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Abstract 

 

Molecular and paleontological approaches have produced extremely different 

estimates for divergence times among orders of placental mammals and within rodents 

with molecular studies suggesting a much older date than fossils. We evaluated the 

conflict between the fossil record and molecular data and find a significant correlation 

between dates estimated by fossils and relative branch lengths, suggesting that molecular 

data agree with the fossil record regarding divergence times in rodents. Our approach 

includes a correction for tree hierarchy involving simulating the random appearance of 

fossils.  We also present a ghost lineage approach that attempts to incorporate the 

potential for the discovery of older fossils into a Bayesian analysis of divergence dates.  

Applying this approach to a set of Eocene rodent fossils, we estimated the earliest 

divergence in rodents appears to have occurred at approximately the K/T boundary, but 

interordinal splits were estimated to have taken place late in the Cretaceous.  We propose 

that some molecular clock studies may overestimate divergence times due to periods of 

accelerated molecular evolution across multiple lineages or due to saturation of data that 

is not adequately corrected by the evolutionary model. 

We have sequenced the complete mitochondrial genomes of three rodent species, 

Anomalurus beecrofti, Castor canadensis, and Dipodomys ordii, and attempt to resolve 

phylogenetic relationships within rodents using the mitochondrial genome, a nuclear 

dataset of comparable size, and a combined analysis containing 26 kbp of sequence data.  

The combined analysis recovered a Sciuromorpha – Hystricomorpha clade with strong 

support.  Our data suggest that increased character sampling improves resolution at these 

early nodes while better taxon sampling of mitochondrial genomes has led to better 

supported clades that converge on conclusions obtained from nuclear datasets. 

Several molecular studies have concluded that the zokors, genus Myospalax, 

evolved from within the rodent subfamily Cricetinae.  We tested this conclusion using 

mitochondrial data and determined that Myospalax is sister to a clade containing the 

subfamilies Spalacinae and Rhizomyinae, and all three of these lineages appear to be 

basal to the superfamily Muroidea. Based on the position of these three lineages, we 

suggested that they be placed in a distinct family, the Spalacidae. 

The murine genera Mus and Rattus are thought to have diverged about 12 million 

years ago (Ma) based on a series of fossils from the Siwaliks of Pakistan, but assumptions 

of murid relationships that led to this conclusion have been shown to be false by 

molecular data. Equally parsimonious hypotheses can be proposed which place the 12 

million year old Progonomys fossil at the base of the family Muridae, basal to the 

subfamily Murinae, or at the Mus - Rattus divergence.  We here test the dates of 

evolutionary divergences in murids. Our results indicate that the family Muridae probably 

diverged earlier than the Siwalik fossils, but Mus and Rattus diverged at the same time or 

prior to the 12 Ma fossil date.  We also cannot reject the hypothesis that the 12 Ma date 

represents the oldest split in the Murinae instead of the more derived Mus – Rattus date. 

We also recovered phylogenetic results suggesting that Taterillus is related to the tribe 

Gerbillini and not to other genera that are treated as Taterillini and that Gerbillurus 

evolved from within Gerbilliscus. 
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Chapter 1 

Evolution and dating in rodents: A review of the literature 

 

DIVERGENCE TIMES IN PLACENTAL MAMMALS 

Placental mammals appear to have diverged from marsupials in the Early 

Cretaceous (Wible et al., 2005).  The oldest record of the Eutheria (a clade that unites 

placentals with their fossil relatives) is Eomaia from Chinese deposits dated at about 125 

million years ago (Ma; Ji et al., 2002).  The oldest metatherian (a clade uniting 

marsupials with their fossil relatives), Sinodelphys, has also been found in China from the 

same time period (Luo et al., 2003).  No fossils exist which can be unambiguously 

assigned to modern placental orders until the Cenozoic (McKenna and Bell, 1997; Wible 

et al., 2005; 2007).  The traditional view has been that, although some basal forms 

coexisted with nonavian dinosaurs, modern placental mammals arose suddenly after the 

mass extinction event at the end of the Cretaceous.  According to this view, both 

interordinal (between order) and intraordinal (within order) diversification of placental 

mammals took place after the Cretaceous-Tertiary (K/T) extinction event.  The extinction 

of dinosaurs provided for an ecological release that allowed for the explosive radiation of 

placental mammals into open niches.  This traditional hypothesis is currently regarded as 

The Explosive Model (Archibald and Deutschman, 2001; Springer et al., 2003; 2005) and 

still receives wide support among paleontologists (Foote et al., 1999; Wible et al., 2005; 

2007). 
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The development of molecular approaches to phylogeny reconstruction was 

followed by a hypothesis that mutations accumulate at a constant rate over time termed 

the “molecular clock” (Zuckerkandl and Pauling, 1962).  Although the assumption of rate 

constancy has been largely discarded over time, statistical approaches applying molecular 

clocks to molecular data have become powerful and frequently used tools (Bromham and 

Penny, 2003).  The application of these molecular dating approaches to the question of 

placental mammal diversification yielded results that suggested that both interordinal and 

even many intraordinal evolutionary splits in placental mammals took place in the 

Cretaceous (Kumar and Hedges, 1998; Bininda-Emonds et al., 2007).  These results 

essentially suggest that placental mammals evolved at the feet of dinosaurs.  Characters 

associated with specific ecologies such as flight in bats, gnawing teeth in rodents, and 

carnassial teeth in carnivorans would have evolved in spite of competition with 

dinosaurs, pterosaurs, and other Cretaceous tetrapods.  This hypothesis is based entirely 

on molecular data, has no support in the fossil record, and is termed the Short Fuse Model 

(Archibald and Deutschman, 2001; Springer et al., 2003; 2005). 

The Long Fuse Model represents a compromise between the Explosive and Short 

Fuse models.  It states that interordinal diversification took place in the Cretaceous, but 

intraordinal diversification took place after the K/T event.  Presumably, primitive 

placentals diversified in the Cretaceous, but extreme shifts in morphology associated with 

ecological specialization, such as flight in bats and carnassials in carnivorans, took place 

after these niches became available due to the mass extinction event.  Paleontologists 

have considered some Cretaceous eutherians to be allied to modern orders.  Archibald 
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(1996; 2003) and Archibald et al. (2001) have suggested that the Cretaceous 

zalambdelestids and zhelestids are related to Glires (rodents and lagomorphs) and 

ungulates respectively.  Their findings have been refuted by other paleontologists (Meng 

and Wyss, 2001; Meng et al., 2003; Wible et al., 2005; 2007).  Molecular evidence for 

this hypothesis has also been limited.  Unlike many other studies where nearly all orders 

dated to the Cretaceous (Kumar and Hedges, 1998; Bininda-Emonds et al., 2007), 

Springer et al. (2003) recovered Cenozoic divergence dates for all mammal orders except 

for Rodentia, Primates, Xenarthra, and Eulipotyphla.  Nevertheless, the paleontological 

and molecular communities do not appear to be converging on the Long Fuse Model, and 

the conflict still appears intractable. 

 

DIVERGENCE TIMES IN RODENTS 

Although some dissent exists (D’Erchia et al., 1996; Grauer et al., 1991; 1996; 

Misawa and Janke, 2003), the closest relative to the order Rodentia is widely recognized 

to be the rabbits and pikas (order Lagomorpha) by both morphologists (Luckett and 

Hartenberger, 1993; Landry, 1999; Meng and Wyss, 2001; 2005) and molecular 

biologists (Murphy et al., 2001; Huchon et al., 2002; Douzery and Huchon, 2004; 

Bininda-Emonds et al., 2007; Huchon et al., 2007).  Following a terminology employed 

by paleontologists (Wyss and Meng, 1996; Meng and Wyss, 2001; 2005), the Glires are 

defined as the most recent common ancestor of Rodentia and Lagomorpha and all its 

descendents.  Rodentia are defined as the most recent common ancestor of all extant 

rodents (including Anomalurus, Castor, Cavia, Mus, and Sciurus) and all its descendants.  



 4 

Simplicidentata is defined as all mammals sharing a more recent common ancestor with 

Rodentia than Lagomorpha. Rodentia is the more exclusive definition whereas 

Simplicidentata includes early fossil taxa that are basal to the clade that unites all extant 

rodents. 

Simplicidenta are characterized by possessing a single pair of ever-growing 

incisors on both the upper and lower toothrow, an enlarged diastema with the upper 

diastema longer than the lower, and a lack of P
2
 (Meng and Wyss, 2005).  The earliest 

known simplicidentate is the Asian genus Heomys from the early Paleocene, dated about 

64.6 million years ago (Ma; Li, 1977; Marivaux et al., 2004).  The earliest known relative 

of modern lagomorphs, Mimotona, is known from the same formation and is dated to 

about the same time (Li, 1977; Marivaux et al., 2004). 

The first morphologically modern rodents appear about 57 Ma in the Late 

Paleocene (Clarkforkian) of North America (Meng and Wyss, 2005; The Paleobiology 

Database [PBDB] http://paleodb.org).  According to the fossil record, rodents underwent 

an explosive diversification through the Eocene (Fig. 1) and all modern suborders (as 

defined by Carleton and Musser, 2005) are present by its end (McKenna and Bell, 1997).  

A total of 76 genera of rodents have been described from the Paleogene (Marivaux et al., 

2004).  In terms of diversity, rodents are the most successful group of mammals.  Modern 

rodents comprise nearly half of all described mammal species (33 families, 481 genera, 

2,277 species).  McKenna and Bell (1997) list an additional 743 extinct genera of 

rodents. 
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The discrepancy between molecular and fossil estimates for divergence dates in 

rodents is among the most extreme in mammals.  Molecular analyses that employ a 

molecular clock have only recovered a few orders of placentals (Afrosoricida, 

Eulipotyphla, and Primates) that are comparable in their early age of intraordinal 

divergences  (Kumar and Hedges, 1998; Springer et al., 2003; Bininda-Emonds et al., 

2007). Molecular clock analyses using non-rodent calibration points consistently place 

early rodent splits in the Cretaceous period (Kumar and Hedges, 1998; Cao et al., 2000) 

even when using techniques that account for rate heterogeneity (Adkins et al., 2001; 

Huchon and Douzery, 2001; Mouchaty et al., 2001; Adkins et al., 2003; Douzery et al., 

2003; Springer et al., 2003; Delsuc et al., 2004; Springer et al., 2005; Poux et al., 2006; 

Bininda-Emonds et al., 2007; Huchon et al., 2007).  The only molecular clock studies that 

date the earliest split in Rodentia are those that apply calibration points within the 

rodents, usually with strong upper bounds on those dates (Huchon et al., 2002; 

Montgelard et al., 2002; Douzery et al., 2003).   

In chapter 2, I evaluate the conflict between molecular and paleontological 

estimates for divergence times in rodents.  I assess the paleontological literature to 

estimate a date of divergence for rodent splits that took place in the Eocene and compare 

them to relative age estimates obtained from molecular results.  I evaluate the observed 

correlation between fossil and molecular estimates against a distribution of randomly 

appearing fossils to determine whether the molecular and fossil results actually disagree.  

I also develop a novel approach that incorporates the uncertainty inherent in the 

assumption that a given fossil represents the true date of divergence between lineages.  
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Finally, I generate estimates for divergences in rodents and between rodents and their 

closest relatives and evaluate the Explosive, Long Fuse, and Short Fuse Models of 

placental mammal evolution. 

 

RELATIONSHIPS AMONG RODENTS 

Multiple major proposals have been advanced attempting to divide rodents into 

subordinal ranks (Brandt, 1855; Tullberg, 1899; Ellerman, 1940; Simpson, 1945; Wood, 

1955; 1959; 1965; Chaline and Mein, 1979; Hartenberger, 1985; Wilson and Reeder, 

1993; Landry, 1999; Carleton and Musser, 2005), but the majority of these have centered 

around two principal characters, the morphology of the zygomasseteric system and the 

shape of the mandible.  Brandt (1855), and other 19th century researchers developed a 

taxonomy based on Waterhouse’s (1839) description of characters of the zygomasseteric 

system, the relationship of the masseter muscles to the zygomatic arch and infraorbital 

canal. Tullberg (1899) suggested that rodents be divided into two groups, those with a 

hystricognathous jaw and those with a sciurognathous jaw.  Subsequent morphology-

based taxonomies have largely been modifications of these two early proposals.  

Numerous well-sampled molecular studies have greatly clarified the relationships among 

rodents (Nedbal et al., 1994; 1996; Huchon et al., 1999; Adkins et al., 2001; DeBry and 

Sagel, 2001; Huchon and Douzery, 2001; Huchon et al., 2002; Montgelard et al., 2002; 

Adkins et al., 2003; DeBry, 2003; Huchon et al., 2007).   

Although they applied many of the terms of Brandt (1855), Carleton and Musser 

(2005) proposed an updated taxonomy of extant Rodentia that incorporates molecular 
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results.  They recognize five suborders: Sciuromorpha, Castorimorpha, Myomorpha, 

Anomaluromorpha, and Hystricomorpha.  I apply the taxonomy of Carleton and Musser 

(2005) throughout the dissertation with the exception of chapter 4, which was published 

in 2004 (Norris et al., 2004) or except where specifically noted.   

The Sciuromorpha unites the dormice (family Gliridae) with the mountain beaver 

(Aplodontiidae) and squirrel family (Sciuridae).  The Sciuridae and Aplodontiidae have 

been found to be sister taxa in a number of well-supported studies (Huchon et al., 1999; 

Adkins et al., 2001; DeBry and Sagel, 2001; Huchon et al., 2002; Adkins et al., 2003; 

DeBry, 2003; Huchon et al., 2007).  I follow the trend among many molecular studies 

(Huchon et al., 1999; Michaux and Catzeflis, 2000; Montgelard et al., 2002; DeBry, 

2003; Douzery et al., 2003; Horner et al., 2007) in using the term Sciuroidea to refer to 

the Aplodontiidae + Sciuridae, but do so with reservation because paleontologists tend to 

refer to Sciuroidea and Aplodontioidea (or Aplodontoidea) to refer to clades uniting 

certain fossil families with the extant sciurids and aplodontiids (Wood, 1955; Meng, 

1990; McKenna and Bell, 1997; Marivaux et al., 2004).  The relationship between glirids 

and sciuroids has been recovered with good support, but in fewer studies (Adkins et al., 

2003; Reyes et al., 2004; Horner et al., 2007; Huchon et al., 2007). 

The Castorimorpha unites the beavers (Castoridae), pocket gophers (Geomyidae), 

and kangaroo rats (Heteromyidae).  The sister relationship between the geomyids and 

heteromyids has been widely recognized by both molecular biologists (DeBry and Sagel, 

2001; Huchon et al., 2002; Adkins et al., 2003; DeBry, 2003; Huchon et al., 2007) and 

morphologists (Wood, 1955; Hartenberger, 1989; Landry, 1999; Marivaux et al., 2004).  
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The position of the Castoridae as sister to the Geomyoidea is more preliminary and 

Carleton and Musser (2005) emphasized that further study was required to verify their 

hypothesis.  Huchon et al. (2007) have since supported monophyly of Castorimorpha 

with reasonably high support. 

The Myomorpha is an extremely successful group that includes the birch mice, 

jumping mice, and jerboas (Dipodidae), and the wildly successful superfamily Muroidea, 

a group that contains almost one quarter of all mammal species including mice, rats, 

gerbils, voles, hamsters, and their relatives.  The Myomorpha represents another 

relatively uncontroversial grouping that has been supported in many studies (DeBry and 

Sagel, 2001; Adkins et al., 2003; DeBry, 2003; Reyes et al., 2004; Huchon et al., 2007).      

The Anomaluromorpha contains the scaly-tailed flying squirrels (Anomaluridae) 

and the springhare (Pedetidae).   This suborder combines two families that have a 

hystricomorphous zygomasseteric system, a hystricognathous mandible, and are currently 

restricted to sub-Saharan Africa.  Most published molecular phylogenies have included 

one of these two families, but not both.  Montgelard et al. (2002) recovered a well-

supported Anomaluromorpha clade, but their study was restricted to the application of 

weighted parsimony to two mitochondrial genes.  Carleton and Musser (2005) united the 

two families in a single suborder largely due to a lack of alternative hypotheses. Huchon 

et al. (2007) have since supported monophyly of Anomaluromorpha with good support. 

The Hystricomorpha is a clade that includes the recently described Laonastes, the 

gundis, and the diverse Hystricognathi.  This clade has been subjected to considerable 

study and many opposing hypotheses have been proposed, but both morphological 
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(Luckett and Hartenberger, 1985; Flynn et al., 1986; Landry, 1999; Marivaux et al., 2002; 

2004; Dawson et al., 2006) and molecular (Huchon et al., 2000; Adkins et al., 2001; 

Huchon et al., 2002; Adkins et al., 2003; Huchon et al., 2007) studies have converged on 

its current composition.  Although Laonastes was described in 2005 (Jenkins et al., 

2005), its inclusion in this suborder receives unanimous support among those who have 

analyzed it (Jenkins et al., 2005; Dawson et al., 2006; Huchon et al., 2007).  The terms 

Entodacrya (Landry, 1999) and Ctenohystrica (Huchon et al., 2000) have been coined to 

refer to this suborder, but I agree with Carleton and Musser (2005) that, although 

suprafamilial ranks are not covered by the International Code of Zoological 

Nomenclature, there is no compelling reason to create a new term whenever the 

composition of a taxonomic group changes due to new information.  The core of Brandt’s 

(1855) definition of Hystricomorpha is retained in modern classifications and new terms 

are not required. 

In addition to evaluating divergence times in chapter 2, I also test monophyly of 

the suborders of Carleton and Musser (2005) using a dataset containing over 8,000 bp 

from seven genes.  I attempt to determine the relationships among suborders in both 

chapter 2 and chapter 3.  Chapter 3 employs sequencing the full mitochondrial genomes 

of three rodents, Anomalurus beecrofti, Castor canadensis, and Dipodomys ordii, 

combining these data with published mitochondrial genomes, and comparing these results 

with a nuclear dataset of comparable size (16 genes, >13,000 bp) in an attempt to 

determine how rodent suborders are related.  
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THE POSITION OF MYOSPALACINAE WITHIN THE MUROIDEA 

The superfamily Muroidea represents the largest radiation of mammals with 1,518 

extant species in 310 genera (Musser and Carleton, 2005).  This represents nearly ! of 

described mammal species (Wilson and Reeder, 2005).  The evolutionary relationships 

among these rodents are extremely complex leading Musser and Carleton (1993) to treat 

all members as a single family in the absence of viable alternative hypotheses.  The 

application of molecular data to the question of muroid relationships (Furano et al., 1994; 

Usden et al., 1995; Robinson et al., 1997; Huchon et al., 1999; Michaux and Catzeflis, 

2000; Chevret et al., 2001; DeBry and Sagel, 2001; Michaux et al., 2001) began to 

greatly improve understanding of relationships among muroids and certain patterns began 

to emerge.  One of the most prominent of these patterns was the existence of a fossorial 

clade containing the blind mole rats (subfamily Spalacinae), the bamboo rats (subfamily 

Rhizomyinae), and the African mole rats in the genus Tachyoryctes (Robinson et al., 

1997; Huchon et al., 1999; Michaux and Catzeflis, 2000; DeBry and Sagel, 2001; 

Michaux et al., 2001) basal to a monophyletic group containing the remaining sampled 

muroid subfamilies.  As a result, Michaux et al. (2001) suggested that these taxa be 

placed in the family Spalacidae, while applying the family name Muridae to all remaining 

subfamilies. 

The position of the zokors (subfamily Myospalacinae) was more storied.  Genetic 

information from a single individual, identified as Myospalax sp. from an “unknown 

locality, Russia” was the only representative of the subfamily Myospalacinae applied to 
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several phylogenetic studies of muroid relationships (Furano et al., 1994; Usden et al., 

1995; Michaux and Catzeflis, 2000; Chevret et al., 2001).  The results of these studies 

indicated a phylogenetic position of the Myospalacinae nested within the subfamily 

Cricetinae (Michaux and Catzeflis, 2000; Chevret et al., 2001; Michaux et al., 2001).  

Specifically, Myospalax appeared to be sister to the hamster genus Phodopus.   

In prior studies based on morphology, the Myospalacinae had been allied to 

several different muroid subfamilies including Rhizomyinae and Spalacinae (Tullberg, 

1899), Spalacinae (Miller and Gidley, 1918; Chaline et al., 1977), Arvicolinae (Kretzoi, 

1955), and Cricetinae (Gromov and Polyakov, 1977).  Carleton and Musser (1984) 

considered the myospalacines to be primitive cricetids, whereas Lawrence (1991) 

concluded that they were derived from a fossorially adapted lineage basal relative to all 

muroids.  Although the myospalacines had been considered related to the cricetines, their 

placement as sister to Phodopus within the Cricetinae represented a novel idea unique to 

these molecular studies (Michaux and Catzeflis, 2000; Chevret et al., 2001; Michaux et 

al., 2001).  

We tested the position of Myospalax as a derived hamster in chapter 4, which was 

published in 2004 (Norris et al., 2004).  We concluded that the tissue from the individual 

used in previous studies to advocate a position of zokors as derived hamsters was 

probably from an actual hamster and had been mislabeled.  We determined that zokors 

are a part of the same basal fossorial radiation that includes the Spalacinae, Rhizomyinae, 

and Tachyoryctes, a conclusion supported by Jansa and Weksler (2004) who published a 

similar conclusion at about the same time.  We recommended that Myospalacinae be 
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treated as a subfamily within Spalacidae, a position adopted by Musser and Carleton 

(2005). 

Musser and Carleton (2005) further divided the Muroidea into six families in 

total.  These are the spiny and pygmy dormice or tree mice (Platacanthomyidae), the 

blind mole rats, zokors, bamboo rats, and African mole rats (Spalacidae), the mouse-like 

hamsters, referred to by Norris et al. (2008) as brush-tailed mice (Calomyscidae), a clade 

of African and Malagasy endemics (Nesomyidae), the hamsters, voles, and New World 

rats and mice (Cricetidae), and the gerbils and Old World rats and mice (Muridae).  The 

position of two subfamilies in Musser and Carleton’s (2005) taxonomy is particularly 

preliminary.  They place the Togo Mouse, Leimacomys buetnerri, in a new subfamily in 

the Muridae primarily due to a cladistic study of dental characters by Denys et al. (1995), 

who recovered a relationship of Leimacomys with the Gerbillinae, but with essentially no 

support.  Although treatment of Leimacomys as a murid is probably as valid as any other 

hypothesis, the genus is essentially incertae sedis.  Musser and Carleton (2005) also treat 

the maned rat, Lophiomys imhausii, as a member of a monotypic subfamily, but in the 

Cricetidae.  In the only molecular study to include it, Jansa and Weksler (2004) 

determined, with strong support, that Lophiomys is a member of the Muridae clade. 

 

RELATIONSHIPS AND DIVERGENCE TIMES AMONG THE MURIDAE: THE MUS – RATTUS 

DIVERGENCE 

The classic view of the origin of Mus and Rattus is that they are part of two 

separate radiations that arose from the earliest split of the subfamily Murinae.  A series of 
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paleontological studies (Jacobs, 1978; Jaeger et al., 1986; Flynn et al., 1990; Jacobs and 

Downs, 1994; Jacobs and Flynn, 2005) have estimated the Mus - Rattus divergence date 

as having occurred 10-14 million years ago (Ma) based on the temporally well-defined 

Siwalik fossil series from Pakistan.  Jacobs and Downs (1994) describe the transition of 

molar characters from the plesiomorphic condition found in Potwarmus 14.4 Ma through 

transitionary intermediates to the first appearance of Antemus, the presumed ancestor of 

all murines, 14.0 Ma (Flynn et al., 1990; Jacobs and Flynn, 2005).  The earliest species in 

the genus Progonomys, the first fully modern murine, appeared by 12.3 Ma (Jacobs and 

Flynn, 2005).  Later species of Progonomys, thought to be on the line leading to Mus, 

appeared at 10.4 Ma, and Karnimata, the presumed ancestor of Rattus, appeared by 11.1 

Ma (Jacobs and Flynn, 2005).  Benton and Donaghue (2007) define the hard minimum 

value of this divergence time to be represented by the first appearance of Karnimata 11.1 

Ma, and the soft maximum to be at the first appearance of modern murines, early forms 

of Progonomys, at 12.3 Ma.  Because of the quality of this fossil series and the 

importance of these species, the 12 Ma Mus - Rattus divergence date has become one of 

the most widely used calibration points for molecular clocks and studies of molecular 

evolution (Catzeflis et al., 1987; Li et al., 1987; Furano et al., 1994; Nedbal et al., 1994; 

Adkins et al., 1996; Agulnik and Silver, 1996; Dubois et al., 1996; Edwards et al., 1997; 

Robinson et al., 1997; Ducroz et al., 1998; Huchon et al., 2000; Martin et al., 2000; 

Michaux and Catzeflis, 2000; Suzuki et al., 2000; Barome et al., 2001a, 2001b; Chevret 

et al., 2001; Ducroz et al., 2001; Fadda et al., 2001; Michaux et al., 2001; Weinreich, 

2001; Huchon et al., 2002; Michaux et al., 2002; Smith and Eyre-Walker, 2002).  
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Some studies have used other calibration points to estimate the time of divergence 

between Mus and Rattus.  I evaluated 75 estimates of this date from 18 molecular studies 

published before 2004 (O’hUigin and Li, 1992; Janke et al., 1994; Frye and Hedges, 

1995; Kumar and Hedges, 1998; Messer et al., 1998; Cao et al., 2000; Huchon et al., 

2000; Michaux and Catzeflis, 2000; Yoder and Yang, 2000; Adkins et al., 2001; Ducroz 

et al., 2001; Michaux et al., 2001; Nei et al., 2001; Nikaido et al., 2001; Michaux et al., 

2002; Montelgard et al., 2002; Nei and Glazko, 2002; Adkins et al., 2003).  Estimates 

range from 11.5 Ma to 86.9 Ma with a mean of 35.8 Ma.  With only six exceptions 

(Michaux and Catzeflis, 2000 [11.5]; Yoder and Yang, 2000 [12.9, 13.7]; Ducroz et al., 

2001 [12.5]; Michaux et al., 2001[12]; 2002 [11.9]), molecular estimates were 

consistently earlier than the 12-14 Ma as estimated by fossils.   

Yoder and Yang (2000) used multiple primate calibration points separately and 

employed a variety of global and local clock estimates.  Their estimates of the Mus – 

Rattus split range from 12.9 Ma to 56.9 Ma with a mean of 40.0 Ma.  The presence of 

two values at the low end of such a broad range can clearly not be viewed as 

confirmation of the paleontological date estimate.  The remaining four studies that 

produced a Mus – Rattus estimate <15 Ma are the only studies among these that 

employed calibration points from within the Muroidea.  Two of these calibration points 

are problematic.  Michaux et al. (2001) cite Tong (1989) as the source for a Gerbillus – 

Tatera calibration point of 8-10 Ma.  Tong (1989) actually presents evidence that the 

calibration point between Tatera and Gerbillus is 6 Ma based on the paleontologic 

record.  He notes that DNA-DNA hybridization studies (e. g. Brownell, 1983) produced a 
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Gerbillus – Tatera estimate of 8-12 Ma when calibrated with Mus - Rattus.  Michaux et 

al.’s (2001) use of the Gerbillus – Tatera calibration to determine the Mus – Rattus split 

is invalid because it derives from a prior Mus – Rattus calibration.  Ducroz et al. (2001) 

employ a Gerbillinae – Murinae calibration point, but this interpretation of fossils is 

potentially subject to the same problems of uncertainty as are described below for the 

Mus – Rattus date.  Consequently, only two studies (Michaux and Catzeflis, 2000; 

Michaux et al., 2002) using a Spalacidae - Muridae (20 Ma) and an Apodemus mystacinus 

– A. sylvaticus (7 Ma) calibration have tested the Mus – Rattus divergence date using 

muroid calibrations. Neither study employs multiple calibration points or a method of 

estimation that accounts for rate heterogeneity.  Estimates that do not use a muroid 

calibration point consistently yield Mus – Rattus dates that are unreasonably high (mean 

= 37.2 Ma) when compared to the paleontological evidence.  This emphasizes the need to 

employ calibration points from sister taxa in this superfamily or at least calibration points 

within the Rodentia. 

Molecular systematic studies of muroids have shed additional doubt on the 

current interpretation of the fossil record.  A series of DNA-DNA hybridization studies 

(Chevret et al., 1993; Denys et al., 1995), DNA sequencing studies (Agulnik and Silver, 

1996; Chevret et al., 2001; Michaux et al., 2001; Jansa and Weksler, 2004; Steppan et al., 

2004), and other molecular studies (Furano et al., 1994; Usdin et al., 1995) have 

demonstrated that the spiny mouse, Acomys, is more closely related to the gerbils than to 

the Murinae.  This led researchers (Michaux et al., 2001; Steppan et al., 2004; Musser 
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and Carleton, 2005) to recognize a new subfamily, Deomyinae, which contains Acomys 

and related genera. 

The molar morphology of Acomys is extremely similar to Mus.  Jacobs (1978) 

considered the genus Acomys to be sister to Mus and suggested that both were derived 

from Progonomys debruijni.  Under that interpretation, the divergence time between 

Acomys and Mus should be about 8.5 Ma while Acomys and Rattus would have diverged 

when Mus and Rattus diverged 11.1-12.3 Ma.  Subsequent morphological studies have 

also supported the affinity of Acomys with the murines (Denys et al., 1992; 1995; Xu et 

al., 1996) and none have suggested a reinterpretation of the Siwalik fossil series. 

If only extant taxa are considered, two equally parsimonious explanations exist 

for the extreme similarity seen between Acomys and Mus.  The Mus-like molar could be 

the plesiomorphic state for the family Muridae and could have evolved into the derived 

tooth morphology seen in gerbils.  Under this scenario, a Progonomys – like ancestor 

would have given rise to all taxa in this clade.  Alternatively, the Mus-like molar may 

have evolved independently in both the murines and deomyines.  Antemus and early 

Progonomys could be the ancestors to the Murinae.  Even under this scenario, the use of 

Karnimata and later species of Progonomys to represent the ancestors of Rattus and Mus 

respectively may be problematic, as recent molecular results have suggested that the split 

between Mus and Rattus does not represent the earliest divergence among the Murinae. 

Instead a clade of Philippine endemic rodents including Phloeomys and Batomys 

represents the most basal lineage of murines (Jansa and Weksler, 2004; Steppan et al., 

2004; Steppan et al., 2005; Jansa et al., 2006; Rowe et al., 2008).  Steppan et al. (2004) 
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and Jansa et al. (2006) chose to use the Siwalik fossil series as a calibration point to 

represent the split between this Philippine clade and the remaining murines.  The 11.1-

12.3 Ma date may therefore apply to a Deomyinae – Murinae split, a Phloeomys – Rattus 

split, or a Mus – Rattus split. 

