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ABSTRACT 
 

 
Multiple Sclerosis (MS) is a demyelinating disorder of the central nervous 

system affecting 0.1% of the population in the Northern hemisphere. MS is a complex 
disease that depends on genetic and environmental factors and is controlled by multiple 
genes that exert a modest effect in the overall disease outcome. The complex nature of 
the disease complicates the study of individual genes and their contribution in the 
disease process. 

To investigate mechanisms underlying the development of diseases like MS and 
how disease course can be manipulated, animal models have been extensively used, 
with Experimental Allergic Encephalomyelitis (EAE) being the principle autoimmune 
model for MS. Even though EAE, like MS, is a complex disease and polygenic in 
nature, it can be reduced to monogenic intermediate or subphenotypes, which allows 
for identification of the causative gene and its mechanism.  

One such subphenotype of EAE in mice, Bordetella pertussis toxin-induced 
histamine sensitization (Bphs) is controlled by Hrh1, gene encoding mouse histamine 
receptor H1 (H1R), wherein sensitized animals of susceptible strains die upon histamine 
challenge and resistant strains do not. Moreover, mice deficient in H1R (H1RKO) show 
delayed onset and reduced severity in the clinical course of EAE. However, the 
mechanism by which H1R and its polymorphisms regulate EAE is unknown.  

As a disease susceptibility gene, Hrh1 could act in different cell types and at 
several checkpoints in the disease process. This includes endothelial cells that regulate 
blood-brain barrier, antigen presenting cells or T cells, which regulate the cytokine 
production. Using transgenic mice expressing H1R exclusively in T cells, this study 
shows that H1R expression in T cells is sufficient to restore the EAE severity and the 
disease associated cytokine production of H1RKO mice to wild type levels.  

H1R from susceptible and resistant strains of mice differ by three amino acids. 
The P-V-P haplotype (H1RS) is associated with disease susceptibility whereas the L-M-
S (H1RR) haplotype is associated with less severe disease. In this study, using 
transgenic mice, we show that reexpression of H1RS fully complements the clinical 
EAE and the disease-associated cytokine production of H1RKO mice to wild type 
levels, however, reexpression of H1RR fails to do so. These data suggest that H1RR is 
not functional relative to H1RS. Mechanistically, using 293T cells, we show that the two 
H1R alleles exhibit differential cell surface expression and altered intracellular 
trafficking, with the H1RR allele being retained within the endoplasmic reticulum (ER). 
Moreover, we show that all three residues (L-M-S) comprising the H1RR haplotype are 
required for altered expression. Thus, polymorphisms influencing cell surface 
expression of H1R regulate immune functions and autoimmune disease susceptibility. 
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CHAPTER 1: COMPREHENSIVE LITERATURE REVIEW  

Multiple Sclerosis 

Multiple Sclerosis (MS), a prototypic demyelinating inflammatory disease of 

the central nervous system (CNS) (Hafler, 2004), has been the most common 

neurological disorder in young adults since it was first noted by Jean Martin Charcoat 

in 1868 (Greenstein, 2007). More than 2.5 million people have been affected 

worldwide, with 350,000 individuals in the United States (US). The estimated 

prevalence rate in the year 2000, for the US Caucasian population was 1.91 per 1000 

with an incidence rate of 7.3 per 100,000 (Berger et al., 2003). MS creates an 

economical burden to the individual, the health care system and the society. In 1994, 

the annual cost of MS in terms of direct care and loss of productivity in the US was 

estimated to be $34,000/ patient with a mean life-time cost of $2.2 million. This 

translates to a national cost of $6.8 billion/year. MS is more common in females than in 

males (~ 2:1); however, affected men generally have a delayed onset with worse 

prognosis (Kantarci and Wingerchuk, 2006).  

A remarkable heterogeneity is seen in clinical MS with multiple forms 

identified: (i) relapsing-remitting MS, observed in 85-90% of patients, with full or 

partial recovery between relapses, with most developing into (ii) secondary progressive 

MS with progressive clinical deterioration and, (iii) primary progressive MS with 

neurological dysfunction from the onset without any clinical relapses (Hafler, 2004; 

Holmoy and Vartdal, 2007). The symptoms vary depending on the component of the 

CNS involved, brain or spinal cord, and include motor, sensory, autonomic and 

cognitive disabilities. About 50% of MS patients become dependent on a walking 
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aid by year 15 of the disease (Kantarci and Wingerchuk, 2006; Weinshenker et al., 

1989).  

Etiology of MS 

One hundred and fifty years after its discovery, the etiology of MS is still 

unknown; however, genetic (Mackay and Myrianthopoulos, 1966; Sadovnick et al., 

1988) as well as environmental factors (Dean et al., 1976; Kurtzke and Hyllested, 1987) 

have been implicated in its susceptibility. Considered to be a complex disease with 

multiple disease-susceptibility genes, MS lacks a clear pattern of inheritance. Hence it 

is believed that the disease is triggered by some kind of environmental factor in 

genetically susceptible individuals (Comabella and Martin, 2007; Hafler et al., 2005).  

The support for the influence of genetic factors include: a 20-40 times greater 

risk in siblings and fraternal twins of patients, a 150-300 times greater risk in identical 

twins of patients and a lack of increased risk in adopted-relatives of patients (Allen et 

al., 1994; Ebers, 2005; Ebers et al., 1995; Hafler et al., 2005; Jersild et al., 1973; 

Kurtzke et al., 1982; Mackay and Myrianthopoulos, 1966; Risch and Merikangas, 

1996). Familial studies have suggested that even phenotypic heterogeneity of MS has a 

genetic basis with greater similarity of clinical course in patients who are relatives 

(Kantarci et al., 2002).  

The support for the involvement of environmental factors in MS include: non-

infectious factors such as geography and migration, with lower MS risk among 

individuals migrating from high-risk to low-risk areas (Alter et al., 1978; Alter et al., 

1966; Dean, 1967; Hammond et al., 2000; Kurtzke et al., 1985; Kurtzke et al., 1970); 

latitude gradient, with 3% higher risk in individuals born in the north (420 N and 
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above) than individuals born in the south latitude (370 N and below) (Hernan et al., 

1999); exposure to sunlight; circulating levels of vitamin D, with low levels being 

associated to higher risk (Ascherio and Munger, 2007; Munger et al., 2004; Soilu-

Hanninen et al., 2005; Soilu-Hanninen et al., 2007); and an incomplete concordance in 

monozygotic twins (Ebers, 2005; Weinshenker, 1996).  

An infectious etiology with a variety of viral and bacterial agents associated 

with increased risk has been proposed, with Epstein-Barr virus (EBV) infection the 

most consistent and strongest risk factor (Ascherio and Munger, 2007; Coo and 

Aronson, 2004; Kurtzke, 1968, 1993; Marrie, 2004; Thacker et al., 2006). This multi-

factorial etiology triggers a disease in MS patients characterized, neuropathologically, 

by discrete lesions (or plaques) mostly in the white matter of the CNS tissue, causing 

inflammatory infiltrates, demyelination, astrocytic proliferation (astrogliosis) and 

axonal damage. It is widely believed that the inflammatory infiltrates are 

pathogenically the primary factors and that MS is an autoimmune disease with an 

immune attack against myelin proteins (McFarland and Martin, 2007). 

Myelin structure and functions 

The myelin sheath is a multilamellar membrane, uniquely found and essential to 

the functioning of the vertebrate nervous system (Tzakos et al., 2005). In the CNS, the 

myelin sheath is formed by the wrapping of plasma membrane extensions of 

oligodendrocytes, specialized glial cells, in highly regular concentric layers around the 

axons. These concentric layers are practically fused together with very little or no 

cytoplasm (Kursula, 2006). High-resolution electron microscopic studies of myelin 

sheath have demonstrated periodic electron-dense and -light layers. Dense 
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layers, spaced between 150-170 A0 apart, are formed by the apposition of the 

cytoplasmic surfaces of the plasma membrane extensions of the oligodendrocytes. The 

light layers, also known as intraperiodic lines, are formed by the apposition of the 

extracellular surfaces of the plasma membrane (Baumann and Pham-Dinh, 2001). The 

thickness of the myelin sheath varies with the length of the axon, with longer axons 

having thicker myelin (Waxman and Sims, 1984). The longitudinal organization of the 

myelin sheath is also unique, with three distinct anatomical and functional domains 

(Porter and Tennekoon, 2000).  

The myelin sheath is segmented, forming internodes of about 150-200 μm 

length (Butt and Ransom, 1989). The internodes are separated by spaces where myelin 

is lacking and the axolemma is exposed to the extracellular milieu. These are called 

nodes of Ranvier and are enriched in voltage gated sodium channels (120,000/μm2, the 

highest density in the nervous system) (Baumann and Pham-Dinh, 2001). Each 

successive myelin wrap, at its lateral margins, creates a loop containing some 

cytoplasm, called paranodal loops or paranodes (Porter and Tennekoon, 2000). The 

junction of paranodal loops with axons, known as juxtaparanodal region, is rich in 

potassium channels and thus segregates them from the voltage gated sodium channels 

in the nodes of Ranvier (Porter and Tennekoon, 2000; Rios et al., 2003). This 

organization is important for the normal conduction of electrical impulses along the 

axons (Kursula, 2006). Myelination alters the electrical properties of the axons because 

the myelin sheath has high resistance and low capacitance (Tolhurst and Lewis, 1992). 

Therefore, once an action potential is generated at one node of Ranvier, it flows down 

the axon quickly to the next node rather than leak back across the membrane. Thus, an 
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electrical impulse jumps from one node to the next node, a method of propagation 

known as saltatory conduction (Baumann and Pham-Dinh, 2001; Salzer, 2002). Myelin 

is very effective in increasing conduction velocity. An axon of about 1-5 μm in 

diameter can propagate an electrical impulse at about 20 meters per second if it is 

myelinated, while a non-myelinated axon needs to be 500-1000 μm thick in order to 

propagate an electrical impulse at the same rate (Hall, 1992).  

Myelin constitutes about 40-50% of the CNS white matter on dry weight basis 

(Tzakos et al., 2005). It is a poorly hydrated structure containing about 40% water in 

contrast to the highly hydrated (80%) grey matter. Like all other cell membranes, it is 

composed of a lipid bilayer with intercalated proteins. However, in contrast to the other 

cell membranes, it is uniquely made of lipids (70% of the dry weight). The lipids are 

composed of cholesterol, phospholipids and glycolipids, with an enrichment of 

glycosphingolipids (Baumann and Pham-Dinh, 2001; Porter and Tennekoon, 2000). 

The low water content and lipid-rich composition of myelin contributes to its insulating 

properties and favor rapid nerve conduction velocity. When the myelin is damaged by 

diseases or when it is not formed due to genetic defects, it results in serious 

neurological conditions, including motor and sensory deficits (Porter and Tennekoon, 

2000).  

The myelin proteins, comprising the remainder 30% of the myelin dry weight, 

consist of a restricted set of proteins (Kursula, 2006). Most of these proteins are 

exclusively found in myelin and oligodendrocytes and are important in myelination 

and/or maintenance of myelin architecture (Tzakos et al., 2005). Myelin basic protein 

(MBP) is one of the most abundant proteins, constituting 30% of the total myelin 
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proteins, and is present at the cytoplasmic surfaces of the myelin membranes (Baumann 

and Pham-Dinh, 2001). MBP is essential for myelin compaction (Campagnoni and 

Macklin, 1988). Mutant mice, with a large deletion of the MBP gene (shiverer mice), 

lack the major dense line of myelin (Privat et al., 1979; Roach et al., 1985).  

Proteolipid protein (PLP) and its splice variant, DM20, are the most abundant 

myelin proteins, constituting 50% of the total myelin proteins (Kursula, 2006). The 

absence of PLP/DM20 leads to a loosely wrapped myelin sheath and loss of 

intraperiodic lines, correlating with reduced physical stability (Boison et al., 1995). 

Therefore, PLP, along with MBP, is believed to cement the myelin sheath, like a 

zipper, by forming membrane junctions after myelin compaction (Boison et al., 1995; 

Klugmann et al., 1997) Further, the absence of PLP/DM20 leads to axonal damage and 

axonal degeneration, indicating that myelin plays a pivotal role in maintaining axonal 

integrity and function (Baumann and Pham-Dinh, 2001; Boison et al., 1995).  

Myelin oligodendrocyte glycoprotein (MOG) is a minor myelin protein and is 

present on the outermost lamellae of the myelin sheath and is present in 

oligodendrocyetes, particularly on the processes (Tzakos et al., 2005). MOG is a 

surface marker for oligodendrocyte maturation and its presence correlates with late 

stages of maturation (Baumann and Pham-Dinh, 2001; Solly et al., 1996). The amino 

acid sequence of MOG is highly conserved among animal species, suggesting an 

important biological function (Tzakos et al., 2005) in the completion, compaction 

and/or maintenance of myelin (Johns and Bernard, 1999).  

Myelin associated glycoprotein (MAG) is another minor glycoprotein important 

in myelin compaction (Tzakos et al., 2005). Absence of MAG leads to increased 
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cytoplasm content between lamellae and lower number of myelin wraps (Li et al., 1994; 

Montag et al., 1994). Other myelin proteins include connexin32, a gap junction protein, 

and 2’3’-cyclic nucleotide-3’-phosphodiesterase (CNPase) found in the cytoplasm of 

paranodes (Tzakos et al., 2005). 

Immunology of MS 

MS is considered to be a coordinated immunological attack against myelin 

proteins in the CNS (Ferber et al., 1996). A large body of literature provides evidence 

that the immune system is involved in the disease process (McFarland and Martin, 2007). 

Even though specific self-antigen(s) has not been definitively demonstrated, it is 

generally accepted that CD4 T cells reactive to major constituents of the myelin sheath, 

MBP (Berger et al., 2003; Bielekova et al., 2000; Bielekova et al., 2004), PLP (Bielekova 

et al., 2004) and MOG (Genain et al., 1999; Olsson et al., 1992; Soderstrom et al., 1993) 

mediate the autoimmune pathology of the disease. Myelin-specific T cells are easily 

detected in normal individuals (Sospedra and Martin, 2005). The triggers that cause these 

cells to attack myelin are largely unknown.  

A role of infectious agents has long been proposed to break the tolerance to 

myelin components in genetically susceptible individuals through molecular mimicry and 

bystander activation (Fujinami and Oldstone, 1985) (Lang et al., 2002; Tejada-Simon et 

al., 2003; Wucherpfennig and Strominger, 1995) (Anthony et al., 1997; Waldner et al., 

2004). Environmental factors, described earlier, are also considered to trigger the 

activation of autoreactive CD4 T cells in genetically susceptible individuals. In this 

regard, histamine elicited by environmental factors or generated during an ongoing 

infection could act as a mediator of such a disease-inducing trigger. The myelin-
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reactive CD4 T cells penetrate CNS through the blood-brain barrier (BBB), formed by 

specialized endothelial cells that are connected through tight junctions (Minagar and 

Alexander, 2003).These endothelial cells are typically ensheathed by basal lamina and 

astrocytic end-feet processes (Kim et al., 2006) 

Astrocytes are the most abundant glial cells in CNS (Minagar et al., 2002).  They 

are critical for the development, structural support and the maintenance of BBB. In co-

culture systems, astrocytes upregulate the several proteins of tight junction structure that 

connects the endothelial cells (Dehouck et al., 1990; Rubin et al., 1991). The BBB 

endothelial cells exhibit an apical or luminal polarization of transporters like p-

glycoprotein, glucose transporter 1 (GLUT1), thus forming a transport barrier (Abbott et 

al., 2006). Astrocytes up-regulate the expression and the polarized localization of these 

transporters (Kim et al., 2006). BBB also acts as a metabolic barrier and astrocytes 

upregulate several of the BBB-specific enzymes such as monoamine oxidase, superoxide 

dismutase, that support the protective and detoxifying roles of BBB (Haseloff et al., 

2005). The perivascular end-feet of the astrocytes are highly specialized with high 

density of orthogonal array of particles containing the water channel aquaporin 4 and the 

potassium channel Kir4.1. The polarity of these proteins, which are anchored to the basal 

lamina through a proteoglycan protein called agarin, contributes to the integrity of BBB 

(Minagar et al., 2002). Moreover, astrocytes secrete several factors such as basic 

fibroblast growth factor, glial-derived neurotrophic factor, angiopoetin 1 and  TGFβ, that 

induce several aspects of BBB (Kim et al., 2006).   

The entry of T cells into the CNS is a multistep process involving the induction 

of adhesion molecules such as vascular cell adhesion molecule (VCAM) on the 
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endothelial cells, mostly by cytokines including IFN-γ, TNF-α and IL-23 released 

during the inflammatory process. The interaction of these adhesion molecules with their 

binding partners, such as VLA-4, on the surface of activated CD4 T cells allows the 

CD4 T cells to adhere to the endothelial cells and diapedese into the CNS (Brocke et 

al., 1993; Butcher et al., 1999). Matrix metalloproteases (MMP), particularly MMP-2 

and -9, surround the inflamed BBB endothelial cells and degrade the basal membrane 

as well as the extracellular matrix of parenchyma, thus enabling the T cells to spread in 

the CNS (Anthony et al., 1997; Clements et al., 1997; Lindberg et al., 2001; Pedotti et 

al., 2003).  

After gaining access to the white matter, the CD4 T cells re-encounter the 

myelin antigens presented to them by the resident antigen presenting cells (APCs), 

particularly microglial cells (Minagar et al., 2002). Activated T cells produce several 

cytokines, which in turn activate more APCs and thus set up a pro-inflammatory loop 

that provides an infiltrate rich in activated T cells, macrophages and other cells of 

hematopoietic origin such as B cells and mast cells. The activated macrophages attack 

myelin and phagocytose large chunks of the myelin sheath (Ferber et al., 1996; 

Sospedra and Martin, 2005) and produce toxic materials such as nitric oxide (Brenner 

et al., 1997; Conlon et al., 1999). There is a myelin-directed cytotoxic T cell response, 

an auto-antibody response and an activation of the complement cascade (Compston et 

al., 1986; Keegan et al., 2005; Lalive et al., 2006; Laurell and Link, 1972; Lucchinetti 

et al., 1996; Morgan et al., 1984).  

This concerted attack of T and B cells, complement cascade, inflammatory 

mediators including cytokines and nitric oxide on the myelin sheath results in areas 



 

10

of severe demyelination. In addition, there is loss of myelin-producing oligodendroglial 

cells, an increase in the number of fibrous scar tissue-forming astrocytes, and 

permanent axonal damage (Conlon et al., 1999; Sospedra and Martin, 2005; Trapp et 

al., 1998), thus resulting in the pathophysiological defects observed in the affected 

individual.  

The cytokine-producing phenotype of myelin-specific T cells determines the 

ability of these cells to cause inflammation in the CNS. Organ-specific autoimmune 

diseases such as MS are thought to be primarily mediated by Th1 type of CD4 T cells. 

These cells are differentiated in the presence of interleukin (IL)-12 and are 

characterized by the production of large amounts of IFN-γ, TNF-α and IL-2 (Ferber et 

al., 1996; McFarland and Martin, 2007; Sospedra and Martin, 2005). Increased levels of 

IFN-γ, TNF-α in the serum (Hohnoki et al., 1998) and of IL-12 in cerebrospinal fluid 

(CSF) (Dormond et al., 2002) of MS patients have been observed. However, these 

cytokines worsened the disease upon systemic administration (Panitch et al., 1987; 

Sharief and Hentges, 1991). The disease-enhancing effect of these cytokines has been 

associated with their ability to enhance the expression of adhesion molecules on the 

vascular endothelium (Ferber et al., 1996). Recently, IL-17 and IL-23 are being 

considered to be the important proinflammatory cytokines in autoimmune diseases 

(McFarland and Martin, 2007). Accordingly, an augmentation of IL-17 mRNA in 

mononuclear cells of CSF and in brain tissues of MS patients is observed (Dormond et 

al., 2002; Matusevicius et al., 1999). IL-23 is present in both active and chronic lesions 

(Lundmark et al., 2007). Myeloid dendritic cells from MS patients express higher IL-23 

than those from normal individuals (Vaknin-Dembinsky et al., 2006). All 
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these proinflammatory cytokines, in addition to orchestrating the inflammation, play an 

important role in the demyelination process by activating phagocytic cells and by 

inducing apoptosis of myelin producing cells, which lead to impaired saltatory 

conduction along the axon and pathological effects (Pouly et al., 2000; Selmaj et al., 

1991).  

Genetics of MS 

 The evidence for genetic factors in MS susceptibility is compelling. Several 

approaches including genetic linkage, candidate gene association and gene expression 

studies have been used (Becanovic et al., 2004; Fernald et al., 2005). However, all have 

failed to demonstrate a clear mode of inheritance in the disease. Consequently, it has been 

concluded that MS is polygenic and affected by multiple genes, each exerting a modest 

effect in the overall disease outcome (Sawcer, 2006). The most consistent association has 

been with the major histocompatibility complex (MHC) class II or human leukocyte 

antigen (HLA), specifically HLA-DRB1*1501-DQB1*0602 haplotypes located on 

chromosome 6 (Hafler et al., 2007; Haines et al., 1996; Haines et al., 1998). In spite of its 

strong linkage, HLA association explains only about 50% of the genetic etiology of MS 

(Ebers and Sadovnick, 1994). Evidence for additional linkages to several chromosomes 

outside HLA has been observed, supporting the complexity. Candidate gene studies have 

suggested more than 100 such non-MHC genes, a conservative estimate suggesting about 

30 genes, but no consensus has been accepted (Becanovic et al., 2006; GAMES, 2001, 

2003).  

Recently, using a large-scale genomewide association scan, The International 

Multiple Sclerosis Genetic Consortium has identified IL-2 receptor alpha (IL-2RA) 
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and IL-7 receptor alpha (IL-7RA) alleles, along with those in the HLA locus, as risk 

factors for MS (Hafler et al., 2007). The risk conferred by polymorphisms in IL-7RA is 

confirmed by two additional, independent studies (Gregory et al., 2007; Lundmark et al., 

2007). However, risk contributed by IL-2RA and IL-7RA is minimal and explains only 

0.2% of the variance (Peltonen, 2007). Moreover, the approaches used in these studies 

have little statistical power to detect rare variants that could confer a relatively large 

genetic risk (Hafler et al., 2007; Sawcer, 2006). Overall, it has been difficult to identify 

genes associated with MS because of the genetic complexity of the disease, the genetic 

diversity of the human population, the relatively small sample sizes, and the 

environmental influence and possible variations in the disease diagnosis (Andersson and 

Karlsson, 2004).  

Animal models of MS 

Due to the complex genetic architecture of MS, to investigate mechanisms of 

disease development and disease manipulation, animal models have been extensively 

used,. The most important advantage of animal models, compared to humans, is the better 

control of genetic background and environment. In addition, large numbers of animals 

can be studied. The disease can be deliberately induced and animals can be genetically 

manipulated. Animal models have the potential to significantly reduce the genetic 

complexity inherent in autoimmune diseases into intermediate or subphenotypes, such as 

histamine sensitivity. In addition, animal models permit the refinement of candidate 

regions to an interval small enough to allow identification of the causative gene using 

classical positional cloning and candidate gene screening. Thus, even though animal 

models do not completely display all the disease parameters found in the human 
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disease they model, specific traits of animal models reflect a particular pathway and give 

better mechanistic understanding of a particular stage of the human disease (Andersson 

and Karlsson, 2004).  

There are two major strategies of discovering genetic contribution to the 

development of disease using animal models. The first one, “gene-to-disease” pursues a 

hypothesis-based role of a particular gene in the disease development and is performed 

using gene-knock out and transgenic mice. The other, “disease-to-gene” strategy, is an 

unbiased, hypothesis-free approach aimed at identifying the disease-relevant part of the 

genome. This strategy involves the use of hybrids of one susceptible strain of mice 

crossed with a resistant strain. Development of the disease is studied in these mice 

followed by a marker assisted genome screen. Statistical linkage analysis is used to relate 

disease development to a genetic variant at a defined genetic location. Subsequent 

refinement will yield identification of the candidate gene, which can further be 

investigated for genetic polymorphisms between the parental strains and the influence of 

these polymorphisms on the disease development process. Both the strategies of genetic 

analysis of susceptibility genes have their advantages and are complementary to each 

other (Andersson and Karlsson, 2004).  

Animal models of MS-experimental allergic encephalomyelitis (EAE) 

Animal models that simulate features of MS provide a powerful tool for 

investigating the pathogenesis of the disease. Several mouse models, virus-induced 

and/or autoimmune, have been developed that reflect clinical and pathological attributes. 

The viral models for MS include the Theiler’s murine encephalomyelitis virus (TMEV) 

(Lipton and Dal Canto, 1976), recombinant- TMEV (Olson et al., 2001), murine 
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hepatitis virus (MHV) (Matthews et al., 2002), Semliki forest virus (Mokhtarian and 

Swoveland, 1987) and Sindbis virus (Mokhtarian et al., 1989). All these neurotropic 

viruses induce demyelination either by directly infecting the neurons or by activating 

autoreactive T cells though molecular mimicry (Ercolini and Miller, 2006; Grigoriadis 

and Hadjigeorgiou, 2006).  

