq. (2.54), viz.

ε(ω)

ε0
= ε∞ +

εsr − ε∞
(1− ıωτ)(1− ıωτf )

, (3.58)

good, but not total, extinction is achieved for a narrow frequency band about the carrier

frequency ωc = 1.26 × 1010r/s, as illustrated Fig. 3.8. Notice that the minimum in this

block-band filter is down-shifted from its design point at ωc. The numerically determined

reflected pulse, illustrated in Fig. 3.9, is seen to possess both transient and steady state

components.

3.4 Propagation Through Stratified Media

The asymptotic description of ultrawideband dispersive pulse propagation is obtained from

the exact Fourier-Laplace integral representation of the propagated linearly polarized plane

wave field (Sommerfeld 1914; Brillouin 1914; Brillouin 1960)

E(z, t) =
1

2π

∫ ia+∞

ia−∞
f̃(ω)e

z
c
φ(ω,θ)dω, (3.59)

for z ≥ 0. Here a is a number larger than the abscissa of absolute convergence (Stratton

1941) for the spectrum f̃(ω) =
∫∞
−∞ f(t)eiωtdt of the initial plane wave pulse E(0, t) = f(t)

at z = 0. The temporal Fourier spectrum Ẽ(z, ω) of the wave field E(z, t) satisfies the

Helmholtz equation
(
∇2 + k̃2(ω)

)
Ẽ(z, ω) = 0 with complex wave number k̃(ω) = β(ω) +

iα(ω) = (ω/c)n(ω) in the temporally dispersive medium with complex index of refraction
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Figure 3.9: Incident (dashed) and reflected field (solid) from λ/4 RAM on PEC.

n(ω) = nr(ω) + ini(ω) whose real nr(ω) ≡ <{n(ω)} and imaginary ni(ω) ≡ ={n(ω)} parts

are related through the Kramers-Kronig relations. Here β(ω) ≡ <
{
k̃(ω)

}
is the propagation

(or phase) factor , α(ω) ≡ =
{
k̃(ω)

}
is the attenuation factor , and

φ(ω, θ) ≡ i c
z

[
k̃(ω)z − ωt

]
= iω

[
n(ω)− θ

]
(3.60)

is the complex phase function with θ ≡ ct/z a nondimensional space-time parameter defined

for all z > 0.

For θ ≥ 1, the propagated wave field due to an ultrawideband signal in a Rocard-Powles-

Debye model dielectric may be expressed either as a superposition of component fields as

E(z, t) = EB(z, t) +Ec(z, t), or as a linear combination of fields of this form. Here EB(z, t)

is the Brillouin precursor describing the low-frequency response, and Ec(z, t) is the pole

contribution describing the signal contribution (if any). Of particular significance here is

that the peak amplitude of the Brillouin precursor EB(z, t) experiences zero exponential

decay with propagation distance z > 0, decreasing algebraically as z−1/2 in the dispersive,
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absorptive medium (Oughstun 2005).

In addition to having a proper description of reflection and transmission at a lossy

interface, as well as through a multilayer system of dispersive media, a complete and accurate

description of biological tissues is necessary to model this interaction. The energy of the

propagated field depends upon both the transmission across each material interface as well

as through each dispersive, attenuative layer (labeled j = 1, 2, ..., N), where each medium is

described by its complex refractive index nj(ω). This numerical simulation consists of three

stacked biological tissues (N = 3) representing skin, fat and muscle with each interface

assumed to be planar and infinite in the transverse direction. Each tissue is modeled as

a homogeneous, isotropic, linear, dispersive lossy dielectric whose frequency dependence

follows a multiple relaxation-time Rocard-Powles-Debye model over a wideband frequency

range extending from static to 10GHz.

Because each of the materials are described by a complex dielectric permittivity, the

Fresnel reflection and transmission coefficients for all cases presented will be complex, ef-

fecting both the amplitude and phase of the incident plane wave. It is common in most

literature to make the angle of refraction θ2 with respect to the normal complex-valued as

described by Snell’s law (Descartes 1644)

sin−1

(
n1 sin θ1

n2

)
= θ2, (3.61)

where θ1 is the deviation from normal for the incident field, and n1 and n2 are the refractive

indices for the incident and transmitted mediums, respectively, which in general are complex

functions as shown in §3.2. However, as described by Roy (Roy 2003) this result looses

physical meaning when θ2 becomes a complex quantity. In addition, Snell’s law has been

extended to stratified media for both the periodic and aperiodic case (Born and Wolf 1980)

and can be represented in a similar matrix used here for the complex frequency dependent

Fresnel coefficients.
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3.4.1 A Heuristic Example

As an example, consider a single dispersive dielectric layer (N = 3) where the incident

and substrate layers are both vacuum, and the middle layer is triply-distilled water with

thickness ∆z = 12cm. The frequency dispersion of triply-distilled water below 500GHz is

accurately represented as a double relaxation time Rocard-Powles-Debye model described

in Eq. (2.59). The numerical example treated here examines the transmitted and reflected

wave fields due to an incident single cycle rectangular envelope pulse f(t) = u(t) sin (2πfct)

with fc = 1GHz, where u(t) = 0 for t < 0 and t > T and u(t) = 1 for 0 < t < T . Again,

notice that a rectangular envelope pulse can be represented as the difference between a

pair of time delayed Heaviside step-function signals. With this pulse normally incident on

this multilayer system, a transmitted pulse train is observed at the output in medium 3,

as shown in Fig. 3.10. Notice that each subsequent pulse amplitude is attenuated by two

mechanisms, the first being due to reflection of energy back into the incident medium and

the second being caused by the dielectric loss of the water layer. The broadening of each

pulse is due to the frequency dispersion within the layer of water. The reflected pulse train

(dashed curve) is illustrated in Fig. 3.11.

3.4.2 Multilayer System

When the number of layers is increased (N > 3) so that there is more than one layer of finite

thickness, the dynamics of the multiple reflections and transmissions in the system become

more complex. As an example, consider theN = 4 system where the first medium is vacuum,

the second medium is skin with thickness ∆z2 = 5mm, the third is fat with thickness

∆z3 = 1
4λ ∼ 3.1cm, and the semi-infinite substrate material is muscle, as illustrated in

Fig. 3.2, where the propagation direction is orthogonal to the orientation of the muscle

fibers. The same input rectangular envelope pulse used in the previous example is normally

incident on this multilayered system and is shown along with the series of output pulses at

the back interface in Fig. 3.12. Here the output pulses are continuously connected in time
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Figure 3.10: Incident single-cycle pulse (solid curve) and transmitted pulses (dashed curve)
at the back interface.
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Figure 3.11: Incident single-cycle pulse (solid curve) and reflected pulses (dashed curve)
at the initial interface.
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because the thickness of any one layer, excluding the substrate, is shorter than a wavelength.
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Figure 3.12: Incident single-cycle pulse (solid curve) and superposed transmitted pulses
(dashed curve) at the back interface.

This transmitted pulse is then propagated in the muscle substrate material where the

pulse is seen to dynamically evolve due to the frequency dependent phase and attenuation

factors. The peak amplitude of the transmitted pulse at the back interface is reduced to

16.5% of the incident pulse amplitude. According to Beer’s law, this pulse should then be

attenuated by the factor e−5 ∼ 0.0067 to a peak amplitude of ∼ 1.1 × 10−3 at five ab-

sorption depths [z/zd = 5, where zd = α(ωc)
−1 ∼ 4.6cm] Fig 3.13 illustrates the multilayer

system and the plane where the measurement is made. However, because of the nonexpo-

nential decay of the Brillouin precursor (Oughstun 2005), the propagated pulse, illustrated

in Fig. 3.14, has a peak amplitude that is more than an order of magnitude larger.

A comparison of the numerically determined peak amplitude attenuation of this pulse

at z/zd = 1, 2, ..., 10 is made with the exponential attenuation described by Beer’s law in
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Figure 3.13: Biological multilayer with the measurement plane (dashed line) shown.
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Figure 3.14: Transmitted pulse propagated 5 absorption depths (∆z = 23cm) into muscle.
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Fig. 3.15. The numerical results exhibit the algebraic, nonexponential decay that is a char-

acteristic of the Brillouin precursor evolution. Another feature of the Brillouin precursor

is the change in its effective oscillation frequency with propagation distance, as the propa-

gation distance approaches infinity the effective oscillation frequency of the precursor field

approaches 0Hz. This is a characteristic of attenuative, dispersive media, signifying that

biological tissues can demodulate radio and microwave frequency fields.
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Figure 3.15: Numerically determined peak amplitude decay of a single cycle, rectangular
envelope pulse (solid curve) with the corresponding Beer’s law exponential decay (dashed
curve) in substrate muscle, and where ’x’ indicates a discrete data point from the simulation.

3.5 Conclusion

This formalism provides the necessary theoretical description required to properly analyze

the interaction of an ultrawideband electromagnetic pulse with a layered, lossy, dispersive

system. The canonical case of a quarter-wave plate has been analyzed where the antireflec-

tion film’s loss is maximized at the carrier frequency and consequently the material is highly
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dispersive in that frequency band. The effects of loss and dispersion on the quarter-wave

plate analysis have been demonstrated numerically and show that complete extinction of

the field is not achieved as it is in the classical nondispersive, nonabsorbtive analysis. The

changes an ultrawideband electromagnetic pulse experiences as it is propagated through a

layered system of simulated biological tissues have been described. Each layer is described as

being homogeneous, isotropic and locally linear with temporal dispersion exhibiting orien-

tational polarization described as a semi conducting Debye-type dielectric. The transmitted

pulse in the biological substrate of muscle is found to contain multiple pulses due to the

internal series reflections of the multilayer stack. All reflection coefficients presented here

at the initial interface z = 0, and all transmission coefficients are for the plane z = zN−1

given in Eq. (3.42). The resultant transmitted ultrawideband pulse does not decay exponen-

tially as suggested by Beer’s law, but rather algebraically, a characteristic of the Brillouin

precursor that begins its formation in the dispersive, attenuative multilayer stack.
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Chapter 4

Scattering, Breakdown and

Excitation of the Spherical Cell

4.1 Introduction

The analysis of an ultrawideband pulse incident on an anatomically realistic system of

layered biological tissues has been presented in previous chapters. That analysis provides a

correct description of the amount of the incident energy that can be transmitted through

the layered dispersive system into the biological substrate. Embedded in the substrate of

muscle is an idealized biological, spherical cell embedded in the substrate muscle whose

dispersive material properties are taken to be that of water. The numerical response of the

cell to the pulsed field is represented by the Fitzhugh-Nagumo model including both the

fast and slow response from the incident injected field.

The analysis presented here is concerned with transient phenomena associated with

pulsed fields in microwave and radio-frequency domains and its coupling at the cellular

level. This chapter aims to address the sparsity of research investigating the biological

interactions of high-peak-low-average power pulses as pointed out by Foster (Foster 2000).

Particularly of interest are pulses with rapid turn on times that exceed the relaxation times
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of the biological tissues. When this criteria is met, precursor fields will be formed and carry

energy further into the tissue than expected from the continuous wave case as described by

Beer’s law (Oughstun 2005).

