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Abstract 
 
 

 
 Atrial fibrillation (AF) is the most common arrhythmia encountered in clinical 
practice, occurring in 1% of the adult population of North America.  Although AF does 
not typically lead to risk of immediate mortality, it is a potent risk factor for ischemic 
stroke.  When left untreated AF reduces quality of life, functional status, cardiac 
performance and is associated with higher medical costs and an increased risk of death. 
Catheter ablation is a commonly used treatment method for those who suffer from drug-
refractory AF.  Prior to ablation, intra-cardiac mapping can be used to determine the 
activation sequence of cardiac tissue, which may be useful in deciding where to place 
ablation lesions.  However, the electrical potential that is recorded during mapping is not 
a direct reflection of the current density across the tissue because the potential recorded at 
each point above the heart tissue is influenced by every cell in the tissue. This causes the 
recorded potential to be a blurred version of the true tissue current density.  The potential 
that is observed can be described as the convolution of the true current density with a 
point spread function. Accordingly, deconvolution can, in principle, be used in order to 
improve the resolution of potential maps.  However, because the number of electrodes 
which can be deployed transvenously is limited by practical restrictions, the recorded 
potential field is a sparsely sampled version of the actual potential field. Further, an 
electrode array cannot sample over the entire atrial surface, so the potential map that is 
observed is a truncated version of the global electrical activity.  Here, we investigate the 
effects of electrode sampling density and edge extension on the ability of deconvolution 
to improve the resolution of measured electrical potentials within the atria of the heart. In 
particular, we identify the density of sensing electrodes that are required to allow 
deconvolution to provide improved estimation of the true current density when compared 
to the observed potential field.  
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Chapter One: Introduction 
 

 Atrial fibrillation (AF) is the most common arrhythmia encountered in clinical 

practice, having a frequency of 1% in the adult population of North America [1].  

Although AF does not cause immediate mortality, it is a potent risk factor for ischemic 

stroke, accounting for approximately 15% of all strokes in the United States [2, 3]. 

Further, it has been shown that chronic AF causes structural remodeling of the heart 

tissue which then increases the chances of  AF occurrence [4-6]  implicating the need for 

AF to be treated successfully in a timely manner.  A common treatment method for AF is 

catheter ablation.  Here, a catheter is inserted into a patient’s venous system, usually 

entering at the groin, and is guided into the heart.  In order to perform an ablation, the tip 

of the catheter is placed against the heart and radiofrequency electrical current is applied 

through the catheter.  This produces a small burn on the heart muscle, preventing  it from 

being able to conduct current [7].  This procedure has been found to have relatively high 

overall success rates.  Nevertheless, multiple procedures are often necessary in order to 

completely eliminate the arrhythmia [8].   

 By mapping the activation patterns of AF prior to ablation the clinician can obtain 

a view of the electrical activity in a patient’s atria. This allows for the creation of 

individualized ablation plans, which in turn increase the probability of success.  

Currently, the only option available for mapping prior to an ablation procedure is to use a 

single roving electrode that maps sequentially throughout the atria.  In order for this 

method to be effective, the activation sequence must not change throughout the mapping 

period.  However, it has been shown that the activation sequence which occurs during AF 
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is not temporally stable [9], causing sequential mapping to provide an inaccurate 

representation of the actual activity in the atria.  Thus, a new method of mapping is 

needed in which AF activity is captured simultaneously over an extended region of atrial 

tissue. For example, an electrode array could be deployed transvenously and used to 

simultaneously map the activation sequence at multiple locations. 

 When an electrode is used to map the electrical activity of the atria, what is 

recorded is not the current density at the recording site.  Instead, one obtains a 

contribution from each current producing site in the tissue weighted inversely by its 

distance to the electrode.  This results in a blurred version of the current density, which 

can be described as the convolution of the current density field with a point spread 

function.  The point spread function is dependent upon the height of the electrode [10].  

This point spread function is convolved with the true current density field to give the 

observed potential field.  Therefore, in principle, deconvolution can be applied to the 

observed potential field to provide an estimate of the desired current density field.  

However, practical constraints limit the number of electrodes which can be deployed 

transvenously, causing the observed potential field to be a sparsely sampled version of 

the entire field [11].  Furthermore, the electrical potential field inside the atria may not be 

recorded in its entirety. The truncated edges of a partially sampled potential field cause 

further problems for deconvolution, and generally require that the edges be windowed or 

extended in some smooth fashion. 

 Here, we consider the use of deconvolution to provide an improved estimate of 

the current density from a sparsely sampled and truncated version of the potential field.  
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We examine how the density of sampling and a technique for edge extension influence 

the accuracy of estimates of the current density field.  
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Chapter Two: Background 

2.1 Physiology 

2.1.1 Atrial Fibrillation 
 

 Atrial fibrillation (AF) is the most common cardiac arrhythmia currently 

encountered in clinical practice [1] and is projected to have an increasing occurrence 

among patients in the future as the elderly population continues to grow.  AF is 

associated with increased age, and is thought to occur due to many heart conditions 

which lead to changes in the atrial myocardium.  When AF occurs, the atria undergo a 

continuous, uncoordinated, rippling type of activity.  This activity occurs because the 

atria do not contract and relax sequentially during each cardiac cycle and therefore do not 

contribute to ventricular filling [12].  

 A cardiac arrhythmia occurs when some region of the heart interferes with or 

alters the normal electrical conduction of the heart [13].  Arrhythmias are often driven by 

abnormal sources of excitation, which result in circular movement of electrical activity 

and reentry of conduction [14]. Atrial arrhythmias are known to disrupt the normal sinus 

rhythm and may arise from an ectopic foci or from the existence of one or more reentrant 

waves [15]. It is common for AF to be initiated by a premature impulse which arrives 

during a period in which the excitability of the atrial cells is not uniform.  This variation 

in excitability means some fibers are in the effective refractory state, meaning they are 

not able to be excited, while others are able to conduct impulses (though at slow 

conduction velocities).  The action potentials are then propagated in multiple wavelets 

that travel along paths at various conduction velocities.  This allows, as cells become 
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excitable, for reentry of the wave fronts to occur (Figure 1).  AF is therefore often self 

sustaining, presenting a need for intervention [12, 16].  

 

 
Figure 1. Normal electrical conduction in the heart (left), and disorganized conduction as is seen during 
atrial fibrillation (right).  It is evident that the electrical activity associated with AF exhibits reentry circuits 
which allow self-sustaining arrhythmic [16].   
 
 

 AF is broken into three categories:  paroxysmal, persistent, and permanent. 

Paroxysmal AF is intermittent and will self-terminate in less than 7 days. Persistent AF 

lasts longer but may be terminated by first line pharmacological treatments or electrical 

cardioversion. Permanent AF implies either that cardioversion has failed or that the 

patient and physician have decided to allow AF to continue without further efforts to 

restore sinus rhythm [13, 17, 18].  Although AF does not cause immediate mortality as is 

associated with its ventricular counterpart, it carries clinical relevance because of its 
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effects when left untreated [2].  AF is a potent risk factor for ischemic stroke, increasing 

the risk of stroke 5-fold and accounting for approximately 15% of all strokes in the 

United States.   Although in some patients AF is not symptomatic, for patients with 

symptoms, AF reduces quality of life, functional status, and cardiac performance and is 

also associated with higher medical costs and an increased risk of death [3].  Further, it 

has been shown that chronic AF causes structural remodeling of the heart tissue which 

then causes AF to be more likely to occur [4-6].  Remodeling occurs due to deposits of 

connective tissue among atrial myocites which then lead to electrophysiological 

heterogeneities.  These slow conduction in the atrium and thus lead to the development of 

reentry circuits [6]. Further, remodeling causes an irregular ventricular response, 

generally with a higher than average heart rate during sinus rhythm [19] .  This 

occurrence of remodeling implies that the best prevention of AF is to terminate AF as 

quickly as possible.  Further, it has been seen that successful AF treatment and recovery 

of sinus rhythm can improve and sometimes completely normalize function [6], 

emphasizing the need for AF to be treated in a successful manner. 

2.2 Treatment Methods 

2.2.1 Anti-arrhythmic Drug Therapy 
 

 Three basic strategies are involved in the treatment of AF: rate control, rhythm 

control, and therapeutic anticoagulation.  In some people, AF causes the formation of 

blood clots in the atrium which can travel to the brain causing a stroke, and so 

anticoagulant drugs are often administered daily to prevent clotting [7].  It is known that 

restoring sinus rhythm is an important factor in treating AF.  A variety of data show that 
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restoring sinus rhythm is better than allowing AF to continue, and further recovery of 

sinus rhythm can improve and sometimes completely normalize function [2,6].  Although 

antiarrhythmic drugs have been the core of AF management for a long time, there have 

been a variety of studies including the AFFIRM and RAFT studies which have shown 

that the strategy of maintaining sinus rhythm with antiarrhythmics is not better than that 

of rate control by a β-blocker or calcium-channel blocker in conjunction with 

anticoagulation [20].   Rhythm control medications are often used to restore sinus rhythm 

prior to the use of rate control medications in order to manage AF in the long-term [18].  

However, it is clear that these medications do not eliminate AF in a large number of 

patients, causing this method of treatment to likely not be the best choice.   Nair states 

that the efficacy of antiarrhythmic therapy (other than amiodarone) in preventing 

recurrences at 1 year is around 50% [1].  Such a low efficacy creates the need for other 

treatment techniques to be used. 