EAE is the principle autoimmune animal model for MS. With 70 years of 

history, it is one of the most endured animal models of a human disease (Pedotti et al., 

2003). EAE was originally developed by Rivers and colleagues as a model for 

neuroparalytic accidents in patients who received anti-rabies vaccine, by inducing 

disseminated encephalomyelitis in monkeys by repeated injections of rabbit brain extracts 

(Rivers et al., 1933). The introduction of adjuvants, such as Fruend’s complete adjuvant 

(CFA), greatly facilitated the induction of the disease with a single or fewer injections of 

antigen (Fruend et al., 1947). Subsequently, the disease has been induced in several 

animals including non-human primates (Genain et al., 1995), guinea pigs (Fruend et al., 

1947), rats (Lipton and Freund, 1952), rabbits (Morrison, 1947), hamsters (Tal et al., 

1958), goats (Lumsden, 1949), sheep (Innes, 1951), dogs (Thomas et al., 1950), and mice 

(Olitsky et al., 1950). It is now well established that the experimental disease is mediated 

by T cells reactive to components of the myelin sheath. This prototypical model for cell-

mediated autoimmune disease in general is the best available animal model for human 

CNS inflammatory demyelinating disease. EAE simulates several features of MS 

including its pathology, histopathology and pathogenesis making it a powerful tool in the 

investigation of the pathophysiology (Baxter, 2007; Blankenhorn et al., 2000; Gold et al., 

2006; Martin and McFarland, 1995; Palakal et al., 2007).  
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EAE can be induced in genetically susceptible animals by inoculation with 

either crude CNS tissue-homogenate or their components, such as PLP, MBP, MOG, 

MAG, myelin oligodendrocyte basic protein, or the encephalitogenic peptides in an 

appropriate adjuvant (Encinas et al., 1996; Kuchroo et al., 2002; Trotter et al., 1987; 

Zamvil et al., 1985). CFA containing Mycobacterium tuberculosis H37RA, and 

Bordetella pertussis toxin (PTX) are the most commonly used adjuvants in disease 

induction. EAE can also be induced by adoptive transfer of CD4 T cells from immunized 

animals into naïve mice, which underscores the importance of these cells in the immuno-

etiology of the disease (Baron et al., 1993; Bernard et al., 1976; Bernard and Mackay, 

1983; Krueger et al., 2005; Langrish et al., 2005).  

The development of EAE in the immunized mice occurs in two distinct stages, 

the induction phase and the effector phase. During the induction or the initial priming 

phase, up to day 10 post immunization, APCs present the immunized-component of the 

myelin sheath to CD4 T cells as “foreign” antigen in lymph node and/or spleen and 

activate them (Powell et al., 1990; Sayed and Brown, 2007). 

Optimal activation of T cells requires two signals (Bretscher, 1999). The first 

signal is delivered by the interaction of T cell receptor (TCR) with antigen presented by 

MHC molecule on the surface of APCs. The second signal consists of engagement of 

costimulatory molecules such as CD28, inducible costimulatory molecule (ICOS), 

programmed death pathway 1 (PD-1), and CD154 expressed on T cells with CD80/CD86, 

ICOS ligand, PD-1 ligand 1 (PD1-L1)/PD-1 ligand 2 (PD-L2) and CD40 respectively, 

expressed on APCs (Agata et al., 1996; Hutloff et al., 1999; McAdam et al., 1998; Sharpe 

and Freeman, 2002). The critical regulatory role in EAE of ICOS and optimal T cell 
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activation is supported by complete absence of EAE in CD28-deficient mice (Chitnis et 

al., 2001; Oliveira-dos-Santos et al., 1999), blockade of disease by administration of anti-

CD28 antibodies (Perrin et al., 1999), resistance of CD80/CD86-deficient mice to the 

induction of EAE (Chang et al., 1999; Girvin et al., 2000), exacerbation of disease in 

ICOS-deficient (Chitnis et al., 2001) and anti-PD1 antibody treated mice (Salama et al., 

2003). Another costimulatory molecule, CTLA-4, is expressed on activated CD4 T cells 

and its interaction with CD80/CD86 is a negative regulator of T cell activation 

(Karandikar et al., 1996). Administration of anti-CTLA4 blocking antibody during the 

priming phase of EAE exacerbates the disease (Karandikar et al., 1996). In addition, 

factors such as histamine play a critical role during priming of autoreactive T cells 

(Chapter 2). In the presence of proper secondary signals, autoreactive CD4 T cells get 

activated and differentiated into distinct lineages such as Th1 or Th17 cells, defined by 

the unique set of cytokines they produce upon re-activation (Furuzawa-Carballeda et al., 

2007).  

During the effector phase of the disease, the activated autoreactive T cells leave 

the secondary lymphoid organs, traffic to the CNS and persist there to orchestrate the 

inflammatory events. In healthy individuals, the traffic of lymphocytes into the CNS is 

very low and tightly regulated by a highly specialized structure called the blood-brain-

barrier (BBB) formed by endothelial cells connected though tight junctions (Engelhardt, 

2006). Therefore, loss of BBB integrity is a critical checkpoint in the pathogenesis of 

CNS inflammatory diseases (Noubade et al., 2007)(Appendix A of this thesis). Only 

activated T cells, not naïve T cells, can penetrate the BBB, a process mediated by 

adhesion molecules, chemokines and their respective chemokine receptors (Engelhardt 
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and Ransohoff, 2005; Hickey et al., 1991; Matejuk et al., 2002; Wekerle et al., 1987). 

Activated T cells express adhesion molecules such as lymphocyte function associated 

antigen 1 (LFA-1) and very late antigen 4 (VLA-4). Endothelial cells are induced to 

express adhesion molecules such as intracellular adhesion molecule 1 (ICAM-1), 

vascular cell adhesion molecule 1 (VCAM-1), platelet/endothelial cell adhesion molecule 

1 (PECAM-1) on their surface, mostly by cytokines such as IFN-γ and TNF-α (Baron et 

al., 1993; Butter et al., 1991; Graesser et al., 2002; Wilcox et al., 1990). ICAM-1 and 

VCAM-1 are ligands for LFA-1 and VLA-4, respectively. Interaction of the adhesion 

molecules on T cells with their binding partners on endothelial cells (Baron et al., 1993; 

Yednock et al., 1992) and the degradation of the type IV collagen of the basement 

membrane underlying the endothelial cells by MMPs, results in extravasation of T cells 

through BBB endothelial cells into the CNS tissue. Type IV collagen is present only in 

the endothelial cell basement membrane and has distinct binding sites important for T 

cell binding to the basement lamina of endothelial cells (Sacca et al., 2003).  

MMPs are a family of proteolytic enzymes present at low levels in a normal 

CNS but most of them, particularly MMP-2 and -9, are elevated during EAE. MMPs also 

assist T cells to spread in the white matter by degrading the brain parenchyma (Agrawal 

et al., 2006; Anthony et al., 1998; Clements et al., 1997; Dwyer et al., 1998; Harrington et 

al., 2005; Kieseier et al., 1998; Pagenstecher et al., 1998; Toft-Hansen et al., 2004). Once 

within the CNS, the T cells are re-activated when the normally-expressed myelin antigens 

are presented by the resident microglial cells and/or astrocytes (Matsumoto et al., 1992; 

Constantinescu et al., 2005; Stuve et al., 2002). The re-activation of CD4 T cells is 

necessary for them to be retained within the CNS and exert their effector functions. 
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Otherwise, the T cells exit rapidly or undergo apoptosis (Hickey, 2001). 

The re-activation of CD4 T cells results in the increase of a number of pro-

inflammatory molecules including MMPs, adhesion molecules, chemokines such as 

RANTES, MCP1, MIP1α, MIP1β, osteopontin (Butterfield et al., 1999; Chabas et al., 

2001; Dogan and Karpus, 2004; Glabinski et al., 1995; Godiska et al., 1995), and 

cytokines such as IFN-γ, TNF-α, IL-1, IL-6, IL-12, IL-17, IL-22 and IL-23. These 

cytokines, particularly INF-γ and IL-23, activate macrophages and microglial cells, which 

in turn upregulate their MHC class II molecules, re-present myelin antigen to CD4 T 

cells, and thus set up an inflammatory loop (Becher et al., 2003; Constantinescu et al., 

2005; Ferber et al., 1996; Gutcher and Becher, 2007; Kuchroo et al., 1993). 

Consequently, there is a sustained breach of BBB integrity and rapid, massive infiltration 

of cells including CD4 T cells, CD8 T cells, macrophages, B cells, monocytes, mast cells 

and neutrophils, into the CNS white matter.  

The activated macrophages phagocytose myelin and myelin-producing cells 

leading severe demyelination (Ferber et al., 1996; Pender, 1987). Myelin-reactive CD8 

T cells (Chabas et al., 2001; Huseby et al., 2001), B cells, myelin-specific antibodies 

(Iglesias et al., 2001; Lebar et al., 1986; Svensson et al., 2002), complement proteins 

that form membrane attack complexes at the surface of oligodendrocytes (Jegou et al., 

2007; Piddlesden et al., 1993), oposonization of myelin by autoantibodies and 

complement proteins (Jegou et al., 2007), all contribute to the demyelination. 

Proteolytic enzymes (Guyton et al., 2005) and toxic products, such as reactive oxygen 

and nitrogen intermediates (MacMicking et al., 1992), are released by infiltrated cells. 

Increasing evidence suggests that inflammatory mediators released from the 
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infiltrated cells cause a considerable axonal loss (Park et al., 2005). All these events 

result in an ascending paralytic disease, that begins with weakness and loss of tone in 

the tail and progresses to complete paralysis of forelimbs, hind limbs, fecal and urinary 

incontinence, moribund state in some animals, and occasional mortality. 

CD4 T cell subsets and their cytokines in EAE 

Historically, CD4 T cells of Th1 type, characterized by their ability to secrete 

IFN-γ, are believed to be sufficient to orchestrate the inflammatory events and initiate 

myelin destruction in CNS. IL-12 drives the differentiation of CD4 T cells into Th1 

type cells (Harrington et al., 2006). Mice deficient in IL-12p40 are resistant MBP-

induced EAE (Segal et al., 1998). CD4 T cells differentiated in vitro in the presence of 

IL-12 induce disease in naïve recipients upon adoptive transfer (Baron et al., 1993; 

Bernard et al., 1976; Bernard and Mackay, 1983). Administration of anti-IL-12p40 

antibodies suppresses EAE in adoptive transfer recipients (Leonard et al., 1995). IL-18 

also promotes Th1 differentiation (Okamura et al., 1995). Mice deficient in IL-18 are 

resistant to EAE (Shi et al., 2000) and anti-IL-18 antibodies significantly reduce the 

IFNg production and disease development during MBP-induced EAE in rats 

(Wildbaum et al., 1998). The number of Th1 CD4 T cells in inflammatory lesions 

correlate with disease severity (Merrill et al., 1992). Encephalitogenic MBP- and PLP-

specific CD4 T cells clones are Th1 type (Ando et al., 1989; Baron et al., 1993; 

Kuchroo et al., 1993). Mice deficient in T-bet, the key transcription factor for the 

development of Th1 CD4 T cells (Szabo et al., 2000) do not develop EAE (Bettelli et 

al., 2004). Silencing T-bet by RNA interference ameliorated EAE (Gocke et al., 2007). 

TNF-α is upregulated in CNS during EAE (Juedes et al., 2000). The 
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encephalitogenicity of MBP-specific T cell clones is strongly correlated with the TNF-

α production (Powell et al., 1990). However mice deficient in TNF-α, IFN-γ or IFN-γR 

are susceptible to EAE (Ferber et al., 1996; Frei et al., 1997; Willenborg et al., 1996). 

Similar observations were made in mice deficient in IL-12, particularly IL-12p35 

(Becher et al., 2002; Ghosh et al., 2002).  

In contrast, mice deficient in IL-23, a member of IL-12 family, were completely 

resistant to EAE (Cua et al., 2003; Langrish et al., 2005). Further, these EAE-induced IL-

23-deficient mice completely lacked IL-17- positive cells in the CNS while IFN-γ-

positive cells were present. These discrepancies led to the identification of a distinct 

subset of CD4 T cells called IL-17 producing-Th17 cells (Harrington et al., 2005; 

Krueger et al., 2005). IL-17-deficient mice are resistant to EAE (Komiyama et al., 2006). 

Subsequently, in addition to IL-17, the Th17 CD4 T cells have been shown to produce 

IL-1β, IL-6, TNF-α, IL-22, GM-CSF (Furuzawa-Carballeda et al., 2007). The presence 

of IL-6, TGF-β and IL-1β is essential for the generation of these cells and mice deficient 

in IL-6 as well as IL-1R are resistant to EAE (Okuda et al., 1998; Schiffenbauer et al., 

2000). Additionally, IL-23-derived Th17 CD4 T cells induced EAE in naïve recipients 

upon adoptive transfer (Krueger et al., 2005; Langrish et al., 2005). However, adding 

complexity to the Th17 pathway is the observation that mice deficient in IL-17E, also 

known as IL-25, have increased IL-23 expression and are hypersusceptible to EAE 

(Kleinschek et al., 2007). Thus the relative contribution of Th1 versus Th17 CD4 T cells 

to the development of EAE remains to be elucidated.  
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CD8 T cells in EAE 

Initial studies suggested that CD8 T cells may play a protective role in EAE 

when a significant reduction in disease relapses was observed in CD8 knock-out or CD8 

T cell-depleted mice (Jiang et al., 1992; Koh et al., 1992). However, several lines of 

evidence such as predominance of CD8 over CD4 T cells in the brain of MS patients and 

the close association of CD8 T cells with MS lesions (Booss et al., 1983; Cabarrocas et 

al., 2003; Hauser et al., 1986; Neumann et al., 2002; Skulina et al., 2004) led to a more 

careful analysis of these cells in EAE pathogenesis. One criticism for CD4 T cell 

predominance in EAE has been that when EAE is induced by immunizing the mice with 

myelin antigens in appropriate adjuvant, the antigens are presented by MHC class II 

molecules and thus activate CD4 T cells rather than by MHC class I molecules (Ji and 

Goverman, 2007). Therefore, when MHC class I restricted MBP-specific CD8 T cells 

were adoptively transferred to naïve recipients, it resulted in severe EAE with extensive 

demyelination (Huseby et al., 2001). More recently, CD8 T cells generated from mice 

immunized in the traditional way with myelin antigens in CFA also induced a severe 

EAE when adoptively transferred to naïve recipients, demonstrating the pathogenic role 

of CD8 T cells in EAE (Abdul-Majid et al., 2003; Ford and Evavold, 2005; Ji and 

Goverman, 2007; Sun et al., 2001).  

B cells and autoantibodies in EAE 

 Generally EAE is thought to be a T cell-mediated disease. It does not require B 

cells and antibodies, as B cell-deficient mice develop severe disease (Lyons et al., 1999; 

Wolf et al., 1996). Antibody titer and disease severity do not directly correlate (Cross et 

al., 2001). However, the most important diagnostic marker for early MS, 
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particularly in patients with normal brain scans, is the presence of oligoclonal antibodies 

and plasma cells in CSF (Paolino et al., 1996). But the heterogeneity of antigen 

specificity of these antibodies questioned whether there are consequences of MS-related 

antigen or represent MS-unrelated B cell responses. A very small proportion of these 

antibodies were found to be against myelin antigens but their contribution to the actual 

disease process is unknown (Cross et al., 2001; Ziemssen and Ziemssen, 2005).  

B cells, plasma cells and myelin-specific antibodies are present in MS plaques 

and areas of demyelination (Genain et al., 1999). However, evidence that autoantibodies 

cause demyelination came from observations that administration of antimyelin antibodies 

enhanced demyelination in rats and non-human primates (Genain et al., 1999; 

Schluesener et al., 1987). In mice, it was found that B cells are critical in EAE induction 

with MOG protein but not peptide (Lyons et al., 1999). Even though autoantibodies that 

recognize many myelin proteins such as MBP and PLP have been identified to promote 

demyelination and potentiate EAE (Cross et al., 2001; Endoh et al., 1986), antibodies to 

MOG are considered to be more critical because MOG is expressed on the outer surface 

of the myelin sheath (Gardinier et al., 1992).  

Transgenic mice producing high titers of anti-MOG antibodies did not develop 

spontaneous EAE but developed an early and exacerbated disease upon induction, 

indicating that the autoantibodies can modify the disease course and pathogenesis 

(Litzenburger et al., 1998). Anti-MOG antibodies capable of inducing EAE require 

glycosylated epitopes on the surface of oligodendrocytes (Marta et al., 2005) and their 

demyelinating ability depends on the activation of complement cascade rather than direct 

cell mediated cytotoxicity (Urich et al., 2006). Additionally, B cells function as antigen 
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presenting cells. The autoantibodies increase myelin opsonization and subsequent 

phagocytosis by macrophages and microglial cells and thus contribute to demyelination 

(Jegou et al., 2007; Ziemssen and Ziemssen, 2005).  

Genetic susceptibility of EAE 

The observation that different strains of mice differ significantly in their 

susceptibility to EAE was made in the first study of EAE in mice when it was noted that 

Swiss mice were susceptible to EAE induced by brain-tissue homogenate in Fruend’s 

adjuvant, while the Rockefeller Institute strain of mice did not develop the disease 

(Olitsky and Yager, 1949). Subsequently, a large number of studies analyzing the genetic 

control of susceptibility and resistance to EAE have been carried out using inbred strains 

of mice and, to date, a total of 40 quantitative trait loci (QTL) have been identified (Baker 

et al., 1995; Blankenhorn et al., 2000; Butterfield et al., 1999; Butterfield et al., 1998; 

Encinas et al., 1996; Encinas et al., 2001; Fillmore et al., 2003; Karlsson et al., 2003; 

Mazon Pelaez et al., 2005; Sundvall et al., 1995; Teuscher et al., 2006a). A genomic 

region on chromosome 17 containing MHC genes, like in MS, has been the strongest and 

consistently linked region in EAE. Also, this was the first QTL to be identified (Fritz et 

al., 1985).  

A large number of non-MHC loci have also been identified to control EAE 

susceptibility in mice. Among these, in addition to loci that control clinical disease 

parameters, such as incidence (Baker et al., 1995; Bakker et al., 2002; Butterfield et al., 

1998; Encinas et al., 1996; Sundvall et al., 1995), disease onset (Butterfield et al., 1998; 

Mazon Pelaez et al., 2005) and disease severity (Baker et al., 1995; Butterfield et al., 

1998; Mazon Pelaez et al., 2005), genes that control sub-phenotypes of the disease, 
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such as histopathological lesion-severity either in the brain (Blankenhorn et al., 2000; 

Butterfield et al., 1999; Karlsson et al., 2003) or spinal cord (Baker et al., 1995; 

Blankenhorn et al., 2000; Butterfield et al., 1998; Karlsson et al., 2003), weight loss 

(Encinas et al., 1996; Encinas et al., 2001), demyelination (Blankenhorn et al., 2000), 

inflammation (Encinas et al., 2001; Mazon Pelaez et al., 2005) and paralysis (Encinas et 

al., 2001), have been identified. QTLs controlling disease-subtypes, such as acute 

progressive, remitting-relapsing, chronic non-remitting and monophasic non-

remitting/non-relapsing EAE (Butterfield et al., 1999; Karlsson et al., 2003), and those 

controlling electro-pathophysiological changes of neurons that reflect the extent of 

demyelination (Mazon Pelaez et al., 2005) have been reported.  

EAE and MS are sexually dimorphic diseases with more females affected than 

males. Accordingly, most of the loci identified are gender specific (Butterfield et al., 

1999; Fillmore et al., 2004; Fillmore et al., 2003). The effect of the Y-chromosome, 

reflecting parent-of-origin, has also been documented (Teuscher et al., 2006a). In 

addition, extrinsic factors such as the physical structure of the antigen-CFA containing 

particles (on the surface against buried within) of the emulsion (Fillmore et al., 2003), 

age and season (Fillmore et al., 2004; Teuscher et al., 2006a), use of pertussis toxin 

(Blankenhorn et al., 2000) have been shown to override genetic checkpoints, 

demonstrating the role of gene-environmental interactions in the disease susceptibility. 

Thus different loci are linked to different aspects of the disease development process and 

may reflect the heterogeneity observed in MS patients. The study of these loci in isolation 

and their contribution to disease development may help in understanding the inherent 

heterogeneity of the disease. One such locus is Bordetella pertussis induced histamine 
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sensitization (Bphs), controlling susceptibility to histamine-induced death in PTX 

sensitized mice (Sudweeks et al., 1993), has been identified to be Hrh1, the gene 

encoding histamine receptor H1 protein (Ma et al., 2002).  

Identification of histamine receptor H1 as a susceptibility gene in EAE 

  Anaphylactic-like hypovolemic shock syndromes can be induced in mice by 

injecting vasoactive amines such as histamine or serotonin or a mixture of both (Bergman 

and Munoz, 1965, 1968; Harris and Fulton, 1958; Iff and Vaz, 1966). Inbred strains of 

mice varied in their sensitivity to these agents and the variation was genetically 

determined (Bergman and Munoz, 1968; Iff and Vaz, 1966; Parfentjev, 1955; Tokuda et 

al., 1963). Subsequently, it was found that products from Bordetella pertussis 

significantly enhanced this sensitivity to vasoactive amine treatment and that inbred 

strains of mice differ in their susceptibility to the enhancing effect. The B. pertussis 

product was later identified as PTX (Bergman and Munoz, 1968; Black et al., 1988; 

Munoz, 1957; Munoz, 1963; Vaz et al., 1977). SJL/J is the prototypic susceptible mouse 

strain and C3H/HeJ and CBA/J are the prototypic resistant strains of mice to the PTX-

induced histamine sensitivity. The susceptibility of inbred strains to the histamine-

sensitizing effects of PTX was found to be under the control of a single autosomal 

dominant gene (Wardlaw, 1970). The strains of mice susceptible for Bphs developed 

EAE, while the strains resistant to Bphs did not (Linthicum, 1982). However, it is 

noteworthy that there are some exceptional strains of mice, suggesting that additional 

genes control the disease susceptibility. Bphs is also associated with susceptibility to 

experimental allergic orchitis (Teuscher, 1985).  

Using microsatellite and random amplified polymorphic DNA (RAPD) 
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markers and backcross populations of susceptible SJL/J and resistant C3H/HeJ and 

CBA/J strains, the Bphs locus was mapped to a 33 centimorgan (cM) region of mouse 

chromosome 6 (Sudweeks et al., 1993). The candidate interval was further refined to an 

interval to include fewer genes (Meeker et al., 1999). For positionally cloning Bphs, a 

panel of interval specific congenic lines was generated by introgressing the susceptible 

SJL/J allele onto the resistant C3H/HeJ background. Studies of histamine sensitivity in 

the congenic lines established that Bphs resided in a region containing Hrh1 (Ma et al., 

2002). The identity of Hrh1 as Bphs was further confirmed by the complete resistance of 

histamine receptor H1 knock out (H1RKO) mice to Bphs. Further, H1RKO mice 

exhibited a reduced severity and delayed onset of EAE compared to the wild type (WT) 

mice (Ma et al., 2002), indicating that histamine, acting through histamine receptor H1, 

regulates EAE.  

Histamine and histamine receptor H1 

Histamine [2-(4-imidazole) ethylamine] is a ubiquitously distributed biogenic 

amine that mediates diverse physiological processes including neurotransmission and 

brain functions, secretion of pituitary hormones, and regulation of gastrointestinal and 

circulatory functions (Parsons and Ganellin, 2006). Additionally, histamine is a potent 

mediator of inflammation and a regulator of innate and adaptive immune responses 

(Akdis and Simons, 2006).  

Mast cells and basophils are the major sources of stored histamine (Code and 

Mitchell, 1957; Riley and West, 1953). The granule-stored histamine from these cells is 

rapidly released upon various immunological and non-immunological stimuli. Mast cell-

deficient mice were induced to synthesize histamine upon phorbol ester stimulation 
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(Taguchi et al., 1982). This “nascent” or “inducible” histamine is proposed to be 

synthesized by the induction of L-histidine decarboxylase (HDC), the rate-limiting 

enzyme for histamine synthesis in cells such as activated monocytes/macrophages and 

neutrophils (Ghosh et al., 2002; Kahlson and Rosengren, 1968; Shiraishi et al., 2000; 

Takamatsu et al., 1996; Tanaka et al., 2004). T cells, B cells and dendritic cells also 

synthesize “inducible” histamine (Aoi et al., 1989; Kubo and Nakano, 1999; Szeberenyi 

et al., 2001). As these cells lack storage vesicles, histamine synthesized is immediately 

released. The HDC activity is modulated by a variety of stimuli during infections and 

inflammation (Schneider et al., 2002). 

Histamine exerts its pleiotropic effect through four receptors that are designated 

as histamine receptor H1, H2, H3, and H4, according to the chronological order of their 

discovery (Hill et al., 1997; Parsons and Ganellin, 2006). H1R is widely distributed on a 

variety of tissues and cell types including: mammalian brain; gastrointestinal tract; 

genitourinary system; cardiovascular system; adrenal medulla; hepatocytes; nerve cells; 

airway and vascular smooth muscle cells; endothelial cells; eosinophils; monocytes 

neutrophils; dendritic cells; and lymphocytes (both T and B cells) (Hill et al., 1997; 

Parsons and Ganellin, 2006; Smit et al., 1999). Biochemical characterization of the H1R 

protein using photoaffinity binding studies and gel electrophoresis under reducing 

conditions has revealed a molecular weight of 56kDa in mice, rats and guinea pig brain 

(Ruat et al., 1988; Ruat and Schwartz, 1989; Ruat et al., 1990; Smit et al., 1999).  

Purification of H1R protein has not been successful thus far. H1R was first cloned 

from bovine adrenal medulla, which yielded an intron-less gene (Yamashita et al., 1991). 

This enabled subsequent cloning of H1R from several species including mouse, which 
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mapped to chromosome 6 (Inoue et al., 1996). The deduced amino acid sequence 

represented a 488 amino acid protein with calculated molecular weight of 56kDa. 

Modeling of the protein revealed the presence of seven transmembrane domains, 

characteristic of G protein coupled receptors (GPCRs). A striking feature of the proposed 

structure was a very large third intracytoplasmic loop (212 amino acids) and relatively 

short intracellular C-terminal tail (17 amino acids). The histamine binding pocket is 

formed between the third (TM3) and fifth (TM5) transmembrane domains (Hill et al., 

1997; Jongejan et al., 2005; Smit et al., 1992). Similar to H1R, H2R is also expressed on a 

variety of cell types, while H3R expression is restricted mostly to neuronal cells in the 

brain and some peripheral tissues. H4R is expressed exclusively on cells of hematopoietic 

origin (Parsons and Ganellin, 2006).  