In chapter 5, I estimate the divergence date between Mus and Rattus using the 

same dataset that was used in chapter 2 with the addition of Rattus.  This dataset involves 

a large amount of sequence data (>8,000 bp) and includes eight well-corroborated fossil 

calibrations.  I also test among the three potential positions for the 12.3 Ma Progonomys 

date using a mitochondrial dataset that involves a 1,336 bp segment of the mitochondrial 

genome containing all or part of the protein coding genes COX1, COX2, and ATPase 8 

as well as three transfer RNAs: tRNA-Ser, tRNA-Asp, and tRNA-Lys.  In addition to 

testing divergence times, the mitochondrial dataset in chapter 5 is used to evaluate 

phylogenetic relationships within the Gerbillinae and involving additional samples of 

African Murinae obtained from Guinea and Sierra Leone over the course of my 

dissertation research (Norris, 2006; Decher et al., 2007; 2008).   

The family Muridae is perhaps the single most important family of animals in 

laboratory science. The genera Mus and Rattus specifically are of vital importance to 

numerous fields of biological sciences.  Both have been the subjects of genome projects 

(Bouchie, 1999; Chinwalla et al., 2002) and the information gained from study of these 

two taxa has led to advancement in a vast array of biology related fields.  Much of this 

research has had broader application to mammals as a whole (Bradley, 2002).  Few 
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advances in medicine and human biology have been made that did not involve 

preliminary or parallel study in a mouse or rat system. 

In a series of papers that are not published in this dissertation, we applied 

systematic techniques to evaluate the molecular evolution of the genes involved in the 

endocannabinoid system across organisms whose complete genomes are available 

(McPartland et al., 2007a; 2007b; 2007c).  Among the assumptions that were required to 

conduct these investigations were those made concerning phylogenetic relationships of 

model organisms and dates that evolutionary splits took place.  By applying a Mus – 

Rattus date of about 12 Ma, we compared how the dates applied to a Mus – Rattus split in 

a prior study (Dorus et al., 2004) would influence results (McPartland et al., 2007c).  

Dorus et al. (2004) assumed that Rattus and Mus split at about the same time as Homo – 

Macaca.  According to paleontological estimates the divergence time between Mus and 

Rattus is about half that of Homo – Macaca.  Based upon the estimate of Dorus et al. 

(2004) we would conclude that the endocannabinoid system in rodents evolves about 2.7 

times faster than in primates.   Using the dates derived from fossils we concluded that it is 

actually evolving at 5.4 times the rate (McPartland et al., 2007c).  In order to understand 

how differing results in rodent models have implications in primates it is vital to 

understand the evolutionary history of both groups.  Estimating relationships and 

divergence times in rodents has the potential to affect conclusions in biomedicine and 

comparative genomics as well as systematics, evolution, paleoecology, and morphology. 
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FIGURE LEGENDS 

FIGURE 1. Mammals occupying ecological niches broadly similar to modern Rodentia in 

the Paleocene and Eocene.  Data taken from McKenna and Bell (1997). 
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Chapter 2 

Phylogeny and divergence times of major rodent clades: Agreement 

between molecular clock and fossils 

 

Abstract- 

Molecular and paleontological approaches have produced extremely different estimates 

for divergence times among orders of placental mammals and within rodents.  Molecular 

studies have suggested a Cretaceous origin for the Rodentia and other orders, but the 

fossil record shows no indication of any member that can be assigned to a modern order 

until the Paleocene.  Here we evaluate the conflict between the fossil record and 

molecular data and find a significant correlation between dates estimated by fossils and 

relative branch lengths, suggesting that molecular data agree with the fossil record 

regarding divergence times in rodents. Our approach includes a correction for tree 

hierarchy involving simulating the random appearance of fossils and holds true across 

different molecular clock techniques. We also present a ghost lineage approach that 

attempts to incorporate the potential for the discovery of older fossils into a Bayesian 

analysis of divergence dates.  We apply this approach to a set of Eocene rodent fossils 

and estimate divergence times within rodents and among the Euarchontoglires orders.  

The earliest divergence in rodents appears to have occurred at approximately the K/T 

boundary, but interordinal splits in the Euarchontoglires are estimated to have taken place 

late in the Cretaceous.  We propose that some molecular clock studies may overestimate 

divergence times due to a period of accelerated molecular evolution across multiple 



 35 

lineages or due to saturation of data that is not adequately corrected by the evolutionary 

model. 

 

INTRODUCTION 

The introduction of molecular data has greatly expanded the scientific 

community’s understanding of the interordinal (between order) relationships in placental 

mammals (Murphy et al., 2001; Springer et al., 2004).  Although certain specific clades 

are only recently being resolved, such as the relationships among the three Euarchontan 

orders (Jane!ka et al., 2007), the broader story has been acquiring wide acceptance over 

the past two decades.  In contrast, assigning dates to both interordinal and intraordinal 

splits in placental mammals has proven highly controversial.   

Archibald and Deutschman (2001) and Springer et al. (2003; 2005) provide a 

simple overview of the state of dating controversy by outlining three basic competing 

hypotheses: the Explosive, Long Fuse, and Short Fuse models.  These hypotheses vary 

based on the timing of interordinal and intraordinal diversification of placentals relative 

to the mass extinction event at the Cretaceous-Tertiary (K/T) boundary.  The Explosive 

Model places both inter- and intra- ordinal diversification after the K/T boundary.  It is 

widely supported by paleontologists (Foote et al., 1999; Wible et al., 2005a; 2007) and 

was the traditional hypothesis prior to the introduction of molecular data (Gingerich, 

1977).  The Long Fuse Model places interordinal splits in the Cretaceous, while placing 

intraordinal diversification in the Cenozoic.  This compromise approach is supported at 

least in part by some paleontologists (Archibald et al., 2001; Archibald, 2003) as well as 
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for certain orders in some molecular analyses (Springer et al., 2004; 2005).  The third 

hypothesis, the Short Fuse Model, places both interordinal and intraordinal diversification 

in the Cretaceous.  The Short Fuse Model has no support from the fossil record, yet is 

supported for many orders by the majority of molecular analyses (Kumar and Hedges, 

1998; Bininda-Emonds et al., 2007). 

 Perhaps no group of placental mammals shows a stronger conflict between the 

fossil record and the results of molecular clock analyses than the order Rodentia. For the 

sake of consistency we apply the terminology of Meng and Wyss (2005): Rodentia refers 

to the most recent common ancestor of Mus, Sciurus, and Hystrix.  Simplicidentata is a 

stem-based term referring to all taxa more related to modern Rodentia than any other 

living taxa.  Glires is defined as the most recent common ancestor of rodents and 

lagomorphs and all its decendents.   

The earliest fossils that may be attributable to Rodentia are known from the 

Clarkforkian (55.4-56.8 million years ago [Ma]) of North America (Meng and Wyss, 

2005).  The earliest fossils attributable to Glires may date back to the early or middle 

Paleocene of Asia (less than 65.5 Ma; McKenna and Bell, 1997; Marivaux et al., 2004; 

Asher et al., 2005; Meng and Wyss, 2005; Li et al., 2007). No fossils attributable to either 

the order Rodentia or the superorder Glires that date prior to the K/T boundary have been 

discovered (Meng and Wyss, 2005; Wible et al., 2007).   

Nevertheless, molecular clock analyses using non-rodent calibration points 

consistently place early rodent splits in the Cretaceous period (Kumar and Hedges, 1998; 

Cao et al., 2000) even when using techniques that account for rate heterogeneity (Adkins 
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et al., 2001; Huchon and Douzery, 2001; Mouchaty et al., 2001; Adkins et al., 2003; 

Douzery et al., 2003; Springer et al., 2003; Delsuc et al., 2004; Springer et al., 2005; 

Poux et al., 2006; Bininda-Emonds et al., 2007; Huchon et al., 2007).  The only 

molecular clock studies that date the earliest split in Rodentia are those that apply 

calibration points within the rodents, usually with strong upper bounds on those dates 

(Huchon et al., 2002; Montgelard et al., 2002; Douzery et al., 2003).   

The majority of these results based on molecular clocks tend to differ from the 

fossil record by considerable values.  In one of the most extensive analyses to date, 

Bininda-Emonds et al. (2007) inferred a date for the earliest rodent split at about 85 Ma, 

about 30 million years before the first animals with rodent characters appear in the fossil 

record.  They also suggest that about 8 lineages of rodents survived the K/T extinction 

event and have given rise to modern descendents.  Other studies produce similar results 

(Kumar and Hedges, 1998; Cao et al., 2000; Springer et al., 2003; 2005; Huchon et al., 

2007). 

The implications of an early diversification of placental mammal orders require a 

reevaluation of many aspects of both macroevolutionary processes and paleoecology.  

Penny and Philips (2007) note that molecular results, such as those of Bininda-Emonds et 

al. (2007), suggest that pulses of rapid diversification in placental groups no longer align 

with mass extinction events.  Both the Explosive Model and the Long Fuse Model would 

suggest that the rapid ecological diversification of placental mammals, suggested by the 

origin of modern orders, took place after the extinction of nonavian dinosaurs.  Under the 

Short Fuse Model placental mammals would have diversified into broad ecological 
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niches alongside the nonavian dinosaurs.  The carnassial pair in Carnivora, the 

unguligrade posture in Artiodactyla, flight in bats, and the ever-growing incisors of 

rodents would all be present prior to K/T event.  Recent discoveries suggest that gliding 

(Meng et al., 2006), myrmecophagous and fossorial (Luo and Wible, 2005), and semi-

aquatic (Ji et al., 2006) mammals and mammaliaformes did exist in Mesozoic, but none 

are attributable to modern placental lineages and no placental fossils have been 

discovered that support the idea of Cretaceous ecological diversification (Wible et al., 

2007). 

Several other implications of early placental diversification exist.  McKenna 

(2007) summarized the literature on the implications of the asteroid impact that marks the 

K/T boundary and emphasized that a only limited number of individuals from a limited 

number of species with specific ecological requirements should have been capable of 

surviving the event.  These conclusions based on molecular clock results increase both 

the number of hypothetical survivors and their ecological diversity.  Foote et al. (1999) 

demonstrate that these ancient divergence times conflict with standard birth-death models 

for higher taxa and fossil preservation rates.  Finally, a 30+ million year gap in the fossil 

record invalidates the use of many intraordinal fossil calibration points in analyses that 

apply molecular clocks to more recent events. 
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Objectives 

We seek here to evaluate whether the fossil record and molecular clock results are 

truly in conflict statistically.  To do this we include data from five nuclear (ADRA2B, 

BRCA1, GHR, IRBP, and VWF) and two mitochondrial (12S rRNA and CYTB) genes.  

In addition to outgroup taxa, we include representatives from 14 lineages of rodents.  

According to the fossil record, this includes all lineages of rodents present at 33.1 Ma 

(shortly after the end of the Eocene at 33.9 Ma) with the possible exception of certain 

Hystricomorpha (dependent on whether Gaudeamus and Protataromys are stem or crown 

taxa within their respective lineages) and potentially ancient families (such as the 

Dipodidae, Gliridae, and Sciuridae).  We also present a novel approach to estimate upper 

confidence intervals on fossil calibration points, evaluate the Explosive, Long Fuse, and 

Short Fuse hypotheses in rodents, and discuss reasons why molecular analyses may yield 

such disparate results compared to the fossil record. 

 

MATERIALS AND METHODS 

Gene and Taxon Sampling 

 We included genetic data from representatives of 14 clades of rodents that 

correspond to those lineages present at 33.1 Ma according to the fossil record (Table 1).  

Outgroup taxa included were the two families in the order Lagomorpha, Ochotonidae 

(pikas) and Leporidae (rabbits and hares), and representatives from two Euarchontan 

orders, Scandentia (tree shrews) and Primates.  Lagomorpha is widely recognized as the 

sister taxon to Rodentia based on both molecular (Murphy et al., 2001; Huchon et al., 
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2002; Douzery and Huchon, 2004; Bininda-Emonds et al., 2007; Huchon et al., 2007) and 

morphological data (Luckett and Hartenberger, 1993; Landry, 1999; Meng and Wyss, 

2001; 2005); the two orders comprise the clade Glires. The Euarchonta and Glires 

together form the clade Euarchontoglires.  In several cases, data from multiple species 

were combined to construct a concatenated sequence (Table 1). 

 Genes were selected to take maximum advantage of the available data in 

GenBank resulting from the numerous studies conducted on rodents to date (Nedbal et 

al., 1994; 1996; Huchon et al., 1999; 2000; Adkins et al., 2001; DeBry and Sagel, 2001; 

Huchon and Douzery, 2001; Huchon et al., 2002; Montgelard et al., 2002; Adkins et al., 

2003; DeBry, 2003; Huchon et al., 2007).  Approximately 8.3 kbp of sequence data were 

compiled using data from five nuclear genes: alpha 2B andrenergic receptor (ADRA2B), 

breast cancer gene 1 (BRCA1), growth hormone receptor (GHR), interphotoreceptor 

retinoid binding protein (IRBP), and the von Willebrand factor (vWF), as well as two 

mitochondrial genes: small subunit RNA (12S rRNA) and cytochrome b (cytb).  Data 

from GenBank were supplemented through sequencing of the GHR and BRCA1 genes in 

Anomalurus beecrofti.  All genes were included for all 14 ingroup and four outgroup 

taxa. GenBank accession information is shown in Table 1. 

 

DNA Sequencing 

 Data from two genes, GHR and BRCA1, were gathered from ethanol preserved 

liver from an individual Anomalurus beecrofti collected on 19 November 1999 from 

Agumatsa Wildlife Sanctuary, Volta Region, Ghana, and catalogued in the collection of 
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tissues in the Biology Department, University of Vermont (reference #1516).  DNA was 

extracted using the DNeasy QIAGEN kit.  PCR conditions are the same as described by 

Adkins et al. (2001), but our use of primers varied slightly for the BRCA1 gene due to 

difficulty amplifying.  For the BRCA1 gene, the reverse primers BRCA1-2R and 

BRCA1-3R (Adkins et al., 2001) were used, but the following additional primers were 

also developed: BRCA1-CF: GARCRTCCCCTCACAAAYAAA (modified from 

Jugessur et al., 2000), BRCA1-DF: ATRRCACTCAGRACAGTRTNT (modified from 

Jugessur et al., 2000), BRCA1-N0F: CCAGCTYATTACAGCNTGRGA, BRCA1-N2F: 

TAAAGANGCNARYTCAGGCAGT, and BRCA1-N02R: 

AYGTYTCTYNCTTAYNTNYTCANYTGGC. PCR was performed using Illustra 

puReTaq Ready-To Go PCR Beads.  Double stranded PCR products were purified using 

PEG precipitation (Maniatis et al., 1982). Sequencing was performed on an ABI 3130x1 

Genetic Analyzer using dye terminator (ABI PRISM) cycle sequencing.  The following 

primers were used to obtain BRCA1 sequence: CF, DF, N2F, 2R, and 3R.  Sequences 

were assembled and edited using CodonCode Aligner (CodonCode Corporation). 

 

Phylogenetic analyses 

 Nucleotides from protein coding regions were aligned in MacClade (Maddison 

and Maddison, 1998) while referencing corresponding alignments of amino acid 

sequences in Clustal X (Thompson et al., 1997).  Sequences for 12S rRNA were initially 

aligned in MacClade according to secondary structure as indicated by Springer et al. 
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(1995).  Individual stem and loop regions were aligned using ClustalX and edited by eye.  

Ambiguously aligned regions were excluded from the final analyses.   

 Tree reconstruction was conducted under both maximum parsimony (MP) and 

maximum likelihood (ML) frameworks in PAUP* (version 4.0b8, Swofford, 2002). 

Nodal support was evaluated using bootstrapping in PAUP* for both MP (1,000 

replicates) and ML (300 replicates). Bayesian posterior probability values were obtained 

using MrBayes (version 3.1.1; 1,000,000 generations, sampled every 1,000 generations, 

burnin=250, 4 chains, 2 runs; Ronquist and Huelsenbeck, 2005).  Modeltest 3.04 (Posada 

and Crandall, 1998) was used to determine the appropriate likelihood model for this 

combined data set, and a GTR + I + " model was used in the maximum likelihood and 

Bayesian analyses.  Because our goal was to have an accurate representation of branch 

lengths for molecular clock analyses, we excluded all sites containing gaps or missing 

data in the ML and Bayesian analyses.  The MP analysis included 8,356 bp and the ML 

and Bayesian analyses included 6,454 bp.  Gaps were coded as missing data in the 

parsimony analysis. 

 

Determining fossil dates at nodes 

 An extensive review of the fossil literature for rodents was conducted, including 

use of the Paleobiology Database (PBDB; http://paleodb.org) and the Neogene Mammal 

Database (NOW; http://www.helsinki.fi/science/now/).   First appearance dates were 

determined for the clade uniting the relevant extant taxon with all related fossil taxa to 

the exclusion of all other extant taxa in order to evaluate the minimum constraint on the 
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divergence date at nodes as defined by Benton and Donaghue (2007).  For example, 

members of the extinct family Eutypomyidae are widely considered to form a clade with 

the beavers (Castoridae) to the exclusion of all other extant taxa.  The first appearance 

date of the Castoridae lineage is based on the first appearance date of the eutypomyid 

genus Mattimys, which is older than all other eutypomyids, castorids, or other members 

of this clade (Table 2).  The date is not based on the first appearance of the Castoridae, 

but on the first appearance of a member of the most inclusive clade that includes the 

Castoridae while excluding all other extant taxa. 

 Numerous cladistic analyses of morphological data that include fossil taxa have 

been performed (Marivaux et al., 2002; Lopez Antoñanzas et al., 2004, Marivaux et al., 

2004; Wible et al., 2005b).  Many of these analyses produce results that are quite 

consistent with molecular-based phylogenies (Marivaux et al., 2002; 2004).  

Nevertheless, cladistic analyses that contain the breadth of sampling required for our 

purposes are lacking, due in no small part to the sheer size of the order Rodentia and the 

limited amount of characters that can be gleaned from limited remains (often only teeth).  

For the purposes of this study we include a taxon if there appears to be broad agreement 

among paleontologists as to its phylogenetic position.  Care was also taken to avoid being 

misled by Linnean ranks that are known to be paraphyletic. 

 Fossil beds are usually dated with a range of values.  Because we were interested 

in minimum divergence time, first appearance dates were evaluated using the minimum 

value in a range of values.  Thus a fossil dated to a more precise 34.1-34.2 Ma using 
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radiometry or Appearance Event Ordination (AEO; Alroy, 1994) was selected over a 

fossil dated as “Late Eocene” (33.9-37.2 Ma). 

Carleton and Musser (2005) divide the order Rodentia into five extant suborders, 

an approach we apply here. Monophyly of these suborders is moderately well to well 

supported in molecular (Nedbal et al., 1994; 1996; Huchon et al., 1999; Adkins et al., 

2001; DeBry and Sagel, 2001; Huchon and Douzery, 2001; Huchon et al., 2002; 

Montgelard et al., 2002; Adkins et al., 2003; DeBry, 2003; Huchon et al., 2007) and, to a 

lesser degree, morphological (Luckett and Hartenberger, 1985; Meng, 1990; Landry, 

1999; Emry, 2007) studies.  Higher-level relationships are more poorly understood and 

are based almost entirely on molecular data.  Early simplicidentates appear in the early to 

middle Paleocene and potential crown-rodents trace back to the end of the Paleocene 

(Meng and Wyss, 2005).  Among this rich record there are no doubt representatives that 

are related to modern suborders, but the paleontological community has not reached a 

consensus as to the nature of these relationships due to the limitations of morphological 

characters at this level.  Therefore we have excluded all nodes higher than suborder in our 

fossil-based dating.  First appearance dates were determined for the remaining 18 

lineages of rodents.  They are displayed in Table 2 and are explained in more detail in the 

Appendix. 

 Dates were assigned at each node consistent with the hard minimum date defined 

by Benton and Donoghue (2007).  The fossil-based date at a given node was defined as 

the older of the first appearance dates of the two daughter lineages that split from that 

node.  These fossil-based dates at nodes are shown in Table 3 
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Relative molecular dating 

 In order to ensure robustness across techniques, we conducted molecular clock 

analyses using both a relatively simple technique that assumes autocorrelation of 

ancestral and descendent evolutionary lineages and a more complex model-based 

technique that makes no a priori assumption of autocorrelation.  We estimated relative 

divergence times using the nonparametric rate smoothing method (NPRS; Sanderson, 

1997) in the program r8s (Sanderson, 2003).  This technique seeks to minimize the 

change in the rate of evolution along lineages over time.  Relative divergences times were 

also estimated using a Bayesian approach as implemented in the program BEAST 

(version 1.4; Drummond and Rambaut, 2007), an approach that makes no a priori 

assumption of autocorrelation.  In both instances, the root of the tree was set as either 1.0 

or 100 and no fossil calibration points were applied.  This allows for an estimate of 

relative divergence times of evolutionary events on the tree instead of absolute date 

estimates.   

Both the topology and branch lengths of the tree with the best maximum 

likelihood score were used as input for the NPRS analysis in r8s.  The root of the tree was 

set at 1.0 to allow for relative dates to be determined.  Our NPRS approach represents the 

simpler analysis as it applies a basic algorithm that minimizes the change in the rate of 

evolution across the tree, and incorporates branch lengths from the ML tree, which used 

an evolutionary model that was not partitioned by gene.  The program requires a rooted 

tree.  The Euarchontan outgroups (Primates and Scandentia) were used to root the tree, 

but were not included in the actual analysis. 
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 The Bayesian approach was conducted using the program BEAST with the same 

raw dataset as the ML analysis.  To facilitate comparisons, tree topology was constrained 

to match the results of the ML analysis (Fig. 1).  GTR + I + " was again used as the 

model of evolution, but data were partitioned by gene and the program optimized the 

model parameters by gene.  The uncorrelated lognormal relaxed molecular clock model 

was used and the mean substitution rate was not fixed. The age of the root was set with a 

prior of a normal distribution where mean = 100.0 and standard deviation = 0.01 in order 

to yield results that round to 100.0 within two decimal places.  The program was run for 

10,000,000 generations, sampled every 1,000 generations with a burnin of 1,000.  All 

taxa were included in the BEAST analysis.  Although the topological constraints clearly 

defined that the root of the tree was along the branch connecting Glires and Euarchonta, 

its specific placement was determined in the analysis (Fig. 2). 

 

Assessing conflict 

 Absolute date estimates based on fossil results were compared to relative ages 

estimated through molecular analyses using linear regression (Conroy and van Tuinen, 

2003) in the statistical package JMP (version 5.0.1.2, SAS Institute Inc.).  Because 

phylogenetic trees are hierarchical in nature, a “significant” correlation can be obtained 

through a linear regression in the absence of any relationship.  By definition an ancestral 

node is older than its descendent in molecular analyses in any tree where branch lengths 

are greater than zero.  Likewise, the first appearance date of an ancestral lineage will 

always be estimated as older than or equivalent to any descendent lineages.   
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 Two approaches were used to deal with the problem of performing linear 

regression in the presence of tree hierarchy.  In the first approach, we performed a linear 

regression comparing the lengths of internal branches obtained from the molecular 

analysis to the duration of time that passed between the fossil-based dates at the two 

nodes.  Only four internal branches had dates at both ancestral and descendent nodes and 

these four data points were subjected to a linear regression analysis.   

Because of the limited sample size of the approach restricted to internal branches, 

we also evaluated the correlation between molecular results and the observed fossils and 

compared the same molecular data against a simulation of fossils appearing in a random 

fashion that is consistent with our tree shape.  In order to simulate first appearance dates, 

we assigned all tip lineages with a random age between 32.1 and 55.5 Ma.  This interval 

represents the observed range of fossil dates at nodes plus one million years.  Like the 

approach we applied to the observed fossils, we defined the divergence dates at all nodes 

in the simulation as the older of the two daughter lineages descending from that node.  

Simulated first appearance dates for internal lineages were assigned a random age 

between the simulated age of the descendent node as defined previously and 55.1 Ma.  

Dates at internal nodes were then also defined as the older of the two daughter lineages 

descending from that node.  The age estimates at nodes in the simulated fossil data set 

were then compared to the relative molecular-based ages from both the NPRS and 

BEAST analyses using linear regression.  The R
2
 value was recorded.  This was repeated 

for 500 simulated fossil datasets and the observed R
2
 value was compared to the 

simulated distribution. 
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Date estimates 

 Absolute divergence dates were also estimated in a second analysis using BEAST.  

Parameters in BEAST were set as explained previously except that no date was imposed 

on the root of the tree and fossil calibration estimates were included for only 8 of the 9 

dated nodes (Fig. 3).  The split between the Hystricidae and the Phiomorpha + 

Caviomorpha clade was not dated because the fossil used (Gaudeamus) is the same as 

that used to date the split between Caviomorpha and Phiomorpha (Fig. 3, Table 3).  

 To date, most molecular studies have treated fossil calibrations as precise points.  

This is mathematically equivalent to arguing for 100% certainty in the assumption that 

the fossil in question represents the precise time when two taxa split (Graur and Martin, 

2003). In reality the only certain information about an evolutionary divergence date that 

can be provided by fossils is that the split is not younger than the first appearance date of 

the older of the two daughter lineages.  Ranges are sometimes used in other studies, but 

the ranges employed to date have generally been somewhat arbitrary.  They are often set 

as the observed fossil date plus a few million years, often five or ten. 

Paleontologists have developed several approaches to determine variance around 

the endpoints of a given taxon in the fossil record.  Marshall (1998) provided an overview 

of several approaches to estimating the actual point of origination or extinction of a taxon 

based on the frequency at which it is observed across its known stratigraphic range. 

These approaches focus on the number of layers containing a record of this taxon and the 

duration of gaps that separate these records.  Likewise, Tavare et al. (2002) generated a 
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speciation rate model in primates and compared this with their fossil record to estimate 

that primates may have arisen over 25 million years prior to the earliest known primate 

fossil.  Presumably, Meehl’s (1983) discovery asymptote could also be modified to 

estimate actual chronological range of a taxonomic group. 

Applying one of these techniques to our molecular dataset would require an 

almost comprehensive knowledge of all rodent fossils discovered.  Although tools such 

as the Paleobiology Database show promise that such information may one day be more 

accessible, this requirement of comprehensive knowledge currently prohibits wide scale 

application of these potential techniques. 

Our approach is based upon similar logic to the stratigraphic consistency index 

(Huelsenbeck, 1994) and cladistic gap analysis (Paul, 1988).  After establishing first 

appearance dates for rodent lineages, we compared the difference in first appearance 

dates for the two daughter lineages descending from each dated node.  Because both 

daughter lineages should date to the same age, the difference between them represents the 

minimum length of a ghost range for the younger lineage.  This is a quantifiable gap in 

the fossil record.  We used this gap size to estimate an overall distribution of gap sizes 

between sister clades for early Tertiary rodent diversification (mean = 8.2 myr, standard 

deviation = 5.3 myr).  This distribution was then assumed to represent a rough estimate of 

how much older the actual dates at nodes may be compared to the observed dates of the 

nodes.  In this case, the upper 95% confidence interval of 12.3 million years suggests that 

observed dates may be as much as 12.3 million years younger than the actual 

evolutionary split.  All 9 dated nodes were used to calculate this value. 
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 This confidence interval was implemented in BEAST by using an exponential 

prior at the 8 nodes used as fossil calibrations.  The prior was set such that the “zero 

offset” parameter was equal to the minimum age estimate at the node and the 

“exponential mean” parameter was set so that the upper 95% C.I. of the resulting 

distribution was 12.3 million years.  For fossils dated with a range of values, the “zero 

offset” was set to the minimum value in the range and the 95% C.I. was set to be equal to 

the length of the range + 12.3 million years.  BEAUti  (version 1.4.7, part of the BEAST 

package) was used to visualize the exponential distribution.   

Universal priors were applied to two nodes (origin of Lagomorpha and the 

Euarchonta) within outgroup taxa.  These dates were set as a range between the estimated 

fossil minimum value and a maximum value equal to the molecular results of Bininda-

Emonds et al. (2007).   The minimum value for the lagomorph split was set as 42.4 Ma 

based on the first appearance of Desmatolagus (Ochotonidae) from Swift Current Creek 

fauna, Saskatchewan, Canada (PBDB reference number 16626; Storer, 1984). The 

minimum value for the euarchontan split was set as 61.7 Ma based on the first appearance 

of Paromomys (Primates) from Hanna Formation, Wyoming (PBDB 14858; Secord, 

1998).  Both Purgatorius and the plesiadapiforms are older than Paromomys, but they are 

often treated as basal euarchontans instead of true primates (Benton and Donoghue, 

2007).  Maximum values were set as 66.8 Ma for Lagomorpha and 94.3 Ma for 

Euarchonta based on Bininda-Emonds et al. (2007).  The result of this BEAST analysis 

was used to evaluate among the Explosive, Long Fuse, and Short Fuse hypotheses as they 

pertain to rodents and their nearest outgroups. 
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RESULTS 

Relationships 

 The results of the phylogenetic analyses are shown in Figure 1.  Maximum 

support (bootstrap percentages = 100%, Bayesian PP = 1.0) is present for the orders 

Rodentia and Lagomorpha, the suborders Anomaluromorpha, Myomorpha, 

Hystricomorpha, and Sciuromorpha, and for the Hystricognathi, Sciuroidea, and 

Geomyoidea.  Strong support (boostraps > 90%, PP = 1.0) is also present for Glires, the 

suborder Castorimorpha, a clade uniting the Phiomorpha and Caviomorpha, and a clade 

uniting the Anomaluromorpha, Myomorpha, and Castorimorpha (referred to as the 

“mouse-related clade” by Huchon et al., 2002).  Relationships among the three suborders 

in the “mouse-related clade” and relationships among the “mouse-related clade” the 

Sciuromorpha, and the Hystricomorpha remain largely unresolved. 

 

Correlation between fossils and molecular clock 

 An example ultrametric chronogram showing relative time from the Bayesian 

analysis is shown in Figure 2.  The branches on this tree represent molecular-based time 

estimates, but only in a relative sense.  Figure 3 shows the fossils from Table 2 applied to 

the tree topology with branch lengths proportional to actual dates.  A significant 

correlation was recovered between molecular and fossil results using both the NPRS (R
2
 

= 0.847, p = 0.0004) and Bayesian (R
2
 = 0.847, p = 0.0004; Fig. 4a) approaches.  In spite 

of a sample size of only four, internal branches also yield a significant relationship for 

both NPRS (R
2
 = 0.977, p = 0.012) and Bayesian (R

2
 = 0.974, p = 0.013; Fig. 4b).  
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Simulated data produced correlations that ranged from R
2
 = 0.000 to R

2
 = 0.840 (mean = 

0.154) for NPRS and ranging from R
2
 = 0.000 to R

2
 = 0.840 (mean = 0.187) for the 

Bayesian analysis.  Simulated fossils yielded a “significant” result (p < 0.05) for 51 

(10.2%) runs when compared to the NPRS data and for 57 (11.4%) runs compared to the 

Bayesian data.  Nevertheless, the R
2
 values from observed fossil data were higher than all 

500 (100%) simulated fossil datasets for both molecular approaches. 

 

Molecular date estimates 

 The results of the second BEAST analysis are shown in Table 4 and Figure 5.  