 
2.2.2 Catheter Ablation  
 
 Catheter ablation is a second line treatment that has been used for more than a 

decade to treat drug-refractory AF [21].  The aim of catheter ablation is to eliminate all 

arrhythmogenic focuses and reentry circuits which may maintain AF [6] . A catheter (a 

long, thin tube) is inserted into a blood vessel, typically through the groin, and guided 

through the blood vessels into the heart.  The tip of the catheter is then placed against the 

part of the heart thought to cause the arrhythmia and radiofrequency electrical current is 

applied through the catheter to produce a small burn [7].  The ideal ablation pattern 

would prevent AF with a limited number of ablation lines of the shortest possible length, 
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while allowing for the maintenance of mechanical activity of both atria during sinus 

rhythm [22].  However, such a pattern for ideal ablation remains unknown.  Although 

ablation technology has improved greatly since the use of ablation therapy began, the 

mechanism responsible for activation and maintenance of AF remains poorly understood, 

causing ablation therapy to follow a “one-size-fits-all” approach [21].  In general this 

involves elimination of all arrhythmogenic focuses in the four pulmonary veins while 

simultaneously removing the reentry circuits that might trigger and sustain AF. Ablation 

is also sometimes carried out using linear ablations or focal lesions [6]  in an effort to 

stop reentry circuit conduction (Figure 2).  These are general methods and so are not 

specific to the excitation patterns of a particular patient’s atria. 

 

Figure 2. Ablation encircling the pulmonary veins on both sides of the atrium as shown by Ames et al[7]. 
These lesions are meant to prevent any triggers around the pulmonary veins.  
 
 

 Although there are clear limitations to the use of ablation, it has been noted in 

multiple studies that AF patients undergoing catheter ablation are less likely to have 

recurrent AF compared with those treated with anti-arrhythmic medications.  Ablation is 

thus better for long term maintenance of patients [1, 17].  Further, Parkash et al. have 
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shown that catheter ablation is the best form of rhythm control available for treatment of 

symptomatic, drug refractory AF.  They have also added that the techniques used for 

catheter ablation should be tailored to the individualized patient [23] emphasizing the 

importance of mapping the electrical conduction during AF prior to ablation.   

2.2.3 Mapping Techniques 
 

 Prior to ablation, mapping of the atria can be performed in order to gain an 

understanding of its electrical activity.  Mapping of the electrical excitation of the atria 

during AF is a powerful technique to gain insight into the fibrillatory process and the 

related abnormalities in intra-atrial conduction [5].  The term mapping refers to 

procedures that involve recording local electrical signals at sites of interest and then 

placing them onto a spatial matrix reflecting the mapping area [24].  Although in research 

applications mapping can occur with a high resolution, in a clinical setting obtaining high 

resolution mapping is often not possible.  The tools which are used in conjunction with a 

standard focal mapping catheter result in a relatively low resolution and rely on 

sequential rather than simultaneous recordings of electrical activity [24-26].  During AF, 

it is known that excitation patterns are not temporally stable, causing sequential recording 

to be inaccurate [9].  This then means that the mapped electrical excitation is not 

precisely that which is occurring at any instant in time. 

 AF perpetuators are identified by searching for two types of excitation patterns 

with a roving catheter [20]. Complex Fractionated Atrial Electrogram (CFAE) mapping 

identifies repetitive low-amplitude high frequency electrograms as ablation targets.  

CFAE are thought to indicate complex fibrillatory conduction in areas in which the 
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cardiac tissue structure has been changed.  Therefore, CFAE are thought to contribute to 

the maintenance of AF [27, 28].   Nademanee et al [20]  have shown that by ablating 

areas that have persistent CFAE recordings, AF can be terminated in over 85% of 

patients. However, it has also been seen in some studies that ablation of CFAE after 

pulmonary vein isolation did not improve clinical outcomes in patients with long lasting 

persistent AF [29].  In Dominant Frequency (DF) mapping, focal drivers are identified 

based upon radially distributed frequency gradients. DF mapping is aimed at identifying 

localized sites of maximal DF during AF [30].  Sites of high DF should theoretically 

reflect regions of short cycle length, or drivers, that may be important in maintaining AF 

[31] and therefore would be important sites for ablation.  However, because mapping 

occurs with a roving catheter, these two procedures are only valid if DF and CFAE 

remain stable throughout mapping procedure.  It has been shown that DF and CFAE do 

not remain stable throughout the procedure [9] causing this to be an inaccurate 

representation of atrial excitation.   

 Although sequential mapping is generally used clinically, it is evident that 

sequential DF and CFAE maps do not accurately reflect the spatial distribution of 

excitation frequency during a sampling interval [9].  Therefore, simultaneous recording 

from multiple sites is necessary in order to allow mapping to be truly useful in AF. 

Simultaneous mapping can be achieved through the use of an electrode array which 

allows mapping of an area of cardiac tissue, considering a number of points at once.  

However, even with the use of simultaneous mapping there is a problem of limited 

resolution.  Due to practical constraints, only a certain number of electrodes can be 

deployed transvenously, leading to sparse sampling of the electrical potential and 
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therefore limited sampling resolution.  Further, the sampled potential consists of a 

contribution from every cell in the sheet weighted inversely by the distance of the cell to 

each electrode [10] causing the observed excitation pattern to be a blurred version of the 

true signal.  To complicate matters further, an array of electrodes can only provide a map 

of a limited area of the atrial excitation field, causing the observed excitation pattern to be 

a partial version of the potential field. 

2.3 Deconvolution Theory 

2.3.1 Convolution and Deconvolution   
 

 Often, observed signals are a degraded version of the true signal. This degradation 

occurs through the process of acquiring the signal which causes the observed signal to be 

subjected to both noise and blur [32].  When an electrical potential is observed by an 

electrode placed over the surface of the atria, what is recorded is not the current density at 

a single site just under the electrode, but instead a signal which consists of the weighted 

mean of a contribution of the current density in every cell in the tissue.  When an 

observing instrument takes the weighted mean of a physical quantity over a range of 

some variable, its actions can be described through convolution.  The form of the 

weighting function generally does not change to a significant degree as the central value 

of the variable changes, which means the observed quantity is a convolved function, 

rather than the desired quantity itself [33].   In this way, convolution can be used to 

describe the potential that is recorded using an intra-atrial electrode.  

  Convolution operates on two functions g(t) and h(t), producing a third function 

which can be thought of as a modified version of one of the original functions. In this 
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way it can be thought to “blend” one function with another.  Convolution is the integral 

of the product of two functions, g(t) and h(t), after one of the functions has been shifted 

and reversed [34,35].  It is given by the equation [33, 36] 

    





  dthgthtg )()()()(
  (2.1) 

The electric potential recorded by a sensing electrode can be considered to be the 

convolution of a point spread function, (x2+ y2 + h2) -1/2, with the true current density,      

I (z, w, h). 

 Deconvolution is the inverse of convolution and can be used to estimate the true 

signal.  This is generally an ill-conditioned problem as it is extremely sensitive to noise.  

Further, convolution does not have a simple inverse operation in the time domain.  

However, by transforming functions into the frequency domain, the inverse can more 

easily be calculated [37].  Through deconvolution in the frequency domain the true 

signal, I (z, w, h), can theoretically be obtained if one knows the convolved signal,  

Φ(x, y, h), and the blurring signal, (x2+ y2+ h2) -1/2. 

2.3.2 Fourier Transform  
 

 The Fourier transform decomposes a time domain signal into its component 

frequencies.  This provides the frequency domain representation of the signal.  By taking 

the Fourier transform of our signals, deconvolution will now be possible, allowing us to 

obtain an improved estimate of the current density field. The Fourier transform is given 

by the equation [36, 37] 
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dtethfH jft2)()( 






   (2.2) 

where h(t) is some time domain signal and H(f) is its Fourier transform.  

 The convolution theorem allows the Fourier transform of a signal to be used in 

order to make deconvolution a simple process.  The convolution theorem states that 

convolution in the time domain is equal to multiplication in the frequency domain.  This 

is described by the equation [36, 37]: 

    )()()()( fHfGthtg                (2.3)   

where * denotes convolution, G (f) is the Fourier transform of g(t) and H(f) is the Fourier 

transform of h(t).  The convolution theorem can be derived as follows: 

Convolution of g(t) with h(t) is defined as:  





  dthg )()(

 

The Fourier transform of this convolution is equal to: 






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ddtethg

dtedthg
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ift

 

 

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
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 
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2

2
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)()(

 

By the definition of the Fourier transform, this is equal to [33]: 






   dfHeg ift )()( 2

 

)()( fHfG .   

 Because of this, if we have a convolved signal, in the frequency domain it can be 

described as Y (f) = X (f) H (f).  Further, to deconvolve this signal in order to solve for 
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X(f) we can simply divide the convolved signal by the signal with which X(f) was 

convolved, i.e.
)(

)(
)(

fH

fY
fX  .   The inverse Fourier transform of X (f) would therefore be 

equal to x(t) which has been shown to be equal to the inverse Fourier transform of  

)(

)(

fH

fY
. 

In the current problem, the electric potential field, Φ(x, y, h), which is observed, 

consists of the true tissue current density field, I (z, w, h), convolved with  

(x2+ y2+ h2) -1/2, the point spread function that reflects the contribution of every cell in the 

tissue.  This is described by the equation: 

Φ(x, y, h) = I (z, w, h)  (x2+ y2+ h2) -1/2   

Due to the convolution theorem described above, it can be seen  

}){()},,({)},,({ 2/1222  hyxhwzIhyx . 