GPCRs transduce the external signal of ligand binding by activating 

heterotrimeric G proteins, which in turn couple to a variety of second messenger 

signaling pathways (Fredholm et al., 2007). H1R couples to second messenger signaling 

pathways via the activation of G proteins belonging to Gαq/11 sub-family (Parsons and 

Ganellin, 2006). Generally, activation of H1R leads to stimulation of phospholipase C, 

resulting in the hydrolysis of phosphatidylinositol 4,5-bisphosphate (PIP2) to form 

inositol-1,4,5-trisphosphate (IP3) and diacylglycerol (DAG), which causes calcium 

mobilization from intracellular stores and activation of protein kinase C (PKC), 

respectively (Hill et al., 1997). In addition, H1R signaling also mediates other signaling 

pathways such as the production of phospholipase A2 and arachidonic acid (Leurs et al., 

1994), cGMP and nitric oxide (Hill, 1992; Leurs et al., 1995; Satoh and Inui, 1984; Toda, 

1987), and the activation of NF-κB (Bakker et al., 2001), STAT1 (Sakhalkar et al., 



 

29

2005), and STAT4 (Engelhardt, 2006). H1R-mediated PKCα stimulation activates MAP 

kinase pathways, particularly MEK1 (Lipnik-Stangelj and Carman-Krzan, 2004; Megson 

et al., 2001), ERK MAP kinase and p38 MAP kinase (Robinson and Dickenson, 2001; 

Steffel et al., 2005) (Chapter 2). Even though H1R is the first histamine receptor to be 

identified and a large number of studies on histamine and H1R have been published in the 

last decade (Simons, 2004), little is known about the cell-type specific H1R signaling 

pathways.  

H2R signaling is mediated via the Gαs subfamily of G proteins and primarily leads 

to increased cAMP production and calcium mobilization (Alewijnse et al., 1998; Del 

Valle and Gantz, 1997; Leurs et al., 1994; Smit et al., 1996). H3R is coupled to Gαi/o 

subfamily of G proteins and leads to inhibition of cAMP and accumulation of calcium 

(Krueger et al., 2005). H4R signaling is also mediated by coupling to Gαi/o subfamily of G 

proteins and induces calcium mobilization, inhibits cAMP production and activates MAP 

kinases (Buckland et al., 2003; Hofstra et al., 2003; Morse et al., 2001).  

In endothelial cells, H1R-mediated calcium mobilization and PKC activation 

promotes cytoskeletal changes to induce cell shape change (Lum and Malik, 1994). 

Additionally, H1R-mediated signals lead to disassembly of VE-cadherin complexes that 

regulate endothelial barrier function (Gao et al., 2000; Winter et al., 1999). These effects 

result in increased vascular permeability. H1R signaling also increases expression of 

adhesion molecules such as ICAM-1, VCAM-1 and P-selectin on endothelial cells 

(Gonzalez-Scarano et al., 1987; Kubes and Kanwar, 1994; Yamaki et al., 1998). 

In dendritic cells, H1R provides positive signals for enhanced antigen presentation 

capacity by upregulating several co- stimulatory molecules such as CD80 and 
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CD86 by increasing the production of proinflammatory cytokines such as IL-1, IL-6, IL-

8, MCP-1 and MIP-1α and Th1 priming activity of these cells (Caron et al., 2001; 

Mazzoni et al., 2001; Meretey et al., 1991). In contrast, H2R acts as a negative signal for 

many of these functions. H1R induces intracellular calcium flux, actin polymerization and 

chemotaxis by immature dendritic cells (Mazzoni et al., 2001). H1R is upregulated in 

monocyte-derived macrophages and leads to calcium mobilization and enhanced IL-8 

production (Triggiani et al., 2007). Treatment of macrophages, isolated from lung 

parenchyma, with H1R blockers led to lower IL-6 production (Triggiani et al., 2001).  

In B cells, H1R signals enhance anti-IgM mediated proliferation and antibody 

production against a T cell-independent antigen, TNP-ficoll, indicating that H1R signals 

are important in B cell receptor-triggered responses (Banu and Watanabe, 1999). H1RKO 

mice produce higher ova-specific IgG1 and IgE compared to the WT mice, indicating that 

H1R suppresses humoral responses (Banu and Watanabe, 1999; Jutel et al., 2001).  

Studies using total splenocytes have shown that H1R regulates antigen-specific T-

cell effector functions and modulates production of the cytokines IFN-γ and IL-4 (Bakker 

et al., 2002; Banu and Watanabe, 1999; Bryce et al., 2006; Jutel et al., 2001) Chapter two 

of this thesis will demonstrate that H1R in purified CD4 T cells regulates IFN-γ and IL-4 

production. 

Histamine and histamine receptor H1 in MS and EAE 

 The first observation of the role of histamine and histamine receptors in EAE 

came from the use of pharmacological anti-histaminic agents to block the development of 

the disease (Linthicum, 1982). Subsequently, several studies used these drugs, 

particularly H1R blockers, to reduce the pathology of EAE (Chabas et al., 2001; 
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Dietsch and Hinrichs, 1989; Dimitriadou et al., 2000; El Behi et al., 2007; Pedotti et al., 

2003; Waxman et al., 1984). The genetic susceptibility to EAE development was 

originally thought to be a function of MHC genes and genes controlling hypersensitivity 

to histamine (Linthicum, 1982). An analysis of CSF from several MS patients showed a 

60% higher histamine content than the control group, while histamine-N-

methyltransferase, a histamine metabolizing enzyme, was lower than the control group 

(Tuomisto et al., 1983). Microarray analysis of chronic plaques in MS patients revealed 

relative overexpression of H1R transcripts (Dormond et al., 2002). Administration of anti-

H1R agents either reduced the risk of MS (Alonso et al., 2006) or improved the 

neurological symptoms (Logothetis et al., 2005). H1RKO mice exhibit milder disease 

than WT mice (Bakker et al., 2002)(chapter 2 and 3). Mice deficient in H2R also develop 

an attenuated disease (Teuscher et al., 2004). EAE is significantly enhanced in H3R-

deficient (Teuscher et al., 2007) and H4R-deficient mice (Teuscher, unpublished data). 

Mice deficient in histidine decarboxylase, and therefore in histamine, develop more 

severe disease than WT mice (Musio et al., 2006). All these findings indicate a regulatory 

role for histamine in the pathogenesis of EAE.  

 Mast cells and basophils are the major source of histamine in the body (Mekori 

and Metcalfe, 2000). It has long been known that mast cells accumulate at the site of 

inflammatory demyelination in the brain and spinal cord both in animal models and in 

MS patients (Bebo et al., 1996; Brenner et al., 1994; Dietsch and Hinrichs, 1989; Ibrahim 

et al., 1996; Kermode et al., 1990; Olsson, 1974; Orr, 1988). Mast cell numbers and/or 

distribution correlated with MS lesion and EAE susceptibility (Brenner et al., 1994). 

Mast cell-stabilizing drugs have been shown to improve disease symptoms in EAE 
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(Brosnan and Tansey, 1984; Dietsch and Hinrichs, 1989; Seeldrayers et al., 1989). Mast 

cell-deficient mice exhibited delayed onset and reduced disease severity compared to the 

WT mice. The disease was restored upon reconstitution of these mice with bone marrow 

derived-mast cells (Secor et al., 2000), indicating a pathologic role for mast cells in EAE. 

Interestingly, reconstituted mast cells were present only in peripheral tissues but not in 

the brain and spinal cord, an observation confirmed by another independent study 

(Tanzola et al., 2003). The number of reconstituted mast cells in the spleen decreased 

with increased disease severity. While no mast cells were detected in the lymph node of 

naïve reconstituted animals, a large number of them were present in the draining inguinal 

lymph node in diseased animals (Tanzola et al., 2003). These findings suggest that mast 

cells act in the periphery, rather than the CNS, and therefore influence EAE during the 

induction phase rather than the effector phase. In addition, immunized mast cell-deficient 

mice had lower frequency of IFN-γ positive cells in the draining lymph node than WT 

mice. Ex-vivo stimulated T cells from these mice produced significantly lower IFN-γ and 

IL-4 than WT mice (Secor et al., 2000) (Tanzola et al., 2003). These results suggest that 

mast cells, and therefore histamine, provide a permissible microenvironment for the 

optimal induction of autoreactive T cells in the secondary lymphoid organs.  

Due to its activity in multiple cell types including endothelial cells, antigen 

presenting cells and T cells, histamine acting through H1R can function at several critical 

checkpoints during both induction and effector phases of EAE. In Chapter 2, it is 

demonstrated that H1R exerts its effects during the induction of encephalitogenic T cells 

and that expression of H1R in T cells is sufficient to restore clinical disease severity and 

cytokine production in H1RKO mice to the WT levels, independent of its actions in 
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other cell types important in the disease process. Further, in Chapter 3, it is established 

that even though the resistant allele of H1R differs only by three amino acids from the 

susceptible allele, it confers resistance to disease due to lack of cell surface expression.  

In endothelial cells, as described before, H1R signaling leads to vasodilation, 

increased vascular permeability and thus affects BBB integrity. H1R signaling also acts as 

a secretagogue for the regulated release of the stored factors from endothelial-specific 

storage vesicles called Weibel-Palade bodies (WPBs) (Hattori et al., 1989). The WPBs 

contain several vasoactive factors such as von Willebrand factor, P-selectin, and IL-8, the 

syntheses of which are induced by inflammatory signals including PTX (Rondaij et al., 

2006). When these factors are released, they act on the endothelial cells in an autocrine 

fashion. The direct vasodilatory effects of histamine combined with the autocrine effects 

of the WPB contents are likely to result in shock and the death observed during the 

effector phase of Bphs. However, in Appendix A, it is shown that the release of WPB 

contents do not mediate the shock observed during the Bphs.  
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Abstract 
 

Histamine H1 receptor (H1R) is a shared susceptibility gene in experimental 

allergic encephalomyelitis (EAE) and orchitis (EAO), two classical T-cell mediated 

models of organ-specific autoimmune diseases. Here we show that expression of H1R in 

CD4 T cells is required for IFNγ production but is dispensable for proliferation. H1R 

ligation is necessary for TCR-mediated activation of p38 MAP kinase, a known regulator 

of IFNγ expression. Importantly, selective expression of H1R in CD4 T cells fully 

complements both IFNγ production and EAE susceptibility of H1R deficient mice. Thus, 

the presence of H1R in CD4 T cells and its interaction with histamine regulates early 

TCR signals that lead to Th1 differentiation and autoimmune disease.  
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Introduction 

Histamine [2-(4-imidazole) ethylamine] is a ubiquitous mediator of diverse 

physiological processes including neurotransmission and brain functions, secretion of 

pituitary hormones, and regulation of gastrointestinal and circulatory functions (Parsons 

and Ganellin, 2006). Additionally, histamine is a potent mediator of inflammation and a 

regulator of innate and adaptive immune responses (Akdis and Simons, 2006). Histamine 

exerts its effect through four receptors that belong to the seven-transmembrane G protein-

coupled receptor family and are designated histamine H1, H2, H3, and H4 receptor, 

according to the chronological order of their discovery (1, 3).  

H1R couples to second messenger signaling pathways via the activation of 

heterotrimeric Gαq/11 family of G proteins (Parsons and Ganellin, 2006). Generally, 

activation of H1R leads to stimulation of phospholipase C, resulting in the hydrolysis of 

phosphatidylinositol 4,5-bisphosphate (PIP2) to form inositol-1,4,5-trisphosphate (IP3) 

and diacylglycerol (DAG), which causes calcium mobilization from intracellular stores 

and activation of protein kinase C (PKC), respectively (Hill et al., 1997). In addition, H1R 

signaling also mediates other signaling pathways such as the production of cGMP, 

arachidonic acid and nitric oxide (Leurs et al., 1995), and the activation of NF-κB 

(Bakker et al., 2001), STAT1 (Sakhalkar et al., 2005), STAT4 (Engelhardt, 2006) and 

MAP kinase pathway (Lipnik-Stangelj and Carman-Krzan, 2004; Megson et al., 2001; 

Robinson and Dickenson, 2001). However, even though H1R is the first histamine 

receptor to be identified and a large number of studies on histamine and H1R have been 

published in the last decade (Simons, 2004), little is known about the cell-type specific 

H1R signaling pathways. 
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In the immune system, histamine has been reported to be a potent modulator of 

innate and adaptive immune responses. Histamine, acting through H1R, affects the 

maturation of dendritic cells and alters their T cell-polarizing activity (Caron et al., 2001). 

It regulates antigen-specific T-cell effector functions and the related antibody isotype 

response (Banu and Watanabe, 1999). H1R signaling in splenocytes has been reported to 

modulate cytokine secretion by these cells (Bakker et al., 2002; Banu and Watanabe, 

1999; Bryce et al., 2006; Jutel et al., 2001) but no study has addressed the role of H1R in 

purified CD4 T cells.  

We have previously demonstrated that Hrh1 (encoding the mouse H1R protein) is 

a shared susceptibility gene in experimental allergic orchitis (EAO) and 

encephalomyelitis (EAE), the autoimmune model of multiple sclerosis (MS) (Bakker et 

al., 2002). In both MS and EAE, CD4 T cells secreting IFNγ (Th1) (Baron et al., 1993) 

and/or IL-17 (Th17) (Krueger et al., 2005) are necessary and sufficient for eliciting EAE 

pathology and clinical signs. The relative contributions of each of these cytokines to the 

development of EAE in vivo are debated, because conflicting evidence exists on the 

importance of IFNγ vs. IL-17. On the one hand, the importance of IL-17 is established in 

studies showing that EAE is diminished in IL-23-deficient but not IL-12-deficient 

animals (with no expression of the Th17-promoting or Th1-promoting cytokines, 

respectively) (Cua et al., 2003), and severe EAE is observed in IFNγ knockout mice and 

IFNγR knockout mice (Ferber et al., 1996; Willenborg et al., 1996). These findings 

contrast with studies showing that either CD4 Th1 cells (Baron et al., 1993) or CD4 Th17 

cells (Langrish et al., 2005) can transfer EAE to naïve recipients. Recent studies reporting 

the predominant presence of a pre-Th1, IFNγ+/IL-17+ CD4 T cell subtype, early 
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after induction of EAE with encephalitogenic myelin oligodendrocyte glycoprotein 35-55 

(MOG35-55) peptide (Suryani and Sutton, 2007) may help resolve these apparent 

inconsistencies. Nevertheless, IFNγ alone or in conjunction with IL-17, is well-

established as a cytokine of relevance in EAE immunopathology. 

We have previously shown that H1R deficient (H1RKO) mice exhibit a significant 

delay in the onset of EAE and a reduction in the severity of the clinical signs compared to 

wild-type (WT) mice (Bakker et al., 2002). This phenotype is associated with an immune 

deviation of the elicited CD4 T cell population from a Th1 response to a Th2 response 

with no detectable difference in IL-17 secretion, suggesting that the CD4 Th1 cells and 

the IFNγ produced by them play an important role in the pathology of the disease. In this 

report, we have studied the mechanism underlying the immune deviation, and show that 

it is directly due to H1R regulation of cytokine responses in CD4 T cells, and not to H1R 

expression in antigen presenting cells (APCs). In this study, we also show that H1R is 

expressed in unstimulated CD4 T cells but is rapidly downregulated upon activation. H1R 

is required for the activation of the p38 MAP kinase signaling pathway and for IFNγ 

production in response to TCR stimulation in CD4 T cells. Finally, H1R mediated 

signaling in CD4 T cells, independent of APCs, regulates the encephalitogenic Th1 

effector cell response in EAE.  
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Results  

H1R expression is required for IFNγ production by CD4 T cells 

MOG35-55 peptide-immunized H1RKO splenocytes produce less IFNγ and more 

IL-4 than the splenocytes from immunized WT mice (Bakker et al., 2002). However, it is 

not clear whether this immune deviation is due to the lack of H1R signaling in CD4 T 

cells or in APCs. To investigate the role of H1R in regulating IFNγ production and Th1 

differentiation, CD4 T cells were purified from WT and H1RKO mice and activated with 

anti-CD3 and anti-CD28 monoclonal antibodies (mAbs) in the presence of recombinant 

IL-12 and neutralizing anti-IL-4 mAb.  After 4 days, Th1 effector cells were extensively 

washed, counted and equal number of cells were re-stimulated with anti-CD3 mAb for 24 

hours. Th1 effector cells from H1RKO mice produced considerably less IFNγ than WT 

Th1 cells (Fig. 1A). We also examined the production of IL-4 upon re-stimulation of Th2 

effector cells generated in presence of IL-4 and anti-IFNγ mAb. A marginal increase in 

IL-4 production was observed in cells from H1RKO mice compared to cells from WT 

mice (Fig. 1B). Recent studies have established IL-17 as an important cytokine in EAE 

(20). Consequently, we examined IL-17 production by Th17 cells generated in the 

presence of IL-6 and TGF-β and anti-IFNγ and anti-IL-4 mAbs. There was no difference 

in IL-17 production by Th17 differentiated cells from H1RKO and WT mice (Fig. 1C). 

Moreover, we examined the role of H1R in non-polarized effector cells, generated by 

stimulating cells in the absence of exogenous cytokines for 4 days. Effector cells were 

then re-stimulated with anti-CD3 mAb for 24 hours. CD4 T effector cells from H1RKO 

mice produced significantly less IFNγ than those from WT mice (Fig. 1D). Thus, under 
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these conditions, IFNγ production in H1RKO effector CD4 T cells is impaired. 

IFNγ production by CD4 T cells contributes to their differentiation into Th1 

effector cells (Robinson and O'Garra, 2002). To examine the role that H1R signaling 

plays in this process, purified CD4 T cells from H1RKO and WT mice were stimulated 

with anti-CD3 and anti-CD28 mAbs for different periods of time and IFNγ production 

was quantified. CD4 T cells from H1RKO mice produced significantly lower IFNγ than 

those from WT mice at all time points examined (Fig. 1E). In contrast, no difference in 

IL-2 production between WT and H1RKO CD4 T cells was observed (Fig. 1F). 

Furthermore, proliferation was comparable between WT and H1RKO CD4 T cells (Fig. 

1G). Taken together, these results demonstrate that H1R expression in CD4 T cells plays 

a critical role in regulating IFNγ production during the activation and differentiation of 

these cells. 

H1R gene expression is downregulated early upon TCR activation 

In order to demonstrate that the reduced secretion of IFNγ by CD4 T cells is due 

to the absence of a functional H1R in these cells, we carried out H1R complementation in 

to H1RKO CD4 T cells by retroviral transduction. We generated a retroviral construct 

using the pEGZ-HA vector where H1R was subcloned downstream of a hemagglutinin 

(HA) tag and upstream of IRES-EGFP. To confirm that the HA-H1R could be properly 

expressed we transiently transfected HEK293T cells with the pEGZ-HA-H1R construct 

and examined its expression by Western blot analysis using anti-HA mAb. A band 

corresponding to the HA-H1R size (~55 kDa) was present only in HA-H1R transfected 

cells (Fig. 2A). To demonstrate that the HA-H1R was expressed on the cytoplasmic 

membrane, the HA-H1R transfected HEK293T cells were stained using anti-
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HA mAb and examined by confocal microscopy. HA-H1R was expressed on the 

cytoplasmic membrane only in HA-H1R transfected cells (Fig. 2B).  

H1R coupling to second messenger pathways is primarily via Gαq/11 (Parsons and 

Ganellin, 2006). The ability of the transfected HA-H1R to activate Gα11 was tested in a 

[35S] GTPγS binding assay. When membrane fractions from transfected HEK293 cells 

were used in the [35S] GTPγS binding assay, HA-H1R was capable of activating Gα11 in 

response to histamine (Fig. 2C). Taken together, these results show that HA-H1R is 

properly expressed and is functional. 

To perform retroviral transduction, CD4 T cells were isolated from H1RKO and 

WT mice, activated with anti-CD3 and anti-CD28 mAbs for 16 hours and transduced 

with either pEGZ or pEGZ-HA-H1R retroviruses. Expression of HA-H1R in transduced 

CD4 T cells was confirmed by confocal microscopy and flow cytometry (data not 

shown). After 2 days, transduced CD4 T cells were isolated by cell sorting based on 

EGFP expression and equal numbers of cells were activated with anti-CD3 mAb for an 

additional 24 hours. Both pEGZ and pEGZ-HA-H1R transduced CD4 T cells from 

H1RKO mice produced significantly lower levels of IFNγ than those from WT mice (Fig. 

3A). These results indicate that the expression of H1R in activated CD4 T cells does not 

restore the IFNγ production in H1R deficient cells.  

Retroviral transduction requires prior activation of CD4 T cells for at least 16 

hours to induce cell cycling. Thus, if H1R is normally required during the early phase of 

activation concomitant with TCR engagement, the retroviral transduction would not 

rescue the H1R deficiency. Our results above (Fig.1C) indicated that the IFNγ production 

was already reduced at 36 hours in H1RKO CD4 T cells compared to the WT cells. 
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We therefore examined IFNγ production by H1RKO CD4 T cells earlier during the 

activation with anti-CD3 and anti-CD28 mAbs. Although lower levels of IFNγ were 

present in WT CD4 T cells at 24 hours of activation, H1RKO CD4 T cells still produced 

significantly less IFNγ (Fig. 3B) indicating that H1R plays a role early during the 

activation of CD4 T cells. 

H1R expression during mouse T cell activation has not been investigated. We 

therefore analyzed the H1R gene expression in WT CD4 T cells stimulated for different 

periods of time with anti-CD3 and anti-CD28 mAbs. Relative levels of H1R mRNA were 

examined by conventional and quantitative real time RT-PCR analysis. CD4 T cells 

markedly downregulated H1R mRNA expression by 24 hours after activation (Fig. 3C 

and 3D), further indicating that H1R plays a role early (< 24 hours) after TCR 

engagement and that it is not required for IFNγ production by CD4 T cells once they are 

activated. 

Selective H1R expression in T cells in transgenic mice restores IFNγ production 
 

To examine the role of H1R during the initial activation of CD4 T cells, we 

generated transgenic mice expressing H1R under the control of distal lck promoter, which 

drives expression in T cells (Wildin et al., 1991). Transgenic mice were generated 

directly on the C57BL/6J background. Two transgenic founders were identified and 

crossed to H1RKO mice to obtain H1RKO mice expressing H1R selectively in T cells 

(H1RKO-Tg mice). The expression of the transgene in CD4 T cells from two lines 

(H1RKO-Tg-1 and H1RKO-Tg-3) was confirmed by RT-PCR using transgene-specific 

primers (Fig. 4A). We examined the surface expression of the transgene in CD4 T cells 

by immuno-staining using anti-HA mAb and confocal microscopy (Fig. 4B). The 
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transgene was expressed in CD4 T cells from both transgenic lines. No differences in the 

total numbers or distribution of T cell subpopulations in the thymus and peripheral 

lymphoid tissues were observed among WT, H1RKO and either of the H1RKO-Tg lines 

(data not shown).  

We then examined whether the expression of H1R in H1RKO CD4 T cells 

restored IFNγ production. CD4 T cells from WT, H1RKO and H1RKO-Tg mice were 

stimulated with anti-CD3 and anti-CD28 mAbs and IFNγ levels quantified. The levels of 

IFNγ secreted by CD4 T cells from H1RKO-Tg-3 were comparable to WT CD4 T cells 

and those from H1RKO-Tg-1 remained slightly lower than the WT CD4 T cells but 

significantly higher than the levels in H1RKO CD4 T cells (Fig. 4C). Analyses at 

different periods of time after activation confirmed that the transgenic expression of H1R 

in H1RKO CD4 T cells fully restores IFNγ production (Fig. 4D). 

We also studied the IFNγ production from Th1 polarized and non-polarized 

effector cells from H1RKO-Tg mice. CD4 T cells from WT, H1RKO and H1RKO-Tg 

mice were differentiated in the absence of exogenous cytokines (non-polarized) or in the 

presence of recombinant IL-12 and anti IL-4 mAb (Th1). After 4 days, effector cells were 

re-stimulated with anti-CD3 mAb for 24 hours and IFNγ production was measured. Both 

Th1 polarized (Fig. 4E) and non-polarized CD4 effector T cells (Fig. 4F) from H1RKO-

Tg mice produced significantly more IFNγ than the H1RKO effectors. Furthermore, the 

levels of IFNγ in H1RKO-Tg cells were comparable to those in WT CD4 T cells. 

Together, these data demonstrate that the presence of H1R at the time of activation of 

CD4 T cells under both polarizing and non-polarizing conditions regulates IFNγ 
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production and Th1 differentiation.  

Impaired activation of p38 MAP kinase by TCR ligation in H1RKO CD4 T cells 

In order to dissect the molecular mechanism of H1R signaling in regulating IFNγ 

production by CD4 T cells, we examined the signaling pathways that have been 

previously associated with H1R in other cell types. NF-κB has been shown to be activated 

through H1R in green monkey kidney cells (Bakker et al., 2001) and has been associated 

with regulation of IFNγ expression in CD4 T cells (Aronica et al., 1999). Therefore, we 

performed an electrophoretic mobility shift assay (EMSA) to examine NF-κB DNA 

binding. CD4 T cells from WT and H1RKO mice were stimulated with anti-CD3 and 

anti-CD28 mAbs for different periods of time.  There was no difference in NF-κB 

activation between WT and H1RKO CD4 T cells (Fig. 5A). STAT1 is also known to 

regulate IFNγ expression in CD4 T cells (Ramana et al., 2002) and it has recently been 

shown that H1R signaling regulates STAT1 phosphorylation in splenocytes (Sakhalkar et 

al., 2005). Therefore we examined activation of STAT1 by Western blot analysis in 

stimulated CD4 T cells. STAT1 phosphorylation was undetected at early time points up 

to 3 hours of activation in both WT and H1RKO cells (data not shown). Phospho-STAT1 

was detected after 3 hours of activation but there was no difference in STAT-1 

phosphorylation between WT and H1RKO CD4 T cells (Fig. 5B). Although H1R 

signaling has also been reported to regulate STAT4 phosphorylation in splenocytes 

(Engelhardt, 2006), phospho-STAT4 was not detected in WT and H1RKO CD4 T cells 

after activation with anti-CD3 and anti-CD28 mAbs (data not shown).  