The root of the tree, the Euarchonta – Glires split, was estimated as 76.3 Ma (95% C.I. = 

68.9-79.9 Ma) rejecting a Cenozoic (<65.5 Ma) origin.  A Paleocene origin for the Glires 

is also rejected (best tree = 72.7 Ma, 95% C.I. = 67.4-77.5 Ma).  Although a Paleocene 

date for the divergence of the two orders in the Euarchonta cannot be rejected (best tree = 

75.3 Ma, 95% C.I. = 63.9-78.1 Ma), the Explosive Model hypothesis is rejected 

according to this analysis because the other interordinal splits occurred in the Cretaceous. 

 The origin of Rodentia is estimated to be at the Cretaceous/Tertiary boundary 

(best tree = 65.7 Ma, 95% C.I. = 62.3-70.8 Ma).  Neither the Long Fuse nor the Short 

Fuse hypothesis can be rejected, because the earliest intraordinal splits could have taken 

place on either side of the K/T boundary (65.5 Ma).  A Cretaceous origin is rejected for 

all rodent suborders and for the order Lagomorpha. 
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DISCUSSION 

Relationships among rodents 

 All nodes recovered in our phylogenetic analysis are consistent with the results of 

Huchon et al. (2007), from whence some of our sequences originate, with the exception 

of how the “mouse-related clade,” the Sciuromorpha, and the Hystricomorpha resolve.  

Huchon et al. (2007) recovered a clade uniting the “mouse-related” suborders with the 

Sciuromorpha whereas our results unite the “mouse-related” suborders with the 

Hystricomorpha (Fig. 1).  Neither analysis is well supported at these nodes.  A clade 

uniting the “mouse-related” suborders with the Hystricomorpha is consistent with some 

other molecular analyses (Springer et al., 2003; Poux et al., 2006), but a clade uniting the 

“mouse-related” suborders with the Sciuromorpha has been advocated by paleontologists, 

termed Ischyromyiformes by Marivaux et al., (2004), and bears a closer resemblance to 

the composition of the traditional Sciurognathi (Tullberg, 1899).  Further research is 

clearly needed to resolve this relationship.  Its accurate recovery has important 

implications on determining character polarity and resolving the early fossil history of 

rodents (Marivaux et al., 2004). Genome sequencing decisions are also being made based 

on a potentially incorrect understanding of relationships of rodents at this level.  

According to its summary page at NCBI, part of the rationale for sequencing the 

complete genome of Spermophilus tridecemlineatus (family Sciuridae) is that it “will 

expand rodent sequence diversity to another family within the suborder sciurognathi 

[sic]” (http://www.ncbi.nlm.nih.gov/sites/entrez?Db=genomeprj&cmd=ShowDetailView 
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&TermToSearch=13936).  Much of the objective behind expanding full genome 

sequencing to additional rodents is to apply the knowledge gained from model organisms 

such as Mus and Rattus to more evolutionarily distant taxa such as primates.  A vital first 

step is to understand how rodents are related to these model organisms. 

Molecular analyses, including ours, have also failed to resolve the relationships 

among the suborders within the “mouse-related clade”.  With the exception of these two 

unresolved portions of the tree, we feel comfortable with imposing this tree topology onto 

our other analyses.  These two unresolved regions are separated by short internal 

branches, suggesting that the effect on time estimates will be limited.  No well-supported 

conflicts exist between the results of our analysis and the myriad of rodent phylogenetic 

analyses that have been conducted to date (Huchon et al., 1999; DeBry and Sagel, 2001; 

Huchon et al., 2002; Adkins et al., 2003; Poux et al., 2006; Huchon et al., 2007). 

 

Fossils and molecules agree 

 Although it should be viewed as merely a heuristic technique to crudely estimate 

the completeness of a fossil record, our recovery of a mean gap size of only 8.2 million 

years in the Eocene rodent fossil record is probably indicative of a more complete record 

than would be expected if rodent diversification had taken place in the Cretaceous.  If the 

sudden appearance of rodents in the Paleogene fossil record was merely a chance 

occurrence due to an increase in absolute numbers of individuals or a migration event 

from a region with a poor fossil record, the estimated size of this gap might be larger.  

Even this relatively small gap size estimate is inflated by the existence of lineages where 
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relationships between extant taxa and fossil taxa are poorly understood.  The Pedetidae 

and Hystricidae, for example, both appear suddenly in the Miocene and no consensus 

exists as to their connections with earlier fossil taxa.  They are the only families listed as 

incertae sedis by Hartenberger (1998).  Until recently, paleontologists have tended to 

treat the Pedetidae as close relatives to the Diatomyidae (McKenna and Bell, 1997; 

Marivaux et al., 2004).  Dawson et al. (2006) have only recently shown that the 

diatomyids are related to Laonastes, which is itself a relative of the Ctenodactylidae 

(Huchon et al., 2007). A new consensus is yet to emerge around an alternative hypothesis 

regarding the relationship of pedetids to fossil rodents. 

 A much stronger case for the relative completeness of the Eocene rodent fossil 

record can be made based on the results of our regression analyses.  The significant 

correlation between dates obtained by fossils compared to molecules is not consistent 

with a random appearance of those fossils following a substantial gap in the fossil record.  

This nonrandom association holds true whether tree hierarchy problems are ignored (R
2
 = 

0.847, p = 0.0004), only internal branches are evaluated (R
2
 > 0.97, p < 0.02), or the 

random appearance of fossils is simulated (observed values are better than 100% of 

simulated datasets) for both Bayesian and NPRS approaches.  This result is strong 

evidence that both molecular techniques and fossils are tracking the same evolutionary 

event from the same timeframe and against the suggestion made by some researchers that 

the fossils are erroneous and that rodents diversified deep in the Cretaceous. 
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Why do fossils and molecules appear to conflict? 

 This correlation between molecular and paleontological data raises a further 

question.  Why do molecular clock analyses so frequently overestimate the divergence 

times of rodents?  The tendency for error is clearly not bidirectional, but is instead 

heavily biased towards overestimates as opposed to younger estimates. 

 Ho et al. (2005) demonstrated that using an older calibration point to date recent 

(<2 million years) events systematically leads to an overestimation of divergence times.  

This phenomenon has since been observed using ancient DNA from bison (Ho et al., 

2007), across multiple bird taxa, in balaenid whales, and in brown bears (Ho et al., 2008). 

They attribute this phenomenon to a discrepancy between the mutation rate and 

substitution rate (Ho et al., 2005; Ho and Larson, 2006; Ho et al., 2007; 2008).  Recent 

evolutionary events are characterized by the presence of an elevated short-term mutation 

rate whereas older events are characterized by a slower long-term substitution rate.  

Essentially most mutations are likely to be eliminated by selection or drift unless the 

mutation is genuinely neutral or positive leading to the reduced substitution rate relative 

to the mutation rate (Ho and Larson, 2006). 

All of the evolutionary divergences evaluated in our study pertain to events that 

took place more than 33 million years ago.  At that level of divergence, the recent 

elevated mutation rate will have long since been displaced by the long-term slower 

substitution rate.  Although a similar scenario where older calibration points overestimate 

more recent evolutionary events appears to be at work, the reason is likely to be different 

from that suggested by Ho and Larson (2006). 
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 McKenna (2007) argued that analyses based on molecular clocks have been 

misled by an assumption of constancy of rates of evolution over time.  Rates of molecular 

evolution may be elevated at times of crisis, such as the K/T extinction event and lead to 

incorrect date estimates.  Figure 6a shows the hypothetical effect of a period of rapid 

evolution that affects all lineages simultaneously.  The dotted line represents the mean 

substitution rate calculated if the analysis was calibrated at the root of the tree.  Under 

this scenario, the molecular clock will overestimate evolutionary events that took place 

prior to or in the early stages of the period of rapid evolution.  It will underestimate 

evolutionary events at the later stages and after the period of rapid evolution.   

 We evaluated how our date estimates would change if such a scenario as 

suggested by McKenna (2007) took place.  If the overall rate of molecular evolution in 

Euarchontoglires in general and rodents in particular was consistently higher during the 

Cretaceous through the Eocene than it has been since the Eocene, several patterns should 

emerge.  The slope of the regression line comparing fossils and relative branch length 

should be relatively steep and the intercept should be negative (Fig. 6a). The regression 

of our observed fossil dates against the BEAST analysis employing relative ages at nodes 

(Fig. 4a) produced a best fit line with the equation “Branch Length = 1.79 x (Date) – 

14.8”.   Both a steep slope and a negative intercept are present.  To determine how 

correcting for this effect might change the results, divergence date estimates for all nodes 

were calculated using this equation (Table 4).  No dates estimated through this approach 

fall in the Cretaceous.  The tree root, the Euarchonta – Glires split, is estimated at 63.5 

Ma.  All suborders are estimated to have diverged in the Eocene, and all evolutionary 
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splits higher than the level of suborder are estimated as having taken place in the 

Paleocene except for the Anomaluromorpha – Myomorpha split which is at the 

Paleocene/Eocene border.  These values are consistent with the Explosive Model.  Note 

that error in such an analysis is bidirectional; the first appearance of the Aplodontiidae 

lineage appeared at 42.2 Ma, but this approach estimates an aplodontiid – sciurid split at 

36.5 Ma. 

 Saturation of data that is not adequately corrected by the model of evolution also 

has the potential to inflate age estimates when the calibration point is at the root of the 

tree (Fig. 6b).  According to the data logged during our second BEAST analysis, the 

slowest evolving gene in our dataset was ADRA2B (mean of substitution rate per branch 

= 0.0018 substitutions/site/million years) and the fastest evolving gene was CYTB (mean 

of substitution rate per branch = 0.0200 substitutions/site/million years).  We conducted 

two additional analyses in BEAST using the same parameters as the analysis described 

previously that calculated relative rates with a root set at 100.0.  The sequence data were 

limited to only the ADRA2B data or the CYTB data.   The CYTB dataset yielded a tree 

with significantly longer terminal branches than the ADRA2B tree (P<0.001).  Jansa et 

al. (2006) recovered a similar result when calculating divergence times in rodents.  The 

slower evolving nuclear IRBP gene yielded divergence estimates that were roughly 

consistent with the paleontological data, but CYTB yielded estimates considerably older.  

They chose to exclude the CYTB estimates.  Our results can only serve to inform that 

inadequate models of evolution can yield older results relative to data that are less likely 

to be saturated. We cannot directly assess how much uncorrected saturation may be 
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present in our data.  The possibility exists that inadequately corrected saturation of 

sequence data may play a role in a wider variety of studies that employ a molecular clock 

than is identified. 

 

When did rodents diversify? 

 Although our results do not reject the idea that rodents arose in the Cretaceous, 

they clearly suggest that, if such diversification of rodents took place, it was limited to 

the earliest splits and did not involve origin of any suborders.  At most, the lineages 

leading to the five modern suborders were present at the K/T boundary.  Clearly any early 

rodents that may have existed in the Cretaceous would have been present only at the very 

end of the Cretaceous as the upper 95% confidence interval for our estimate of the first 

split in Rodentia is 70.8 Ma. 

 Our best estimate for the origin of rodents (67.7 Ma) is right at the K/T boundary 

(65.5 Ma), but the lower bound of the 95% C.I. (62.3 Ma) suggests that this may have 

taken place at almost any point in the Early Paleocene (61.7 – 65.5 Ma).  Rodent 

suborders appear to have diversified in the Late Paleocene to Middle Eocene, and clades 

within suborders during and subsequent to the Eocene.  These results are in much closer 

agreement with the fossil record than has been suggested in many prior studies.  Dates 

derived from Eocene rodent fossils are well corroborated with one another and display 

significant agreement with molecular data, suggesting that the eight calibration points 

described here may prove useful in later studies. 
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 We are not able to fully reject any of the three hypotheses (Explosive, Long Fuse, 

and Short Fuse), but our study represents a step in the direction of finding convergence 

between molecular and paleontological conclusions.  We are, however, able to reject the 

most extreme versions of the Short Fuse hypothesis in rodents.  If rodents diversified in 

the Cretaceous, it was only at the end of the Cretaceous.  Our second BEAST analysis 

rejects the Explosive Model, but a hypothetical period of accelerated evolution across 

lineages from the K/T boundary through the Eocene has the potential to mislead the 

analysis.  Correction for this may place all evolutionary splits after the Cretaceous for the 

placental mammals in our dataset. 
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FIGURE LEGENDS 

FIGURE 1.  Maximum likelihood phylogram obtained for analysis of all genes combined.  

Boxes indicate nodal support and are divided into three sections arranged from left to 

right indicating Bayesian posterior probability, ML bootstrap, and MP bootstrap.  Black 

indicates maximum support: Bayesian PP = 1.00, BP = 100%.  Dark gray indicates 0.95 < 

PP < 1.00 or 90% < BP <100%.  Light gray indicates 0.75 < PP < 0.95 or 50% < BP < 

90%.  White indicates PP < 0.75 or BP < 50%.  The five suborders of rodents are 

indicated with black bars.  Other clades referred to in the text are indicated with gray 

bars. 

 

FIGURE 2. Chronogram resulting from the analysis in BEAST where no fossil calibration 

points were used. The complete length from root to tip represents 100.0. Branch lengths 

indicate relative time and are shown as a percentage of total rooted tree length.  The 

branch lengths of this tree were compared with fossil dates to determine if these 

molecular derived results agree with dates obtained by fossils. 

 

FIGURE 3. Chronogram showing the phylogenetic position of the 16 fossils used in the 

analyses.  Dated nodes are indicated.   

 

FIGURE 4.  Regression analyses showing correlation between molecular results and 

observed fossils.  (a.) Relationship among time estimates for all dated nodes.  (b.) 

Relationship among internal branch lengths. 
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FIGURE 5. Tree resulting from Bayesian analysis including fossil calibrations. Paleogene 

geologic epochs are delineated with gray lines.  Gray bars at nodes represent 95% 

confidence intervals on estimates. The five suborders of rodents are indicated with black 

bars next to taxon names.  Other clades referred to in the text are indicated with gray bars 

next to taxon names. 

 

FIGURE 6. Biases that may exist in analyses using a molecular clock that is dated with a 

single calibration point at the root of the tree.  (a.) Effect of a period of accelerated 

molecular evolution across multiple lineages.  The solid line indicates the average 

number of substitutions that accumulate across all lineages on the tree through time.  The 

period of rapid evolution is circled.  The dotted line indicates the assumed accumulation 

of substitutions as calculated in the analysis.  The analysis will either overestimate or 

underestimate dates depending on the position on the graph.  (b.) Effect of saturation that 

is not corrected by the model of evolution.  The dashed line indicates the true average 

number of substitutions accumulated over time.  The solid line indicates the accumulation 

of substitutions that are recovered using a model of evolution that does not adequately 

correct for saturation.  The dotted line indicates the assumed accumulation of 

substitutions as calculated in the molecular clock analysis.  The analysis always 

overestimates divergence dates. 
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TABLE 1.  GenBank accession numbers for taxa used in this study. 
 

Lineage ADRA2B BRCA1 GHR IRBP 

 

Primates 

Homo sapiens 

 
M34041 

Homo sapiens 
 

NM007302 

Homo sapiens 
 

NM000163 

Homo sapiens 
 

NM002900 
 

Scandentia 

Tupaia 

belangeri 

 
AY150333 

Tupaia tana 

 

AF284006 

Tupaia 

belangeri 

 

AF332018 

Tupaia glis 

 

Z11808 

 

Leporidae 

Lepus 

crawshayi 

 
AJ427254 

Lepus 

capensis 

 

AF284005 

Lepus 

capensis 

 

AF332016 

Lepus 

crawshayi 

 

AJ427250 
 

Ochotonidae 

Ochotona 

princeps 

 
AJ427253 

Ochotona 

princeps 

 
AY057827 

Ochotona 

princeps 

 
AF332015 

Ochotona 

princeps 

 
AY057832 

 

Anomaluridae 

Anomalurus sp. 
 

AJ427259 

Anomalurus 

beecrofti 

 

this study 

Anomalurus 

beecrofti 

 

this study 

Anomalurus sp. 
 

AJ427240 

 

Pedetidae 

Pedetes 

capensis 

 
AM407920 

Pedetes 

capensis 

 
AF332047 

Pedetes 

capensis 

 
AF332025 

Pedetes 

capensis 

 
AJ427241 

 

Dipodidae 

Dipus  

sagitta 

 
AJ427263 

Napaeozapus 

insignis 

 
AF540634 

Allactaga 

sibirica 

 

AY294897 

Allactaga 

sibirica 

 
AY326076 

 

Muroidea 

Mus musculus 

 

M94583 

Mus musculus 

 
U36475 

Mus musculus 

 

AF120489 

Mus musculus 

 
NM015745 

 

Heteromyidae 

Dipodomys 

merriami 

 
AJ427261 

Perognathus 

flavus 

 

AF540638 

Perognathus 

flavus 

 

AF332029 

Dipodomys 

merriami 

 

AJ427233 
 

Geomyidae 

Thomomys 

talpoides 

 
AJ427262 

Geomys 

bursarius 

 

AF540629 

Geomys 

bursarius 

 

AF332028 

Thomomys 

talpoides 

 

AJ427234 
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Castoridae 

Castor 

canadensis 

 
AJ427260 

Castor 

canadensis 

 

AF540622 

Castor 

canadensis 

 
AF332026 

Castor 

canadensis 

 

AJ427239 
 

Ctenodactylidae 

Massoutiera 

mzabi 

 
AJ427265 

Ctenodactylus 

gundi 

 

AF540624 

Ctenodactylus 

gundi 

 
AF332042 

Massoutiera 

mzabi 
 

AJ427242 
 

Hystricidae 

Trichys 

fasciculata 

 
AJ427266 

Hystrix 

africaeaustralis 

 
AF540631 

Hystrix 

africaeaustralis 
 

AF332033 

Trichys 

fasciculata 
 

AJ427245 
 

Phiomorpha 

Heterocephalus 

glaber 

 
AM407924 

Heterocephalus 

glaber 
 

AF540630 

Heterocephalus 

glaber 
 

AF332034 

Bathyergus 

suillus 

 
AJ427251 

 

Caviomorpha 

Erethizon 

dorsatum 

 
AJ427270 

Erethizon 

dorsatum 
 

AF540626 

Erethizon 

dorsatum 

 

AF332037 

Erethizon 

dorsatum 

 

AJ427249 
 

Sciuridae 

Sciurus 

vulgaris 

 
AJ315942 

Glaucomy 

 volans 

 

AF284003 

Sciurus  

niger 

 

AF332032 

Glaucomy 

 volans 

 

AY227598 
 

Aplodontiidae 

Aplodontia rufa 

 
AJ427256 

Aplodontia rufa 

 

AF332045 

Aplodontia rufa 

 

AF332030 

Aplodontia 

rufa 

 

AJ427238 
Gliridae Glis glis 

 

AJ427258 

Graphiurus 

murinus 
 

AF332046 

Graphiurus 

murinus 

 
AF332031 

Graphiurus 

murinus 
 

AY303219 
 
TABLE 1 CONTINUED 
 

Lineage vWF 12S rRNA CYTB 

 

Primates 

Homo sapiens 
 

NM000552 

Homo sapiens 
 

NC001807 

Homo sapiens 
 

NC001807 
 

Scandentia 

Tupaia glis 
 
 

U31624 

Tupaia tana 

 
 

AJ421453 

Tupaia 

belangeri 

 
AJ421453 
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Leporidae 

Lepus 

crawshayi 

 

AJ224669 

Lepus 

capensis 

 

AY292706 

Lepus 

europaeus 

 
NC004028 

 

Ochotonidae 

Ochotona 

princeps 

 
AJ224672 

Ochotona 

princeps 

 
AJ537415 

Ochotona 

princeps 

 
AJ537415 

 

Anomaluridae 

Anomalurus sp. 
 

AJ427229 

Anomalurus sp. 
 

AJ389539 

Anomalurus sp. 
 

AJ389526 
 

Pedetidae 

Pedetes 

capensis 

 
AJ238389 

Pedetes 

capensis 

 
AY012113 

Pedetes 

capensis 

 
AJ389527 

 

Dipodidae 

Allactaga 

elater 

 
AJ224661 

Allactaga 

elater 

 
AJ389534 

Allactaga 

elater 
 

AJ389534 
 

Muroidea 

Mus musculus 

 
NM011708 

Mus musculus 

 

NC005089 

Mus musculus 

 
NC005089 

 

Heteromyidae 

Dipodomys 

merriami 

 

AJ427226 

Perognathus 

flavus 

 

U67298 

Dipodomys 

merriami 

 

AY926383 
 

Geomyidae 

Thomomys 

talpoides 

 

AJ427227 

Geomys 

bursarius 

 

AF084297 

Geomys 

bursarius 

 

U65291 
 

Castoridae 

Castor 

canadensis 

 

AJ427228 

Castor 

canadensis 

 

AY787823 

Castor fiber 

 
AJ389529 

 

Ctenodactylidae 

Massoutiera 

mzabi 
 

AJ238388 

Massoutiera 

mzabi 
 

AJ389544 

Massoutiera 

mzabi 
 

AJ389533 
 

Hystricidae 

Trichys 

fasciculata 
 

AJ224675 

Hystrix 

africaeaustralis 
 

U12448 

Hystrix 

africaeaustralis 
 

X70674 
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Phiomorpha 

Heterocephalus 

glaber 
 

AJ251134 

Heterocephalus 

glaber 

 

AY425847 

Heterocephalus 

glaber 

 

AF155870 
 

Caviomorpha 

Erethizon 

dorsatum 

 
AJ251135 

Erethizon 

dorsatum 

 
AY012118 

Coendu bicolor 

 

 
U34852 

 

Sciuridae 

Glaucomy 

 volans 

 

AJ224667 

Sciurus 

vulgaris 

 

NC_002369 

Sciurus 

vulgaris 

 

NC_002369 
 

Aplodontiidae 

Aplodontia rufa 

 

AJ224662 

Aplodontia rufa 

 

AJ389541 

Aplodontia rufa 

 

AJ389528 
Gliridae Glis  

glis 

 
AJ224668 

Graphiurus 

murinus 
 

AY303187 

Glis  

glis 

 
NC_001892 
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TABLE 2. Summary of first appearance dates of lineages of rodents based on the fossil 
record. 

Lineage First Appearance Date 
(Ma) 

Primary Reference 

Anomaluridae Pondaungimys 37.2 +/- 
1.3 

Dawson et al., 2003 

Pedetidae Megapedetes 23.5-
23.6 

PBDB 27855: Pickford and 
Andrews, 1981 

Muroidea Pappocricetodon 45 Wang and Dawson, 1994 
Dipodidae Aksyiromys 43 Marivaux et al., 2004 

Geomyoidea Metanoiamys 45.4-
45.5 

PBDB 16752: Walsh, 1991 

Geomyidae Tenudomys 26.5-
26.6 

PBDB 17495: Swisher, 
1982 

Heteromyidae Proheteromys 33.1 PBDB 17336: Simpson, 
1985 

Castoridae Mattimys 54.4 PBDB 15660: McKenna, 
1960 

Ctenodactylidae Protataromys 41 Marivaux et al., 2004 
Hystricognathi Zegdou phiomyid 49.5 Hartenberger, 1998 

Hystricidae “Hystrix” or 
Sivacanthion 

~15.97 McKenna and Bell, 1997; 
Hartenberger, 1998 

Phiomorpha + 
Caviomorpha clade 

Gaudeamus 33.7-
34.8 

PBDB 60127: Gagnon, 
1987 

Caviomorpha Santa Rosa rodent 
fauna 

32-35 Frailey and Campbell, 2004 

Gliridae Eogliravus 52.5 Marivaux et al., 2004 
Sciuroidea Spurimus 42.2 PBDB 16514: Krishtalka 

and Black, 1975 
Sciuridae Douglassciurus 37.6 PBDB 16961: Emry, 1979 

Aplodontiidae Spurimus 42.2 PBDB 16514: Krishtalka 
and Black, 1975 

 
 



 83 

TABLE 3. Calibration points used in analyses.  “Gap” column indicates the minimum gap 
size present in the fossil record based on the difference in first appearance dates between 
daughter lineages at node. 
 

Node Fossil Calibration Date (Ma) Gap (million years) 
Anomaluromorpha Pondaungimys 37.2 +/- 1.3 13.7 

Myomorpha Pappocricetodon 45 2.0 
Castorimorpha Mattimys 54.4 9.0 
Geomyoidea Proheteromys 33.1 6.6 

Hystricomorpha Zegdou phiomyid 49.5 8.5 
Hystricognathi Gaudeamus 33.7-34.8 17.73 
Phiomorpha +  

Caviomorpha clade 
Gaudeamus 33.7-34.8 1.7 

Sciuromorpha Eogliravus 52.5 10.3 
Sciuroidea Spurimus 42.2 4.6 
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 TABLE 4.  Divergence times as estimated by fossils, standard BEAST analysis using the 
fossil calibrations shown, and based on a linear regression of uncalibrated ultrametric 
Bayesian tree against fossil dates. All values are represented in millions of years ago. 

Node Fossil 
Estimate 

BEAST 
Estimate 

95% C.I. for 
BEAST 
Estimate 

Regression 
Estimate 

Euarchontoglires --- 76.3 68.9-79.9 63.5 
Euarchonta 61.7 75.3 63.9-78.1 58.6 

Glires --- 72.7 67.4-77.5 63.0 
Lagomorpha 42.4 42.8 42.4-52.6 45.7 

Rodentia --- 65.7 62.3-70.8 58.1 
Hystricomorpha + 

“Mouse-related” clade 
--- 65.0 61.8-70.2 57.7 

“Mouse-related clade” --- 62.9 59.6-67.7 56.4 
Anomaluromorpha + 

Myomorpha 
--- 60.4 58.8-67.0 55.5 

Anomaluromorpha 37.2 +/- 1.3 41.7 37.2-47.3 38.6 
Myomorpha 45 46.8 45.0-53.3 46.7 

Castorimorpha 54.4 59.4 54.9-62.9 52.3 
Geomyoidea 33.1 33.3 33.1-35.4 30.0 

Hystricomorpha 49.5 56.6 52.9-61.4 52.8 
Hystricognathi (excluded) 37.6 36.4-42.1 38.4 
Phiomorpha + 
Caviomorpha 

33.7-34.8 34.4 33.7-37.3 34.8 

Sciuromorpha 52.5 58.7 52.5-61.4 53.1 
Sciuroidea 42.2 43.6 42.2-46.6 36.5 
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APPENDIX – Justification for calibration points used in this study 
 

 

The oldest representative of the Anomaluridae lineage appears to be 

Pondaungimys from the Pondaung Formation, Myanmar (Dawson et al., 2003).  This 

fossil dates to 37.2 +/- 1.3 Ma (Tsubamoto et al., 2002; Dawson et al., 2003).  The Late 

Eocene Nementchamys has been classically considered the earliest anomalurid 

(Hartenberger, 1998; Bininda-Emonds, 2007), but Pondaungimys is clearly older.  Many 

authorities consider the fossil family Zegdoumyidae of the Early/Middle Eocene to have 

affinities with the Anomaluridae (Hartenberger, 1998; McKenna and Bell, 1997), but the 

zegdoumyids have also been treated as relatives of glirids (Vianey-Liaud and Jaeger, 

1996; Dawson et al., 2003), basal to the suborder Anomaluromorpha (Montgelard et al., 

2002), or as members of a more basal stock of rodents (Marivaux et al., 2004). 

Megapedetes is the oldest representative of the Pedetidae (McKenna and Bell, 

1997; Hartenberger, 1998). Megapedetes from the Muhoroni Agglomerate, Kenya, is 

dated at 23.5-23.6 Ma (PBDB reference number 27855; Pickford and Andrews, 1981). 

 The oldest representative of the Muroidea is widely recognized to be 

Pappocricetodon (Dawson and Tong, 1998; de Bruijn et al., 2003).  Pappocricetodon 

first appears in Jiangsu, China, (Wang and Dawson, 1994) 45 Ma (PBDB reference 

number 37493; Beard et al., 1994). 

 Assessing the first appearance of the Dipodidae lineage is more difficult due to 

the potential that the term Dipodoidea is frequently used in the paleontological literature 

to refer to a paraphyletic group that includes the basal stock from whence two extant 
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lineages, Dipodidae and Muroidea, arose.  Two characters traditionally used to define the 

Dipodoidea, hystricomorphy and the presence of P4, are present in the earliest muroids 

and are probably primitive characters for the Myomorpha (Wang and Dawson, 1994; de 

Bruijn et al., 2003). Armintomys, dated 49-50 Ma (Dawson et al., 1990), has been treated 

as an early representative of the Dipodidae lineage (Dawson et al., 1990; McKenna and 

Bell, 1997; Hartenberger, 1998), but is now usually considered to be basal to the suborder 

Myomorpha (Wang and Dawson, 1994; Holden and Musser, 2005).  Elymys is another 

ancient genus attributed to the Dipodoidea (Hartenberger, 1998), dated to 49.7-49.8 Ma 

(PBDB 16218; Emry and Korth, 1989).  Emry (2007) recently argued that in light of new 

material Elymys is likely to be a basal myomorph and not related to extant dipodids to the 

exclusion of Muroidea.  He suggests instead that early myomorphs arose in North 

America, migrated to Asia, and diverged there into muroids and dipodids, noting the 

appearance of Pappocricetodon and Aksyiromys in the same fossil beds (see also Emry et 

al., 1998).  We use the oldest dipodoid from Asia, Aksyiromys, as the first appearance 

date of the Dipodidae lineage due to the controversy surrounding Elymys.  Aksyiromys 

from the Kolpak Formation, Shinzhaly, Kazakhstan, date at 43 Ma (Marivaux et al., 

2004). 

 The oldest representative of the Geomyoidea (Heteromyidae + Geomyidae) may 

be either Zaisaneomys, or Metanoiamys. Zaisaneomys was described as an eomyid 

(superfamily Geomyoidea) by Shevyreva (1993) who considered it to be early Eocene 

(48.6-55.8 Ma) in date, a position adopted by McKenna and Bell (1997).  Lucas (1998) 

argued that the material is no older than Irdinmanhan (37.2-48.6 Ma), and Emry et al. 
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(1997) questioned whether Zaisaineomys is even a geomyoid.  Instead, we use the middle 

Eocene Metanoiamys as the first appearance of the Geomyoidea lineage.  Metanoiamys is 

known from numerous Uintan deposits in California (PBDB), the earliest dates to 45.4-

45.5 Ma from San Diego County (PBDB 16752; Walsh, 1991; 1997; Alroy, 2002).  The 

first appearance for the Geomyidae lineage is Tenudomys from the Gering Formation, 

Nebraska dated 26.5-26.6 Ma (PBDB 17495; Swisher, 1982).  Proheteromys of 

southwestern South Dakota, dated 33.1 Ma (PBDB 17336; Simpson, 1985), represents 

the first appearance for the Heteromyidae lineage. 

 The family Eutypomyidae is widely recognized as the sister group to the 

Castoridae (Wahlert, 1977; McKenna and Bell, 1997; Hartenberger, 1998; Korth, 2001).  

As the earliest eutypomyid, Mattimys also represents the first appearance of the 

Castoridae lineage.  Mattimys dates to 54.4 Ma (PBDB 15660; McKenna, 1960; Korth, 

1984) from the Wasatch Formation, Colorado. 