Where    denotes the Fourier transform of the bracketed quantity. Therefore,  

.
})h+ y  + (x{
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2/1222 
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hyx
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This then means that the inverse Fourier transform of the Fourier transform of I (z, w, h) 

is equal to the inverse Fourier transform of this quotient: 

)
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In other words, I (z, w, h) is equal to: 

)
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2.3.3 Effects of Noise 
 

 This process of deconvolution proves extremely sensitive to noise which may be 

present in the data.  One reason for such a problem occurs when the use of Fourier 

transforms to perform deconvolution results in division by zero [36].   In our study, this 

occurs when numerical errors cause the Fourier transform of the recorded potential to 

hold a significant value while the point spread function is equal to, or very close to, zero.   

When deconvolution is used as described above, this will result in large 

oscillatory artifacts being created in the estimate of the true signal, leading to a result that 

will not prove useful.  In order to overcome this problem, the theory of the Wiener filter 

is invoked.  This theory involves adding a small delta function to the center of the point 

spread function, which has the effect of adding a small constant to the transform of the 

point spread function [38].  Our estimate of the true current density is now described as 

 
  











 

chyxI

hyx
hyzI

)(

),,(
),,(

222
1 . 

2.3.4 Data Truncation 

 
 The extent of the electrical potential field which is recorded within the heart is 

always limited, providing us with a truncated potential field.  Having a partial version of 

the potential field has an important effect upon our ability to use deconvolution.  Sensing 

a partial version of the potential field can be described by multiplying a rectangular 

window of height 1 by the observed field.  Because multiplication in the time domain is 

equivalent to convolution in the frequency domain, when we take the Fourier transform 

of the observed potential field it has the effect of convolving the transform of the entire 
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potential field with the transform of the rectangular window, which is a sinc function 

(sinc
x

x
x

)sin(
)(  ).  This then will result in spectral leakage, causing significant distortion 

of the deconvolved signal [39, 40].  In order to avoid this, edge extension or windowing 

can be applied to the data to smoothly extend its edges to zero prior to taking the Fourier 

transform.  This will reduce the effects created by deconvolving a partial version of the 

potential field and provide a more accurate depiction of the desired signal, here the 

current density field. 

2.4 Simulation of Atrial Activation 
 
 Because mapping of atrial activation is restricted by sampling limitations, the 

nature of AF in a given patient often remains unknown.  This makes it difficult to 

determine the relationship between the patterns of electrical excitation in the heart and 

the electrogram which is recorded.  On the other hand, computer models can be used to 

precisely relate a simulated excitation pattern to the observed electrogram [41].  A variety 

of computer models have been created which simulate activation patterns in the atria in 

an attempt to accomplish this goal.    These models exhibit various features which are 

meant to replicate the environment of the atria in order to create realistic activation 

patterns.  Due to the limitations of computer processing speeds, however, a compromise 

must be reached between the simulation speed, complexity of the cellular membrane 

model, complexity of the tissue, the number of spatial nodes, complexity of the anatomy, 

the duration of the simulated events, and the accuracy of the methods used [42].  This has 

led to the creation of many biophysical models of the human atria which consider the 

tradeoff between computation speed and anatomical representation in different ways [22].  
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 A variety of models have been created which consider a 3-D model of the atria to 

allow for the effects of geometry which are implicated in the activation patterns seen in 

arrhythmias (Figure 3).  Many of these models further increase complexity and include 

cellular ionic models.  However, the computational overhead in these models causes them 

to run much slower than real time, often taking multiple hours to process seconds of 

activation [15, 42].  Other models consider a more simplified view of the geometry, 

looking at the atria in 2-D and therefore allowing for greater speeds in simulation.  These 

models often attempt to preserve realistic tissue properties while adding speed through 

the use of a simpler geometry [28].   

 

 
 
Figure 3. Reentry shown in a physiologically realistic model as is seen in the model created by Vigmond et 
al [15].  This model can be seen to have realistic anatomical properties at the expense of a slow running 
time. 
 
 Even simpler models, which allow for an even greater speed, are based on cellular 

automata.  These models allow for cells to be in distinct states (excited, refractory or 

quiescent), to be built in a simple structure, and to follow a simplified set of rules which 

govern the way in which the cells act as a function of their interaction with their 

neighbors [43].  Various cellular automaton models of cardiac tissue have been created. 
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Such models may include parameters such as a refractory state, allowing for complex 

propagation patterns to be simulated [44, 45].   

 The model used here is a cellular automaton model in which the cells have a 

voltage that varies with time.  Each cell is electrically connected to its neighbors with 

which it exchanges current according to Ohm law.  This means that the cell voltage is 

altered both through extra-cellular current flow during activation and through exchange 

of current with each of its neighbors [43].  This model was used to simulate activation 

patterns typical of AF in order to create a known current density map (Figure 4) which 

could be sampled by specified electrode arrays and used in order to study the 

improvements that can be made through deconvolution.  

 
Figure 4. Reentry secondary to fixed, anatomic substrate, as seen in the model by Spector et al [43].  This 
cellular automaton model was used to create current density fields to be used in this study. 
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Chapter Three: Deconvolution in One Dimension 

3.1 Background 
 

 The electrical potential recorded by an array of electrodes above atrial tissue can 

be described as the current density field of the tissue convolved with a point spread 

function as described in section 2.3.1.  If the observed potential consists of a complete 

convolved signal, it can be improved through deconvolution using Fourier transforms as 

explained in section 2.3.2.  However, the signal obtained through the use of an array of 

intra-atrial electrodes is not the complete convolved signal but rather is limited by 

sampling constraints related to the number of electrodes that can be deployed 

transvenously.  The limited number of sensing electrodes causes sparse sampling of the 

electrical potential.  The apparent potential map is therefore a coarsely sampled portion of 

the true potential field.  The success of deconvolution in improving the signal resolution 

therefore depends upon the number of electrodes in the sampling array.  Consequently, it 

is necessary to determine the size of the electrode array required in order to provide an 

improved signal using deconvolution.  Here we look specifically at the minimum number 

of sensing electrodes which are necessary to improve the resolution of the observed 

signal using deconvolution at various electrode heights. 

 3.2 Computational Methods 
 

 We consider the electric potential which would be recorded by intra-atrial 

electrodes during a mapping procedure.  The signal considered corresponds to any instant 

in time, and is therefore snapshot of the electric potential produced by atrial fibrillation.  

We consider the atrial tissue to be two-dimensional.  Such a situation would occur if one 
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was mapping over a region of tissue of uniform thickness which was small enough in 

extent to be essentially a flat plane.  Further, in order to simplify this situation, we look at 

the problem in one dimension. 

 A one dimensional signal is blurred through convolution as occurs when an 

electrode is used to determine the electric potential.  The original signal (the signal which 

is given before convolution occurs), will then be used as the current density field, the 

“true signal” which we desire (Figure  5).  This means that the signal which we are trying 

to determine is known, allowing for a comparison between our result and the true signal.  

Here each unit in the x direction is a unit of location and can be considered to be 1 mm, 

units in the y direction represent the quantity of current which is observed.   
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Figure 5. Example of the current density - I(x, y). 
 
 When an electrode is placed at height, h, above the tissue, the electric potential, Φ, 

which is recorded consists of a contribution from every cell in the sheet weighted 

x
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inversely by the linear distance from the cell to the electrode.  In one dimension this is 

described by the equation: 

   dz
hzx

yxI
hx 



 


22)(

),(
),(              (3.1) 

Due to the definition of convolution, equation 3.1 is equal to [10] 

   
22)(

1
),(),(

hzx
yxIhx


       (3.2) 

(where * denotes convolution).  Therefore, the measured signal is a blurred version of the 

true signal, as can be seen in 

Figure 6.  Because both the convolved signal as well as the point spread function with 

which the true signal is convolved are known, in principle,      I (x, y) can be found using 

deconvolution. 
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Figure 6. Example of the convolved signal, Φ(x), which consists of the current density convolved with the 
point spread function. 
 

x

y 



 

 22  

 However, the signal is recorded by a limited number of sensing electrodes, 

providing a sparsely sampled potential.  Because of this, interpolation of Φ(x) between 

the electrode sites is necessary before Fourier deconvolution can be attempted.  Here, 

cubic spline interpolation was used in order to provide an estimate of the potential field, 

Φ(x) ( 

Figure 7).  Further, due to limitations of the area of the tissue which can be covered by an 

array of electrodes, the recorded signal is generally not the complete signal but instead is 

a partial version of it.  This causes significant oscillatory effects when Fourier 

deconvolution is used.  Therefore, if a partial version of the potential field is obtained the 

truncated edges of the signal must be smoothly extended to zero before Fourier 

deconvolution can be used, as explained in section 2.3.2.  
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Figure 7. Example of the cubic spline interpolation (shown in pink) found using 50 electrodes to sample 
the convolved signal. 
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   In principle, an estimation of the true signal can be found from Φ(x) by division 

by the point spread function in the Fourier domain.  However, inevitable numerical errors 

cause the transform of the point spread function to be zero, or very close to zero, at 

frequencies for which the Fourier transform of Φ(x) has a significant value.  We therefore 

invoke the theory of the Wiener filter by adding a small delta function to the center of the 

point spread function.   This has the effect of adding a small constant (c = .5) to the 

transform of the point spread function [38].  An estimate of the true signal is thus found 

to be 

     


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

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Where 1 {   } denotes the inverse Fourier transform of the bracketed quantity and 

),( hu  and ),( huf  are the 1-D Fourier transforms of  Φ(x) and the point-spread 

function respectively.  