The interactions of the propagated plane wave field with the spherical scatterer are

carried out through the application of Rayleigh scattering, which is valid when the radius

of the spherical cell is much less than the wavelength of the incident plane wave. The

spherical cell is assigned the dispersive properties of water in order to determine the portion

of energy injected across the cellular membrane. It is then this perturbation to the cellular

membrane that is used with the Fitzhugh-Nagumo model for the excitable neuron show

in Fig. 4.1 to investigate excitation. From the computations presented, the external field

strengths required from excitation or breakdown of the cellular membrane are determined.

Figure 4.1: Fitzhugh-Nagumo model for the excitable neuron.

4.2 Scattering and Propagation In Tissues

In order to accurately describe the coupling of an ultrawideband pulse external to the body

to internal tissues the pulse is passed through a system where the layers of skin and fat
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are of finite thickness, respectively ∆z1 = 5mm and ∆z2 = 20mm, which are positioned

on a semi-infinite substrate of muscle. Because of the finite thickness of the skin and

muscle layer and their apparent macroscopic discontinuous changes in material parameters,

repeated reflections are seen exiting the stack into the muscle as shown in Fig. 4.2, with

15% amplitude being transmitted through the multilayer stack, with the transmitted pulse

containing multiple pulses continuously connected in time.
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Figure 4.2: Incident (solid curve, left axis) and transmitted (dashed curve, right axis)
pulse from the layered system.

After the transmitted pulse has been propagated a distance of 2zd ∼ 20cm into muscle,

where zd ≡ α(ωc)
−1, the frequency dependent phase β(ω) and attenuation α(ω) factors

fundamentally change the shape of the pulse with propagation distance. The resulting pulse

is shown in Fig. 4.3 with the leading and trailing edge Brillouin precursors clearly evident

in this propagated pulse. It is also obvious from this figure that the main signal component

is attenuating at a much greater rate (with respect to distance) than the precursor fields.
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Figure 4.3: Pulse propagated 2zd into muscle after being passed through the system shown
in Fig. 3.2.

4.3 Scattering From the Cell

For the case of a biological cell, the wavelength λ of the incident electric field will be much

larger than the radius of the spherical cell a. With this physical realization the entire

exterior of the sphere will be at the same electric potential at every point in time. In this

case the scattering from the sphere is described by Rayleigh scattering.

In Rayleigh scattering (Kerker 1969) the electric field inside the sphere Ẽi (r, ω) is uni-

form and parallel to the external field Ẽo (r, ω) with its amplitude modified as

Ẽi (r, ω) =
3ε2(ω)

ε1(ω) + 2ε2(ω)
Ẽo (r, ω) (4.1)

where ε1(ω) and ε2(ω) are the frequency dependent complex dielectric permittivities of the

sphere and external medium, respectively. In the external medium two fields are superim-

posed, the first of which is the incident field Ẽ0 (r, ω) which would exist even in the absence

of the scattering sphere. The second field Ẽs (r, ω) is the field which results from scatter-
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ing due to the cell. This second field is that of a dipole being radiated from the spherical

scatterer oriented parallel to the incident field. The dipole moment of this field is given by

p = ε2(ω)a3 ε1(ω)− ε2(ω)

ε1(ω) + 2ε2(ω)
Ẽ0 (r, ω) . (4.2)

The dipole field generated by the scattered is shown in Fig. 4.4 where the lines show the

electric field lines and the contour fill shows the equipotential surfaces.

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

Figure 4.4: Dipole field generated by the spherical cell showing equipotential surfaces
(shaded regions) and electric field lines (solid curves).

The static zone of the dipole radiation field is defined as kr << 1 so that r << λ/2π.

In the static zone the equations for the electric and magnetic fields reduce to

E (r, t) ' − 1

4πε0

p

r3

(
2 cos θr̂ + sin θθ̂

)
cos(ωt) (4.3)

B (r, t) ' 0, (4.4)

where p is the strength of the dipole moment. In the static zone the field is that due to that

of an electrostatic dipole that varies with an eıωt time dependence as shown in Fig. 4.4.
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Away from the spherical cell the scattered field has little contribution to the field in the

external medium, due to its 1/r3 dependence (see Appendix D). The result of this condition

is that sufficiently far away from the scatterer the electric field in the external medium will

be that of the unperturbed incident field. The induced membrane potential is shown in

Fig. 4.5 from the incident pulse described in Fig. 4.2. To achieve membrane breakdown, the

membrane potential Vm is required to be on the order of 0.1−1V for the incident, unity pulse

presented here. The membrane potential is 9−10 orders of magnitude below this threshold.

For the model presented here it would require an incident pulse of 1× 109V/m external to

the body before cellular breakdown would be expected. The Precision Acquisition Vehicle

Entry Phase Array Warning System (PAVE PAWS) radiates at published power densities

upto 1.4µW/cm2 which correspond to electrical field strengths on the order of 107V/m

[(Barnes 2005) pp. 40].
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Figure 4.5: Induced change in membrane potential.
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4.4 Excitation

The nonlinear circuit shown in Fig. 4.1 represents an excitable cell such as a neuron and is

a simplified, two variable model of the Hodgkin-Huxley type with a fast variable V and a

slow variable W . The slow variable W represents the current flowing through the resistor,

inductor and battery and is called the recovery current , and the fast variable Vm is the

membrane voltage. This two variable model is convenient for phase plane analysis.

There are three canonical responses from the Fitzhugh-Nagumo model, the first being

when the input current I or membrane voltage Vm perturbation is below the necessary

threshold in which no action potential is created by the dynamics as depicted in Fig. 4.6.

The second case is when there is a single impulse that exceeds the cell’s membrane threshold

forcing a single action potential to be formed as depicted in Fig. 4.7. The final canonical

response of this system is when the input is of sufficient strength to cause periodic spiking

behaviors as shown in Fig. 4.8.

0

50

100

150

−2

−1

0

1

2

−1

−0.5

0

0.5

1

1.5

2

Time (mS)
V

W

(a) Membrane potential and recovery current.
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Figure 4.6: Subthreshold example of the Fitzhugh-Nagumo model for I = 0.16µA.

Figures 4.6(a), 4.7(a), and 4.8(a) show a three dimensional representation of the recovery

current W plotted against the membrane potential V in time t. The phase plane plots are

shown in Figs. 4.6(b), 4.7(b), and 4.8(b). The diagonal line represents the W -nullcline

obtained from the condition Ẇ = 0 and the cubic shaped curve is the V -nullcline obtained
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Figure 4.7: Suprathreshold example of the Fitzhugh-Nagumo model for I = 0.2µA.
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Figure 4.8: Spiking example of the Fitzhugh-Nagumo model for I = 1.2µA.

from the condition V̇ = 0. The intersection of these nullclines Ẇ = V̇ = 0 is the equilibrium

point of the nonlinear, dynamical system and can be unstable, as shown in the case of the

periodic spiking response. The time domain plots of the non-dimensional (see Eqs.(4.9)–

(4.10)) membrane voltage Vm and recovery current W are shown for the subthreshold,

superthreshold and spiking cases in Figs. 4.9–4.11, respectively.

Through the application of Kirchhoff’s laws Nagumo’s circuit is represented as

Cm
d

dt
Vm + F (V ) + i = −I0, (4.5)

L
d

dt
i+Ri = V − V0, (4.6)
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Figure 4.9: Membrane voltage (solid curve) and recovery current (dashed curve) for sub-
threshold stimulus.
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Figure 4.10: Membrane voltage (solid curve) and recovery current (dashed curve) for
superthreshold stimulus.
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Figure 4.11: Membrane voltage (solid curve) and recovery current (dashed curve) for
stimulus sufficiently strong to cause spiking.

where Cm = 0.01µF is the membrane capacitance, F (V ) is the cubic non-linear term repre-

sented by the tunnel diode, I0 is the injected current, L is representative of the membrane

inductance, i is the current flowing through the RL branch and V0 is the membrane resting

potential. Upon solving the system of nonlinear equations

Ẇ =
1

L
(−Vm +RW − V0), (4.7)

V̇m =
1

C
(Vm − V 3

m/3−W + I), (4.8)

where the the current voltage relationship of the tunnel diode f(V ) = V − V 3/3 is sub-

stituted. The DC voltage V0 is representative of the resting potential for the cell as de-

scribed by the Nernst potential. In literature is common for this set of equations to be

non-dimensionalized as

Ẇ = φ(−Vm + bW + a), (4.9)

V̇m = Vm − V 3
m/3−W + I, (4.10)
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where φ = 0.08, b = 0.8 and a = 0.7.

The membrane resting potential is given by

V0 =
RT

zF
ln

(
[X]o
[X]i

)
, (4.11)

in volts where R = 8.31J/(mol K) is the ideal gas constant, T = 298K is the temperature

in Kelvin (RT/F ∼ 25.69mV at room temperature), z is the valance of the ion species,

F = 9.65 × 104C/mol is Faraday’s constant , [X]o is the external concentration of the ion

species, and [X]i is the internal concentration of the ion species. In the case considered

there are three unique ion species, Na+, K+, and Ca−, whose Nernst potentials combine

linearly for the total resting membrane potential V0 ∼ −70mV.

The necessary voltage threshold for the model presented here is Vtreshold ∼ −55mV

requiring an increase in the membrane potential Vm = V0 + 15mV. This is an order of

magnitude below what would be required to cause membrane breakdown. This would

still require a pulsed field on the order of E ∼ 109V/m external to the layered tissues in

order to externally initiate an action potential as illustrated in Fig. 4.7. However, even at

sub-threshold membrane perturbations, the cell’s voltage gated ion channels are still being

manipulated as depicted in Fig. 4.6. It is this low level, athermal interaction that needs

to be studied in further detail to completely understand the full coupling and influence

non-ionizing radiation fields have on cellular dynamics.

4.5 Conclusions

The analysis presented in this chapter utilized current quantitative physiology techniques

together with electromagnetic scattering theory to provide magnitude of order estimates for

the electromagnetic energy that can be delivered from an external source into an anatomic

system. The field strengths required to cause membrane break down in a passive cell or ex-

citation in an active cell are orders of magnitude beyond what is seen in common exposures.

However, it has been demonstrated here that even at levels below the critical value at which
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catastrophic failures occur within the body, there remain intimate interactions influencing

a biological cell’s voltage gated ion channels. The true physiological interactions are beyond

the scope of this dissertation but should be analyzed numerically and experimentally in the

future. Current standards such as IEEE C95.1 are based on heating through specific ab-

sorption rate which can misrepresent the factor of safety these standards offer as illustrated

in Fig. 4.12.

