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ABSTRACT 
 
 

Self-organizing maps (SOMs) are self-organized projections of high dimensional 
data onto a low, typically two dimensional (2D), map wherein vector similarity is 
implicitly translated into topological closeness in the 2D projection. They are thus used 
for clustering and visualization of high dimensional data. However it is often challenging 
to interpret the results due to drawbacks of currently used methods for identifying and 
visualizing cluster boundaries in the resulting feature maps. In this thesis we introduce a 
new phase to the SOM that we refer to as the Cluster Reinforcement (CR) phase. The CR 
phase amplifies within-cluster similarity with the consequence that cluster boundaries 
become much more evident. We also define a new Boundary (B) matrix that makes 
cluster boundaries easy to visualize, can be thresholded at various levels to make cluster 
hierarchies apparent, and can be overlain directly onto maps of component planes 
(something that was not possible with previous methods).  

The combination of the SOM, CR phase and B-matrix comprise an automated 
method for improved identification and informative visualization of clusters in high 
dimensional data. We demonstrate these methods on three data sets: the classic 13-
dimensional binary-valued “animal” benchmark test, actual 60-dimensional binary-
valued phonetic word clustering problem, and 3-dimensional real-valued geographic data 
clustering related to fuel efficiency of vehicle choice. 
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CHAPTER 1: INTRODUCTION 

1.1. Motivation 

Finding patterns in vast multidimensional data sets can be difficult and time-

consuming; nonlinear relations between data items may be non-obvious. Algorithms 

capable of clustering high-dimensional data are one way to address this problem. For 

example, high dimensional clustering allows content based image retrieval [26]. Using a 

high-dimensional data clustering algorithm, the images that describe similar objects can 

be clustered together and then retrieved. This problem has been the object of ongoing 

research for decades [40]. As digital image and video libraries continue to grow rapidly, 

being able to scan data by content will continue to grow in importance.  

Another example is analysis of gene expression data. DNA microarray 

technologies together with rapidly increasing genomic sequence information is leading to 

an explosion in available gene expression data. Currently there is a great need for 

efficient methods to analyze and visualize these massive data sets. Clustering algorithms 

can be used for analysis and visualization of gene expression profiles in order to 

understand which genes are co regulated; such information can help in inferring the 

structure and function of genetic regulatory networks [46]. A third example is using 

clustering algorithms for geographical data, for example stream sensitivity (or instability) 

classification. Watershed planners have long sought decision-making tools for forecasting 

changes in stream-channels over large spatial and temporal scales. Using clustering 

algorithms it is possible to assimilate large amounts of disparate data types for use in 

fluvial hazard management decision-making [3]. 
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All of the above-mentioned high-dimensional clustering problems have been 

approached using an algorithm called the self-organizing map (SOM), a type of artificial 

neural network. The biologically inspired SOM algorithm proposed by Kohonen [19, 22], 

can be used to visualize high-dimensional data and find similarities (clusters) in the data 

set without a priori knowledge about the number of clusters. The SOM algorithm can 

identify both linear and non-linear relationships in the data. The self-organizing feature 

map (SOM) algorithm is a biologically inspired method for constructing a structured 

representation of data from an often high-dimension input space.  

A simple conceptual example that demonstrates the SOM algorithm is the  

clustering of data representing colors. Assume we have a list of colors, each described 

with RGB (Red, Green, Blue) values, and we want to cluster them according to these 

three attributes. The goal is to create a low dimensional 2D projection from the higher 

dimensional 3D input space in a way that similar colors are topologically close to each 

other in the 2D projection. The input space X for this problem is the list of 3 dimensional 

Figure 1.1 a) The 3-dimensional input vectors of RGB values. b) The randomly initialized feature 
map of weight vectors. 
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vectors representing RGB values for every color (Fig. 1.1a). The SOM algorithm first 

creates a grid of cells called neurons, and initially associates randomly chosen three 

dimensional weight vectors with each cell on the grid (Fig. 1.1 b). In Fig. 1.1 b) the 

colors of the cells reflect the random numbers that were used for initializing the weight 

vectors. The weight vectors, as a function of neuron coordinates, are called the feature 

map. Feature maps generated by the SOM algorithm are characterized by the fact that 

similar input vectors are effectively mapped onto neighboring regions of neurons [10].  

In Fig. 1.2 we show an example list of input colors (Fig.1.2. a), the graphical 

representation of feature maps of colors before (Fig. 1.2b) and after (Fig. 1.2c) training 

with the SOM algorithm. As you can see, after training with the SOM algorithm the 

colors in the feature map have self-organized into a map of the input colors. For example 

the shades of blue are next to each other, as are the shades of green, etc. In this simplified 

example to show some basic ideas about the SOM algorithm, the number of neurons 

exactly equals the number of input vectors, but in general this is not necessarily true. 

Figure 1.2 a) Example list of input RGB colors. b) Initial random RGB colors 
(weight vectors) on the feature map. c) The feature map after training with 
the SOM. 
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There are three essential processes that lead to the formation of the feature map: 

competition, cooperation and adaption. In the competition process, a distance metric is 

computed between an input vector and weight vectors of all neurons in the feature map. 

The neuron that is closest to the input vector is declared to be the winning neuron (winner 

of the competition) (e.g., W33 in Fig. 1.3). A spatial neighborhood is computed around the 

winning neuron, providing the basis for cooperation among the neighboring neurons (Fig. 

1.3 red rectangle). In the adaptation process the “excited” neurons (i.e., the winning 

neuron and its neighbors) update their individual values to become closer to the input 

pattern.  

Figure 1.3 Kohonen model of feature mapping. 
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For years, the low dimensional, ordered representation of data generated by the 

SOM algorithm has proven useful for variety of technical applications. A few of myriad 

examples include stream classification [3], geographic pattern detection [1], detection of 

age-related changes in functional connectivity during rest in autism spectrum disorders 

[51], assessing the effort of meteorological variables for evaporation estimation [5], 

detecting skeletal anomalies in aquaculture [41], monitoring chemical processes [47], 

DNA microarray analysis [31], pattern classification and function approximation  [18, 20, 

42], knowledge representation [38, 44] and linguistic data classification [16, 43]. The 

algorithm has also been successfully applied as a model for the development of structural 

representations in biological neural systems, so-called brain maps [32]. Below we 

describe some of these applications in more detail. 

In geographic pattern detection [1] the authors are addressing regionalization 

and land-use patterns that are one of the longstanding concerns of geographers. They use 

a type of SOM to identify relatively homogeneous regions and perform geographic 

pattern recognition. The main advantage of this method is the possibility of “what if” 

analyses together with powerful visualization tools and the accommodation of spatial 

constraints.  

Wiggins et al. [51] use a data-driven approach with SOMs to calculate the 

connectivity rate of posterior-anterior connectivity in healthy individuals and patients 

with autism spectrum disorders (ASD) during rest. They used individualized resting-state 

clusters identified by an SOM algorithm to corroborate previous findings of weaker 

posterior-anterior connectivity in the ASD group and examined age-related changes. 



 

7 

Their findings show that the SOM is a good method for calculating connectivity in a 

clinical population.  

Chang et al. [5] used an SOM to assess the variability of daily evaporation based 

on meteorological variables. This is an important question as the evaporation affects the 

distribution of water in the hydrological cycle and plays a key role in water resource 

management and agriculture. They use daily meteorological data sets from a climate 

gauge and investigate their multi-collinear relationships. They compare the results with 

the results of another artificial neural network (back propagation neural network) and 

show that the SOM performs better. 

Ultsch et al. [47] are using an SOM for monitoring chemical processes. In 

complex nonlinear processes like chemical processes, it is not possible to predict all 

possible error types in advance. The authors use an SOM algorithm to find dependencies 

between various process parameters, as well as input and output variables. The SOM also 

allows them to visualize the process development that helps to estimate the future 

behavior, and perform efficient fault diagnosis. 

Kiviluoto et al. [18] are using an SOM to analyze financial statements and 

predict bankruptcy. Through qualitative analyses with SOM, companies are classified 

into healthy and bankrupt-prone ones.  They also compare results of the SOM to linear 

discriminant analysis and learning vector quantization and show that in some instances 

the SOM outperforms these methods, while in others it does not. 

Ritter and Kohonen [39] are using an SOM for detecting “logical similarity” 

between words from the statistics of their contexts. Inclusion of context in which symbols 
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appear is defined in two ways. In a first demonstration they define the context as a set of 

attribute values that occur in conjunction with the words. In a second demonstration they 

define context by the sequence in which the words occur. They analyze simple nouns, 

verbs, and adverbs in this way. In both of the simulations the words grouped in same 

categories. The authors also argue that similar processes may be working in the brain. 

As the above applications show, the SOM algorithm can be used for variety of 

problems. Most researchers create a so-called “U-matrix”, which is essentially a map of 

spatially windowed averages of vector differences in the feature map. However as we 

will show, the U-matrix is often insufficient for properly identifying clusters. 