In order to determine the impact of the number of sensing electrodes on the 

deconvolved signal, the consequence of varying electrode array size was tested at 

specified electrode heights.  This was used to provide an indication of how small the 

number of sensing electrodes can be while continuing to provide improvement using 

deconvolution.  The mean squared residual (MSR) of both the observed and deconvolved 

signals relative to the true signal were used to quantify this result. The mean squared 

residual is calculated by dividing the sum of squared residuals by the number of 

parameters, m, subtracted from the number of measurements, n.  That is 
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where I is the value of the true signal,  is the potential found through equation 3.2, 

and Î is the deconvolved signal predicted by equation 3.3 [46].  In order to determine the 

influence of electrode height, MSRobs and MSRdec were determined for a range of values 

of h in equation 3.2. 

3.3 Results 

3.3.1 Effects of Electrode Array Size 
 

 Figure 8 shows the true current density, observed electric potential and 

deconvolved signal found using an electrode spacing of 4 (a) and 40 (b).  Deconvolution 

is able to improve the resolution of the measured signal, causing it to be more like the 

true signal if there are a sufficient number of sensing electrodes.  Using a dense electrode 

array, the deconvolved signal is a nearly perfect estimate of the true current density (a).  

However, if there is a large spacing between electrodes this is not as effective (b).  The 

deconvolved signal can thus be seen to be less similar to the true current density when 

using a greater spacing than with the dense electrode array. 
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Figure 8. Images showing the deconvolved signal (blue) the convolved signal (pink) and the true signal 
(black) at electrode spacing of 4 (a) and 40 (b).  It is clear that the deconvolved signal provides more 
closely resembles the true signal when compared to the convolved signal. 
 
   

Figure 9 shows MSRobs and MSRdec as the number of sensing electrodes is increased at 

electrode heights of 25 (a) and 150 (b).  At both heights MSRdec is smaller than MSRobs 

indicating that the deconvolved signal is more similar to the true current density than the 

observed signal.  Further, as the number of electrodes is increased, MSRdec continues to 

decrease, indicating a greater improvement in resolution.  With a small number of 

electrodes resolution improvement is not significant and approximately 15 electrodes are 

needed in order to provide a significant improvement through deconvolution.  At a height 

of 25 (a) the improvement is greater than the improvements at a height of 150 (b).  
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Figure 9. Mean squared residual values of the deconvolved and observed signals varying electrode spacing 
with electrode height of 25 (a) and 150 (b). It can be seen that as the number of electrodes increases, 
deconvolution provides greater improvement when compared to the observed signal. 
 
 
 The graphs in Figure 9 show a jagged behavior of increasing and decreasing 

improvement in both MSRobs and MSRdec.  This behavior is due to the location of the 

placement of electrodes when observing the electric potential. Figure 10 shows MSRdec 

with the electrodes in their original location and with the placement of electrodes shifted 

by 1 prior to deconvolution.  If the electrodes are shifted, this oscillatory effect is also 

shifted and changed.  This indicates that the behavior observed is due to the placement of 

electrodes along the current density field.  

3.3.2 Effects of Electrode Height  
 

 Figure 11 shows MSRobs as electrode height is increased.  An increase in the 

MSRobs value occurs sharply until it reaches an asymptotic value at an electrode height of 

about 50 at which point the increasing of electrode height has little effect on the observed 

signal.   
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Figure 10. MSR calculated when the electrode location is shifted by 1.  It is clear that this shift in electrode 
locations shifts the oscillatory effects. 
 

 

 Figure 9 shows both MSRobs and MSRdec at electrode heights of 25 and 150 and 

demonstrates that the improvements which can be made are effected by the height of the 

sensing electrode.  If the electrode height is greater, deconvolution provides a more 

considerable improvement with a smaller number of electrodes.  In order to cause 

significant improvement at a height of 25 approximately 16 electrodes are needed while 

with a height of 150 only about 13 electrodes are needed.   However, after reaching this 

threshold number of electrodes, the improvements are uniformly greater when 

considering using a lower electrode height.   
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Figure 11. The mean squared residual value calculated between the "true signal" and the convolved signal 
becomes increasingly large as the electrode height is increased. 
 

3.4 Discussion 
 

 The results of this initial test of the utility of deconvolution indicate that 

deconvolution is useful in providing an improved estimate of the true current density 

from the observed potential.  Figure 8 clearly demonstrates that with a high density of 

electrodes, as can be seen in the left image (a), deconvolution provides a signal which 

much more closely resembles the true current density than the signal which is observed.  

However, as can be seen in the right image (b) which shows a much larger electrode 

spacing, the improvement is less clear when spacing between sensing electrodes is large.  

Calculation of MSRobs and MSRdec, shown in Figure 9, indicate that as the number of 

electrodes increases improvement due to deconvolution becomes increasingly significant.  

Deconvolution is able to provide improvement upon the observed signal with any 

electrode array.  However, this improvement is not significant with very small arrays and 
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about 15 electrodes are necessary in order to make significant improvements.  The values 

of MSRobs and MSRdec seen in Figure 9 follow a jagged pattern with an oscillation of 

improvement as the number of electrodes increases.  Figure 10 demonstrates that this 

behavior changes when the location of the sensing electrodes is shifted.  This indicates 

that this oscillatory pattern is due to the location of the sensing electrodes.  It is likely this 

is due to the placement of electrodes missing parts of the true current density and 

therefore limiting the improvements which can be made through deconvolution.  

Electrode location may prove to be an important factor in application of this method of 

deconvolution. It would likely be important to consider shifting the electrodes slightly 

throughout recording to ensure recording of as much of the potential field as possible and 

therefore obtain the greatest results. 

 Comparison of the two images in Figure 9 also demonstrates that electrode height 

influences the improvements which can be made through deconvolution.  It is clear that 

with the greater height, seen on the right, deconvolution is able to more quickly provide a 

clearly improved estimation of the true signal; however, at a lower height, once the 

threshold number of electrodes is reached, the improvement due to deconvolution is more 

significant.  Further, as is shown in Figure 11, as electrode height is increased, the 

observed signal becomes increasingly blurred and more unlike the true current density. 

Therefore, although improvements are significant at a greater height, they are not 

necessarily the most useful.  It is best instead to use a lower sensing height with a slightly 

larger number of sensing electrodes to achieve the greatest improvement. 

 This initial test of deconvolution clearly indicates that when we consider a simple 

one dimensional signal at one instant in time, deconvolution proves useful with 
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approximately 15 electrodes. Although here we use a clearly simplified current density, it 

provides an indication that deconvolution is a useful tool in order to improve our estimate 

of the current density found in atrial tissue.  This problem has been previously considered 

using a polynomial method of deconvolution in one dimension.  It was found that this 

method of deconvolution could provide an improved estimate of the true signal.  

However, the improvement made was highly dependent upon the number of electrodes as 

the solution to this problem using a polynomial method is not unique [10].   The results of 

our study are also dependent upon the number of electrodes used; however, here it was 

found that an improvement can be made even with a small number of sensing electrodes 

but that this improvement was not greatly significant.  Such a result implies that this 

method of deconvolution provides an improved ability to estimate the true current 

density.  

 The improvement which is evident with our result is further confirmed by the 

work of  Chouvarda et al [11] which considered using similar deconvolution methods for 

membrane current estimation in simulated infracted myocardium.   This study found that 

in two dimensions, using a somewhat sparse number of sensing electrodes, deconvolution 

is able to provide an improved estimate of the membrane current.  Their result adds to our 

evidence that our use of deconvolution can prove a useful tool.  This then indicates that it 

is worthwhile to consider this process in two dimensions in order to improve our 

understanding of the utility of deconvolution with more realistic current density fields. 
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Chapter Four: Deconvolution in Two Dimensions 

4.1 Background 
 
 As we have seen in the previous chapters, the signal which is recorded by an array 

of electrodes placed at a certain height above atrial tissue can be described by the 

convolution of the current density field with a point spread function.  Because of this, if 

we were to obtain the complete convolved signal, deconvolution using Fourier transforms 

could be used to obtain the true current density from the observed potential field.  

However, as was seen when considering a one dimensional electric potential, the signal 

obtained through the use of intra-atrial electrodes is not the complete convolved signal.  

 Here we extend the work of the previous chapter to consider a two dimensional 

current density field.  We apply deconvolution to a current density field simulated by a 

computational model of atrial excitation.  As before, we examine the effects of the 

number of electrodes in the array used to record the potential map as well as the effects of 

map truncation.  In particular, we consider the use of an edge extension technique to 

bring the truncated edges of the sampled field smoothly down to zero. 

4.2 Computational Methods 
 

 As was seen when using deconvolution in one dimension, we consider the signal 

at snapshots in time of the electric potential which would be recorded by intra-atrial 

electrodes during a mapping procedure.  We consider the tissue to be two-dimensional, as 

would occur if one was mapping over a small flat region of tissue of uniform thickness.  

Here we consider each cell in our sheet of tissue to represent a 1 x 1 mm square of tissue.  

The height of our sensing electrodes is then based upon the units of the tissue, each unit 
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of height is then considered to represent 1 mm.   As explained above, the electric 

potential recorded is not the true current density, but instead is influenced by every cell in 

the tissue.  The electric potential, Φ, recorded by the electrode at a height, h, above the 

tissue, consists of a contribution from every cell in the sheet weighted inversely by the 

linear distance from the cell to the electrode: 

dzdw
hwyzx

hwzI




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 
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where I (z, w, h) is the current density and 
222 )()(

1

hwyzx 
 is the point spread 

function [10].  Equation 4.1 can be described as  
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hwyzx
hwzIhyx


 .  (4.2) 

(where * denotes convolution).   