The plot in Fig. 5.18(a) illustrates the C95.1 standard as the solid curve and the power

output from PAVE-PAWS system is marked with an ’x’, demonstrating a factor of safety

of 100. The plot in Fig. 5.18(b) illustrates the numerical determined critical field values

solid curve and the field strength used by PAVE-PAWS dashed curve which shows a factor

of safety of 10. The apparent safety margin shown in Fig. 5.18(a) is inherent in the steady-

state approximations used during the creation of the IEEE C95.1 standard. The reduced

factor of safety illustrated in Fig. 5.18(b) demonstrates the significance of transient field

components as they have been demonstrated here to carry more energy further into the

modeled biological tissues than is suggested by the classical steady state analysis.
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Figure 4.12: Comparison of PAVE-PAWS power density with IEEE C95.1 and numerically
determined critical field values with PAVE-PAWS field value.

78



The Federal Communications Commission (FCC) defines fractional bandwidth as

fb ≡ 2
fh − fl
fh + fl

, (4.12)

where fh is the −10dB upper limit and fl is the −10dB lower limit of the energy bandwidth.

According to this technical report, a pulse is ultrawideband if the fractional bandwidth

fb > 0.25 or occupies 1.5GHz or more of spectrum space (Commission et al. 2002). The

fractional bandwidth of five pulses, of differing temporal duration were calculated for a

carrier fc = 435MHz wher the turn on/off time was 10% of the carrier frequency period

and Nosc is the number of pulses under the rectangular envelope.

Nosc fb

1 1.62

2 0.51

5 0.30

7 0.21

15 0.11

Table 4.1: Fractional bandwidth fb as a function of pulse duration Nosc at 435MHz.

For the fractional bandwidths presented in Table 4.1, the necessary external field values

to cause catastrophic failure to the cell, as presented in this numerical model, embedded at

varying distances in muscle are illustrated in Fig. 4.13. According to the FCC definition,

pulses at the carrier frequency fc = 435MHz, with a 10% turn on/off time, lasting less than

7 oscillations are ultrawideband. However, the influence of the bandwidth, on the critical

field value is minimal, except for the extreme, ultrashort case of 1 oscillation. Additionally,

because of the asymptotic nature of the Brillouin precursor its formation and resulting

impact on critical field values increases with propagation distance.
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Chapter 5

Extensions, Conclusions and

Future Work

5.1 Extension: Optical Precursors in Nonlinear Pulse Dy-

namics

Under certain conditions, ultrashort pulse dynamics in a linear dispersive medium with

absorption result in the appearance of optical precursors that dominate the pulse evolution

for large propagation distances. The effects of a nonlinear medium response on this precursor

formation is considered using the split-step Fourier method. Comparison of the nonlinear

pulse evolution when the full dispersion is used to that when a quadratic Taylor series

approximation of the wave number is used shows that the group velocity approximation

misses the precursor fields entirely. This work is carried out in the optical domain, at

frequencies much greater than previously discussed in this dissertation. The nonlinear Kerr

effect as presented here is much more prevalent at optical frequencies compared to microwave

or radio frequencies.
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5.1.1 Introduction

The asymptotic description of ultrawideband dispersive pulse propagation in a Lorentz

model dielectric has its origin in the classic research by Sommerfeld (Sommerfeld 1914)

and Brillouin (Brillouin 1914; Brillouin 1960) based on Debye’s steepest descent method

(Debye 1909). This seminal work established the physical phenomena of forerunners, or

precursor fields (Stratton 1941), that were originally associated with the evolution of a

Heaviside step-function signal. This description is derived from the exact Fourier-Laplace

integral representation of the propagated linearly polarized plane wave field (Oughstun and

Sherman 1994; Oughstun 2006b; Oughstun 2009b)

E(z, t) =
1

2π

∫ ia+∞

ia−∞
f̃(ω)e

z
c
φ(ω,θ)dω, (5.1)

for z ≥ 0 with fixed a larger than the abscissa of absolute convergence (Stratton 1941;

Oughstun and Sherman 1994; Oughstun 2006b; Oughstun 2009b) for the spectrum f̃(ω) =

∫∞
−∞ f(t)eiωtdt of the initial plane wave pulse E(0, t) = f(t) at z = 0. The temporal Fourier

spectrum Ẽ(z, ω) of the optical wave field E(z, t) satisfies the Helmholtz equation

(
∇2 + k̃2(ω)

)
Ẽ(z, ω) = 0 (5.2)

with complex wave number k̃(ω) = β(ω) + iα(ω) = (ω/c)n(ω) in the temporally dispersive

medium with complex index of refraction n(ω) = nr(ω)+ini(ω) whose real nr(ω) ≡ <{n(ω)}

and imaginary ni(ω) ≡ ={n(ω)} parts are related through the Kramers-Kronig relations

(Oughstun 2006b). Here β(ω) ≡ <
{
k̃(ω)

}
is the propagation (or phase) factor and α(ω) ≡

=
{
k̃(ω)

}
the attenuation factor for plane wave propagation in the dispersive attenuative

medium. In addition,

φ(ω, θ) ≡ i c
z

[
k̃(ω)z − ωt

]
= iω

[
n(ω)− θ

]
(5.3)

with θ ≡ ct/z a nondimensional space-time parameter defined for all z > 0.

Based upon this exact integral representation, the modern asymptotic theory (Ough-

stun and Sherman 1988; Cartwright and Oughstun 2007) provides a uniform asymptotic
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description of dispersive pulse dynamics in a single-resonance Lorentz model dielectric with

causal, complex index of refraction given by (Oughstun 2006b)

n(ω) =

(
1−

ω2
p

ω2 − ω2
0 + 2iδω

)1/2

, (5.4)

with resonance frequency ω0, damping δ, and plasma frequency ωp. The absorption band,

which corresponds to the region of anomalous dispersion, then extends from ∼
√
ω2

0 − δ2 to

∼
√
ω2

1 − δ2, where ω1 ≡
√
ω2

0 + ω2
p. Sommerfeld’s relativistic causality theorem then holds

(Sommerfeld 1914; Oughstun and Sherman 1994; Oughstun 2009b; Oughstun and Sherman

1988), which states that if E(0, t) = 0 for all t < 0, then E(z, t) = 0 for all θ < 1 with z > 0.

For θ ≥ 1, the propagated wave field due to an ultrawideband signal in a single-resonance

Lorentz model dielectric may be expressed either as a superposition of component fields as

E(z, t) = ES(z, t) + EB(z, t) + Ec(z, t), (5.5)

or as a linear combination of fields of this form (Oughstun 2009b). Here ES(z, t) is the

first forerunner (Sommerfeld 1914; Brillouin 1914; Brillouin 1960) or Sommerfeld precursor

describing the high-frequency (|ω| ≥ ω1) response of the dispersive medium, EB(z, t) is the

second forerunner (Brillouin 1914; Brillouin 1960) or Brillouin precursor describing the low-

frequency (|ω| ≤ ω0) response, and Ec(z, t) is the pole contribution describing the signal

contribution (if any). The observed pulse distortion for a Heaviside step function signal

is then seen to be due to both the precursor fields and their interference with the signal

contribution. For a gaussian envelope pulse, the dynamical pulse evolution is comprised

of just the precursor fields (Oughstun 2009b; Oughstun and Balictsis 1996) because its

spectrum ẼG(0, ω) is an entire function of complex ω. Of particular importance here is

that the peak amplitude of the Brillouin precursor EB(z, t) experiences zero exponential

decay with propagation distance z > 0, decreasing algebraically as z−1/2 in the dispersive,

absorptive medium for δ > 0 bounded away from zero (Oughstun and Sherman 1994;

Oughstun 2009b; Oughstun and Sherman 1988; Cartwright and Oughstun 2007) .
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By comparison, the group velocity description of dispersive pulse propagation was for-

mulated by Havelock (Havelock 1908; Havelock 1914) based upon Kelvin’s stationary phase

method (Kelvin 1887). In this approach, the wave number k(ω), assumed there to be real-

valued, is expanded in a Taylor series about some wave number value k0 that the spectrum

of the wave group is clustered about, where (Havelock 1914) “the range of integration is

supposed to be small and the amplitude, phase and velocity of the members of the group

are assumed to be continuous, slowly varying, functions” of the wave number. Notice that

Havelock’s group method (Havelock 1908; Havelock 1914) is a significant departure from

Kelvin’s stationary phase method (Kelvin 1887), where k0 is the stationary phase point of

the wavenumber k(ω). This apparently subtle change in the value of k0 results in signifi-

cant consequences on the accuracy of the resulting group velocity description based on this

method (Oughstun 2009b; Oughstun and Xiao 1997; Xiao and Oughstun 1999).

The accuracy of the quadratic Taylor series approximation of the complex wave number

k̃(ω) ≈ k̃(ωc) + k̃′(ωc)(ω − ωc) + (1/2)k̃′′(ωc)(ω − ωc)2, (5.6)

where k̃′(ω) ≡ ∂k̃(ω)/∂ω and k̃′′(ω) ≡ ∂2k̃(ω)/∂ω2, is illustrated in Fig. 1 with ωc =

1.0×1015r/s for a moderately dispersive resonance line at ω0 = 2.4×1015r/s with ωp/ω0 '

0.00127 and δ/ω0 = 0.025., the upper plot describing the scaled real part (c/ω)[β(ω)−β(ωc)]

and the lower plot the imaginary part α(ω) of k̃(ω). Although β(ω) is accurately modeled

over a finite frequency interval below resonance (because ωc < ω0) in this case, diverging

from the actual behavior both when ω increases sufficiently above or below the medium

resonance frequency ω0, α(ω) is overestimated for all frequencies above and below the carrier

frequency ωc. Because of this, the frequency dependence of α(ω) is typically neglected in

the group velocity approximation where α(ω) ≈ α(ωc).

As a consequence of these error sources, which are fundamental to the group method,

the accuracy of the group velocity approximation rapidly decreases in the ultrawideband

signal, ultrashort pulse limit as the pulse rise- or fall-time decreases below the characteristic

relaxation time of the medium resonance (Oughstun 2009b; Oughstun and Xiao 1997; Xiao
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α(ω) of the complex wave number for a single resonance Lorentz model dielectric with
ω0 = 2.4× 1015r/s, δ = 6.0× 1013r/s, ωp = 3.05× 1012r/s.
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and Oughstun 1999). This result is now extended to the nonlinear regime where the relative

importance of the precursor fields has so far been neglected.

5.1.2 Formulation of the Nonlinear Problem

The formulation of the nonlinear dispersive pulse propagation problem begins with the

inhomogeneous scalar wave equation (see §11.3 of (Oughstun 2009b) and §1.3 of (Agrawal

1989))

∇2E((r, t))− 1

c2

∂2E((r, t))

∂t2
=

4π

c2

∂2P ((r, t))

∂t2
(5.7)

for a linearly polarized pulse in a simple dispersive medium characterized by the constitutive

relation D((r, t)) = E((r, t)) + 4πP ((r, t)). With substitution of the complex phasor repre-

sentation Eωc((r, t)) ≡ A((r, t))ei(ϕ((r,t))−ωct), where E((r, t)) = <{Eωc((r, t))}, the linear

material polarization response is found as (Oughstun 2009b) Pωc((r, t)) = χe(ωc)A((r, t))ei(ϕ((r,t))−ωct),

where P ((r, t)) = <{Pωc((r, t))} and χe(ω) denotes the electric susceptibility, and the wave

equation (5.7) becomes

∇2Eωc((r, t))−
n2(ωc)

c2

∂2Eωc((r, t))

∂t2
= 0. (5.8)

With the inclusion of a cubic nonlinearity (Agrawal 1989), this wave equation may be

generalized as

∇2Eωc((r, t))−
n2(ωc)

c2

∂2Eωc((r, t))

∂t2
+ γ |Eωc((r, t))|2Eωc((r, t)) = 0, (5.9)

where γ is the nonlinear-index coefficient.

