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ABSTRACT 

 

 
The intervertebral disc (IVD) is a complex orthopaedic tissue that is located 

between the vertebrae in the spine.  Degeneration of the IVD is thought to be a 
contributor to low back pain (LBP), which affects up to 80% of the population at 
enormous economic cost.  The role of the intervertebral disc in supporting and resisting 
applied loading to the spine, along with the observation of disorders associated with 
abnormal spinal loading, provide support to the theory that applied mechanical loading is 
crucial in maintaining the health of the intervertebral disc. The encompassing goal of this 
work was to examine the biological response of the intervertebral disc to changes in the 
surrounding mechanical environment in a large animal model. Aim 1 utilized an organ 
culture model to explore the relationship between disc mechanics and biology in needle 
puncture injury, a commonly used model of experimentally induced disc degeneration, 
thus providing a possible mechanism for in vivo injury induced disc degeneration models. 
Aim 2 was to explore the interaction between the amplitude of applied mechanical 
loading and intervertebral disc cell signaling, also performed in an organ culture model to 
include cell-matrix signal transduction. Aim 3 addressed frequency and age effects on the 
IVD response to mechanical stimulation, performed in vitro to control for the effects of 
varying matrix compositions between old and young animals. Finally, Aim 4 utilized k-
means and fuzzy c-means clustering techniques to reveal patterns in experimental 
phenotype (determined by gene expression data) and gene response to experimental 
conditions.  The application of biclustering, where the gene responses within 
experimental phenotypes are clustered to elucidate possible mechanisms for different 
gene level-responses to experimental conditions, was also accomplished.  Finally, the 
ability for the model to predict the behavior of other genes critical to IVD 
mechanobiology, or in determining the membership of an unexamined experimental 
phenotype was explored.  Overall, applied dynamic compression was not found to 
significantly alter disc mechanics, while a disruption in the annulus through needle 
puncture rapidly decreased the compressive modulus. Changes in disc mechanics may 
precede biological remodeling, with little evidence of remodeling present without 
mechanical alteration. Aging, however, crucially impacts disc cell biology, particularly in 
the nucleus pulposus, and will interact with applied loading to further impact the ability 
for the intervertebral disc cells to maintain a healthy extracellular matrix.       
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CHAPTER 1 Introduction   

The intervertebral disc (IVD) is a complex orthopaedic tissue that is located 

between the vertebrae in the spine.  The IVD consists of four integrated biologically and 

structurally unique components; the annulus which is divided into an outer and inner 

component, the nucleus pulposus, and the cartilage endplates which serve as an interface 

between the IVD and the proximal and distal vertebrae. The complexity of the tissue 

structure, and its crucial role in providing spinal flexibility and load support, contributes 

to the risk for the IVD to be affected by a host of pathologies.  One such pathology, 

degeneration of the IVD, is thought to be a contributor to low back pain (LBP).   

 

Figure 1-1: Normal (L) and degenerated (R) human intervertebral disc. (Images courtesy of James 

Iatridis and Ian Stokes) 

 

One study has shown LBP to affect approximately 80% of all Americans at some 

point during their lifetime (Andersson, 1998), with similar numbers for Canadians (Cote 

et al., 1998).  A national health survey covering two years in France demonstrated that 

more than half of the population aged 30-64 years had experienced LBP in the previous 

year, with 17% of the survey population experiencing LBP for 30 days or more 

(Gourmelen et al., 2007). An increase in LBP incidence has been reported among those 
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performing heavy labor.  A four-month study on underground miners in Ghana reported 

67.2% of workers had experienced LBP in the past year, with 90% reporting the pain as 

being moderate to very severe (Bio et al., 2007). Likewise 72.8% of sewer workers in 

Vienna, Austria reported LBP during the previous 12 months, higher than the reported 

rate for neck pain (52.4%) and upper back (54.8%) indicating the lower back region as 

one particularly prone to injury (Friedrich et al., 2000). In a study of a rural Chinese 

population an increased risk of LBP was associated with farming, performing moderate 

to heavy labor, or exposure (current or former) to vibration (Barrero et al., 2006). 

While LBP exists regardless of gender, some evidence points to increased 

prevalence in women.  A French survey showed a statistically significant increase in 

reports of LBP, both as a one time occurrence (57.2% among women, 54% among men) 

and as recurring for 30 days or more over two years (18.9% among women, 15.4% 

among men) (Gourmelen et al., 2007). In a study of Iranian industrial workers, 27% of 

females and 20% of males reported an episode of LBP in a year (Ghaffari et al., 2006). In 

a rural Chinese population, an increased prevalence of LBP was found in women as 

compared to men across ages (25-64 years) (Barrero et al., 2006). In contrast, no 

association with gender was found in a survey of Canadian individuals (Cassidy, 1998). 

The high rate of incidence is accompanied by large medical costs.  In the United 

States in 1998 approximately $90.7 billion in expenses were incurred by individuals with 

back pain, and 26.3 billion of total incremental expenditures were attributable to back 

pain (Luo et al., 2004).  LBP is a common affliction, affecting people across ethnic, 

economic, and gender lines at enormous economic cost.  Despite this clear impetus for 
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close examination, the mechanism of the spinal degenerative process is not known.  

However, pathologies associated with the intervertebral disc have been implicated as a 

major contributor (Vernon-Roberts and Pirie, 1977, Battie and Videman, 2006).  

One potential mechanism by which the intervertebral disc can contribute to LBP 

is through disc degenerative disease (DDD).  A proposed mechanism for DDD induced 

back pain is that structural disruption of the IVD may result in stress concentrations 

developing in the outer annulus, where nerve innervation has been reported, thus 

triggering a painful stimulation of these nerves (Adams, 2004). Conflicting evidence on 

the influence of mechanical factors, such as occupations requiring heavy lifting, or long 

durations of truck driving, in contributing to LBP and DDD has been reported.  Evidence 

pointing to a positive association between the level of lifestyle or occupational back 

loading and lower back pain (Videman et al., 1990, Evans et al., 1989, Frymoyer et al., 

1983) or DDD (Dupuis, 1994). However, some studies suggest the correlation may be 

weak or non-existent between occupational mechanical loading and LBP (Videman and 

Battie, 1999) or DDD (Battie et al., 1995, Drerup et al., 1999). One complicating aspect 

to any study of the long-term effects of mechanical loading on the spine is the increased 

presentation of DDD with advanced age (Vernon-Roberts et al., 2007), which may mean 

a survey of occupational activities may reflect behavior at retirement rather than account 

of a lifetime of heavy mechanical exposures (Gibbons et al., 1995). Additional factors 

and pathologies that may contribute to back pain also include genetic (Battie et al., 1995) 

or lifestyle differences between people.  
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The development of a controlled model for the human intervertebral disc, 

providing the ability to address the role mechanical loading may have on the disc, and 

specifically what biological changes are associated with repeated mechanical loading, is 

considered a priority. The ideal model would be free of genetic, occupational or 

environmental factors (such as a non-smoker), motivating the use of an animal model.  

The animal model must be a close representation of the human disc with regards to 

biology and mechanics, and should allow for the simultaneous examination of many 

dependant variables.  The ideal model for this would be an ex vivo animal model, which 

historically has not existed. The development of such a model, however, would allow for 

the application of realistic levels and modes of mechanical loading to a highly controlled 

sample population. 

The role of the intervertebral disc in supporting and resisting applied loading to 

the spine, along with the observation of disorders associated with abnormal spinal 

loading, provide support to the theory that applied mechanical loading is crucial in 

maintaining the health of the intervertebral disc. As with other orthopaedic tissues, 

studies have sought to elucidate the connection between applied loading and the resulting 

biological changes that occur to the disc. However, it is still largely unknown how 

mechanical loads are transmitted to the cellular level, how cells sense mechanical 

loading, and what aspects of mechanical loading are important to the maintenance of a 

healthy intervertebral disc.   

A variety of models have been used to study intervertebral disc mechanobiology. 

In addition to in vivo models, tissue level experiments, in which the intact intervertebral 
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disc is cultured, maintain normal cell-matrix interactions, which closely resemble the in 

vivo case. However, due to the non-linear and multiscale nature of mechanotransduction, 

equal magnitudes of applied stress at the tissue scale may result in different magnitudes 

of observed stress on the cellular scale. Cellular level experiments, in which cells are 

removed from the surrounding native tissue and encased in an artificial matrix, results in 

a highly reproducible and defined magnitude of stress applied to the cell at the expense of 

some possible mechanisms of cell mechanotransduction and the ability to directly 

extrapolate the results to the in vivo situation.   