 Here a two dimensional signal is blurred through convolution using equation 4.2 

in order to simulate an observed potential field, Φ(x, y, h), which would be recorded by 

an array of electrodes.  The original signal is then the current density field which we are 

trying to estimate ( 

Figure 12).  The point spread function which is convolved with our true current density 

can be calculated as described above.  This means that if the entire extent of the 

convolved signal was known, deconvolution could be used in order to estimate I (z, w, h) 

from Φ(x, y, h). 
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Figure 12. Example of the true current density field I (z,w,h). 
 
 

However, as was seen in one dimension, the observed signal is recorded using a 

specific number of electrodes whose spacing may not be uniform and is generally sparse.  

We therefore sample the potential field only at a specified number of points.  Because the 

extracellular potential field is actually continuous, we interpolate between the electrode 

locations in order to create a continuous signal from the electrode recordings.  Here we 

use cubic spline interpolation in order to accomplish this task (Figure 13).   
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Figure 13. Example of an interpolated convolved signal with an electrode spacing of 15.  Cubic spline 
interpolation occurs between the electrodes prior to Fourier deconvolution. 
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  Further, what is recorded is usually a truncated version of the potential field, as 

the electrode array will not cover the entire extent of the atrial tissue.  Therefore, the 

effect of recording a partial signal on Fourier deconvolution must also be considered.  

The recording of a partial signal means the edges of the potential field are truncated, 

leading to oscillatory effects in the deconvolved signal.  To avoid such edge effects, the 

signal is extended in all directions by half the width of the point spread function using 

point-wise first derivative matching of the edges of the observed signal.  This extended 

signal is then multiplied by a unique window consisting of a cosine bell that extends half 

of the length of the point spread function in each direction, surrounding a square of height 

1.  The width of the square is equal to that of the observed potential field minus half the 

width of the point spread function (Figure 14).  
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Figure 14. The window used to smoothly extend the convolved signal.  The window consists of a square 
which is equal to half the size of the point spread function (G) subtracted from the size of the convolved 
signal (I), this square is surrounded by a cosine bell which extends half the size of the point spread function 
(G) in each direction. 
 
  This technique allows the signal to extend smoothly to zero without losing a large 

portion of the initial data, most of which falls under the square area of the window of 
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height 1 and therefore keeps its initial value (Figure 15). Multiplication of the extended 

signal with the window provides an estimate of the observed signal, h) y, (x,
~ , upon 

which signal resolution improvement can be used.  Deconvolution using the Fourier 

transforms of h) y, (x,
~ and the point spread function can now occur as explained in 

section 2.3.2.   
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Figure 15. Example of a truncated convolved signal (a), smooth edge extension applied to the signal (b), 
and the extended signal multiplied by our window (c).  It can be seen that the use of edge extension allows 
the signal to smoothly extend to zero and avoid edge effects when the Fourier transform is used to perform 
deconvolution. 

 Theoretically the true signal can be found from ),,(
~

hyx  simply by division in 

the Fourier domain, however, as was seen in one dimension, the transform of the point 

spread function is often zero at spatial frequencies for which the Fourier transform of 

),,(
~

hyx has significant power.  This results in large oscillatory artifacts in estimates of 

the current density.  Therefore, we again invoke the theory of the Wiener filter by adding 

a small delta function to the point spread function, which has the effect of adding a small 

a b c
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constant to the transform of the point spread function [38].  This provides an estimate of  

I (x, y) as 

   











 

chvuf

hvu
yxI

),,(

),,(
),(ˆ 1     (4.3)   

where 1 {  } denotes the inverse Fourier transform of the bracketed quantity and   

),,( hvu and ),,( hvuf  are the 2-D Fourier transforms of h) y, (x,
~ and the point-spread 

function respectively. 

 In order to determine the effect of electrode array size, at specific electrode 

heights, the impact of varying electrode spacing on both the observed and deconvolved 

signals was tested.  This was used to indicate how small of an electrode array can be used 

while deconvolution continues to provide an improved signal when compared to that 

which would be observed.  This result of varying the electrode array size was quantified 

through calculation of MSRobs and MSRdec using equation 3.4.  Comparison of these 

values allows for a clear indication of the improvement deconvolution has upon the 

observed signal. 

 The influence of electrode height upon the utility of deconvolution was also 

considered.  At specified electrode array sizes, the height of the electrode array was 

varied.  The impact of these variations on both the observed and deconvolved signal was 

considered.  MSRobs and MSRdec were again calculated to provide a clear indication about 

the impact of electrode height on the utility of deconvolution.   

Further, we considered the impact of the use of edge extension and windowing 

upon the observed signal prior to the use of deconvolution.  Using specified electrode 

array sizes and heights, we compared the utility of deconvolution on the observed signal 
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prior to the use of edge extension and windowing to the utility of deconvolution after 

these techniques have been used.  The comparison of these signals was used to gain 

insight into the necessity of using these techniques in order to obtain an improved 

estimate of the current density.  MSR values were again calculated in order to quantify 

the impact of these techniques. 

4.3 Results 

4.3.1 Effects of Electrode Array Size 
 

 Figure 16 demonstrates the use of deconvolution upon a simple rotor.  This figure 

shows the true current density, observed potential field, and deconvolved estimate of the 

current density at four time steps using a 20 x 20 array (a) and a 10 x 10 array (b).  

Deconvolution noticeably improves the estimate of the true signal with a large number of 

electrodes, a 20 x 20 array (a), and provides a less obviously, although still improved 

signal with the smaller array (b).  Although improvements are not of the same caliber, 

with both array sizes deconvolution is able to provide resolution enhancement over the 

signal which is observed.  This observation can be seen both with the simple rotor seen in 

Figure 16, as well as with a more complex activation pattern such as multi-wavelet 

reentry (Figure 17).  Figure 17 demonstrates the utility of deconvolution upon activation 

patterns of this more complex signal at four time steps.  Here, larger electrode arrays are 

used; a 30 x 30 array (a) and 15 x 15 array (b).   These larger array sizes were necessary 

in order to obtain similar improvement as was found with the 20 x 20 and 10 x 10 arrays 

used to consider the simple rotor seen in Fig. 16.   Improvements which can be made 

through deconvolution increase as array size is increased. 
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Figure 16. True current density, observed electrical potential, and deconvolved signal at multiple time 
steps using an electrode array of 20 x 20 (a) and 10 x 10 (b) at a height of 2.  It is clear in both a and b that 
deconvolution provides an improved estimate of the current density and that with a larger array of electrodes this 
improvement is greater. 
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Figure 17.  True current density, observed signal, and deconvolved signal using a 30 x 30 and 15 x 15 
array of electrodes at a height of 2.  It is clear that the deconvolved signal provides an improved estimate of 
the true current density and that this improvement increases as the number of electrodes is increased. 
 

 Calculation of MSRobs and MSRdec values provides a quantitative analysis of the 

improvements made through deconvolution (Figures 18, 19).  Figure 18 shows MSRobs 
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and MSRdec corresponding to the four time steps of the simple rotor seen in Figure 16.  

These values give an indication of the impact of deconvolution upon the simple rotor as 

electrode spacing is varied.  At most time steps, with an approximately 10 x 10 electrode 

array, deconvolution is able to provide an improved estimate of the current density.  

However, with a smaller electrode array, the use of deconvolution results in an estimate 

of the current density which is less similar to the true current density than the signal 

which is observed.  At the first time step in Figure 18, regardless of the size of the 

electrode array being used, MSRobs can be seen to be less than MSRdec, showing 

deconvolution to not be useful.   
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Figure 18. MSR comparing the observed and deconvolved signal with the true signal.  This is calculated at 
the four time steps corresponding to the four time steps shown in Figure 16. 
 
 A similar result can be seen when considering multi-wavelet reentry (Figure 19).  

Figure 19 provides MSRobs and MSRdec corresponding to the four time steps of multi-
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wavelet reentry activation patterns seen in Figure 17.  At most time steps deconvolution 

is able to provide an improved result. However, at the third time step MSRdec is again 

greater than MSRobs, showing the deconvolved signal to be less similar to the true current 

density than what is observed.    MSR calculations at the other time steps show an 

improvement through deconvolution with a relatively small number of electrodes, less 

than a 10 x 10 array.  If a smaller array is used than this threshold amount, it can be seen 

that MSRobs has a smaller value and is therefore a better estimate of the true current 

density than that found through deconvolution. Figures 18 and 19 indicate that with both 

these signals, at the fixed electrode height considered, this necessary number of sensing 

electrodes is low, less than a 10 x 10 array, with the exception of the time steps for which 

deconvolution does not prove useful. 
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Figure 19.  MSR comparing the observed and deconvolved signal with the true signal.  This is calculated at 
the four time steps corresponding to the four time steps shown in Figure 17. 
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4.3.2 Effects of Electrode Height 
 

 Figure 20 demonstrates the observed potential field when electrode height is 

increased from 1 to 5 to10.  It is clear that as electrode height is increased, the blurring 

effect of convolution has an increased impact.  The observed signal becomes increasingly 

imprecise and has a pattern which is clearly much less distinguished.  Comparison the left 

image, the signal observed at a height of 1, to the right image, recorded at a height of 10 

demonstrates that at a height of 10 the rotor which can be seen in the left image is no 

longer apparent.     
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Figure 20. Observed signal at heights of 1, 5, and 10, it is clear that as the height of the electrode array is 
increased, the signal which is observed becomes increasingly blurred. 
 