 The suborder Hystricomorpha has been among the most widely studied groups of 

rodents (Flynn et al., 1986; Marivaux et al., 2002; 2004; Wible et al., 2005; Dawson et 

al., 2006), but a consensus opinion as to the phylogenetic position of many of the early 

forms has yet to emerge.  McKenna and Bell (1997) introduced the concept of a suborder 

Sciuravida, which united a wide range of rodents into one group.  These included the 

Ctenodactylidae and the fossil families Ivantoniidae, Sciuravidae, Cylindrodontidae, and 

a broadly defined Chapattimyidae that included baluchimyines, yuomyids, cocomyids, 

tamquammyids, Protophiomys, and Fallomus. Their concept of Sciuravida has been 

widely refuted by subsequent authorities as a polyphyletic assemblage of taxa whose 
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members are compiled from all corners of the rodent tree (Hartenberger, 1998; Marivaux 

et al., 2002; 2004; Wible et al., 2005; Dawson et al., 2006).  The recent discovery of 

Laonastes (Jenkins et al., 2005) and studies supporting a sister relationship between the 

Diatomyidae, to which Laonastes belongs, and Ctenodactylidae through both 

morphological (Dawson et al., 2006) and molecular (Huchon et al., 2007) evidence 

further complicate assigning a first appearance date to this lineage.  Potential early 

representatives of the Ctenodactylidae lineage (including the distinct family 

Diatomyidae) include Tamquammys and Tsilingomys (Marivaux et al., 2002; 2004), but 

more recent analyses suggest a more basal position for these taxa (Wible et al., 2005; 

Dawson et al., 2006).  We use Protataromys to represent the first appearance of the 

Ctenodactylidae lineage (Marivaux et al., 2002; de Bruijn et al., 2003; Marivaux et al., 

2004).  Protataromys dates to 41 Ma from the Hedi Formation, Henan, China (Marivaux 

et al., 2004).  If Protataromys forms a clade with extant Ctenodactylidae to the exclusion 

of Diatomyidae, then the split between these two families represents an additional Eocene 

divergence that is not represented in our analysis. 

 Marivaux et al. (2002; 2004) recovered a clade uniting the baluchimyines with the 

Hystricognathi. This hypothesis is one of several suggested by Flynn et al. (1986) upon 

their description of the subfamily.  The oldest baluchimyine, and the oldest representative 

of the Hystricognathi lineage, is Protophiomys. Protophiomys has been dated to at least 

36 Ma from Nementchas, Bir el Ater, Algeria (Marivaux et al., 2004). The Hystricognathi 

lineage clearly dates to 36 Ma or earlier.  Hartenberger (1998) claims that material from 

Glib Zegdou, Algeria, was misidentified as a zegdoumyid (Glibia) in a prior study on 
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which he was an author (Vianey-Liaud et al., 1994) and actually represents the earliest 

stem Hystricognathi.  This material is dated to 49.5 Ma (Marivaux et al., 2004).  We have 

adopted Hartenberger’s (1998) suggestion that this material represents the earliest 

member of the Hystricognathi lineage, but suggest that further study of this material and 

verification of its phylogenetic position would be useful. 

 The fossil record for the family Hystricidae does not appear to extend any earlier 

than the Miocene.  McKenna and Bell (1997) list Oligocene with a question mark in their 

record for Hystrix.  The only other references that we can find that includes an Oligocene 

date for hystricids are early versions of Vaughan’s (1972; 1978) mammalogy texbook.  

Subsequent editions (Vaughan, 1986; Vaughan et al. 2000) state that hystricids appear in 

the Miocene, a position supported by other authors (Flynn et al., 1986; Hartenberger, 

1998).  The appropriate first appearance date for the Hystricidae lineage is either 

“Hystrix” from the early Miocene (15.97-23.03 Ma; McKenna and Bell, 1997) or 

Sivacanthion of the early-middle Miocene boundary (15.97 Ma; Hartenberger, 1998; 

Flynn et al., 1986).  We apply a minimum date estimate of 15.97 Ma for this lineage. 

 The basal position of the family Hystricidae relative to the rest of the 

Hystricognathi is supported primarily through molecular analyses (Adkins et al., 2001; 

Huchon and Douzery, 2001; Huchon et al., 2002; Adkins et al., 2003; Poux et al., 2006) 

as opposed to morphological characters.  As such, early representatives of the 

Phiomorpha + Caviomorpha clade are essentially indistinguishable from basal 

hysricognaths.  By necessity, we use the older of the first appearance dates between the 

two lineages in this clade to also represent the first appearance of the Phiomorpha + 
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Caviomorpha clade.  Most recent studies have used the Tinguirirican caviomorph 

discovered by Wyss et al. (1993) as the first appearance of Caviomorpha (Hartenberger, 

1998; Huchon et al., 1999; Vucetich et al., 1999; Huchon and Douzery, 2001; Huchon et 

al., 2002; Marivaux et al., 2002; Adkins et al., 2003; Marivaux et al., 2004; Poux et al., 

2006).  Frailey and Campbell (2004) have recently described a number of new genera of 

rodents from Santa Rosa, Peru, that appears to predate the Tinguirirican fauna.  A wide 

diversity of forms of caviomorphs are already present suggesting that this material may 

represent the divergence date among superfamilies within the Caviomorpha and that 

caviomorphs were present prior to this time frame (Frailey and Campbell, 2004; Martin, 

2004; Martin, 2005).  Frailey and Campbell (2004) also argue that the age of 

Tinguirirican fauna has been overestimated.  The Santa Rosa rodent fauna dates to 32-35 

Ma (Frailey and Campbell, 2004).   

Gaudeamus (family Thryonomyidae) represents the first appearance of the 

Phiomorpha in the fossil record (Hartenberger, 1998).  Frequently usage of the term 

Phiomorpha and even Thryonomyidae in the literature refers to paraphyletic groups 

(Hartenberger, 1998).  Nevertheless, Lopez Antoñanzas et al. (2004) and Lopez 

Antoñanzas and Sen (2005) yielded a close relationship between modern Thryonomys 

and the fossil genus Gaudeamus in cladistic analyses including a variety of thryonomyid 

genera suggesting that they are unlikely to hold a basal position among hystricognaths.  

Gaudeamus may even form a clade with extant Thryonomyidae to the exclusion of 

Bathyergidae and indicate that the bathyergid-thryonomyid split extends into the Eocene.  

Gaudeamus is known from L-41 Quarry, Fayum, Egypt (PBDB 60127; Gagnon, 1987), 
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which dates to 33.7-34.8 Ma (Seiffert, 2006).  As the oldest representative of either the 

Phiomorpha or Caviomorpha lineage, Gaudeamus at 33.7-34.8 Ma also represents the 

first appearance of the combined Phiomorpha + Caviomorpha clade in our analysis. 

 The first member of the Gliridae lineage is widely recognized as being Eogliravus 

from Europe (Hartenberger, 1998; Reyes et al., 1998; Montgelard et al., 2003; Marivaux 

et al., 2004).  Eogliravus from Prémontré, France are dated to 52.5 Ma (Marivaux et al., 

2004). 

 Although a number of ischyromyoid rodents bear a close resemblance to the 

Sciuroidea (Sciuridae + Aplodontiidae), a consensus has not emerged that defines stem 

taxa of this clade to the exclusion of glirids.  We use the older of the first appearance 

dates between these two lineages to also represent the first appearance of the Sciuroidea.  

The first member of the Sciuridae lineage is Douglassciurus (= Protosciurus; Thorington 

and Hoffman, 2005), which is known from the White River Formation, Wyoming, and 

dated at 37.6 Ma (PBDB 16961; Emry, 1979; Alroy, 2002).  The earliest member of the 

Aplodontiidae lineage is the allomyid genus Spurimus from the middle Eocene of North 

America (McKenna and Bell, 1997; Hartenberger, 1998).  Spurimus appears 42.2 Ma 

from the Wagon Bed Formation, Wyoming (Krishtalka and Black, 1975; Black, 1971). 

As the oldest representative of either the Sciuridae or Aplodontiidae lineage, Spurimus at 

42.2 Ma also represents the first appearance of the Sciuroidea lineage in our analysis. 
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Chapter 3 

New mitochondrial genomes from scaly-tailed flying squirrel, beaver, 

and kangaroo rat: Assessing rodent relationships with large amounts of 

mitochondrial and nuclear data 

 

Abstract- 

Although the subject of much study, there remains a great deal of uncertainty concerning 

certain basal level relationships in the Rodentia.  We have sequenced the complete 

mitochondrial genomes of three rodent species, Anomalurus beecrofti, Castor 

canadensis, and Dipodomys ordii, and attempt to resolve phylogenetic relationships 

within rodents using the mitochondrial genome, a comparable sized nuclear dataset, and a 

combined analysis containing over 26,000 bp of sequence data.  We determine that 

although the nuclear and mitochondrial datasets conflict, the combined analysis recovers 

a Sciuromorpha – Hystricomorpha clade with strong support.  Our data suggest that 

increased character sampling improves resolution at these early nodes while improved 

taxon sampling of mitochondrial genomes has led to better support in mitochondrial 

studies and a convergence towards the conclusions obtained from nuclear datasets. 

 

INTRODUCTION 

In spite of being the subject of numerous studies, the evolutionary relationships of 

rodents remain controversial. Multiple major proposals have been advanced attempting to 

divide rodents into subordinal ranks (Brandt, 1855; Tullberg, 1899; Ellerman, 1940; 
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Simpson, 1945; Wood, 1955; 1959; 1965; Chaline and Mein, 1979; Hartenberger, 1998; 

Wilson and Reeder, 1993; Landry, 1999; Carleton and Musser, 2005), but the majority of 

these have centered around two principal characters, the morphology of the 

zygomasseteric system and the shape of the mandible.  Brandt (1855), and other 19th 

century researchers developed a taxonomy based on Waterhouse’s (1839) description of 

characters of the zygomasseteric system, the relationship of the masseter muscles to the 

zygomatic arch and infraorbital canal. Tullberg (1899) suggested that rodents be divided 

into two groups, those with a hystricognathous mandible and those with a sciurognathous 

mandible.  Subsequent morphology-based taxonomies have largely been modifications of 

these two early proposals. Numerous well-sampled molecular studies have greatly 

clarified the relationships among rodents (Nedbal et al., 1994; 1996; Huchon et al., 1999; 

Adkins et al., 2001; DeBry and Sagel, 2001; Huchon and Douzery, 2001; Huchon et al., 

2002; Montgelard et al., 2002; Adkins et al., 2003; DeBry, 2003; Huchon et al., 2007).   

A summary of the relationships among rodents that have been recovered with good 

support is shown in Figure 1.  We apply the taxonomy of Carleton and Musser (2005), 

which is in general agreement with the results of these molecular studies, except where 

indicated. They recognized five suborders of rodents: Sciuromorpha, Castorimorpha, 

Myomorpha, Anomaluromorpha, and Hystricomorpha.  

The Sciuromorpha unites the dormice (family Gliridae) with the mountain beaver 

(Aplodontiidae) and squirrel family (Sciuridae).  The Sciuridae and Aplodontiidae have 

been found to be sister taxa in a number of well-supported studies (Huchon et al., 1999; 

Adkins et al., 2001; DeBry and Sagel, 2001; Huchon et al., 2002; Adkins et al., 2003; 
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DeBry, 2003; Huchon et al., 2007; Norris et al., chapter 2) and have been termed 

Sciuroidea in many molecular studies (Huchon et al., 1999; Michaux and Catzeflis, 2000; 

Montgelard et al., 2002; DeBry, 2003; Douzery et al., 2003; Horner et al., 2007). The 

relationship between glirids and sciuroids has also been recovered with good support, but 

in fewer studies (Adkins et al., 2003; Reyes et al., 2004; Horner et al., 2007; Huchon et 

al., 2007; Norris et al., chapter 2). 

The Castorimorpha unites the beavers (Castoridae), pocket gophers (Geomyidae), 

and kangaroo rats (Heteromyidae).  The sister relationship between the geomyids and 

heteromyids has been widely recognized by both molecular biologists (DeBry and Sagel, 

2001; Huchon et al., 2002; Adkins et al., 2003; DeBry, 2003; Huchon et al., 2007; Norris 

et al., chapter 2) and morphologists (Wood, 1955; Hartenberger, 1998; Landry, 1999; 

Marivaux et al., 2004).  The position of the Castoridae as sister to the Geomyoidea is 

more preliminary and Carleton and Musser (2005) emphasized that further study was 

required to verify their hypothesis.  Huchon et al. (2007) and Norris et al. (chapter 2) 

have since supported monophyly of Castorimorpha with reasonably high support. 

The Myomorpha is an extremely successful group that includes the birch mice, 

jumping mice, and jerboas (Dipodidae), and the superfamily Muroidea, which includes 

mice, rats, gerbils, voles, hamsters, and their relatives.  The Myomorpha represents a 

relatively uncontroversial grouping that has been supported in many studies (DeBry and 

Sagel, 2001; Adkins et al., 2003; DeBry, 2003; Reyes et al., 2004; Huchon et al., 2007; 

Norris et al., chapter 2).      
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The Anomaluromorpha contains the scaly-tailed flying squirrels (Anomaluridae) 

and the springhare (Pedetidae). Most published molecular phylogenies have included one 

of these two families, but not both.  Montgelard et al. (2002) recovered a well-supported 

Anomaluromorpha clade, but their study was restricted to the use of a weighted 

parsimony analysis applied to a dataset containing two mitochondrial genes.  Carleton 

and Musser (2005) united the two families in a single suborder largely due to a lack of 

alternative hypotheses. Huchon et al. (2007) and Norris et al. (chapter 2) have since 

supported monophyly of Anomaluromorpha with good support. 

The Hystricomorpha is a clade that includes the recently described Laonastes, the 

gundis, and the diverse Hystricognathi.  This clade has been subjected to considerable 

study and many opposing hypotheses have been proposed, but both morphological 

(Luckett and Hartenberger, 1985; Flynn et al., 1986; Landry, 1999; Marivaux et al., 2002; 

2004; Dawson et al., 2006) and molecular (Huchon et al., 2000; Adkins et al., 2001; 

Huchon et al., 2002; Adkins et al., 2003; Huchon et al., 2007; Norris et al., chapter 2) 

studies have converged on its current composition.  Although Laonastes was described 

too recently (Jenkins et al., 2005) to be included in Carleton and Musser’s (2005) 

taxonomy, its inclusion in this suborder receives unanimous support among those who 

have analyzed material (Jenkins et al., 2005; Dawson et al., 2006; Huchon et al., 2007). 

Two recent molecular studies (Huchon et al., 2007; Norris et al., chapter 2) have 

applied datasets that combine multiple genes (~5.5 kbp from 6 genes + SINES and ~8.4 

kbp from 7 genes respectively) to achieve improved resolution among major clades of 

rodents.  Two important nodes of the rodent phylogenetic tree remain essentially 
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unresolved in spite of these studies (Fig. 1).  The first evolutionary splits among rodents 

produce three clades: the suborder Hystricomorpha, the suborder Sciuromorpha, and a 

clade called the “mouse-related clade” by Huchon et al. (2002) that unites the suborders 

Anomaluromorpha, Myomorpha, and Castorimorpha. Achieving adequate resolution 

among these three clades strikes to the core of 150 years of debate concerning rodent 

relationships.  A basal position for the Hystricomorpha would retain the core of 

Tullberg’s (1899) Sciurognathi vs. Hystricognathi dichotomy intact and would be 

consistent with the Ichyromyiformes hypothesis developed by Marivaux et al. (2004) 

based on paleontological evidence.  Recently, the Broad Institute has justified its 

sequencing of a squirrel (Sciuridae) genome by citing its supposed relationship to the 

mouse and rat (Myomorpha)  (http://www.ncbi.nlm.nih.gov/sites/entrez?Db= 

genomeprj&cmd=ShowDetailView&TermToSearch=13936), a claim that is neither 

supported nor refuted by molecular phylogenetic analyses. 

Likewise, the relationships among the three suborders in the “mouse-related 

clade” have not been resolved in molecular analyses (Fig. 1).  Resolving the relationships 

among the Anomaluromorpha, Castorimorpha, and Myomorpha has implications for 

assessing character polarity, Paleogene biogeography, and comparative genomics.  

Clarification will aid in determining the number of independent origins of the different 

morphologies of the zygomasseteric system, the primary character of Brandt’s (1855) 

taxonomy.  The Anomaluromorpha and Myomorpha are both derived from 

hystricomorphous stock, whereas the Castorimorpha are sciuromorphous.  Determining 

the relationships among modern members of these suborders and their fossil counterparts 
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will also contribute to a better understanding of the complex biogeographic connections 

among North America, Europe, Asia, and even potentially Africa (in the 

Anomaluromorpha) in the Paleogene.  Finally, one of the primary goals of comparative 

genomics is to improve the applicability of results found in model organisms to a wider 

array of taxa.  Understanding the relationships between model organisms such as mice 

and rats (suborder Myomorpha) and other rodents is essential to understanding how 

genetic findings in these animals apply to other taxa.  Phylogenetic trees, particularly 

those involving model organisms, are an important part of the process of selecting which 

animals deserve full genome sequencing. 

In the first study to employ full mitochondrial genomes to evaluate relationships 

among rodents and between rodents and other mammals, D’Erchia et al. (1996) titled 

their paper: “The guinea-pig is a not a rodent”, emphasizing their inability to recover 

rodent monophyly.  The addition of the mitochondrial genomes from a dormouse (Reyes 

et al., 1998), a squirrel (Reyes et al., 2000a; 2000b), and a cane rat (Mouchaty et al., 

2001) still resulted in phylogenetic analyses that failed to recover even rodent 

monophyly.  Nevertheless, as mitochondrial genomes became available for more species 

of rodents, the phylogenetic trees produced have begun to converge on the results of 

studies employing multiple nuclear genes (Lin et al., 2002; Reyes et al., 2004; Horner et 

al., 2007).  With the continued addition of more taxa, phylogenies generated using full 

mitochondrial genomes may theoretically converge on the results obtained using nuclear 

data. 
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Our goals in this study were to attempt to obtain further clarity regarding the 

relationships among major rodent groups by adding taxa relative to previous full 

mitochondrial genome studies, and by analyzing far more characters than had been 

previously analyzed in rodent phylogenetic studies.   In all, 16 nuclear genes were 

analyzed comprising about 13.5 kbp of data.  Complete mitochondrial genomes were 

sequenced for three species of rodent: Anomalurus beecrofti, Castor canadensis, and 

Dipodomys ordii.  Although Horner et al. (2007) published a mitochondrial genome for 

an unidentified species of Anomalurus midway through our project, we had selected this 

animal because no mitochondrial genome was available for a member of the suborder 

Anomaluromorpha.  No mitochondrial genome was available for the suborder 

Castorimorpha, and Dipodomys and Castor represent two highly divergent members of 

this clade.  Norris et al. (chapter 2) suggest that they split about 59.4 million years ago 

(Ma) and the fossil record suggests a divergence time of 54.4 Ma (PBDB – the 

Paleobiology Database – reference #15660: McKenna, 1960).  Nuclear and mitochondrial 

data were analyzed both separately and combined, and conflict between the two was 

evaluated. 

 

MATERIALS AND METHODS 

Gene and Taxon Sampling 

 Genetic data were obtained for 16 nuclear genes (~13,500 bp) from 7 clades of 

rodents. We obtained the maximum amount of nuclear data available from GenBank that 

allowed for sampling of representatives of all of the suborders Anomaluromorpha, 
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Myomorpha, and Hystricomorpha, as well as the families Gliridae and Sciuridae in 

Sciuromorpha, and the Heteromyidae and Castoridae in Castorimorpha.  Each of these 

clades has been shown to be monophyletic based on a number of previous studies 

(Huchon et al., 1999; Adkins et al., 2001; DeBry and Sagel, 2001; Huchon et al., 2002; 

Adkins et al., 2003; DeBry, 2003; Reyes et al., 2004; Huchon et al., 2007; Norris et al., 

chapter 2).  A complete list of Genbank accession numbers and species used is shown in 

Table 1.  Sequence data were also obtained for euarchontan and lagomorph outgroups.  

Full mitochondrial genomes were obtained from Genbank for 13 species of rodents as 

well as 4 lagomorphs, a primate, and a tree shrew (Table 2).  Lagomorphs are widely 

recognized as the sister taxon to the Rodentia (Murphy et al., 2001; Huchon et al., 2002; 

Douzery and Huchon, 2004; Springer et al., 2004; 2005; Bininda-Emonds et al., 2007; 

Huchon et al., 2007); the two orders together form the clade Glires.  The Euarchonta 

(primates + dermopterans + tree shrews) and Glires comprise a clade referred to as 

Euarchontoglires (Murphy et al., 2001; Springer et al., 2004; 2005). 

 

DNA Sequencing 

Full mitochondrial genomes were sequenced from three individual rodents housed 

in the collection of tissues in the Biology Department, University of Vermont.  Ethanol 

preserved tissue was used to obtain sequence data from an individual Beecroft’s scaly-

tailed flying squirrel, Anomalurus beecrofti collected on 19 November 1999 from 

Agumatsa Wildlife Sanctuary, Volta Region, Ghana, (catalog #1516).  Frozen tissue was 

used to obtain sequence data from an individual American beaver, Castor canadensis, 
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obtained from a local trapper and collected at an unknown locality in central Vermont, 

USA (catalog# RWN 223).   Ethanol preserved tissue was used to obtain sequence data 

from an individual Ord’s kangaroo rat, Dipodomys ordii, from an unknown locality in 

Texas (catalog #60; CWK 1815). DNA was extracted using the DNeasy QIAGEN kit.  

Ethanol preserved material was soaked overnight in lysis buffer prior to extraction. 

The entire mitochondrial genome was amplified in segments ranging in length 

from 500 to 3,000 bp, with most reactions ~900 bp in length.  The deterioration of tissue 

over time, particularly for those stored in ethanol, seemed to preclude the possibility of 

amplifying fragments over 3,000 bp in length.  Primers were designed so that sequences 

obtained from different PCR reactions overlapped considerably (by at least 100 bp) to 

increase the probability that pseudogenes would be detected if amplified.  In the few 

instances where overlapping regions appeared to conflict, nested PCR was performed 

where the initial outer primer pair amplified at least 3,000 bp of DNA.  All final protein 

coding regions were in an open reading frame that matched known vertebrate 

mitochondrial structure, leading us to believe that pseudogenes were not incorporated. 

PCR was performed using the following parameters: 35 cycles of 94
o
C (1 min) 

denaturing, 50
o
C annealing (1-3 min), and 72

o
C (1 min, 10 sec) extension.  Amplification 

reactions were performed using Illustra puReTaq Ready-To Go PCR Beads.  Double 

stranded PCR products were purified using PEG precipitation (Maniatis et al., 1982). 

Sequencing was performed on an ABI 3130x1 Genetic Analyzer using dye terminator 

(ABI PRISM) cycle sequencing.  Primers used for PCR and sequencing are shown in 

Table 3.  Initially primers were designed to encompass the complete mitochondrial 
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genome based upon published primers (Irwin et al., 1991; Simon et al., 1994; Riddle 

1995; Sullivan et al., 1997; Sorenson et al., 1999; Tieman-Boese et al., 2000; Quérouil et 

al., 2001; Steppan et al., 2005).  These published primers were modified to match a 

consensus sequence of Mus, Sciurus, Cavia, and Ochotona.  New primers were generated 

based on successful sequences in order to amplify regions where PCR was initially 

unsuccessful. 

 

Phylogenetic analyses 

 Three datasets were analyzed: a nuclear dataset, a mitochondrial dataset, and a 

combined dataset.  The mitochondrial dataset consisted of protein coding regions, 12S 

rRNA and 16S rRNA; tRNAs, D-Loop and intergenic regions were excluded.  Although 

some genes on the mitochondrial genome overlap, such regions were assigned to one of 

the two genes involved to prevent duplicating them in the analysis. Alignments were 

performed in MacClade (Maddison and Maddison, 1989) while referencing 

corresponding alignments of amino acid sequences in Clustal X (Thompson et al., 1997) 

for both nuclear and mitochondrial protein coding regions and while referencing 

secondary structure for ribosomal RNAs (Springer et al., 1995).  Ambiguously aligned 

regions were excluded from the final analyses.  The nuclear dataset included 16 genes 

comprising 13,465 bp (including gaps) whereas the mitochondrial dataset included 15 

genes (12,638 bp).  The combined analysis involved 31 genes and 26,103 bp. 

 Tree reconstruction was conducted under both maximum parsimony (MP) and 

maximum likelihood (ML) frameworks in PAUP* (version 4.0b8, Swofford, 2002). 
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Nodal support was evaluated using MP bootstrapping in PAUP* (1,000 replicates) and 

Bayesian posterior probability values using MrBayes (version 3.1.1; 500,000 generations, 

sampled every 1,000 generations, burnin=250, 4 chains, 2 runs; Ronquist and 

Huelsenbeck, 2005).  Modeltest 3.04 (Posada and Crandall, 1998) determined the 

appropriate likelihood model for these datasets. GTR + I + !, TVM + I + !, and GTR + I 

+ ! were used in the maximum likelihood analyses for the nuclear, mitochondrial, and 

combined datasets respectively.  Because MrBayes does not distinguish between TVM 

and GTR, GTR + I + ! was used in all Bayesian analyses. 

 

RESULTS 

Characterization of mitochondrial genomes 

 The mitochondrial genomes of Anomalurus beecrofti, Castor canadensis, and 

Dipodomys ordii exhibit the typical vertebrate organization.  The mitochondrial genome 

of Anomalurus beecrofti is 16,925 bp in length.  This is the longest mitochondrial 

genome yet reported in rodents.  The previously published genome of an unidentified 

species of Anomalurus is 16,923 bp (Horner et al., 2007).   The Tamura and Nei (1993) 

genetic distance between these two Anomalurus individuals is 0.158, a value comparable 

to the genetic distance between Microtus levis and M. kikuchii (0.157) and between Mus 

musculus and M. terricolor (0.134).  Although congeners, it is unlikely that these two 

individuals are members of the same species of Anomalurus.  L-strand base composition 

of the Anomalurus beecrofti mitochondrion is A: 33.3%, T: 27.4%, C: 26.4%, and G: 

12.9%.  The mitochondrial genome in Castor canadensis is 16,733 bp long.  L-strand 
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base composition is A: 33.7%, C: 28.0%, T: 24.7%, and G: 13.5%.  The complete 

mitochondrion of Dipodomys ordii is 16,260 bp in length.  This is the shortest 

mitochondrial genome yet reported in rodents, but falls within the range reported in 

mammals.  L-strand base composition is A: 33.2%, T: 29.5%, C: 24.7%, and G: 12.7%. 

 

Phylogenetic analyses 

 The results of the ML analysis for the nuclear dataset are shown in Figure 2.  A 

single most parsimonious tree was recovered and is not shown, but is discussed later.  

Monophyly of the order Rodentia (MP BP = 99%, Bayesian PP = 1.00) and the suborders 

Castorimorpha (Castoridae + Heteromyidae; MP BP = 59%, Bayesian PP = 1.00) and 

Sciuromorpha (Gliridae + Sciuridae; MP BP = 97%, Bayesian PP = 1.00) were recovered 

in MP, ML, and Bayesian analyses.  All analyses recover a basal position for the 

Sciuromorpha, but with poor support (MP BP = 47%, Bayesian PP = 0.87).  The “mouse-

related clade” was recovered in the ML and Bayesian (PP = 1.00) analyses and by a 

plurality of replicates in the MP bootstrap (43%), but not in the single most parsimonious 

tree. The MP tree produced an Anomalomorpha + Castorimorpha clade and a 

Myomorpha + Hystricomorpha clade.  The Anomaluromorpha+ Castorimorpha clade 

received essentially no support in the MP bootstrap analysis (<50%). 

 Figure 3 shows the results of the ML analysis of the mitochondrial data.  

Monophyly of the suborders Sciuromorpha (MP BP = 87%, Bayesian PP = 1.00) and 

Hystricomorpha (MP BP = 97%, Bayesian PP = 1.00) were recovered in all analyses.  

Myomorpha monophyly (Bayesian PP = 1.00) and monophyly of the “mouse-related 
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clade” (Bayesian PP = 1.00) was recovered only in the ML and Bayesian analyses, but 

with strong support.  Monophyly of Glires was recovered only in the MP tree, but with 

essentially no support (<50%).  Castorimorpha is not monophyletic in either analysis.  

The MP tree recovers a Dipodidae + Heteromyidae clade that is supported by a 93% 

bootstrap value.  No other nodes with a bootstrap >50% were recovered in the MP 

analysis that differ from the tree shown in Figure 3. 

 The results of the combined analysis are shown in Figure 4.  The ML and 

Bayesian analyses recover monophyly of the Rodentia (MP BP = 100%, Bayesian PP = 

1.00) Castorimorpha (Bayesian PP = 1.00), Sciuromorpha (Bayesian PP = 1.00), and the 

“mouse-related clade” (Bayesian PP = 1.00).  A sister relationship is suggested between 

the Sciuromorpha and the Hystricomorpha (MP BP = 65%, Bayesian PP = 1.00) and 

between the Anomaluromorpha and Myomorpha (Bayesian PP = 0.87).  The clades 

supported by bootstrap values > 50% in the MP analyses are a Myomorpha + 

Heteromyidae clade (MP BP = 87%) and Gliridae + Hystricognathi clade (MP BP = 

66%).  In both instances, the longest two branches within a clade are drawn together in 

the parsimony analysis, but are part of separate clades in model-based analyses.   

 

Conflict among datasets 

 A partition homogeneity test was conducted in PAUP* under a parsimony 

framework to evaluate the nuclear vs. mitochondrial datasets.  The two were significantly 

different (P = 0.001).  In order to test how differing signals affected tree topology, a 

series of Shimodaira Hasegawa (1999) tests were conducted in PAUP under a likelihood 
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framework (Table 4).  Each dataset was constrained to fit each of the tree topologies 

shown in Figures 2-4 and the likelihood scores for these trees were compared.  Tests 

involving the mitochondrial dataset were conducted with a set of taxa pruned to match 

the 9 taxa used in the nuclear and combined analyses.  The Shimodaira Hasegawa tests 

showed that the mitochondrial topology (Fig. 3) was significantly worse than either the 

nuclear topology (Fig. 2) or the combined topology (Fig. 4) when evaluated using the 

nuclear dataset (P = 0.001 for both).   

 

DISCUSSION 

Relationships among rodents 

 This study is the first to show good support for resolution among the 

Sciuromorpha, Hystricomorpha, and “mouse-related clade” at the base of the Rodentia.  

This support is predominantly derived from analyses that incorporate a model of 

evolution (Bayesian PP = 1.00), but limited support is also present in the parsimony 

analysis (BP = 65%).  In order to ensure that this is not an artifact of where the Rodentia 

is rooting, we performed an ML analysis excluding Homo and another excluding 

Ochotona.  Both recovered the Sciuromorpha + Hystricomorpha clade shown in Figure 4.  

Both trees differed from Figure 4 in recovering a Castorimorpha + Anomaluromorpha 

clade instead of the Anomaluromorpha + Myomorpha clade recovered when both 

outgroups are present.  Although this clade was not recovered in the majority of trees 

sampled in the Bayesian analysis performed on the nuclear dataset (Bayesian PP = 0.87 

for “mouse-related clade” + Hystricomorpha clade), it represented the next most 



 112 

commonly sampled clade in that analysis (Bayesian PP = 0.11).  This may be a situation 

where hidden support from a seemingly conflicting dataset emerges when the two are 

combined (Sullivan et al., 1995). 