This nonlinear dispersive wave equation may be solved numerically using the split-step

Fourier method introduced by Hardin and Tappert (Hardin and Tappert 1973) in 1973 by

separating it into linear (dispersive and attenuating) and nonlinear parts as

∇2Eωc((r, t))−
n2(ωc)

c2

∂2Eωc((r, t))

∂t2
= 0. (5.10)

and

∇2ENL((r, t)) + γ |ENL((r, t))|2ENL((r, t)) = 0, (5.11)
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respectively. The linear part (5.10) can then be transformed back into Eq. (5.7) and from

there into the Helmholtz equation [cf. Eq. (5.2)]

(
∇2 + k̃2(ω)

)
ẼD((r, ω)) = 0, (5.12)

where the subscript D indicates that this describes the linear dispersive part of the wave

field. The pair of wave equations (5.11) and (5.12) then describe nonlinear dispersive pulse

propagation, including diffraction effects, without the usual approximations associated with

the group velocity method. An analogous formulation has been presented by Laine and

Friberg (Laine and Friberg 2000).

Attention is now restricted to plane wave propagation in the positive z-direction through

the nonlinear dispersive material. Equations (5.11) and (5.12) then admit the solutions

ENL(z + h, t) = eı
√
γ|ENL(z,t)|hENL(z, t), (5.13)

and

ẼD(z + h, ω) = e−ık̃(ω)hẼD(z, ω), (5.14)

respectively, where h is the numerical step size taken in the split-step method. The step

size is taken here as h = zd/5, where zd = c/(ωcni(ωc)), with ni(ωc) = ={n(ωc)}, is the e−1

absorption depth, where zd ' 12.18m for the material parameters used in this paper with

γ = 1.

In each numerical simulation presented here, the pulse was propagated 5 absorption

depths in order to fully display the influence of the precursor fields on the nonlinear pulse

dynamics. In this numerical simulation, Eq. (5.14) is first applied to the pulse spectrum at

z = zj and the result is then transformed to give E(zj+h, t). This linear propagation step is

then followed by a nonlinear propagation step over the distance h/2 through Eq. (5.13), as

suggested by Agarwal (Agrawal 1989) in order to improve accuracy of the split-step Fourier

method. Notice that after the application of the nonlinear operator in Eq. (5.14), the real

part of the resultant field is taken in order to to assure physical results.
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5.1.3 Heaviside Step-Function Signal Evolution

Consider first a comparison of the dynamical field evolution of a Heaviside unit-step func-

tion modulated signal EH(0, t) = uH(t) sin (ωct) with uH(t) = 0 for t < 0 and uH(t) = 1

for t > 0 in the linear and cubic nonlinear cases, illustrated in Fig. 5.2 at five absorption

depths (z = 5zd with zd ≡ α−1(ωc) for the linear material). The linear result is precisely
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Figure 5.2: Heaviside step-function signal response of the dispersive material at 5 absorp-
tion depths with (green curve) and without (blue curve) the cubic nonlinearity included.

that described by the modern asymptotic theory (Oughstun 2009b; Cartwright and Ough-

stun 2007) and, as the conditions of Sommerfeld’s relativistic causality theorem are satisfied

in the linear case, EH(z, t) = 0 for all superluminal space-time points θ < 1 with z > 0. The

propagated wave field then arrives at the luminal space-time point θ = 1 with the onset of

the Sommerfeld precursor EHS(z, t), followed by the slower Brillouin precursor EHB(z, t)

whose peak amplitude point travels at the velocity vB = c/θ0 = c/n(0), decaying only as

z−1/2, which is then followed by the main signal AHc(z, t). The nonlinear signal evolution

is remarkably similar, vanishing for superluminal space-time points θ < 1, the propagated

88



wave field arriving at θ = 1 with the onset of a Sommerfeld precursor that is essentially iden-

tical with that in the linear case. This is then followed by a Brillouin precursor whose peak

amplitude is ∼ 82% of that in the linear case with a nearly identical oscillation frequency.

Notice that the cubic nonlinearity generates a small amplitude frequency component at 3ωc

into the propagated wave field as the signal arrival at ω = ωc is approached. The propagated

signal spectrum presented in Fig. 5.3 shows that the cubic nonlinearity generates frequency

components at the odd harmonics 3ωc, 5ωc, 7ωc, . . . of the carrier frequency as well as filling

in the linear spectral loss in the absorption band about ω0. This odd-harmonic structure is

missing when the quadratic wave number approximation in Eq. (5.6) is employed.
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Figure 5.3: Propagated spectra of the Heaviside step function signal illustrated in Fig.
5.2 for the linear (solid blue curve) and nonlinear (solid green curve) dispersion cases.

5.1.4 Gaussian Envelope Pulse Evolution

The second type of input signal considered here is the gaussian envelope modulated signal

Eg(0, t) = exp

(
−(t− τ/2)2

τ2
0

)
cos(ωct), (5.15)
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where a cosine carrier is used so that the maxima of the envelope and signal coincide. Here

2τ0 denotes the temporal width of the gaussian envelope at the e−1 amplitude points. In the

numerical examples presented here, the initial pulse width 2τ0 was varied from 1
2Tc to 100Tc,

where Tc ≡ 2π/ωc is the oscillation period of the carrier wave. For the below resonance

carrier frequency ωc = 1 × 1015r/s, this corresponds to initial pulse widths ranging from

the ultrashort 1
2Tc ' 3.14fs to the narrowband 100Tc ' 628fs. The spectral magnitude

|ũ(ω)| for each of these two extreme cases is illustrated in Fig. 5.4 in reference to the

linear material phase dispersion. For comparison, the dashed curve in the figure describes

the magnitude of the scaled Heaviside step function signal spectrum |ω − ωc|−1. Notice

that the ultrashort 1
2Tc pulse spectrum (violet shaded region in Fig. 5.4) is ultrawideband

in comparison to the material dispersion, whereas the ultrashort 3Tc pulse spectrum (red

shaded region) is wideband below resonance and the narrowband pulse spectrum (blue

shaded region in Fig. 5.4) is quasimonochromatic. The Sommerfeld and Brillouin precursor

fields that are characteristic of the full material dispersion will clearly dominate the field

evolution in the ultrawideband but not in the narrowband case. Because the intermediate

wideband case fills the spectral region below the material resonance, only the low-frequency

Brillouin precursor will be present in that case.

It is expected that the precursor fields will begin to become negligible in the total pulse

evolution when the maximum slope of the initial pulse envelope function

u(t) = e(−t2/τ20 ) (5.16)

is on the order of or greater than the medium relaxation time Tr ∼ δ−1 (Oughstun 2009b).

The first and second time derivatives of this function are given respectively by

u′(t) =
−2t

τ2
0

e(−t2/τ20 ), u′′(t) = − 2

τ2
0

e(−t2/τ20 )

(
2t2

τ2
0

− 1

)
. (5.17)

The inflection point of u′(t) is given by the appropriate zero of u′′(t), which has zeroes given

by t = ±τ0/(2)1/2. Substitution of the negative root, which corresponds to the maximum,

90



10
14 ω

c 10
16

0

0.2

0.4

0.6

0.8

1

S
p

e
c
tr

u
m

 M
a

g
n

it
u

d
e

10
14

10
16

0.999992

1

1.000008

n
r(ω

)
ω − rad/sec

Spectra Comparisons

ω
0

Figure 5.4: Comparison of the spectral magnitude |ũ(ω)| of the gaussian pulse envelope
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into the expression for u′(t) and equating the result to δ then yields the critical value

τc = δ−1
√

2/e ≈ 1.43× 10−14s, (5.18)

which corresponds to a minimum Nosc = 4.6 for ωc = 1 × 1015r/s. Below this critical

value, either one or both of the precursor fields will be fully realized in the propagated wave

field, depending on the value of the pulse carrier frequency ωc in comparison to the medium

resonance frequency ω0. On the other hand, as τ0 is increased above τc, the observed pulse

distortion will approach that described by the group velocity approximation, as is now

shown.

A comparison of the computed linear and nonlinear pulse structure due to an input 3

oscillation gaussian pulse (2τ0 ' 18.8fs) is presented in Fig. 5.5 at 5 absorption depths

(z = 5zd) into the dispersive medium whose linear frequency dispersion is illustrated in

Fig. 5.1, the full dispersion response being employed in both cases. Because the pulse

carrier frequency ωc is sufficiently below the material resonance frequency ω0 so that there

is negligible spectral energy above ω1, as seen in Fig. 5.4, the high-frequency Sommerfeld

precursor is essentially absent from the propagated pulse, the pulse structure then being

dominated by the Brillouin precursor (Oughstun and Balictsis 1996); as the initial pulse

width 2τ0 is decreased below a single oscillation, however, and the initial pulse spectrum

becomes increasingly ultrawideband, the Sommerfeld precursor becomes increasingly dom-

inant in the propagated field structure (see Fig. 5.6). Comparison of the propagated linear

and nonlinear pulse shapes presented in Fig. 5.5 shows that the nonlinearity primarily

decreases the amplitude of the gaussian Brillouin precursor evolution, the peak amplitude

being decreased to ∼ 82% of its linear value, the same amount obtained for the step function

signal.

The sequence of figures presented in Figs. 5.6–5.12 provides a comparison of the nonlin-

ear gaussian pulse evolution at 5 absorption depths as the initial pulse width 2τ0 is increased

from the ultrawideband to the quasimonochromatic spectral extremes when the full and ap-

proximate [see Eq. (5.6)] dispersion relations are employed in the numerical propagation
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Figure 5.7: Comparison of the nonlinear gaussian pulse distortion using the full (blue
curve) and quadratic approximation (green curve) of the linear material dispersion at 5
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Figure 5.8: Comparison of the nonlinear gaussian pulse distortion using the full (blue
curve) and quadratic approximation (green curve) of the linear material dispersion at 5
absorption depths for the Nosc = 5 gaussian envelope case (2τ0 ' 31.4fs) with τ0/τc ' 1.10.
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Figure 5.9: Comparison of the nonlinear gaussian pulse distortion using the full (blue
curve) and quadratic approximation (green curve) of the linear material dispersion at 5
absorption depths for the Nosc = 10 gaussian envelope case (2τ0 ' 62.8fs) with τ0/τc '
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Figure 5.10: Comparison of the nonlinear gaussian pulse distortion using the full (blue
curve) and quadratic approximation (green curve) of the linear material dispersion at 5
absorption depths for the Nosc = 15 gaussian envelope case (2τ0 ' 94.3fs) with τ0/τc '
3.30.
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Figure 5.11: Comparison of the nonlinear gaussian pulse distortion using the full (blue
curve) and quadratic approximation (green curve) of the linear material dispersion at 5
absorption depths for the Nosc = 20 gaussian envelope case (2τ0 ' 125.7fs) with τ0/τc '
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Figure 5.12: Comparison of the nonlinear gaussian pulse distortion using the full (blue
curve) and quadratic approximation (green curve) of the linear material dispersion at 5
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Figure 5.13: Filtered and unfiltered spectra for the initial 100 oscillation gaussian envelope
pulse.

model. For the ultrawideband 3.14fs pulse case illustrated in Fig. 5.6, the propagated

gaussian pulse has separated into an above resonance gaussian Sommerfeld precursor and

a below resonance gaussian Brillouin precursor component, as described in (Oughstun and

Balictsis 1996). Notice that the group velocity approximation accurately describes just

the trailing edge of the gaussian Brillouin precursor component, its peak amplitude being

∼ 10% of the actual peak amplitude value.