H1R ligation has recently been shown to lead to the phosphorylation of  p38 MAP 

kinase in DDT1MF-2 cells (Robinson and Dickenson, 2001) and in human aortic 



 

45

endothelial cells (Steffel et al., 2005). Activation of p38 MAP kinase pathway is required 

for IFNγ production and Th1 differentiation (Rincon et al., 1998). We therefore examined 

the activation of p38 MAP kinase by Western blot analysis. CD4 T cells from WT and 

H1RKO mice were stimulated with anti-CD3 and anti-CD28 mAbs for different periods 

of time. p38 MAP kinase was activated in WT CD4 T cells but was markedly impaired in 

H1RKO CD4 T cells (Fig. 5C). In contrast, no difference in ERK MAP kinase activation 

was observed between WT and H1RKO CD4 T cells (Fig. 5D). As has been reported by 

us previously (Weiss et al., 2000), activation of JNK MAP kinase could not be detected at 

the earlier time points in both WT and H1RKO CD4 T cells stimulated with anti-CD3 

and anti-CD28 mAbs (data not shown). We further examined the activation of p38 MAP 

kinase by TCR ligation in H1RKO-Tg CD4 T cells. Unlike H1RKO CD4 T cells, the 

levels of phospho p38 MAP kinase in H1RKO-Tg CD4 T cells were equivalent to those 

in the WT CD4 T cells (Fig. 5E). Thus, TCR mediated activation of p38 MAP kinase 

required the presence of H1R in CD4 T cells. 

Activation of p38 MAP kinase by TCR is mediated by histamine/H1R binding  

To understand the mechanism by which H1R could regulate TCR mediated p38 

MAP kinase activation, we examined if histamine itself could activate the p38 MAP 

kinase in CD4 T cells. Histamine is already present at low concentrations (about 10-7M) 

in the serum used for the culture medium. Therefore, we assessed p38 MAP kinase 

phosphorylation in response to histamine using a medium prepared with previously 

dialyzed serum to deplete histamine (Banu and Watanabe, 1999). CD4 T cells from WT 

and H1RKO mice were resuspended in the histamine-free medium and treated with 

histamine. p38 MAP kinase was activated by histamine in WT CD4 T cells but not 
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in H1RKO CD4 T cells (Fig. 6A), indicating that histamine activates this pathway in 

CD4 T cells through H1R.  

Since histamine was present in the normal medium used to activate CD4 T cells 

with anti-CD3 and anti-CD28 mAbs (Fig. 5C and 5E), it was possible that the activation 

of p38 MAP kinase by TCR ligation was co-dependent upon histamine signaling through 

the H1R. To test this possibility, we examined p38 MAP kinase activation upon anti-CD3 

and anti-CD28 mAb stimulation in histamine-free medium. TCR ligation failed to 

activate p38 MAP kinase in both WT and H1RKO CD4 T cells in histamine-free medium 

(Fig. 6B). In contrast, the absence of histamine did not affect TCR-mediated ERK 

activation (Fig.8) or the intracellular calcium mobilization (data not shown) in WT CD4 

T cells. To further demonstrate the selective requirement for histamine in TCR-mediated 

p38 MAP kinase activation, WT and H1RKO CD4 T cells were stimulated in histamine-

free medium with anti-CD3 and anti-CD28 mAbs in the presence of histamine. TCR-

mediated p38 MAP kinase activation was restored by histamine in WT CD4 T cells but 

not in H1RKO CD4 T cells (Fig. 6C), indicating that binding of histamine to H1R was 

required for activation of p38 MAP kinase upon TCR ligation. Interestingly, the levels of 

phospho-p38 MAP kinase in WT CD4 T cells treated anti-CD3 and anti-CD28 mAbs and 

histamine were similar to the levels obtained when the cells were treated with histamine 

alone (Fig. 6C). The inability of TCR to activate p38 MAP kinase in H1R deficient cells 

in normal medium (Fig. 5C), the inability of TCR ligation to activate p38 MAP kinase in 

the histamine-free medium (Fig. 6B) and the inability of TCR to further increase p38 

MAP kinase activation when histamine was added to the histamine free medium strongly 

suggest that the activation of p38 MAP kinase observed upon TCR ligation is dependent 
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upon concomitant H1R signaling. 

Although the precise mechanism by which p38 MAP kinase regulates IFNγ 

production in CD4 T cells remains unclear, recent studies have suggested that the 

activation of the this MAP kinase pathway is required for T-bet expression (Engelhardt, 

2006; Jones et al., 2003) and T-bet regulates IFNγ production (Szabo et al., 2000). We 

therefore examined T-bet expression by Western blot analysis during activation of WT 

and H1RKO CD4 T cells. T-bet levels were lower in activated H1RKO CD4 T cells 

compared to the WT CD4 T cells (Fig. 6D). Thus, the impairment in p38 MAP kinase 

activation in the absence of H1R reduces the T-bet expression and thereby IFNγ 

production by CD4 T cells during TCR activation.  

In order to demonstrate that the reduced p38 MAP kinase activation in H1RKO 

CD4 T cells in responsible for the lower IFNγ production by these cells, we crossed 

H1RKO mice with the previously described distal MKK6Glu-Tg mice (Rincon et al., 

1998). These mice express a constitutively active form of MKK6, a specific upstream 

activator of p38 MAP kinase, under the control of dlck promoter to drive the expression 

in T cell lineage. Thus p38 MAP kinase is constitutively and selectively active in T cells 

in these mice. Anti-CD3 and anti-CD28 mAb stimulated CD4 T cells from H1RKO-

MKK6Glu-Tg mice  produced significantly more IFNγ than CD4 T cells from littermate 

H1RKO mice (Fig. 6E), indicating that the diminished activation of p38 MAP kinase in 

H1RKO CD4 T cells is responsible for the reduced IFNγ production by these cells.  
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H1R signaling directly in CD4 T cells regulates encephalitogenic Th1 effector 

responses 

As a shared autoimmune disease susceptibility gene, Hrh1 has been shown to 

control numerous disease associated subphenotypes, including blood brain barrier 

permeability, antigen presentation and delayed type hypersensitivity responses (Caron et 

al., 2001; Gao et al., 2003). To assess whether or not H1R signaling in CD4 T cells 

influences EAE by regulating encephalitogenic Th1 responses, we examined the 

susceptibility of H1RKO and H1RKO-Tg mice to EAE using the classical MOG35-

55+CFA+PTX model and the 2× MOG35-55+CFA model (Teuscher et al., 2006a), which 

does not use PTX as an ancillary adjuvant. Regression analysis (Teuscher et al., 2006a) 

revealed that the clinical disease courses elicited by both induction protocols fit a 

Sigmoidal curve and that compared to H1RKO mice the clinical course of EAE is 

significantly more severe in the transgenic mice [MOG35-55+CFA+PTX model: (overall F 

= 66.1; p < 0.0001) with WT (F = 132.1; p < 0.0001), H1RKO-Tg-1 (F = 127.5; p < 

0.0001), and H1RKO-Tg-3 (F = 83.3; p < 0.0001) mice significantly greater than 

H1RKO mice; 2× MOG35-55+CFA model: (overall F = 8.9; p < 0.0001) with WT (F = 

226.9; p < 0.0001), H1RKO-Tg-1 (F = 134.0; p < 0.0001) and H1RKO-Tg-3 (F = 215.8; 

p < 0.0001) mice significantly greater than H1RKO mice].  

An analysis of EAE associated clinical quantitative trait variables (Butterfield et 

al., 1998) revealed that the mean day of onset (DO), cumulative disease score (CDS), 

number of days affected (DA), overall severity index (SI) and the peak score (PS) were 

significantly different among the strains immunized with either MOG35-55+CFA+PTX 

(Table 1) or 2× MOG35-55+CFA (Table 2). Post hoc multiple comparisons of each 
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trait variable revealed that WT = H1RKO-Tg-1 = H1RKO-Tg-3 > H1RKO. Additionally, 

compared to H1RKO mice both MOG35-55+CFA+PTX (Fig. 7C) and 2× MOG35-55+CFA 

(Fig. 7D) immunized H1RKO-Tg-1 and H1RKO-Tg-3 mice exhibited significantly more 

severe overall CNS pathology (Blankenhorn et al., 2000) which was equivalent in 

severity to that seen in WT mice. Therefore, H1R expression in CD4 T cells alone is 

capable of complementing EAE susceptibility in H1R deficient animals.  

We also examined cytokine production following ex-vivo stimulation of 

splenocytes from mice immunized with MOG35-55+CFA+PTX and 2× MOG35-55+CFA. 

The H1R transgene fully complemented IFNγ production by H1RKO CD4 T cells and 

restored IL-4 production to WT levels (Fig. 7E and 7F). In contrast, no significant 

differences in TNFα or IL-17 production were detected among WT, H1RKO and 

H1RKO-Tg mice. Together, these data indicate that H1R signaling in CD4 T cells 

complements EAE severity independently of TNFα and IL-17 production. 
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Discussion 

Although H1R has been previously shown to play a role in regulating 

encephalitogenic Th1 immune response in EAE (Bakker et al., 2002), it was unclear 

whether this was caused by the deficiency of H1R in CD4 T cells or APCs. In this study, 

we show that the presence of H1R in CD4 T cells is essential for the activation of p38 

MAP kinase and IFNγ production by these cells and the lack of H1R in CD4 T cells is 

responsible for the increased EAE resistance of H1RKO mice. These findings also 

explain the likely cause of the Th2 deviation and aberrant IL-4 production seen in the 

H1RKO (Bakker et al., 2002), a result we confirmed in the present study. This deviation 

could logically be due to the impairment in p38 MAP kinase activation that reduces the 

T-bet expression and thereby IFNγ production by CD4 T cells during TCR activation. 

Without H1R, naïve T cells cannot be driven into the full Th1 developmental pathway, 

and the result is an unbalanced immune repertoire that is generally thought to be 

protected from signs of EAE (Shaw et al., 1997). 

Even though the expression of H1R in CD4 T cells has been reported (Sachs et al., 

2000) it was unknown how H1R is regulated during the activation phase of CD4 T cells. 

Here we show, for the first time, that the H1R gene expression is silenced early after the 

activation of CD4 T cells. Modulation of H1R signaling, like other GPCRs, is complex 

and includes receptor desensitization, internalization and the subsequent down-regulation 

(McCreath et al., 1994; Smit et al., 1996). Desensitization of H1R is induced by both 

agonist specific (homologous) and agonist non-specific (heterologous) pathways, mainly 

involving PKC-mediated phosphorylation of H1R (Fujimoto et al., 1999; Miyoshi et al., 

2004). PKC activation has been shown to inhibit H1R both at the protein level as 
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well as at the gene expression level (Miyoshi et al., 2006; Pype et al., 1998; Yoshimura et 

al., 2005). Because TCR ligation leads to potent activation of PKC (Acuto and Cantrell, 

2000), silencing of H1R expression in activated CD4 T cells may be a consequence of 

PKC activation. Although the transcriptional regulation of H1R promoter is not well 

understood, H1R-mediated signaling has been shown to be necessary for continued H1R 

expression (Miyoshi et al., 2006; Yoshimura et al., 2005). Thus, the loss of H1R gene 

expression in activated CD4 T cells in mice may be a mechanism to turn off possible 

subsequent histamine signals in these cells. In humans, H1R expression is reported to 

increase in Th1 differentiated cells (Jutel et al., 2001). However, H1R mRNA was rapidly 

downregulated even during the Th1 differentiation of mouse CD4 T cells (data not 

shown). These apparently contradictory results may be explained by the different origin 

of the T cells (mouse vs. human) or by other differences in the culture conditions used.  

  H1R has been previously implicated in the regulation of IFNγ production. H1R- 

deficient splenocytes have been shown to produce lower IFNγ when activated by anti-

CD3 and-CD28 mAbs or by specific antigen (Bakker et al., 2002; Banu and Watanabe, 

1999; Bryce et al., 2006; Jutel et al., 2001) but no studies have addressed the role of H1R 

in isolated CD4 T cells. Here we show that H1R expression in CD4 cells is essential 

specifically for IFNγ production by these cells but not for IL-2 production or 

proliferation. A previous report showed hypoproliferation of total splenocytes from H1R 

deficient mice in response to anti-CD3 mAb (Banu and Watanabe, 1999). However, the 

low proliferative response could be due to the H1R deficiency in cells other than CD4 T 

cells, such as antigen presenting cells (e.g. macrophages or dendritic cells) that also 

express H1R. Although CD4 T cells also express H2R and H4R, in addition to H1R, 
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the selective restoration of the IFNγ response in CD4 T cells from H1RKO-Tg mice 

clearly demonstrates that signaling through H1R is necessary for regulation of IFNγ 

production in these cells.  

Several studies have shown that p38 MAP kinase is activated in CD4 T cells or 

total T cells upon TCR activation. Co-stimulatory molecules (such as CD28, 4-1BB, 

ICOS, CD30) also contribute to the activation of p38 MAP kinase during activation 

(Dodeller and Schulze-Koops, 2006). While most studies agree on the role of p38 MAP 

kinase on IFNγ production and Th1 differentiation, recent studies have questioned the 

requirement of TCR-mediated p38 MAP kinase activation. Instead, they propose that 

activation of this pathway by cytokines such as IL-12 or IL-18 is probably more relevant 

(Berenson et al., 2006). To date, the effect of other components also present in the milieu 

during TCR activation has not been addressed. Here we show, for the first time, that 

activation of p38 MAP kinase by TCR/CD28 ligation is dependent on the presence of 

histamine and its binding to H1R. A previous study has shown the requirement of H1R for 

ZAP-70 activation in H1RKO total splenocytes in conjunction with the hypoproliferative 

defect in these cells (Banu and Watanabe, 1999). However, here we show that in CD4 T 

cells, H1R is not required for other key signaling pathways such as ERK activation 

(Fig.8), NF-κB activation (Fig. 5A) or calcium mobilization (data not shown), as well as 

for IL-2 production and proliferation. Thus, deficiency of H1R in CD4 T cells appears to 

selectively impair the activation of the p38 MAP kinase pathway, but the mechanism 

remains to be investigated further. p38 MAP kinase is normally activated through the 

upstream MAPKK, MKK3 and MKK6 (and MKK4 in response to some stimuli) 

(Kyriakis and Avruch, 2001). It has been shown that GADD45 proteins interact 
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with MEKK4, an upstream kinase of MKK3 and MKK6 and thus activate p38 MAP 

kinase (Takekawa and Saito, 1998). An alternative pathway for activation of p38 MAP 

kinase through its autophosphorylation has also been recently proposed (Salvador et al., 

2005). H1R signaling is mediated by Gαq/11 protein, which is also associated with TCR 

signaling through CD3ε (Stanners et al., 1995). Thus, it is possible the H1R through 

Gαq/11 could regulate GADD45 members (α, β and γ) and lead to p38 MAP kinase 

activation through either the classical or alternative pathway in CD4 T cells.  

Epidemiological data indicate that the use of sedating H1R antagonists is 

associated with decreased MS risk (Alonso et al., 2006); and in a small pilot study, 

patients with relapsing-remitting or relapsing-progressive MS given the H1R antagonist 

hydroxyzine remained stable or improved neurologically (Logothetis et al., 2005). 

Additionally, microarray analysis revealed that the H1R is overexpressed in the chronic 

plaques of MS patients (Dormond et al., 2002). Historically, the role of histamine in 

autoimmune inflammatory disease of the CNS has been viewed as a mediator of the 

effector or inflammatory phase of the disease (Bebo et al., 1996). However, recent data 

showing that EAE and neuroantigen specific T effector cell responses are significantly 

different in histamine- and histamine receptor-deficient mice compared to WT mice 

revealed that histamine plays a role during the induction phase and priming of 

autoreactive effector T cells (Bakker et al., 2002; Fillmore et al., 2004; Musio et al., 

2006). In this regard, our results show that H1R signaling in T cells regulates Th1 effector 

functions, but not Th17 effector functions, and EAE severity, independent of APCs and 

other hematopoietically-derived cells. Moreover, our results demonstrate that H1R 

signaling in CD4 T cells regulates the encephalitogenic Th1 effector responses 
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during the priming of naïve antigen-specific CD4 T cells. Taken together, this suggests 

that pharmacological targeting of the H1R may be useful early in the treatment of MS and 

other autoimmune inflammatory diseases in which molecular mimicry, bystander 

activation (with or without epitope spreading), and viral persistence play a role in 

perpetuating immunopathology as a consequence of continual priming of pathogenic 

adaptive immune responses (Fujinami et al., 2006). 
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Materials and methods  
 
Mice 

C57BL/6J mice were purchased from the Jackson Laboratory (Bar Harbor, ME). 

B6.129P-Hrh1tm1Wat (H1RKO) (Banu and Watanabe, 1999) mice were maintained in the 

animal facility at the University of Vermont (Burlington, VT). The experimental 

procedures used in this study were approved by the Animal Care and Use Committee of 

the University of Vermont. 

For transgenic mouse generation, an HA-H1R construct was made by deleting the 

methionine of the Bphs-susceptible H1R allele (Bakker et al., 2002) and adding an HA 

tag at the N-terminus using TOPO cloning vector (Invitrogen, Carlsbad, CA). The HA-

H1R was then subcloned downstream of the distal lck promoter (Wildin et al., 1991). The 

linear DNA fragment containing the distal lck promoter, the HA-H1R gene and the human 

growth hormone (hGH) intron and polyadenylation signal was injected directly into 

fertilized C57BL/6J eggs at the University of Vermont transgenic/knockout facility. Mice 

were screened by DNA slot blot using a BamHI–SacI 0.5 kb fragment from the hGH gene 

as a probe. Two founders were generated and were crossed to H1RKO mice to establish 

transgenic mouse lines in H1RKO background (H1RKO-Tg mice). Distal lck MKK6Glu 

transgenic mice (Rincon et al., 1998) were crossed to H1RKO mice to generate H1RKO-

MKK6Glu transgenic mice.  

Cell preparation and culture conditions 

CD4 T cells were isolated from spleen and lymph nodes by negative selection for 

CD8-, MHC class II-, NK1.1- and CD11b-positive cells using magnetic beads from 

Qiagen, Valencia, CA, as previously described (Rincon et al., 1998). Purified 
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CD4 T cells were stimulated with plate bound anti-CD3 (5 μg/ml) and soluble anti-CD28 

(1 μg/ml) monoclonal antibodies (mAbs) from BD Pharmingen (Franklin Lakes, NJ). 

Th1 polarized CD4 effector T cells were generated by culturing the CD4 T cells (1×106 

cells/ml) with anti-CD3 and anti-CD28 mAbs in presence of 4 ng/ml of recombinant IL-

12 (R&D systems, Minneapolis, MN) and 10 μg/ml of anti IL-4 mAb (BD Pharmingen, 

San Diego, CA). Th2 polarized CD4 effector T cells were generated by activating cells 

(1×106/ml) with anti-CD3 and anti-CD28 mAbs in presence of 30 ng/ml of recombinant 

IL-4 (R&D systems, Minneapolis, MN) and 10 μg/ml of anti IFNγ-4 mAb. Effector Th17 

CD4 T cells were generated by activating CD4 T cells (1×106 cells/ml) with anti-CD3 

and anti-CD28 mAbs in presence of 1 ng/ml of TGFβ (Peprotech Inc, Rocky Hill, NJ) 

and 30 ng/ml of IL-6 (R&D systems, Minneapolis, MN) and 10 μg/ml of anti-IFNγ and 

10 μg/ml of anti IL-4  mAbs. After 4 days, the cells were extensively washed, counted 

and equal number of cells were restimulated with anti-CD3 mAb. After 24 hours, the 

supernatants were collected and IFNγ, IL-4 and IL-17 were analyzed by ELISA. Non-

polarized effector cells were generated by culturing CD4 T cells with anti-CD3 and anti-

CD28 mAbs in the absence of exogenous cytokines for four days. The cells were then 

extensively washed, counted and equal numbers of cells were restimulated with anti-CD3 

mAb. After 24 hours, the supernatants were collected and IFNγ was analyzed by ELISA. 

 Histamine dihydrochloride was obtained from Sigma-Aldrich (St. Louis, MO). 

RPMI prepared with 10% Fetalclone © bovine serum (Hyclone, Logan,UT ), serum 

dialyzed twice with 10,000 kDa molecular cutoff,  was used as histamine free medium. 
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Cytokine production 

ELISAs were performed on the cell culture supernatants as described previously 

(Fillmore et al., 2004), using the primary antibodies: anti-IFNγ, anti-IL-2, anti-IL-4 and 

anti-IL17 mAbs and their corresponding biotinylated mAbs (BD Pharmingen, San Diego, 

CA). Other ELISA reagents included: Horseradish peroxidase-conjugated avidin D 

(Vector Laboratories, Burlingame, CA), TMB microwell peroxidase substrate and stop 

solution (Kirkegaard and Perry Laboratories, Gaithersburg, MD) and recombinant IFNγ, 

IL-4 and IL-2 (R&D Systems, Minneapolis, MN) used as standards. 

For cytokine analysis in ex-vivo stimulated splenocytes from mice immunized 

with the classical MOG35-55+CFA+PTX model and the 2x MOG35-55+CFA model, single 

cell suspensions were prepared @ 1x106 cells/ml in RPMI medium and stimulated with 

50 μg/ml of MOG35-55. Cell culture supernatants were recovered at 72 hours and cytokine 

levels were measured by ELISA using anti-IFNγ, anti-IL-4 and anti-IL17 mAbs and their 

corresponding biotinylated mAbs (BD Pharmingen, San Diego, CA). TNFα ELISA kit 

was from (BD Pharmingen, San Diego, CA). 

Proliferation Assays 

CD4 T cells (2.5×105 cells/well) were activated with anti-CD3 and anti-CD28 

mAbs for 72 h and proliferation was determined by 3[H]-thymidine incorporation during 

the last 18 h of culture. 

Quantitative Real-Time Polymerase Chain Reaction (RT-PCR) 

Total RNA was extracted from CD4 T cells using RNeasy RNA isolation reagent 

(Qiagen, Valencia, CA) as recommended by the manufacturer. cDNA generated from 1 

μg total RNA was used in quantitative real time RT-PCR using the SYBR green 
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method. The sequences of Hrh1 primers used were F: 5’-

CCAGAGCTTCGGGAAGATAA-3’ and  R: 5’ACCACAGCATGAGCAAAGTG-5’. β-

2-microglobulin was used as reference gene and relative mRNA levels were calculated 

using comparative CT method. For conventional RT-PCR, the cDNA was amplified by 

PCR and visualized on 1% gel.  The primers mentioned above were used for Hrh1 and 

the primers used for Hprt1 were F: 5’-GTTGGATACAGGCCAGACTTTGTTG-3’and 

R:5’-GAGGGTAGGCTGCCTATAGGCT-3”. To study the transgene expression in 

H1RKO-Tg mice, the cDNA prepared as explained above was amplified using a forward 

primer in Hrh1 (5”-CTCCCGGACCACAGACTCAGA-3’) and a reverse primer in the 

3rd exon of hGH (5’-GACGGAGGTCTGGGGGTTCTG) and the PCR product was 

visualized on 1% agarose gel. 

Retroviral transduction experiments 

The retroviral vector plasmid pEGZ-HA was a generous gift from Dr. Ingolf 

Berberich (University of Wurzburg, Wurzburg, Germany) and packaging vectors 

pHIT123 and pHIT 60 were generous gifts from Dr. Alan Klingsman (Oxford University, 

Oxford. UK). Two restriction sites, BamHI and EcoRI were inserted into the mouse H1R 

cDNA by PCR and cloned such that the second codon is in frame with the HA tag of 

pEGZ generating an HA-H1R fusion protein. pEGZ is a bicistronic system with IRES-

EGFP. EGFP served as a marker for transfected cells.  

The retroviral vector plasmids, pEGZ-HA-H1R or the empty pEGZ and the 

packaging vectors pHIT60 and pHIT123 were transiently transfected into human 

embryonic kidney fibroblasts expressing the SV40 large T antigen (HEK293T) cells 

using the calcium phosphate method. After two days, the retrovirus containing 
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supernatants were used to transduce (by centrifugation at 800g for 3 hours at 320C) CD4 

T cells previously activated with anti-CD3 and anti-CD28 mAbs for 16 hours. The 

transduced CD4 T cells were cultured in presence of 50 U/ml of IL-2 for two days and 

were sorted using a FACSAria instrument (BD Pharmingen, San Diego, CA), based on 

their EGFP expression.  Equal numbers of EGFP positive cells were restimulated with 

anti-CD3 mAb and 24 hours later IFNγ was measured in the supernatant by ELISA.  

Confocal microscopy 

HEK293T cells were transfected with pEGA-HA-H1R or empty pEGZ control 

vector (5 μg total DNA) using the calcium phosphate method. Cells were fixed, 

permeabilized and stained using an anti-HA mAb (Cell Signaling Technologies, Danvers, 

MA) followed by an incubation with Alexa-568 anti-mouse antibody (Molecular Probes, 

Eugene, Oregon). TOPRO-3 nuclear stain (Molecular Probes, Eugene, Oregon) was used 

as a nuclear marker. Cells were examined by confocal microscopy using Zeiss LSM 510 

META Confocal Laser Scanning Imaging System (Carl Ziess Microimaging Inc, 

Thronwood, NY) 

Cell lysates and Western blotting 

Whole-cell lysates were prepared from 1x106-5x106 cells in Triton lysis buffer 

and were then separated via sodium dodecyl sulfate-polyacrylamide gel electrophoresis 

(SDS-PAGE) and transferred to nitrocellulose membranes as described previously (Farley 

et al., 2006). Primary antibodies used for Western blot analysis include anti-HA (Abcam 

Inc. Cambridge, MA), anti-p38, anti-phospho-p38, anti-phospho-STAT1, anti-phospho-

STAT4, anti-phospho-ERK, anti-ERK, anti-phospho-JNK, anti-JNK (Cell Signaling 

Technologies. Danvers, MA), anti-T-bet (a gift from Dr. L. Glimcher, Harvard 
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University School of Public Health, Boston, MA) and anti-actin (Santa Cruz 

Biotechnology, Santa Cruz, CA). 