In this thesis, we introduce a new phase to the SOM that advances the cluster 

separation by strengthening cluster boundaries; we refer to this new process as the 

Cluster Reinforcement (CR) phase. The CR phase helps the weights of the same clusters 

become more similar; consequently cluster boundaries become much more evident. We 

also define a new Boundary (B) matrix method for visualization of clusters in feature 

maps. The B-matrix method not only makes cluster boundaries sharp and clear, but can 

also be overlain on maps of component planes. Although the contour plots of the U-

matrix can also be simultaneously displayed as heat maps of component planes [6, 37], in 

Chapter 4 we show that the new visualization method is more effective in visualizing 

clusters. The combination of the SOM, CR phase and B-matrix results in highly 

informative and user-friendly identification and visualization of clusters in high 

dimensional data. 
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 In Fig. 1.4 we show an overview of the combined algorithm, along with an 

indication of where each process is discussed in this thesis. The outline of the thesis is as 

follows: 

In Chapter 2 we review the details and some theoritical aspects of the SOM 

algorithm. In Chapter 3 we introduce a new visualization method called the B-matrix. 

This motivates the need for an additional phase to the SOM algorithm called the Cluster 

Reinforcement (CR) phase described in Chapter 4, where we discuss the differences 

between SOM and SOM+CR for a classic benchmark clustering problem. In Chapter 5 

and Chapter 6 we show two real world applications, one with a binary-valued 60-

dimensional dataset and one with real-valued 3-dimensional dataset. 

Figure 1.4 Proposed SOM+CR+B-matrix algorithm. 
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CHAPTER 2: SELF-ORGANIZING MAPS 

2.1. SOM Algorithm 

 Thirty years ago Kohonen [19, 20, 22] proposed a stochastic algorithm, that he 

called a self-organizing process. The basic property of this algorithm is to create low 

dimensional (typically 2D) topologically ordered projections from high dimensional data. 

Although this algorithm is very easy to define, its mathematical analysis is difficult and 

needs sophisticated probabilistic concepts [28]. In this section we will review the 

algorithm and the main concepts.  

In a self-organizing map, so-called “neurons” (in reality these are weight 

vectors) are placed at the nodes of a one- or two- dimensional lattice. Higher-dimensional 

maps are also possible but are not as common. The neurons become selectively tuned to 

various input patterns (stimuli) in the course of a competitive learning process. The 

weight vectors of spatially adjacent neurons in the lattice become tuned with respect to 

each other in such a way that a meaningful spatial organization for different input 

features emerges on the lattice [23, 45] . Therefore a topographic map of input patterns is 

formed after SOM training in which the special locations of the neurons are indicators of 

different statistical features in the input patterns. As Kohonen stated: 

“The spatial location of an output neuron in a topographic map corresponds to a   

particular domain or feature of data drawn from the input space.” (Kohonen 

1990, page 2) [23]. 

In Fig. 1.3, we showed the layout of a SOM network in which the output 

neurons are arranged in a two-dimensional lattice. This kind of topology ensures that 
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each neuron has a set of neighbors. Each neuron in the lattice is fully connected to all the 

source nodes in the input layer.  

The basic SOM algorithm is shown in Fig. 2.1 and described below. 

1. SOM Initialization. Choose random values for initial W weight vectors 

associated with each neuron. 

2. SOM Sampling.  Choose a random input vector x from the input space X. The 

vector x represents the activation pattern that is applied to the lattice. The 

dimension of vector x is equal to m× 1, where m is the number of features 

(elements) in each input vector. 

Figure 2.1 This figure shows the algorithm 
for the SOM. 
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3. SOM Similarity Matching. Find the best-matching (winning) neuron i(x)  by 

calculating the minimum-distance Euclidean criterion between the selected 

input vector x and the weights of all l neurons in the lattice: 

 

 

4. SOM Updating. Adjust the synaptic weight vectors of all neurons by using the 

update equations (2.2)-(2.5). 

 
σ (t) = σ 0 exp −

t
τ1

⎛
⎝⎜

⎞
⎠⎟   

hj ,i(x ) (t) = exp −
dj ,i
2

2σ 2 (t)
⎛

⎝⎜
⎞

⎠⎟   
 

 
η(t) = η0 exp −

t
τ 2

⎛
⎝⎜

⎞
⎠⎟

 

wj (t +1) = wj (t) +η(t)hj ,i(x ) (t)(x(t) − wj (t))  

 

where t = 0,1,2,3...,  is the time step, σ (t)  given in equation (2.2) is the 

standard deviation of the Gaussian topological neighborhood function hj ,i(x )  

given in equation (2.3), σ 0  is the initial value of σ  and τ1  and τ 2  are time 

constants. The neighborhood function shrinks with time, due to the fact that 

σ (t)  decreases. The Gaussian topological neighborhood function hj ,i(x )  is a 

typical choice of neighborhood function that satisfies the following two 

requirements: 

(2.2) 

(2.4) 

(2.3) 

(2.5) 

(2.1) 
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a) It is symmetric about the maximum point defined by dj ,i = 0 , where dj ,i  

is the topological distance between neurons j and i on the grid, given by 

dj ,i = rj − ri , where rj  defines the position of excited neuron j and ri  

defines the position of winning neuron i. 

b) The size of the topological neighborhood decreases monotonically with 

increasing lateral distance dj ,i , decaying to zero for dj ,i →∞  (this is 

necessary condition for convergence). 

In equation (2.4), η(t)  denotes the learning-rate parameter that is varied over 

time. It starts with initial value η0  and decreases exponentially with 

increasing time. Finally equation (2.5) describes the weight update function. 

5. SOM Convergence Test. Iterate steps 2 through 5 until convergence (e.g., 

when changes in the feature map fall below some specified tolerance).  

 

As the algorithm shows there are three essential processes involved in the 

formation of the self-organizing map: competition (find the winning neuron), cooperation 

(identify a neighborhood of neurons) and adaptation (update of all neurons in the 

neighborhood). 
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2.2. Theoretical Aspects of the SOM Algorithm 

 

As discussed in Chapter 1, many real world applications of the SOM have been 

found to be useful. However, a general theory of the algorithm has not yet been achieved. 

It is not clear under what conditions the algorithm may be guaranteed to converge or 

whether the algorithm works by performing a stochastic gradient descent on some 

potential function [52], and problems of important practical interest, like the number and 

type of the algorithm’s stationary states, convergence speed as a function of the 

algorithms’ parameters and the avoidance of sub-optimal representations, are not solved 

[11]. Some of these questions have been addressed to some extent for simple cases [10]. 

As far as we know, the only case where a complete analysis has been achieved is for 

scalar inputs with a linear (1D) network [9].  

A sketch of a proof for self-organization and convergence was provided in 

Kohonen’s original papers [19, 22] and in his books [21, 24] in 1984 and 1991. The first 

complete proofs of both self-organization and convergence were established (for uniform 

distribution of the inputs and a restricted neighborhood function) by Cottrell and Fort in 

1987 [8]. Sufficient conditions for self-organization, are given in [13], for the case of 

decreasing neighborhood whose width is such that at the first iteration more then half of 

the neurons are updated. These results were later generalized to a wider class of input 

distributions by Bouton and Pagès [4] and to a more general neighborhood by Erwin et 

al. [10],  who have sketched the extension of the proof of self-organization and studied 

the role of the neighborhood function. Finally, Fort and Pagès in 1994 [15], 1995 [14], 
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1997 [2] (with Benaim) have achieved the proof of the almost sure convergence towards 

a unique state, after self-organization, for a very general class of neighborhood functions. 

Flanagan in 2001 [12] gave some results in higher dimensions, but these remain 

incomplete. 

 

2.3. SOM Visualization 

 

Interneuron distance has been traditionally used for cluster detection in the SOM 

literature. A unified distance matrix, called the U-matrix was proposed by Ultsch and 

Siemon [50] to illustrate the clustering of input vectors in the SOM. Other variations of 

the U-matrix were later introduced in [25] and [30]. 

In their 1990 paper, Ultsch and Siemon introduced the idea of using 2n-1 2n-1 

matrix to store distances between the weight vectors in the SOM output of size n n [50]. 

It was an interesting idea, but the presentation was incomplete, the explanation of the 

method had many typographical mistakes, and is thus unclear, and we have not found any 

use of this method in the literature. 

In a later paper [48] Ultsch (1993) describes the U-matrix using a U-height 

function (2.6). He defines the U-height of a neuron i as the sum of all data distances from 

the weight vector of neuron i to the weight vectors of the neurons inNN(i) , where NN(i)  

represents the nearest neighbors of the neuron i (e.g., a Moore neighborhood in a 

rectangular 2D lattice). More specifically, let i be a neuron on the map, NN(i)  be the set 
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of nearest neighbors of i on the map, w(i)  the weight vector associated with neuron ni , 

then  

U _height(n) = d(w(i),w( j))
j∈NN (i )
∑    (2.6) 

where d(x,y) is the distance function used in the SOM algorithm to construct the map. 