As the initial pulse width 2τ0 is increased with the carrier frequency ωc fixed below

resonance, the Sommerfeld precursor component becomes negligible in comparison to the

Brillouin precursor component (the opposite will be found when the pulse carrier frequency

is situated sufficiently far above resonance), as seen in Fig. 5.7 for the 18.8fs pulse case and

Fig. 5.8 for the 31.4fs pulse case. In both cases, the quadratic group velocity approximation

only describes the trailing edge of the Brillouin precursor component with any accuracy. At

this point when the critical pulse width value τc is exceeded, a gradual transition from the

wideband, precursor dominated behavior to the narrowband quasimonochromatic behavior

is observed, as evidenced in Figs. 5.9–5.12.
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In Figs. 5.10–5.12 as the initial pulse spectrum becomes increasingly quasimonochro-

matic, the group velocity description provides a reasonable approximation to the actual

pulse shape, the major two errors appearing in the underestimated pulse amplitude due to

the overestimated material attenuation in the quadratic approximation given in Eq. (5.6)

and the slight phase shift appearing at the leading edge of the pulse. Finally, notice that

special care had to be taken in modeling the 100 oscillation gaussian pulse case (Fig. 5.12)

as high frequency numerical noise in the initial pulse spectrum was amplified by the cubic

nonlinearity to produce a secondary pulse. This numerical error source was eliminated here

by filtering the initial pulse spectrum to eliminate this noise, as illustrated in Fig. 5.13.

A comparison of the nonlinear space-time evolution of the envelope of the 3 oscilla-

tion gaussian pulse with initial pulse width 2τ0 ' 18.8fs using the full material dispersion

and the quadratic approximation of this dispersion is presented in Figs. 5.14 and 5.15,

respectively. The evolution of the wideband pulse into a gaussian Brillouin precursor with

minimal attenuation is clearly evident in Fig. 5.14 (full dispersion model) while it is no-

ticeably absent in Fig. 5.15 (quadratic approximation of the dielectric dispersion). In both

cases there is a sharp drop in the pulse amplitude as the propagation distance increases to

a single absorption depth. This is then followed by a transition to the precursor dominated

field evolution in the full dispersion case illustrated in Fig. 5.14, where the peak amplitude

decay switches from a supra-exponential to a sub-exponential decay, as illustrated by the

blue curve in Fig. 5.16. Notice that the peak amplitude decay for the group velocity ap-

proximation, indicated by the green curve in Fig. 5.16, remains below the Beer’s law limit

of pure exponential decay limit (indicated by the dashed black curve in the figure) over the

propagation distance domain z/zd ∈ [0, 5] considered in the numerical study presented here.

The z−1/2 algebraic decay that is a characteristic of the Brillouin precursor in the linear

case (Oughstun and Sherman 1994; Oughstun 2009b) is greatly exceeded in the nonlinear

case, the numerically determined slope p of the full dispersion curve in Fig. 5.16, which

describes the z−p peak amplitude decay, decreasing from p ∼ 0.9 at z/zd ∼ 0.5 to p ∼ 0.05
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at z/zd ∼ 5. Again, this is due to the cubic nonlinearity which also significantly effects the

peak amplitude decay in the group velocity approximation as z/zd increases above unity.
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Figure 5.14: Nonlinear space-time evolution of the envelope of a 3 oscillation gaussian
pulse with initial pulse width 2τ0 ' 18.8fs using the full material dispersion.

5.1.5 Conclusion

The detailed numerical results presented here have served to establish the following conclu-

sions:

• the precursor fields that are a characteristic of the linear material dispersion persist

in the nonlinear case;

• these precursor fields dominate gaussian pulse evolution when the initial pulse width

2τ0 is on the order of or less than the critical pulse width 2τc, where τc ∼ δ−1 is the

relaxation time of the medium response [see Eq. (5.18)];

• as found in the linear case for the gaussian envelope pulse (Oughstun and Balictsis

1996), these precursor fields result in the propagated pulse breaking up into above
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(Sommerfeld precursor) and below (Brillouin precursor) resonance subpulses when

the initial pulse width is sufficiently small such that 2τ0 � 2τc;

• the characteristic z−1/2 peak amplitude decay of the gaussian Brillouin precursor in

the linear case is amplified by the cubic nonlinearity;

• the group velocity description fails to accurately describe gaussian pulse evolution

when the initial pulse width 2τ0 is on the order of or less than the critical pulse width

2τc;

• in addition, because the group velocity approximation overestimates the linear mate-

rial attenuation away from the pulse carrier frequency ωc, the odd-order harmonics

introduced by the cubic nonlinearity are absent in the group velocity description of

the pulse evolution.

It is expected that the precursor fields will strongly influence the predicted pulse dispersion

for other types of nonlinearity in the ultrashort/ultrawideband pulse regime.

5.2 Conclusions

The current IEEE C95.1 standard provides non-ionizing radiation limits for microwave fre-

quencies and is concerned solely with the thermal heating of tissues. These limits are

obtained from steady state analysis based on specific absorption rate calculations, which

describes the power absorbed within a given mass of tissue. As outlined in Chapter 1 several

independent researchers have voiced concern over the biological influence from athermal in-

teractions provided by electric fields. The work presented in this dissertation is primarily

concerned with transient phenomena associated with ultrawideband pulses common in mod-

ern radar systems, such as the Precisions Acquisition Vehicle Entry Phased Array Warning

System (PAVE PAWS) used by the United States Air Force.

In order to accurately describe energy flow into biological materials a description of their

dispersive electrical characteristics, over the band of relevant frequencies, is required. In this
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research, the biological materials of skin, fat and muscle are modeled as a semi-conducting

Rocard-Powles-Debye dielectrics as given in Eq. (2.56), viz.

εc(ω)

ε0
= ε∞ +

N∑

j=1

aj
(1− ıωτj)(1− ıωτfj)

+ ı
σ0

ωε0
. (5.19)

These biological tissues are shown to be highly dispersive and lossy with multiple relaxation

times as described in Tables 2.2–2.4 for skin, fat and muscle, respectively. The dispersion

of the biological tissues skin, fat and muscle are illustrated in Figs. 2.2–2.4, respectively.

The analysis presented in Chapter 3 provides a succinct representation for computing

the frequency dependent Fresnel coefficients for a system of N homogeneous, isotropic,

locally linear, attenuative, temporally dispersive layers. Previously published research on

multi-layer systems neglected dispersion and attenuation within the layers and is classically

applied for steady state analysis . The matrix formulation provided in Eq. (3.36) viz.

M(ω) = D−1
0



N−1∏

j=1

DjPjD−1
j


DN , (5.20)

where Dj and Pj are given in Eqs. (3.33) and (3.34), respectively, allows for dispersion and

attenuation in each of the N layers. This extension to include the innate material behaviors

of dispersion and loss, as presented here, is necessary in order to use causal models for

the description of the layers. Modeling each layer with a causal model is required when

simulating propagation of ultrawideband pulses as they ensure causality is preserved. An-

other key contribution of this work is the numerical demonstration that Brillouin precursor

fields will be generated, provided that the turn on/off time of the pulse is less than the

relaxation time of the substrate material, even after the incident pulse is passed through

an attenuative multi-layer system. This formulation also provides straightforward calcula-

tion of the complex, frequency dependent Fresnel reflection coefficient as r = m21/m11 and

transmission coefficient as t = 1/m11. An illustration of the frequency dependent Fresnel

coefficients are shown in Fig. 3.3 and shown here. Again, notice the passband in the system

around f ∼ 600MHz which is in the neighborhood of the PAVE-PAWS carrier frequency

fc = 435MHz.
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Figure 5.17: Frequency dependence of the complex Fresnel reflection (solid) and trans-
mission (dashed) coefficients for a layered biological system of skin (∆z1 = 5mm), fat
(∆z2 = 20mm) and semi-infinite substrate muscle.

The framework presented in Chapter 3 is requisite to analyze transient pulse compo-

nents from ultrawideband electric fields. As discussed in the introduction, physiological

significant response from cellular membranes can be invoked by transients from applied

electrical stimuli. The key contributions of Chapter 4 show what portion of an electric field

incident upon an idealized, spherical cell, whose dispersive dielectric properties are assumed

to be that of water, is injected across the cellular membrane. The analysis and numerical

demonstrations of Chapter 4 show that the peak field membrane potentials occur in the

transient components, the Brillouin precursor, of the field. Classical steady state analysis

does not account for these field components, which are of significant amplitude relative to

the main signal contribution. While the Brillouin precursor’s oscillation frequency is below

that of the carrier frequency, biological experimentation is required to determine if a field

of these frequencies can cause membrane breakdown or cellular signaling when applied for

such a short duration. In the numerical calculations presented here it is assumed that these

fields are physiologically significant. A comparison of the field strengths required to cause

103



catastrophic athermal failures of a cell are shown in Fig. 4.12 as illustrated here.
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Figure 5.18: Comparison of PAVE-PAWS power density with IEEE C95.1 and numerically
determined critical field values with PAVE-PAWS field value.

5.3 Future Work

Necessary analysis is provided in Chapter 3 for computing the complex, frequency dependent

Fresnel coefficients for a system of N planarly layered, dispersive, attenuative dielectric

slabs. A necessary extension of this work is for the inclusion of more advanced geometries

allowing to capture resonance effects of a layered cavity, such as the human body. It

is expected that this analysis would show increased field amplitudes within the cavity for

frequencies in the neighborhood of its resonance. This extension would also allow for analysis

of layered, radar absorbing type materials covering aircraft and other types of vehicles.

The largest opportunity this work has uncovered is the necessity to examine the biolog-

ical mechanisms that these numerical models are based on. Questions regarding the high

frequency behavior of the cell membrane need to be addressed. The polar molecules that

act as the voltage gated ion channels have some natural response time, which a stimulus’

duration would need to exceed in order for excitation to occur. A lower bound on this

response time needs to be determined experimentally in order to put a high frequency limit

on these models. If the circuit equivalent models presented here are characteristic of true
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cell biology this would suggest that sufficiently high frequencies the cell membrane no longer

blocks ionic current flow, allowing unrestricted passage of extracellular ions into the cell.