Another complication to the study of intervertebral disc degeneration is the long 

time scale typically required for degenerative signs to occur.  Previous researchers have 

induced disc degeneration on a rapid time scale with methods such as chemical 

degradation or needle puncture injury, both of which have been found to induce 

degenerative changes in the affected intervertebral disc in an in vivo model. More recent 

studies have provided evidence for a rapid biological response to the needle injury, 

followed by a more prolonged accumulation of pathological changes.  Structural changes 

induced by needle puncture may alter the ability for the intervertebral disc to resist an 

applied load, or simply cause a redistribution of disc stresses resulting in abnormal 

regional loading profiles. 

The overall goal of this work was to examine the biological response of the 

intervertebral disc to changes in the surrounding mechanical environment in a large 

animal model. Two approaches were used to address this goal: first addressing the role 

of active mechanical loading in intervertebral disc extracellular maintenance and 
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turnover, and second addressing the ability for passively applied changes to the 

intervertebral disc mechanical environment to explain long-term biological changes 

observed in animal models of degeneration. The combined use of these two methods to 

alter the mechanical environment comprehensively addressed the ability for mechanical 

loading to influence biological homeostatic behavior as well as provide a model for 

mechanically induced pathological disc degeneration. The use of a large animal organ 

culture system is particularly relevant and of recent interest, as the bovine disc has been 

shown to more closely represent the behavior of human tissue than currently used animal 

models (Oshima et al., 1993) and few organ culture systems exist for the bovine IVD 

(Lee et al., 2006, Roberts et al., 2008). Finally, patterns in the gene expression profiles in 

response to mechanical loading and aging were identified and compared between organ 

culture and cell culture studies to identify potential new avenues of research. 

 

 Hypothesis1: Needle puncture injury will lead to immediate and progressive 

alterations in disc mechanics and biology.  

Aim 1:  This study utilized a bovine organ culture model to characterize the mechanical 

and biological response of the intervertebral disc to a needle puncture injury, a commonly 

used model of experimentally induced disc degeneration, thus providing a possible 

mechanism for in vivo injury induced disc degeneration models.  
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Hypothesis 2: Dynamic loading applied to the intervertebral disc will stimulate cell 

biosynthetic response in a magnitude dependent manner.  

Aim 2:  This study explored the interaction between mechanical loading and 

intervertebral disc cell signaling in situ.  This study used an organ culture experiment that 

focused on the response of the intervertebral disc to load magnitude effects.   

 

Hypothesis 3: Dynamic loading applied to intervertebral disc cells will to stimulate 

cell biosynthesis in a frequency and age dependent manner.  

Aim 3: A cell culture study addressed frequency and age effects on the IVD response to 

mechanical stimulation. To control for the effects of varying matrix compositions 

between old and young animals, this study used a three-dimensional alginate cell culture 

system.   

 

Hypothesis 4: Clustering analysis can be used to find patterns in the intervertebral 

disc response to aging and mechanical loading over time.  Further, the response of 

individual genes, and the response of the intervertebral disc to mechanical loading 

in an organ culture model, can be predicted by comparing with patterns found in a 

cell culture model. 

Aim 4: This study identified experimental groups that are linked by similar gene 

expression profiles and genes that are commonly linked by experimental protocols. Then, 

by applying an approach known as biclustering, the gene profiles of the linked 

experimental groups were clustered to identify the genes responsible for the differences 
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between groups.  Finally, the predictive value of the developed clusters was examined by 

first finding the membership of genes not used in the clustering analysis, and second 

using the clusters to predict groupings from data from a mechanically loaded organ 

culture model. 
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CHAPTER 2 Background 

 

2.1 Intervertebral disc structure and biology 

 
Two of the primary functions of the spine are load support and flexibility (Adams, 

2002), which are accomplished by a unique blend of structural components.  The adult 

human spine is made up of 24 vertebral bodies, which serve as a non-flexible support 

system, separated by 23 intervertebral discs, which add flexibility and shock absorbing 

capacity to the overall spinal structure.  

The intervertebral discs are composed of two structurally distinct regions, the 

anulus fibrosus (AF) and the nucleus pulposus (NP), which blend to create a third region, 

the transition zone or inner anulus (IA) (Figure 2-1).  The disc is bounded superiorly and 

inferiorly by cartilaginous and bony endplates that integrate the disc structure to the 

vertebral bodies.  The endplates, along with the annular periphery, provide the pathways 

for nutrient and water transport into and out of the disc.  The disc is the largest avascular 

structure in the human body, making the endplate’s role as a path for nutrient and water 

supply highly important (Urban et al., 1978). Overall the disc is largely acellular, with 

cells making up only approximately 1% of the total volume (Roberts et al., 2006). 
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Figure 2-1: The intervertebral disc is composed of outer collagen layers (AF) and an inner 

gelatinous core (NP)  

2.2 Intervertebral disc development  

 

In humans, the vertebral column begins to form at week 4, followed by the 

formation of somites from the mesenchyme (Roberts et al., 2006).  In the rat at E15, the 

future IVD consists of bunched mesenchyme with little definition, however on E16 the 

notochord starts to bulge noticeably and some organ structure begins to form. At this 

stage, the IVD exists as three distinct regions, the AF, IA and NP. The AF consists of 

oriented fibroblastic cells predicating the deposition of the highly oriented AF structure, 

the IA exists as a contiguous part of the vertebral bodies possibly serving as an anchor the 

IVD to the developing vertebral bodies, and the NP is entirely composed of the notochord 

remnant. Although a source of debate, it is generally accepted that the nucleus pulposus is 

mostly the product of the notochord, which can be observed immediately postnatally, and 

disappears with age in a species dependent manner (Pazzaglia, 2006, Roberts et al., 2006, 

Pazzaglia et al., 1989).  In contrast, cells in the annular regions are developed from the 

mesenchyme (Rufai et al., 1995).  In species where the notochord remnant disappears, the 

NP 
AF 
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vacant notochordal space is replaced with more fibrous tissue reminiscent of the annulus 

fibrosus (Pazzaglia et al., 1989) however the mechanism and reason for the replacement 

is unclear.   

Various molecular events are also essential for IVD development. For instance, 

Pax-1 was strongly expressed in the AF from 14.5 days post conception (dpc) into 

adulthood, patched (ptc) and Sonic Hedgehog were expressed strongly from 14.5 dpc into 

adulthood, and Noggin was localized to the endplate (DiPaola et al., 2005).  Although the 

study of IVD development is more than 100 years old, questions as to how the complex 

structure develops and the importance of signaling between the notochord and 

mesenchyme remain unanswered. 

2.3 The healthy intervertebral disc 

 
The AF is composed of highly structured fibers composed primarily of collagen 

type I, microfibrils (Yu et al., 2007) and elastin (Yu et al., 2002) that are further 

organized into concentric lamellar layers (Adams, 2002).  The interlamellar space also 

contains linking elements of elastin and microtubules (Yu et al., 2007) and small amounts 

of proteoglycans. Fibers of the AF adopt orientations from plus-minus 62 degrees (from 

the vertical avis of the spine) at the outer edge of the annulus to plus-minus 45 degrees 

more centrally to support the developed loads (Cassidy et al., 1989).  Cells of the AF 

have a sparse to nonexistent pericellular matrix (PCM), are primarily fibroblastic, 

elongated, and exist in oriented clusters with long aligned processes.  Cells are often 

found running parallel to the fiber bundles of the AF, existing both between adjacent 

fiber bundles and embedded within them (Figure 2-2). The healthy AF exists primarily in 
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tension, resisting the internal swelling pressure developed by the NP under compression 

and the concentric laminar structure also provides excellent support for torsion and 

bending on the spine structure. 

 

Figure 2-2: AF tissue. Green is collagen type VI, red is collagen type I.  Blue is staining DNA of cells. 

Note the highly organized structure, and that the cells tend to line up along the fiber direction 

(indicated as along plane with arrow, and into the plane of the paper with a X. See appendix 1.  

The IA mechanically behaves both to resist the swelling pressure of the NP and is 

in tension, as well as providing an element of resistance to axial compression.  The dual 

role of this tissue is reflected in its extracellular composition of collagen type I and some 

collagen type II, along with microfibrils, elastin, and proteoglycans (Yu et al., 2007).  

Unlike the AF, where the ECM components are largely co-localized, elastin fibers and 

microfibrils are not co-localized.  Whereas elastin fibers have been reported to primarily 

lie parallel to one another and form lamella reminiscent of the AF, microfibrils form a 

X 

X 
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network-like matrix, which is much less oriented.   Elastin and microfibrils both exist in 

the PCM as well as in the ECM in this region (Yu et al., 2007).  IA cells differ from those 

in the AF in that they are more rounded, form distinct lamellae rich in collagen and 

elastin, and produce more pericellular matrix (PCM) than AF cells (Roberts et al., 2006), 

(Figure 2-3). 