The U-matrix is an n× n matrix of the U_heights of each of the grid positions of the 

neurons on the map [49]. The U-matrix is usually displayed as a heat map, three-

dimensional surface [48, 49], or contour map [6].  

This implementation of the U-matrix has become the standard tool for the 

display of the distance structures of the input data on SOM [23]. It has been used in a 

number of applications including geographic pattern detection [1], stream classification 

[3], clustering microbial community profile data [36], monitoring chemical processes 

[47], and DNA microarray analysis [31]. The U-matrix helps to visualize the emergence 

of structural features of the distances within the data space. Outliers, as well as possible 

cluster structures, can often be recognized for high dimensional data spaces. 

Unfortunately since the U-matrix is n n that means that the sum of the neighborhood 

distances for each neuron is placed in the position of that neuron, which makes it difficult 

to see the separation of neurons close to cluster boundaries. In Chapter 3 of this thesis we 

illustrate this problem and introduce a new method called the Boundary (B) matrix that 

helps to overcome this limitation of the U-matrix. 

There have been other similar methods reported in the literature for visualizing 

SOM output. In [25] the visualization of the SOM is implemented by constructing an 
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image where the grey scale of each pixel represents the maximum distance in the feature 

space of the corresponding unit to its four nearest neighbors in the 2D rectangular grid 

(Von Neumann neighborhood). The larger the distance, the lighter the grey value is [25].  

Another similar method is median interneuron distance (MID) matrix [30]. Each 

MID entry is the median of the Euclidean distances between the corresponding pointer 

and all pointers belonging to a star-shaped, fixed radius neighborhood containing 

typically eight units (Moore neighborhood). The median can be seen as a conservative 

choice; more radical options based on extremes can also be implemented like max, min, 

etc. 

All of these methods are using the same idea of measuring distances between 

neighboring neurons and using sum, max or median functions to plot them in a grey 

scale. All of these methods have the limitation of putting the resulting information in an  

n n grid; as mentioned above this can result in an unclear separation clusters.  
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CHAPTER 3: BOUNDARY MATRIX 

In this chapter, we introduce a new method for identifying cluster boundaries in 

Self-Organizing Maps (SOM), which we refer to as the Boundary (B) matrix. We then 

show how the B-matrix makes clusters easier to identify than the traditionally utilized U-

matrix [48] discussed in Chapter 2.  

3.1. Construction of the B-matrix 

Let’s assume we have an n × n matrix W of spatially organized weight vectors 

each of size 1 × m and we wish to identify clusters of similar adjacent weight vectors. 

The matrix W is a 2D representation of the multidimensional input space, such as 

would be created by an SOM, where weight vectors of neurons are spatially organized 

in the grid by similarity. In order to improve visual identification of potential clusters in 

W, we propose a toroidal B-matrix of size 2n × 2n. Assuming that matrix indexing runs 

from 0 to 2n-1, the n × n elements of the B-matrix that have both indices even 

correspond to the original n × n elements in W. The remaining entities of B correspond 

to the boundaries between adjacent elements in W. Thus, the positions with two even 

indices are assigned placeholder values of NaN (Not a Number) and all other positions 

are filled with distances between adjacent elements in W, as illustrated in Fig. 2. In 

these schematics, we use the notation  to identify the position in the B-matrix 

corresponding to W. In Fig. 3.1a, the horizontal arrows denote the distances between 

horizontal elements, the vertical arrows denote the distances between vertical elements 
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and the crossing arrows denote the mean of the distances between the elements on the 

diagonals. We illustrate a simplified example of this calculation in Fig. 3.1b, using 

sample integers for scalar weight vectors of length m = 1. For simplicity we show only 

2× 2 elements of W  (Fig. 3.1 a,c) and the resulting 3× 3 elements of the B-matrix (Fig. 

3.1 b,d). 

As the schematics in Fig. 3.1 show, the B-matrix is extended relative to W in 

such a way that the Moore neighborhood (i.e., the 8 nearest neighbors) around each 

element Bi,j (for i and j even) are distance values between the corresponding element 

 
Figure 3.1 a) Illustration of distances between 4 adjacent elements of W (shaded) used to compute 
the elements of the B-matrix (not shaded); b) An example calculation of the 5 elements of the B-
matrix (shaded) computed from representative adjacent values of W (not shaded). c) shows the W 
matrix for this example. d) shows the B-matrix for this example 
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and its Moore neighbors in W. The generalized formula for construction of B is thus: 

  

Bi, j =

NaN for even(i),even( j)

Dist Wfloor( i / 2),floor( j / 2) ,Wmod(floor( i / 2)+1,n),floor( j / 2)( ) for odd(i),even( j)

Dist Wfloor( i / 2),floor( j / 2) ,Wfloor( i / 2),mod(floor( j / 2)+1,n)( )for even(i),odd( j)

mean
Dist Wfloor( i / 2),floor( j / 2) ,Wmod(floor( i / 2)+1,n),mod(floor( j / 2)+1,n)( ),
Dist Wmod(floor( i / 2)+1,n),floor( j / 2) ,Wfloor( i / 2),mod(floor( j / 2)+1,n)( )

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

for odd(i),odd( j)

⎧

⎨

⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪    

(3.1)  

Where indices i,j satisfy 0 ≤ i ≤ 2n-1 and, 0 ≤  j ≤ 2n-1, floor(x) rounds down to the 

nearest integer, mod(x,y) is x modulo y, and Dist(x,y) is any distance function between 

vectors x and y; in all subsequent applications we use Euclidian distance for Dist(x,y). 

For example, consider the following weight matrix W of scalar weight vectors (i.e., 

vectors of size m 1 where m = 1), specifically constructed to have four clusters of 

similar weights {1 2 3}, {10 11 12}, {16 18}, {26 27 28}, shown in different colors: 

W =

1 3 26 26 26
1 3 27 28 28
2 2 18 18 18
10 10 16 18 18
11 12 16 16 18

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

   (3.2) 

 
The corresponding B-matrix is shown below, where the NaN values at 

positions corresponding to the elements of W from equation (3.2) are represented as 

dashes.  

 

!
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B = 

− 2 − 23 − 0 − 0 − 25
0 2 0 23.5 1 1.5 2 2 2 26
− 2 − 24 − 1 − 0 − 27
1 1 1 20 9 9.5 10 10 10 21.5
− 0 − 16 − 0 − 0 − 16
8 8 8 11 2 1 0 0 0 12
− 0 − 6 − 2 − 0 − 8
1 1.5 2 5 0 1 2 1 0 7.5
− 1 − 4 − 0 − 2 − 7
10 9.5 9 13.5 10 10 10 9 8 16

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

   (3.3) 

 
The B-matrix of equation (3.3) is visualized in a grey scale in Fig. 3.2, with 

NaN values shown in white. Darker regions indicate that the distance between the 

weights in W is large and lighter regions indicate that corresponding vectors of W are 

closer. The elements with two even indices, corresponding to the elements of W, are 

overlain with the corresponding values of W (shown in blue marked with asterisks), 

while the remaining elements are overlain with the numeric values of the B-matrix 

(colored in red). 
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In contrast, Fig. 3.3 shows the traditional U-matrix for the same weights W

from equation (3.2). For each element i,j in U, we calculate the average Euclidian 

distance from Wij to it’s 8 nearest neighbors (Moore neighborhood) as discussed in 

Chapter 2. Note that, unlike the 2n× 2n B-matrix, the U-matrix is n × n.  

For the readers’ convenience, we place these example B- and U- matrices side 

by side in Fig. 3.4. The four clusters of W: {1 2 3}, {10 11 12}, {16 18}, {26 27 28} 

are readily identifiable in the B-matrix as separated by dark boundaries (Fig. 3.4 right, 

circled), whereas in the U-matrix (Fig. 3.5 left) these clusters are not at all apparent.

Figure 3.2 Visualization of B-matrix from equation (3.3); non-zero values of B are 
shown in red, and corresponding values of  W are indicated with an asterisk in blue. 
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Figure 3.3 Visualization of the U-matrix; values of U are shown in red, and corresponding values of  
W from equation (3.2) are indicated with an asterisk in blue. 

 

 
Figure 3.4 U-matrix (left) and B-matrix (right) corresponding to the W shown in equation 8 and 
shown here in blue and asterisk. 
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3.2. Discussion 

 
The U-matrix is the canonical tool that has been used for the display of the 

distances between weights on self-organizing maps [47]. However, as illustrated here, it 

may fail to detect clusters in some data sets [49]. In this section, we have proposed the 

B-matrix as an alternative to the U-matrix and used a simple example to illustrate how 

the B-matrix separates the boundaries between the clusters from the cluster elements 

themselves, thus making clusters evident, even in cases where the U-matrix fails. In 

Chapter 4, we will show an alternative way of visualizing the B-matrix that facilitates 

overlaying cluster boundaries onto n × n  matrices, such as the component planes of W.  