 

 Figure 21 shows the effect of increasing electrode height upon both the observed 

and deconvolved signals.  Here, as we increase height, recording the same signal with the 

same number of sensing electrodes, both the observed and deconvolved signals become 

increasingly blurred.  The increased electrode height causes deterioration in signal 

resolution which can be provided through deconvolution. However, it can be noted when 
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considering these signals that even at a height of 5 the deconvolved signal is more similar 

to the true signal than the signal observed by the array of electrodes.    
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Figure 21. True current density, observed signal, and deconvolved signal at heights of 1 (top), 3 (middle), 
and 5 (bottom).  It is clear that as the height of the electrode array is increased, the signal which is observed 
becomes increasingly blurred and in turn the deconvolved signal also looks increasingly blurred. 
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 MSR calculations were used to quantify the influence of electrode height which is 

clearly evident through observation of the signals.  Figure 22 depicts MSRobs and MSRdec 

values calculated at electrode heights of 1, 3, 5, and 10.  At low electrode heights 

deconvolution provides a signal which is more similar to the true signal than what is 

observed.  This improvement due to deconvolution deteriorates as electrode height is 

increased and finally, at a height of 10, deconvolution does not provide an improved 

estimate of the true current density and MSRdec is greater than MSRobs regardless of 

number of electrodes in the array used.   
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Figure 22.  Mean squared residual of the same signal at heights of 1 (top left), 3 (top right), 5 (bottom left), 
and 10 (bottom right).  It is clear that as the height of the electrode array is increased the observed signal 
becomes increasingly blurred and further that deconvolution becomes less useful in providing an improved estimate 
of the true signal. 
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4.3.3 Effects of Edge Extension 

 
 As was seen in Figure 15, we use of edge extension and windowing on the partial 

potential field to smoothly extend the observed map to zero without losing a large portion 

of the observed data.  Figure 23 demonstrates the use of deconvolution upon the a 

truncated potential field prior to the use of edge extension and windowing (a), after 

smooth edge extension (b) and after edge extension in combination with windowing (c).  

When a partial version of a convolved signal is considered and edge extension is not used 

(a), the deconvolved signal has significant noise and does not look similar to the true 

signal.  Part b of Figure 23 provides an estimate of the current density which is more 

similar to the true current density than prior to the use of edge extension; however this is 

still a poor estimate.  The use of edge extension followed by windowing (c) provides a 

deconvolved signal which is much more like the true current density than seen prior to 

these procedures.  It can be noted through examination of the three panels of this figure 

that the application of both edge extension and multiplication by the window provides a 

deconvolved signal with a much greater resolution than prior to the use of these 

procedures.  

 Figure 24 compares MSRobs and MSRdec values prior to the use of edge extension 

and windowing with MSRobs and MSRdec after these techniques have been used.  When 

no edge extension and no windowing are used on the observed signal (top left), 

deconvolution is unable to provide an improved estimate of the true signal.  Further, 

when edge extension but no window is applied to the observed signal prior to 

deconvolution (top right), the deconvolved signal again does not exhibit an improvement 

over the observed signal.  However, when both edge extension and the window are 
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applied to the observed signal prior to deconvolution, the deconvolved signal exhibits a 

significant improvement over the observed signal.  This gives a clear indication that the 

use of these techniques is necessary in order to provide enhancement of resolution 

through deconvolution. 

true signal

20 40

5

10

15

20

25

30

35

40

45

50

observed signal

10 20 30 40 50

5

10

15

20

25

30

35

40

45

50

55

deconvolved signal

20 40

5

10

15

20

25

30

35

40

45

50

true signal

20 40

5

10

15

20

25

30

35

40

45

50

observed signal

10 20 30 40 50

5

10

15

20

25

30

35

40

45

50

55

deconvolved signal

20 40

5

10

15

20

25

30

35

40

45

50

true signal

20 40

5

10

15

20

25

30

35

40

45

50

observed signal

10 20 30 40 50

5

10

15

20

25

30

35

40

45

50

55

deconvolved signal

20 40

5

10

15

20

25

30

35

40

45

50

 
 
Figure 23. Deconvolution from a partial convolved signal with no edge extension (a) edge extension but no 
windowing (b) and edge extension and windowing (c).  It is evident that the use of edge extension and 
windowing provides a much improved deconvolved signal. 
  

c 

b 

a 

y 

y 

y 

x x x 



 

 49  

10 20 30 40 50
10

0

10
2

10
4

10
6

10
8

10
10

Number of Electrodes

M
e

a
n

 S
q

u
a

re
d

 R
e

si
d

u
a

l

 

 

 Deconvolved Signal
 Observed Signal

10 20 30 40 50
10

1

10
2

10
3

10
4

Number of Electrodes

M
e

a
n

 S
q

u
a

re
d

 R
e

si
d

u
a

l

 

 

 Deconvolved Signal
 Observed Signal

 

10 20 30 40 50

10
1.2

10
1.3

10
1.4

10
1.5

Number of Electrodes

M
e
a
n
 S

q
u
a
re

d
 R

e
si

d
u
a
l

 

 

 Deconvolved Signal
 Observed Signal

 

Figure 24. Mean squared residual calculations considering the same signal with no extension and no 
windowing, extension and no windowing, and extension and windowing.  It is clear that the use of edge 
extension as well as a window provides a signal upon which deconvolution can be used in order to provide an 
improved estimate of the true signal.  

4.4 Discussion 
 

  The results of deconvolution in two dimensions clearly indicate that with a 

necessary number of sensing electrodes, deconvolution is useful in providing an 

improved estimate of the true current density.  Figure 16 demonstrates that deconvolution 

gives a signal which is more similar to the true current density than what is observed.  

Through consideration of the series of time steps shown, it can be clearly seen that the 

deconvolved signal resembles the rotor seen in the images of the true current density 
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while the observed signal displays an obviously blurred version.  Comparison of the 

signals found using a 20 x 20 array (a) and a 10 x 10 array (b) demonstrates that 

deconvolution provides a greater improvement with the larger array.  However, it is 

evident that the deconvolved estimate is still more similar to the true current density with 

the 10 x 10 array.  This improvement can also be seen through the MSR calculations seen 

in Figure 18.  It can be seen at most time steps that an improvement is made with a small 

number of electrodes.  However, in the first image, which calculates the residual for the 

top panel in Fig. 16, deconvolution does not cause improvement.  This result is likely due 

to the fact that at this time step only a few points exhibit current in the true current 

density field.  This then means that when the deconvolved signal exhibits more current it 

has a larger effect upon MSR calculations.  In this instance, therefore, this calculation is 

not the best indication of improvements made through deconvolution.   

 Figure 17 furthers the results seen in Figure 16, demonstrating the utility of 

deconvolution with a more complex activation pattern, multi-wavelet reentry.  It is clear 

as this sequence of time steps is examined that deconvolution provides a signal much 

more similar to the true current density than that which is observed.  It is evident when 

sampled with a 30 x 30 array (a) that activation patterns seen in the true signal but which 

are not evident in the observed signal can be recovered through deconvolution.  Such a 

result can be seen when sampling with a 15 x 15 array (b) to a lesser degree.  By viewing 

a series of time steps a greater indication of the activation patterns can be seen when 

looking at the deconvolved estimate of the current density than when considering the 

observed potential field.  MSR calculations, shown in Figure 19, in most cases indicate 

an improvement.  Further, this improvement is seen with a small number of electrodes, 
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and clearly increases as the number of electrodes increases.  This correlates well with the 

result seen through the observations which were made when considering images of 

deconvolved signals.  However, the third panel of Figure 19 does not indicate an 

improvement through deconvolution.  This does not correlate to the result seen in the 

third panel of Fig. 17, which shows a clearly more similar deconvolved signal when 

compared to the true current density.  This result indicates that the MSR calculations may 

not be the best indicator of the improvements which can be made through deconvolution.  

At the low height used, consideration of both the simple rotor as well as multi-wavelet 

reentry indicates that with a small electrode array, less than 10 x 10, deconvolution can 

begin to provide an improved estimate of the true current density. It is evident, however, 

that this improvement is not as great with a more complex signal and for such an 

activation pattern using approximately a 15 x 15 array of electrodes would provide a 

more clear improvement through deconvolution. 

 Electrode height has a great effect on both the observed potential field as well as 

the deconvolved estimate of the current density.  Figure 20 shows the observed signal as 

height is increased.  It is quite obvious when looking at the three images that the signal 

becomes increasingly blurred as electrode height is increased, and no longer resembles 

the rotor which is being recorded.  Figure 21 demonstrates that as the observed signal 

becomes increasingly blurred the utility of deconvolution begins to decrease.  It is evident 

that with a greater electrode height the deconvolved signal is less similar to the true 

current density than with a lower height.  However, it is clear that, even at a height of 5, 

although less significantly, deconvolution is able to provide improved signal resolution.  

As shown in Figure 22 calculation of MSR values clearly indicates that if a very large 
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electrode height is used, deconvolution no longer causes improvements in signal 

resolution.  It is evident here that as electrode height is increased, improvements due to 

deconvolution begin to deteriorate as we observed in Figure 21.  With electrode heights 

of 1, 3, and 5, deconvolution continues to provide a signal more similar to the true current 

density than the observed signal, as was seen in Figure 21.  However, at a height of 10, 

deconvolution is no longer able to improve our estimate of the current density.  At such a 

great sensing height, even with a large number of electrodes, deconvolution no longer 

proves useful.  It is therefore evident that the sensing electrode must be at a height of 

approximately 5 or lower in order to allow deconvolution to prove useful. 