The NP in healthy discs is proteoglycan rich, resulting in a high water content, 

and has a sparse network of randomly oriented fibers (Roughley et al., 2002).  The fiber 

composition of the NP consists of collagen type II and elastin fibers existing primarily as 

a randomly oriented network in the extracellular matrix, while microfibrils exist in the 

pericellular matrix (Yu et al., 2007). The NP structure serves as the primary support 

structure for compressive loading in the disc.  Unlike AF cells, NP cells are typically 

referred to as chondrocyte-like and are correspondingly rounded and contain an extensive 

PCM (Roberts et al., 2006).  NP cells also have extensive cytoplasm filled cellular 

projections extending through the ECM (Figure 2-4), which may serve as 

mechanosensors.  
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Figure 2-3:IA tissue near the AF (A) and closer to the NP (B). Green is collagen type VI, red is 

collagen type I.  Blue is DAPI staining (DNA of cells). Note the transition to less collagen type I, and 

more extensive pericellular matrices as compared to the AF. See appendix 1. 

 

A 

B 
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Figure 2-4: (Top) NP cells in situ stained with calcein-AM, which emits a green fluorescence in live 

cells. Note the cellular processes extending from the cells (white arrows). Scale Bar = 100 uM in 

horizontal direction, 5 um in vertical direction. (Bottom) NP cells stained in situ stained for Collagen 

type VI (green) with DAPI (blue, DNA stain). The cell processes seem to be composed at least 

partially of collagen type VI. Scale bar bottom left in red = 50 um. 
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NC cells have been found to not proliferate in culture, and will produce only 

small amounts of collagen II in comparison with AF cells from the same animal 

(Poiraudeau et al., 1999). Despite the clear differences between NP, NC and AF cells, a 

unique cell-surface marker for NC cells has not yet been found. The age that NC cells 

disappear varies with animal species, and precedes intervertebral disc degeneration in 

humans. NC cells have been found to stimulate NP cell proteoglycan production, and 

evidence points to a secreted factor mediating this interaction (Erwin and Inman, 2006, 

Erwin et al., 2006). Further, 3-D alginate culture with cells from non-chondrodystrophoid 

(NC containing) animals was found to synthesize proteoglycan aggregates of lower 

molecular weight than for cultures from cells of chondrodystophoid (non-NC containing) 

animals, resulting in higher proteoglycan content in alginate beads containing NC cells 

(Cappello et al., 2006).  
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2.4 Pathological changes associated with IVD degeneration 

 
Previous studies have shown that endplate fracture and subsequent calcification 

can precede changes in disc mechanics (Yoganandan et al., 1994).  Endplate fracture and 

calcification theoretically disrupts disc homeostasis in two ways, one a cellular process 

and one a compositional process.  Endplate calcification may disrupt normal nutrient 

transport (Urban et al., 2001) leading to a loss of cell viability and metabolism which 

could contribute to changed matrix turnover.  Another possible disruption is theoretically 

a loss of NP material through the fracture site, which would be followed by a loss of 

proteoglycan content and subsequently a decrease in water content.  The decrease in 

hydration would lead to an altered loading profile in which the NP is no longer able to 

support the same level of compressive loading, causing the less optimal case of AF tissue 

supporting these stresses (van Dieen et al., 1999). 

While mechanical loading on the spine is needed to maintain spinal health, 

mechanical overload can cause permanent damage leading to disc degeneration (Stokes 

and Iatridis, 2004).  Studying the spinal response to various levels of loading can 

illuminate the critical factors in differentiating a healthy load from a damaging one.  

Previous studies on spinal responses to loading conditions have largely used motion 

segments, or vertebrae-disc-vertebrae structures.  In these cases, mechanics of the 

vertebral bodies and the endplate structure can obscure the response due to the 

intervertebral disc.  Also, the viscoelastic properties of the disc (long time constants) 

dictate long mechanical testing times, which are performed in nutritionally deprived 

conditions, (usually after freezing and without glucose which is needed for cell viability 
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and metabolism (Bibby and Urban, 2004).  Examining the biologic response of the disc to 

such loading is thus made impossible.   

An important parameter that contributes to disc degeneration may be cell death.  

Loss of cell viability should lead to a decrease in matrix biosynthesis, which in turn could 

lead to disc degenerative changes.  Two types of cell death have been identified in the 

IVD, necrosis and apoptosis (Bibby et al., 2002, Bibby and Urban, 2004, Lotz and Chin, 

2000, Risbud et al., 2003).  Necrosis is the means by which cells die due to a large insult, 

either mechanical or toxic, and is characterized by cell swelling and lysis, and can trigger 

an inflammatory response (Kroemer et al., 1998).  Apoptosis is an active, energy 

requiring, means of programmed cell death, which will occur under normal physiologic 

conditions (Grogan et al., 2002).   Past studies have focused on the in vivo apoptotic 

response to static loading (Lotz and Chin, 2000), in vivo viability response in scoliotic 

discs (Bibby et al 2002), viability in nutrient deprived conditions (Bibby et al., 2002, 

Bibby and Urban, 2004, Horner et al., 2002) and cell viability in organ culture systems 

with static loading (Risbud et al., 2003).    

2.5 Intervertebral disc research 

Four model types currently exist in the study of the intervertebral disc.  The first 

is to examine the intervertebral disc in vivo, typically using small animals such as mice, 

rats, or rabbits as a model.  The second is ex vivo organ tissue culture, which has been 

performed with larger animals such as sheep and cows, but also with rabbits, mice and 

rats. The third is ex vivo tissue culture, which has largely been performed with bovine and 
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human tissue. Finally, in vitro cell culture which has been performed on many cell 

sources including rats, mice, pigs, cows and humans. 

For example, while in vivo models most closely represent the in vivo state of the 

IVD, it is extremely difficult to introduce chemical growth factors in a reproducible and 

consistent manner to the entire IVD structure, and the inverse statement is true for cell 

culture (Figure 2-5).   

  

Figure 2-5: Representation of benefits and drawbacks of each intervertebral disc testing model. 

Each method of study has benefits and disadvantages.  In general as the similarity to the in vivo 

case increases, the control one has over the boundary conditions and experimental inputs decreases 

As with most biological systems, much of the research on the intervertebral disc 

has involved the use of animal tissue.  As the study of the biology and mechanics of the 

intervertebral disc has progressed, closer scrutiny of the relevance to the human 

intervertebral disc has become necessary.  Three main considerations are important when 

evaluating the ability of an animal model to represent the human case. First the geometric 

and biomechanical properties of the intervertebral disc, both of which are related to the 

disc structure.  Second, the cellular phenotype and biosynthetic rates of the IVD must be 

considered, as they will affect the relevance of conclusions drawn from biological assays.  

Similarity to 
native state 

Control over 
boundary 
conditions and 
experimental 
interventions 

In vivo Model 
 
Organ Culture 
 
Tissue Culture 
 
Cell Culture 
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Finally, the transport properties and matrix composition profile are significant, as they 

impact (and are impacted by) the biology and biomechanics of the IVD.  

From a biomechanical standpoint, the geometry of the disc influences the stress 

profile developed across the cross-section of the disc.  The aspect ratio, or the ratio of the 

diameter to height, also will affect the ability of the disc to develop large hydrostatic 

forces in the NP in response to an applied load. Differences exist in both aspects between 

species, obviously scaling issues develop as an animal’s size increases or decreases, but 

additionally caudal discs will generally be circular in cross section whereas lumbar discs 

will be more ‘kidney-bean’ shaped (O'Connell et al., 2007) (Figure 2-6). 

  

Figure 2-6: Obvious differences exist between porcine lumbar discs (L) and bovine caudal (R). 

Cross sectional geometries are different, along with different compositional profiles, with the 

porcine NP remaining highly gelatinous and the bovine more fibrous. Images are at different 

magnifications, making size not to scale. The porcine IVD shown (Lumbar) is approximately 3 

inches in its greatest length whereas the bovine caudal disc is only 1 inch in diameter. 

Another factor that could influence the way applied loads are transmitted is the 

shape of the disc at the endplate junction, which is known to vary between species (Alini 

et al., 2007).  Inherent flexibility in the spine varies along the length of the spine 
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(generally greater in the thoracic than the lumbar region, for example) and also between 

species (Alini et al., 2007), which can affect the physiological relevance of an applied 

loading regime. 