In Chapters 5 and 6 we show how the B-matrix can be used to identify clusters in two 

real world problems, one with binary weight vectors and one with real-valued weight 

vectors. 
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CHAPTER 4: CLUSTER REINFORCEMENT PHASE 

In this chapter, we introduce an additional phase in Self-Organizing maps 

(SOM) for strengthening cluster boundaries, which we refer to as the Cluster 

Reinforcement (CR) phase. We use a classical problem (animal clustering) [39] to 

show how the CR phase makes the cluster boundaries sharper and more easily 

detectable than with the SOM algorithm alone. We show how the B-matrix (see 

Chapter 3) facilitates the visualization of these cluster boundaries, especially when 

overlain onto the SOM component planes where the B-values are visualized by the 

thickness of grid lines. In the following chapters (Chapters 5 and 6) we show 

applications of the CR phase. 

4.1. Self-Organizing Maps With Cluster Reinforcement Phase 

Starting from an initial state of complete disorder, the SOM algorithm 

gradually leads to an organized representation of activation patterns (weight vectors) 

drawn from the input space, assuming the parameters of the algorithm are selected 

properly (see Chapter 2). Initially, topological ordering of weight vectors takes place. 

Ones this has occurred, weight vectors continue to be fine-tuned until convergence 

occurs. However, identification of self-organized clusters in the SOM algorithm can be 

difficult, as the cluster boundaries may be unclear and it is difficult to see how the 

SOM component planes relate to clusters. We introduce an additional phase Cluster 

Reinforcement (CR) phase to the SOM that helps the elements of the same clusters 

become more similar, thus resulting in a stronger separation between clusters. This 

cluster sharpening proceeds in an unsupervised manner; without prior knowledge of the 
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domain or number of clusters to be identified. By overlaying the B-matrix of the SOM

+ CR onto the component planes of the SOM, one is able to clearly visualize clusters. 

Thresholding the B-values at different levels permits hierarchical cluster visualization.   

Preliminary experimentations showed that, after successful convergence of the SOM 

(in 1000-2000 iterations), the CR phase achieved good results in fewer than 100 

iterations. Consequently, in all results reported in this thesis we simply use 100 

iterations as our convergence criterion for the CR phase.  

 

In Chapter 2, we gave the description of the algorithm for the SOM. Although 

the CR phase algorithm is structurally similar to the basic SOM algorithm, there are 

important differences. In Fig. 4.1 we show the CR phase algorithm, applied in tandem 

with the traditional SOM. 

Figure 4.1 This diagram shows the algorithm for CR 
phase. 
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1. CR Initialization. The CR phase is run subsequent to the SOM, so the 

converged feature map from the SOM is used as the initial feature map in the 

CR phase.  

2. CR Sampling.  Pick all vectors, one x at a time, from the input space X  (if 

dealing with large data sets, pick a random subset of input patterns). 

3. CR Similarity Matching. Find the best-matching (winning neuron) i(x)  by 

using the minimum-distance Euclidean criterion between the weights: 

 

where l is the number of neurons in the lattice. 

4. CR Updating. Adjust the synaptic weight vectors of all neurons by using the 

update formula 

 

 

ΔWj ,i(x )
t+1 = η(t)hj ,i(x ) (t)α(x(t) − wj (t))

 
 

where σ (t)  in equation (4.2) is the standard deviation of the weight-based 

Gaussian neighborhood function hj ,i(x )  given in equation (4.3), σ 0  is the 

(4.1) 

(4.2) 

(4.3) 

(4.4) 

(4.5) 
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initial value of σ , and tmax  is a predefined number of iterations. The 

neighborhood function shrinks with time, due to the fact that σ (t)  decreases 

linearly. The weight-based neighborhood function hj ,i(x )  satisfies the 

following two requirements: 

a) It is symmetric about the maximum point defined by dj ,i = 0 , where 

dj ,i  is the weight-based distance between neurons j and i on the grid, 

given by dj ,i = ej − ei , where ej  defines the value of the excited 

weight vector j and ei  defines the value of the winning weight vector i. 

b) The size of the weight-based neighborhood decreases monotonically 

with increasing lateral distance dj ,i , decaying to zero for dj ,i →∞  

(this is a necessary condition for convergence). 

In equation (4.4) η(t)  denotes the learning-rate parameter that starts with 

initial value η0  and then decreases linearly with increasing time. Equation 

(4.5) describes the weight update for neuron j due to the input vector x at time 

t +1. We accumulate all updates (for the weights of all l neurons on the lattice 

due to all input vectors) and then apply them with a synchronous update in the 

outer loop (Fig. 4.1). 

W t+1
j ,i(x ) =W

t
j ,i(x ) + ΔW t+1

j ,i(x ), j = 1,2,...,l and ∀x ∈X  

5. CR Convergence Test. Iterate steps 2 through 5 until some convergence 

criterion has been reached (for example for some predefined number of 

iterations). 

(4.6) 
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4.2. Explanation of the CR phase. 

Let’s assume we have an n × n matrix W of spatially organized weight vectors 

each of size 1 × m, and we wish to identify clusters of similar adjacent weight vectors 

The matrix W is a 2D representation of the multidimensional input space, such as 

created by an SOM, where weight vectors are spatially organized by similarity. To 

facilitate identification of potential clusters in W, we will use the additional CR phase. 

In this phase we define a new neighborhood function as given in (4.3). In equation 

(4.3), σ  is the standard deviation of the Gaussian weight-based neighborhood. For the 

CR phase, we use a linear decay function for σ  given in (4.2). In equation (4.3) the 

vector ej  defines the weight vector of excited neuron j and ei  defines the weight vector 

of winning neuron i. Equation (4.3) is similar to the neighborhood function of SOM 

given in equation (2.3), with the exception that in the SOM algorithm di, j  is the 

topological distance between the neurons given by di, j = rj − ri , where the discrete 

vector rj  defines the position of excited neuron j and ri  defines the discrete position of 

the winning neuron i. In contrast in equation (4.3) of the CR phase, the distance is 

based on the values of the weight vectors themselves (dj ,i = e j−ei ). The CR phase 

neighborhood function includes neurons with similar weight vectors, regardless of their 

position in the grid so is no longer necessarily symmetric around the winning neuron, 

as in the SOM. 
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After the first phase of SOM the weight vectors are topologically ordered but 

boundaries between clusters may be diffuse. During the CR phase the neurons with 

similar weight vectors are adjusted further towards each other, which results in smaller 

distances between the members of the same cluster and larger distances between the 

members of different clusters. This phenomenon sharpens and clarifies the cluster 

boundaries.  

In Fig. 4.2, we illustrate how the neighborhood function for the SOM 

neighborhood given in equation (2.3) (left) and for the CR phase given in equation (4.3) 

(right) change over time (y-axes), assuming the lattice radius is 3 nodes. The SOM 

algorithm starts with an initial σ 0  value equal to the “radius” of the lattice and decays 

over time exponentially (see equation (2.2) in Chapter 2). For the CR phase, σ  starts 

with an initial value 0.1 and decays linearly (rather then exponentially) to 0.01 

(equation (4.2)), since empirical results showed that linear decay of σ  for the CR phase 

yielded better results. This is due to the fact that in the SOM the weight vectors that are 

in the neighborhood of the winning neuron get updated inversly proportional to the 

difference between their weights and the weight of the winning neuron, while in the CR 

phase the weights are updated directly proportional to the difference between their 

weights and the weight of the winning neuron, since the neighborhood function itself is 

weight-based. Given this fact, the exponential decay of the neighborhood function is 

more appropritate for the SOM algorithm, to facilitate a transition from self-

organization to fine-tunning of the self-organized neurons. In the CR phase, a larger 

neighborhood can be considered for more iterations, as neurons are updated in 
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proportion to their closeness to the winning node, so will not disrupt the self-

organization. In Fig. 4.3 we show a few examples to demonstrate the differences 

between the neighborhood function for the SOM and CR phases. In the left panel we 

show examples of an SOM neighborhood around the winning neuron for iterations 

1750 (Fig. 4.3a,b), 1800 (Fig. 4.3c,d) and 2000 (Fig. 4.3e,f). On the right panel we 

show what the CR phase neighborhood would look like for the same iterations, even 

though in practice the CR phase follows the SOM and thus would never be applied to 

iterations 1750 or 1800. In Figures 4.3a)  amd 4.3b) the winning node is marked with 

an asterisk. Note that in the SOM, the neighborhoods are symetrically centered around 

the winning node (Fig. 4.3a,c,e), whereas in the CR phase neighborhoods may be 

assymetrical (Fig. 3.3b,d,f). As we increase the number of iterations (Fig. 4.3c,d,e,f), 

the topological neighborhood (left) shrinks in a predictable manner for all winning 

neurons, while the CR neighborhood changes depending on the distances between each 

weight vector and the weight of the winning neuron. Fig. 4.3e,f demonstrate a typical 

  
Figure 4.2 Visualization of neighborhood function for SOM (on left) and CR phase (on right). 
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starting situation for the CR phase, where the topological neighborhood has been 

reduced to 1 (only the winning node) in the SOM.  