 Even those studies that employ multiple genes and dense taxon sampling have 

failed to resolve the relationships among the three clades at the base of the Rodentia.  

Huchon et al. (2007) sampled 5,500 bp of sequence data from 25 families of rodents and 

recovered the Hystricomorpha as the most basal clade, but with ML BP < 50% and 

Bayesian PP < 0.75.  Norris et al. (chapter 2) sampled 8,300 bp from 14 families of 

rodents and recovered a basal position of the Sciuromorpha, but with MP and ML BP 

<50% and Bayesian PP <0.75. 

 The conclusion that the Sciuromorpha and Hystricomorpha form a clade is 

unusual from the perspective of morphology.  Uniting the Hystricomorpha with the 

“mouse-related clade” unites a group with a hystricomorphous ancestral condition 

(Hystricomorpha) with a clade that contains the only other hystricomorphous rodents 

(suborders Anomaluromorpha and Myomorpha) excluding the dormouse Graphiurus 

which probably derived from the pseudomyomorphy seen in other glirids.  Unifying the 

Sciuromorpha with the “mouse-related clade” retains the core of Tullberg’s (1899) 

Sciurognathi, a suborder defined by their retention of the primitive rodent jaw shape, and 

is consistent with the Ischyromyiformes hypothesis which Marivaux et al. (2004) 

constructed based on a suite of dental and cranial characters in early fossil members of 

modern groups.  Nevertheless, Norris et al. (chapter 2), using a different assumption of 

tree topology than is shown in Figure 4, suggested that about 400,000 or 700,000 years 
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separated the first and second evolutionary splits in rodents.  Such a rapid succession of 

evolutionary events about 60 million years ago may prove very difficult to track in the 

fossil record and in genetic analyses.  Our results should be confirmed with denser taxon 

sampling, with particular emphasis on greater diversity within the Hystricomorpha. 

Specifically, full mitochondrial genome sequencing combined with more extensive 

nuclear sampling for either gundis (family Ctenodactylidae) or the recently described 

Laonastes, would improve this analysis. 

 In contrast to the improved resolution at the base of Rodentia, our data show no 

improvement in resolution among the three suborders of the “mouse-related clade” when 

compared to prior studies.  Both Huchon et al. (2007) and Norris et al. (chapter 2) 

recovered comparable support at this node as shown in Figure 4.  Prior studies showed 

essentially no resolution among these three subfamilies.  The conclusions shown in 

Figure 4 can be called into further question because the topology changed when 

individual outgroup taxa were excluded.  Increasing taxon sampling to include both 

anomaluromorph families, in particular a Pedetes mitochondrial genome, and increased 

nuclear sampling for Dipodidae may improve this analysis. 

 A common dilemma facing molecular phylogeneticists and a source of much 

discussion is whether it is better to add taxa or characters to resolve difficult nodes 

(Graybeal, 1998; Mitchell et al., 2000; Wortley et al., 2005).  Our results would seem to 

provide arguments for both.  Extremely large numbers of characters have yielded strong 

support for a node (Hystricomorpha + Sciuromorpha) that had proven unrecoverable in 

analyses with fewer characters.  We await confirmation as to whether other studies will 
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also find this clade to be well-supported.  In contrast, reducing taxa may have prevented 

any improvement in nodal support for an Anomaluromorpha + Myomorpha relationship.  

Finally, the importance of denser taxon sampling for inherently noisy data can be 

confirmed by the way that mitochondrial genome studies in rodents have yielded a slow, 

but steady improvement of nodal support and a convergence toward nuclear-derived 

topologies.  
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FIGURE LEGENDS 

FIGURE 1. Relationships among the Rodentia based on a summary of well-supported 

clades in prior molecular studies.  Still unresolved are the relationships among the 

Sciuromorpha, Hystricomorpha, and the “mouse-related clade” and among the 

Anomaluromorpha, Myomorpha, and Castorimorpha. 

 

FIGURE 2. Phylogenetic relationships among rodents based on nuclear data.  The 

maximum likelihood tree is shown.  Values at nodes are Bayesian posterior probabilities 

followed by maximum parsimony bootstrap percentages. 

 

FIGURE 3. Phylogenetic relationships among rodents based on mitochondrial data.  The 

maximum likelihood tree is shown.  Values at nodes are Bayesian posterior probabilities 

followed by maximum parsimony bootstrap percentages. 

 

 

FIGURE 4. Phylogenetic relationships among rodents based on the combined nuclear and 

mitochondrial data.  The maximum likelihood tree is shown.  Values at nodes are 

Bayesian posterior probabilities followed by maximum parsimony bootstrap percentages. 
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FIGURE 3.  
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FIGURE 4.  
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TABLE 1.  GenBank accession numbers for nuclear genes used in this study. 

 

Lineage ADRA2B BRCA1 GHR IRBP 

 

Primates 

Homo sapiens 

 

M34041 

Homo sapiens 

 

NM007302 

Homo sapiens 

 

NM000163 

Homo sapiens 

 

NM002900 

 

Ochotonidae 

Ochotona 

princeps 

 

AJ427253 

Ochotona 

princeps 

 

AY057827 

Ochotona 

princeps 

 

AF332015 

Ochotona 

princeps 

 

AY057832 

 

Anomaluromorpha 

Anomalurus 

 sp. 

 

AJ427259 

Anomalurus 

beecrofti 

 

Norris et al., 

chapter 2 

Anomalurus 

beecrofti 

 

Norris et al., 

chapter 2 

Anomalurus 

sp. 

 

AJ427240 

 

Heteromyidae 

Dipodomys 

merriami 

 

AJ427261 

Perognath 

flavus 

 

AF540638 

Perognath 

flavus 

 

AF332029 

Dipodomys 

merriami 

 

AJ427233 

 

Castoridae 

Castor 

canadensis 

 

AJ427260 

Castor 

canadensis 

 

AF540622 

Castor 

canadensis 

 

AF332026 

Castor 

canadensis 

 

AJ427239 

 

Caviomorpha 

Erethizon 

dorsatum 

 

AJ427270 

Erethizon 

dorsatum 

 

AF540626 

Erethizon 

dorsatum 

 

AF332037 

Erethizon 

dorsatum 

 

AJ427249 

 

Sciuridae 

Sciurus 

vulgaris 

 

AJ315942 

Glaucomy 

 volans 

 

AF284003 

Sciurus  

niger 

 

AF332032 

Glaucomy 

 volans 

 

AY227598 

 

Gliridae 

Glis glis 

 

AJ427258 

Graphiurus 

murinus 

 

AF332046 

Graphiurus 

murinus 

 

AF332031 

Graphiurus 

murinus 

 

AY303219 

 

Myomorpha 

Mus musculus 

 

M94583 

Mus musculus 

 

U36475 

Mus musculus 

 

AF120489 

Mus musculus 

 

NM015745 
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TABLE 1 CONTINUED 

 

Lineage vWF CNR1 RAG1 RAG2  

(section 1) 

 

Primates 

Homo sapiens 

 

NM000552 

Homo sapiens 

 

BC074812 

Homo sapiens 

 

NM000448 

Homo sapiens 

 

BC022397 

 

Ochotonidae 

Ochotona 

princeps 

 

AJ224672 

Ochotona 

princeps 

 

AY303188 

Ochotona 

hyperborea 

 

AY011896 

Ochotona 

hyperborea 

 

AY011953 

 

Anomaluromorpha 

Anomalurus  

sp. 

 

AJ427229 

Pedetes 

capensis 

 

AY011578 

Pedetes 

capensis 

 

AY011882 

Pedetes 

capensis 

 

AY011939 

 

Heteromyidae 

Dipodomys 

merriami 

 

AJ427226 

Dipodomys 

heermani 

 

AY011584 

Dipodomys 

heermani 

 

AY011888 

Dipodomys 

heermani 

 

AY011945 

 

Castoridae 

Castor 

canadensis 

 

AJ427228 

Castor 

canadensis 

 

AY303180 

Castor 

canadensis 

 

AY011880 

Castor 

canadensis 

 

AY011937 

 

Caviomorpha 

Erethizon 

dorsatum 

 

AJ251135 

Erethizon 

dorsatum 

 

AY011583 

Erethizon 

dorsatum 

 

AY011887 

Erethizon 

dorsatum 

 

AY011944 

 

Sciuridae 

Glaucomys 

 volans 

 

AJ224667 

Tamias 

striatus 

 

AY011575 

Tamias 

striatus 

 

AY011879 

Tamias 

striatus 

 

AY011936 

 

Gliridae 

Glis  

glis 

 

AJ224668 

Graphiurus 

murinus 

 

AY303187 

Graphiurus 

murinus 

 

AY294934 

Muscardinus 

avellanarius 

 

AY011938 

 

Myomorpha 

Mus musculus 

 

NM011708 

Mus musculus 

 

NM007726 

Mus musculus 

 

M29475 

Mus musculus 

 

NM009020 
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TABLE 1 CONTINUED 

 

Lineage RAG2 

(section 2) 

HSPD3 EDG1 PNOC 

 

Primates 

Homo sapiens 

 

BC022397 

Homo sapiens 

 

NM006308 

Homo sapiens 

 

AK312493 

Homo sapiens 

 

NM006228 

 

Ochotonidae 

Ochotona 

Princeps 

 

AY303207 

Ochotona 

Princeps 

 

AJ550791 

Ochotona 

hyperborea 

 

AY011717 

Ochotona 

hyperborea 

 

AY011836 

 

Anomaluromorpha 

Pedetes 

capensis 

 

AY303208 

Anomalurus 

sp. 

 

AJ550794 

Pedetes 

capensis 

 

AY011705 

Pedetes 

capensis 

 

AY011824 

 

Heteromyidae 

Dipodomys 

heermani 

 

AY303202 

Dipodomys 

merriami 

 

AJ550793 

Dipodomys 

heermani 

 

AY011710 

Dipodomys 

heermani 

 

AY011829 

 

Castoridae 

Castor 

canadensis 

 

AY303199 

Castor 

canadensis 

 

AJ550795 

Castor 

canadensis 

 

AY011703 

Castor 

canadensis 

 

AY011822 

 

Caviomorpha 

Erethizon 

dorsatum 

 

AY303205 

Erethizon 

dorsatum 

 

AJ550797 

Erethizon 

dorsatum 

 

AY011709 

Erethizon 

dorsatum 

 

AY011828 

 

Sciuridae 

Tamiasciurus 

hudsonius 

 

AY303214 

Sciurus 

vulgaris 

 

AJ550800 

Tamias 

striatus 

 

AY011702 

Tamias 

striatus 

 

AY011821 

 

Gliridae 

Graphiurus  

murinus 

 

AY303206 

Glis 

glis 

 

AJ550799 

Muscardinus 

avellanarius 

 

AY011704 

Muscardinus 

avellanarius 

 

AY011823 

 

Myomorpha 

Mus musculus 

 

NM009020 

Mus musculus 

 

NM019960 

Mus musculus 

 

NM007901 

Mus musculus 

 

NM010932 
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TABLE 1 CONTINUED 

 

Lineage PLCB4 CREM ATP7A APP 

 

Primates 

Homo sapiens 

 

NM000933 

Homo sapiens 

 

AY011664 

Homo  

sapiens 

 

AY011418 

Homo 

 sapiens 

 

AY011354 

 

Ochotonidae 

Ochotona 

hyperborea 

 

AY011779 

Ochotona 

hyperborea 

 

AY011655 

Ochotona 

hyperborea 

 

AY011409 

Ochotona 

hyperborea 

 

AY011346 

 

Anomaluromorpha 

Pedetes 

capensis 

 

AY011765 

Pedetes 

capensis 

 

AY011642 

Pedetes 

capensis 

 

AY011396 

Pedetes 

capensis 

 

AY011333 

 

Heteromyidae 

Dipodomys 

heermani 

 

AY011771 

Dipodomys 

heermani 

 

AY011648 

Dipodomys 

heermani 

 

AY011402 

Dipodomys 

heermani 

 

AY011339 

 

Castoridae 

Castor 

canadensis 

 

AY011763 

Castor 

canadensis 

 

AY011640 

Castor 

canadensis 

 

AY011394 

Castor 

canadensis 

 

AY011331 

 

Caviomorpha 

Erethizon 

dorsatum 

 

AY011770 

Erethizon 

dorsatum 

 

AY011647 

Erethizon 

dorsatum 

 

AY011401 

Erethizon 

dorsatum 

 

AY011338 

 

Sciuridae 

Tamias 

striatus 

 

AY011762 

Tamias 

striatus 

 

AY011639 

Tamias 

striatus 

 

AY011393 

Tamias 

striatus 

 

AY011330 

 

Gliridae 

Muscardinus 

avellanarius 

 

AY011764 

Muscardinus 

avellanarius 

 

AY011641 

Muscardinus 

avellanarius 

 

AY011395 

Muscardinus 

avellanarius 

 

AY011332 

 

Myomorpha 

Mus musculus 

 

AY011766 

Mus musculus 

 

AY011643 

Mus musculus 

 

AY011397 

Mus musculus 

 

AY011334 
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TABLE 1 CONTINUED 

 

Lineage BDNF 

 

Primates 

Homo 

 sapiens 

 

AY011481 

 

Ochotonidae 

Ochotona 

hyperborea 

 

AY011473 

 

Anomaluromorpha 

Pedetes 

capensis 

 

AY011460 

 

Heteromyidae 

Dipodomys 

heermani 

 

AY011466 

 

Castoridae 

Castor 

canadensis 

 

AY011458 

 

Caviomorpha 

Erethizon 

dorsatum 

 

AY011465 

 

Sciuridae 

Tamias 

striatus 

 

AY011457 

 

Gliridae 

Muscardinus 

avellanarius 

 

AY011459 

Myomorpha Mus musculus 

 

AY011461 
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TABLE 2. GenBank accession numbers for mitochondrial genomes used in this study. 

Suborder/Order Species Accession 

Primates Homo sapiens NC_001807 

Scandentia Tupaia belangeri NC_002521 

Lagomorpha Ochotona collaris NC_003033 

Lagomorpha Ochotona princeps NC_005358 

Lagomorpha Lepus europaeus NC_004028 

Lagomorpha Oryctolagus cuniculus NC_001913 

Sciuromorpha Glis glis NC_001892 

Sciuromorpha Sciurus vulgaris NC_002369 

Hystricomorpha Thryonomys swinderianus NC_002658 

Hystricomorpha Cavia porcellus NC_000884 

Anomaluromorpha Anomalurus sp. NC_009056 

Myomorpha Jaculus jaculus NC_005314 

Myomorpha Spalax ehrenbergi NC_005315 

Myomorpha Cricetulus griseus NC_007936 

Myomorpha Microtus kikuchii NC_003041 

Myomorpha Microtus levis NC_008064 

Myomorpha Mus musculus NC_005089 

Myomorpha Mus terricolor NC_010650 

Myomorpha Rattus norvegicus NC_001665 

 



TABLE 3.  Primers used to sequence mitochondrial genomes.  Primers were modified from the original source based on a 

consensus sequence of Cavia, Sciurus, and Mus.  “Position” refers to position on Mus genome (H-strand). If primer was used 

for Anomalurus (A), Castor (C), or Dipodomys (D), it is indicated with an X in that column. 

 

Primer Sequence Citation F/R Position A C D 

12S2GW TGGGAAGAAATGGGCTACATT   F 772 X  X 

12SC GGTAAATTTCGTGCCAGCCAC   F 293 X X X 

16SARN TTACCAAAAACATCACCTCTA Quérouil et al., 2001 F 1935 X X X 

16SF1 ANCGAGCYTGGTGATAGCTG Sorenson et al., 1999 F 1427 X X X 

6520F GCWGGMTTYGTNCACTGATTCCC Steppan et al., 2005 F 6498 X X  

7101F CAYGAYCAYACNYTWATAAT Steppan et al., 2005 F 7082 X   

7481R CARGARTGNARNACRTCTTC Steppan et al., 2005 R 7481 X X  

7927R GAGGMRAAWARATTTTCGTTCAT Steppan et al., 2005 R 7927 X   

AF1 GACCAATCGGTCCTAAGGACACTCA this study F   X   

AF2 CCATCGCTACCACCATTATTACACTA this study F   X   

AF3 TTATCCCCACAATTATACTTATTCCAT this study F   X   

AF4 CACATCTGCACCCACGCATTTTT this study F   X   

AF5 ACCATGAGGTGTATTCTTTCCATGC this study F   X   

AF6 AATGAAGCACGTACACACCGCCC this study F   X   

AF7 TTCTCACATCCTCAACCCTATCTA this study F   X   

AF8 ATTCACCGATCTCAACCAGAAATCAACC this study F   X   

AF9 AACGAAAATCTATTCACCTCCTTCATC this study F   X   

AR1 TATCTTTATTGATGGCTGCTTTCGG this study R   X   

AR10 ATTGTTGCATATTTTACTAACCATA this study R   X   

AR12 AGCCTGAGGCTATTAATAGGGCGGA this study R   X   

AR2 CATAGATGAGGAGGTTAATTATTGC this study R   X   

AR3 GGCTCCTGTTAGGGGTCAGGGGCTA this study R   X   

AR4 CCATAAGAGGGAGTATGGTTTGAAG this study R   X   



AR5 GGACGTATCCTATAAAAGCAGTAGC this study R   X   

AR6 TTGAAATTCGTTGAGTTTACGGCTAA this study R   X   

AR8 ATATGTGGGGTGTTTATGGTGGTGG this study R   X   

AR9 GCATGGAAAGAATACACCTCATGG this study R   X   

ATP6F2 GCNGTNGCNNTAATYCAAGCNTACGT Sorenson et al., 1999 F 8539 X X X 

ATP6R1 TGTCCNGCNGTAATRTTRGCNGTNA Sorenson et al., 1999 R 8405 X X  

ATP8F1 AYYTATTTGCCTCNTTCATTACNCC Sorenson et al., 1999 F 7937  X X 

MTF8 YTNCAACCNNTYGCNGAYGC Simon et al., 1994 F 2886 X  X 

CADR2 GAARATAAARCCTARNGCTCANA this study R 6343 X X  

CAF1 GARTACCAGAAGTNACYCAAGGA this study F   X   

CAR1 TAANAGGATTGNNGGTTTNTTGTT this study R 8361  X  

CAR2 TAGRTGGATATAAAGCACCGCCAAGT this study R 590  X  

CF1 AGTATACTATGCCTATTCACCCTAA this study F    X  

CF10 CATTAGCGCATTAAAGTCATAAACAA this study F    X  

CF11 CAATTGAACTGAGCAATGAAGCAC this study F    X  

CF12 CAACACATGAACAAAGAGCCAGTAG this study F    X  

CF4 ACAACCCGTTGAACCCCCATTCATT this study F    X  

CF5 CCCTAGTAGCACTAACTATAAAA this study F    X  

CF6 GAGTAAAAGTCTTCAGCTGACTGGC this study F    X  

CF7 TTAATTCTAGTCACAGCAAATAACC this study F    X  

CF8 CCAACCCTACCTGTCATTCCTCCA this study F    X  

CF9 CCCACGAACCCCAACACAAACATA this study F    X  

CO3F1 ATYACNTGANCNCAYCAYAGCYTNATAGA Sorenson et al., 1999 F 9036 X X X 

CR1 ATTGAAGGTTGTATCCGTATCT this study R    X  

CR2 AGTGGGGGTAAGAGGATTGAGGGT this study R    X  

CR4 TGGGTGGAGTCCGAATTGGGCTGAT this study R    X  

CR5 AATGTGGCTATTTGAAGTGCTTTG this study R    X  



CR6 TTTGCTTTTTAGTGCTTTGAGTTAAT this study R    X  

CR7 GGGTTAGGAGTATGGTTCGGCTGTG this study R    X  

CR8 GCGTACTCACTGGGGCACGGATATTT this study R    X  

CYTBA GATATGAAAAACCATCGTTG Sullivan et al., 1997 F   X X X 

CYTBAM ACATGAAAAATCATCGTTG Sullivan et al., 1997 F    X  

CYTBAR TACAACRRTGRTTTTTCAT Sullivan et al., 1997 R   X X X 

CYTBD CTTCATGAGGACAAATATC Sullivan et al., 1997 F 14542   X 

CYTBE ACTCCTGTTTATAGTAAGAC Sullivan et al., 1997 R     X 

CYTBECAS CAAAAGGATATTTGCCCTCA this study R    X  

CYTBEND2 TAAGAATNTCAGCTTTGGGTGCTG this study R 15384 X X X 

CYTBG ATAGACAAAATCCCATTCCA Irwin et al., 1991 F   X X  

CYTBJ CTGCAGTCATCTCCGGTTTACAAGAC Irwin et al., 1991 F 15315   X 

CYTB752R GCAGGAGTGTAATTATCGGGGTCTC Tieman-Boese et al., 

2000 

R 14896 X  X 

DF3 TAGCCCCATTCCACCTCTGAGTCC this study F     X 

DF4 ACCCCTGTTCGTTTGATCCGTACTT this study F     X 

DF5 AGACGTACTACATTCATGAGCAGT this study F     X 

DF6 TTATCGCATTCTCAACTTCTAGTCA this study F     X 

DF7 GGACTTGGCGGTGCTTTATATCCA this study F     X 

DF8 ATCCACGATTTCAACCTATATCCCC this study F     X 

DF9 GACAAATCGCATCAGTCCTCTACTTC this study F     X 

DF10 AGACCTTACATTCACTAAAACACCCAA this study F     X 

DF11 AACTTGATTTATCCAATTTTACGACT this study F     X 

DF12 AATCCACACCCTACCCCACCACTAAT this study F     X 

DF13 TGATACTGACATTTCGTAGACGTAGT this study F     X 

DF15 CCATAGCCCTCGCTGTACGACTAACT this study F     X 

DF16 TTATAGCAACAGGTTTCCACGGACTT this study F     X 



DF17 CTAGCTGCATGTGAAGCAGCTGTTGGC this study F     X 

DPD6 TCCTTGTCCATATGACTATC this study F     X 

DR2 AAGAGCTGTACCTCTTTAGGTTAGC this study R     X 

DR3 TGGTGTAGTAGAGATGGATAAAGAAT this study R     X 

DR4 TTTGGAGTGGATAAGCCATAAAGAT this study R     X 

DR5 TGGTGTTGGCTAAGCAAAATAGGGC this study R     X 

DR6 GGGTGTCAGGCGTATAATGTATTGCT this study R     X 

DR7 AGTGGGGTATTTAATCCCAGTTTAG this study R     X 

DR9 AGGGCTATAAGAGGAAGTATTGTTTG this study R     X 

DR10 TAAAGCATTCATAAAATGTCCAAGCG this study R     X 

DR11 AATGAAAGTTGAGATACGTATTATT this study R     X 

DR13 ATAGCGGATGAGTCATCCGTAATTC this study R     X 

DR14 AGGCTTACTAGAAGGGTGAATACGTA this study R     X 

DR16 GGGATTCAAAAGGCAATTAAGATTAG this study R     X 

DR15 ATGCCTGATGTAAGTAAGAGGGCTGA this study R     X 

DR17 TTTTCATGTAATTGGTTCTTTTGCTAT this study R     X 

HISF1 AAAACAYTAGAYTGTGAATCTRRYAAYA Sorenson et al., 1999 F 11562 X X X 

LEUR1 TTTTTGGYTCCTAAGACCAAYGGAT Sorenson et al., 1999 R 11691 X X X 

MTF12 GCNTCNTAYCCACGNTTCCGNTACGAYC Simon et al., 1994 F 3573 X X X 

MTF14 TGRGGRGGNCTNAACCAAAC Simon et al., 1994 F 4412 X X X 

MTF15 TNGGAGGNCTYCCNCCAYTNACNGG Simon et al., 1994 F 4665 X X X 

MTF16 TTTACAGYCTAAYGCYTACTCRGCC Simon et al., 1994 F 5294 X X X 

MTF20 GGRACNGGNTGRACNGTYTACCCNCC Simon et al., 1994 F 5694 X X X 

MTF23 CCYACNGGNGTNAAAGTNTTYAGCTGRYTNGC Simon et al., 1994 F 6270 X X X 

MTF26 AACYYCCNNNRRYTRGTTTCAAGCC Simon et al., 1994 F 6888 X X X 

MTF32 AGAYGTNCTNCAYTCNTGA Simon et al., 1994 F 12099 X X  

MTF40 GARTGRAYNCARAAAGGNYTN Simon et al., 1994 F 9771 X   



MTF42 CNTAYTCNTCNRTYAGYCA Simon et al., 1994 F 11025 X X X 

MTF8 YTNCAACCNNTYGCNGAYGC Simon et al., 1994 F 2886 X X X 

MTFB1 GACCGGAGNAATCCAGGTCGG Simon et al., 1994 F 2517 X X X 

MTR13 CTATCAAAGTAAYTCTTTTRTCAGACA Simon et al., 1994 R 3713 X X X 

MTR14 GTTTGGTTNAGNCCYCCYCA Simon et al., 1994 R 4412 X X X 

MTR16 GGCYGAGTARGCRTTAGRCTGTAAA Simon et al., 1994 R 5294 X X X 

MTR17 NGTACCYACTATNCCNGCYCA Simon et al., 1994 R 5400 X X X 

MTR21 CCAAARAATCARAAYARRTGYTG Simon et al., 1994 R 6021 X X X 

MTR24 GTRNARCCNGNRAAYARNGG Simon et al., 1994 R 6458  X  

MTR28 TCYTCTATRATNGGRGANGNRGC Simon et al., 1994 R 7046 X X  

MTR33 CCACARATYTCNGARCATTGNCCR Simon et al., 1994 R 7591 X X X 

MTR38 YTRTTYATYRTNTCNGAAGT Simon et al., 1994 R 8859  X  

MTR39 TGRTACTGACAYTTYGTNGA Simon et al., 1994 R 9324 X X  

MTR4 GCTCCATAGGGTCTTCTCGT Simon et al., 1994 R 2154 X X X 

MTR40 NARNCCTTTYTGNRTYCAYTC Simon et al., 1994 R 9771 X   

MTR7 GGNCCTTTNCGNAGTTGTATRTANCCN Simon et al., 1994 R 2834 X X X 

MTR9 GGNCCTTTNCGNAGTTGTATRTANCCN Simon et al., 1994 R 3105 X X X 

MTRB1 CCGACCTGGATTNCTCCGGTC Simon et al., 1994 R 2517 X   

ND3F1 YCNTATGARTGYGGNTTYGAYCC Sorenson et al., 1999 F 9564 X X  

ND4R1 GGNGNRGATARNGRRTCNGANRAGAA Sorenson et al., 1999 R 10261 X X X 

ND4R2 GTNGGRATYAARGTNGYYTCAAA Sorenson et al., 1999 R 10530 X X  

ND4R3 GTNCGGCTGTGRATNCGTTC Sorenson et al., 1999 R 11169 X  X 

ND4F1 TTCTYNTCNGAYYCNYTATCYNCNCC Sorenson et al., 1999 F 12686   X 

ND5F1 AAAYACNGCAGCNCTNCAAGC Sorenson et al., 1999 F 12233 X X X 

ND5F3 CACATYTGYACYCACGCNTTCTT Sorenson et al., 1999 F 12723 X X  

ND5R2 AGNCCAAATTGNGCNGATTTTCC Sorenson et al., 1999 R 12405 X X X 

ND5R4 TCCTATYTTTCGRATGTCYTGTTC Sorenson et al., 1999 R 12798 X X X 



ND5R6 TTNGGNRYNRYTTTTTCTANYCARRT Sorenson et al., 1999 R 13407 X   

ND6F1 CCAAANACNACCANCATNCCNCC Sorenson et al., 1999 F 13868  X  

R95F2 CATGATAACACATAATGACCCACCAA Riddle, 1995 F 8593   X 

R95R2 ACTAAGAGAGTAGGATCCTCATCAATA Riddle, 1995 R 9375   X 

VALR1 ATCTYCNGGGTGTARGCCRGRTGC Sorenson et al., 1999 R 1047 X X X 
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TABLE 4. Results of Shimodaira-Hasegawa tests comparing topologies obtained from ML 

analysis of three datasets.  Each topology was compared with the other two topologies for 

each individual dataset.  Asterisks indicate significant results after correcting for multiple 

tests. 

 

 

Dataset 

Nuc. topology 

vs. mt. topology 

Nuc. topology vs.  

comb. topology 

Mt. topology vs.  

comb. topology 

Nuclear Nuc. 

P = 0.001* 

Nuc. 

P = 0.504 

Comb. 

P = 0.001* 

Mitochondrial Mt. 

P = 0.027 

Comb. 

P = 0.054 

Mt. 

P = 0.185 

Combined Nuc. 

P = 0.457 

Comb. 

P = 0.122 

Mt. 

P = 0.110 
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Chapter 4 

The phylogenetic position of the zokors (Myospalacinae) and comments 

on the families of muroids (Rodentia) 

 

Abstract 

Recent molecular studies have concluded that the genus Myospalax evolved from within 

the rodent subfamily Cricetinae.  This conclusion was tested using the complete 

sequences from the mitochondrial 12S rRNA and cytochrome b genes.  Based on our 

analyses, Myospalax appears to be sister to a clade containing the subfamilies Spalacinae 

and Rhizomyinae, and all three of these lineages appear to be basal to the superfamily 

Muroidea. Based on the position of these three lineages, we suggest that they be placed in 

a distinct family, the Spalacidae, rather than subsumed as subfamilies in the family 

Muridae.  Finally, our analyses suggest that the earlier placement of Myospalax as a 

member of the Cricetinae is the result of a single misidentified specimen, which was not a 

Myospalax. 

 

Introduction 

Genetic information from a single individual (Tissue # T-394), identified as 

Myospalax sp. from an “unknown locality, Russia” (Michaux and Catzeflis, 2000), was 

used to represent the subfamily Myospalacinae in several phylogenetic studies of muroid 

relationships (Furano et al., 1994; Usdin et al., 1995; Michaux and Catzeflis, 2000; 

Chevret et al., 2001).  The results of these studies indicate a phylogenetic position of the 
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Myospalacinae nested within the subfamily Cricetinae (Michaux and Catzeflis, 2000; 

Chevret et al., 2001; Michaux et al., 2001).  Specifically, Myospalax appears to be sister 

to the hamster genus Phodopus.   

Fossils of myospalacines extend to the Late Miocene, and Lawrence (1991) 

considered all fossil and recent species similar enough to be placed in a single genus.  

The estimated time of divergence between Myospalax and Phodopus, based on the 

molecular data, ranges from 4.5 to 6.7 Myr (Michaux and Catzeflis, 2000; Michaux et al., 

2001). If dates obtained in these molecular analyses (Michaux and Catzeflis, 2000; 

Michaux et al., 2001) are close to being accurate, then a massive amount of 

morphological evolution has occurred over a short period of time in the myospalacine 

lineage.  This case requires the origin of a fossorial lifestyle, complete with numerous 

morphological specializations (long claws, small eyes and ears, large keratinized nose, 

strong zygomatic arch, distinct occipitum, fused cervical vertebrae, enlarged olecranon 

process; Tullberg, 1899; Carleton and Musser, 1984; Lawrence, 1991) arising from a 

hamster-like phenotype.  In addition to these specializations, Myospalax differs from 

typical hamsters in other characters including increased diploid chromosome number, 

hypsodont molars with prismatic cusps, a triangular braincase, oval shaped infraorbital 

canals, small incisive foramina, the lack of internal cheek pouches, and the absence of 

sebaceous flank glands (Carleton and Musser, 1984; Lawrence, 1991).  