The biology of the IVD varies quite significantly both between levels (Wiseman 

et al., 2005, Melrose et al., 1994) and between species. The most obvious difference 

existing between animal models and a human disc is the existence of notochord cells in 

the nucleus pulposus.  In humans, the notochord remnant slowly disappears, and is 

typically absent by 4-10 years of age (Alini et al., 2007). This is also the case in cows and 

sheep (Hunter et al., 2003).  However, some species such as the mouse, rat, cat, pig, and 

rabbit, retain the notochord cells long into adulthood (Hunter et al., 2004). Dogs fall into 

both categories, where the notochord is absent in some species, and retained in others, at 

maturity. A highly gelatinous NP also characterizes species retaining the notochord, 

whereas the NP is more fibrous where the notochord has disappeared (Figure 2-6). The 

structural difference associated with this cellular phenotype transition has led some 

researchers to speculate that the notochord is responsible for the maintenance of the high 

proteoglycan and low collagen content of the intervertebral disc. 

 Many reviews have focused on the relevance of the bovine disc to the human 

lumbar disc. Oshima determined the biosynthetic rate, proteoglycan, collagen, and water 

content profiles were similar between human lumbar and bovine caudal across the cross 

section of the disc (Oshima et al., 1993).  Another study found similar profiles of 

collagen type II and DNA content in addition to validating water content and 

proteoglycan content similarities between human lumbar and bovine caudal discs 
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(Demers et al., 2004). Demers also compared old and young human lumbar and bovine 

caudal IVDs and found the young bovine IVD to be a good representation of a less than 

15 year old human disc, while older bovine discs are good representation of a 15 to 40 

year old human lumbar disc (Demers et al., 2004). 

2.5.1 In vivo models  

 
In vivo studies offer the benefit of modeling the physiologic case, leaving the IVD 

in its normal placement among the vertebrae and exposed to native biochemical and 

mechanical signals. Normal musculature, ligaments, and tendon attachments are 

maintained, along with all normal nutrient and biochemical signaling factors and 

pathways. Negatives associated with in vivo testing include ethics, cost, difficulty 

extrapolating the usually small animal results to the human condition, and the difficulty 

in isolating the response due to the mechanical loading from results due to other 

confounding factors (such as an inflammatory response or the response of the 

surrounding vertebral bone or musculature to the experimental factor). In addition the 

lack of direct control over the nutrient boundary conditions complicates studies of growth 

factors or other chemical inputs. 

2.5.1.1 Relevant research 

Basic science studies on the intervertebral disc environment and biology have led 

to important findings as to the delicate state of the normal and degenerated intervertebral 

disc.  In vivo disc nutrition (Urban et al., 1977) and oxygen tension (Ejeskar and Holm, 

1979) studies were both performed in a canine model.  Biosynthesis and metabolism were 

also studied using 35S-SO4 in the mouse (Venn and Mason, 1983).  The effect of 



 23

dehydration on disc hydration, and the effects on compressive stiffness was studied in a 

rat model (Han et al., 2001). In vivo studies on stimulatory and inflammatory mediators 

have also led to better understanding of IVD biology and pathology.  For example, the 

effect of TNF-alpha as a possible mechanism of chemically mediated pathology 

following NP herniation was studied in vivo (Igarashi et al., 2000) as well as the effect on 

LMP-1 on BMP regulation in a rabbit model (Yoon et al., 2004). Rand et al., 2001 

explored pathways of inflammation by investigating the recruitment of macrophages by 

nucleus pulposus cells in a murine model (Rand et al., 2001). Anderson et al., 2005 found 

a fibronectin fragment to be stimulatory for IVD degeneration in a rat model (Anderson 

et al., 2005). Other studies have explored complications from spinal surgery or 

development to affect the health of the intervertebral disc. The effect of infection on the 

development of the spine was examined in an ovine model (Walters et al., 2005) and later 

the penetration of antibiotics into the disc after IV injection was examined (Walters et al., 

2006). Aebli et al., 2006 studied the thermal profile of an intervertebral disc when 

adjacent vertebrae were undergoing vertebroplasty (Aebli et al., 2006). Also, Forslund et 

al., 2006 examined ultrasound to promote herniated material resorption (Forslund et al., 

2006). 

In vivo studies on disc degeneration have also proved instrumental in 

understanding the development and course of IVD pathology.  Two categories of disc 

degeneration exist, those occurring spontaneously in some animals, and those 

experimentally induced.  Spontaneously occurring disc degeneration include sand rats 

(Moskowitz et al., 1990) normal aging in baboons (Lauerman et al., 1992) as well as a 
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host of mouse gene knockout models (Aszodi et al., 1998, Lettice et al., 1999, Madsen et 

al., 2002, Sahlman et al., 2001). Experimentally induced disc injury studies include 

chymopapain injected discs performed in canines (Wakano et al., 1983, Nitobe et al., 

1988, Lu et al., 1997, Bradford et al., 1984) also extended to porcine discs (Keller et al., 

1988), rats (Norcross et al., 2003) and sheep (Sasaki et al., 2001). Chemonucleolysis was 

also studied in humans (Leivseth et al., 1999). Studies have also introduced degeneration 

in vivo using stab (Kaigle et al., 1998, Kaigle et al., 1997, Kaigle et al., 1995, Osti et al., 

1990) needle puncture (Aoki et al., 2006, Masuda et al., 2005), direct endplate rupture 

(Cinotti et al., 2005) and injection of material (BRD-U) (Zhou et al., 2007). Mechanically 

induced injury models have also been developed in a variety of animal models. Injury 

was induced using compression in a mouse-tail model  (Hsieh and Lotz, 2003, Lotz et al., 

1998) a rat model (Iatridis et al., 1999, MacLean et al., 2003) and a rabbit model 

(Kroeber et al., 2002, Guehring et al., 2005, Omlor et al., 2006). The study of disc 

compression induced degeneration followed by distraction was performed in the rabbit 

(Kroeber et al., 2005). Likewise proteoglycans and collagen were studied in a canine 

model of in vivo compression (Hutton et al., 1998, Hutton et al., 2000) and tail 

suspension (simulated weightlessness in rats (Hutton et al., 2002).  Injury has also been 

induced using torsion to a rabbit model (Hadjipavlou et al., 1998, Hadjipavlou et al., 

1998), by bending in a mouse model (Court et al., 2001) and by kyphotic deformity and 

fusion in a sheep model (Oda et al., 1999).  Mechanical stress caused narrowing of disc 

space in lumbar section of rats (Neufeld, 1992).  The response to dynamic mechanical 

loading has also been studied in vivo, including in pigs (Ekstrom et al., 2004, Ekstrom et 
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al., 1996), rat (MacLean et al., 2005, Maclean et al., 2004, MacLean et al., 2003) and 

mice (Walsh and Lotz, 2004, Ching et al., 2004, Ching et al., 2003), including a force cell 

design for an implant was examined in a baboon (Ledet et al., 2000).  

Interventions to repair the disc have almost exclusively implemented in vivo 

animal models and have included repair by surgical instrumentation (Allen et al., 2004, 

Bass et al., 2006, Cunningham et al., 2002, Hu et al., 2006, Kadoya et al., 2001, Krijnen 

et al., 2006, Lowe et al., 2005, Nau et al., 2007, Takahata et al., 2003, Vuono-Hawkins et 

al., 1994) by chemical intervention (Karppinen et al., 1995) such as FGF (Minamide et 

al., 1999), OP-1 (An et al., 2005, Masuda and An, 2006, Miyamoto et al., 2006, Imai et 

al., 2007, Imai et al., 2007),  GDF-5  (Chujo et al., 2006)(BMP2) (Huang et al., 2007) and 

PRP (Nagae et al., 2007), by gene therapy (Leo et al., 2004, Nishida et al., 2006, Nishida 

et al., 1999, Nishida et al., 1998, Riew et al., 2003, Sobajima et al., 2004, Wallach et al., 

2003, Walsh et al., 2004, Yoon, 2004, Zhan et al., 2004) and autologous and allograph 

cell implantation (Luk et al., 2003, Okuma et al., 2000, Ledet et al., 2002, Gorensek et 

al., 2004, Sakai et al., 2005, So et al., 2007).  Revell et al., 2007 affected repair using 

injectable polymers in a pig model (Revell et al., 2007). Diagnostic techniques have used 

against keratin sulfate in the mouse (Kairemo et al., 2001). A study of pain relief from 

herniated NP was also performed in rabbit (Iwatsuki et al., 2005, Hashizume et al., 2007).  

2.5.2 Organ culture  

 
The application of an intervertebral disc organ culture model allows the 

examination of the mechanical and biologic response of the disc to loading conditions.   

This approach has a few benefits over otheer cases.  First, the ex vivo state aids in the 
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monitoring of environmental factors, such as the geometry of loading surfaces and the 

introduction of cytokines, lending a closer control over experimental conditions while 

retaining the in situ environment (cell-matrix interaction is maintained).  Second, larger 

discs, which are potentially more closely representative of the human case, can be studied 

allowing for multiple measurements on adjacent tissue.  Tissue swelling can be 

constrained by the application of an external load (Lee et al., 2006, Korecki et al., 2007), 

which will maintain the normal intervertebral disc structure and composition profile. 