In Fig. 4.4, we show the weight-based neighborhood at iteration 10 of the CR 

phase (Fig. 4.4a) and the updates of the weight vectors at that iteration for all 13 

dimensions (Fig. 4.4 b-n). Note that the size of the updates applied to the neurons are 

different for different feature dimensions. This is due to the fact that each weight vector 

in the neighborhood of the winning neuron updates its weight for each dimension  

relative to the difference of the weight of that neuron and the winning neuron in that 

dimension.  
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Figure 4.3 Examples of topological neighborhood (left panel) and weight-based neighborhood (right 
panel). a) and b) show the neighborhood for iteration number 1750, c) and d) for iteration number 
1800, e) and f) for iteration number 2000. 

b) a) 

d) c) 

e) f) 
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Figure 4.4 a) Shows the neighborhood at step 10 in CR phase; b) through n) show how the weights are updated for 
all 13 attributes of weight vectors for that step. The color scale of c) through n) are the same as shown in b). 

 
 

 
 

c) 

a) b) 

d) e) 

f) g) h) 

i) j) k) 

l) m) n) 
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4.3. Differences between SOM algorithm and Cluster Reinforcement Phase 

Algorithm. 

Although many aspects of the SOM and CR algorithms are similar, there are essential 

differences that are highlighted here:  

In the initialization step (CR step 1), we start with trained SOM weight vectors 

W  instead of random weight vectors (as in SOM step 1). In the sampling step (CR step 

2) instead of drawing a sample x from input space (as in SOM step 2), we take all the 

input vectors and then chose each input element once for sampling; when using large 

datasets one can sample from a randomly selected subset of the input records, rather then 

the entire input space (e.g., see Chapter 6). The similarity matching step (CR step 3) is as 

in the SOM algorithm. In the CR phase, we elect to use synchronous updates rather than 

asynchronous updates (as in the SOM) in the inner loop, to avoid bias based on sampling 

order and obtain consistent results. In the updating step (CR step 4), we use the weight-

based neighborhood function given in equation (4.3) with an additional scaling parameter 

α (see equation 14). Readers who wish to add a CR phase to their SOM can easily copy 

and edit their SOM updating code, as long as they made the required changes 

summarized above. 
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4.4. Demonstration of CR phase on a Benchmark Problem 

We use the classic Benchmark animal clustering problem [39] to show the cluster 

sharpening features of the CR phase. Consider the set of data given in Table 1, which 

pertains to a number of different animals. Each column of the table is a binary feature 

vector xa  describing an animal, based on the presence (=1) or absence  (=0) of each of 

13 different attributes given in the rows. For example the binary feature vector xs  for the 

animal hen is 

xa = [ 1 0 0 1 0 0 0 0 1 0 0 0 0 ]T  

The attribute pairs “feather” and “two legs”, as well as “four legs” and “hair”, are 

completely correlated in this dataset, while “two legs” and “four legs” are mutually 

exclusive. Also please note that “hawk” and “owl” as well as “horse” and “zebra” have 

Table 1. Animal names and their attributes 
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identical feature vectors. The animal species designation is specified by a column vector 

xs , whose kth element, representing animal k = 1,2,…16, is given a fixed value of 0.2; 

the remaining elements are all set equal to zero. For example the animal species vector 

xs for hen is 

xs = [ 0 0.2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ]T  

The value 0.2 is chosen to ensure this does not dominate the attribute vector. The input 

vector  for each animal is a vector of 29 elements, representing a concatenation of the 

attribute vector xa  and the species vector , as shown by 

x =
xs
xa

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
=

xs
0

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
+

0
xa

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

 

Finally, each input vector x  is normalized to unit length. We adopt this 

implementation of species designation and normalization in order to stay consistent with 

previous publications [23, 30, 45]. However, as we will discuss later, this introduces 

some undesirable artifacts into the results of the SOM. 

In Fig. 4.5a and 4.6a we show the resulting U-matrix with animal names written 

over the winning neurons using different random seeds. After 2000 iterations of SOM 

training (including the convergence phase) in Fig. 4.5b and 4.6b we show the B-matrix, 

defined in Chapter 3, for the same map. Note that the grid is toroidal in both dimensions. 

As one can see in Fig. 4.5b) and 4.6 b), after the SOM many of the cluster boundaries 

using the B-matrix method have multiple lines. In Fig. 4.5c,d) and 4.6c,d) we show the 

U-matrix (on left) and B-matrix (on right) respectively after additional 100 iterations of 

(4.7) 
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the CR phase. While the CR phase sharpens cluster boundaries in the U-matrix (e.g., 

compare Fig 4.5a to Fig 4.5c), this improvement is even more evident in the B-matrix 

(e.g., compare Fig. 4.5b to Fig. 4.5d). In Fig. 4.5d) and 4.6 d), one can readily identify 

clusters at various levels of separation, where the darker lines denote stronger separation. 

There is clear separation between the birds and mammals, and there is a smaller 

separation within some clusters, such as between {horse, zebra, cow} and {lion, tiger, 

cat, wolf, fox, dog}. The results are consistent with the data in Table 1. 

 

 

 

 
 
Figure. 4.5 a) U-matrix of Animal Data after SOM training. b) B-matrix of Animal Data after SOM 
training. c) U-matrix of Animal Data after CR phase. d) B-matrix of Animal Data after CR phase. 

a) b) 

c) d) 
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Figure 4.6 a) U-matrix of Animal Data after SOM training. b) B-matrix of Animal Data after SOM 
training. c) U-matrix of Animal Data after CR phase. d) B-matrix of Animal Data after CR phase. 
Same as Fig. 11, but with different random seed. 

 

 Notice in both of these runs that hen has an intermediate strength boundary 

around it within the bird cluster (Fig. 4.5 and 4.6). In this case, the boundary around the 

hen is an artifact of the species designation and normalization of data. In Fig. 4.7 we 

show raw attribute distances between animals before normalization. For the reader’s 

convenience rows are labeled with animals names. Each entry shows the 1-norm (city 

block distance) between the pairs of animals. At the end of each row, we show the sum of 

the row elements in colored text. The second row represents the animal “hen”. The sum 

a) b) 

d) c) 
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of the distances between hen and all the other animals in the list is 80 (it is colored blue). 

It is the third smallest sum in the sums column. 

dove hen duck goose owl hawk eagle fox dog wolf cat tiger lion horse zebra cow
dove 0 1 2 1 1 1 3 8 8 10 6 9 10 9 9 8
hen 1 0 1 2 2 2 4 7 7 9 5 8 9 8 8 7
duck 2 1 0 1 3 3 5 8 8 10 6 9 10 9 9 8
goose 1 2 1 0 2 2 4 9 9 11 7 10 11 10 10 9
owl 1 2 3 2 0 0 2 7 9 9 5 8 9 10 10 9
hawk 1 2 3 2 0 0 2 7 9 9 5 8 9 10 10 9
eagle 3 4 5 4 2 2 0 5 7 7 7 8 9 10 10 9
fox 8 7 8 9 7 7 5 0 2 2 2 3 4 5 5 4
dog 8 7 8 9 9 9 7 2 0 2 4 3 4 5 5 4
wolf 10 9 10 11 9 9 7 2 2 0 4 3 2 5 5 6
cat 6 5 6 7 5 5 7 2 4 4 0 3 4 5 5 4
tiger 9 8 9 10 8 8 8 3 3 3 3 0 1 4 4 3
lion 10 9 10 11 9 9 9 4 4 2 4 1 0 3 3 4
horse 9 8 9 10 10 10 10 5 5 5 5 4 3 0 0 1
zebra 9 8 9 10 10 10 10 5 5 5 5 4 3 0 0 1
cow 8 7 8 9 9 9 9 4 4 6 4 3 4 1 1 0

SUM
86
80
92
98
86
86
92
78
78
86
94
72
84
92
94
94
86

       

Figure 4.7. This matrix demonstrates the distance between the animals before normalization. 