[35S]GTPγS binding assay 

The HA-H1R cDNA was subcloned into pcDNA3 using restriction sites 

EcoRI/BamHI. The [35S]GTPγS binding experiments were initiated by the addition of 50 

fmols of receptor to an assay buffer (20mM HEPES (pH 7.4), 3mM MgCl2, 100mM 

NaCl, 1µM GDP, 0.2mM ascorbic acid, and 100nCi [35S]GTPγS) containing 100μM 

histamine. Non-specific binding was determined in the above condition with the 

addition of 100µM GTPγS. Reactions were incubated for 15 min at 300C and were 

terminated by the addition of 500µl of ice-cold buffer containing 20mM HEPES (pH 

7.4), 3mM MgCl2, 100mM NaCl and 0.2mM ascorbic acid. The samples were 

centrifuged at 16,000 x g for 10 minutes at 40C. The resulting pellets were re-suspended 

in solubilization buffer (100mM Tris, 200mM NaCl, 1mM EDTA, and 1.25% Nonidet 

P-40) plus 0.2% SDS. Samples were precleared with Pansorbin for 1 hour, followed by 

immunoprecipitation with C-terminal Gα11 antiserum. Finally, the immunocomplexes 

were washed with solubilization buffer and bound [35S]GTPγS was estimated by liquid 

scintillation-spectrometry. 

Electrophoretic mobility shift assay (EMSA)  

Nuclear extracts were prepared from anti-CD3 and anti-CD28 mAbs treated CD4 

T cells as previously described (Berenson et al., 2006). Binding reactions for 

electrophoretic gel mobility shift assay were carried out at room temperature using 2 μg 

nuclear proteins and [32P]dCTP-end labeled double-stranded oligonucleotide probes 

containing NF-κB binding site from the mouse κ intron enhancer (Sense 5’-
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GATCAGAGGGGACTTTCCGAGGGAT-3’ and anti-sense 5’-

GATCCCTCGGAAAGTCCCCTCTGAT-3’). Samples were separated by 

electrophoresis under non-denaturing conditions and exposed to film for autoradiography. 

Induction and Evaluation of EAE 

  Mice were immunized for the induction of EAE using either the MOG35-55-

complete Freund’s adjuvant (CFA) double-inoculation (Butterfield et al., 1998) or the 

MOG35-55-CFA+PTX single-inoculation protocols (Teuscher et al., 2006a). For the 

double-injection protocol mice were injected subcutaneously with an emulsion of 100 μg 

of MOG35-55 and an equal volume of CFA containing 200 μg of Mycobacterium 

tuberculosis H37RA (Difco Laboratories, Detroit, MI) in the posterior right and left 

flank; one week later all mice were similarly injected at two sites on the right and left 

flank anterior of the initial injection sites. Animals immunized using the MOG35-55-

CFA+PTX single-inoculation protocol received an emulsion of 200 μg MOG35-55 and 

equal volume of CFA containing 200 μg of Mycobacterium tuberculosis H37RA by 

subcutaneous injections distributed equally in the posterior right and left flank and scruff 

of the neck. Immediately thereafter, each animal received 200 ng PTX (List Biological 

Laboratories, Campbell, CA) by intravenous injection. Mice were scored daily starting at 

day 5 post-injection as previously described (Teuscher et al., 2006a). Clinical quantitative 

trait variables including disease incidence and mean day of onset (DO), cumulative 

disease score (CDS), number of days affected (DA), overall severity index (SI) and the 

peak score (PS) were generated as previously described (Butterfield et al., 1998). 

Brains and SC were dissected from calvaria and vertebral columns, respectively, 

and fixed by immersion in 10% phosphate- buffered formalin (pH 7.2). Following 
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adequate fixation, brain and SC were trimmed and representative transverse section 

embedded in paraffin, sectioned at 5 µm, and mounted on glass slides. Sections were 

stained with hematoxylin and eosin for routine evaluation and Luxol fast blue-periodic 

acid Schiff for demyelination. Sections from representative areas of the brain and SC 

were scored in a semi-quantitative fashion for the various histopathologic parameters as 

previously described (Blankenhorn et al., 2000). An overall CNS pathology index (PI) for 

each lesions was obtained by calculating the average scores for the lesions observed in 

the brain and spinal cord.  

Statistical analysis 

The statistical analyses, as indicated in the figure legends, were performed using 

GraphPad Prism 4 software (GraphPad software Inc, San Diego, CA).  
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Figure 1. H1R is required for IFNγ production by CD4 T cells. 
 
 Purified CD4 T cells from WT and H1RKO mice were activated with anti-CD3 (5μg/ml) and 
anti-CD28 (1μg/ml) mAbs either in presence of  IL-12 (4ng/ml) and anti-IL-4 mAb (10μg/ml) 
(A), or IL-4 (30ng/ml) and anti-IFNγ mAb (10μg/ml) (B) or TGF-β (1ng/ml), IL-6 (30ng/ml) and 
anti-IFNγ (10μg/ml) and anti-IL4 mAbs (10μg/ml) (C). After 4 days, cells were restimulated with 
anti-CD3 mAb (5μg/ml) for 24h. IFNγ (Α), IL-4 (B) or IL-17 (C) production was determined by 
ELISA in triplicate. *, p < 0.05, compared with H1RKO cells (Student’s t-test). (D) CD4 T cells 
were activated with anti-CD3 (5μg/ml) and anti-CD28 (1μg/ml) mAbs. After 4 days, cells were 
restimulated with anti-CD3 mAb (5μg/ml) for 24h and IFNγ production was determined by 
ELISA.**, p = 0.002 compared with H1RKO cells (Student’s t-test). (E and F) CD4 T cells were 
stimulated as in (D) for the indicated periods of time. Supernatants were analyzed for IFNγ  (E) 
and  IL-2 (F) by ELISA. Significance of differences in cytokine production were assessed by 
two-way ANOVA (F = 168.8; p < 0.0001) followed by post-hoc comparisons using one-way 
ANOVA (** p < 0.01; *** p < 0.001). (G) CD4 T cells from WT and H1RKO mice were 
stimulated as in (E) and 18h 3[H]-thymidine incorporation measured in total 72h culture. All the 
data are representative of at least two independent experiments. 
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Figure 2. Expression and function of HA-H1R in HEK293T cells. 

 
(A) HEK293T cells were transfected with empty pEGZ (control) and pEGZ-HA-H1R 
plasmids and the expression of HA-H1R was determined by Western blot using an anti-
HA mAb.  The data is representative of at least three independent experiments. (B) 
HEK293T cells were transfected as in (A), fixed, permeabilized and stained with an anti-
HA mAb (red) and Topro-nuclear dye (blue). EGFP expression (green) represents 
transfected cells. Cells were visualized by confocal microscopy. The data are 
representative of at least three independent experiments. (C) HEK293 cells were 
transfected with pHA-H1R-Gα11 fusion construct,  membrane fractions generated and 
were used in absence (basal) or presence of 10-4M histamine in [35S] GTPγS binding 
assay. Samples were then used in immuno-precipitation using Gα11 antiserum and the 
bound [35S] GTPγS was measured by liquid-scintillation spectrometry. 
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Figure 3. H1R expression is downregulated upon activation in CD4 T cells.  
 

(A) CD4 T cells from WT and H1RKO mice were stimulated in the presence of anti-CD3 
and anti-CD28 mAbs for 16h and then retrovirally transduced with pEGZ-HA-H1R or 
with empty pEGZ control plasmids.  Transduced, sorted EGFP+ cells were then re-
stimulated with anti-CD3 mAb and 24h later the supernatants were harvested for 
determination of IFNγ by ELISA in triplicate. The data presented is representative of two 
independent experiments. ***, p < 0.0001 compared with H1RKO cells (Student’s t-test). 
(B) Freshly isolated CD4 T cells from WT and H1RKO were activated with anti-CD3 
and anti-CD28 mAbs. After 24h, IFNγ production was determined by ELISA. The results 
shown are representative of at least three independent experiments. ***, p < 0.001 
compared with H1RKO cells (Student’s t-test). (C and D) CD4 T cells were isolated from 
WT mice and stimulated with anti-CD3 and anti-CD28 mAbs. Cells were harvested at the 
indicated time point, total RNA was isolated and used to examine H1R expression by 
conventional RT-PCR with HPRT as the endogenous control (C) and by quantitative real 
time RT-PCR relative to β2-microglobulin as the endogenous control (D). Data presented 
as expression relative to the unstimulated CD4 T cells. The data are representative of at 
least three independent experiments. 
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Figure 4. Transgenic expression of H1R in H1RKO CD4 T cells complements IFN-γ 
production.  
 

(A) H1R transgene expression was analyzed by RT-PCR in CD4 T cells from WT, 
H1RKO mice and the two independent lines of H1R transgenic mice crossed with 
H1RKO mice (H1RKO-Tg-1 and H1RKO-Tg-3). (B) CD4 T cells were stained with anti-
HA mAb (red) and visualized by confocal microscopy. Nuclear stain Topro (blue) is 
shown. (C) CD4 T cells were activated with anti-CD3 and anti-CD28 mAbs for 72 h and 
IFNγ  was determined by ELISA. Data are expressed as IFNγ production relative to that 
by WT cells (set as 100%). (D) CD4 T cells from WT, H1RKO and H1RKO-Tg-3 were 
stimulated as in (C) for the indicated periods of time and IFNγ was determined by 
ELISA. Statistical analysis using two-way ANOVA (F=55.1; p<0.0001) followed by 
post-hoc comparisons using one-way ANOVA was performed (**, p<0.01; ***, 
p<0.001). (E) CD4 T cells were activated with anti-CD3 and anti-CD28 mAbs in 
presence of IL-12 (4ng/ml) and anti-IL-4 mAb (10μg/ml). After 4 days, cells were 
restimulated and IFNγ production was determined. Statistical analysis using one-way 
ANOVA (F=25.4; p<0.001) followed by Bonferroni’s post-hoc comparisons with 
H1RKO cells was performed (**, p<0.01). (F) CD4 T cells were activated with anti-CD3 
and anti-CD28 mAbs. After 4 days, cells were restimulated with anti-CD3 mAb for 24h 
and IFNγ production was determined by ELISA. Significance of differences was 
determined as in (E) (***, p < 0.001). The data presented are representative of at least 
three independent experiments. 
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Figure 5. Activation of p38 MAP kinase by TCR ligation requires H1R signals.  
 

(A) Purified CD4 T cells from WT and H1RKO mice were stimulated with anti-CD3 and 
anti-CD28 mAbs for the indicated periods of time, nuclear extracts were prepared and 
analyzed for NF-κB DNA binding by EMSA. (B) CD4 T cells from WT and H1RKO 
mice were stimulated with anti-CD3 and anti-CD28 mAbs for the indicated periods of 
time, whole cell lysates were prepared and analyzed for phospho-STAT1 (P-STAT1) and 
total STAT1 by Western blot analysis. Actin was used as loading control. (C) CD4 T 
cells from WT and H1RKO were treated with anti-CD3 and anti-CD28 mAbs for the 
indicated periods of time, whole cell lysates were prepared and analyzed for phospho-p38 
MAP kinase and total p38 by Western blot analysis. (D) CD4 T cells from WT and 
H1RKO were activated with anti-CD3 and anti-CD28 mAbs for the indicated periods of 
time, whole cell lysates were prepared and analyzed for phospho-ERK and total ERK by 
Western blot analysis. (E) CD4 T cells from WT, H1RKO and H1RKO-Tg-3 mice were 
stimulated with anti-CD3 and anti-CD28 mAbs for the indicated periods of time and 
whole cell lysates were analyzed for phospho-p38, total p38 and actin by Western 
blotting. All the results presented are representative of at least two independent 
experiments.  
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Figure 6. Activation of p38 MAP kinase by TCR ligation is mediated by 
histamine/H1R binding.  
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(A) CD4 T cells from WT and H1RKO mice were treated with histamine (10-7 M) for the 
indicated periods of time in the histamine-free medium. Whole cell extracts were used to 
analyze phospho-p38, total p38 and actin by Western blotting. (B) CD4 T cells were 
isolated from WT and H1RKO mice and stimulated with anti-CD3 and anti-CD28 mAbs 
in the histamine free-medium for the indicated periods of time. CD4 T cells stimulated in 
10-7M histamine (Hist) containing medium are shown as positive control for p38 MAP 
kinase activation. Phospho-p38, total p38 and actin are shown. (C) CD4 T cells from WT 
and H1RKO were incubated with anti-CD3 and anti-CD28 mAbs, 10-7M histamine or 
both in the histamine-free medium for 30 minutes and whole cell lysates were analyzed 
for phospho-p38, total p-38 and actin by Western blotting. (D) CD4 T cells from WT and 
H1RKO mice were stimulated with anti-CD3 and anti-CD28 mAbs for the indicated 
periods of time and whole cell lysates were analyzed for T-bet expression by Western 
blot. Actin is shown as loading control. (E) Purified CD4 T cells from WT, H1RKO and 
H1RKO-MKK6Glu transgenic mice were stimulated with anti-CD3 and anti-CD28 mAbs 
for the indicated periods of time and supernatants were analyzed for IFNγ production by 
ELISA in triplicate. Significance of differences were determined by Student’s t-test (*** 
p < 0.001). All the data are representative of at least two independent experiments. 
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Figure 7. H1R signaling directly in CD4 T cells regulates encephalitogenic Th1 
effector responses.  
 
Clinical EAE course, severity of CNS pathology and ex-vivo cytokine responses of WT, 
H1RKO and H1RKO-Tg mice were compared following immunization with  MOG35-

55+CFA+PTX (A, C and E) and  2× MOG35-55+CFA (B, D and F). Cytokine production 
was assessed by stimulating splenocytes with MOG35-55 on D10 post-injection, 
supernatants collected and quantified by ELISA in triplicate. The significance of 
differences in the course of clinical disease, clinical disease traits, CNS pathology indices 
(PI) and cytokine responses were assessed by regression analysis (63), Chi-square test, 
 or ANOVA followed by post hoc multiple comparisons. With the exception of disease 
incidence, and TNF-α and IL-17 production, significant differences among the strains 
were detected for all parameters at p < 0.0001 with C57BL/6J = H1RKO Tg-1 = H1RKO 
Tg-3 > H1RKO.  
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Figure 8.  Absence of histamine does not affect TCR-mediated ERK activation.  
 
WT CD4 T cells were activated with anti-CD3 and anti-CD28 mAbs for 30 min in 
presence or absence of 10-7M histamine and whole cell lysates were analyzed for 
phospho-ERK, total ERK and actin by Western blotting. 
 



 

77

 

 

 
Table 1: Clinical disease parameters in MOG35-55+CFA+PTX immunized mice  
 
 

 

 

 

 

 

 

 

 

 

 

 

Strain Incidence Day of 
onset 

Cumulative 
disease 
score 

Days 
affected 

Severity 
index 

Peak 
score 

C57BL/6J 19/19 13.1±0.3 56.2±4.6 18.0±0.3 3.1±0.2 3.9±0.3 

H1RKO 55/56 15.7±0.4 32.1±1.4 15.0±0.4 2.1±0.1 3.0±0.1 

Tg-1 24/24 12.9±0.4 50.0±3.7 17.8±0.5 2.8±0.2 3.6±0.2 

Tg-3 23/25 12.1±0.1 50.0±3.2 18.7±0.2 2.7±0.2 3.6±0.2 

                     
                          χ2 = 4.5        F = 20.6           18.1                32.5         11.7             8.1 
                            p = 0.2        p < 0.0001    < 0.0001         < 0.0001       < 0.0001     < 0.0001 
                            
                                   C57BL/6J = H1RKO-Tg-1 = H1RKO-Tg-3 > H1RKO 
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Table 2: Clinical disease parameters in 2x (MOG35-55+CFA) immunized mice  
 

 

 

 

 

 

 

 

 

 

 

 

 

Strain Incidence Day of 
onset 

Cumulative 
disease 
score 

Days 
affected 

Severity 
index 

Peak 
score 

C57BL/6J 18/18 16.6±0.7 37.6±2.9 14.2±0.7 2.6±0.1 3.2±0.2 

H1RKO 26/33 17.1±0.5 20.0±1.8 9.8±0.9 1.6±0.1 2.2±0.1 

Tg-1 22/23 16.2±0.6 36.4±3.8 13.3±0.8 2.5±0.2 3.2±0.2 

Tg-3 23/25 15.7±0.4 46.1±4.0 14.0±0.9 2.7±0.2 3.6±0.2 

                  
                         χ2 = 7.5          F = 1.5              9.5                 5.1          11.2              12.2 
                           p = 0.06        p = 0.051      < 0.0001           0.0025        < 0.0001    < 0.0001 
                              
                                    C57BL/6J = H1RKO-Tg-1 = H1RKO-Tg-3 > H1RKO 
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ABSTRACT 
 
  Structural polymorphisms (L263P, M313V and S331P) in the third intracellular 

loop of the murine histamine receptor H1 (H1R) are candidates for Bphs, a shared 

autoimmune disease locus in experimental allergic encephalomyelitis (EAE) and 

experimental allergic orchitis. The P-V-P haplotype is associated with increased disease 

susceptibility (H1RS) whereas the L-M-S haplotype is associated with less severe disease 

(H1RR). Here we show that selective reexpression of the H1RS allele in T cells fully 

complements EAE susceptibility and the production of disease associated cytokines while 

selective reexpression of the H1RR allele does not. Mechanistically, we show that the two 

H1R alleles exhibit differential cell surface expression and altered intracellular 

trafficking, with the H1RR allele being retained within the endoplasmic reticulum (ER). 

Moreover, we show that all three residues (L-M-S) comprising the H1RR haplotype are 

required for altered expression. These data are the first to demonstrate that structural 

polymorphisms influencing cell surface expression of a G-protein coupled receptor in T 

cells regulates immune functions and autoimmune disease susceptibility.   
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INTRODUCTION 

Multiple sclerosis (MS) is the major demyelinating disease of the central nervous 

system (CNS) in humans, affecting more than 2.5 million people worldwide (Greenstein, 

2007). Both environmental and genetic factors contribute to the immunopathologic 

etiology of the disease. A genetic component in disease susceptibility is supported by the 

20-30% concordance rate among monozygotic twins and 3-5% for dizygotic twins. 

Compared to the general population, MS is 20-40 times more common in first degree 

relatives and there is no excess risk in adopted relatives of patients with MS (Hafler et al., 

2005). Evidence of an environmental etiology in MS comes primarily from migration 

studies and geographic distribution data. Migration studies indicate that individuals 

moving from high-risk areas before puberty tend to adopt the lower risk of the native 

population and vice versa (Kantarci and Wingerchuk, 2006). Thus, susceptibility to MS is 

likely the result of environmental triggers acting on a susceptible genetic background at 

the population level. 

Experimental allergic encephalomyelitis (EAE), the primary animal model of MS, 

is also a genetically determined inflammatory disease of the CNS (Gold et al., 2000). 

EAE can be actively induced in genetically susceptible animals by immunization with 

either whole spinal cord homogenate or encephalitogenic proteins/peptides and adjuvants 

(Kuchroo et al., 2002). EAE, like MS, is a complex polygenic disease (Andersson and 

Karlsson, 2004), with multiple genes exerting a modest effect, thus making it difficult to 

study the contribution of individual loci to overall disease  pathogenesis. However, 

reduction of complex disease states into intermediate or subphenotypes that are 
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under the control of a single locus has the potential to facilitate mechanistic studies and 

gene identification (Andersson and Karlsson, 2004). One such phenotype associated with 

EAE is Bordetella pertussis toxin-induced histamine sensitization, which is controlled by 

the single autosomal dominant locus known as Bphs (Ma et al., 2002). Previously, we 

identified Hrh1/H1R as the gene underlying Bphs (Ma et al., 2002) and as a shared 

autoimmune disease susceptibility gene in EAE (Linthicum and Frelinger, 1982) and 

experimental allergic orchitis (EAO) (Teuscher, 1985). H1R is a seven-transmembrane 

spanning, G protein coupled receptor (GPCR). Generally, ligation of H1R with histamine 

is believed to couple to second messenger signaling pathways via the activation of the 

heterotrimeric Gαq/11 family of G proteins and leads to a variety of signaling cascades 

depending on the cell type involved (Parsons and Ganellin, 2006).  

Compared to wild-type (WT) mice, H1R deficient (H1RKO) mice exhibit 

significantly reduced EAE susceptibility (Ma et al., 2002). As a disease susceptibility 

gene, Hrh1/H1R can exert its effect in multiple cell types involved in the disease process 

including endothelial cells, antigen presenting cells and T cells. Moreover, H1R may 

function at critical check points during both the induction and effector phases of the 

disease. In this regard, we recently demonstrated that selective reexpression of the H1RS 

allele in T cells is sufficient to complement EAE in H1RKO mice and that H1R signals 

are important during priming of naïve T cells rather than during the effector phase of the 

disease (Noubade et al., 2007). 

Hrh1/H1R-susceptible (Hrh1S/H1RS) and –resistant (Hrh1R/H1RR) alleles differ by 

three amino acids in their coding sequences (Ma et al., 2002). The H1RR haplotype 

possesses a L263, M313 and S331 whereas the H1RS haplotype is characterized by P263, 
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V313 and P331 (Ma et al., 2002). The mechanism whereby these polymorphic residues 

influence EAE susceptibility is unknown but it was hypothesized to be the result of 

differential coupling to second messenger signaling pathways, because the three residues 

reside within the third intracytoplasmic domain associated with Gαq/11 activation (Tan et 

al., 2004). Here we show that, unlike the H1RS allele (Noubade et al., 2007), expression 

of the H1RR allele in T cells does not complement EAE in H1RKO mice and that the 

polymorphic residues of the H1RR allele affect intracellular trafficking and retention in 

the ER rather than the inherent capacity to signal. Moreover, we show that all three 

residues (L-M-S) comprising the H1RR haplotype are required for altered cell surface 

expression. These data are the first to demonstrate that structural polymorphisms 

influencing differential cell surface expression of a GPCR in T cells can regulate immune 

functions and susceptibility to autoimmune disease.  
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RESULTS  

Expression of H1RR does not complement EAE in H1R deficient mice 

Using transgenic complementation, we recently showed that expression of the 

H1RS allele only in T cells of H1RKO mice was sufficient to restore EAE severity to WT 

levels in these mice (Noubade et al., 2007). To understand if the H1RR allele would also 

complement EAE in H1RKO mice, we generated transgenic mice expressing the N-

terminus hemagglutinin (HA)-tagged H1RR allele under the control of the distal lck 

promoter, which drives expression in peripheral T cells (Wildin et al., 1991). The 

transgenic founders were generated directly on the C57BL/6J background and were 

crossed to H1RKO mice to obtain H1RKO mice expressing the H1RR allele selectively in 

T cells. The expression of the transgene in CD4 T cells was assessed by RT-PCR using 

transgene-specific primers (Fig. 1A) and by real time RT-PCR using primers that 

recognize H1R (Fig. 1B). The two established lines of H1RR (H1RKO-TgR1 and H1RKO-

TgR2) expressed the transgene mRNA at levels comparable to one of the H1RS allele 

transgenic mice (H1RKO-TgS) that we reported previously (Noubade et al., 2007).  

We then examined the susceptibility of these transgenic mice to myelin 

oligodendrocyte glycoprotein peptide 35-55 (MOG35-55) induced EAE. We used two 

protocols to induce disease, one using MOG35-55 plus complete Freund’s adjuvant (CFA) 

and pertussis toxin (PTX) (MOG35-55-CFA plus PTX) (Fig. 1C) and the other using two 

injections of MOG35-55 plus CFA (2× MOG35-55-CFA) (Fig. 1D), which does not use PTX 

as an ancillary adjuvant. Regression analysis revealed that the clinical disease courses 

elicited by both induction protocols fit a Sigmoidal curve and that the clinical 
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course of disease in two independent lines of H1RKO–TgR mice was not different from 

that in H1RKO mice. However, as reported previously (Noubade et al., 2007), the clinical 

course of EAE in H1RKO-TgS mice was significantly more severe than that of H1RKO 

mice and was equivalent to the disease course observed in WT mice. These results 

indicate that, unlike the H1RS allele, expression of the H1RR allele by H1RKO T cells 

does not complement EAE susceptibility.   

An analysis of EAE-associated clinical quantitative trait variables from the two 

transgenic cohorts revealed that the mean day of onset (DO), cumulative disease score 

(CDS), overall severity index (SI) and the peak score (PS) were significantly different 

among the strains immunized with either MOG35-55-CFA plus PTX or 2× MOG35-55-CFA 

(Table 1). Post hoc multiple comparisons of each trait variable revealed that H1RKO-TgS 

mice were equivalent to WT mice while H1RKO-TgR mice were equivalent to H1RKO 

mice. Furthermore, for each trait, H1RKO-TgS and WT mice were significantly greater 

than H1RKO-TgR and H1RKO mice. 

We next analyzed the ex vivo MOG35-55 specific proliferative response of spleen 

and draining lymph node (DLN) cells from mice immunized with 2× MOG35-55-CFA. 