The work considering nonlinearities in dispersive media for the microwave domain (Al-

banese, Penn, and Medina 1993) is limited and should be extended using the detailed

numerical analysis presented here. This work would allow for analysis of microwave and

radio frequency interactions with biological tissues when the field strengths are sufficiently

strong to invoke a nonlinear response in the tissues in frequency domains where orienta-

tional polarization dominates (f ≤ 300GHz). This would be most readily accomplished by

using the numerical technique presented here, but within a medium described by a single

relaxation time Rocard-Powles-Debye model dielectric at an appropriate carrier frequency

fc < 300GHz.
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Appendix A

Reflection and Transmission of

Pulsed Electromagnetic Fields

through Multilayered Biological

Media

This appendix is a conference paper (Palombini and Oughstun 2011), based on the work pre-

sented in Chapter 3, as it appears in the Proceedings of the IEEE International Conference

of Electromagnetics in Advanced Applications (ICEAA), 2011.
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Reflection and Transmission of Pulsed

Electromagnetic Fields through Multilayered

Biological Media

C. L. Palombini∗ K.E. Oughstun†

Abstract — The reflection and transmission of ul-
trawideband electromagnetic pulses through multi-
layered biological media consisting of three biologi-
cal tissue layers representing skin, fat and muscle is
analyzed. The frequency dependent reflection and
transmission coefficients of the multilayer stack are
computed using the transfer matrix method. Each
of the three tissues is modeled as a homogeneous,
isotropic, linear, dispersive, attenuative, dielectric
with frequency dispersion described by a multiple
relaxation Rocard-Powles-Debye model fit to exper-
imental data.

1 INTRODUCTION

The interaction of non-ionizing radiation with bio-
logical tissue remains a problem of great concern as
much remains to be understood about the athermal
effects of such interactions. It is largely believed
that non-ionizing radiation is harmless below expo-
sure levels where heating first occurs [1]. However,
this conclusion assumes a continuous, monochro-
matic signal without any mention of either tran-
sient phenomena or pulsed fields that are typically
associated with radar and mobile communications.
Pulsed fields and their associated transient phe-
nomena are of central importance in the proper
analysis of the biological response to applied ex-
ternal fields since the action potential threshold re-
sponse in cellular signaling is dependent on the rise
time of the incident field [2]. In addition, it has
been shown that exposure to such stimuli can cause
both molecular effects as well as phenotypic effects
that are a visible manifestation of genetics [3].

The recently published study conducted by
The National Research Council of the National
Academy of Sciences has explored possible health
effects of pulsed, low-level phased-array radio fre-
quency energy exposure due to the PAVE PAWS
radar system located at Cape Cod Air Force Station
in Massachusetts. The study raises several impor-
tant questions regarding the possible health effects
of such non-ionizing radiation, describing physical
mechanisms for radio frequency effects on biologi-
cal systems. However, what the report fails to ad-

∗School of Engineering, University of Vermont, Burling-
ton, VT 05405, USA, e-mail: cpalombi@uvm.edu
†School of Engineering, University of Vermont, Burling-

ton, VT 05405, USA, e-mail: oughstun@cems.uvm.edu

dress is the reflectivity and transmissivity for lay-
ered biological materials. Preliminary results based
on empirical data suggest penetration depths much
greater than that previously described by simple
theoretical results.

The specific absorption rate threshold set by the
Federal Communications Commission on hand-held
mobile phones is 1.6W/kg, as measured over any
one gram of tissue. Recently published research
[4] showed that mobile communication devices op-
erating within these radiofrequency limits increase
glucose metabolism in the region of the brain clos-
est to the antenna but admits that “the finding is
of unknown clinical significance”. This then raises
concern about the efficacy of this safety standard
when applied to ultrawideband (uwb) pulsed fields.

This communication formulates a mathemati-
cally rigorous, physically correct description of the
propagation of pulsed electromagnetic fields into re-
alistic biological tissues in order to investigate the
possible indirect molecular effects such fields have
on cellular signaling. The first step in this formu-
lation is a systematic description of the interaction
a plane wave encounters at a boundary between a
lossless nondispersive medium and a lossy disper-
sive medium as well as when both media are lossy
and dispersive. Recent work [5] provides some ex-
planation of how a uniform plane wave in a lossless
media incident on a boundary with a lossy media
results in the transmission of a nonuniform plane
wave in the second media. However, this work does
not mention dispersive media and does not include
insight as to how pulsed energy is reflected and
transmitted at these interfaces.

In addition to having a proper description of re-
flection and transmission at a lossy interface, com-
plete and accurate descriptions of biological tissues
are necessary to model this interaction. The en-
ergy of the propagated field depends upon both
the transmission across each material interface, as
well as through each dispersive, attenuative layer
(labeled j = 1, 2, ..., N) where each medium is de-
scribed by its complex refractive index nj(ω). This
numerical simulation consists of three stacked bio-
logical tissues (N = 3) representing skin, fat and
muscle with each interface assumed to be planar

978-1-61284-978-2/11/$26.00 ©2011 IEEE
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and infinite in the transverse direction. Each tissue
is modeled as a homogeneous, isotropic, linear, dis-
persive lossy dielectric whose frequency dependence
follows a multiple relaxation-time Rocard-Powles-
Debye model over a wideband frequency range ex-
tending from static to 10GHz.

Finally, it is now known that when electromag-
netic signals that are ultrawideband with respect
to the material dispersion propagate through a dis-
persive medium, electromagnetic precursors emerge
in the propagated signal [6]. Of particular impor-
tance is the fact that increased energy transmission
occurs due to this precursor field formation. Such
pulses may then be used for biological imaging and
therapy and are the impetus for this research.

2 SEMI CONDUCTING MATERIAL
DISPERSION

Biological materials are typically semiconducting
with a frequency dependent dielectric permittivity
ε(ω) and electric conductivity σ(ω). These two as-
pects combine in electromagnetic theory to form
the complex permittivity,

εc(ω) ≡ ε(ω) + ı
σ(ω)

ω
, (1)

where ε(ω) = ε′(ω) + ıε′′(ω) and σ(ω) = σ′(ω) +
ıσ′′(ω). Upon combining real and imaginary parts
of ε(ω) and σ(ω), the complex permittivity may be
expressed as

εc(ω) =

(
ε′(ω) − σ′′(ω)

ω

)
+ ı

(
ε′′(ω) +

σ′(ω)

ω

)
.

(2)
This form of the complex permittivity is appropri-
ate for analyzing empirical data where all of the
measured loss is (improperly) assumed to be con-
ductive [7] with an effective conductivity σeff (ω) =
σ′(ω)+ωε′′(ω) and effective permittivity εeff (ω) =
ε′(ω) − σ′′(ω)/ω.

The classical Debye model of orientational po-
larization dispersion has a nonvanishing absorption
coefficient at high frequencies and as such is a first-
order model which leads to errors when model-
ing realistic media. As a consequence, the Debye
model is extended here to the Rocard-Powles-Debye
model [8] that provide an improved description
of experimental data. With the complex Rocard-
Powles-Debye model of the relative dielectric per-
mittivity the relative complex dielectric permittiv-
ity is given by

εc(ω)

ε0
= ε∞ +

N∑

j=1

aj
(1 − ıωτj)(1 − ıωτfj)

+ ı
σ0

ε0ω
.

(3)

Here ε∞ is the high frequency limit of the relative
permittivity of the model, ε0 ≈ 8.854 × 10−12F/m
is the permittivity of free space, τj is the jth relax-
ation time, τfj is the associated jth friction time, aj
is strength of the jth relaxation mode and σ0 ≡ σ(0)
is the static conductivity of the lossy medium.

2.1 Skin

The best-fit Rocard-Powles-Debyle model for skin
is composed of four relaxation modes (N = 4). The
high frequency permittivity for dry skin is found
to be ε∞ = 15 and the static conductivity to be
σ0 = 3×10−5S/m; the remaining model parameters
are given in Table 1. Notice that the j = 1 and
j = 3 modes provide the dominant structure of the
frequency dispersion mode fit illustrated in Fig. 1.

j aj τj (sec) τfj (sec)

1 600 1 × 10−6 1 × 10−14

2 75 1 × 10−4 1 × 10−12

3 550 1 × 10−8 1 × 10−12

4 28 1 × 10−10 1 × 10−13

Table 1: Model parameters for dry skin.

10
2

10
4

10
6

10
8

10
10

10
0

10
2

10
4

f Hz

ℜ
{ǫ

c
}/

ǫ
0

 

 

Model

Data

10
2

10
4

10
6

10
8

10
10

10
0

f Hz

ω
ℑ
{ǫ

c
}ǫ

0
(S

/
m

)

 

 

Model

Data

Figure 1: Rocard-Powles-Debye model fit (solid
curve) to the empirical data (circles) for dry skin.

2.2 Fat

The best-fit Rocard-Powles-Debyle model for fat
is composed of seven relaxation modes (N = 7).
The higher number of terms that are required to
describe the frequency dispersion of this biologi-
cal medium is due to the relatively small value
of the Debye relaxation time combined with sev-
eral faster relaxation times exhibited in the data.
The high frequency permittivity for fat was found
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to be ε∞ = 3 and the static conductivity to be
σ0 = 1 × 10−3S/m; the remaining model parame-
ters are given in Table 2. The frequency dispersion
model for fat is illustrated in Fig. 2.

j aj τj (sec) τfj (sec)

1 3 × 107 1 × 10−1 1 × 10−15

2 5 × 105 1 × 10−2 1 × 10−10

3 1 × 104 1 × 10−3 1 × 10−10

4 7 × 102 1 × 10−4 1 × 10−20

5 100 1 × 10−5 1 × 10−15

6 9 1 × 10−7 1 × 10−15

7 3 1 × 10−10 1 × 10−15

Table 2: Model parameters for fat.

10
0

10
2

10
4

10
6

10
8

10
10

10
2

10
4

10
6

f Hz

ℜ
{ǫ

c
}/

ǫ
0

 

 

Model

Data

10
0

10
2

10
4

10
6

10
8

10
10

10
−2

10
−1

10
0

f Hz

ω
ℑ
{ǫ

c
}ǫ

0
(S

/
m

)

 

 

Model

Data

Figure 2: Rocard-Powles-Debye model fit (solid
curve) to the empirical data (circles) for fat.

2.3 Muscle

The best-fit Rocard-Powles-Debyle model for mus-
cle is composed of four relaxation modes (N = 4).
The high frequency permittivity for fat was found
to be ε∞ = 28.3 and the static conductivity to be
σ0 = 3×10−2S/m; the remaining model parameters
are described in Table 3. The frequency dispersion
model for muscle is illustrated in Fig. 3.

j aj τj (sec) τfj (sec)

1 2.05 × 107 6 × 10−3 1 × 10−15

2 1.5 × 104 9 × 10−6 1 × 10−10

3 7 × 103 1.5 × 10−6 1 × 10−10

4 45 1 × 10−10 1 × 10−20

Table 3: Model parameters for muscle transverse to
fibers.