 
In Fig. 4.8 we show the attribute distances between animals after inclusion of 

the species vector xa  and normalization. Hen now has the highest value in the sums list 

(20.88). This occurs due to the fact that hen has the fewest (only 3) non-zero attributes 

(Table 1), so the species designation value of 0.2 becomes disproportionally large relative 

to its attribute vector. This is the reason why we see a separate sub-cluster around hen 

with the birds cluster (Fig. 4.5 and 4.6). While this highlights the importance of choosing 

one’s data representation carefully, it does not reflect negatively on the CR phase or B-

matrix visualization, which is the focus of this thesis. 
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dove hen duck goose owl hawk eagle fox dog wolf cat tiger lion horse zebra cow
dove 0 0.46 0.48 0.38 0.38 0.38 0.76 1.9 1.9 1.92 1.43 1.91 1.92 1.91 1.91 1.9
hen 0.46 0 0.46 0.75 0.75 0.75 1.13 1.89 1.89 1.91 1.41 1.9 1.91 1.9 1.9 1.89
duck 0.48 0.46 0 0.38 0.76 0.76 1.14 1.9 1.9 1.92 1.43 1.91 1.92 1.91 1.91 1.9
goose 0.38 0.75 0.38 0 0.38 0.38 0.77 1.91 1.91 1.93 1.53 1.92 1.93 1.92 1.92 1.91
owl 0.38 0.75 0.76 0.38 0 0 0.38 1.53 1.91 1.61 1.14 1.54 1.61 1.92 1.92 1.91
hawk 0.38 0.75 0.76 0.38 0 0 0.38 1.53 1.91 1.61 1.14 1.54 1.61 1.92 1.92 1.91
eagle 0.76 1.13 1.14 0.77 0.38 0.38 0 1.14 1.53 1.28 1.53 1.54 1.61 1.92 1.92 1.91
fox 1.9 1.89 1.9 1.91 1.53 1.53 1.14 0 0.48 0.63 0.48 0.76 0.95 1.14 1.14 0.95
dog 1.9 1.89 1.9 1.91 1.91 1.91 1.53 0.48 0 0.63 0.95 0.76 0.95 1.14 1.14 0.96
wolf 1.92 1.91 1.92 1.93 1.61 1.61 1.28 0.63 0.63 0 0.95 0.64 0.32 0.96 0.96 1.27
cat 1.43 1.41 1.43 1.53 1.14 1.14 1.53 0.48 0.95 0.95 0 0.76 0.95 1.14 1.14 0.95
tiger 1.91 1.9 1.91 1.92 1.54 1.54 1.54 0.76 0.76 0.64 0.76 0 0.32 0.77 0.77 0.76
lion 1.92 1.91 1.92 1.93 1.61 1.61 1.61 0.95 0.95 0.32 0.95 0.32 0 0.64 0.64 0.95
horse 1.91 1.9 1.91 1.92 1.92 1.92 1.92 1.14 1.14 0.96 1.14 0.77 0.64 0 0 0.38
zebra 1.91 1.9 1.91 1.92 1.92 1.92 1.92 1.14 1.14 0.96 1.14 0.77 0, 64 0 0 0.38
cow 1.9 1.89 1.9 1.91 1.91 1.91 1.91 0.95 0.95 1.27 0.95 0.76 0.95 0.38 0.38 0

SUM
19.55
20.88
20.7
19.93
17.75
17.75
18.97
18.35
19.98
19.98
18.54
16.95
17.80
18.22
19.60
19.60
19.95

 

Figure 4.8 This matrix demonstrates the distances between the animals after including species 
designation and normalization. 

 
 In Fig. 4.9 we show the B-matrix of Animal Data for different scaling 

parameters (α , from equation (4.5)) values from 0.25 to 8. We observed that when the 

scaling parameter value is half of the width of the grid (i.e., equal to 8 in this grid) the 

results were better than for smaller numbers. Previous experimentation showed that 

results were not further improved for higher α ; therefore for computational efficiency, 

we use half of the width of the grid for α  in all subsequent experiments. 
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Figure 4.9 Shows B-matrix of Animal Data for different scaling parameters from 0.25 (upper left) to 8 
(lower right). See figure titles. 
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4.5. Alternative visualization of component planes in self-organizing maps using 

lines of different weights to highlight the separation between the clusters. 

In this section we introduce a new method for visualizing component planes 

from the SOM after applying the CR phase (for cluster sharpening) and generating the 

B-matrix. To demonstrate this visualization method, we will use the small 

example we introduced in Chapter 3 where we had an n × n matrix W of spatially 

organized scalar weights, (i.e., vectors each of size m × 1 where m = 1), where weight 

vectors are spatially organized by similarity. We will also compare this visualization 

method with traditional contour visualization of the U-matrix generated from SOM. For 

the readers convenience, we repeat the example W matrix that we used in Chapter 3.  

W =

1 3 26 26 26
1 3 27 28 28
2 2 18 18 18
10 10 17 18 18
11 11 17 17 18

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

       (4.8) 

Having the W matrix of spatially organized weight vectors we first calculate the 

B-matrix, which we show in equation (4.9) with dashes at positions corresponding to the 

elements of W from equation (4.8). As mentioned in Chapter 3, in the B-matrix we use 

three kinds of distances; horizontal distances (between the horizontal elements of W, 

vertical distance (between the vertical elements) and diagonal distances (which are the 

mean distances between the four diagonally positioned elements (see Fig. 3.1a in Chapter 

3).  

2n ! 2n
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B = 

− 2 − 23 − 0 − 0 − 25
0 2 0 23.5 1 1.5 2 2 2 26
− 2 − 24 − 1 − 0 − 27
1 1 1 20 9 9.5 10 10 10 21.5
− 0 − 16 − 0 − 0 − 16
8 8 8 11 2 1 0 0 0 12
− 0 − 6 − 2 − 0 − 8
1 1.5 2 5 0 1 2 1 0 7.5
− 1 − 4 − 0 − 2 − 7
10 9.5 9 13.5 10 10 10 9 8 16

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

                

(4.9) 

To draw lines that contain information about the clusters in the W matrix, we 

create a grid of n n cells representing the elements of W. For each horizontal and 

vertical distance in the B-matrix, we draw a grid line between the elements of W with the 

thickness of the line proportional to the horizontal or vertical distance. For each of the 

diagonal distances in the B-matrix we draw a dot with the thickness of the dot 

proportional to the value of the diagonal distance. We then apply a threshold parameter 

θ,  which allows us to control the level of cluster resolution. Only distances larger then θ  

are drawn as lines or dots. We show the algorithm of this visualization technique in Fig. 

4.10. 

In Fig. 4.11 we show the visualization of the W matrix (or one of its component 

planes), using the algorithm given above with two different thresholds and in Fig. 4.12 

we show hierarchical visualization of cluster boundaries in the Animals Dataset using 

four different thresholds. 
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This method allows us to show cluster boundaries in the B-matrix with grid lines 

superimposed on component planes, resulting in a highly informative visualization. The 

reader can easily see how various clusters are related via the underlying attributes, 

displayed in each component plane. This is not possible when using the SOM and U-

matrix alone for two reasons. Primarily, prior to the CR phase the boundaries are too 

diffuse to be displayed as single grid lines, and secondly, the n  n values in the U-

matrix do not correspond to the boundaries between n n values in the weight matrix, so 

can not be displayed as grid lines. To illustrate this point in Fig. 4.13 we show the 

contour plot visualization of SOM/U-matrix (Fig. 4.13a), SOM/B-matrix (Fig. 4.13b), 

SOM+CR/U-matrix (Fig. 4.13c), and SOM+CR/B-matrix (Fig. 4.13d). In Fig. 4.14a) we 

show the contour plot overlain on one component plans for the SOM/U-matrix and in 

!

!

Figure 4.10 Algorithm for visualizing B-matrix as 
grid lines. 
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Fig. 4.14b) we show the visualization of the same component plane using SOM+CR/B-

matrix grid lines.  

 

Figure 4.11 Visualization of B-matrix using lines when threshold is 0.1 (left) and 2 (right). 

 

 

 
Figure 4.12 Hierarchical Visualization of B-matrix using lines for Animals Data set using four 
different thresholds (see figure titles). 

a) b) 

d) c) 
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Figure 4.13 a) Contour plot for SOM/Umatrix, b) contour plot for SOM/B-matrix, c) contour plot for 
SOM+CR/U-matrix, d) contour plot for SOM+CR/B-matrix. 

In Fig. 4.15 we point out that it is most informative to display the component 

planes resulting from the SOM before the CR phase with grid lines from the B-matrix 

resulting from after the CR phase, as shown for one component plane in Fig. 4.15a). For 

comparison, we show the same component plane after the CR phase in Fig. 4.15 b). 

Because the purpose of the CR phase is to make clusters more internally homogeneous 

with less diffuse boundaries (Fig. 4.15b), this can result in loss of information about 

within cluster heterogeneities (Fig. 4.15a). In Fig. 4.16 and Fig. 4.17 we show the 
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remaining 12 component planes of the Animal Data from the SOM (before the CR phase) 

with the B-matrix (after the CR phase) shown as gridlines (threshold θ = 0.1 ).  

 

 

Figure 4.14a) Component plane for attribute “likes to swim” overlain with contour plot for SOM/U-
matrix. b) same component plane of SOM overlain with B-matrix shown as grid lines, with a 
threshold of 0.1. 