Finally, the approach is more ethically feasible and a large number of specimens can be 

obtained.  

While an organ culture model does not allow an exact in vivo stress/strain 

simulation, controlled investigation of loading or injury induced response of cells, tissue 

matrix, and interactions between these two can be achieved. The use of organ culture 

models in intervertebral discs is relatively new in practice, and few thus far have 

examined mechanical responses of the disc to loading, which define tissue functionality.  

Instead, these systems have mostly focused on the biological response to loading and 

culture conditions through metabolic and viability assays. In contrast, the technique has 

been used extensively in cartilage tissues, both with and without the underlying 

subchondral bone, to study the response of tissues to impact loading, dynamic loading, 

and static loading eg: (Duda et al., 2001, Jeffrey et al., 1995, Kurz et al., 2001, 

Milentijevic et al., 2003, Morel and Quinn, 2004, Quinn et al., 1998). 
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2.5.2.1 Relevant research 

The main concern in IVD organ culture is the constraint of the excised IVD 

tissue.  With no boundary in place, the nucleus pulposus often will swell to the point 

where it dislodges from the annulus, or normal disc architecture is lost. The main 

strategies to overcome this are to retain the endplates on the IVD, apply an osmotic 

pressure to limit swelling, or to apply an external load to the disc to maintain swelling 

pressure in the NP.  

Perhaps the most challenging method is retaining the endplates, especially as the 

size of the animal model increases.  This is due to a few factors.  First, the thickness of 

the cartilage endplate varies between species, making it necessary to retain some of the 

bony endplate in many cases.  Secondly, and most importantly, the endplate is a primary 

nutrition route for the IVD, with many capillary buds allowing for nutrient transport. 

Post-mortem, reports of impaired endplate route nutrition (Lee et al., 2006, Gantenbein et 

al., 2006) have been attributed to such clogging, leading researchers set on retaining 

endplates in a large animal model to resort to whole animal heparinization (Gantenbein et 

al., 2006) which is not always feasible. For this reason, many of the explant models 

retaining endplates have been developed in small animal models, where endplates can be 

more effectively cleaned and nutrition is not as easily compromised.  Studies on the 

endplate have focused endplate transport in a sheep model (Ayotte et al., 2001) and on 

mechanical compression induced apoptosis in the endplates of mouse IVD organ cultures 

(Ariga et al., 2003, Risbud et al., 2003) established a rat whole organ culture model 

which maintained NP cell viability for 1 week, later (Risbud et al., 2006) applying this 
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model to the study of the effects of TGF beta 1 and 3 on the ERK signaling pathways in 

the nucleus pulposus. Kim et al., 2005 examined the resorption of the NP in a rat organ 

culture system after endplate injury, providing support for a theory that the notochordal 

cell disappearance is related to such injury and the resulting cell population is derived 

from the endplates (Kim et al., 2005). Lim et al., 2006 also developed a rat organ culture 

system able to retain cell viability for 14 days (Lim et al., 2006). Haschtmann et al., 

established a rabbit IVD culture model (Haschtmann et al., 2006)and examined the 

response of a rabbit organ culture model to diurnal osmotic loading for 28 days 

(Haschtmann et al., 2006). 

The second most commonly used strategy in organ culture is to constrain swelling 

using an applied load. Lee et al., 2006 established a model for bovine intervertebral disc 

tissue to constrain swelling by the application of a static compression load (Lee et al., 

2006). Later studies expanded on this concept by comparing the effects of a static and 

diurnal load on the maintenance of water, gag and cell viability of the IVD (Korecki et 

al., 2007). Takada et al., 2004 cultured IVD tissue without endplates with macrophages to 

examine IL-6 production(Takada et al., 2004).   

Studies on the mechanobiology of the IVD in organ culture have been performed 

in a variety of ways.  Researchers have examined the effect of hydrostatic loading 

loading (Chiba et al., 1998, Risbud et al., 2003), static compression (Ariga et al., 2003, 

Lee et al., 2006) , and dynamic osmotic loading (Haschtmann et al., 2006) and 

compressive loading (Korecki et al., 2007) on the intervertebral disc. Thus far, no studies 

on dynamic compression loading have been performed in IVD organ culture. 
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2.5.3 Tissue culture  

 
Like organ culture, tissue culture involves studying the intervertebral disc ex vivo 

while maintaining cell-matrix interactions. However, unlike organ culture, the tissue is 

typically cut into pieces, and often the NP and AF are separated from each other. In this 

model system tissue swelling is often unconstrained and mechanical function of the entire 

structure is lost. This model system has proved to be quite useful for studying normal and 

degenerated human tissue, as small samples of tissue are easier to obtain from a surgical 

procedure than an entire intact IVD.   

2.5.3.1 Relevant research 

One main research thrust for tissue culture has been on metabolism and 

biosynthesis of the IVD, which has been examined in human tissue (Oegema et al., 1979, 

Bayliss et al., 1988, Liu et al., 1991, Maroudas et al., 1975) and experimentally modified 

by lactate and pH concentration in bovine and human tissue (Ohshima and Urban, 1992).  

Bovine disc tissue was also examined for biosynthetic rates and compared to human discs 

(Ohshima et al., 1995). Horner et al., 2001 studied the effect of nutrient supply on the 

viability of nucleus pulposus cells (Horner et al., 2002).  Nemoto et al., 1997 examined 

MMP production in normal and degenerated human IVD tissue (Nemoto et al., 1997). 

A second main avenue of tissue culture research is on herniation of NP material.  

The effect of MMP-3s on the resorption of herniated NP material (Kato et al., 2004) the 

ability for such treated tissue to attract macrophages (Haro et al., 2002)  and the release of 

TNF-alpha by MMP-7 treated tissue (Haro et al., 2005). Kang et al., 1996 examined the 
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MMP, NO, IL-6, and PGE2 production of spontaneously herniated NP tissue (Kang et al., 

1996).  

Other studies have focused on mechanical loading on IVD tissue, the effects of 

growth factors, and interaction with other cells. Ishihara examined the effect of 

hydrostatic loading on biosynthesis using human and bovine disc explants (Ishihara et al., 

1996). The effect of osmolarity was also examined in bovine NP tissue (Ishihara et al., 

1997). Maynard et al., 1998 studied the effect of 2 weeks of hypergravity on the AF of rat 

IVDs (Maynard, 1998).  Le Maitre et al., 2004 studied cell and tissue function up to 21 

days in culture (tissue) where the tissue was either unconstrained or constrained to limit 

swelling, finding constrained culture was similar to control tissue but unconstrained 

culture had dramatic differences from freshly harvested tissue (Le Maitre et al., 2004). 

Thompson et al., 1991 examined the effect of growth factors on canine IVD tissue 

(Thompson et al., 1991). Li et al., 2000 examined the effect of IVD material on the 

behavior of osteoblast cells in a direct contact and co culture model (Li et al., 2000).  

2.5.4 Cell culture  

 
Cell culture requires removing the cells from the native IVD matrix. Typically 

this is accomplished through an ECM digestion using cocktails of enzymes such as 

collagenase, dispase, or pronase protease. The isolated cells can then be seeded onto 

tissue culture plastic for 2-D examination of cell behavior, or onto an artificial matrix for 

3-D culture.  A large host of different artificial matrices exist, many of which have been 

utilized for tissue engineering approaches in various tissues.  The choice of culture 

system has implications for the behavior of the cells, both as far as maintenance of 
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normal cell phenotype as well as how efficiently experimental factors such as mechanical 

loading or introduced chemical factors are passed from the matrix to the cell.      