 Edge extension and windowing are important tools which often prove necessary 

when utilizing deconvolution through Fourier transforms [39].  Figure 15 shows that our 

use of a combination of windowing and edge extension cause the observed potential field 

to smoothly extend to zero while retaining much of its original shape.  The effects of 

these techniques are shown in Figure 23, which clearly demonstrates that prior to the use 

of this combination of methods (a, b) there is a large amount of noise in the deconvolved 

signal.  However, when the observed signal is both extended and windowed (c) 

deconvolution is able to provide a less noisy signal which is an improved estimate of the 

true current density field.  This improvement can be confirmed when considering MSR 

values seen in Figure 24.  These results, which show an improvement only when both 

edge extension and windowing are applied, confirm that these techniques are necessary in 

order to allow deconvolution to be a useful tool in providing an improved estimate of the 

true current density.   
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 It is can be seen that the reductions seen in MSR values due to deconvolution are 

of a small percentage and do not show a greatly significant change.  When considered 

alone, MSR reductions may therefore seem as if they are not practically significant.  

However, when considered in conjunction with images of deconvolved signals, the 

significance of the improvements due to deconvolution increases.  When a series of time 

steps of deconvolved signals are considered, it can be clearly seen that the deconvolved 

signal looks more similar to the true current density than what was observed.  If an 

experienced observer was to consider these images of the deconvolved signal, it is likely 

they would have a clear view of the activation pattern occurring in the tissue.  Although 

this is a result which can not be quantified and relies upon the observer, it is clear that 

when a series of images of the deconvolved signal is considered, an improvement can be 

seen through deconvolution.  This result could easily be applied in a practical way as 

observation of the deconvolved signal could be used to provide an improved view of the 

activation patterns of the heart during AF.  

 The results of this study of deconvolution provide a similar indication to those 

found by Chouvarda et al who also studied the utility of deconvolution in improving 

multi-electrode array electrogram recordings.  Similarly to our work, their study clearly 

found that with a sufficiently dense electrode array, using sensing electrodes a small 

distance from the tissue, deconvolution was able to provide improved signal resolution.   

Their study, however, did not consider the effect of electrode height upon the utility of 

deconvolution.  Further, they did not consider that the electrodes would record only a 

partial version of the potential field, and so did not make use of windowing or edge 

extension [11].  Our work expands on the ideas exhibited Chouvarda et al by including 
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considerations of the impact of electrode height as well as the impact of sampling a 

partial version of the potential field.  This therefore allows the results of the current study 

to have a more widespread application, and further emphasizes the utility of 

deconvolution in improving the observed potential field. 

 It is evident that this study of the utility of deconvolution is limited by a number 

of assumptions which were made.  By using simulated data from a cellular automaton 

model of atrial activation patterns, we have used assumptions which were made in this 

model by Spector et al [43].  Further, we assume that we are using arrays of point 

electrodes at known heights.  If this technique was applied to recordings taken from atrial 

tissue, the electrodes would have diameter which could influence the impacts of 

deconvolution.  Further, the exact electrode height would likely not be known when 

mapping the atria as is assumed in this study.  Finally, we make an assumption that the 

tissue can be considered to be two dimensional which may not apply to many situations 

of actual mapping of activation patterns in the atria.   

Although limited in this sense, this study has indicated that using an electrode 

array of approximately 10 x 10 electrodes or greater sensing at a height of approximately 

5 or less, deconvolution is able to provide an improved estimate of the true current 

density.  The use of these techniques would allow for a greater ability for the 

electrophysiologist to map the electrical activity of the atria during AF, which could lead 

to a better use of catheter ablation.   

 In order to further this study, it will be necessary consider the limitations that are 

seen in the present study.  Because we are currently considering point electrodes, it will 

be important to consider the effects that electrode diameter has on both the observed 
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signal as well as the utility of deconvolution.  Further, if one was performing a mapping 

procedure it is unlikely they would know the exact height of the sensing electrode 

causing study upon the effect of the electrode height being unknown is necessary.  We 

have briefly considered the impact of using a varied electrode height upon the 

deconvolved signal and have found that this issue can likely be overcome.  However, this 

needs to be considered in a greater sense and quantified in order to have a clear 

understanding of the practical utility of this procedure.  Furthermore, analyzing the utility 

of deconvolution in three dimensions would provide a greater understanding of the ability 

to use this technique in a clinical setting.  To further this understanding, simulating the 

ablation pattern which our deconvolved signal implicates upon the simulated current 

density field would give an indication of the efficacy of this method in providing 

improved ablation techniques.  Finally, an experimental application of deconvolution 

upon an observed potential field in an animal model would be a necessary final step. This 

application would allow us to not only use deconvolution to improve signal resolution, 

but also allow for our result to be used in order to determine an ablation pattern which 

could be used.  Such applications would clearly indicate the use of this technique in 

improving ablation procedures and terminating AF. 
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Chapter Five: Conclusions 
 
 In this study we have evaluated the utility of deconvolution in providing an 

improved estimate of the current density field which occurs in atrial tissue during AF.  

Through the use of simulated recordings of atrial activation, we have made use of 

deconvolution in order to estimate the true current density in both one and two 

dimensions.  The simulation of increasingly complex activation patterns has allowed us 

to gain insight into the power of deconvolution in providing a signal which is more 

similar to the current density field occurring within the tissue than what is observed by an 

array of sensing electrodes.  It is apparent that under specified circumstances 

deconvolution proves a useful tool in providing an improved estimate of atrial activation 

patterns.   

 The observations made through our study indicate that our use of edge extension 

techniques provides a significantly improved signal when we use deconvolution upon a 

partial version of the potential field.  Because an electrode array would not cover the 

entire extent of the atrial tissue and would record a truncated version of the potential 

field, it is evident that the use of these techniques is necessary in order to employ 

deconvolution.  Further, when utilizing these techniques, our results point towards a need 

to use an approximately 10 x 10 or greater array of electrodes at a relatively low sensing 

height.  It is clear that by increasing this array size a greater improvement in signal 

resolution can be obtained through the use of deconvolution.  When mapping a more 

complex activation pattern, it is likely that using a 10 x 10 electrode array will provide a 

relatively small improvement while using a 15 x 15 array would provide a more 

significantly improved signal resolution and allow a clear view of the excitation pattern 
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of the atrial tissue, implicating a need to consider the use of this larger array size.  Such 

application of deconvolution to the electric potential which is recorded through 

simultaneous intra-atrial mapping could provide the insight necessary to allow for 

individualized ablation plans for patients being treated for AF.  This would allow for 

increased success rates in eliminating the arrhythmia through ablation procedures which 

would in turn reduce medical issues for an increasing number of patients suffering from 

AF. 

 In future work, the practical limitations which are not currently considered need 

to be studied. The impact of electrode diameter upon the observed signal and its impact 

on the utility of deconvolution must be considered.  Further, it is important to consider 

recordings made at an imprecise electrode height and improvements which can be made 

through deconvolution in such a situation.  Finally this problem needs to be considered in 

three dimensions and eventually upon actual electric potential recordings made from an 

animal model in order to provide a clear indication of the practical utility this technique 

of resolution enhancement. 
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Appendices 

A. One Dimensional Deconvolution Code 
  
 This code is used to perform deconvolution in one dimension.  The electrode 
height and number of electrodes can be changed in order to simulate varied mapping 
conditions in order to obtain an indication of the utility of deconvolution in each instance. 
 
 
N = 900;                                                % size of space 
H = 1;                                                  % height 
E = 100;                                         % number of electrodes 
  
Cs = CS8(500:650); 
  
F = zeros (N+3100,1);                                   % true signal 
for J = 925:1075; 
    F(925:1075) = Cs; 
end 
  
G = zeros(N+3100,1);                            % point spread function 
for J = 1:N+1100 
    G(J) = 1/(sqrt((J-900)^2 + (H^2))); 
end 
  
W = trapz(G); 
G = G./W; 
  
I = conv(F,G);                                          % convolved 
function 
  
IS = zeros (N+3100,1); 
for J = 1:N+800; 
    IS(J) = I(J+900); 
end 
  
figure; 
plot (G); 
hold all 
plot (F,'m'); 
plot (IS,'k'); 
legend('Point Spread Function','True Signal','Convolved 
Signal','Location','NorthEast')  
title ('Convolved'); 
  
  
%calculating electrode locations 
T = zeros (1,E+1);                                    % (N/E)*K 
for K = 1:E; 
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    T(K) = ((N+3100)/E)*K;                          % electrode 
positions 
end 
  
R = zeros (E+1,1);                                  % calculating 
I((N/E)*K) 
for K = 1:E; 
    R(K) =I(ceil(T(K)));   
end 
  
%calculating cubic spline  
x = ceil(T); 
y = R; 
cs = spline(x,y); 
a = ppval(cs,1:4000); 
a1= a'; 
  
figure; 
  
plot (I, 'k'); 
hold on, 
plot(x,y,'o'), 
plot (a1,'m'); 
  
legend ('Convolved','Electrodes','Cubic Spline') 
title ('Electrode Locations'); 
  
%calculating FFTs 
for J = 1000 
   G(J) = 1.3*G(J); 
end 
  
GT = fft(G);                                        % fft point spread 
IT = fft(I(1:4000));                                % fft convolved 
AT = fft(a1);                                       % fft spline 
           
%deconvolving using FFT 
  
FT =AT./GT; 
F6 = ifft(FT);                                      % deconvolved 
signal 
  
figure; 
plot (F,'k'); 
hold all 
plot (F6,'b'); 
plot (IS, 'm'); 
legend ('True Signal','Deconvolved Signal','Convolved 
Signal','Location','NorthEast') 
  
%Calculating Mean Squared Residuals 
scaleF6 = lscov(F6,F); 
scaleI = lscov(IS,F); 
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F62 = F6 * scaleF6; 
IS2 = IS * scaleI; 
  
figure; 
plot (F,'k'); 
hold all; 
plot (F62,'b'); 
plot (IS2,'m'); 
legend ('True Signal','Scaled Deconvolved Signal', 'Scaled Convolved 
Signal'); 
  