10
2

10
4

10
6

10
8

10
10

10
5

f Hz

ℜ
{ǫ

c
}/

ǫ
0

 

 

Model

Data

10
2

10
4

10
6

10
8

10
10

10
0

10
1

f Hz

ω
ℑ
{ǫ

c
}ǫ

0
(S

/
m

)

 

 

Model

Data

Figure 3: Rocard-Powles-Debye model fit (solid
curve) to the empirical data (circles) for muscle
transverse to fibers.

3 SCATTERING

The transfer matrix method [9] is used here for
the description of reflection from and transmission
through a system of stacked layers. It has been
shown that this approach is equivalent to the Fres-
nel formulation leading to the Airy formula but is
less cumbersome to deal with when there is more
than one sandwiched layer [10].

The analysis begins with the electromagnetic
boundary conditions for the tangential components
of the fields, given by

n̂×
(
Ẽj+1(r, ω) − Ẽj(r, ω)

)
= 0, (4)

n̂×
(
H̃j+1(r, ω) − H̃j(r, ω)

)
= J̃s(r, ω), (5)

across a planar interface with unit normal vector
n̂ directed from the incident to the transmitted
medium and unit tangential vector ν̂ to the inter-
face. The coupled equations for the electric field
vectors are then given by

(
Ẽj + Ẽ′j

)
· ν̂ =

(
Ẽj+1 + Ẽ′j+1

)
· ν̂ (6)

(
Ẽj − Ẽ′j

)
· ν̂nj =

(
Ẽj+1 − Ẽ′j+1

)
·ν̂nj+1+J̃s (7)

where Ẽj and Ẽ′j denote the right and left mov-

ing waves in the jth layer, respectively. The sur-
face current density is confined to a transition layer
of thickness ∆l which spans each interface and ex-
tends an equal distance into each medium. Over
this transition layer the frequency dependent con-
ductivity is varied with some interpolating function
in order to continuously connect the layers.
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These boundary conditions can be compactly
represented in a dynamical matrix as

Dj =

(
1 1

σeff + nj σeff − nj

)
, (8)

multiplied by the vector
[
Ẽj Ẽ′j

]T
for each layer

such that

Dj

[
Ẽj

Ẽ′j

]
= Dj+1

[
Ẽj+1

Ẽ′j+1

]
. (9)

In addition, a propagation matrix, Pj , is defined
for each layer of finite thickness ∆zj as

Pj =

(
ei∆zj k̃j(ω) 0

0 e−i∆zj k̃j(ω)

)
. (10)

The transfer matrix, M, for the whole system is
then given by,

M = D−1
0



N−1∏

j=1

DjPjD
−1
j


DN , (11)

where D0 is taken to be free space and DN is the
substrate material, in this case muscle, and will
have no left moving wave. This transfer matrix
also provides the Fresnel reflection and transmis-
sion coefficients as r = m21

m11
and t = 1

m11
, respec-

tively, whose frequency dependence is illustrated in
Fig. 4.
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Figure 4: Magnitude (upper) and phase (lower) of
the complex Fresnel reflection (solid) and transmis-
sion (dashed) coefficients.

4 CONCLUSION

This formalism provides the necessary theoretical
description required to properly analyze interaction
of an ultrawidebound electromagnetic pulse with a
layered, lossy, dispersive biological system.
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Appendix B

Precursor Fields Reflected From

Low Observables

The included abstract has been accepted at the 2012 IEEE International Symposium on

Antennas and Propagation and USNC-URSI National Radio Science Meeting and is based

on a combination of work presented here in Chapters 2 and 3.
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Precursor Fields Reflected From Low Observables

Chris L. Palombini and Kurt E. Oughstun*

The University of Vermont, Burlington, VT, 05405,
http://www.uvm.edu

The effects of material dispersion on the reflected electromagnetic wavefield
due to an incident ultrawideband pulse on a multilayer dielectric stack is pre-
sented for the particular case when the system contains a single layer of finite
thickness ∆z placed on top of a perfect electric conductor (PEC). The non-
magnetic (µ = µ0), nonconducting (σ = 0) dielectric layer is assumed to
be highly absorptive and dispersive as might be found in a radar absorbing
material (RAM) with complex permittivity ε(ω) and complex refractive index
n(ω) = (ε(ω)/ε0)

1/2 = nr(ω)+ıni(ω) described by the Rocard-Powles extension
of the Debye model of orientational polarization. The hypothetical radar ab-
sorbing material is designed to have an e−1 absorption depth zd ≡ c/(ωcni(ωc))
equal to a wavelength λ = (2πc)/(ωnr(ω)) at the carrier frequency ωc = 2πfc,
and the thickness of the layer ∆z is nominally chosen at a quarter wavelength
at the carrier frequency and varied up to a wavelength, where the incident and
reflected pulses are in vacuum. Examples are presented for an incident rectan-
gular enveloped pulse of time duration T that is chosen to be either ultrashort
(a single cycle) or long (many cycles) in order to investigate the effects of de-
structive interference on the reflected steady-state component. The reflected
signal is shown to contain multiple pulses from the repeated reflections inside
the dielectric layer with the multiple reflected pulses connected in time since
the layer’s thickness is on the order of or less than a wavelength. The Brillouin
precursor is known to dominate the signal as 2∆z increases above zd and can
be used to detect the low observable surface.



Appendix C

Derivation of Fresnel Coefficients

for Lossy Materials

This analysis follows from (Canning 2011) and allows for the plane wave to be inhomoge-

neous. Starting with the boundary conditions for TM-polarization

n̂×
(
H̃2 + H̃0

)
= n̂× H̃0, (C.1)

n̂ ·
(
Ẽ1 − (Ẽ0 + Ẽ2)

)
= ρs, (C.2)

where Ẽ0 and H̃0 are the incident field vectors, Ẽ2 and H̃2 are the reflected electric field

vectors, Ẽ1 and H̃1 are the electric field vectors, and n̂ is the unit normal vector directed

from the incident to transmitted media. Again, these two boundary conditions respectively

state that the tangential component of the magnetic field vector is continuous across an

interface and that the normal component of the electric field vector is discontinuous across

an interface with that discontinuity being proportional to any surface charge density ρs.

The electric and magnetic field vectors are related through the complex impedance as

H̃ =
k̃

ωµ
n̂× Ẽ, (C.3)

where k̃ is the complex wavenumber in that medium.
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Using Eq. (C.3) the boundary condition in Eq. (C.2) may be re-written as

n̂×
(
n̂0 × Ẽ0 + n̂2 × Ẽ2

)
= n̂× (k̃1 × Ẽ1)

1

µ1
, (C.4)

where n̂2 is the unit normal in the direction of the reflected wave that is n̂2 = −n̂. By

application of the vector triple product

a× (b× c) = (a · c)b− (a · b)c, (C.5)

one gets the relations

n̂ · Ẽi = k̃1 · Ẽ1 = 0, for i = 1, 2, 3, (C.6)

and

n̂0 · Ẽ0 = n̂2 · Ẽ2 = 0. (C.7)

Now Eq. (C.4) can be simplified to

n̂× (k̃1 × Ẽ1)
1

µ1
=
[
(n̂ · Ẽ1)k̃1 − (n̂ · k̃1)Ẽ1

] 1

µ1
. (C.8)

It is at this point the significance of the lossy media is revealed the wavenumber k̃ consists

of two components and, in general, these components are in different directions as

k̃ = <{k̃}n̂1 + ı={k̃}n̂. (C.9)

It is now obvious how in a lossy medium the planes of constant phase and the planes of

constant amplitude are in different directions, with the planes of constant amplitude always

normal to the interface. Through the application of these relations the boundary condition

becomes

n̂× (k̃1 × Ẽ1)
1

µ1
= −

[
<{k̃1} cos θ1 + ı={k̃1}

] Ẽ1

µ1
, (C.10)

where θ1 is the deviation of the transmitted wave from n̂. This is reduced further by noting

that (n̂ · n̂0) = cos θ0 to

cos θ0(Ẽ0 − Ẽ2) =
µ0

µ1k̃0

[
<{k̃1} cos θ1 + ı={k̃1}

]
Ẽ1, (C.11)
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which is the correct form of the relationship [(Stratton 1941) pg. 492 Eq. (13)]. In the

absence of any surface charge ρs = 0 the second boundary condition is

Ẽ0 + Ẽ2 = Ẽ1. (C.12)

By simultaneously solving Eqs. (C.11)–(C.12) with the substitution of Eq. (C.12) into

Eq. (C.11) provides

µ1k̃0 cos θ0 − µ0

[
<{k̃1} cos θ1 + ı={k̃1}

]

µ1k̃0 cos θ0 + µ0

[
<{k̃1} cos θ1 + ı={k̃1}

] =
Ẽ2

Ẽ0

, (C.13)

showing that the left hand side of the equation is the Fresnel reflection coefficient for lossy

media. Similar analysis follows to determine the Fresnel transmission coefficient by substi-

tuting Ẽ1 − Ẽ0 = Ẽ2 into Eq. (C.11) which provides

2µ1k̃0 cos θ0

µ1k̃0 cos θ0 + µ0

[
<{k̃1} cos θ1 + ı={k̃1}

] =
Ẽ1

Ẽ0

, (C.14)

where the left hand side is the Fresnel transmission coefficient for lossy media.
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Appendix D

Microscopic Potentials and

Radiation

D.1 The Hertz Potential

Under the Lorenz condition

∇ · a + ε0µ0
∂

∂t
φ = 0 (D.1)

the vector and scalar potential fields can be expressed as

∇2a− 1

c2

∂

∂t
a = −µ0j, (D.2)

∇2φ− 1

c2

∂

∂t
φ = − ρ

ε0
, (D.3)

where the microscopic current j and charge ρ densities satisfy the continuity equation

∇ · j +
∂

∂t
ρ = 0. (D.4)

It immediately follows that there exists a vector function p (r, t) such that

j (r, t) =
∂

∂t
p (r, t) , (D.5)

ρ (r, t) = −∇ · p (r, t) , (D.6)
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in which case the continuity equation above is identically satisfied. The vector field rep-

resented by p (r, t) is called the electric moment . The pair of wave equations shown in

eq. (D.2)-(D.3) can then be expressed in terms of p (r, t) as

∇2a− 1

c2

∂

∂t
a = −µ0

∂

∂t
p (r, t) , (D.7)

∇2φ− 1

c2

∂

∂t
φ = − 1

ε0
∇ · p (r, t) . (D.8)

Assume now that the vector and scalar potentials are given by the respective relations

a (r, t) = µ0
∂

∂t
Π (r, t) , (D.9)

φ (r, t) = − 1

ε0
∇ ·Π (r, t) , (D.10)

which clearly satisfy the Lorenz condition eq. (D.1). The inhomogeneous wave equations

shown in eq. (D.7)-(D.8) can be expressed in terms of the vector field Π (r, t) as,

∂

∂t

[
∇2Π− 1

c2

∂2

∂t2
Π + p

]
= 0, (D.11)

∇ ·
[
∇2Π− 1

c2

∂2

∂t2
Π + p

]
= 0, (D.12)

which are obviously satisfied if

∇2Π− 1

c2

∂2

∂t2
Π = −p. (D.13)

The vector field Π (r, t) is called the Hertz vector or Hertz potential (Hertz 1889) for the

electromagnetic field.