2.5.4.1 Relevant research 

Normal biosynthesis has been studied in cell culture to further define the behavior 

of IVD cells and to compare and contrast differenced between NP, AF, IA and even 

articular chondrocytes. For instance, the secretion of secretory leucine proteinase 

inhibitor by IVD cells and articular cartilage chondrocytes (Jacoby et al., 1993), the 

differences in proteoglycan epitopes secreted by encased ovine IVD cells into alginate 

AF, IA and NP (Melrose et al., 2000, Melrose et al., 2003, Melrose et al., 2001) and the 

secretion of factors from the mouse IVD NP cells in culture (Rand et al., 1997) have all 

been studied, with the latter study finding basal secretion of IL-6 and –10 but not –1 in 

vitro.  Chiba et al., 1998 studied the ECM composition created by IVD cells in alginate 

(Chiba et al., 1998) with later studies also examining the ECM from cultured sheep NP 

(Sun et al., 2001), rabbit NP (Gan et al., 2003, Gan et al., 2003), and canine IVD cells 

(Masuda et al., 2002) and normal, degenerated, and scoliotic human IVD (Stern et al., 

2004).  Other cell culture studies have supported in vivo models. Chiba et al., 2006 

compared the effect of chemonucleolysis by chondroitinase ABC and chymopapain, 

finding chymopapain treatment to more dramatically affect the ability for the cells to 

restore their ECM (Chiba et al., 2006). Ichimura et al., 1991 also examined factors 

affecting the proteoglycan, collagen and DNA content of rat IVD cells in culture 

(Ichimura et al., 1991). 
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Another research topic addressed by cell culture studies has been the effect of 

stimulatory or inhibitory factors to affect IVD cells. Shinmei et al., 1988 studied the 

effect of recombinant IL-1 on the proteoglycan content of AF and NP cells from the 

rabbit cultured in vitro (Shinmei et al., 1988), later built upon by other researchers (Osada 

et al., 1996, Jimbo et al., 2005). Other stimulatory factors examined have included 

‘substance P’ (Ashton and Eisenstein, 1996) a synthetic peptide of link protein (Gruber 

and Hanley, 2003) and notably OP-1(Zhang et al., 2004, Takegami et al., 2002) and 

GDF-5 (Wang et al., 2004), both of which later were applied to in vivo models to repair 

degenerated discs. Additionally, Yoo et al., 1992 examined suppression of proteoglycan 

synthesis in cultured canine IVD cells by anti-inflammatory cocktails (Yoo et al., 1992). 

Pattison 2002 examined the production of MMP2 in NP cells in alginate with TGF-beta 

and IL-1 (Pattison et al., 2001). Kim et al., 2003 showed nicotine to inhibit collagen II 

and proteoglycan synthesis in the IVD (Kim et al., 2003). Similarly, Akmal et al., 2004 

studied the response of IVD cells to nicotine and found a general decrease in DNA, 

collagen and proteoglycan content in response to the application of nicotine (Akmal et 

al., 2004). Gruber et al., 2004 found AF cells in 3D culture from degenerated discs could 

be modified with cytokines to produce extracellular matrix (Gruber et al., 2004).  Aota et 

al., 2006 studied the effect of lipopolysaccharide (LPS) on bovine NP and AF cells and 

articular chondrocytes, finding different responses between all three cells, reinforcing the 

important observation that NP cells are not the same as articular chondrocytes (Aota et 

al., 2006). Finally, introducing a possible mechanism for nerve ingrowth into the IVD, a 
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recent study found pro-inflammatory cytokines to stimulate the expression of nerve 

growth factor by IVD cells (Abe et al., 2007). 

Investigation into artificial matrices and how they affect IVD cells has also been an 

important contribution to the future of intervertebral disc tissue engineering, as well as 

characterizing the varying matrices and their ability to house IVD cells in such a way that 

they retain normal in vivo characteristics. Lee et al., 2001 cultured cells as pellets and 

found the method to be feasible and applicable to future studies (Lee et al., 2001). The 

prevalence of alginate, agarose and collagen scaffolds in the literature has inspired some 

researchers to carefully characterize their ability to maintain IVD cell phenotype. 

Maldonodo et al., 1992 characterized the metabolism of canine IVD cells cultured in 3D 

microspheres of alginate (Maldonado and Oegema, 1992). Gruber et al., 1997 

investigated the responsiveness of IVD cells in 3D culture in either alginate or agarose 

culture, and the cell response to TGF beta and later looked a variety of matrix substrates 

on the behavior of IVD cells (Gruber et al., 1997).  The mechanical properties of the 

alginate as well as the encased cell constructs were also examined (Baer et al., 2003). 

Kluba et al., 2005 studied the effect of culture system and the state of the donor cells on 

the resulting efficacy in culture (Kluba et al., 2005).  New scaffolds have also been 

developed and characterized. For instance, IVD cells on bioactive glass (Gan et al., 

2000), a gelatin/chondroitin-6-sulfate polymer scaffold (Yang et al., 2005), Atelocollagen 

(Sakai et al., 2006) and chitosan based scaffolds (Roughley et al., 2006) for induce NP 

cell repair have all been examined. Hamilton et al., 2006 created an improved nucleus 

pulposus to cartilage endplate interface through culture (Hamilton et al., 2006).  Johnson 
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et al., 2006 studied the effect of substrate topography on creating aligned scaffolds for AF 

cell repair, finding culture of AF cells on grooved PCL scaffolds caused the AF cells to 

align (Johnson et al., 2006). 

Mechanical stimulation applied to IVD cells has also led to observations on IVD 

cell responsiveness without the surrounding tissue matrix. Iwashina et al., 2006 and 

Miyamoto et al., 2005 studied the effect of low intensity pulsed ultrasound (LIPUS) on 

IVD cells cultured in alginate, finding the cells were stimulated to proliferate and 

metabolism (as measured by radioactive tracers) increased (Miyamoto et al., 2005, 

Iwashina et al., 2006). Static compression as studied in porcine cells encased in alginate 

(Chen et al., 2004). Other researchers have studied the effect of hydrostatic pressure on 

porcine and rabbit IVD cells cultured in alginate, finding a frequency of 5 Hz to disrupt 

protein metabolism (Kasra et al., 2006, Kasra et al., 2003). The effects of hydrostatic 

pressure have also been studied in bovine and human IVD cells in a collagen gel 

(Neidlinger-Wilke et al., 2006). 

2.6 Summary 

 
Study of the intervertebral disc is complicated due to inhomogeneity in tissue 

structure and cell type across the cross-section of the disc. The bovine intervertebral disc 

was chosen, as it is a good model for the tissue structure and cell type and behavior of the 

human lumbar intervertebral disc.  In general, careful consideration must be given to the 

appropriate culture system to address the hypotheses of a study.  This body of work 

utilizes both organ and cell culture models to explore the role of mechanics, aging, and 

time on the biological and mechanical behaviors of the intervertebral disc. The use of 
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organ culture facilitates the simultaneous tudy of tissue mechanics and cellular response, 

as was necessary to answer the hypotheses in Chapters 3 and 4.  Cell culture models 

control cellular boundary conditions more carefully than organ culture systems.  In 

particular, the use of a cell culture system ensured the initial mechanical boundary 

conditions were homogeneous between mature and young cells to address the effect of 

loading conditions for chapters 5 and 6.  
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3.1 Abstract  

 
Study Design 

A bovine intervertebral disc organ culture model was used to study the effect of needle 

puncture injury on short-term disc mechanics and biology. 

Objective 

To test the hypothesis that significant changes in intervertebral disc structure, mechanics, 

and cellular response would be present within one week of needle puncture injury with a 

large gage needle but not with a small gage needle.  

Summary of Background Data 

Defects in annulus fibrosus induced by needle puncture injury can compromise 

mechanical integrity of the disc and lead to degeneration in animal models. The 

immediate and short-term mechanical and biological response to annulus injury through 

needle puncture in a large animal model is not known.  

Methods  

Bovine caudal intervertebral discs were harvested, punctured posterolaterally using 25G 

and 14G needles, and placed in organ culture for 6 days. Discs underwent a daily 

dynamic compression loading protocol for 5 days from 0.2 – 1 MPa at 1 Hz for 1 hour. 

Disc structure and function were assessed with measurements of dynamic modulus, 

creep, height loss, water content, proteoglycan loss to the culture medium, cell viability 

and histology. 
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Results  

Needle puncture injury caused a rapid decrease in dynamic modulus and increase in creep 

during 1 hour loading, although no changes were detected in water content, disc height, 

or proteoglycan lost to the media.  Cell viability was maintained except for localized cell 

death at the needle insertion site.  An increase in cell number and possible remodeling 

response was seen in the insertion site in the nucleus pulposus.   

Conclusions  

Relatively minor disruption in the disc from needle puncture injury had immediate and 

progressive mechanical and biological consequences with important implications for the 

use of discography, and repair/regeneration techniques. Results also suggest diagnostic 

techniques sensitive to mechanical changes in the disc may be important for early 

detection of degenerative changes in response to annulus injury. 
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3.2 Precis 

 
The effect of needle puncture injury on intervertebral disc mechanics and biology was 

examined using a bovine organ culture model. Small and large gage needle insertion 

resulted in immediate and progressive effects on mechanical properties with localized 

evidence for structural changes and a cellular response localized to the needle track. 

3.3 Key Points  

 

• The influence of insertion of 25 G and 14 G needles on the short-term mechanical 
and biological response of the disc was investigated using a bovine organ culture 
model 

• Immediate and progressive changes in disc stiffness and viscoelastic behaviors 
were detected following needle puncture injury with both small and large gage 
needles.  

• Needle puncture injury resulted in localized structural disruption, loss of cell 
viability, and matrix remodeling. Gross tissue water and proteoglycan contents, 
and cell viability were maintained.  