Significant differences in proliferative responses were not detected among WT, H1RKO, 

H1RKO-TgS and H1RKO-TgR mice (data not shown). Since MOG35-55-stimulated 

splenocytes from immunized-H1RKO mice exhibit an immune deviation from Th1 to 

Th2 response in ex vivo recall assays (Ma et al., 2002), we analyzed cytokine production 

by MOG35-55-stimulated spleen and DLN cells from mice immunized with both EAE-

induction protocols. With the classical MOG35-55-CFA plus PTX protocol, as we 

observed previously (Noubade et al., 2007), antigen-stimulated spleen and DLN cells 
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from H1RKO-TgS mice produced significantly greater amounts of IFN-γ compared to 

H1RKO mice and at levels comparable to WT mice (Fig. 2A). In contrast, the levels of 

IFN-γ produced by antigen-stimulated spleen and DLN cells from the two lines of 

H1RKO-TgR mice were equivalent to those produced by H1RKO mice. Similarly, 

antigen-stimulated spleen and DLN cells from H1RKO-TgS mice produced IL-4 at levels 

comparable to WT mice while those from H1RKO-TgR mice were similar to H1RKO 

mice (Fig. 2B). Similar results for IFN-γ (Fig. 2D) and IL-4 (Fig. 2E) were observed for 

2× MOG35-55-CFA immunized mice.  

Because IL-17 is considered to be an important effector cytokine in EAE 

(Furuzawa-Carballeda et al., 2007), we examined IL-17 production by spleen and DLN 

cells following ex vivo stimulation with MOG35-55. IL-17 production by WT, H1RKO, 

H1RKO-TgS and H1RKO-TgR mice immunized with MOG35-55-CFA and PTX was not 

significantly different (Fig. 2C) among strains. In contrast, IL-17 production by MOG35-55 

stimulated spleen and DLN cells from animals immunized with 2× MOG35-55-CFA 

differed significantly among the strains (Fig. 2F). Compared to WT mice, H1RKO mice 

produced significantly less IL-17, indicating that H1R signaling regulates IL-17 

production by T cells. Moreover, production of IL-17 by H1RKO-TgS mice was not 

significantly different from WT mice and IL-17 production by H1RKO-TgR mice was not 

significantly different from H1RKO mice (Fig. 2F). Taken together, like EAE, H1RR 

expression in H1RKO T cells does not complement cytokine production by these cells. 

H1R alleles activate Gαq and Gα11 equally well in vitro 

The above results suggest that the H1RR allele is not functional relative to the 

H1RS allele. To understand the mechanism by which the polymorphic residues of the 
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H1RS and H1RR alleles influence H1R function, we examined the predicted structural 

location for the three residues within H1R. The three polymorphic residues reside within 

the third intracytoplasmic loop of H1R (Fig 3A), which is the region frequently associated 

with recruitment and activation of downstream G proteins (Tan et al., 2004). We, 

therefore, examined whether the polymorphic residues distinguishing the H1RS and H1RR 

alleles might result in significant alterations in G protein activation. Since H1R is 

normally coupled to Gαq and/or Gα11 proteins, we generated fusion proteins of the two 

H1R alleles with both Gαq and Gα11 by linking in-frame the N-terminus of Gαq/11 with the 

C-terminal tail of H1RR or H1RS.  

HEK293 cells were transfected with the H1RS-Gαq/11 or H1RR-Gαq/11 fusion 

proteins, lysed and membrane fractions prepared from these cells. These were used 

initially to measure the levels of expression of each construct via the specific binding of 

the H1R antagonist [3H]mepyramine.  There were no differences in the levels of specific 

binding of [3H]mepyramine between the various constructs, indicating that the 

polymorphisms did not alter total protein expression. Also, the binding affinity of 

[3H]mepyramine was not different between the two alleles (Fig 3B). To study their 

differential capacity to activate Gαq and Gα11, membrane amounts containing exactly the 

same number of copies of each construct were employed in [35S]GTPγS binding assays. 

A maximally effective concentration of histamine stimulated binding of [35S]GTPγS 

equally to Gαq or Gα11 when each G protein was linked to either the  H1RS or H1RR 

variants (Fig. 3C, Fig. 3D). The dose-response curves to histamine indicated that the 

potency of histamine is equivalent for each receptor variant (data not shown). These data 

indicate that the H1RS and H1RR alleles can activate these G proteins equally well and 
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that the phenotypic difference associated with the H1R alleles is not inherently a function 

of differential capability to activate Gαq or Gα11.   

H1R alleles are differentially expressed on the cell surface  

Specific mutations in the signaling domain of several GPCRs (e.g. vasopressin V2 

receptor, rhodopsin) can interfere with their cell surface expression and are associated 

with disease (Tao, 2006). To determine if the polymorphisms in H1R influence cell 

surface expression of the receptor, HA-H1RS or HA-H1RR expression vectors were used 

to transfect HEK293T cells. The expression of these receptors at the cell surface was then 

examined by Flow cytometric analysis using an anti-HA mAb. HA-H1RS was expressed 

at higher levels than HA-H1RR (Fig. 4A). The number of H1RS-positive cells (Fig. 4B) 

and the mean florescence intensity of H1RS were considerably higher than those of H1RR, 

(Fig. 4C) indicating that the two H1R alleles are differentially expressed on the cell 

surface. We observed similar results when the H1RS and H1RR constructs were transfected 

into 721.221 B cells (data not shown).  

In parallel, we examined the cell surface expression of H1RS and H1RR by 

confocal microscopy using anti-HA mAb in cells stained prior to permeabilization. The 

results confirmed higher expression of H1RS on the surface than H1RR (Fig. 4D). 

However, Western blot analysis of H1RS and H1RR expression in lysates of transfected 

HEK293T cells showed no difference in the amount of total protein present (Fig. 4E). 

Taken together, these data indicate that the polymorphic residues associated with the 

H1RS and H1RR haplotypes result in differential translocation of the receptor to the cell 

surface. 
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H1RR is retained in the endoplasmic reticulum  

The Western blot results described above (Fig. 4E) suggest that the H1RS and 

H1RR alleles are expressed at similar levels but that the H1RR allele is largely retained in 

intracellular compartments instead of being trafficked to the cell surface. To investigate 

this possibility, HEK293T cells were transfected with HA-H1RS or HA-H1RR constructs. 

After 24 h cells were fixed, permeabilized, stained with anti-HA mAb and observed by 

confocal microscopy. A predominantly plasma membrane staining pattern was observed 

for the H1RS allele (Fig. 5A). In contrast, a large fraction of the H1RR allele appeared to 

localize intracellularly (Fig. 5B) indicating that H1RR is retained in the intracellular 

compartments and fails to traffic efficiently to the cell surface. The network-like 

intracellular distribution of H1RR throughout the cell (Fig. 5B, right panel) resembled that 

of endoplasmic reticulum (ER). Therefore, to determine if the H1RR allele is retained in 

this compartment, we transiently co-transfected HEK293T cells with H1RS or H1RR 

constructs and a plasmid expressing the dsRed fluorescent protein that targets the ER. 

Co-localization of the two proteins was examined by confocal microscopy following 

staining the cells for HA-H1R. The majority of H1RR was again expressed intracellularly 

and co-localized with the dsRed protein, while minimal colocalization of H1RS with the 

ER-targeted dsRed protein was observed (Fig. 5B). Using LSM5 image browser 

software, we quantified the number of pixels that express both dsRed protein and HA-

H1R in multiple cells that were imaged under exactly the same settings. The results 

showed a significant difference in the co-localization of the H1RS and H1RR alleles in ER 

(Fig. 5C), suggesting that the H1RR L-M-S haplotype leads to its sequestration and 

retention in ER. 
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Retention of H1RR in the ER requires the L-M-S haplotype  

To understand which of the three amino acids comprising the H1RR L-M-S 

haplotype is responsible for the observed differential cell surface expression of the allele 

we generated single H1RS mutants, replacing each of the H1RS haplotype associated 

residues with the corresponding H1RR allele (P263L, V312M, and P330S), by site 

directed mutagenesis. HEK293T cells were transfected with H1RS, H1RR and each of the 

three H1RS mutant constructs. Cells were stained with anti-HA mAb, without 

permeabilization, and cell surface expression of H1R analyzed by Flow- cytometry. Each 

of the single H1RS mutants was expressed at higher levels on the cell surface than the 

H1RR allele (Fig. 6A) with the levels comparable to those observed with the H1RS allele. 

This indicates that the presence of a single H1RR polymorphism is not sufficient to induce 

its intracellular retention. We also generated double mutants of the H1RS allele wherein 

we replaced two residues of the H1RS haplotype with the corresponding residues of the 

H1RR allele (P263L and V312M, P263L and P330S, V312M and P330S). Similar to the 

single H1RS mutants, the double H1RS mutants were expressed on the cell surface at 

levels comparable to the H1RS and at significantly higher levels than the H1RR allele (Fig. 

6B). We observed similar results in 721.221 B cells following transient transfection with 

H1RS, H1RS mutants and H1RR constructs (data not shown). Furthermore, when 

HEK293T cells were co-transfected with double H1RS mutants and the dsRed plasmid, 

each of the mutants showed a typical plasma membrane expression pattern with very 

little co-localization with the ER-targeted dsRed protein (Fig. 6C). Quantification of the 

number of pixels expressing dsRed- protein and HA-H1R confirmed that each of the 

double H1RS mutants behaved like H1RS and only H1RR was retained in ER (Fig. 6D), 
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confirming the flow cytometry data that all the polymorphic residues are required for 

differential cell surface expression of the H1R alleles. Taken together, these data indicate 

that all three residues of the H1RR L-M-S haplotype are required for its intracellular 

sequestration. Interestingly, we sequenced the H1R alleles from more than 100 different 

inbred laboratory and wild-derived mouse strains and did not identify any recombinant 

haplotypes (Table 2), suggesting that the two alleles are evolutionarily conserved and 

have been selected for functionally.   
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DISCUSSION 

To date, Hrh1/H1R is the only murine EAE and EAO susceptibility gene that has 

been positionally cloned (Ma et al., 2002). In this study, using transgenic mouse models, 

we show that polymorphic variants in H1R regulate cytokine production by T cells 

thereby influencing susceptibility to EAE. Furthermore, using HEK293T cells, we show 

that the polymorphisms in H1R affect its functions by modulating cell surface expression 

rather than inherently altering the capacity of the receptor to generate intracellular 

signals.  

Hrh1/H1R has long been implicated in EAE susceptibility (Linthicum and 

Frelinger, 1982; Ma et al., 2002). As H1R is widely expressed (Parsons and Ganellin, 

2006), this suggested that it might act in different cell types and at multiple checkpoints. 

We recently showed, however, that H1R expression in T cells is sufficient to complement 

EAE severity in H1RKO mice. In this study, we show that the polymorphic residues of 

the H1RR allele interfere with its ability to complement EAE in H1RKO mice. This is in 

accordance with genetic complementation studies in F1 hybrids between H1RKO and 

strains of mice expressing the H1RS or H1RR alleles. Susceptibility to histamine 

sensitivity could be restored in F1 hybrids of H1RKO and SJL/J, 129X1/SvJ or 

C57BL/6J that express H1RS allele but not in F1 hybrids between H1RKO and C3H/HeJ 

or CBA/J mice that express H1RR (Ma et al., 2002).  

Hrh1/H1R also controls delayed type hypersensitivity (DTH) responses when 

PTX is used as an adjuvant. The DTH response is mediated by CD4 T cells that produce 

large amounts of IFN-γ (Sewell et al., 1987; Sewell et al., 1984; Sewell et al., 1983). 

Using C3H.BphsS congenic mice expressing the H1RS allele from SJL/J mice on the 
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resistant C3H/HeJ background, Gao et al., (Gao et al., 2003) showed that polymorphisms 

in H1R regulate ovalbumin-specific DTH response elicited in mice immunized with 

ovalbumin in CFA and PTX, indicating that the polymorphisms in H1R regulate IFNγ 

production by CD4 T cells. This study confirms the role of H1R polymorphisms in 

regulating IFN-γ production by these cells. Further, the complementation of IFN-γ 

production by splenocytes immunized using the 2× MOG35-55  model suggests that H1R 

regulation of IFNγ production by T cells does not require PTX.  

Recently, IL-17-producing Th17 CD4 T cells have been considered more 

pathogenic in EAE (Furuzawa-Carballeda et al., 2007). We show here, for the first time, 

that H1R signaling regulates IL-17 production and that H1R polymorphisms influence IL-

17 production by T cells. However, it is noteworthy that we did not observe differences 

in IL-17 production between WT and H1RKO mice immunized with MOG35-55-CFA plus 

PTX, nor in Th17 cells differentiated in vitro in the presence of excessive amounts of IL-

6. PTX promotes the generation of Th17 cells, by inducing IL-6 production (Chen et al., 

2007). Thus, it is possible that immunization with PTX (in vivo) or addition of exogenous 

IL-6 (in vitro) enables CD4 T cells to overcome the absence of H1R signals required for 

the optimal IL-6 production and generation of Th17 cells. Even though we observed 

significant differences in IL-17 production by spleen and DLN cells from transgenic mice 

selectively expressing either H1RS or H1RR in T cells, we believe, based on in vitro 

differentiation data, that the H1R regulation of IL-6 and IL-17 is independent of H1R 

signals in T cells. In this regard, compared to WT macrophages H1RKO macrophages 

produce significantly less IL-6 (unpublished data) and treatment of lung parenchymal 

macrophages with H1R blockers results in decreased IL-6 production (Triggiani et 
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al., 2001). Further studies are being carried out to elucidate the role of H1R in the 

generation of Th17 CD4 T cells.  

 GPCRs, in spite of the diversity of their polypeptide sequences, as a family retain 

enough structural information to allow them to be properly folded in the ER and adopt 

their highly conserved seven transmembrane confirmation (Spiegel and Weinstein, 2004). 

Several studies have identified critical residues and motifs important in many of the 

functions of GPCRs including ligand binding, G protein coupling, internalization, 

downregulation and intracellular trafficking (Duvernay et al., 2005). However, the three 

polymorphic residues distinguishing the H1RS and H1RR alleles are located in the third 

intracytoplasmic loop and do not constitute any known motif. Even though the exact 

PXXP motif is not present, it is worth noting that two of the three polymorphic residues 

associated with the H1RS haplotype are prolines, and that proline rich-motifs are known 

to mediate protein-protein interactions with Src homology SH3 domains (Sparks et al., 

1996). In this regard, polymorphic residues containing polyproline motifs in the third 

intracytoplasmic loop of the dopamine D4 receptor and β1-adrenergic receptor have been 

shown to interact with multiple SH3 domain-containing proteins (Oldenhof et al., 1998) 

and affect the trafficking of these receptors. However, at this point, we do not have any 

evidence to suggest that H1R interacts with any of the known  SH3 domain-containing 

proteins or that such interactions differ between H1RS and H1RR alleles. Future studies 

will address this issue.   

GPCRs interact with numerous proteins that play a role in their cellular trafficking 

(Tan et al., 2004). H1R has an unusually long third intracytoplasmic loop, suggesting that 

the polymorphic residues may result in improper folding of the receptor to a non-
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native conformation in ER, which is then recognized by the quality control machinery of 

molecular chaperones and excluded from ER export. Several chaperone proteins [such as 

Nina (Schneuwly et al., 1989; Shieh et al., 1989), ODR-4 (Dwyer et al., 1998; 

Gimelbrant et al., 2001) and a variety of receptor activity modifying proteins (RAMPs) 

(Christopoulos et al., 2003; McLatchie et al., 1998)] that support the trafficking of a 

range of GPCRs to their target site have been identified. Therefore, it is possible that 

polymorphic residue-induced misfolding of H1RR could hinder its interaction with an 

essential chaperone thereby affecting its trafficking.  

Proper cell surface expression of GPCRs is required to access the requisite ligands 

and signal transduction machinery (Tan et al., 2004). The functional importance of proper 

GPCR localization is emphasized by several human diseases that result from receptor 

mutation and mislocalization, including X-linked nephogenic diabetes, retinitis 

pigmentosa and hypogonadotrophic hypogonadism, which result from intracellular 

accumulation of mutant V2 vasopressin receptor, rhodopsin and gonadotropin releasing 

hormone receptor, respectively (Tao, 2006). In fact, mutations that lead to intracellular 

accumulation comprise the largest class of mutations in GPCRs that result in human 

diseases (Tan et al., 2004). Accordingly, our results are the first to demonstrate that 

structural polymorphisms influencing differential trafficking and cell surface expression 

of a GPCR in T cells can regulate immune functions and susceptibility to autoimmune 

disease. 
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MATERIALS AND METHODS  
 
Mice 

C57BL/6J mice were purchased from the Jackson Laboratory (Bar Harbor, ME). 

B6.129P-Hrh1tm1Wat (H1RKO) (Banu and Watanabe, 1999) mice were maintained in the 

animal facility at the University of Vermont (Burlington, VT). The experimental 

procedures used in this study were approved by the Animal Care and Use Committee of 

the University of Vermont. 

For transgenic mouse generation, the HA-H1RS or HA-H1RR constructs were 

made by deleting the methionine of the Bphs-susceptible H1R allele from SJL/J and 

Bphs-resistant C3H/HeJ mice, respectively (Ma et al., 2002), and adding an HA tag at the 

N-terminus using TOPO cloning vector (Invitrogen, Carlsbad, CA). The HA-H1R was 

then subcloned downstream of the distal lck promoter (Wildin et al., 1991). The linear 

DNA fragment containing the distal lck promoter, the HA-H1R gene and the human 

growth hormone (hGH) intron and polyadenylation signal was injected directly into 

fertilized C57BL/6J eggs at the University of Vermont transgenic/knockout facility. Mice 

were screened by DNA slot blot testing using a BamHI–SacI 0.5 kb fragment from the 

hGH gene as a probe. Two founders were generated for both the H1RS and H1RR alleles 

and each was crossed to H1RKO mice to establish transgenic mouse lines on the H1RKO 

background (H1RKO-TgS1 and H1RKO-TgS2 and H1RKO-TgR1 and H1RKO-TgR2 

mice). Mice from the H1RKO-TgS1 line expressed the transgene at comparable levels to 

the two lines expressing the H1RR allele, so it was used in all the experiments in this 

study. 
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Cytokine production 

For cytokine analysis spleen and lymph nodes were obtained from mice 

immunized ten days earlier with either MOG35-55-CFA plus PTX or 2× MOG35-55-CFA 

model, single cell suspensions prepared at a concentration of 1 × 106 cells/ml in RPMI 

medium and stimulated with 50 μg/ml of MOG35-55. Cell culture supernatants were 

recovered at 72 h and cytokine levels measured by ELISA using anti-IFN-γ, anti-IL-4 and 

anti-IL17 mAbs and their corresponding biotinylated mAbs (BD Pharmingen, San Diego, 

CA). TNF-α ELISA kit was from (BD Pharmingen, San Diego, CA). 

Proliferation Assays 

Mice were immunized with the 2× MOG35-55-CFA protocol: single cell 

suspensions were prepared at 2.5 × 105 cells/well in RPMI medium and stimulated in a 96 

well plate with different concentrations (0, 2, 10 and 50 μg/ml) of MOG35-55 for 72 h and 

proliferation was determined by [3H]-thymidine incorporation during the last 18 h of 

culture. 

Cell surface expression studies 

The pEGZ-HA vector plasmid was a generous gift from Dr. Ingolf Berberich 

(University of Wurzburg, Wurzburg, Germany). Two restriction sites, BamHI and EcoRI 

were inserted into H1RS or H1RR cDNA by PCR and cloned such that the second codon is 

in-frame with the HA tag of pEGZ generating an HA-H1R fusion protein. pEGZ is a 

bicistronic system with IRES-EGFP. EGFP served as a marker for transfected cells.  

HEK293T cells were plated at 1.25 × 106 cells/plate and cultured in DMEM-F12 

containing 10% FBS. When the cells were about 50-80% confluent, they were transfected 

with 5 μg of pEGZ-HA-H1RS, pEGZ-HA- H1RR or the empty pEGZ vector using 
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calcium phosphate method. After 16-24 h, cells were scraped off the plate by rigorous 

pipetting with 1% Calf serum in PBS and stained with anti-HA mAb conjugated to PE 

(Miltenyi Biotech, Auburn, CA) according to the manufacturer’s guidelines. Cells were 

analyzed by Flow cytometry using FACSAria instrument (BD Pharmingen, San Diego, 

CA) and the data were further analyzed using FlowJo flow cytometry analysis software 

(Tree star Inc, Ashland, OR).  

Confocal microscopy 

HEK293T cells were transfected with pEGA-HA-H1RS, pEGZ-HA-H1RR or 

empty pEGZ control vector (5 μg total DNA) using the calcium phosphate method. Cells 

were fixed, permeabilized and stained using an anti-HA mAb (Cell Signaling 

Technologies, Danvers, MA) followed by an incubation with Alexa-568 anti-mouse 

antibody (Molecular Probes, Eugene, Oregon). TOPRO-3 nuclear stain (Molecular 

Probes, Eugene, Oregon) was used as a nuclear marker. For non-permeabilized cells, the 

transfected HEK293T cells were stained with the anti-HA mAb and were then fixed. 

Cells were examined by confocal microscopy using Zeiss LSM 510 META Confocal 

Laser Scanning Imaging System (Carl Ziess Microimaging Inc, Thronwood, NY). 

Cell lysates and Western blotting 

Whole-cell lysates were prepared from HEK293T cells transfected with various 

pEGZ constructs in Triton lysis buffer and were then separated via sodium dodecyl 

sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and transferred to nitrocellulose 

membranes as described previously (Noubade et al., 2007). Anti-HA mAb (Abcam Inc. 

Cambridge, MA) was used as primary antibody. Anti-actin (Santa Cruz Biotechnology, 

Santa Cruz, CA) was used as a loading control. 
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[3H]mepyramine binding studies 

[3H]mepyramine binding studies were conducted as described (Bakker et al., 

2004) and were used to measure expression levels of H1R variants and the H1RS-Gαq/11 

and H1RR-Gαq/11 fusion proteins.  

[35S]GTPγS binding Assay 

 [35S]GTPγS binding experiments to assess the capacity of H1R variants to cause 

activation of Gαq/11 were initiated by the addition of cell membranes containing 50 fmols 

of H1R variant constructs to assay buffer (20mM HEPES (pH 7.4), 3mM MgCl2, 100mM 

NaCl, 1µM GDP, 0.2mM ascorbic acid, and 100nCi [35S]GTPγS) containing 100μM 

histamine. Non-specific binding was determined in the above condition with the 

addition of 100µM GTPγS. Reactions were incubated for 15 min at 300 C and were 

terminated by the addition of 500µl of ice-cold buffer containing 20mM HEPES (pH 

7.4), 3mM MgCl2, 100mM NaCl and 0.2mM ascorbic acid. The samples were 

centrifuged at 16,000 × g for 10 min at 40 C. The resulting pellets were re-suspended in 

solubilization buffer (100mM Tris, 200mM NaCl, 1mM EDTA, and 1.25% Nonidet 

P-40) plus 0.2% SDS. Samples were precleared with Pansorbin for 1 h, followed by 

immunoprecipitation with a C-terminal anti- Gαq/Gα11 antiserum (Mitchell et al., 1991). 

Finally, the immunocomplexes were washed with solubilization buffer and bound 

[35S]GTPγS was estimated by liquid scintillation-spectrometry. 
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Site directed mutagenesis 

pEGZ-HA-H1RS was used as template to generate single H1RS mutants with each 

of the polymorphic residues replaced with the corresponding residue of the H1RR allele 

using the Quickchange (Strategene) site directed mutagenesis kit, according to the 

manufacturer’s guidelines. The forward primers used for the mutagenesis were: for 

P263L 5’- GGGGGTCCAGAAGAGGCCGTCAAGAGACCCTACTGG-3’, for V312M 

5’- CATGCAGACACAGCCTGTGCCTGAGGGAGATGCCAGG-3’, for P330S 5’- 

CCAGACCTTGAGCCAGCCCAAAATGGATGAGCAGAGC-3’. The reverse primers 

were the complementary sequences of these primers. The altered nucleotides are shown 

in bold and underlined. The mutants were sequence confirmed and were used as template 

for the generation of different combinations of double H1RS mutants.  

Conventional and Quantitative Real-Time Polymerase Chain Reaction (RT-PCR) 

Total RNA was extracted from CD4 T cells using RNeasy RNA isolation reagent 

(Qiagen, Valencia, CA) as recommended by the manufacturer. cDNA generated from 1 

μg total RNA was used in conventional and quantitative real-time RT-PCR as described 

earlier (11).  

Induction and Evaluation of EAE 

  Mice were immunized for the induction of EAE using either the MOG35-55-

complete Freund’s adjuvant (CFA) double-inoculation (2× MOG35-55-CFA) (Butterfield 

et al., 1998) or the MOG35-55-CFA plus PTX single-inoculation (MOG35-55-CFA plus 

PTX) protocols (Teuscher et al., 2006b). For the 2× MOG35-55-CFA induction protocol 

mice are injected subcutaneously with an emulsion of 100 μg of MOG35-55 and an equal 
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volume of CFA containing 200 μg of Mycobacterium tuberculosis H37RA (Difco 

Laboratories, Detroit, MI) in the posterior right and left flank; one week later all mice 

were similarly injected at two sites on the right and left flank anterior of the initial 

injection sites. Animals immunized using the MOG35-55-CFA plus PTX single-inoculation 

protocol received an emulsion of 200 μg MOG35-55 and equal volume of CFA containing 

200 μg of Mycobacterium tuberculosis H37RA by subcutaneous injections distributed 

equally in the posterior right and left flank and scruff of the neck. Immediately thereafter, 

each animal received 200 ng PTX (List Biological Laboratories, Campbell, CA) by 

intravenous injection. Mice were scored daily starting at day 5 post-injection as 

previously described (Teuscher et al., 2006b). Clinical quantitative trait variables 

including disease incidence and mean day of onset (DO), cumulative disease score 

(CDS), number of days affected (DA), overall severity index (SI) and the peak score (PS) 

were generated as previously described (Butterfield et al., 1998). 

Statistical analysis 

Statistical analyses, as detailed in the figure legends, were performed using GraphPad 

Prism 4 software (GraphPad software Inc, San Diego, CA). A P value of 0.05 or less was 

considered significant. 
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Figure 1. Transgenic expression of H1RR in H1RKO T cells fails to complement 
EAE in H1RKO mice.  
 