The phylogenetic position of the Myospalacinae within the superfamily Muroidea 

has been controversial in that this subfamily has been allied to several different muroid 

subfamilies including Rhizomyinae and Spalacinae (Tullberg, 1899), Spalacinae (Miller 
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and Gidley, 1918; Chaline et al., 1977), Arvicolinae (Kretzoi, 1955), and Cricetinae 

(Gromov and Polyakov, 1977).  Carleton and Musser (1984) considered the 

myospalacines to be primitive cricetids, whereas Lawrence (1991) concluded that they 

were derived from a fossorially adapted lineage basal relative to all muroids.  Although 

the myospalacines have been considered related to the cricetines, their placement as sister 

to Phodopus within the Cricetinae is a novel idea found only in several related studies 

(Michaux and Catzeflis, 2000; Chevret et al., 2001; Michaux et al., 2001). Given the 

amount of difference between Myospalax and cricetine rodents in general, further 

research is certainly warranted before the acceptance of Myospalax as being sister to 

Phodopus, a lineage well within the Cricetinae.  

The subfamilies Spalacinae and Rhizomyinae are subfamilies of muroid rodents 

that also possess a number of morphological and physiological specializations for a 

fossorial or semi-fossorial lifestyle.  Molecular phylogenies constructed using the LCAT 

(Robinson et al., 1997; Michaux and Catzeflis, 2000), vWF (Huchon et al., 1999; 

Michaux et al., 2001), IRBP (DeBry and Sagel, 2001), and 12S rRNA, LCAT and vWF 

combined (Michaux et al., 2001) all show strong support for a separate clade containing 

the subfamilies Spalacinae and Rhizomyinae that resides basal to a monophyletic group 

containing the remaining muroid subfamilies.  As a result, Michaux et al. (2001) 

suggested that the subfamilies Rhizomyinae and Spalacinae be placed in the family 

Spalacidae, while applying the family name Muridae to all remaining subfamilies.  The 

subfamilies Lophiomyinae, Petromyscinae, and Platacanthomyinae were not included in 
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their analysis and no comment was made as to their position.  We follow the distinction 

of two family names, Spalacidae and Muridae, in this paper.   

In previous molecular studies (Michaux and Catzeflis, 2000; Chevret et al., 2001; 

Michaux et al., 2001), individual T-394, identified as Myospalax sp., was used, and this 

specimen can be clearly assigned to the Muridae clade.  Nevertheless, given the unusual 

placement of this individual, additional samples of myospalacines should be examined. 

Nucleotide sequence data from the mitochondrial 12S rRNA and cytochrome b genes are 

available for over 20 individuals of seven species of Myospalax (obtained by KYZ, CQZ, 

and GY; GenBank accession numbers AF326235-AF326252, AF326255-AF326272, 

AF387076-AF387084).  In this paper, we incorporate this new information with existing 

data from T-394 and other subfamilies of Muridae to investigate the placement of the 

Myospalacinae. 

 

Materials and Methods 

Representative GenBank sequences of the complete 12S rRNA gene and complete 

cytochrome b gene were obtained for 36 and 30 species, respectively, and these data 

represent information from 15 subfamilies of muroid rodents (Table 1).  Sequence data 

was available for both genes for only 26 species in 13 subfamilies and these taxa were 

used in the combined analysis. Glis glis, Pedetes capensis, and Jaculus jaculus were 

included as outgroups for the 12S data set.  Glis glis and Zapus trinotatus were used as 

outgroups in the cytochrome b analysis.  Jaculus and Zapus are members of the family 

Dipodidae, the presumed sister-group to the Muridae (Michaux and Catzeflis, 2000; 
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Adkins et al., 2001; DeBry and Sagel, 2001).  In order to use this family as an outgroup 

in combined analyses, these two taxa were used to construct a concatenated sequence.  

Concatenated sequences of ingroup taxa included Steatomys sp. with S. parvus to 

represent the genus Steatomys, and Macrotarsomys ingens with M. bastardi to represent 

the genus Macrotarsomys.  Sequence data for individual T-394 is available in GenBank 

for 12S rRNA, but not for cytochrome b.  Therefore this individual was included in the 

12S rRNA analyses, but not in the cytochrome b and the combined analyses. 

 Sequences for 12S rRNA were initially aligned by eye according to secondary 

structure as indicated by Springer et al. (1995).  Individual stem and loop regions were 

aligned using ClustalX (Thompson et al., 1997) and edited by eye.  Ambiguously aligned 

regions were not included in the final analysis.   

Gap handling is an important part of phylogenetic analyses.  Under a parsimony 

framework, PAUP* (version 4.0b8, Swofford, 1999) allows for gaps to be treated as 

either missing data or as a fifth character state.  Under both of those frameworks, the 

important phylogenetic information of presence or absence of the indel is ignored. A 

numerical character state matrix was generated to indicate the presence or absence of 

insertion / deletion events (Nedbal, et al., 1994).  Totally removing positions with gaps 

results in a loss of potentially valuable phylogenetic information resulting from 

substitution events among taxa without the deletion.  Treating gaps as missing data or as 

a fifth character state when combined with the character state matrix will result in higher 

weight of the indels when compared with all sites without an insertion / deletion event.  A 

weighting scheme of 1/2 for each column in the character state matrix and 1/N, where N 
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= the number of bases involved in the particular indel, for the positions with gaps can 

incorporate both the presence / absence of the indel and substitution information within 

the insertion while keeping the overall weight of the insertion / deletion event 

proportional to the weight of other positions.  

Data for 12S was analyzed using both maximum parsimony and maximum 

likelihood in PAUP*.  A total of 888 sequence characters and 36 numerical characters 

were analyzed under a parsimony framework.  Separate analyses were conducted with 

gaps treated as missing and as a fifth character state both with and without the character 

state matrix.  Positions in the character state matrix and all positions with gaps were 

treated with a weight of one and downweighted as described in the above paragraph.  

Nodal support using bootstrap (1,000 replicates; Felsenstein, 1985) and final results are 

presented using gaps as fifth character states and with the weighting scheme listed above.   

All sites with gaps and the numerical character state matrix were excluded for the 

maximum likelihood analysis leaving a total of 844 characters. Modeltest 3.04 (Posada 

and Crandall, 1998) was used to determine the appropriate likelihood model for this data 

set, and a GTR + I + gamma model was used in the maximum likelihood analysis.  

Bootstrap values (100 replicates) for the likelihood analysis were determined using NNI 

branch swapping to conserve computer time. 

Cytochrome b sequences were aligned by eye.  Maximum likelihood using a 

TVM + I + gamma model as determined by Modeltest 3.04 (Posada and Crandall, 1998) 

and maximum parsimony analyses were performed on the cytochrome b data set alone 

and bootstrap values (1,000 replicates with TBR branch swapping and 100 replicates with 
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NNI branch swapping respectively) were determined.  These data were combined with 

the 12S rRNA data sets for a total evidence analysis.  The partition homogeneity test of 

PAUP* was performed on both the maximum parsimony and maximum likelihood data 

sets and the two genes were not found to be providing conflicting data (1,000 replicates; 

P = 0.434 and P = 0.531 respectively). A total of 2031 sequence characters and 36 

numerical characters were analyzed under a parsimony framework as described above for 

the 12S rRNA data.  A total of 1987 sequence characters were analyzed under a 

maximum likelihood framework.  For the combined data, GTR + I + gamma was chosen 

as the appropriate model using Modeltest 3.04 (Posada and Crandall, 1998) and bootstrap 

values (100 replicates, NNI branch swapping) were calculated to determine nodal 

support. 

 

Results 

 Eleven most parsimonious trees were obtained for the analysis of the 12S rRNA 

data set.  The strict consensus of these trees is shown in figure 1. Tree topology differed 

depending on how gaps were treated.  Those nodes which were not present in all MP 

trees under all gap handling methods are indicated with an asterisk (Fig. 1).  A total of 12 

nodes shown in figure 1 were not present under all gap handling methods.  This 

emphasizes that treatment of gaps can have a considerable effect on tree topology, even 

involving nodes supported by bootstrap values ranging from 56% to 62%. Nodal support 

for the maximum likelihood analysis of the 12S gene is also shown in figure 1.  One most 

parsimonious tree was found for the analysis of cytochrome b alone (Fig. 2).  Three trees 
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(not shown) were obtained from a maximum likelihood search with equal log likelihood 

scores.  Bootstrap values for both the parsimony and likelihood analyses of cytochrome b 

are shown in figure 2.  The maximum likelihood tree for the combined data set is shown 

in figure 3.   A single most parsimonious tree was recovered for the data set combining 

cytochrome b and 12S (tree not shown; tree length = 5188.25, CI = 0.3291, RI = 0.4264).   

Four nodes were not present in all MP trees under all gap handling methods.  Nodal 

support for the combined analyses under both parsimony and likelihood frameworks is 

indicated in figure 3. 

In the 12S analyses (Fig. 1), individual T-394, identified as Myospalax sp., was 

sister to the subfamily Cricetinae.  This placement is roughly consistent with the results 

from previous studies (Michaux and Catzeflis, 2000; Michaux and Catzeflis, 2001; and 

Michaux et al., 2001).  In all analyses (Figs. 1-3), the subfamily Cricetinae was grouped 

within the Muridae clade (bootstrap support from <50% to 99% for the Muridae clade).  

All seven other representatives of the subfamily Myospalacinae formed a monophyletic 

group (bootstrap 79% to 100%; Figs. 1-3) within the Spalacidae clade (bootstrap <50% to 

100%) along with the subfamilies Spalacinae and Rhizomyinae (Figs. 1 and 3). 

The parsimony analysis of the cytochrome b gene is the only analysis that does 

not show nodal support for the separation of the families Muridae and Spalacidae.  

Bootstrap values for the other analyses range from 65% to 99% and from 86% to 100% 

for family Muridae and family Spalacidae respectively.  Rhizomys is found on a long 

branch relative to Nannospalax and Myospalax and is sister to Petromyscus in the 

cytochrome b maximum parsimony tree.  The parsimony analysis for 12S and 
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cytochrome b combined does not show diminished bootstrap support for the two families 

(both families are 99%; Fig. 3) compared to the support for the two families when 12S is 

analyzed alone (both families are 99%; Fig. 1).  Additionally, a Rhizominae / Spalacinae 

clade is more strongly supported in the combined analysis (63%; Fig. 3) than it is in the 

12S analysis (<50%; Fig. 1).  These results suggest that although the two genes appear to 

conflict, there is hidden support for the topology indicated in Fig. 3 in the cytochrome b 

data (Sullivan, 1996). 

Although other conflicts arise among the different analyses, few are supported 

with a bootstrap >50%.  The Sigmodontinae is supported as a monophyletic group in the 

12S analyses (58% and 68%; Fig. 1) and the combined maximum likelihood analysis 

(60%; Fig. 3).  In the cytochrome b maximum likelihood analysis and the combined 

parsimony analysis, however, Akodon is basal to the rest of the Arvicolinae / Cricetinae / 

Sigmodontinae clade (bootstrap 59% and 51% respectively).  Conflict also exists 

concerning the relationships among the myospalacines.  Although Myospalax aspalax 

and M. psilurus form a clade consistently basal to the remaining species, there is conflict 

among the relationships of M. baileyi, M. cansus, M. fontanieri, M. rothschildi, and M. 

rufescens.  The 12S maximum likelihood analysis supports M. rufescens as basal to the 

clade (bootstrap 68%; Fig. 1) while the cytochrome b and combined analyses support the 

topology shown in Figs. 2 and 3. 
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Discussion 

Individual T-394 is clearly not a myospalacine and appears to represent a 

misidentified specimen.  Using the likelihood model parameters, sequence divergence 

between this individual and members of the subfamily Cricetinae ranged from 0.0938 and 

0.1227.  This is comparable to the distance between Mesocricetus and the two species of 

Cricetulus (0.0883 and 0.0991).  In contrast, the sequence divergences between this 

specimen and members of the genus Myospalax range from 0.2941 and 0.3377. Michaux 

and Catzeflis (2000) and Michaux et al. (2001) estimated the divergence time between T-

394 and Phodopus roborowskii at 4.5-6.5 Myr (Michaux and Catzeflis, 2000; Michaux et 

al., 2001).  These results suggest that T-394 is either a different species of Phodopus or 

belongs to a genus of hamster not included in our analysis. Musser and Carleton (1993) 

report two species of Phodopus in Russia, P. campbelli and P. sungorus, as well as 

species in the genera Allocricetulus, Cricetus, and Tscherskia.  Without more data, it is 

not possible to assign T-394 to one of these genera or species.   

Previous phylogenetic conclusions that associate Myospalax with hamsters have 

been based on a single specimen.  Our data suggest that this particular specimen, T-394, 

has been misidentified, indicating the importance of museum vouchers and geographic 

information that can be used to verify assignment of specimens used in a molecular 

phylogenetic study.  In addition, this finding substantiates the need for the use of multiple 

representatives of a major clade, especially in phylogenetic studies that infer relationships 

among higher taxonomic categories.  Often obtaining multiple individuals is very 

difficult for phylogenetically important taxa (such as myospalacines) and we do not 
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suggest that this should preclude their inclusion in phylogenies.  It is important, however, 

that caution be advised in conclusions that are not supported by multiple individuals.  

Based solely on the misidentified individual T-394, myospalacines would appear to 

belong to an entirely different part of the muroid radiation. 

As is often the case with many attempts to reconstruct relationships among 

muroid rodents (Jansa et al., 1999; Michaux and Catzeflis, 2000), our analyses reveal a 

lack of resolution at several nodes, as well as contradictions in the separate and combined 

analyses and when different gap handling approaches are employed.  Despite the 

observed incongruence, several conclusions can be drawn.  First, two subfamilies 

(Spalacinae and Rhizomyinae) in the family Spalacidae appear to be sister to the 

subfamily Myospalacinae (Figs. 1 and 3).  Second, within the family Muridae, 

monophyly of the subfamilies Arvicolinae, Cricetinae (including T-394), Gerbillinae, 

Murinae, and Nesomyinae is supported in all analyses.  The monophyly of the 

subfamilies Acomyinae, Cricetomyinae, Dendromurinae, and Sigmodontinae is poorly 

supported, with the placement of taxa differing among analyses.  Fourth, an arvicoline / 

cricetine / sigmodontine clade is present in all analyses.  This relationship is consistent 

with several previous studies (Robinson et al., 1997; Michaux et al., 2001).  Finally, save 

for the taxonomic position of Myospalacinae, no well-supported conflicts exist between 

this study and Michaux et al. (2001). 

 The recognition of the family Spalacidae containing the genera Myospalax, 

Rhizomys, Tachyoryctes, and Spalax was first proposed by Tullberg (1899).  Cannomys 

(a rhyzomyine similar to Rhizomys) and Nannospalax (a spalacine similar to Spalax) are 
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also clearly a part of this family.  The family Spalacidae contains a diverse group of 

muroids adapted to a fossorial way of life. Myospalacines dig using their forelimbs, while 

the forelimbs of spalacines are much reduced with animals using their protruding upper 

incisors for excavation. Rhizomyines use both their forelimbs and upper incisors.  

Spalacines have an olecranon process that is greatly enlarged (Carleton and Musser, 

1984), suggesting that scratch digging is the plesiomorphic trait.  The protrusion of the 

incisors outside of the mouth when closed and the use of the incisors in digging in both 

rhizomyines and spalacines is additional support for a basal position of the myospalacines 

among the Spalacidae. Tullberg (1899) clearly showed the similarities between the 

Myospalax molar pattern and that of a juvenile Spalax suggesting that the two are derived 

from a common ancestor. The dental morphology of the myospalacines is clearly not 

derived from a cricetine or arvicoline cusp pattern as has been suggested (Gromov and 

Polyakov, 1977).  To the contrary, it is probably derived from a primitive muroid 

condition.  

The family Spalacidae can be identified by the presence of several characteristics 

including a reduction or absence of external eyes, reduced pinnae, stocky body, short tail 

(< 50% head and body length), broad rostrum, triangular-shaped braincase, infraorbital 

canal ovoid shape and does not extend ventrally to the roof of the palate, zygomatic plate 

absent or much reduced, nasolacrimal canal inside infraorbital canal, incisive foramina 

small to medium-sized, extensive neck musculature and prominent points of attachment 

on the occipitum, minimal reduction in M
3
 relative to M

1
 and M

2
, an equal number of 



 151 

cusps on M
2
 as compared to M

3
, and a distinct orientation of the manubrium of the 

malleus bone (Tullberg, 1899; Carleton and Musser, 1984).  

In contrast, the family Muridae clade has few diagnostic characters.  In general, 

members of this family display two characteristics, infraorbital canal V-shaped and 

extends to the roof of the mouth and the incisive foramina medium to large sized.  

Although lacking in morphological synapomorphies, a monophyletic Muridae has been 

supported by numerous molecular studies (Robinson et al., 1997; Huchon et al., 1999; 

Michaux and Catzeflis, 2000; DeBry and Sagel, 2001; Michaux et al., 2001).  Although 

our data are congruent with a monophyletic Muridae, we did not include two murid 

subfamilies (Lophiomyinae and Platacanthomyinae) recognized by Musser and Carleton 

(1993).  The single species found in the Lophiomyinae also has a V-shaped infraorbital 

canal that extends to the palate, large incisive foramina that extend to the first molar, a 

zygomatic plate, and a molar cusp pattern that closely resembles the mystromyines or 

cricetines suggesting that Lophiomys is probably a member of the Muridae clade as well. 

The subfamily Platacanthomyinae, however, has small incisive foramina, a 

distinct infraorbital canal, a cusp pattern unlike any other muroid, and a fossil record that 

extends to the Early Miocene (Carleton and Musser, 1984).  Carleton and Musser (1984) 

considered the platacanthomyines to be muroids and not glirids, but the basis for their 

suggestion emphasizes a lack of glirid apomorphies instead of characters uniting this 

group with any muroid subfamilies.  The absence of characters uniting this subfamily 

with any other representatives in either the Spalacidae or Muridae suggest that it may be 
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either basal to the family Muridae or basal to the superfamily Muroidea and it is probably 

not closely related to any extant muroid lineage. 

The recognition of two separate families of muroids is in order. The family 

Spalacidae includes the subfamilies Myospalacinae, Rhizomyinae, and Spalacinae 

whereas the family Muridae contains the subfamilies Acomyinae, Arvicolinae, 

Calomyscinae, Cricetinae, Cricetomyinae, Dendromurinae, Gerbillinae, Lophiomyinae 

(based on simple morphological observations), Murinae, Mystromyinae, Nesomyinae, 

Petromyscinae, and Sigmodontinae.  Additional study is needed to determine the 

appropriate position of the Platacanthomyinae. 

 

 

Acknowledgments 

RWN acknowledges the help of Suzanne B. McLaren and observation of material 

at the Carnegie Museum of Natural History.  Specimens were also observed at the Texas 

Cooperative Wildlife Collection at Texas A&M University.  The photographs from Phil 

Myer's "Family Muridae" page at http://animaldiversity.ummz.umich.edu were also an 

important supplement.  Diane Rowe provided assistance with the alignment of 12S 

rRNA.  A special thanks goes to Jan Decher for vital aid in translation of Tullberg's 

(1899) original work. This work was supported by grants from the 211 Program of the 

Ministry of Education, PRC, to KYZ.  Coauthors for this chapter are K. Zhou, C. Zhou, 

G. Yang, C. W. Kilpatrick, and R. L. Honeycutt. 

 



 153 

Literature cited 

Adkins, R., Gelke, E. L., Rowe, D., and Honeycutt, R., 2001. Molecular phylogeny and  

divergence time estimates for major rodent groups: evidence from multiple genes.  

Mol. Biol. Evol., 18, 777-791. 

 

Carleton, M. D. and Musser, G. G., 1984. Muroid rodents, in: Anderson, S. and Jones, J.  

K. (Eds.), Orders and Families of Recent Mammals of the World, John Wiley and 

Sons, New York, pp. 289-379.  

 

Chaline, J., Mein, P., and Petter, F., 1977. Les grandes lignes d’une classification  

evolutive des Muroidea. Mammalia, 41, 245-252. 

 

Chevret, P., Catzeflis, F., and Michaux, J. R., 2001. "Acomyinae": new molecular  

evidences for a muroid taxon (Rodentia: Muridae), in: Denys, C. Granjon, L., and 

Poulet, A. (Eds.), African Small Mammals, IRD Editions, Paris, pp. 114-125. 

 

DeBry, R. W. and, Sagel, R. M., 2001. Phylogeny of Rodentia (Mammalia) inferred from  

the nuclear-encoded gene IRBP. Mol. Phylogenet. Evol., 19, 290-301. 

 

Felsenstein, J., 1985. Confidence limits of phylogeny: An approach using bootstrap.  

Evol., 39, 783-791. 

 

Furano, A. V., Hayward, B. E., Chevret, P., Catzeflis, F., and Usdin, K., 1994.  

Amplification of the ancient murine Lx family of long interspersed repeated DNA  

during the murine radiation. J. Mol. Evol., 38, 18-27. 

 

Gromov, I. M. and Polyakov, I. Ya., 1977. Fauna of the USSR, vol.3, pt. 8 Mammals.  

Voles (Microtinae). Nauka, Moscow-Leningrad, 504 pp.  

 

Huchon, D., Catzeflis, F. M., and Douzery, E. J. P., 1999. Molecular evolution of the  

nuclear von Willebrand factor gene in mammals and the phylogeny of rodents.  

Mol. Biol. Evol., 16, 577-589. 

 

Jansa, S. A., Goodman, S. M., and Tucker, P. K., 1999. Molecular phylogeny and  

biogeography of the native rodents of Madagascar (Muridae: Nesomyinae): a test  

of the single origin hypothesis. Cladistics, 15, 253-270. 

 

Kretzoi, M., 1955. Dolomys and Ondatra. Acta Geol. Hung. 3, 347-355.  

 

Lawrence, M. A., 1991. A fossil Myospalax cranium (Rodentis: Muridae) from Shanxi,  

China, with observations on zokor relationships. Bull. Am. Mus. Nat. Hist., 206,  

261-286. 

 



 154 

Michaux, J., and Catzeflis, F., 2000. The bushlike radiation of muroid rodents is  

exemplified by the molecular phylogeny of the LCAT nuclear gene. Mol.  

Phylogenet. Evol., 17, 280-293. 

 

Michaux, J., Reyes, A., and Catzeflis, F., 2001. Evolutionary history of the most speciose 

mammals: molecular phylogeny of muroid rodents. Mol. Biol. Evol., 18, 2017  

2031. 

 

Miller, G. S., and Gidley, J. W., 1918. Synopsis of the supergeneric groups of rodents.  

Wash. Acad. Sci. J., 8, 431-448. 

 

Musser, G. G., and Carleton, M. D., 1993. Family Muridae, in: Wilson, D. E. and Reeder,  

D. M.  (Eds.), Mammal Species of the World: a taxonomic and geographic  

reference, (D. E. 

 

Wilson and D. M. Reeder Eds.), Smithsonian Institution Press, Washington, pp 501-755. 

 

Nedbal, M. A., Allard, M. W., and Honeycutt, R. L., 1994. Molecular systematics of 

hystricognath rodents: Evidence from the mitochondrial 12S rRNA gene. Mol. 

Phylogenet. Evol., 3, 206-220. 

 

Posada, D. and Crandall, K. A., 1998. Modeltest: testing the model of DNA substitution. 

Bioinformatics, 14, 817-818. 

 

Robinson, M., Catzeflis, F., Briolay, J. and Mouchiroud, D., 1997. Molecular phylogeny  

of rodents, with special emphasis on murids: evidence from nuclear gene LCAT.  

Mol. Phylogenet. Evol., 8, 423-434. 

 

Springer, M. S., Hollar, L. J., and Burk, A., 1995. Compensatory substitutions and the  

evolution of the mitochondrial 12S rRNA gene in mammals. Mol. Biol. Evol., 12, 

1138-1150. Sullivan, J., 1996. Combining data with different distributions of 

among-site rate variation. Syst. Biol., 45, 375-380. 

 

Swofford, D. L., 1999. PAUP*. Phylogenetic analysis using parsimony (*and other  

methods). Version 4. Sinauer, Sunderland, Mass. 

 

Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F., and Higgins, D. G., 1997.  

The ClustalX windows interface: flexible strategies for multiple sequence  

alignment aided by quality analysis tools. Nucl. Acid. R., 24, 4673-4680. 

 

Tullberg, T., 1899. Ueber das System der Nagetiere: eine phylogenetische Studie. Nova  

Acta Reg. Soc. Sci. Upsala 3, 18, 1-514.   

 

 



 155 

Usdin, K, Chevret, P., Catzeflis, F. M., Verona, R., and Furano, A. V., 1995. L1 (LINE- 

1) retrotransposable elements provide a "fossil" record of the phylogenetic history  

of murid rodents. Mol. Biol. Evol., 12, 73-82. 

 



 156 

Figure Captions 

 

Figure 1. Strict consensus of eleven most parsimonious trees for 12S rRNA (tree length 

= 1782, CI = 0. 3386, RI = 0.5528).  Values above the lines represent bootstrap values 

>50% (1,000 replicates, TBR branch swapping).  Nodes not present in MP analyses 

under all gap handling schemes (see text) are indicated by an asterisk.  Values below the 

lines represent bootstrap values >50% (100 replicates, NNI branch swapping) for the 

maximum likelihood analysis under a GTR + I + gamma model of evolution.  Maximum 

likelihood bootstrap values >50% not indicated on the tree are as follows: Myospalax 

baileyi / M. cansus / M. fontanieri / M. rothschildi = 68% and Acomys / Deomys / 

Lophuromys = 62%. 

 

Figure 2.  Maximum parsimony tree for cytochrome b (tree length = 4252, CI = 0.263, 

RI = 0.360).  Values above the lines represent bootstrap values >50% (1,000 replicates, 

TBR branch swapping).  Values below the lines represent bootstrap values >50% (100 

replicates, NNI branch swapping) for the maximum likelihood analysis under a TVM + I 

+ gamma model of evolution.  Maximum likelihood bootstrap values >50% not indicated 

on the tree are as follows: Myospalacinae / Rhizomyinae / Spalacinae (family Spalacidae) 

= 86%; Acomyinae / Arvicolinae / Calomyscinae / Cricetinae / Cricetomyinae / 

Dendromurinae / Gerbillinae / Murinae / Mystromyinae / Nesomyinae / Petromyscinae / 

Sigmodontinae (family Muridae) = 65%; Acomys / Lophuromys (Acomyinae) = 86%; 

Peromyscus / Arvicolinae / Cricetinae = 59%; Macrotarsomys / Nesomys (Nesomyinae) = 

58%; and Mystromys / Petromyscus = 51%.  Subfamilies are indicated in Table 1.  
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Figure 3. Maximum likelihood tree for combined 12S rRNA and cytochrome b obtained 

under a GTR + I + gamma model of evolution. Values above the lines represent bootstrap 

values >50% (100 replicates, NNI branch swapping).  Values below the line represent 

bootstrap values >50% (1,000 replicates, TBR branch swapping) under a parsimony 

framework. The maximum parsimony analysis yielded a bootstrap value of 51% for a 

clade consisting of Peromyscus / Clethrionomys / Volemys / Mesocricetus / Cricetulus 

griseus / C. migratorius that is not indicated on the tree. 
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Table 1.  GenBank accession numbers for taxa used in this study. 

 

Species Subfamily 12S rRNA Cytochrome b 

Tissue T-394 ? AJ250355 - 

Myospalax aspalax Myospalacinae AF326252 AF326272 

Myospalax baileyi Myospalacinae AF387080 AF387084 

Myospalax cansus Myospalacinae AF326243 AF326263 

Myospalax fontanierii Myospalacinae AF326245 AF326266 

Myospalax psilurus Myospalacinae AF326250 AF326271 

Myospalax rothschild Myospalacinae AF326247 AF326268 

Myospalax rufescens Myospalacinae AF326248 AF326269 

Acomys cahirinus Acomyinae X84387 AJ233953 

Deomys ferrugineus Acomyinae AJ250350 - 

Lophuromys sikapusi Acomyinae AJ250349 AJ012023 

Uranomys ruddi Acomyinae X84388 - 

Chionomys nivalis Arvicolinae X99464 - 

Clethrionomys glareolus Arvicolinae AJ250356 AF318585 

Volemys kikuchii Arvicolinae AF348082 AF348082 

Calomyscus baluchi Calomyscinae - AY288509 

Cricetulus griseus Cricetinae AY012116 AB033693 

Cricetulus migratorius Cricetinae X84389 AY288508 

Mesocricetus auratus Cricetinae X84390 AF119265 

Phodopus campbelli Cricetinae - AF119278 
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Cricetomys gambianus Cricetomyinae X99461 AF160614 

Saccostomus sp. Cricetomyinae AJ250353 - 

Dendromus mystacalis Dendromurinae AJ250352 - 

Steatomys parvus Dendromurinae - AF160599 

Steatomys sp. Dendromurinae AJ250351 - 

Gerbillus nigeriae Gerbillinae X84381 AF141226 

Tatera kempi Gerbillinae X84391 AJ012024 

Leopoldamys edwarsi Murinae X84386 - 

Mus musculus Murinae AB042432 AB042432 

Niviventer cremoriventer Murinae AJ005779 - 

Rattus norvegicus Murinae AY012115 AB033713 

Mystromys albicaudatus Mystromyinae AJ250354 AF160607 

Macrotarsomys ingens Nesomyinae X99460 - 

Macrotarsomys bastardi Nesomyinae - AF160579 

Nesomys rufus Nesomyinae X99462 AF160592 

Petromyscus collinus Petromyscinae - AF160600 

Rhizomys pruinosus Rhizomyinae AJ250358 - 

Rhizomys sinensis Rhizomyinae AF326254 AF326274 

Akodon jelskii Sigmodontinae AJ005782 M35714 

Peromyscus leucopus Sigmodontinae X99463 AF131926 

Nannospalax ehrenbergi Spalacinae AJ250357 AF155871 

Jaculus jaculus Dipodidae U67296 - 
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Zapus trinotatus Dipodidae - AF119262 

Glis glis Gliridae NC_001892 NC_001892 

Pedetes capensis Pedetidae AY012113 - 
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Chapter 5 

Revisiting the Mus – Rattus divergence in light of advances in murid and 

basal rodent phylogenetics 

 

Abstract -  

The murine genera Mus and Rattus are thought to have diverged about 12 million years 

ago (Ma) based on the traditional interpretation of a series of fossils from the Siwaliks of 

Pakistan.  The molecular-based discovery that the spiny mice, genus Acomys, and their 

relatives are more related to the gerbils than to the Murinae casts doubt on the use of the 

12 Ma date as a Mus – Rattus divergence.  Acomys possesses the same murine tooth 

morphology as the true Murinae (such as Mus and Rattus) and had been considered to be 

a close relative of Mus.  Equally parsimonious hypotheses can be proposed which place 

Progonomys as basal to the family Muridae (including Acomys, gerbils, Mus, Rattus, and 

their relatives), basal to the subfamily Murinae (including Mus, Rattus and their 

relatives), or at the Mus - Rattus divergence to the exclusion of more basal Murinae.  We 

here test among the potential positions using two datasets, one that employs a series of 

well-corroborated fossils that are only distantly related to the Muridae and another that 

involves a dense taxon sampling within the Muridae, but with a potentially less reliable 

set of fossils.  Our results indicate that the family Muridae probably diverged earlier than 

the dates suggested by the Siwalik fossils.  Mus and Rattus, however, appear to have 

diverged at about the same time or just prior to the 12 Ma date suggested by the 

appearance of Progonomys.  We also cannot reject the hypothesis that the 12 Ma date 
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represents the oldest split in the Murinae instead of the more derived Mus – Rattus date. 