• Results suggest needle puncture injury results in important mechanical changes 
that may lead to subsequent degenerative remodeling, in a manner that would be 
difficult to detect with traditional imaging techniques that do not assess 
biomechanical function. 

• Anulus puncture injury via small and large gage needles results in localized and 
generalized biological and mechanical consequences with implications for 
discography and injection of biological treatment agents.  

 

3.4 Key Words    

 
Spine, Intervertebral disc, organ culture, needle puncture, bovine, discography, 
mechanics, dynamic compression loading  
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3.5 Introduction 

 
Low back pain is a common and costly affliction leading to around 19 million 

physician visits and approximately $20 billion in costs in the United States per year.1 The 

causes of low back pain are multifactorial and complex, yet disc degeneration is often a 

contributor, particularly in its early unstable stage.2,3 

Current and future procedures for intervertebral disc diagnosis, repair and 

regeneration often require needle injection to the nucleus pulposus (NP) through the 

annulus fibrosus (AF). For example discography, which requires injection of a radio 

opaque dye into the NP, has a best-case positive predictive value of 50% to 60%, and 

results in potential AF damage through needle puncture.4 Intradiscal electrothermal 

treatment also requires puncture of the AF and additional annular disruption using a 

catheter.5 Future treatments including growth factor therapy,6 tissue engineering,7 and 

gene and cell therapy 8,9 may also require puncture of the AF using a needle. 

There is evidence in animal models that defects in the AF structure, such as those 

induced by needle insertion, can compromise disc and motion segment mechanical 

integrity,10-13 and lead to mild and moderate degeneration over time.13-17 It is generally 

believed that needle puncture injury with small gage needles is not expected to cause 

damage while needle puncture injury with large gage needles leads to degenerative 

changes. AF needle puncture injury to the disc in rabbits using needles of different gages 

has been demonstrated to result in slow progressive degeneration as measured using 

MRI, X-ray, histology and PCR.6,15,16,18 Differences in scaling and in biology between 

small and large animal models leaves unanswered questions regarding extrapolation of 
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needle puncture injury studies to the human condition. The creation of peripheral AF 

tears in sheep and pig models also demonstrated evidence of degeneration when 

evaluated longitudinally for morphological, biochemical and biomechanical changes.19-22 

These studies focused on the medium to long-term effects of disc injury on degeneration, 

and there is very limited information on the immediate and short-term mechanical and 

biological response to annulus injury through needle puncture in a large animal model.  

The purpose of this study was to test the hypothesis that significant changes in 

disc structure, mechanics, and cellular response would be present within one week after 

needle puncture injury with a large gage needle but not with a small gage needle. To 

study the effect of the needle puncture injury under reproducible conditions in a large 

animal model, we utilized a bovine caudal intervertebral disc organ culture model. This 

ex vivo system allows precise control over the mechanical and chemical boundaries of 

the disc, the ability to obtain mechanical parameters over time for the same disc, and the 

ability to study these interactions in a large animal system where the effects of tissue 

disruption may be evaluated in the absence of substantial inflammatory response as found 

in vivo.  

3.6  Materials and Methods 

 
Bovine tails were obtained from a local abattoir within 4 hours post-mortem and 

randomly assigned to an unpunctured control group (N=10), and one of two needle 

puncture groups (small = 25G syringe, N=11; large = 14G syringe, N=12). Musculature 

surrounding the intervertebral disc was removed. Caudal discs were punctured using a 

posterolateral approach through the AF taking care to only puncture as far as the NP. 
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Discs were removed from vertebral endplates and initial disc heights, diameters, and wet 

weights were measured prior to culturing. Specimens were then placed in an organ 

culture chamber and incubated in standard culture conditions at 37C and 5% CO2 under a 

0.2 MPa static load as previously described.23 Media consisting of DMEM (4.5 g/L 

glucose, 110 mg/L sodium pyruvate, with L-glutamine), supplemented with 10% Fetal 

Bovine Serum, 100 units/mL of penicillin/streptomycin, 0.1 mg/mL gentamicin, 0.75 

mg/L fungizone, 0.02 M HEPES buffer, and 50 µg/ml ascorbic acid, was continuously 

circulated through the chamber (1.1 mL/min) and changed every 2 days.  

The loading protocol for all IVDs consisted of 4 conditions: Baseline, Test 1, 

Dynamic Loading, and Test 2 (Figure 3-1).  IVDs were initially loaded under a baseline 

static load of 0.2 MPa for 12 hours.23 Chambers were then individually attached to an 

incubator-housed loading device for 3 cyclic tests lasting slightly more than one hour: 

Test 1 consisted of a one minute test (0.2-0.4 MPa, 1Hz) that was sinusoidally applied to 

obtain a pre-loading dynamic nominal modulus; Dynamic Loading consisted of one hour 

of sinusoidal loading from 0.2-1.0 MPa at 1 Hz; and Test 2 consisted of a repeat of the 

one minute test to obtain a post-loading nominal dynamic modulus. Creep during one 

hour of dynamic loading was calculated from displacements that were recorded from the 

loading device at points corresponding to 0.2 MPa load for the first and last cycles of the 

one hour dynamic loading test, and the initial height at the first cycle was compared 

between days to compare height lost over the culture duration. Dynamic stiffnesses were 

calculated using custom written MATLAB code (The MathWorks, Natick, MA) and for 

ease of comparison across animals, all stiffness measurements were normalized by initial 
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IVD cross-sectional area and presented as a ‘nominal modulus.’ After the 3 test cycles, 

the baseline 0.2 MPa static load was again applied to each chamber and at least 12 hours 

of recovery was allowed between dynamic load cycles. Each chamber experienced 

loading once per day, adding to 5 total times during the 6 day culture period.  

Glycosaminoglycan (GAG) content released to the media was assayed using the 

dimethylmethylene blue (DMMB) assay24 using DMEM (4.5 g/L glucose, 110 mg/L 

sodium pyruvate, with L-glutamine) and chondroitin-4 sulfate to create a standard curve.  

Media aliquots were collected before every loading experiment and frozen at –20ºC prior 

to analysis. Regional water contents for the outer and inner annulus (OA, IA), and NP 

were determined for each group by comparing the wet weights and dry weights (after 

lyophilization) of tissue samples isolated from the disc. 

Tissue samples were isolated both along the needle track and on the opposite side 

of the disc from the insertion site to assess cell viability both local to the needle track and 

in the overall tissue (Figure 3-2). Samples were immersed in TBSS (Tyrode’s Buffered 

Saline Solution) with 1 mg/ml 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium 

bromide (MTT thiazole blue, Sigma Aldrich, St. Louis, MO) for live cell staining and 1 

µM ethidium homodimer-1 (Molecular Probes, Eugene, OR) for dead cell staining and 

allowed to incubate for 2 hours.  Excess dye was removed by placing the tissue samples 

in PBS on a shaker for 10 minutes and samples were frozen at –80C.  Frozen tissue was 

sectioned using a cryotome into 10 µm thick slices either perpendicular or parallel to the 

needle insertion track to obtain radial or sagittal sections (Figure 2) for evaluation of the 

disc and needle insertion path. Images of each section were obtained at 20x under 
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fluorescent (ethidium) and brightfield (MTT) lighting conditions.  This technique was 

shown to be effective in assessing cell viability in all regions of the bovine IVD.23 

Tissue samples encompassing the needle track were fixed in formalin for 7-10 

days, embedded in paraffin, and stained with alcian blue (proteoglycans), picosirius red 

(collagen), and Weigert’s hematoxylin (cell nucleus) for histologic appearance.25 Tissue 

was again sectioned either perpendicular or parallel to the needle track for radial and 

sagittal evaluation of the disc and needle insertion path.    

For all quantitative variables, ANOVA with Bonferroni-adjusted post-hoc 

comparisons were performed using p<0.05 significance level.  All values are reported as 

averages ± SEM.   

3.7  Results 

 
The nominal dynamic modulus was significantly affected by needle puncture 

injury (P=0.009), with average pre-load and post-load values for the large needle group 

being significantly lower than for control (Figure 3-3). No significant differences existed 

for pre or post load modulus between small and large needle groups, nor between small 

needle and control groups (P>0.19). Regardless of experimental group, the nominal 

dynamic modulus increased post-load as compared to pre-load, however no significant 

differences were noted between groups (P=0.076).  A small but significant increase in 

pre-load dynamic modulus was observed between day 2 and day 1 in the small needle 

puncture group (P=0.0028) (Figure 3-3a), and in post-load dynamic modulus for the large 

needle puncture group between day 1 with days 2 and 5 (P=0.042) (Figure 3-3b). No 
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significant increase in either the pre-load or post-load dynamic modulus was seen over 

time in the control group (P>0.062).    