This analysis demonstrates that the Hertz vector Π (r, t) determines an electromagnetic

field though its vector and scalar potential functions, but it does not show how a specific

electromagnetic field can be represented by the vector function Π (r, t). For this to be shown

the uniqueness of the vector field Π (r, t) for a unique set of scalar and vector potentials

must be proven. Let the initial condition of the scalar potential be φ0(r) ≡ φ(r, 0) and let

Π0(r) be any vector field that is dependent purely on position and independent of time

such that ∇ ·Π0 = −ε0φ0. The time dependent vector field can be defined from the time
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independent vector field as

Π′ (r, t) ≡ Π0(r) +
1

µ0

∫ t

0
a(r, t′)dt′, (D.14)

so that

a (r, t) = µ0
∂

∂t
Π′ (r, t) (D.15)

and by differentiation of eq. (D.14), and

∇ ·Π′ (r, t) = ∇ ·Π0(r) +
1

µ0

∫ t

0
∇ · a(r, t′)dt′ (D.16)

= −ε0φ0(r)− ε0
∫ t

0

∂

∂t
φ(r, t′)dt′ (D.17)

= ε0φ(r, t), (D.18)

where the Lorenz condition in eq. (D.1) has been used. Through direct substitution from

the pair of relations appearing in eq. (D.7)-(D.8) one obtains,

∂

∂t

[
∇2Π′

1

c2

∂2

∂t2
Π′
]

= − ∂

∂t
p, (D.19)

∇ ·
[
∇2Π′

1

c2

∂2

∂t2
Π′
]

= −∇ · p, (D.20)

and consequently

∇2Π′ − 1

c2

∂2

∂t2
Π′ + p = ∇×Ξ, (D.21)

where Ξ(r) is a vector function solely dependent on position r and independent of time t.

By letting

Π′ (r, t) = Π (r, t) +∇×Ψ(r), (D.22)

where Ψ(r) is another vector function solely dependent on position r and independent of

time t and satisfies

∇2Ψ(r) = Ξ(r) (D.23)

as required by eq. (D.21).It is now obvious that the vector function Π′ (r, t) satisfies

eq. (D.13) and since

∇ ·Π′ (r, t) = ∇ ·Π (r, t) , (D.24)

∂

∂t
Π′ (r, t) =

∂

∂t
Π (r, t) , (D.25)
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This has shown that for a given electromagnetic field one can always determine the vector

Π (r, t) such that

e (r, t) =
1

ε0
∇ (∇ ·Π (r, t))− µ0

∂2

∂t2
Π (r, t) , (D.26)

b (r, t) = µ0∇×
∂

∂t
Π (r, t) , (D.27)

where Π (r, t) necessarily satisfies the inhomogeneous wave equation in eq. (D.13) and is

the Hertz vector or Hertz potential for the microscopic electromagnetic field.

The Hertz potential Π (r, t) is not uniquely defined because the vector and scalar po-

tentials {a (r, t) , φ (r, t)} are invariant under the gauge transformation

Π (r, t)→ Π′ (r, t) = Π (r, t) +∇× Γ(r), (D.28)

where Γ(r) is an arbitrary vector function of position that is independent of time t. To

add to the level of arbitrariness is that fact that vector and scalar potentials themselves

are not uniquely determined in the chosen Lorenz gauge because of the restricted gauge

transformation. As a consequence of this the microscopic electromagnetic field vectors are

invariant under the more general gauge transformation (Nisbet 1955)

Π (r, t)→ Π′ (r, t) = Π (r, t) +∇× Γ(r)− 1

c

∂

∂t
Λ (r, t)−∇λ (r, t) , (D.29)

where Γ(r),Λ (r, t), and λ (r, t) are arbitrary functions. Under this transformation the vector

and scalar potentials undergo the gauge transformation

a (r, t)→ a′ (r, t) = a (r, t)− µ0

c

∂2

∂t2
Λ (r, t)− µ0∇

∂

∂t
λ (r, t) , (D.30)

φ (r, t)→ φ′ (r, t) = φ (r, t) +
1

ε0c
∇ · ∂

2

∂t2
Λ (r, t) +

1

ε0
∇2λ (r, t) . (D.31)

The Lorenz condition eq. (D.1) is satisified by the transformed pair of potentials {a′ (r, t) , φ′ (r, t)}

if it is originally satisfied by the pair {a (r, t) , φ (r, t)}, because

∇ · a′ε0µ0
∂

∂t
φ′ = ∇a + ε0µ0

∂

∂t
φ− µ0

c

(
∇ · ∂

2

∂t2
Λ− ∂2

∂t2
∇ ·Λ

)
− µ0

(
∇2 ∂

∂t
λ− ∂

∂t
∇2λ

)

(D.32)

= 0. (D.33)
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Comparison of this equation with the expressions given in eqs. (D.30)-(D.31) the gauge

function ψ (r, t) is seen to satisfy the pair of relations

∇ψ = −µ0

(
1

c

∂

∂t
Λ +∇ ∂

∂t
λ

)
, (D.34)

∂

∂t
ψ = − 1

ε0

(
1

c
∇ · ∂

∂t
Λ +∇2λ

)
, (D.35)

from which it is readily seen that ψ (r, t) satisfies the homogeneous wave equation.

The coupling among the electric and magnetic field vectors, the scalar and vector po-

tentials, and the Hertz vector under these various gauge transformations within the Lorenz

gauge is illustrated in Fig. D.1 taken from (Oughstun 2006a) pp. 123. Because the gauge

transformation for the Hertz potential leaves the scalar and vector potentials in the Lorenz

gauge, it then results in a restricted gauge transformation for the scalar and vector poten-

tials (Oughstun 2006a).

Figure D.1: Network structure between the Lorenz gauge and Hertz vector.
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D.2 Radiation from an Elemental Hertzian Dipole

Consider the microscopic electromagnetic field produced by an elemental linear electric

dipole situated at the fixed point r = r0 and oscillating along a fixed direction specified by

the unit vector d̂. Such an ideal point dipole is characterized by the electric moment

p (r, t) = p(t)δ(r− r0)d̂, (D.36)

where δ(r) denotes the Dirack delta function. The particular solution of the inhomoge-

neous wave equation for the Hertz potential may be expressed in the form for the retarded

potentials as

Π (r, t) =
1

4π

∫
p(r′, t−R/c)

R
d3r′, (D.37)

so that, with the substitution from eq. (D.36), the Hertz vector for a point dipole is found

as

Π (r, t) =
1

4π
p(t−R/c)d̂, (D.38)

where R = |r − r0|. The microscopic electric and magnetic field vectors are then given by

eqs. (D.26)-(D.27) where

∇ ·
(

1

R
p(t−R/c)d̂

)
= p(t−R/c)

(
∇ 1

R

)
· d̂ +

1

R
(∇p(t−R/c)) · d̂ (D.39)

= −
(
p(t−R/c)

R3
+

1

cR2

∂

∂t
p(t−R/c)

)(
R · d̂

)
(D.40)

so that

4π∇(∇ ·Π) =

{
3

R5
p+

3

cR4

∂

∂t
p+

1

c2R3

∂2

∂t2
p

}
(d̂ ·R)R−

{
1

R3
p+

1

cR2

∂

∂t
p

}
d̂, (D.41)

and

4π∇×Π =

{
1

R3
p+

1

cR2

∂

∂t
p

}
(d̂×R), (D.42)
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where all the quantities on the right-hand side of the above equations are evaluated at the

retarded time t−R/c. With these substitutions eqs. (D.26)-(D.27) become

e (r, t) =
1

4πε0

{
3

R5
p+

3

cR4

∂

∂t
p+

1

c2R3

∂2

∂t2
p

}
(d̂ ·R)R− µ0

4πc2

{
1

R3
p+

1

cR2

∂

∂t
p+

1

c2R ∂2

∂t2
p

}
d̂

(D.43)

b (r, t) =
µ0

4π

{
1

R3

∂

∂t
p+

1

cR2

∂2

∂t2
p

}
(d̂×R). (D.44)

These are then the electromagnetic field vectors for an elemental Hertzian dipole, where

p = p(t−R/c) (Oughstun 2006a).
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Röntgen, W. (1895). Uber eine neue art von strahlen. Sitzungs-Berichte Phys.-med.

Gesellschaft 9, 132–141.

Roy, J. (2003). New results for the effective propagation constants of nonuniform plane

waves at the planar interface of two lossy media. Antennas and Propagation, IEEE

Transactions on 51 (6), 1206–1215.

Salisbury, W. W. (1952). Absorpent body for electromagnetic waves. US Patent 2599944.

Slesin, L. (2002a, May/June). Brillouin precursors: Robert adair, albanese and oughstun.

Microwave News 22 (3), 13–14.

Slesin, L. (2002b, Jul./Aug.). Ieee says no to brillouin precursors. Microwave News 22 (4),

16.

Slesin, L. (2002c, Mar/Apr). Introducing brillouin precursors: Microwave radiation runs

deep. Microwave News 22 (2), 10–12.

Smith, P. and S. Cloude (2002). Ultra-Wideband, Short-Pulse Electromagnetics 5.

Kluwer/Plenum.

Sommerfeld, A. (1914). Uber die fortpflanzung des licht in disperdierenden medien.

Ann.Phys.(Leipzig) 44 (4), 177–202.

Stratton, J. (1941). Electromagnetic theory. McGraw-Hill.

129



Taylor, C. and D. Giri (1994). High-power microwave systems and effects. Taylor & Fran-

cis.

Titchmarsh, E. (1939). Introduction to the theory of Fourier integrals. London: Oxford

University Press.

Toll, J. (1956). Causality and the dispersion relation: Logical foundations. Phys.

Rev. 104 (6), 1760–1770.

Volkow, N., D. Tomasi, G. Wang, P. Vaska, J. Fowler, F. Telang, D. Alexoff, J. Logan, and

C. Wong (2011). Effects of cell phone radiofrequency signal exposure on brain glucose

metabolism. JAMA: The Journal of the American Medical Association 305 (8), 808.

Xiao, H. and K. Oughstun (1999). Failure of the group velocity description for ultrawide-

band pulse propagation in a double resonance lorentz model dielectric. J. Opt. Soc.

Am. B 16 (10), 1773–1785.

Yeh, P. (1988). Optical waves in layered media. Wiley.

130


	University of Vermont
	ScholarWorks @ UVM
	7-26-2012

	Electromagnetic Precursors in Complex Layered Media
	Christopher Palombini
	Recommended Citation