In addition to testing divergence dates, we recover interesting phylogenetic results 

suggesting that Taterillus is more closely related to members of the tribe Gerbillini than 

to other genera that have traditionally been treated as Taterillini.  Additionally, our results 

suggest that the genus Gerbilliscus is paraphyletic as Gerbillurus is more related to 

Gerbilliscus kempi than either is to G. robustus. 

 

INTRODUCTION 

The family Muridae is perhaps the single most important family of mammals in 

laboratory science.  Several genera of murids are used in experimental research such as 

Acomys, Mastomys, Meriones, Mus, Psammomys, and Rattus (Catzeflis et al., 1992; 

Walder et al., 2002).  The genera Mus and Rattus specifically are of vital importance to 

numerous fields of biological sciences.  Both have been the subjects of genome projects 

(Bouchie, 1999; Chinwalla et al., 2002) and the information gained from study of these 

two taxa has led to advancement in a vast array of biology related fields.  Much of this 

research has had broader application to mammals as a whole (Bradley, 2002).  Few 

advances in medicine and human biology have been made that did not involve 

preliminary or parallel study in a mouse or rat system. 

The classic view of the origin of Mus and Rattus is that they are part of two 

separate radiations that arose from the earliest split of the subfamily Murinae.  Jacobs 

(1978) and other paleontological studies (Jaeger et al., 1986; Flynn et al., 1990; Jacobs 

and Downs, 1994; Jacobs and Flynn, 2005) have estimated the Mus - Rattus divergence 



 166 

date as having occurred 10-14 million years ago (Ma) based on the temporally well-

defined Siwalik fossil series from Pakistan (Fig. 1a).  Jacobs and Downs (1994) describe 

the transition of molar characters from the plesiomorphic condition found in Potwarmus 

14.4 Ma through transitionary intermediates to the first appearance of Antemus, the 

presumed ancestor of all murines, 14.0 Ma (Flynn et al., 1990; Jacobs and Flynn, 2005).  

The earliest species in the genus Progonomys, the first fully modern murine, appeared by 

12.3 Ma (Jacobs and Flynn, 2005).  Later species of Progonomys, thought to be on the 

line leading to Mus, appeared at 10.4 Ma, and Karnimata, the presumed ancestor of 

Rattus, appeared by 11.1 Ma (Jacobs and Flynn, 2005).  Benton and Donaghue (2007) 

define the hard minimum value of this divergence time to be represented by the first 

appearance of Karnimata 11.1 Ma, and the soft maximum to be at the first appearance of 

modern murines, early forms of Progonomys, at 12.3 Ma.  

Because of the quality of this fossil series and the importance of these species, the 

12 Ma Mus - Rattus divergence date has become one of the most widely used calibration 

points for molecular clocks and studies of molecular evolution (Catzeflis et al., 1987; Li 

et al., 1987; Furano et al., 1994; Nedbal et al., 1994; Adkins et al., 1996; Agulnik and 

Silver, 1996; Dubois et al., 1996; Edwards et al., 1997; Robinson et al., 1997; Huchon et 

al., 2000; Martin et al., 2000; Michaux and Catzeflis, 2000; Suzuki et al., 2000; Barome 

et al., 2001a, 2001b; Chevret et al., 2001; Ducroz et al., 2001; Fadda et al., 2001; 

Michaux et al., 2001; Weinreich, 2001; Huchon et al., 2002; Michaux et al., 2002; Smith 

and Eyre-Walker, 2002).   
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Numerous studies have used other calibration points to estimate the time of 

divergence between Mus and Rattus with estimates ranging from 11.5-86.9 Ma 

(O’hUigin and Li, 1992; Janke et al., 1994; Frye and Hedges, 1995; Kumar and Hedges, 

1998; Messer et al., 1998; Cao et al., 2000; Huchon et al., 2000; Michaux and Catzeflis, 

2000; Yoder and Yang, 2000; Adkins et al., 2001; Ducroz et al., 2001; Michaux et al., 

2001; Nei et al., 2001; Nikaido et al., 2001; Michaux et al., 2002; Montelgard et al., 

2002; Nei and Glazko, 2002; Adkins et al., 2003; Springer et al., 2003; Bininda-Emonds 

et al., 2007).  The vast majority of these studies estimate this divergence to be well above 

11 Ma. 

Recent molecular systematic studies of muroids have shed additional doubt on the 

current interpretation of the fossil record.  A series of DNA-DNA hybridization studies 

(Chevret et al., 1993; Denys et al., 1995), DNA sequencing studies (Agulnik and Silver, 

1996; Chevret et al., 2001; Michaux et al., 2001; Jansa and Weksler, 2004; Steppan et al., 

2004), and other molecular studies (Furano et al., 1994; Usdin et al., 1995) have 

demonstrated that the spiny mouse, Acomys, is more closely related to the gerbils than to 

the Murinae (Fig. 1b).  This led researchers (Michaux et al., 2001; Steppan et al., 2004; 

Musser and Carleton, 2005) to recognize a new subfamily, Deomyinae, which contains 

Acomys and related genera.  We use the taxonomy of Musser and Carleton (2005) here, 

including their informal use of divisions of genera, except where specifically noted. 

The molar morphology of Acomys is extremely similar to Mus.  Jacobs (1978) 

considered the genus Acomys to be sister to Mus and suggested that both were derived 

from Progonomys debruijni (Fig. 1a).  Under that interpretation, the divergence time 
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between Acomys and Mus should be about 8.5 Ma while Acomys and Rattus would have 

diverged when Mus and Rattus diverged 11.1-12.3 Ma.  Subsequent morphological 

studies have also supported the affinity of Acomys with the murines (Denys et al., 1992; 

Denys et al., 1995; Xu et al., 1996) and none have suggested a reinterpretation of the 

Siwalik fossil series. 

If only extant taxa are considered, multiple equally parsimonious explanations 

exist for the extreme similarity seen between Acomys and Mus.  The Mus-like molar 

could be the plesiomorphic state for the family Muridae and could have evolved into the 

derived tooth morphology seen in gerbils.  Under this scenario, a Progonomys – like 

ancestor would have given rise to all taxa in this clade (Fig. 1b).  Alternatively, the Mus-

like molar may have evolved independently in both the murines and deomyines.  Antemus 

and early Progonomys could be the ancestors to the Murinae.  Even under this scenario, 

the use of Karnimata and later species of Progonomys to represent the ancestors of Rattus 

and Mus respectively may be problematic, as recent molecular results have suggested that 

the split between Mus and Rattus does not represent the earliest divergence among the 

Murinae. Instead a clade of Philippine endemic rodents including Phloeomys and 

Batomys represents the most basal lineage of murines (Jansa and Weksler, 2004; Steppan 

et al., 2004; Steppan et al., 2005; Jansa et al., 2006; Rowe et al., 2008).  Steppan et al. 

(2004) and Jansa et al. (2006) chose to use the Siwalik fossil series as a calibration point 

to represent the split between this Philippine clade and the remaining murines.  The 11.1-

12.3 Ma date may therefore apply to a Deomyinae – Murinae split, a Phloeomys – Rattus 

split, or a Mus – Rattus split (Fig. 1b). 
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The ideal scenario for evaluating among these three hypotheses would be to use a 

series of well-established and highly corroborated fossil calibration points from within 

the Muridae that do not involve the controversial taxa and characters.  The Muridae is the 

largest family of rodents with over 730 species in 150 genera (Carleton and Musser, 

2005) found in three major subfamilies, with as many as three additional small 

subfamilies whose inclusion (Leimacomyinae and Lophiomyinae) or rank (Otomyinae) is 

controversial (Jansa and Weksler, 2004; Carleton and Musser, 2005).  This family has 

received only limited attention in molecular studies, and many phylogenetic relationships 

remain uncertain.  There are a limited number of well-dated murid fossils whose 

phylogenetic position is relatively uncontroversial.  As a result, we have chosen to 

evaluate these dates using two datasets.  The first employs a series of well-corroborated 

fossils representing divergences of rodents in the Eocene.  These divergences are much 

older than the splits in question in the Muridae, but represent a high quality fossil record.  

The second dataset employs a more limited set of calibration points, but involves dense 

taxon sampling within the Muridae. 

 

MATERIALS AND METHODS 

Basal rodent dataset 

We added previously published sequences for the brown rat, Rattus norvegicus, to 

the dataset of basal rodents used by Norris et al. (chapter 2).  GenBank accession 

numbers are shown in Table 1.  Norris et al. (chapter 2) were able to verify the reliability 

of 8 fossil calibration points representing evolutionary splits of rodents that took place in 
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the Eocene.  Two analyses were performed in BEAST (version 1.4; Drummond and 

Rambaut, 2007) as described in Norris et al. (chapter 2) with the addition of sequences 

for Rattus.  Tree topology was constrained to match that used by Norris et al. (Fig. 1 in 

chapter 2).  GTR + I + ! was used as the model of evolution as determined by Modeltest 

3.04 (Posada and Crandall, 1998), and data were partitioned by gene and the program 

optimized the model parameters by gene.  The uncorrelated lognormal relaxed molecular 

clock model was used and the mean substitution rate was not fixed. Exponential priors 

were used for 8 rodent calibrations such that the “zero offset” parameter was equal to the 

minimum divergence date estimate based on fossils.  The upper 95% confidence interval 

was set to be equal to the size of the range + 12.3 million years, a value estimated by 

Norris et al. (chapter 2) to represent the upper 95% confidence interval on gap size of the 

rodent fossil record in the Eocene.  Universal priors were set in outgroup taxa to range 

between fossil estimates and molecular estimates. Fossil calibration settings are shown in 

Table 2.  With the exception of the Rattus sequences, these setting are identical to Norris 

et al. (chapter 2). The program was run for 5,000,000 generations, sampled every 1,000 

generations with a burnin of 1,000. 

 

Muridae dataset 

 Steppan et al. (2005) and Rowe et al. (2008) assessed relationships among 

members of the subfamily Murinae, particularly Asian and Australasian taxa, using 

several genes.  We here expand their taxon sampling to: 1.) include a wider diversity 

within other murid subfamilies, Gerbillinae and Deomyinae, 2.) expand taxon sampling 
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of underrepresented clades of murines, such as African taxa, 3.) break up long branches, 

and 4.) allow more fossil calibration points within murids to be included.  A 1336 bp 

segment of the mitochondrial genome was used to evaluate relationships and estimate 

divergence times among murids.  This region contains all or part of the protein coding 

genes COX1, COX2, and ATPase 8 as well as three transfer RNAs: tRNA-Ser, tRNA-

Asp, and tRNA-Lys.  GenBank accession numbers for previously published samples are 

shown in Table 3. 

 This region of the mitochondrial genome was sequenced in whole or part for 34 

individual murid rodents (Table 4 and Table 5).  Tissues had been stored in either ethanol 

or lysis buffer and are cataloged at the University of Vermont or the Carnegie Museum of 

Natural History.  Several were the product of recent collecting trips to Guinea and Sierra 

Leone (Norris, 2006; Decher et al., 2007; Decher et al., 2008.).  DNA was extracted using 

the DNEasy QIAGEN kit.  The primers and PCR protocols of Steppan et al. (2005) were 

used with the addition of multiple primers modified from their published primers.  The 

following additional primers were used: 7101Fmod: 

AYAAAYTTYCAYGAYCAYACNCTNATAAT (modified from 7101F), 7481Rmod: 

GCTCATGAGTGNAGNACNTCTTC (modified from 7481R), 7927Rmod: 

GAGGNRAATARRTTTTCGTTCATTT (modified from 7927R). PCR was performed 

using Illustra puReTaq Ready-To Go PCR Beads.  Double stranded PCR products were 

purified using PEG precipitation (Maniatis et al. 1982). Sequencing was performed on an 

ABI 3130x1 Genetic Analyzer using dye terminator (ABI PRISM) cycle sequencing.  

The same primers were used for cycle sequencing as are listed above for PCR 
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Sequences were aligned by eye in MacClade (Maddison and Maddison, 1989).  

Because of the potential for confounding mutation rate with substitution rate (Ho and 

Larson, 2006) and the separate settings required to correct for this problem in BEAST, 

intraspecific variation was eliminated by limiting the phylogenetic analyses to a single 

individual in each species.  Excluded samples are listed in Table 5.  Two exceptions were 

made.  Two clades identified as Gerbilliscus kempi exhibited a level of sequence 

divergence comparable to other between species splits.  Considering the potential that a 

less common West African Gerbilliscus species may have been mistaken for G. kempi we 

included both.  The same degree of high sequence divergence was also true for two 

clades of Gerbillus gerbillus.  Two individuals were included from each of these species.  

The sample identified in GenBank as Gerbillurus vallianus [sic] (accession # EU349708) 

exhibited an identical haplotype to one of the Gerbillus gerbillus samples and was highly 

divergent from other Gerbillurus, including Gerbillurus vallinus, and was also excluded 

from our analysis.  The final dataset contained 86 taxa including 4 outgroup taxa (Table 3 

and Table 4). 

 A maximum likelihood tree was constructed using GARLi (version 0.951; 

Zwickl, 2006).  Nodal support was determined using 100 bootstrap replicates in GARLi.  

These results are shown in Figure 2.  Nodes supported by >75% bootstrap percentage 

were constrained in all subsequent BEAST analyses. Nodal support was also evaluated 

using MP bootstrapping in PAUP* (version 4.0b8, Swofford, 2002).  The following 

additional nodes were constrained to be monophyletic due to their consistently strong 

support in other analyses that involve multiple genetic markers and slower evolving 
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markers: Cricetidae (Michaux et al., 2001; Jansa and Weksler, 2004; Steppan et al., 

2004), Deomyinae + Gerbillinae (Michaux et al., 2001; Jansa and Weksler, 2004; 

Steppan et al., 2004), Deomyinae (Michaux et al., 2001; Jansa and Weksler, 2004; 

Steppan et al., 2004), Murinae (Michaux et al., 2001; Jansa and Weksler, 2004; Steppan 

et al., 2004), and all murines except the Phloeomys Division (Jansa and Weksler, 2004; 

Steppan et al., 2004; 2005; Rowe et al., 2008).  These basal relationships are well 

established and our results do not exhibit well-supported conflict with these earlier 

studies.  Additionally, because we have added no additional taxa sampling to these 

groups and because of the use of multiple genes in prior studies, we imposed monophyly 

on the following well-supported clades of Phillippine and Sahul murines found in 

Steppan et al. (2005) and Rowe et al. (2008): a Sahul + Chrotomys Division clade, a 

Chrotomys Division clade (Apomys + Rhynchomys), a Sahul clade (Hydromys Division + 

Lorentzimys Division + Pogonomys Division + Pseudomys Division + Uromys Division 

+ Xeromys Division), a Uromys Division clade (Melomys + Paramelomys + Uromys), a 

Conilurus + Mesembriomys + Leporillus clade, a Leptomys + Parahydromys clade, a 

Lorentzimys + Anisomys + Chiruromys + Hyomys + Macrururomys + Pogonomys clade, 

and an Abeleomelomys + Mallomys + Mammelomys clade.  Our inclusion of additional 

taxa to other groups of murines prevented us from constraining any other nodes 

regardless of support in these prior studies.  The Markov chain in the BEAST analyses 

was therefore permitted to sample trees that not only varied in substitution rate and model 

parameter, but in tree topology at these unconstrained nodes. 
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We initially performed a BEAST analysis in the absence of fossil constraints in 

order to generate an ultrametric tree where branch lengths represent relative time instead 

of absolute times. The age of the root was set with a prior of normal distribution where 

mean = 100.0 and standard deviation = 0.01 in order to yield results that round to 100.0 

within two decimal places. GTR + I + ! was used as the model of evolution and a Yule 

process of speciation (as recommended in the BEAST manual for interspecific taxa).  The 

uncorrelated exponential relaxed molecular clock model was used and the mean 

substitution rate was not fixed.  An exponential distribution of substitution rates is 

probably a more realistic shape for this dataset, because of the potential that many of the 

divergence times may have taken place as recently as one million years ago (Ho et al., 

2007).  A repeat of the analysis using a lognormal distribution yielded significantly worse 

likelihood scores.  The program was run for 5,000,000 generations, sampled every 1,000 

generations with a burnin of 1,000. 

First appearance dates for many lineages were estimated based on survey of the 

literature and are listed in Table 6.  The Siwalik series of fossils involving Antemus, 

Progonomys, and Karnimata was excluded because our goal was to evaluate their 

position.  Tong and Jaeger (1993) suggest that an early myocricetontine dated at 16 Ma 

represents the date of divergence between the Gerbillinae and the other Muridae.  If valid, 

this fossil provides strong evidence against the interpretation of the Antemus – 

Progonomys series at the base of the Muridae.  We have excluded this potential 

calibration point from our analyses, because of its direct involvement in the hypothesis 

with the goal of evaluating it as well.  Additionally, we treated the first appearance of 
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Rattus in the fossil record at 3 Ma (Zheng, 1993; Chaimanee et al., 1996; Benton and 

Donoghue, 2007) as the first appearance of the Rattus Division instead of the genus s.s.  

This group contains a number of specialized genera that have frequently been included in 

the genus Rattus and the current definition of the genus is still potentially p=araphyletic 

(Musser and Carleton, 2005). 

 Absolute dates of divergence times within the Muridae based on fossil results 

were compared to relative branch lengths obtained from the BEAST analysis using linear 

regression (Conroy and van Tuinen, 2003) in the statistical package JMP (version 5.0.1.2, 

SAS Institute Inc.).  The regression was restricted to calibration points within the 

Muridae, because of concerns that substitution rates vary when recent divergences are 

included (Ho and Larson, 2006) and that saturation of molecular data or accelerated 

evolutionary rates during periods of rapid diversification (Norris et al. chapter 2) may 

influence the results across long time scales.  Additionally, tree hierarchical problems 

(Norris et al., chapter 2) ensure that any regression involving old fossils and basal 

branches combined with very recent evolutionary events and tip branches are likely to 

generate a significant outcome regardless of the validity of fossils.  This set of murid 

fossils involves ages less than 10 Ma and includes nesting of clades at only a single level. 

 For analyses involving multiple fossil calibrations, Near et al. (2005) suggested an 

iterative approach to removing successive inconsistent calibration points until the 

remaining calibrations were in agreement.  Marshall (2008) argued that their approach 

was flawed because it did not distinguish between calibration points that are too old 

relative to the remaining fossils and those that are too young.  Fossil calibrations 
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represent minimum estimates for divergence times and, unless an extinct taxon has been 

misplaced phylogenetically, these calibrations can only be too young.  He modified the 

approach of Near et al. (2005) so that only fossils that are too young are removed in 

successive iterations.  We would argue that there are two major problems with Marshall’s 

(2008) approach.  First, although his approach identifies and removes extremely old 

fossils that represent statistical outliers, it essentially calibrates the tree using the single 

fossil that produces the oldest estimate.  Such an approach assumes that the accuracy of 

the molecular clock analysis is absolute and that all error derives from the fossils.  The 

second problem stems from the potential for periods of explosive diversification, 

saturated data, or the appearance of accelerated evolution at the tip of the tree to influence 

the outcome.  His approach is mathematically equivalent to forcing the regression 

analysis to pass through the point of origin.  This restriction may be biologically 

unrealistic due to the problems noted above (see Norris et al., chapter 2 for further 

discussion). 

 We restricted the fossil calibration points to a more realistic dataset by removing 

inconsistent fossils that were too young using successive regression analyses.  A simple 

regression was performed using JMP, and 95% C.I. around the resulting line was 

calculated.  All fossil calibrations that fell outside of the 95% C.I. and were too young 

were removed.  The regression was repeated and more fossils removed until all fossil 

calibration points fell within the 95% C.I. The six remaining murid fossil calibrations 

were the first appearance of Desmodillus at 3.5 Ma, Apodemus at 9.7 Ma, Rhabdomys at 
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3.5 Ma, Leopoldamys at 1.81 Ma, Zelotomys at 1.81 Ma, and Arvicanthis and 

Lemniscomys (sister taxa known from the same formation) at 2.95 Ma. 

 A final BEAST analysis was performed using absolute dates obtained from the 

fossils listed as “used” in Table 6.  The root of the tree was fixed at 45 Ma based on the 

well-corroborated Dipodidae – Muroidea divergence (Norris et al., chapter 2).  The six 

murid fossils identified by the successive regressions were also fixed (normal distribution 

with a standard deviation of 0.01).  We excluded the Spalacidae – Eumuroida calibration 

point because it fell outside the 95% C.I. when a regression was performed that included 

the two basal calibrations and the 6 murid calibrations. All other input parameters are as 

described above for the prior BEAST analysis.   

 

RESULTS 

Basal rodent dataset 

 The results of the BEAST analysis for the basal rodent dataset are shown in 

Figure 2.  Estimates for nodes are consistent with the results of Norris et al. (chapter 2).  

The best tree generated in the analysis yielded a divergence time for Mus – Rattus of 16.0 

Ma (Table 7).  The 95% confidence interval ranges from 13.8 Ma to 20.7 Ma.  All trees 

sampled produced a Mus – Rattus divergence date between 12.2 and 23.8 Ma. 

 

Murid dataset 

 The maximum likelihood tree is shown in Figure 3.  Most of the phylogenetic 

implications involve taxa that derive from Steppan et al. (2005) and Rowe et al. (2008) 
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and are discussed there.  Limited information can be obtained regarding those taxa that 

are novel to this study, as much of the tree is unresolved.  Monophyly of the genera Mus, 

Rattus, Malacomys, Lophuromys, Gerbillurus, Gerbillus, and Meriones is supported with 

bootstrap values greater than 90%.  The subgenera Mus (M. musculus and M. terricolor) 

and Gerbillurus (G. setzeri and G. vallinus) are also supported as monophyletic with 

bootstrap support >90%.  Taterillus was found to belong to a clade including members of 

the tribe Merionini (bootstrap = 100%) as opposed to the clade that contains the 

remaining members of the Taterillini.  Monophyly of Gerbilliscus was not recovered, as 

Gerbillurus was sister to Gerbilliscus kempi, albeit with more limited support  (bootstrap 

= 83%).  Monophyly of Gerbillus gerbillus was also refuted, but support was relatively 

poor (76%).   

The results of the BEAST analysis that did not employ fossil calibrations are 

shown in Figure 4.  Bayesian posterior probability support is shown.  Nodes constrained 

in the analysis are indicated with a circled number 1.  No significant correlation was 

found between branch lengths and fossil dates in murids (Figure 5a, R
2
 = 0.121 P = 

0.156), in spite of the presence of multiple situations where both an ancestral clade (such 

as the first appearance of Apodemus) and its descendent clade (such as a dated Apodemus 

agrarius – A. semotus clade) were included in the dataset.  Six fossil calibrations 

remained after the successive removal of excessively young calibrations. Regression of 

the six fossils with branch lengths is shown in Figure 5b (R
2
 = 0.982, P = 0.0001). 

Final age estimates based on the second BEAST analysis are shown in Figure 6 

and Table 7.  Certain nodes were recovered in the best tree, but in less than 50% of 
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sampled trees.  BEAST did not calculate a 95% confidence interval for these nodes and 

no error bar is shown.  The timing of the first appearance of Progonomys at 12.3 Ma, the 

soft maximum for the Mus – Rattus date according to Benton and Donoghue (2007), 

relative to these BEAST results is also shown. The use of any of the three fossils - 

Karnimata at 11.1 Ma, Progonomys at 12.3 Ma, or Antemus at 14 Ma - cannot be rejected 

as the appropriate date for the Mus – Rattus split based on our results.  Progonomys at 

12.3 Ma and Antemus at 14 Ma cannot be rejected as appropriate dates for the earliest 

split in the Murinae (Phloeomys Division vs. all other murines).   In contrast, our results 

reject the use of Progonomys at 12.3 Ma as a calibration point for the Murinae vs. 

Deomyinae + Gerbillinae divergence.  The first appearance of Antemus at 14 Ma does, 

however, fall within this 95% confidence interval. 

Tong and Jaeger (1993) suggested that an early myocricetontine dated at 16 Ma 

represents the date of divergence between the Gerbillinae and Deomyinae.  We excluded 

this date as a calibration point because of its direct conflict with hypotheses shown in 

Figure 1.  Our results are highly consistent with the concept of a 16 Ma date of 

divergence between Gerbillinae and Deomyinae as the estimate from the best tree 

obtained was 15.9 Ma (95% confidence interval ranges from 12.4-20.0). 

 

DISCUSSION 

Phylogenetic implications 

 Phylogeny was not explicitly tested using the basal rodent dataset as all nodes 

were constrained to be consistent with the results of Norris et al. (chapter 2).  The murid 
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dataset yielded a tree that showed poor resolution across many nodes and was primarily 

constitent with the results of Steppan et al. (2005) and Rowe et al. (2008) from whence 

many of these sequences derive.  Nevertheless, a few interesting results were recovered 

due to our expanded taxon sampling within the Gerbillinae.  Two extensive 

morphological studies have been conducted attempting to resolve the relationships among 

genera in this subfamily (Tong, 1989; Pavlinov et al., 1990).  Both studies proposed that 

gerbillines were comprised of three major groups, which Musser and Carleton (2005) 

defined as tribes.  The Ammodillini is monotypic and was not sampled in this study.  The 

composition of remaining two, Gerbillini and Taterillini, are roughly equivalent to clades 

proposed by both Tong (1989) and Pavlinov et al. (1990), but the two differ in the 

placement of Desmodillus.  Tong (1989) proposed that the genus held a basal position 

within a clade that corresponds with Musser and Carleton’s (2005) Gerbillini, whereas 

Pavlinov et al. (1990) suggested it was sister to Gerbillurus, a member of the Taterillini 

(which they treated as a subfamily).  Our data suggest that Desmodillus belongs in a clade 

comprised of members of Musser and Carleton’s (2005) tribe Taterillini (ML BP = 81%, 

MP BP <50%), but is not particularly related to Gerbillurus (a hypothesis rejected by ML 

BP = 83%, MP BP = 89%).  A similar position for Desmodilus has been reported in other 

studies based on the mitochondrial 12S and cytochrome b genes (Chevret and Dobigny, 

2005) and nuclear GHR and IRBP genes (Lecompte et al., 2008). 

 Our results strongly suggest (ML BP = 100%, MP BP = 80%) that Taterillus is a 

member of a clade containing the Gerbillini and is not allied with the remaining members 

of Taterillini (as defined by Musser and Carleton, 2005).  Chevret and Dobigny (2005) 
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came to a similar conclusion with extremely strong nodal support.  A position of 

Gerbillurus nested within the genus Gerbilliscus is also suggested by our data (ML BP = 

83%, MP BP = 89%).  Colangelo et al. (2007) recovered a similar pattern of Gerbillurus 

species sister to Gerbilliscus kempi and relatives to the exclusion of Gerbilliscus robustus 

and other Gerbilliscus, but also with limited support.   

 Two species, Gerbilliscus kempi and Gerbillus gerbillus, had individuals with 

highly divergent haplotypes.  The molecular clock analysis suggested a divergence time 

of 4.3 Ma (95% C.I. = 1.1 - 4.0 Ma) and 4.1 Ma (95% C.I. = 2.0 - 5.2 Ma) for the 

Gerbilliscus kempi and Gerbillus gerbillus individuals respectively.  These values are 

comparable to between species or between genera divergence times in other murids.  

Greater taxon sampling within the respective genera combined with reduced taxon 

sampling within the Gerbillinae relative to the Murinae may be biasing these results.  

Nevertheless, these results may suggest either an error in initial identification or the 

presence of additional undescribed species.  More molecular work is clearly required on 

the evolutionary relationships Gerbillinae, which remain largely overlooked in molecular 

systematic studies in spite of their considerable diversity (103 species in 16 genera; 

Musser and Carleton, 2005).  Only a single study has been published using sequence data 

to specifically investigate the relationships among genera in this subfamily (Chevret and 

Dobigny, 2005), although two have been published investigating the relationships in 

Gerbilliscus and Gerbillurus (Colangelo et al., 2005; 2007).   
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Dating murid evolutionary splits 

 The two approaches presented here produced distinct, but overlapping, estimates 

for the divergence time between Mus and Rattus.  A strict application of the confidence 

intervals of the results obtained from the two datasets might suggest a divergence time of 

13.8 - 14.4 Ma, a date highly consistent with the origin of Antemus at 14 Ma.  Numerous 

authors have noted that, although Antemus appears to be related to the lineage leading to 

murines, it lacks the full three chevrons on M
1
 that is characteristic of modern Murinae 

(Jacobs and Downs, 1994; Jacobs and Flynn, 2005).  This character appears in the earliest 

Progonomys at 12.3 Ma, leading to the interpretation that Progonomys represents the 

oldest taxon that contains the full suite of characters found in extant murines.  Benton and 

Donoghue (2007) termed the first appearance of Progonomys and not Antemus as the soft 

maximum for the paleontological estimate for the Mus – Rattus split for this reason. 

 Ultimately the very limited conflict between the results obtained from these two 

datasets may simply be an artifact of the treatment of calibration points.  Norris et al. 

(chapter 2) emphasized the potential for the discovery of new fossils to change any 

existing fossil calibrations and attempted to incorporate that possibility into the analyses.  

This was achieved by using an exponential prior in BEAST with a 95% confidence 

interval that matches the 95% confidence interval on an estimate of the size of gaps in the 

Eocene fossil record of rodents.  We repeated that approach for the basal rodent dataset in 

this study, but not for the murid dataset.  No attempt was made to quantify calibration 

uncertainty in Muridae fossils because these relationships are so poorly understood and 

the ghost lineage approach of Norris et al. (chapter 2) requires a prior understanding of 
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tree topology and proper placement of fossil taxa within that known phylogeny.  Graur 

and Martin (2003) describe these calibration points as a date +/- 0, and warn against the 

illusion of precision in such studies.  Since only minimum dates for the intervals of these 

fossils were used and no potential for fossil uncertainty was incorporated, the murid 

dataset is probably best viewed as a rough minimum estimate.  The calibration points in 

the basal rodent dataset probably represent a more reasonable estimate or slight 

overestimate. 