 

 
Figure 4.15 a) The component plane for the attribute “likes to swim ” after SOM training overlain 
with B-matrix after SOM+CR training. b) The component plane for the same attribute after 
SOM+CR training overlain with B-matrix after SOM+CR training. Threshold is 0.1. 

a) b) 

a) b) 
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Figure 4.16 Component planes for attributes “is small”, “is medium”, “is big”, “has 2 legs”, “has 4 
legs”, “has hair” of Animal Data. The threshold is 0.1 
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Figure 4.17 Component planes for all  attributes “has hooves”, “has mane”, “has feathers”, “likes to 
hunt”, “likes to run”, “likes to fly” of Animal Data. The threshold is 0.1. 
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CHAPTER 5: CLUSTERING WORDS BY PHONETIC CHARACTERISTICS 

  

In this chapter we present a real world application of the SOM+CR phase with 

B-matrix visualization for data with binary values. In a Dichotic Hearing Test (DHT), 

auditory processing disorders are diagnosed by presenting pairs of words simultaneously 

through headphones to the patient. Currently only adhoc methods have been established 

for selecting test words or pairs of test words, using the phonetic features of words. One 

interesting question to answer is what words or pairs of words are more clinically 

predictive. 

We use a dataset of 200 words, each described with 60 phonetic characteristics. 

The source of this dataset is from a DHT currently in use [17]. After SOM+CR, the 

resulting feature map that gives a 2D representation of the 60 dimensional space that can 

be used to identify which words belong to the same clusters and which clusters are 

adjacent.  

 

5.1. The Dataset 

 

The dataset consists of 200 one syllable words that have been manually 

characterized with binary phonetic features of up to 5 consonants. In Table 2 we show 

some samples from the dataset. 
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Table 2. A sample from the dataset of 200 words. The first column (attributes) represents the 
phonetic features of the words. The first row (words) shows 14 sample words from the dataset. 

Attributes/words globe bed bird dad food head mud need red judge knife rough chef soft 
C1nasal 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
C1fricative 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
C1stop 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
C1approximant 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
C1voiced 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
C1bilabial 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
C1labiodental 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
C1dental 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
C1alveolar 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
C1palatoalveolar 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
C1velar 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
C1laryngeal 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
C2nasal 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
C2fricative 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
C2stop 1 0 0 0 0 0 0 0 0 0 0 0 0 0 
C2approximant 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
C2voiced 1 0 0 0 0 0 0 0 0 0 0 0 0 0 
C2bilabial 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
C2labiodental 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
C2dental 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
C2alveolar 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
C2palatoalveolar 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
C2velar 1 0 0 0 0 0 0 0 0 0 0 0 0 0 
C2laryngeal 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
C3nasal 0 0 0 0 0 0 1 1 0 0 1 0 0 0 
C3fricative 0 0 0 0 1 1 0 0 0 1 0 0 1 1 
C3stop 0 1 1 1 0 0 0 0 0 1 0 0 0 0 
C3approximant 1 0 0 0 0 0 0 0 1 0 0 1 0 0 
C3voiced 1 1 1 1 0 0 1 1 1 1 1 1 0 0 
C3bilabial 0 1 1 0 0 0 1 0 0 0 0 0 0 0 
C3labiodental 0 0 0 0 1 0 0 0 0 0 0 0 0 0 
C3dental 0 0 0 0 0 0 0 0 0 1 0 0 0 0 
C3alveolar 1 0 0 1 0 0 0 1 0 1 1 0 0 1 
C3palatoalveolar 0 0 0 0 0 0 0 0 1 0 0 1 1 0 
C3velar 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
C3laryngeal 0 0 0 0 0 1 0 0 0 0 0 0 0 0 
C4nasal 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
C4fricative 0 0 0 0 0 0 0 0 0 1 1 1 1 1 
C4stop 1 1 1 1 1 1 1 1 1 1 0 0 0 0 
C4approximant 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
C4voiced 1 1 1 1 1 1 1 1 1 1 0 0 0 0 
C4bilabial 1 0 0 0 0 0 0 0 0 0 0 0 0 0 
C4labiodental 0 0 0 0 0 0 0 0 0 0 1 1 1 1 
C4dental 0 0 0 0 0 0 0 0 0 1 0 0 0 0 
C4alveolar 0 1 1 1 1 1 1 1 1 1 0 0 0 0 
C4palatoalveolar 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
C4velar 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
C4laryngeal 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
C5nasal 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

 
In order to familiarize the reader with different phonetic features that we used 

for clustering, we give a brief explanation about the meanings of the attributes. 
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Only consonants of each word are taken into consideration. The attributes are 

labeled in column 1 as follows: The first through fifth consonants of any given word are 

denoted by attributes starting with C1, C2, C3, C4, C5 accordingly. The rest of the 

attribute name describes one of 12 different features of the consonants. One interesting 

topic in phonetics is describing sounds and finding how the words fall into patterns using 

these descriptions. This is accomplished by describing how speech sounds are made and 

sorting them into groups. In order to form consonants, the airstream through the vocal 

tract must be obstructed in some way. Consonants can therefore be classified according to 

the place and manner of this obstruction [27]. The 12 different groups of consonants in 

our data set are defined below: 

“Nasal – Consider the consonants at the ends of "rang, ran, ram." When you say 

these consonants by themselves, note that the air is coming out through the nose. 

In the formation of these sounds, the point of articulatory closure moves 

forward, from velar in "rang," through alveolar in "ran," to bilabial in "ram." In 

each case, the air is prevented from going out through the mouth, but is able to 

go out through the nose because the soft palate, or velum, is lowered… 

Fricative – (Close approximation of two articulators so that the airstream is 

partially obstructed and turbulent airflow is produced). The mechanism involved 

in making these slightly hissing sounds may be likened to that involved when 

the wind whistles around a corner. The consonants in "fie, vie" (labiodental), 

"thigh, thy" (dental), "sigh, zoo" (alveolar), and "shy" (palato-alveolar) are 

examples of fricative sounds… 
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Stop – (Complete closure of the articulators involved so that the airstream 

cannot escape through the mouth)…. This kind of sound occurs in the 

consonants in the words “pie, buy”(bilabial closure), “tie, dye” (alveolar 

closure), and  “kye, guy” (velar closure)… 

Approximant – (An articulation in which one articulator is close to another, but 

with- out the vocal tract being narrowed to such an extent that a turbulent 

airstream is produced). In saying the first sound in "yacht" the front of the 

tongue is raised toward the palatal area of the roof of the mouth, but it does not 

come close enough for a fricative sound to be produced. The consonants in the 

word "we" (approximation between the lips and in the velar region) and, for 

some people, in the word "raw" (approximation in the alveolar region) are also 

examples of approximants… 

Voiced - Sounds produced when the vocal cords are vibrating are said to be 

voiced, as opposed to those in which the vocal cords are apart, which are said to 

be voiceless. In order to hear the difference between a voiced and a voiceless 

sound, try saying a long v sound… and compare it with a long f sound…  

Bilabial – (Made with the two lips). Say words such as "pie, buy, my" and note 

how the lips come together for the first sound in each of these words… 

Labiodentals – (Lower lip and upper front teeth). Most people, when saying 

words such as “fie, vie,” raise the lower lip until it nearly touches the upper front 

teeth … 
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Dental - (Tongue tip or blade and upper front teeth). Say the words "thigh”, 

“thy". Some people (most speakers of American English) have the tip of the 

tongue protruding between the upper and lower front teeth; others (most 

speakers of British English) have it close behind the upper front teeth. Both 

these kinds of sounds are normal in English, and both may be called dental… 

Alveolar – (Tongue tip or blade and the alveolar ridge). Again there are two 

possibilities in English. You may pronounce words such as "tie, die, nigh, sigh, 

zeal, lie" using the tip of the tongue or the blade of the tongue… 

Palatoalveolar – (Tongue blade and the back of the alveolar ridge). Say words 

such as "shy, she, show." During the consonants, the tip of your tongue may be 

down behind the lower front teeth, or it may be up near the alveolar ridge, but 

the blade of the tongue is always close to the back part of the alveolar ridge… 

Velar – (Back part of the tongue and soft palate). The consonants that have the 

farthest back place of articulation in English are those that occur at the end of 

“hack”, “hang” and “hag” …” (Ladefoged 1975, pages 2-9)[27]. 