H1R transgene expression was analyzed by (A) RT-PCR and (B) quantitative RT-PCR of 
H1R mRNA expression from CD4 T cells from H1RKO mice and the transgenic mice 
expressing H1RS or H1RR that were crossed with H1RKO mice (H1RKO-TgS, H1RKO-
TgR1 and H1RKO-TgR2). H1RKO-TgR1 and H1RKO-TgR2 represent two independent 
lines. (C) Clinical EAE in WT (n = 19), H1RKO (n = 56), H1RKO-TgS (n = 24), and 
H1RKO-TgR (n = 25) mice that were immunized with MOG35-55+CFA+PTX. Mice were 
scored daily starting at D5. Regression analysis revealed that the disease course elicited 
fits a Sigmoidal curve and that the clinical disease course of the animals was significantly 
different among the strains (F = 66.1; p < 0.0001) and that WT (F = 132.1; p < 0.0001) 
and H1RKO-TgS (F = 127.5; p < 0.0001) mice were significantly different from H1RKO-
TgR and H1RKO mice.  (D) WT (n = 18), H1RKO (n = 33), H1RKO-TgS (n = 23), and 
H1RKO-TgR (n = 25) mice were immunized 2× with MOG35-55+CFA. EAE severity was 
significantly different among the strains (F = 8.9; p < 0.0001) with WT (F = 226.9; p < 
0.0001), and H1RKO-TgS (F = 134.0; p < 0.0001) mice being significantly different from 
H1RKO-TgR (F = 215.8; p < 0.0001) H1RKO mice.  
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Figure 2. Transgenic expression of H1RR in H1RKO T cells fails to complement 
cytokine production by H1RKO mice. 
 
 (A-C) Spleen and draining lymph node (DLN) cells isolated from MOG35-55 plus CFA 
plus PTX-immunized WT, H1RKO, H1RKO-TgS and H1RKO-TgR mice 10 days post 
immunization and stimulated with the indicated 50mg/ml of MOG35-55 for 72h. 
Supernatants were collected and analyzed for the production of IFN-g (A), IL-4 (B) and 
IL-17 (C). Significance of differences in cytokine production were assessed by one-way 
ANOVA (F = 14.89; p < 0.001 for IFNγ, F = 28.93; p < 0.001 for IL-4, p > 0.5 for IL-17) 
followed by Benfeorroni’s post-hoc comparisons. Except for IL-17, WT = H1RKO-TgS > 
H1RKO-TgR1 = H1RKO-TgR2 = H1RKO mice. (D-F) Spleen and DLN cells from 2x 
MOG35-55 plus CFA immunized mice were collected on day 10 post immunization and 
were activated with 50μg/ml of MOG35-55 for 72h, supernatants were collected and 
analyzed for IFNγ (D), IL-4 (E) and IL-17 (F) by ELISA in triplicate. Significance of 
differences in cytokine production were assessed by one-way ANOVA (F = 28.92; p < 
0.0001 for IFNγ, F = 3.766; p < 0.0001 for IL-4, F = 10.29; p < 0.0001 for IL-17) 
followed by Benfeorroni’s post-hoc comparisons. For all the cytokines tested WT = 
H1RKO-TgS > H1RKO-TgR1 = H1RKO-TgR2 = H1RKO mice.  
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Figure 3. H1RS and H1RR activate Gαq/11 G proteins equally well.  

(A) The amino acid sequence of the mouse histamine H1 receptor is displayed with 
differences between the H1RR allele (red) and the H1RS allele (yellow) highlighted. Each 
of the sites of variation is within the long, third intracellular loop.  (B) Saturation 
[3H]mepyramine binding studies were performed on membranes of HEK293T cells 
transfected to express a  H1R-Gαq fusion protein (H1RR-left panel, H1RS-right panel. Non-
specific binding (shown in red) was determined in the same manner but with the 
additional presence of 1μM mianserin. These studies provided quantitation of construct 
expression levels.  (C & D) Membranes containing 50 fmol of H1RS or H1RR  linked to 
either Gαq (C) or Gα11 (D) were used in [35S]GTPγS binding studies conducted in the 
absence (basal, open bars) or presence (histamine, filled bars) of 100μM histamine to 
assess the capability of the two variants to activate the G proteins. H1RS and H1RR were 
equi-effective in causing activation of each G protein. Representative data are shown. 
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Figure 4. H1RS and H1RR are differentially expressed on the cell surface.  
(A) HEK293T cells were transfected with empty pEGZ, pEGZ-HA-H1RS or pEGZ-HA-
H1RR plasmids in triplicate cultures. Cells were collected 16-24h later without 
trypisinization, stained with anti-HA mAb and analyzed by Flow cytometry. Thin line 
represents cells transfected with empty pEGZ, thick line represents cells transfected with 
HA-H1RS and the filled area represents cells transfected with HA-H1RR. (B & C) 
HEK293T cells were analyzed as in (A) and the percentage (B) and the mean florescence 
intensity of anti-HA on H1RS positive cells (C) were determined (n=3). (D) HEK293T 
cells transfected with HA-H1RS or HA-H1RR plasmids and 24 h later cells were stained 
with anti-HA mAb (red) without permeabilization. Cells were visualized by confocal 
microscopy. GFP (green) is shown as a marker of transfected cells. (E). HEK293T cells 
were transfected as in (A), whole cell lysates prepared and analyzed by Western blotting 
using anti-HA mAb. Actin is shown as loading control.  
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Figure 5. H1RR is retained in endoplasmic reticulum. 
 (A) HEK293T cells were transfected with HA-H1RS or HA-H1RR plasmids. 24h later, 
cells were fixed, permeabilized, stained with anti-HA mAb (red) and TOPRO-3 nuclear 
stain (green) and visualized by confocal microscopy.  (C) HEK293T cells were co-
transfected with pdsRed plasmid that express ER targeted florescent dsRed protein (red) 
and HA-H1RS or HA-H1RR. 24h later cells were fixed, permeabilized, stained with anti-
HA mAb (green) and the co-localization of HA-H1R with dsRed was visualized by 
confocal microscopy. Yellow color represents the co-localization of red and green colors. 
(D) Quantification of HA-H1R colocalization with dsRed protein. Using Zeiss LSM 510 
META Confocal imaging software the number of pixels expressing both colors were 
determined in a number of cells (n=36) and the data are presented as the average number 
of pixels that co-express dsRed and HA-H1R. Error bars indicate SEM.  
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Figure 6. ER retention of H1RR requires all of its three polymorphic residues.  

 
(A)HEK293T cells were transfected with empty control, HA-H1RS, single HA-H1RS mutants or 
HA-H1RR plasmids. Cells were collected 16-24 h later without trypisinization, stained with anti-
HA mAb and analyzed by flow cytometry. Thin line represents cells transfected with empty 
pEGZ, thick line represents cells transfected with HA-H1RS and the filled area represents cells 
transfected with HA-H1RR. (B) HEK293T cells were analyzed as in (A) and the mean florescence 
intensity of anti-HA on H1RS positive cells was determined. The data presented is the average of 
triplicate transfections. (C) HEK293T cells were co-transfected with pdsRed plasmid that express 
ER targeted dsRed protein (red) and HA-H1RS, mutants of HA-H1RS or HA-H1RR. 24h later, cells 
were fixed, permeabilized, stained with anti-HA mAb (green) and the co-localization of HA-H1R 
with dsRed (red) was visualized by confocal microscopy. Yellow color represents the co-
localization of red and green colors. (D) Quantification of HA-H1R colocalization with dsRed 
protein. Using Zeiss LSM 510 META Confocal imaging software the number of pixels 
expressing both the colors was determined in a number of cells (n≥16) and the data is presented 
as the average of number of pixels that co-express dsRed and HA-H1R. Error bars indicate SEM. 
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 (A) 

 

 

(B) 

 

                 Table 1. Clinical disease traits following imuunization of mice with                                
      (A) MOG35-55+CFA + PTX and (B) 2x (MOG35-55+CFA) 

 

Strain Incidence Day of  
onset 

Cumulative 
disease 
score 

Severity  
index 

Peak  
score 

C57BL/6J 19/19 13.1±0.3 56.2±4.6 3.1±0.2 3.9±0.3 

H1RKO 55/56 15.7±0.4 32.1±1.4 2.1±0.1 3.0±0.1 

H1RKO-TgS 24/24 12.9±0.4 50.0±3.7 2.8±0.2 3.6±0.2 

H1RKO-TgR 16/17 13.3±0.3 50.0±3.2 2.7±0.2 3.6±0.2 

                     
                              χ2 = 2.5           F = 13.5           21.2                   19.2                   14.4 
                                p = 0.5       p < 0.0001       < 0.0001             < 0.0001            < 0.0001      
                            
                                      C57BL/6J = H1RKO-TgS ≠ H1RKO-TgR = H1RKO 
 

Strain Incidence Day of  
onset 

Cumulative 
disease 
score 

Severity  
index 

Peak  
score 

C57BL/6J 18/18 16.6±0.7 37.6±2.9 2.6±0.1 3.2±0.2 

H1RKO 26/33 17.1±0.5 20.0±1.8 1.6±0.1 2.2±0.1 

H1RKO-TgS 22/23 16.2±0.6 36.4±3.8 2.5±0.2 3.2±0.2 

H1RKO-TgR 13/14 18.7±0.6 18.6±3.1 1.6±0.2 1.9±0.2 

                  
                               χ2 = 7.4           F = 2.8            11.6                 15.2                  14.0 
                                 p = 0.06         p = 0.05           < 0.0001             < 0.0001           < 0.0001 
                             
                                      C57BL/6J = H1RKO-TgS ≠ H1RKO-TgR = H1RKO 
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                   H1RS    H1RR 
129 / SvJ LEWES/EiJ  AKR/J 

129S1/SvImJ LG/J  BPL/1J 
129T2/SvEmsJ LP/J  C3H/HeJ 

A/J Ma/MyJ  CASA/RkJ 
A/WySnJ MOR/RkJ  CAST/EiJ 
ALR/LtJ NOD/LtJ  CBA/J 
ALS/LtJ NON/LtJ  CZECHI/EiJ 

B10.S/DvTe NOR/LtJ  CZECHI/EiJ 
BALB / cByJ NZO/HlLtJ  I/LnJ 

BALB/ cJ P/J  JF1/Ms 
BDP/J PANCEVO/EiJ  MOLC/RkJ 
BPH/2J PERA/EiJ  MOLD/RkJ 
BPL/1J PERC/EiJ  MOLF/Eij 
BPN/3J PL/J  MRL/MpJ 

BTBR T+ tf/J RBF/DnJ  MSM/Ms 
BXSB/MpJ RIIIS/J  PWK/PhJ 
C57BL/10J SB/LeJ  RF/J 

C57BL/10SnJ SEA/GnJ  SF/CamEiJ 
C57BL/6ByJ SEC/1ReJ  SKIVE/EiJ 

C57BL/6J SENCARA/PtJ   
C57BLKS/J SENCARB/PtJ   
C57BR/cdJ SENCARC/PtJ   

C57L/J  SJL/J   
C58/J SJL/Bm   

CALB/RkJ SM/J   
CE/J SPRET/EiJ   

DBA/1J ST/bj   
DBA/2J SWR/ J   

DDY/JclSidSeyFrkJ SWXL-4/TyJ   
EL/SuzSeyFrkJ TIRANO/EiJ   

FVB/NCr WSB/EiJ   
IS/CamRkJ YBR/EiJ   

KK/HIJ ZALENDE/EiJ   
 
            Table 2.  The P-V-P and L-M-S haplotypes of H1R are evolutionarily 
 conserved in mice.  
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CHAPTER 4: CONCLUSIONS AND FUTURE DIRECTIONS  

Complex diseases such as MS and EAE are governed by multiple susceptibility 

genes and the risk conferred by polymorphisms in their alleles. Identifying such “risk 

alleles” and gaining mechanistic understanding of their contribution in the disease 

development will yield newer targets for therapeutic intervention in ameliorating these 

diseases. Even though more than 40 QTLs (Becanovic et al., 2006) in EAE and 

polymorphisms in many of their candidate genes, such as IL-2 (Encinas et al., 1999), 

MCP-1 and MCP-5 (Butterfield et al., 1999), and Ncf-1 (Becanovic et al., 2006) have 

been identified, no study has systematically elaborated the pathways of their mechanisms. 

To date, only one QTL, originally identified as Idd5.1 and encompassing the gene coding 

for costimulatory molecule ICOS-1, has been shown to modulate EAE. This is through 

the differential expression of ICOS-1 in activated CD4 T cells, with higher expression in 

the resistant NOD/J mice than the congenic mice expressing ICOS-1 from the susceptible 

C57BL/6J mice (Greve et al., 2004). Our laboratory had previously identified 

polymorphisms in Hrh1/H1R and shown that it is a susceptibility gene in EAE (Ma et al., 

2002). In this study, the role of these polymorphisms was delineated and shows that they 

affect H1R functions by differential cell surface expression. Further, the molecular 

pathways, through which H1R contributes to the pathogenesis of EAE were identified and 

demonstrate that H1R influences EAE by regulating proinflammatory cytokine 

production by T cells.  

 H1R is one of the widely expressed GPCRs and is present on multiple cells types 

involved in EAE pathogenesis (Parsons and Ganellin, 2006). This study demonstrates 

that H1R expression in T cells is important and sufficient to influence the 
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susceptibility to EAE. Re-expressing the susceptible allele of H1R (H1RS) in T cells of 

H1RKO mice complemented EAE severity and disease-associated cytokine production 

by these mice, but the resistant allele of H1R (H1RR) failed to do so. This clearly show 

that the H1R polymorphisms affect its ability to influence EAE pathogenesis and suggests 

that H1RR is not a functional receptor.  

A functional GPCR such as H1R, once synthesized, adopts a “native” structure 

that enables the receptor to pass through the quality control machinery of the 

endoplasmic reticulum (ER) and traffics to its target site, the cell surface (Spiegel and 

Weinstein, 2004). In transfected 293T cells, the polymorphisms in H1R regulated the 

trafficking of the receptor with H1RR failing to reach its final compartment and being 

retained in ER. In contrast H1RS was efficiently trafficked and expressed on the cell 

surface. Thus, polymorphisms in H1RR join the group of a number of examples in which 

polymorphisms and mutations in GPCRs lead to their mislocalization and in many cases 

are associated with pathologies.  

This study provides evidence that the polymorphisms in H1R are evolutionarily 

conserved as haplotype blocks among several inbred strains of mice. The natural 

evolutionary history of the common house mouse suggests that, about a million years 

ago, its ancestors evolved into at least three well-developed subspecies that dominated 

different parts of the world (Wade and Daly, 2005). These include M. m. domesticus in 

Western Europe, M. m. musculus in Russia, Northern China and Eastern Europe and M. 

m. castaneus in West Asia, Southeast Asia and Southern China (Beck et al., 2000; 

Paigen, 2003). However, it is still unclear if the three subspecies diverged simultaneously 

or M. m. musculus and M. m. castaneus diverged from a common ancestor shortly after 
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the divergence of M. m. domesticus (Yang et al., 2007). Several thousand years ago, the 

Asian M. m. musculus and M. m. castaneus made their way to the Japanese Islands 

forming a new subspecies known as M. m. molossinus (Paigen, 2003). Because of their 

close cohabitation, hundreds of years ago, humans noted spontaneously arising coat 

colors in mice in Europe, China and Japan and domesticated several varieties as pets. 

Europeans even imported what were considered fancier coat colors from Asian regions 

and bred them with local mice to create few pools of mice. Some of these fancy mice 

were prized and even traded throughout Europe. With the rediscovery of Mendel’s laws 

of inheritance, in the early twentieth century, geneticists such as Cuenot, Castle and Little 

started studying the discrete inheritance of the coat colors in mice. They received their 

animals from a large mice-breeding farm owned by Abbie Lathrop, whose colonies 

originated from European and Asian fancy mice. Castle and Little recognized the value of 

homozygous mice and established inbred strains of mice by brother x sister matings. 

DBA (having the coat color allele, dilute, brown and non-agouti) was the first inbred 

mouse strain developed in 1909. Since then, more than 450 inbred strains of mice have 

been established (Beck et al., 2000; Paigen, 2003). Therefore, most of the inbred 

laboratory mouse strains originated from a mixed, restricted number of founders. Based 

on this, the genomes of the common inbred mice strains were proposed to represent a 

mosaic of regions originating from different subspecies. M. m. domesticus is the major 

contributor while M. m. musculus and M. m castaneus are the minor contributors to the 

genetic background of these mice (Wade and Daly, 2005). This hypothesis was 

strengthened by the observations that the mitochondrial DNA in many inbred strains of 

mice was derived from M. m. domesticus while the Y-chromosome was derived from M. 
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m. musuculus (Bishop et al., 1985; Ferris et al., 1982). Further, it was noted that the 

musculus-type Y-chromosome originated from M. m. molossinus males (Nagamine et al., 

1992). However, strains with Y-chromosome from M. m. domesticus have also been 

identified (Yang et al., 2007). Recently, the fine structure of this mosaic variation of the 

mouse genome is described (Wade et al., 2002; Yang et al., 2007). Strain-to-strain 

comparisons of single nucleotide polymorphisms (SNPs) revealed a long interspersed 

regions of high and low sequence identities. The segments genome with extremely high 

SNP variation is indicative of different subspecies origin and spanned only one-third of 

the genome. The segments of the genome covered with extremely low variation represent 

similar subspecies (M. m. domesticus) origin and spanned two thirds of the genome 

(Yang et al., 2007). However, another study reported a predominant introgression of M. 

m. domesticus segments at exceptionally high levels (86 to 96%) in the genomes of 

common laboratory strains while M. m. musculus contributed about 1-8 % and M. m. 

castaneus contributed only 1-2 % (Yang et al., 2007). Further, high-density sequence 

based studies identified three distinct genetic variation patterns indicative of the 

evolutionary origin; large monomorphic haplotypes representing a common ancestor, 

large polymorphic blocks representing recombination of two ancestor genomes, and large 

fragmented haplotype blocks representing greater complexity and multiple ancestor 

origin (Frazer et al., 2004; Sakai et al., 2005; Zhang et al., 2005). This study herein found 

that the H1R alleles are conserved among several inbred strains of mice, including the 

wild-derived inbred strains, suggesting that the two haplotypes have evolutionarily co-

evolved over a long period of time and reflect evolutionarily conserved functional 

differences. Future studies are necessary to ascertain the subspecies origin of the H1R 
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haplotype block and examine if the haplotype block encompasses even a larger region of 

chromosome 6.  

Traditionally, histamine was considered to be a mediator of the effector phase of 

EAE rather than the priming of autoreactive T cells (Bebo et al., 1996; Linthicum, 1982). 

This study exhibits that Hrh1/H1R is expressed in unstimulated CD4 T cells but 

downregulated upon activation. Complementation of H1R in naïve, but not in activated, 

H1RKO CD4 T was able to restore the ability of these cells to produce IFN-γ to the levels 

of WT CD4 T cells. These observations, along with the findings that mast cells exert their 

effect outside the CNS in EAE (Tanzola et al., 2003), suggests that histamine interaction 

with H1R is important during the initial induction and priming of the naïve antigen-

specific CD4 T cells in EAE pathogenesis.  

H1R has been previously implicated in the regulation of IFN-γ production (Banu 

and Watanabe, 1999; Bryce et al., 2006; Ma et al., 2002). In this study, it is evidenced 

that H1R regulates IFN-γ by modulating activation of p38MAP kinase and T-bet. Further, 

it was found that histamine interaction with H1R is required for p38 MAP kinase 

activation in TCR-stimulated CD4 T cells. However, how H1R activates p38 MAP kinase 

is unknown. p38 MAP kinase is normally activated through the upstream MAPKK, 

MKK3 and MKK6 (and MKK4 in response to some stimuli) (Kyriakis and Avruch, 

2001). It has been documented that GADD45 proteins interact with MEKK4, an upstream 

kinase of MKK3 and MKK6 and thus activate p38 MAP kinase (Takekawa and Saito, 

1998). Whether H1R associates with GADD45 members and activates p38 MAP kinase 

needs to be investigated.  

Overall, the results presented herein demonstrate the importance of 
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histamine and its interaction with H1R as a significant immunomodulatory factor in EAE. 

Hrh1/H1R is a shared susceptibility gene in EAE and experimental allergic orchitis (Ma 

et al., 2002). A shared genetic basis among different autoimmune diseases has been 

proposed and non-MHC candidate loci of several autoimmune or inflammatory disease 

are present as clusters in humans and in animal models (Becker et al., 1998). This 

suggests common susceptibility genes or tightly linked loci in multi-gene families. Thus, 

studying the role of H1R in other autoimmune diseases may shed a light on its role as a 

common autoimmune modifier. Further, even though polymorphisms in human H1R have 

not yet been reported, a syntenic region has been identified as a major risk factor in MS 

patients. Administration of antihistaminics in MS patients stabilized the disease 

progression (Dimitriadou et al., 2000). A retrospective epidemiological study found that 

the use of H1R blockers reduced the risk of MS (Alonso et al., 2006). Together, all these 

observations suggest that pharmacological targeting of the H1R may be useful early in the 

treatment of MS and other autoimmune inflammatory diseases. 
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Weibel-Palade bodies (WPB) within endothelial cells (EC) are secretory granules 

that release von Willebrand Factor (VWF), P-selectin, chemokines and other stored 

molecules following exposure to histamine (HA). Mice with a disrupted VWF gene 

(VWFKO) have EC that are deficient in WPB. These mice were used to evaluate the role 

of this organelle in Bordetella pertussis toxin induced hypersensitivity to HA (Bphs), an 

intermediate phenotype associated with susceptibility to experimental allergic 

encephalomyelitis (EAE), the principal autoimmune model of multiple sclerosis. No 

significant differences in susceptibility to Bphs between wild-type and VWFKO mice 

were detected at three days; however, in VWFKO mice HA sensitivity persists 

significantly longer. Correspondingly, the onset of EAE was earlier, disease was more 

severe and blood brain barrier (BBB) permeability significantly increased in VWFKO 

mice compared to wild-type mice. Moreover, inflammation was selectively increased in 

the brains and not in the spinal cords of VWFKO mice compared to wild-type mice. 

Early increases in BBB permeability in VWFKO mice were not due to increased 

encephalitogenic T-cell activity because BBB permeability was significantly greater in 

adjuvant treated VWFKO mice compared to littermate mice immunized with 

encephalitogenic peptide plus adjuvants. Taken together, these data indicate that VWF 

and/or WPBs negatively regulate BBB permeability changes and autoimmune 

inflammatory lesion formation within the brain elicited by peripheral inflammatory 

stimuli.   
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Introduction 

Pertussis toxin (PTX) is a major virulence factor of Bordetella pertussis, the 

causative agent of whooping cough (Bordet and Gengou, 1906). The holotoxin is a 

hexameric protein that conforms to the A/B model of bacterial exotoxins (Rappouli and 

Pizza, 1991). The A-subunit is an ADP-ribosyl transferase which affects signal 

transduction by ribosylation of the α-subunit of trimeric Gi/o proteins, and the β-

oligomer of PTX binds cell surface receptors on a variety of mammalian cells (Kaslow 

and Burns, 1992). Intoxication with PTX elicits an array of physiological responses in 

vivo including increased blood brain barrier (BBB) permeability and sensitization of the 

vascular endothelium to vasoactive agents such as histamine (HA) (Locht, 1999; Munoz, 

1985). Inbred strains of mice differ in susceptibility to challenge with vasoactive agents 

following sensitization with PTX in that genetically susceptible strains succumb to 

hypotensive and hypovolemic shock while resistant strains do not (Wardlaw, 1970). 

Additionally, the genetic control of susceptibility to lethal shock is agent specific (Gao et 

al., 2003). For example, PTX-induced vascular endothelial sensitization, controlled by 

Bphs (Bordetella pertussis induced HA sensitization), is detected by HA challenge, but 

not by serotonin challenge. Bphs is an autosomal dominant locus that we recently 

identified as the histamine H1 receptor (Hrh1/H1R) (Kantarci et al., 2002). Importantly, 

susceptibility to experimental allergic encephalomyelitis (EAE), the principal 

autoimmune model of multiple sclerosis (MS) (Musio et al., 2006), is also controlled by 

Bphs/Hrh1 (Kantarci et al., 2002; Linthicum, 1982), underscoring the role of genetic 

factors in regulating BBB permeability and susceptibility to inflammatory demyelinating 

diseases of the CNS. 
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The mechanism whereby PTX sensitizes the vascular endothelium to HA is 

unknown, but it is consistent with a two-step process: an induction phase, characterized 

by a 2- to 3-day latent period following intoxication, and an effector phase, manifest by 

rapid onset of lethal shock that usually occurs within ten minutes of HA challenge 

(Bergman and Munoz, 1968),(Munoz et al., 1981). Bphs is also characterized by a 

protracted period of sensitivity that persists upwards of 30 days (Munoz et al., 1981). The 

fact that sensitization of the vascular endothelium continues well beyond the likely half-

life of the toxin in vivo suggests that the induction phase may be associated with the 

synthesis and storage of additional vasoactive factors within endothelial cells (ECs) that 

are released by exposure to HA during the effector phase. In this regard, it is known that 

following inflammation preformed KC (IL-8 homologue), eotaxin-3, von Willebrand 

Factor (VWF), P-selectin, CD63/lamp3, angiopoietin 2, endothelin-1, endothelin 

converting enzyme, tissue-type plasminogen activator (t-PA), factor XIIa and/or α1,3-

fucosyltransferase VI can be stored in EC Weibel Palade bodies (WPBs) (Rondaij et al., 

2006), and that HA is a secretagogue for the release of these agents (Hattori et al., 1989). 