 Both analyses suffer from further problems.  The analysis of the basal rodent 

dataset attempts to use dated evolutionary events from 33 to 55 Ma as calibrations to 

estimate an event that occurred about 10 to 15 Ma.  Norris et al. (chapter 2) noted that 

periods of rapid evolution across multiple lineages and saturation of data that is 

inadequately corrected by the evolutionary model can lead to a directional bias in 

molecular clock estimates.  This bias is presumably more pronounced as the time 

between the calibration point and the estimated event increases (see Fig. 6 in Norris et al., 

chapter 2).  The murid dataset suffers from a severe problem with uncertainty in tree 

topology.  This affects both the application of calibration points and the nodes estimated.  

For example the application of the 9.7 Ma first appearance date of Apodemus has the 

potential to have a different effect if Apodemus is considered to be basal to the Mus – 

Rattus split or if Apodemus is treated as more related to Mus than Rattus.  Apodemus was 

treated as the latter, but neither our ML nor MP analyses provide any bootstrap support 

for either option. 
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 Nevertheless, our results show a surprising convergence with dates suggested by 

paleontologists and appear to, in part, reject the alternate hypotheses proposed in Figure 

1b.  The first appearance of Progonomys at 12.3 Ma falls after the origin of the family 

Muridae at about 16.8 Ma (95% C.I. = 13.2 – 20.7 Ma).  This would suggest that 

Progonomys is not on the direct line of ancestry for the deomyine genus Acomys, 

although the potential that it represents a sister taxon to the Muridae with a ghost lineage 

cannot be addressed by our data.  The estimated date of 15.9 Ma (95% C.I. = 12.4 – 20.0 

Ma) for the split between Deomyinae and Gerbillinae, along with a proposed first 

appearance date of the Gerbillinae lineage at 16 Ma (Tong and Jaeger, 1993) provide 

additional support rejecting the hypothesis that Progonomys is an ancestor of Acomys.  

Finally, in the only molecular study to include it, Jansa and Weksler (2004) recovered a 

sister relationship between the maned rat, Lophiomys imhausi, and the clade uniting the 

Deomyinae and Gerbillinae. Although they cited Jansa and Weksler (2004) elsewhere, 

Musser and Carleton (2005) did not make mention of their work in discussion of 

Lophiomys and treated Lophiomys as a member of the family Cricetidae.  If, as strongly 

suggested by Jansa and Weksler (2004), Lophiomys holds a phylogenetic position nested 

within the Muridae, it provides further evidence against the presence of a murine-like 

tooth at the base of the Muridae.  Lophiomys retains the primitive cricetid-like tooth 

morphology and its phylogenetic position led Jansa and Weksler (2004) to conclude that 

the murine-like tooth evolved independently in the Deomyinae and Murinae.  The results 

of the analysis of the murid dataset also fail to reject the potential position of Antemus (14 

Ma) at the base of the Muridae.  It is unlikely, however, that a partial evolution of the 
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murine tooth occurred at the base of the family and completion of this trait occurred 

independently in the deomyines and murines, particularly if a reversal of the character 

took place in Lophiomys. 

 The results of our murid dataset cannot distinguish between a position of 

Progonomys (12.3 Ma) at the base of the Murinae (best estimate = 15.8 Ma, 95% C.I. = 

11.7-17.8 Ma) and at the Mus – Rattus divergence (best estimate = 13.1, 95% C.I. = 10.7-

14.4 Ma). That level of precision may be difficult to obtain in a molecular clock analysis, 

particularly one plagued with problems of poor resolution such as ours.  We do see no 

reason to reject the idea of Karnimata (11.1 Ma) as an early member of the clade 

containing Rattus since we recovered a Rattus – Maxomys split at 9 Ma (95% C.I. = 6.5 – 

11.8 Ma).  

 Although several recent studies have begun to treat the Progonomys calibration at 

12 Ma as representing the earliest split in Murinae (Steppan et al., 2004; Jansa et al., 

2006; Lecompte et al., 2008), we see no reason to reject the idea that it may hold a more 

nested position within the subfamily such as at the Mus – Rattus divergence.  The earliest 

clade of murines, the Phloeomys Division, is restricted to the Philippines, a region with 

an essentially nonexistent small mammal fossil record (Heaney et al., 1998) and subject 

to considerable variation in exposed versus submerged land over time (Heaney, 1986).  

Other early Philippine endemics, as well as Sahul and eastern Indomalayan taxa also hold 

a relatively basal position among the murines (Steppan et al., 2005; Jansa et al., 2006; 

Rowe et al., 2008).  The only murine groups with extensive species diversity west of the 

Himalayas are members of the African clades, Apodemus, Mus, Millardia, and the 
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monotypic genera Golunda, Micromys, and Nesokia (Corbet and Hill, 1992; Musser and 

Carleton, 2005). The bulk of murine diversity, particularly regarding early diverging 

clades is clearly east of the Himalayas.  If only the distribution of extant taxa were 

considered relative to the phylogenetic tree, the origin of the Murinae might be 

considered to be farther east than Pakistan, perhaps even on Southeast Asian 

archipelagos.  Progonomys may simply represent the recolonization of murines into 

South Central Asia from their point of origin farther east.  The actual origin of the first 

true murine from Antemus or a relative of Antemus may have taken place earlier than 12.3 

Ma in one of these areas with a poor fossil record or even on land now submerged.  

Under such a scenario, early Progonomys would represent a split near, but not at, the base 

of the Murinae. 

 

Implications 

The burgeoning field of comparative genomics makes frequent use of divergence 

time estimates to evaluate genetic information, but reliable divergence dates remain 

highly controversial.  For example, McPartland et al. (2007) noted that Dorus et al. 

(2004), citing molecular estimates, relied on an assumption that the date of the Homo – 

Macaca divergence is roughly equivalent to that of Mus – Rattus, yet Benton and 

Donaghue (2007) suggest that the Homo - Macaca split is twice as old as the Mus – 

Rattus split.  Whereas Dorus et al. (2004) calculated that murine rodents showed a rate of 

evolution across the endocannabinoid system that is 2.7 times that of primates, 

McPartland et al (2007) noted that a younger divergence date for Mus – Rattus would 
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indicate that murines actually evolve 5.4 times as fast in this system and discussed the 

implications. Such examples are rampant in the biomedical literature; resolution of 

important dates such as the Mus – Rattus divergence can improve the quality of research 

across several fields.  The use of ages in excess of 20 Ma for a Mus – Rattus split is 

simply not supported by either paleontological or more robust molecular estimates. 

We see no compelling reason to reject the hard minimum date of 11.1 Ma 

proposed by Benton and Donoghue (2007) for the divergence time between Mus and 

Rattus, but we cannot determine whether their “soft maximum” date of 12.3 Ma is better 

applied to the origin of the Murinae or to a more derived node such as the Mus – Rattus 

split.  The use of a minimum date of 11.1 Ma for the origin of the clade leading to Rattus 

is probably the most conservative approach. 

Our results also suggest that the first appearance of Apodemus at 9.7 Ma (Martin-

Suàrez and Mein, 1998; Freudenthal and Martin-Suàrez, 1999), Desmodillus as 3.5 Ma 

(PBDB 59167: Muizon and Hendey, 1980), Rhabdomys at 3.5 Ma (PBDB 59167: 

Muizon and Hendey, 1980), Leopoldamys at 1.81 Ma (McKenna and Bell, 1997), 

Zelotomys at 1.81 Ma (Denys, 1999), and Arvicanthis and Lemniscomys at 2.95 Ma 

(PBDB 21546: Wesselman, 1984) may all prove to be useful calibration points in future 

studies on murid rodents.  Our results were also highly consistent with the use of early 

myocricetodontines at 16 Ma (Tong and Jaeger, 1993) as a calibration point representing 

the Deomyinae – Gerbillinae split. 
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FIGURE LEGENDS 

FIGURE 1. Phylogenetic position of the Siwalik fossil series and evolution of the murine 

style molar.  (a.) Traditional hypothesis based on fossils and morphology.  Antemus first 

appears at 14.0 Ma, after the Murinae – Gerbillinae split.  Antemus gives rise to the 

earliest modern murine rodent, Progonomys, 12.3 Ma. Early Progonomys gives rise to 

Karnimata, which eventually gives rise to Rattus and relatives.  Early Progonomys also 

gives rise to later species of Progonomys, which are ancestors to both Mus and Acomys. 

(b.) Effect of molecular results on position of Siwalik series.  Molecular results have 

demonstrated that Acomys is more closely related to the Gerbillinae than the Murinae.  

Molecular studies have also shown that the Mus – Rattus split is not the oldest divergence 

in the Murinae since the Phloeomys Division, a clade of Philippine endemics, holds a 

basal position.  Three positions of Progonomys are possible: at the base of the family 

Muridae involving a reversion in tooth morphology in the Gerbillinae, at the base of the 

Murinae involving an independent evolution of the murine tooth in Acomys, and at its 

traditional position representing the Mus – Rattus split.  Our study attempts to use a 

molecular clock to test where the 12.3 million year old early Progonomys fossils might 

fit. 

 

FIGURE 2. Divergence times among major clades of rodents using a Bayesian approach to 

molecular clock in BEAST.  Values at the nodes represent posterior divergence date 

estimates.  Gray bars at nodes represent 95% confidence intervals for divergence date 
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estimates.  The 12.3 Ma Progonomys fossil is younger than the 95% C.I. for the 

divergence of Mus and Rattus. 

 

FIGURE 3. Maximum likelihood tree for the Muridae using mitochondrial data.  Nodal 

support is indicated by color of circle at nodes. Black circles indicate bootstrap 

percentage >90% for both ML and MP.  Dark gray indicates ML BP > 75% and MP BP > 

50%.  Light gray indicates ML BP > 75% and MP BP <50%.  White circles indicate 50% 

< ML BP  < 75% regardless of MP BP.  All nodes supported by ML BP > 75% (black, 

dark gray, and light gray) were constrained in molecular clock analyses. 

 

FIGURE 4. Ultrametric tree displaying relative ages as estimated in BEAST.  Branch 

lengths indicate time relative to the root of the tree, but are not assigned absolute values 

because they were estimated in the absence of fossil calibration.  Values at nodes indicate 

posterior probability value obtained from BEAST runs.  Circled values correspond to 

those nodes where monophyly was enforced. 

 

FIGURE 5. Regression analyses showing correlation between molecular results and murid 

fossils.  (a.) Relationship between relative ultrametric branch length and all murid fossils 

(excluding dated node at the root of the tree).  Molecular branch lengths are shown as a 

percentage of total rooted tree length.  (b.) Relationship between relative ultrametric 

branch length and only those fossils used in the final analysis including the 45 Ma age at 

the root of the tree. 



 201 

 

FIGURE 6. Ultrametric tree displaying absolute ages as estimated in BEAST when fossil 

calibrations are included. The branch leading to the outgroup has been cropped to 

improve visualization.  Stars indicate nodes where a fossil calibration point was applied.  

Gray bars at nodes represent 95% C.I. of age estimate.  A date of 12.3 Ma, corresponding 

with the earliest Progonomys fossils, is indicated with a gray vertical line.  The three 

hypothesized phylogenetic positions of Progonomys from Figure 1 are shown with short 

gray bars.  
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FIGURE 5.  
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TABLE 1.  GenBank accession numbers for taxa used in this study. 
 

Lineage ADRA2B BRCA1 GHR IRBP 

 

Primates 

Homo sapiens 

 
M34041 

Homo sapiens 
 

NM007302 

Homo sapiens 
 

NM000163 

Homo sapiens 
 

NM002900 
 

Scandentia 

Tupaia 

belangeri 

 
AY150333 

Tupaia tana 

 

AF284006 

Tupaia 

belangeri 

 

AF332018 

Tupaia glis 

 

Z11808 

 

Leporidae 

Lepus 

crawshayi 

 
AJ427254 

Lepus 

capensis 

 

AF284005 

Lepus 

capensis 

 

AF332016 

Lepus 

crawshayi 

 

AJ427250 
 

Ochotonidae 

Ochotona 

princeps 

 
AJ427253 

Ochotona 

princeps 

 
AY057827 

Ochotona 

princeps 

 
AF332015 

Ochotona 

princeps 

 
AY057832 

 

Anomaluridae 

Anomalurus sp. 
 

AJ427259 

Anomalurus 

beecrofti 

 

this study 

Anomalurus 

beecrofti 

 

this study 

Anomalurus sp. 
 

AJ427240 

 

Pedetidae 

Pedetes 

capensis 

 
AM407920 

Pedetes 

capensis 

 
AF332047 

Pedetes 

capensis 

 
AF332025 

Pedetes 

capensis 

 
AJ427241 

 

Dipodidae 

Dipus 

sagitta 

 
AJ427263 

Napaeozapus 

insignis 

 
AF540634 

Allactaga 

sibirica 

 

AY294897 

Allactaga 
sibirica 

 
AY326076 

 

Heteromyidae 

Dipodomys 

merriami 

 
AJ427261 

Perognathus 

flavus 

 

AF540638 

Perognathus 

flavus 

 

AF332029 

Dipodomys 

merriami 

 

AJ427233 
 

Geomyidae 

Thomomys 

talpoides 

 
AJ427262 

Geomys 

bursarius 

 

AF540629 

Geomys 

bursarius 

 

AF332028 

Thomomys 

talpoides 

 

AJ427234 
 

Castoridae 

Castor 

canadensis 

 
AJ427260 

Castor 

canadensis 

 

AF540622 

Castor 

canadensis 

 
AF332026 

Castor 

canadensis 

 

AJ427239 
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Ctenodactylidae 

Massoutiera 

mzabi 

 
AJ427265 

Ctenodactylus 

gundi 

 

AF540624 

Ctenodactylus 

gundi 

 
AF332042 

Massoutiera 

mzabi 
 

AJ427242 
 

Hystricidae 

Trichys 

fasciculata 

 
AJ427266 

Hystrix 

africaeaustralis 

 
AF540631 

Hystrix 

africaeaustralis 
 

AF332033 

Trichys 

fasciculata 
 

AJ427245 
 

Phiomorpha 

Heterocephalus 

glaber 

 
AM407924 

Heterocephalus 

glaber 
 

AF540630 

Heterocephalus 

glaber 
 

AF332034 

Bathyergus 

suillus 

 
AJ427251 

 

Caviomorpha 

Erethizon 

dorsatum 

 
AJ427270 

Erethizon 

dorsatum 
 

AF540626 

Erethizon 

dorsatum 

 

AF332037 

Erethizon 

dorsatum 

 

AJ427249 
 

Sciuridae 

Sciurus 

vulgaris 

 
AJ315942 

Glaucomy 

volans 

 

AF284003 

Sciurus 

niger 

 

AF332032 

Glaucomy 

volans 

 

AY227598 
 

Aplodontiidae 

Aplodontia rufa 

 
AJ427256 

Aplodontia rufa 

 

AF332045 

Aplodontia rufa 

 

AF332030 

Aplodontia 

rufa 

 

AJ427238 
Gliridae Glis glis 

 

AJ427258 

Graphiurus 

murinus 
 

AF332046 

Graphiurus 

murinus 

 
AF332031 

Graphiurus 

murinus 
 

AY303219 
Mus musculus M94583 U36475 AF120489 NM015745 

Rattus 

norvegicus 

AF366899 NM012514 NM017094 AJ429134 

 
TABLE 1 CONTINUED 

 
Lineage vWF 12S rRNA CYTB 

 

Primates 

Homo sapiens 
 

NM000552 

Homo sapiens 
 

NC001807 

Homo sapiens 
 

NC001807 
 

Scandentia 

Tupaia glis 
 
 

U31624 

Tupaia tana 

 
 

AJ421453 

Tupaia 

belangeri 

 
AJ421453 
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Leporidae 

Lepus 

crawshayi 

 

AJ224669 

Lepus 

capensis 

 

AY292706 

Lepus 

europaeus 

 
NC004028 

 

Ochotonidae 

Ochotona 

princeps 

 
AJ224672 

Ochotona 

princeps 

 
AJ537415 

Ochotona 

princeps 

 
AJ537415 

 

Anomaluridae 

Anomalurus sp. 
 

AJ427229 

Anomalurus sp. 
 

AJ389539 

Anomalurus sp. 
 

AJ389526 
 

Pedetidae 

Pedetes 

capensis 

 
AJ238389 

Pedetes 

capensis 

 
AY012113 

Pedetes 

capensis 

 
AJ389527 

 

Dipodidae 

Allactaga 
elater 

 
AJ224661 

Allactaga 

elater 

 
AJ389534 

Allactaga 

elater 

 
AJ389534 

 

Heteromyidae 

Dipodomys 

merriami 

 

AJ427226 

Perognathus 

flavus 

 

U67298 

Dipodomys 

merriami 

 

AY926383 
 

Geomyidae 

Thomomys 

talpoides 

 

AJ427227 

Geomys 

bursarius 

 

AF084297 

Geomys 

bursarius 

 

U65291 
 

Castoridae 

Castor 

canadensis 

 

AJ427228 

Castor 

canadensis 

 

AY787823 

Castor fiber 

 
AJ389529 

 

Ctenodactylidae 

Massoutiera 

mzabi 
 

AJ238388 

Massoutiera 

mzabi 
 

AJ389544 

Massoutiera 

mzabi 
 

AJ389533 
 

Hystricidae 

Trichys 

fasciculata 
 

AJ224675 

Hystrix 

africaeaustralis 
 

U12448 

Hystrix 

africaeaustralis 
 

X70674 
 

Phiomorpha 

Heterocephalus 

glaber 
 

AJ251134 

Heterocephalus 

glaber 

 

AY425847 

Heterocephalus 

glaber 

 

AF155870 
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Caviomorpha 

Erethizon 

dorsatum 

 
AJ251135 

Erethizon 

dorsatum 

 
AY012118 

Coendu bicolor 

 

 
U34852 

 

Sciuridae 

Glaucomy 

volans 

 

AJ224667 

Sciurus 

vulgaris 

 

NC_002369 

Sciurus 

vulgaris 

 

NC_002369 
 

Aplodontiidae 

Aplodontia rufa 

 

AJ224662 

Aplodontia rufa 

 

AJ389541 

Aplodontia rufa 

 

AJ389528 
Gliridae Glis 

glis 

 
AJ224668 

Graphiurus 

murinus 
 

AY303187 

Glis 

glis 

 
NC_001892 

Mus musculus Mus musculus 

 
NM011708 

Mus musculus 

 

NC005089 

Mus musculus 

 
NC005089 

Rattus 

norvegicus 

XM001066203        NC001665 NC001665               
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TABLE 2. Calibration points used in analyses.  “Gap” column indicates the minimum gap 
size present in the fossil record based on the difference in first appearance dates between 
daughter lineages at node. 
 

Node Fossil Calibration Date (Ma) 
Anomaluromorpha Pondaungimys 37.2 +/- 1.3 

Myomorpha Pappocricetodon 45 
Castorimorpha Mattimys 54.4 
Geomyoidea Proheteromys 33.1 

Hystricomorpha Zegdou phiomyid 49.5 
Phiomorpha + Caviomorpha clade Gaudeamus 33.7-34.8 

Sciuromorpha Eogliravus 52.5 
Sciuroidea Spurimus 42.2 
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TABLE 3. GenBank accession numbers for mitochondrial sequence data used in murid 
dataset. 
Subfamily Species Accession 
Dipodidae Jaculus jaculus NC_005314 
Spalacidae Spalax ehrenbergi NC_005315 
Cricetidae Cricetulus griseus NC_007936 
Cricetidae Microtus levis NC_008064 

Deomyinae Acomys ignitus DQ019086 
Deomyinae Lophuromys flavopunctatus DQ019087 
Gerbillinae Gerbilliscus robustus DQ019084 
Gerbillinae Taterillus emini DQ019085 

Murinae Miacelamys namaquensis DQ019089 
Murinae Anisomys imitator DQ019090 
Murinae Apodemus agrarius DQ019092 
Murinae Apodemus semotus DQ019093 
Murinae Arvicanthis neumanni DQ019094 
Murinae Batomys granti DQ019095 
Murinae Berylmys bowersi DQ019096 
Murinae Conilurus penicillatus DQ019097 
Murinae Dacnomys millardi DQ019098 
Murinae Hybomys univittatus DQ019099 
Murinae Hylomyscus parvus DQ019100 
Murinae Leggadina forresti DQ019101 
Murinae Lemniscomys barbarus DQ019102 
Murinae Leopoldamys sabanus DQ019103 
Murinae Malacomys longipes DQ019104 
Murinae Maxomys bartelsii DQ019106 
Murinae Maxomys surifer DQ019107 
Murinae Niviventer culturatus DQ019108 
Murinae Niviventer cremoriventer DQ019109 
Murinae Oenomys hypoxanthus DQ019110 
Murinae Parotomys sp. DQ019111 
Murinae Phloeomys sp. DQ019112 
Murinae Praomys jacksoni DQ019113 
Murinae Praomys delectorum DQ019114 
Murinae Praomys tullbergi DQ019115 
Murinae Rhabdomys pumilio DQ019118 
Murinae Rhynchomys isarogensis DQ019119 
Murinae Stochomys longicaudatus DQ019120 
Murinae Sundamys muelleri DQ019121 
Murinae Uromys caudimaculatus DQ019122 
Murinae Zelotomys hildegardeae DQ019123 
Murinae Apomys datae EU349702 

Murinae Archboldomys luzonensis EU349703 
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Murinae Bunomys adspersa EU349704 

Murinae Chiromyscus chiropus EU349705 

Murinae Chiruromys vates EU349706 

Murinae Dasymys incomtus EU349707 

Murinae Hydromys chrysogaster EU349709 

Murinae Hyomys goliath EU349710 

Murinae Leporillus conditor EU349711 

Murinae Leptomys elegans EU349712 

Murinae Lorentzimys nouhuysi EU349713 

Murinae Macruromys major EU349714 

Murinae Mallomys rothschildi EU349715 

Murinae Mammelomys lanosus EU349716 

Murinae Mastacomys fuscus EU349717 

Murinae Mastomys erythroleucus EU349718 

Murinae Melomys rufescens EU349720 

Murinae Mesembriomys gouldii EU349721 

Murinae Otomys sp. EU349722 

Murinae Parahydromys asper EU349723 

Murinae Paramelomys levipes EU349724 

Murinae Paruromys dominator EU349725 

Murinae Pogonomys macrourus EU349727 

Murinae Rattus leucopus EU349728 

Murinae Rattus norvegicus J01434 

Murinae Mus musculus NC005089 
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TABLE 4.  Locality information for individuals sequenced for this study.  
Subfamily Species Tissue ID Locality 
Deomyinae Lophuromys sikapusi UVM 

2525 
Guinea, Guinée Forestière, 

Youmou, Forêt Claseé Diéké 
Deomyinae Uranomys ruddi RWN 241 Guinea, Guinée Forestière, Forêt 

Claseé du Pic de Fon 
Gerbillinae Desmodillus auricularis UVM 39 Stosba, South Africa 
Gerbillinae Gerbilliscus kempi (#1) UVM 

1515 
Ghana, Volta Region, Kalakpa 
Resource Reserve, 3.25 km S 
Abutia Kloe, near Zitoe Camp 

Gerbillinae Gerbilliscus kempi (#2) RWN 315 Guinea, Guinée Forestière, Forêt 
Claseé du Pic de Fon 

Gerbillinae Gerbillurus paeba paeba  CM 93305 
SP 4465 

Namibia, Keetmanshoop District 

Gerbillinae Gerbillurus setzeri CM 93201 
SP 4346 

Namibia 

Gerbillinae Gerbillurus vallinus 

seeheimi 

CM 93203 
SP 4377 

Namibia, Keetmanshoop District 

Gerbillinae Gerbillus andersoni 

andersoni 

CM 
113811 

SP 10259 

Egypt, Beheira Governate 

Gerbillinae Gerbillus gerbillus 

gerbillus (#1) 
CM 

113820 
SP 10258 

Egypt, Beheira Governate 

Gerbilinae Gerbillus gerbillus 

gerbillus (#2) 
CM 

113822 
SP 10208 

Egypt, Giza Governate 

Gerbillinae Gerbillus pyramidum 

pyramidum 

CM 
113835 

SP 10239 

Egypt, Giza Governate 

Gerbillinae Meriones crassus TK 25633 Jordan 
Gerbillinae Meriones shawi TK 25553 Jordan, Al Halabat 
Gerbillinae Meriones tristrami TK 25532 Jordan, Al Ghor 

Murinae Dephomys defua UVM 
2502 

Guinea, Guinée Forestière, 
Youmou, Forêt Claseé Diéké 

Murinae Grammomys buntingi RWN 283 Guinea, Guinée Forestière, Forêt 
Claseé du Pic de Fon 

Murinae Malacomys edwardsi UVM 
2527 

Guinea, Guinée Forestière, 
Youmou, Forêt Claseé Diéké 

Murinae Mus setulosus UVM 
2538 

Guinea, Guinée Forestière, Lola, 
Forêt Claseé Déré 

Murinae Mylomys dybowskii RWN 240 Guinea, Guinée Forestière, Forêt 
Claseé du Pic de Fon 
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Murinae Praomys daltoni RWN 259 Guinea, Guinée Forestière, Forêt 
Claseé du Pic de Fon 

Murinae Rattus rattus UVM 
1275 

Pakistan, FATA, S. Waziristan, 
Rakmak Alexandra Fort 
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TABLE 5.  Locality information for individuals sequenced for this study but excluded due 
to similarity in haplotype with other individuals.  
Subfamily Species Tissue ID Locality 
Gerbillinae Gerbilliscus kempi RWN 278 Guinea, Guinée Forestière, Forêt 

Claseé du Pic de Fon 
Gerbillinae Gerbilliscus kempi UVM 

2572 
Guinea, Guinée Forestière, Kpinita 
Village near Forêt Claseé Mt. Béro 

Gerbillinae Gerbillurus paeba 

broomi  

CM 93199 
TM 37465 

South Africa, Transvaal Province 

Gerbillinae Gerbillurus paeba 

exilis 

CM 93315 
SP 4306 

South Africa, Cape Province 

Gerbillinae Gerbillurus paeba 

exilis 

CM 93200 
TM 37502 

South Africa, Cape Province 

Gerbillinae Gerbillurus paeba 

mulleri 

CM 95021 
SP 6287 

South Africa, Cape Province 

Gerbillinae Gerbillurus paeba 

paeba 

CM 98566 
SP 4307 

South Africa, Cape Province 

Gerbillinae Gerbillurus vallinus TK 25669 South Africa, Cape Province 
Gerbillinae Gerbillurus vallinus 

seeheimi 

CM 93204 
TP 4379 

Namibia, Keetmanshoop District 

Gerbillinae Gerbillus andersoni 

andersoni 

CM 
113810 

SP 10257 

Egypt Beheira Governate 

Gerbillinae Gerbillus pyramidum 

pyramidum  

CM 
113835 

SP 10240 

Egypt, Giza Governate 

Gerbillinae Meriones tristrami TK 25525 Jordan, Al-Muwaggar 
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TABLE 6. Fossil calibration points evaluated.  PBDB refers to the Paleobiology Database 
(paleodb.org) and includes a reference number. 
  

Calibration Fossil taxon 
[lineage] 

Minimum 
Date (Ma) 

References Used? 

Dipodidae –  
Muroidea 

Pappocricetodon 

[Muroidea] 
45 Wang and Dawson, 

1994; Norris et al. 
(chapter 2) 

Y 

Spalacidae –  
Eumuroida 

  

Tachyoryctoides 

[Spalacidae] 
23.03 

(Chattian) 
PBDB 64412: Lucas et 

al., 1998 
N 

Acomys – 
Lophuromys 

Acomys 4.5 Denys, 1990a; Musser 
and Carleton, 2005 

N 

Desmodillus – 
Gerbilliscus 

robustus 

Desmodillus 3.5 PBDB 59167: Muizon 
and Hendey, 1980 

Y 

Gerbillurus – 
Gerbilliscus 

kempi 

Gerbillurus 1.81 
(Late 

Pliocene) 

Senut et al., 1992; 
Musser and Carleton, 

2005 

N 

Meriones –  
Gerbillus 

Mascaremys 

[Meriones] 
3.5 Tong, 1989 N 

Apodemus – 
Praomys 

Apodemus 9.7 Martin-Suàrez and Mein, 
1998; Freudenthal and 
Martin-Suàrez, 1999; 
Musser and Carleton, 

2005  

Y 

Apodemus 
agrarius – A. 

semotus 

A. chevrieri 

[A. agrarius] 
0.781 
(Early 

Pleistocene) 

Zheng, 1993; Musser 
and Carleton, 2005 

N 

Mus terricolor – 
M. musculus 

First African Mus 2.95 PBDB 21824: Brain, 
1994 

N 

Otomys – 
Oenomys 

Euryotomys 

[Otomyine] 
4 Sénégas & Avery 1998; 

Sénégas 2001; Taylor et 
al., 2004 

N 

Rhabdomys – 
Mylomys 

Rhabdomys 3.5 PBDB 59167: Muizon 
and Hendey, 1980 

Y 

Rattus – 
Leopoldamys 

Rattus 3 Zheng, 1993; Chaimanee 
et al., 1996; Benton and 

Donoghue, 2007 

N 

Sundamys – 
Berylmys 

Berylmys 0.781 
(Early 

Pleistocene) 

McKenna and Bell, 1997 N 

Leopoldamys – 
Dacnomys 

Leopoldamys 1.81 
(Late 

McKenna and Bell, 1997 Y 
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Pliocene) 
Arvicanthis – 
Lemniscomys 

Arvicanthis and 
Lemniscomys 

2.95 PBDB 21546: 
Wesselman, 1984 

Y 

Mastomys – 
Hylomyscus 

Mastomys 2.95 PBDB 21546: 
Wesselman, 1984 

N 

Dasymys – 
Stochomys 

Dasymys 1.7 PBDB 21824: Brain, 
1994 

N 

Zelotomys – 
Praomys 

delectorum 

Zelotomys 1.81 
(Late 

Pliocene) 

Denys, 1999; Musser 
and Carleton, 2005 

Y 

Leporillus – 
Conilurus 

Leporillus 1.81 
(Late 

Pliocene) 

Aplin, 2005; Musser and 
Carleton, 2005 

N 

Grammomys – 
Micaelamys 

Micaelamys 1.81 
(Late 

Pliocene) 

Denys, 1990b;  
Musser and Carleton, 

20005 

N 
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TABLE 7. Divergence dates estimated for select nodes.  BR represents the results of 
analysis of the basal rodent dataset.  MU indicates the results of the analysis using the 
murid dataset.  The results for the best tree sampled and the 95% confidence interval are 
shown for both analyses.  The three hypotheses specifically tested against the Antemus 
(14 Ma) – Progonomys (12.3 Ma) – Karnimata (11.1 Ma) fossil series are indicated in 
bold. 
 

Node BR: 
Best 

BR: 
95% C.I. 

MU: 
Best 

MU: 
95% C.I. 

Cricetidae – 
Muridae 

- - 19.6 16.2-27.5 

Muridae - - 16.8 13.2-20.7 

Deomyinae – 
Gerbillinae 

- - 15.9 12.4-20.0 

Deomyinae - - 11.6 9.8-17.7 
Gerbillinae - - 10.9 8.0-13.3 
Murinae - - 15.8 11.7-17.8 

Mus - Rattus 16.0 13.8-20.7 13.1 10.7-14.4 
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