 

It is important to mention that some consonants can have several features at the 

same time. For example the words “buy” and “pie” are “bilabial” and “stop”. In our 

dataset if the given feature is true for the given word then the value 1 is used, otherwise 0 

is used.  
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5.2. Results 

In this section we show the results of the clustering algorithm for the words 

phonetic dataset. In Fig 5.1 we show the B-matrix of the dataset after training with 

SOM for 2000 steps and CR phase for 100 iterations. A weight matrix of size 45× 45 

was used. When using different random seeds (e.g., Fig. 5.1a,b) the words tend to 

cluster similarly and furthermore the clusters that are close to each other in the first 

map (Fig. 5.1a) are close to each other in the second map (Fig. 5.1b). This means that 

the clustering is robust to random initialization, despite reducing the data from 60 

dimensions to a 2D map. In Fig. 5.2-5.4 we show a few example component planes of 

the feature map.  

5.3. Discussion 

The results of this experiment provide a 2D representation of the 60 dimensional 

space that can be used to identify which words belong to the same clusters and how close 

are they in the input space. Audiologists could perhaps use these results to select word 

pairs to diagnose specific types of DHT auditory processing disorders or answer 

interesting questions like how close are the clusters that contain the words that a patient 

failed to recognize, which can then be used to give a failure coefficient. Examining the 

test words in the component planes, it might be possible to diagnose distinct types of 

auditory disorders (e.g., if the patient always fails on words that belong to the same or 

adjacent clusters that differ in specific component planes).  
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Figure 5.1  The B-matrixes of Word Data for two random seeds, after 2000 iterations of SOM 
training and 100 iterations of CR training. 

a) 

b) 
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CHAPTER 5: GEOGRAPHIC DATA CLUSTERING RELATED TO FUEL  
Figure 5.2. Component planes for attributes “C3nasal” and “C3stop”. 
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 Figure 5.3 Component planes for attributes “C3bilabial” and “C4voiced”. 
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 Figure 5.4. Component planes for attributes “C4stop” and “C3approximant”. 
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CHAPTER 6: GEOGRAPHIC DATA CLUSTERING RELATED TO FUEL 

EFFICIENCY OF VEHICLE CHOICE. 

In this chapter, we apply the SOM+CR phase with B-matrix visualization to real 

valued geographic data to find possible nonlinear correlations between various attributes 

of vehicle efficiency. First, we collected data about registered vehicles locations, vehicle 

mileage information, and elevation information, and then we used a sliding window 

approach to find average values of above-mentioned attributes in different locations of 

the state of Vermont. Finally we applied the SOM+CR phase with B-matrix visualization 

to this averaged data to analyze possible correlations. 

6.1. The Dataset 

This dataset was collected from several sources (see Fig. 6.1). One of the 

sources was from the Department of Motor Vehicles (DMV) title database. This database 

contained the registered address, make, model and year of each registered vehicle titled in 

the state of Vermont. It was a total of 600,000 records. For this experiment we are only 

interested in passenger vehicles, so we eliminated the records that represented big trucks, 

boats, snowmobiles, etc. After this cut we had 410,046 records for passenger vehicles. 

We decided to eliminate the records where addresses were registered as P.O. Box 

addresses, since these do not accurately reflect the spatial location of the vehicle 

registration. Furthermore, we eliminated all the vehicles that were registered in other 

states. After the above-mentioned eliminations the database contained 321,487 data 

records, which is 78.5% of all passenger vehicles titled currently in Vermont.  
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The next step was using available tools to convert addresses of the form <street, 

apt, state, zip code> to the form <latitude, longitude>. We used three different sources 

obtain a complete mapping. First we mapped the addresses from the 911 Building data 

from the Vermont Center for Geographic Information (VCGI), which contained <latitude, 

longitude> of most of the buildings in Vermont. As this data set was not complete, we 

then used a geographical software program called ARC GIS for the addresses that were 

missing from the first source and finally we used the Web GPS visualizer [34] for the 

addresses that were missing from both of above-mentioned source (about 100). The latter 

Figure 6.1 This diagram shows all different data sources that 
were used to collect data. 
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source was the most complete, because it contained a large database of addresses derived 

from Google Maps [33], but it took about 50 seconds to retrieve each record. Thus it 

would have take about 133 hours, which is 14.5 days, if we used it to convert the entire 

database. In Fig. 6.2 we show the locations of registered lightweight vehicles in the state 

of Vermont. 

                         

Figure 6.2 Locations of registered lightweight vehicles in the state of Vermont. 

 
To get vehicle mileage information we used the programming language Ruby 

[29] to mine this information (with permission) from the web site cars.com [7]. This code 

allowed us to collect city and highway mileage information for each make, model and 

year of vehicle that exists on this web site, which is one of the largest online sources of 

vehicle types. One of the obstacles that we had to overcome was the fact that, in the 

DMV database, the make and model of the cars were reported with short abbreviated and 

there was no consistency in the abbreviations used. For example the make “Toyota” was 

reported as “Toyt”, “Toy”, etc. The information that we collected from the web page had 
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the full names of make and model (e.g., Toyota Corolla). We thus had to use some tricks 

with wild cards and regular expressions to match each of the abbreviated names with full 

names of make and model. After the last step, we had the latitude and longitude of the 

locations of passenger vehicles in Vermont and the mileage (MPG) information for them 

(see Fig. 6.3). Please note that we adjusted the color scale in Fig. 6.3 to highlight the 

differences and we used averaging with the spatial window technique (window size = 0.1 

decimal latitude/longitude degrees), resulting in 24,311 data points. Having this 

information we were also able to find the location of each hybrid vehicle in Vermont (see 

Fig. 6.4). 

Figure 6.3. Visualization of MPG data for Vermont State. 
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We also obtained the elevation of each registered vehicle location (Fig. 6.5). For 

example, we wanted to see if people living in higher elevations tend to have lower 

mileage cars, due to the fact that lower mileage cars tend to have higher power. This data 

was obtained through VCGI [35] and the Transportation Research Center at the 

University of Vermont.  

Using the locations of registered vehicles we were also able to determine the 

density of cars (number of cars per unit area) as shown in Fig. 6.6.  In the future we 

intend to obtain other relevant attributes, such as political make up of various special 

locations, that we hope may shed some light on consumer vehicle choices. 

Figure 6.4 Visualization of proportion of hybrids in Vermont. 
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Figure 6.5 Visualization of elevation data for the state of Vermont. 

Figure 6.6 Vehicle density map, that shows the number of vehicles 
per unit area. 
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6.2. Results 

 

In this section we show preliminary results of the SOM+CR phase with B-matrix 

visualization applied to the real-valued geographical data discussed in Section 6.1. We 

use three attributes: vehicle density, vehicle city mileage and elevation each normalized 

to a range from 0 to 1. After training with SOM+CR phase on 24,311 input vectors 

(obtained using a spatial window of size 0.1 decimal latitude/longitude degrees) the B-

  

 
Figure 6.7. a) The component plane of attribute city mileage, b) the component plane of attribute 
elevation, c) the component plane of attribute vehicle density, d) the B-matrix of geographical data. In 
figures a, b, c the threshold is 0.9*10^-11. 

 

a) b) 

c) d) 
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matrix of the feature map is the 2D representation of these three. For this experiment we 

used a gird of 15× 15 for weight vectors. The SOM was trained for 2000 steps, the CR 

phase was trained for 10 iterations, using a random subset of 200 input patters for each 

CR step. In Fig. 6.7 we show the component planes and B-matrix of the geographical 

data.  

The results show that there are essentially no correlations between the attributes 

of this preliminary data set. The one cluster that was identified is essentially delineating 

low elevation portion of the data. This occurred because after SOM training the ranges of 

normalized mileage and density were reduced to much smaller than that of normalized 

elevation, due to the non-normal left-skewed distribution of the raw data for mileage and 

density. We hope to obtain additional features that may relate to consumer vehicle 

efficiency choice in the future. Nevertheless, this example demonstrates that the 

SOM+CR and B-matrix visualization works for attributes of real-valued numbers.  
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CHAPTER 7: CONCLUSION 

7.1. Overview 

 
Self-organizing maps have been proven to be useful tools for clustering and 

visualization of high-dimensional data. Nevertheless it is often challenging to interpret 

the results due to drawbacks of currently used methods for identifying cluster boundaries 

in the resulting feature maps. In this thesis, we introduced an additional CR phase to the 

SOM algorithm that results in sharper boundaries between the clusters. We also introduce 

a new form of distance matrix (B-matrix) that facilitates the visualization of cluster 

boundaries. By 2n× 2n display of the B-values as the thickness of grid lines they can be 

overlain onto n× n component planes. A threshold parameter θ  is used to threshold the 

displayed lines to allow hierarchical control of the visual level of cluster resolution. 

These advanced visualization methods were shown to perform better then regular 

SOM/U-matrix method for a benchmark animal clustering problem. We then showed real 

world applications of these methods for a 60-dimensional binary-valued phonetic word 

clustering problem and a 3-dimensional real-valued geographic data clustering problem 

related to fuel efficiency of vehicle choice. The word clustering application may help to 

design and interpret dichotic auditory processing tests. While no clustering was observed 

in the geographical data related to fuel efficiency, we anticipate that adding additional 

features may yield more interesting results. 
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