Under a hypothetical two-step model, lethal shock would be due to the direct vasodilatory 

activity of HA combined with the effects of the stored products released from WPBs. In 

the absence of exposure to PTX, the ECs must be able to compensate for the effects of 

subsequently administered HA because most mice do not succumb following HA 

challenge alone. In contrast, EC would not be able to compensate for the increase in 

synergistic second messenger signaling arising from exposure to both HA and PTX-

induced stored vasoactive factors. In this study, mice with a disrupted VWF gene 

(VWFKO) and a consequent deficiency in WPBs (Denis et al., 1998) were used to 
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directly test this hypothesis and to evaluate the role of WPBs in regulating BBB 

permeability and susceptibility to EAE. We report that, contrary to this model, WPBs 

suppress Bphs and adjuvant-induced alterations in BBB function associated with actively 

induced EAE. 
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 Results  

Bphs in VWFKO mice 

The role of WPBs in Bphs was evaluated by i.v. sensitization of B6 and VWFKO 

mice with 200 ng PTX on day 0. Three days later HA sensitivity was assessed in a dose 

response fashion by i.v. challenge with HA and deaths were recorded at 30 min. A 

significant difference in the LD50 values between the two strains was not detected (B6 = 

1.65 ± 0.05 mg/kg vs. VWFKO = 1.41 ± 0.08 mg/kg; F = 0.55, p = 0.46), indicating that 

neither VWF nor WPBs are required for Bphs susceptibility. Given the role of WPBs in 

vascular function, we nevertheless assessed their effect on the persistence of HA 

sensitivity. Compared to B6 mice, HA sensitivity persistent longer in VWFKO mice at all 

challenge doses studied (F = 38.25; p < 0.0001) (Fig. 1). The half-life of sensitization was 

64.8 days in VWFKO mice compared 34.4 days in B6 mice at 100 mg/kg HA challenge. 

Similarly, the sensitization half-lives were 66.0 and 63.3 days in VWFKO mice at 50 

mg/kg and 25mg/kg of HA respectively while the corresponding sensitization half-lives 

in WT mice were 34.2 and 30.7 days. Taken together, these data demonstrate that WPBs 

and/or VWF ordinarily act to shorten the longevity of HA sensitivity elicited by in vivo 

intoxication with PTX. 

EAE in VWFKO mice 

Because VWFKO mice exhibited significantly prolonged sensitivity to HA, and 

because Bphs is an EAE susceptibility gene (Kantarci et al., 2002), we studied the role of 

WPBs in regulating EAE induced by immunization with MOG35-55+CFA+PTX. 

Compared to B6 mice, VWFKO mice developed significantly more severe clinical signs 

of EAE (Fig. 2). Clinical signs of EAE in VWFKO mice were notably enhanced 
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during the acute-early phase (D7 through D18 postimmunization) compared to the 

chronic late-phase of the disease (day 20-30) (Polanczyk et al., 2004). The mean day of 

disease onset in VWFKO mice was 14.1 ± 2.0 vs. 16.4 ± 3.2 (p = 0.01) in B6 mice. The 

acute-early phase cumulative disease score in VWFKO mice was 22.6 ± 11.1 vs. 13.3 ± 

11.9 (p = 0.008) in B6 mice.  

Histological analysis of CNS samples obtained during the acute-early phase of the 

disease revealed that VWFKO mice exhibited significantly greater pathology in the brain 

than did B6 mice (Fig. 3A-3E). VWFKO mice had a higher overall pathology index with 

significantly greater lesion scores, more severe demyelination, more severe suppuration, 

and more extensive mononuclear cell infiltrates compared to B6 mice. In contrast, 

however, no difference in the overall severity of the lesions between VWFKO and B6 

mice was observed in the spinal cord (Fig. 3F). These results demonstrate that the 

absence of WPB and/or VWF selectively promotes lesion formation in the brain, 

compared to the spinal cord-dominant disease seen in mice with intact VWF and WPBs. 

We examined a number of T cell parameters in B6 and VWFKO mice following 

sensitization with MOG35-55+CFA+PTX in order to evaluate the encephalitogenic T cell 

response elicited in each strain. No difference in the proliferative response of spleen cells 

to MOG35-55 at day 10 p.i. was observed between B6 and VWFKO mice (Fig. 4A). 

Similarly, no significant differences in cytokine and chemokine expression following ex 

vivo restimulation with MOG35-55, were detected between B6 and VWFKO animals (Fig. 

4B, C). Taken together, these results indicate that the more severe acute-early phase 

disease seen in VWFKO mice is unlikely to be due to a direct effect of the absence of 

VWF or WPBs on T cell effector responses. 
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Increased BBB permeability in VWFKO mice during EAE 

To delineate the mechanisms underlying the more severe acute-early phase of 

EAE in VWFKO mice, we analyzed EC function by measuring BBB permeability. A 

BBB permeability index (BBB-PI) was determined by measuring the traverse of 

systemically injected FITC-labelled bovine serum albumin (BSA) into the cerebrospinal 

fluid of EAE-induced mice at 8, 10 and 12 days p.i. (Fig. 5). BBB-PIs were not 

significantly different between unmanipulated B6 and VWFKO mice; however, BBB-PIs 

were significantly elevated in both mouse strains (p = 0.01 for B6 and p < 0.001 for 

VWFKO) following immunization with MOG35-55+CFA+PTX. Moreover, the test of the 

main effect of group (mouse strain) showed a significant difference (p = 0.02) between 

the two strains over time, with the BBB-PI being greater in VWFKO mice compared to 

B6 mice.  

The significant difference in clinical signs and brain pathology between B6 and  

VWFKO mice during the acute-early phase of the disease, despite the absence of 

detectable differences in encephalitogenic T cell effector responses, point to a potential 

role for WPBs in regulating the interface between the circulation and the brain. We 

therefore compared the integrity of the BBB in B6 and VWFKO mice at various time 

points after injection with MOG35-55+CFA+PTX or CFA+PTX. Immunization with 

CFA+PTX alone lead to increased BBB permeability in B6 mice (Fig. 6A) to an extent 

that was not different from that seen following immunization with MOG35-55+CFA+PTX 

(p = 0.45). The change in BBB permeability over time was also not significant in B6 

mice (Fig. 6B) (p = 0.08). Similarly, immunization with CFA+PTX alone significantly 

increased the BBB permeability in VWFKO mice but again, there was no difference in 



 

127

the BBB-PIs between the animals immunized with or without the encephalitogen (p = 

0.47). This indicates that in both B6 and VWFKO mice, antigen-specific 

encephalitogenic T cells are not responsible for eliciting increased BBB permeability 

across the time points studied. Because the BBB-PIs between the animals immunized 

with or without MOG35-55 were not different, they were pooled and reanalyzed. The 

results revealed that the BBB-PI in VWFKO mice was significantly greater than the 

BBB-PI in B6 mice (p = 0.001) (Fig. 6C) when CFA and PTX are used as adjuvants, and 

that this difference is encephalitogen-independent.  

To understand which component of the adjuvants (CFA or PTX) is responsible for 

increased BBB permeability, we determined the BBB-PIs in B6 and VWFKO mice 

injected with either CFA or PTX alone. Immunization with CFA alone increased BBB 

permeability in both B6 and VWFKO mice compared to unimmunized mice (p < 0.001 

for both B6 and VWFKO) (Fig. 7A). The BBB-PI for CFA-immunized mice was 

significantly greater in VWFKO than in B6 mice (p = 0.03). Interestingly, the effect of 

CFA on BBB permeability was greater on day 8 and decreased over time, reaching 

almost basal levels both in B6 and VWFKO mice, indicating that ECs can overcome the 

CFA-induced inflammatory signals that compromise BBB integrity. Importantly, the 

decrease in CFA-induced BBB permeability over time was significant (p < 0.0001), but 

the rate of change was not different between strains.  

PTX alone also independently increased BBB permeability in both B6 and 

VWFKO mice compared to untreated mice (p = 0.0001 for both B6 and VWFKO) (Fig. 

7B). However, the effect of PTX on BBB permeability was different than that of CFA. 

BBB permeability changes induced by PTX did not vary over time (p = 0.67) and 
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remained elevated at each of the time points examined. However, as with CFA, the BBB-

PI elicited by in vivo intoxication with PTX alone was significantly greater in VWFKO 

than in B6 mice (p = 0.02). These data suggest that BBB compromise and repair by ECs 

differs depending on the peripheral inflammatory stimulus. Therefore in order to assess if 

the ECs responses elicited independently by CFA and PTX are capable of cross 

regulating each other when administered simultaneously (CFA+PTX), we compared the 

BBB-PIs from animals receiving CFA and PTX alone with those from animals that 

received CFA+PTX. When CFA+PTX were injected at the same time, the BBB-PIs in 

both B6 (Fig. 8A) and VWFKO (Fig. 8B) were significantly lower compared to the BBB-

PIs elicited by these agents separately. Although the CFA-induced increase in BBB 

permeability was greater at day 8 and decreased to basal levels by day 12 (conditions 

under which PTX-induced changes remain relatively constant), when the two agents were 

used together, the vascular permeability was, in contrast, lowest on day 8 with the BBB-

PIs increasing to the PTX levels by day 12. These data support the concept that changes 

in BBB permeability elicited by CFA and PTX alone occur via different pathways and 

that the two pathways cross regulate each other with the overall differences in BBB 

permeability reflecting their integration over time. Moreover, these data indicate that 

WPBs and/or VWF protect against the vascular permeability changes induced by these 

inflammatory agents.  
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Discussion  

In this study we show that the absence of WPBs and/or VWF leads to increased 

BBB permeability and, in appropriately immunized mice, concomitantly more severe 

EAE. The disruption of BBB integrity is due to adjuvants alone; and although the 

mechanism(s) by which CFA and PTX act to increase BBB permeability is unknown, 

these processes are independent of encephalitogenic T cell responses. Moreover, our 

study indicates that ECs respond differently to CFA and PTX with the outcome of 

simultaneous exposure being the integration of the different pathways over time. This is 

in agreement with previous studies examining the effects of inflammatory pain elicited by 

formalin, CFA and λ-carrageenan on BBB permeability (Brooks et al., 2005; Brooks et 

al., 2006). BBB permeability changes elicited by these stimuli were associated with 

unique alterations in the temporal expression of tight junctional proteins as well as 

disruption of the interaction between tight junctional complexes and the cytoskeleton. It 

is unclear what the mechanism(s) for tight junctional alterations following peripheral 

inflammation might be, but both CFA and PTX are known to lead to increased levels of 

IL-1β, TNF-α, and/or IL-6 within the periphery and CNS rapidly after exposure 

(Armstrong et al., 2003; Donnelly et al., 2001; Loscher et al., 2000; Raghavendra et al., 

2004; Samad et al., 2001). Within the CNS the increase in IL-1β expression is associated 

with widespread changes in neuronal activity, including Cox-2 expression in CNS 

neurons leading to elevated prostaglandin E2 levels in the CSF (Ek et al., 2001). 

Consequently, alterations in BBB permeability might be subject to modulation via both 

peripheral and centrally mediated responses to inflammatory stimuli. In fact, we recently 

demonstrated that neurogenic control of BBB permeability is negatively 
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regulated by central histamine H3 receptor signaling (Teuscher et al., 2007).   

Alterations in BBB permeability can occur in a variety of different situations 

(Brooks et al., 2005), some of which relate directly to MS. There is an increasing body of 

evidence in both EAE (Tonra, 2002; Tonra et al., 2001) and MS (Mathews et al., 1993; 

Minagar et al., 2006) that subtle, progressive alterations in BBB integrity precede the 

formation of inflammatory lesions. These changes are detected in all MS disease 

subtypes, suggesting that a common abnormality in BBB function exists in the normal-

appearing white matter of MS patients and may be a predisposing factor in initiating and 

propagating new inflammatory foci. Importantly, in our studies the WPB-related changes 

in BBB permeability also do not derive from T cell activity, indicating that WPBs play an 

important role in regulating BBB permeability in response to peripheral inflammatory 

stimuli. In this setting, understanding the mechanism of Bphs as a genetic model of BBB 

dysregulation is important.  

The effector phase of Bphs is characterized by death due to hypotensive and 

hypovolemic shock within minutes of HA challenge (Bergman and Munoz, 1968). This 

time frame suggests that the effector phase may be associated with a sudden and rapid 

release of preformed factors generated during the sensitization phase rather than the 

induction of new gene expression by HA receptor signaling. Since inflammatory signals 

such as PTX induce the synthesis and storage of the vasoactive factors in the WPBs 

(Wolff et al., 1998) (Utgaard et al., 1998); (Utgaard et al., 1998) and because HA is a 

secretagogue for the release of these agents (Hattori et al., 1989), the shock following 

PTX sensitization and HA challenge could be due to the combined direct vasodilatory 

effects of HA and autocrine activity of the released stored products from WPBs. 
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However, our results in VWFKO mice demonstrate that the stored vasoactive factors in 

WPBs are not responsible for the sensitization and that VWF and/or other WPB 

components are instead protective in this model.  

This observation was surprising given the fact that WPBs store several factors that 

are good candidates for the observed trait, the sudden release of which could change 

endothelial function in an autocrine fashion. WPBs are dynamic granules with very 

random movements in resting cells (Romani de Wit et al., 2003). WPBs are released from 

ECs in response to a large number of secretagogues, which can be divided into 2 distinct 

groups: those that act by elevating intracellular calcium levels such as thrombin and HA 

and those that act by raising cAMP levels such as epinephrine and vasopressin (Rondaij 

et al., 2006). Calcium raising agonists induce a periphery–directed movement of WPBs 

while cAMP-mediated agonists induce a transport-directed redistribution towards the 

center of the cell leading to a star-like cluster at the perinuclear region (Vischer et al., 

2000). WPB clustering is believed to prevent excessive release of WPB constituents, and 

may also lead to a selective exclusion of subsets of WPBs from exocytosis. Clustering is 

induced by thrombin stimulation in human aortic EC (Vinogradova et al., 2000) but not 

in HUVECs (Rondaij et al., 2006). In HUVECs, PTX can inhibit both VWF and tissue 

plasminogen activator (tPA) release from WPBs in response to thrombin, most likely due 

to inhibition of calcium influx as well as inhibit HA-induced calcium release (van den 

Eijnden-Schrauwen et al., 1997). PTX causes ADP ribosylation of Gi/o family of G 

proteins that are negative regulators of Gαs protein and its subsequent activation of 

adenylate cyclase. Through this mechanism, PTX treatment leads to increased 

intracellular cAMP concentration (Wettschureck and Offermanns, 
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2005),(Mittra and Bourreau, 2006), (Sugden et al., 2004; Zawilska et al., 2004). Hence, it 

is possible that the suppression of Bphs observed in mice that have VWF and WPBs 

could be due to PTX-induced, cAMP-mediated clustering of WPBs and sequestration of 

their contents in B6 mice and not in VWFKO mice.  

Several studies have provided evidence in support of the existence of different 

subsets of WPBs that apart from VWF do not contain the same set of additional 

constituents (Fiedler et al., 2004; Oynebraten et al., 2004; Utgaard et al., 1998; Wolff et 

al., 1998). It has also been reported that different stimuli induce different WPB responses, 

depending on the physiological need. In the case of vascular damage, thrombin induces a 

rapid, local response leading to exocytosis of the WPBs while epinephrine induces a 

gradual release of WPBs (Vischer et al., 2000). Moreover, epinephrine induces the 

exocytosis of only the peripheral WPBs whereas thrombin stimulates the exocytosis of 

peripheral, as well as central WPBs (Vischer et al., 2000). This difference in release 

pattern and the fact that different stimuli, such as thrombin and epinephrine, induce WPB 

exocytosis via distinct mechanisms enables the cell to regulate the exocytosis of WPBs, 

and possibly the release of specific WPB constituents, in such a way that it meets the 

patho-physiological requirements induced by distinct triggers (Burgoyne and Morgan, 

2003). Therefore in an inflammatory disease as complex as EAE, stored factors in WPBs 

may regulate a fine balance between pro-inflammatory and anti-inflammatory responses 

while in animals that lack WPBs this regulation is lost, which may explain increased 

susceptibility of VWFKO mice to EAE. In addition, VWF is an adhesion molecule for 

leukocytes (Pendu et al., 2006) that may be involved in their recruitment (Wagner DD, 

unpublished data). VWF has also been reported to mediate clearance of metastatic tumor 
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cells in lungs through a mechanism still not known (Pendu et al., 2006). Therefore, it is 

possible that VWF may be promoting the clearance of pathogenic autoimmune cells or 

proinflammatory debris in the CNS of B6 mice leading to lesser CNS inflammation than 

in VWF deficient mice. 

The mechanism of BBB disruption in MS and EAE is unknown. Currently it is 

believed that neuroantigen-specific T cells within the systemic circulation interacting 

with ECs bring about the changes that lead to the formation of inflammatory foci and 

promote BBB permeability (Wingerchuk et al., 2001). Our results, however, indicate that 

disruption of the BBB in active EAE is independent of the encephalitogenic T cell 

responses and that this is caused by the interaction of EC with peripheral inflammatory 

stimuli such as CFA and PTX, and may also include neuropathic and inflammatory pain 

(Brooks et al., 2005; Inoue, 2006), which can be a major component of most forms of MS 

including benign disease (Glad et al., 2006). Overall, our study demonstrates that the 

interaction of EC with environmental agents other than those that lead to pathogenic T 

cell responses also influence the development of autoimmune disease by modifying BBB 

permeability. Taken together our findings underscore the potential importance of co-

infection and/or non-autoimmune related gene-by-environment interactions in the 

etiology of MS. 
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Materials and Methods 

 Animals. B6.129S2-Vwftm1Wgr (VWFKO) mice (Denis et al., 1998) were 

maintained in the vivarium of the Given Medical Building at the University of Vermont 

(Burlington, VT). C57BL/6J (B6) mice were purchased from the Jackson Laboratory 

(Bar Harbor, ME). Animals were fed RMH 3000 Lab Diet Rodent Chow (Ralston-Purina, 

St. Louis, MO) and tap water ad libitum and maintained in accordance with the Animal 

Welfare Act and the Public Health Service Policy on the Humane Care and Use of 

Laboratory Animals. The experimental procedures used in this study were approved by 

the Animal Care and Use Committee of the University of Vermont. 

 Pertussis toxin in vivo intoxication. Mice were injected intravenously (i.v.) with 

purified PTX (List Biological Laboratories, Inc.) in 0.025 M Tris buffer containing 0.5 M 

NaCl and 0.017% Triton X-100, pH 7.6. Control animals received carrier. 

Histamine sensitivity testing. HA sensitivity was determined by the i.v. injection 

of amounts of HA (mg/kg dry weight free base) suspended in PBS. Deaths were recorded 

at 30 min post challenge. The results are expressed as the number of deaths over the 

number of animals studied. 

  Induction and evaluation of EAE. EAE was induced as previously described 

(Teuscher et al., 2006a). Briefly, mice were injected subcutaneously in the flanks and 

neck with 0.1 ml of an emulsion containing 200 μg of myelin oligodendrocyte 

glycoprotein 35-55 (MOG35-55) (Beckman Institute, Palo Alto, CA) in saline and an equal 

volume of complete Freund’s adjuvant (CFA) containing 200 μg of Mycobacterium 

tuberculosis H37RA (Difco Laboratories, Detroit, MI). On the day of immunization, each 

mouse received 200 ng of PTX (List Biological Laboratories Inc., Campbell, 
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CA) by i.v. injection. The mice were assessed daily for clinical signs of EAE using the 

following scale: 0, normal; 1, limp tail or mild hind limb weakness; 2, moderate hind 

limb weakness or mild ataxia; 3, moderately severe hind limb weakness; 4, severe hind 

limb weakness or mild forelimb weakness or moderate ataxia; 5, paraplegia with no more 

than moderate forelimb weakness; 6, paraplegia with severe forelimb weakness or severe 

ataxia or moribund condition  

 Brains and spinal cords (SC) were dissected from calvaria and vertebral columns, 

respectively, and fixed by immersion in 10% phosphate-buffered formalin (pH 7.2). 

Following adequate fixation, brain and SC were trimmed and representative transverse 

section embedded in paraffin, sectioned at 5 µm, and mounted on glass slides. Sections 

were stained with hematoxylin and eosin for routine evaluation and Luxol fast blue-

periodic acid Schiff for demyelination. Sections from representative areas of the brain 

and SC were scored in a semi-quantitative fashion for the various histopathologic 

parameters, as previously described (Teuscher et al., 2006a). 

Blood brain barrier permeability determinations. Blood brain barrier (BBB) 

permeability was assessed as previously described (Tang et al., 1996). Briefly, a 50 μg/g 

dose of FITC-labeled BSA (Sigma, St. Louis, MO) was injected i.v. into B6 and 

VWFKO mice on day 8, 10 or 12 post immunization with CFA+PTX+MOG35-55, 

CFA+PTX, CFA or PTX. Cerebrospinal fluid and blood were collected after 4 h. Both 

CSF and plasma samples, prepared by centrifugation at 3000 rpm for 15 min, were 

diluted in PBS, and the fluorescence intensity was measured with a microplate 

fluorescence reader (Flx-800-I, Bio-Tek Instruments Inc, Winooski, VT) using the 

software KC-4, with an excitation wavelength of 485 nm and an emission wavelength of 
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528 nm. The BBB permeability index is expressed as the ratio of the fluorescence 

intensity of the CSF divided by the fluorescence intensity of the plasma.  

 Statistical analysis. Statistical analyses, as indicated in the figure legends, were 

performed using GraphPad Prism 4 software (GraphPad software Inc, San Diego, CA). 
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Figure 1. Assessment of Bphs in B6 and VWFKO.  
 
Mice were sensitized with 200 ng purified PTX by i.v. injection on day 0. Mice were 
challenged with HA (mg dry weight free base) by i.v. injection on the indicated day and 
deaths were recorded at 30 min post challenge. The results are expressed as the number 
of animals dead over the number of animals studied (% mortality). 
 
 



 

144

 

8 13 18 23 28
0

1

2

3

4 C57BL/6J
vWFKO

Day Post Injection

M
ea

n 
D

ai
ly

 S
co

re

 
 

Figure 2. Early onset and severe clinical course of EAE in VWFKO mice.  
 
EAE was induced in B6 (n = 18) and VWFKO (n = 27) mice by immunization with 
MOG35-55+CFA+PTX. Regression analysis (Teuscher et al., 2006a)  indicates that the 
disease course in both strains fits a variable slope sigmoidal curve and is significantly 
different between the two strains (F = 32.5; p < 0.0001). 
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Figure 3. Severe histopathological EAE in VWFKO brain.  
 
Comparison of the histopathologic lesions caused by EAE in the brains of B6 (A, C) and 
VWFKO (B, D) strains of mice. Note the minimal inflammatory response around 
capillaries and post capillary venules in the interface area between the brainstem and 
hippocampal formation (H) in the B6 brain than the marked inflammatory response in 
VWFKO brain. The inflammatory cells consisted of an admixture of lymphocytes and 
monocytes with occasional neutrophils and rare eosinophils. There was no primary 
demyelination in these areas of inflammation in B6 while minimal to mild primary 
demyelination was observed in VWFKO brain. H&E stain, scale bar = 200 µm. (B and 
D) higher magnification of B6 and VWFKO mouse brain, respectively. H&E stain, scale 
bar = 200 µm. Quantification of lesion severity in B6 and VWFKO mice revealed that the 
lesions in the brains (E) but not in SC (F) of MOG35-55+CFA+PTX immunized VWFKO 
mice are more severe compared to WT controls. Significance of differences was 
determined using the Student’s t-test. 
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Figure 4. Normal T cell responses in EAE induced B6 and VWFKO mice. 
 
(A) B6 and VWFKO CD4 T cells have equivalent ex vivo proliferative responses to 
MOG35-55 ten days following immunization with MOG35-55+CFA+PTX. Mean CPM ± SD 
were calculated from triplicate wells. (B) Production and/or (C) expression of 
cytokines/chemokines by MOG35-55 stimulated splenocytes does not differ between B6 
and VWFKO mice immunized with MOG35-55+CFA+PTX ten days earlier. Cytokine 
production was determined by ELISA or cytometric bead assay and the expression were 
determined by real time RT-PCR. Significance of differences between B6 and VWFKO 
CD4 T-cells responses was determined using the Student’s t-test with a p-value of 0.05 as 
the significance threshold.
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Figure 5. VWFKO mice exhibit increased BBB permeability compared to B6 mice 
following injection with MOG35-55+CFA+PTX.  
 
The permeability indices were calculated by determining the fluorescence in the CSF and 
the plasma collected 4h after i.v. injection of FITC-BSA and is the ratio of the 
fluorescence intensity of the CSF divided by the fluorescence intensity of the plasma. 
Changes in BBB permeability differ significantly over time (F = 5.61;    p = 0.02). 
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Figure 6. Increased BBB permeability in VWFKO mice is independent of 
encephalitogenic T cells.  
 
BBB permeability in MOG35-55+CFA+PTX and CFA+PTX immunized B6 (A), VWFKO 
mice (B). There was no difference in BBB permeability by treatment (p = 0.45) or over 
time (p = 0.08) in B6 animals while there was a significant difference in vWFKO animals 
over time (p = 0.003) but not by treatment (p = 0.47). Since there was no difference 
between MOG35-55+CFA+PTX and CFA+PTX immunized animals, the data was pooled 
and re-analyzed (C). Changes in BBB permeability differ significantly over time between 
B6 and VWFKO mice (p = 0.001).  
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Figure 7. BBB compromise and repair by endothelial cells differs depending on the 
peripheral inflammatory stimulus.  
 
BBB permeability in WT and VWFKO animals immunized with CFA alone (A), and 
PTX alone (B). Changes in BBB permeability differ significantly between WT and 
VWFKO mice (p<0.05). 
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Figure 8 
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Figure 8. Comparison of BBB permeability in animals immunized with components 
of adjuvants either alone or in combination.  
 
BBB indices in B6 (A) and VWFKO mice (B) immunized with CFA or PTX or both 
CFA+PTX. The p-values for the different interactions are shown. 
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