MSRF = zeros (N+3100,1);                            % mean squared 
residual deconvolved 
for J = 1:N+3100; 
    MSRF(J) = MSRF(J) + ((F(J) - (F62(J)))^2); 
end 
  
MSRI = zeros (N+3100,1);                            % mean squared 
residual convolved 
for J = 1:N+3100; 
MSRI(J) = MSRI(J) + ((F(J) - (IS2(J)))^2); 
end 
  
figure; 
hold all; 
plot (MSRI, 'b'); 
plot (MSRF, 'k'); 
title ('Residuals'); 
legend ('Residual Convolved Signal', 'Residual Deconvolved 
Signal','Location','NorthEast'); 
  
ValueI = sum (MSRI(1:4000)); 
ValueF = sum (MSRF(1:4000)); 
  
%calculating electrode spacing 
si = length(I); 
space = ceil(4000/E); 
  
%printing values 
fprintf('Electrode Spacing = %g\n', space); 
fprintf('Height = %g\n',H); 
fprintf ('Number of Electrodes = %g\n', E); 
fprintf('MSR of Convolved: %g\n', ValueI); 
fprintf('MSR of Deconvolved: %g\n', ValueF); 
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B. Two Dimensional Deconvolution Code 
 

 This code is used to perform deconvolution in two dimensions using a current 
density field which is loaded from simulations with the cellular automata model.  The 
user is able to vary electrode height and number of electrodes at a chosen time step in 
order to simulate varied mapping conditions.  This provides an indication of the utility of 
deconvolution in each instance.   
 
 
%2 D deconvolution 
 
close all; 
clear all; 
  
%variables that are changed 
%electrode height 
H = 2;     
  
% number electrodes (array size is ExE) 
E =30;   
  
%time step 
 ts =1420; 
 ts2 = ts+1; 
  
%truncation of convolved signal (amount mult by pt spread fcn) 
%(this is the amount of convolved signal not being seen by electrodes) 
 trunc = .4; 
                                           
% load true signal 
load data5.mat;   
  
n = 50; 
% true signal defined as F 
F =rotor(((ts-1)*n)+1:(ts*n),2:51);    
Fnext = rotor(((ts2-1)*n)+1:(ts2*n),2:51); 
  
Fdiff = Fnext-F; 
 
  
t1 = trapz(Fdiff); 
s1 = sum(t1); 
f = Fdiff; 
[sF,ssF] = size(Fdiff); 
  
 figure; 
 surf(f); 
 colormap(hsv); 
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 title('true signal','LineStyle','none'); 
 shading interp 
 
% creating point spread function 
[J,K]= meshgrid(-sF/2:1:sF/2,-ssF/2:1:ssF/2);     
G = (sqrt((J.^2) +(K.^2) + (H.^2))).^-1;                      
  
 
%convolving F and G 
I = conv2(Fdiff,G); 
t2 = trapz(I); 
s2 = sum(t2); 
i = I/s2;  
  
%cutting off to consider part of full convolved signal 
cutoff = ceil(trunc*length(G)); 
sI = length(I); 
II = I(cutoff:sI-cutoff,cutoff:sI-cutoff); 
  
t2 = trapz(II); 
s2 = sum(t2); 
ii = II/s2;                                                     
ii = II; 
 
%convolved signal same size as true signal 
If = conv2(Fdiff,G,'same'); 
t4 = trapz(If); 
s4 = sum(t4); 
iF = If/s4; 
  
figure; 
surf(ii); 
colormap(hsv); 
title('truncated convolved signal'); 
  
[si2,ssi2] = size(ii); 
  
% electrode locations 
T = ceil(si2/E); 
T2 = ceil(ssi2/E); 
  
[A,B]= meshgrid(1:T2:ssi2,1:T:si2); 
  
R =ii(1:T:si2,1:T2:ssi2); 
  
% plot  of electrode locations 
  
figure; 
mesh (A,B,R); 
colormap(hsv); 
beta = -.5; 
brighten(beta); 
title ('electrode locations'); 
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[A1,A2] = size(A); 
a = A(A1,A2); 
  
%spline interpolation between electrode locations 
C = (1:a); 
D = (1:a); 
I2 = interp2 (A,B,R,C,D','spline'); 
  
%cos with square top window idea 
p = .5; 
[si,ssi] = size(I2); 
[sg, ssg] = size(G); 
sCos = 2*ceil(p*sg); 
sCos2 =2*ceil(p*ssg); 
  
[x,y]= meshgrid(-sCos/2:1:sCos/2,-sCos2/2:1:sCos2/2); 
r = sqrt(x.^2+y.^2); 
  
Cos =.5*(1+ cos(r*2*pi/sCos2)); 
Cos(r>(sCos2/2)) = 0;  
  
[sC,ssC] = size(Cos); 
half1 = ceil(sC/2); 
half2 = ceil(ssC/2); 
  
corner1 = Cos (1:half1,1:half2); 
corner2 = Cos (1:half1, half2:ssC); 
corner3 = Cos(half1:sC,1:half2); 
corner4 = Cos(half1:sC,half2:ssC); 
middle = ones (si-ceil(p*sg),ssi-ceil(p*sg)); 
sm = size(middle)-1; 
  
side1 = Cos(half1-1:half1,1:half2); 
side2 = Cos(half1-1:half1,half2:ssC); 
side3 = Cos(1:half1, half2-1:half2); 
side4 = Cos(half1:sC, half1-1:half1); 
  
  
for n = half2-1:half2+sm+1; 
x4 =  half1+sm:sC+sm; 
y4 = n:n+1; 
mult(x4,y4) = side4; 
end 
  
for n = half1-1:half1+sm+1; 
x2 =  n:n+1; 
y2 = half2+sm:ssC+sm; 
mult(x2,y2) = side2; 
end 
  
for n = half1-1:half1+sm-1; 
x1 =  n:n+1; 
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y1 = 1:half2; 
mult(x1,y1) = side1; 
end 
  
for n = half2-1:half2+sm-1; 
x3 =  1:half1; 
y3 = n:n+1; 
mult(x3,y3) = side3; 
end 
  
mult(1:half1,1:half2) = corner1; 
mult(1:half1,half2+sm:ssC+sm) = corner2; 
mult(half1+sm:sC+sm,1:half2) = corner3; 
mult(half1+sm:sC+sm, half2+sm:ssC+sm) = corner4; 
mult(half1:(half1+sm),half2:(half2+sm))= middle; 
  
figure;  
surf (mult,'LineStyle','none'); 
shading interp 
title ('window function'); 
  
%extending truncated convolved signal 
  
l = ceil(.5*(length(mult)-length(I2))); 
I2ext = wextend(2, 'spd', I2,l); 
  
 figure; 
 subplot (3,3,[1,4,7]); 
 surf(I2,'LineStyle','none'); 
 colormap(hsv); 
 shading interp 
 title('truncated convolved signal'); 
 subplot (3,3,[2,5,8]); 
 surf (I2ext,'LineStyle','none'); 
 shading interp 
 title ('convolved signal extended'); 
  
[sm1,sm2] = size(mult); 
 
%multiply extended signal by window 
if length(mult)==length(I2ext) 
I2extwin = mult.*I2ext; 
else I2extwin = mult.*I2ext(1:sm1,1:sm2); 
end 
%  
 subplot (3,3,[3,6,9]) 
 surf(I2extwin,'LineStyle','none'); 
 shading interp 
 title('mult by window'); 
  
[sI2,sI22] = size(I2extwin); 
[sG,sG2] = size(G); 
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%begin deconvolution 
  
G(25,25) = 2.5*G(25,25); 
  
IT = fft2(I2extwin); 
GT = fft2(G,sI2,sI22); 
FT = IT./GT; 
f2 = ifftn(FT); 
  
 
%fixing shift 
window = p/2; 
shifted =  ceil((window-trunc)*sG); 
[sf2,ssf2] = size(f2); 
  
if shifted > 1 
f3=f2(shifted+2:sF+shifted+2, shifted+2:sF+shifted+2); 
else if shifted == 0; 
        f3 = f2; 
else 
    f3(1:abs(shifted)-1, abs(shifted):sF+abs(shifted)-1)= 
f2(sf2+shifted+2:sf2, 1:sF); 
    f3(abs(shifted):sF+abs(shifted)-1, 1:abs(shifted)-1)= f2(1:sF, 
ssf2+shifted+2:ssf2); 
    f3(1:abs(shifted)-1,1:abs(shifted)-1)=f2(sf2+shifted+2:sf2, 
ssf2+shifted+2:ssf2); 
    f3(abs(shifted):sF+abs(shifted)-1,abs(shifted):sF+abs(shifted)-1) = 
f2(1:sF,1:sF); 
    end 
end 
  
t3 = trapz(f3); 
s3 = sum(t3); 
  
f3 = f3/s3; 
  
 figure; 
 surf(f3); 
 colormap(hsv); 
 title('deconvolved signal'); 
  
f3 = f3(1:sF,1:ssF); 
  
 
%plot of true, convolved, deconvolved signals 
  
figure; 
subplot (3,3,[1,4,7],'replace'); 
imagesc(f) 
axis tight 
title('true signal','LineStyle','none'); 
shading interp 
set (gca, 'nextplot', 'replacechildren'); 
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subplot (3,3,[2,5,8],'replace'); 
imagesc(I2) 
axis tight 
title('observed signal','LineStyle','none'); 
shading interp 
  
subplot (3,3,[3,6,9],'replace'); 
imagesc(f3); 
axis tight 
title ('deconvolved signal','LineStyle','none'); 
shading interp 
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