Needle puncture injury also affected the creep during the one hour dynamic 

loading with significantly more creep observed in needle puncture than control groups 

(Figure 4-4, P<0.006).  No significant differences were seen between large and small 

needle groups.  Disc height recorded at 0.2 MPa during the first cycle of dynamic loading 

decreased over time for all groups, and tended to decrease more for needle puncture 

groups, however no significant differences were detected (Table 3-1). 

 Regional tissue water contents were not significantly affected by needle 

puncture injury (P>0.125). Combining all groups, average OA water content was 57.21 ± 

0.75%, IA water content was 71.92 ± 0.75% and NP water content was 80.24 ± 0.56%.  

The amount of GAG released to the media, reported as a percentage of initial disc wet 

weight, was small and not significantly affected by either large or small needle puncture 

(P>0.125). Average GAG release to the media was 0.060 ± 0.005 % of the initial disc 

weight (Table 3-2). 

Localized cell death was observed in the area adjacent to the needle tracks.  Cell 

viability was maintained elsewhere in the disc, with no observable differences between 

groups (Figure 3-5).  Histology revealed annulus fiber disruption (Figure 3-6), and a 

localized area of increased cell number and possible remodeling in the NP of both needle 

groups (Figure 3-7).  
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3.8  Discussion  

 

The purpose of this study was to evaluate the immediate and short-term changes 

in disc structure, mechanics, and cellular response resulting from small and large gage 

needle puncture injury. A bovine organ culture model was used to ensure homogeneous 

mechanical and chemical boundary conditions, to allow for multiple dependant variables 

to be examined on the same tissue, and to separate the inherent intervertebral disc tissue 

response from a more systemic inflammatory response. Localized disruption in the disc 

tissue from both small and large needle puncture injury was demonstrated to rapidly 

compromise local disc structure, elastic and viscoelastic mechanical properties. Evidence 

of a cellular response was also present in the NP region of both needle puncture injury 

groups, with increased cell death around the needle track, and regions of increased cell 

number and matrix remodeling along the needle track. Needle puncture injury did not 

affect GAG released from the disc or water content after recovery. Significant biological 

and structural alterations in the disc in response to large gage needle puncture was 

anticipated and consistent with the hypothesis, but the significant alterations in response 

to small gage needle puncture was surprising and contrasted the hypothesis.  

The results of this study indicate that needle puncture, with even a small needle, is 

sufficient to initiate immediate and progressive alterations in disc height, stiffness and 

viscoelastic properties (i.e., creep during one hour of loading) that do not recover. In all 

groups, the largest changes in disc mechanics were observed between days one and two, 

indicating the largest response to the mechanical loading occurred during the first day. 
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While some of the changes are probably due to a preconditioning type of response, disc 

mechanics in needle puncture groups were further altered, indicating that the majority of 

additional tissue damage probably occurred during the first day’s loading. A previous in 

vitro study demonstrated that mechanical stiffness, viscoelastic relaxation, and water 

content all recovered within 18 hours following cyclic loading (although no 

measurements were taken at the 12 hour time point).26 While discs were only allowed 12 

hours of recovery between loading events in this study, the removal of vertebral endplates 

leads to significantly faster recovery times.27 Therefore, it can be concluded that 

mechanical changes reported in this study are associated with needle puncture injury and 

not due to the loading protocol. It is also noteworthy that water content in all discs in this 

study did recover within 12 hours after loading, consistent with MRI measurements of 

Johannessen et al.26 In this context, this study provides support to the concept that 

diagnostic techniques capable of evaluating biomechanical behaviors may be effective at 

evaluating early degenerative changes in the disc, whereas traditional MRI evaluations 

that focus on water content alone may miss important structural changes resulting from 

injury. 

Degenerative changes of the disc may be induced as a result of pathological 

loading and mechanical damage, biological remodeling, response to injury and 

proinfloammatory cytokines, or a combination of all of these. In this study no significant 

increase in GAG lost to the medium was detected for small and large needle puncture due 

to leaching of proteoglycans from the needle track, but we did find structural disruptions 

and altered mechanics. We infer that loss of GAG in annulus injury models of 
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degeneration may be associated with three interactive pathways: damage accumulation 

from pathological loading that might involve depressurization of the NP and larger, more 

ubiquitous structural defects than AF needle puncture injury alone, chronic biological 

remodeling that includes proteolytic cleavage of aggrecan into smaller fragments; and 

biological response to proinflammatory cytokines in response to injury in vivo.28 

Several animal models of disc degeneration use needle puncture or other annulus 

injury to induce degenerative changes. Rabbit IVDs, when subjected to annular stab and 

needle puncture into the NP using 16-21G needles resulted in changes that were 

consistent with degeneration after eight weeks.15,16 With a 23G needle, Kim et al. 

reported nuclear herniation after needle puncture.17 In our study, no extrusion of NP 

material was observed but immediate and significant mechanical and cellular changes 

were found. With smaller gage needle (28G), and saline injection into the rabbit NP, non-

significant trends of decreased disc height and proteoglycan and collagen content in the 

AF and NP were observed at two weeks that persisted after eight weeks.6 Moderate 

degeneration occurred after 12 months and marked degeneration after 18 months in pig 

and sheep models that had peripheral AF tears induced surgically with clear loss of disc 

height and biochemical changes in the matrix.19-21 In an 18 month sheep study, AF 

delamination was produced by injecting saline using a 27G needle into the outer third of, 

and parallel to, the anterolateral AF fibers, and compared to a 27G needle puncture 

without saline injection.13 Of particular interest was the finding that both the saline 

injected and non-injected needle injuries showed morphologic evidence of mild to 

moderate degeneration, lamellar thickening in the region of the injury, and altered 
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biomechanical behaviors.  This study supports annulus injury as a potential pathway 

towards progressive disc degeneration and demonstrated that even small needle puncture 

resulted in immediate and progressive changes to the IVD biomechanics and cellular 

response. 

Overall disc cell viability remained high, consistent with previous studies using 

this organ culture system,23,29 with the only exception in the area immediately adjacent to 

the needle track. The maintenance of cell viability in the disc away from the needle injury 

suggests that cell viability was not affected by altered disc mechanics associated with 

needle puncture injury. On the other hand, localized cell death was likely due to the 

severing of collagen fibers as the needle entered the disc, and it is possible that the 

observed changes in mechanical behavior could have induced more general apoptosis in 

response to altered stresses.30 In a rabbit needle puncture injury model, Sobajima et al. 

reported an early upregulation of mRNA for IL-1β, MMP-3 and I-NOS in the nucleus 

that may have been associated with altered mechanics of the IVD because the needle 

puncture only penetrated the AF and not the NP.31 Catabolic remodeling of mRNA 

expression in response to altered mechanical loading is well-documented32,33 and also 

supported by results of this study that found early mechanical changes of the IVD in 

response to needle puncture injury.  

 Bovine discs were used in this study because they are a large animal model with 

IVDs that are reported to have composition and biosynthetic rates similar to human 

IVDs.34 Sparse notochordal cell populations in both adult bovine and sheep populations 

also mimick the situation seen in humans, where notochordal cells disappear during the 
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second decade.35 The NP in bovine and other large animals also tends to be more fibrous, 

preventing an immediate prolapse of NP material through the experimental AF defect 

when the needle is pulled out, similar to an adult human.  

 We conclude that a relatively minor disruption in the disc from small and large 

gage needle puncture had immediate and progressive mechanical and biological 

consequences with important implications for the use of needle puncture in discography, 

and repair/regeneration techniques of degenerated discs. Results suggest that altered 

mechanics and subsequent changes in metabolism resulting from small and large needle 

puncture injury may be a possible mechanism for degenerative remodeling. Results also 

suggest early matrix disruption results in mechanical changes that would be difficult to 

detect from traditional imaging techniques that do not assess mechanical function. This 

study provides a greater basic science understanding of needle puncture models of 

degeneration in large animals and suggests that altered mechanics resulting from needle 

puncture injury may be a possible mechanism for degenerative changes. As with any 

model system, further studies on human tissue are warranted before any direct 

recommendations can be made on needle size for clinical applications.  
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3.10 Tables and Figures 

 

 

 

Table 3-1: Height lost between culture days. No significant differences were noted between groups. 

Values are expressed as Average ± SEM 

Day 1 - Day 2 Day 1 - Day 3 Day 1 - Day 4 Day 1 - Day 5 

Group mm ± SEM mm ± SEM mm ± SEM mm ± SEM 

Control 0.200 ± 0.052 0.229 ± 0.036 0.192 ± 0.040 0.209 ± 0.036 

Small 0.234 ± 0.039 0.192 ± 0.023 0.275 ± 0.043 0.272 ± 0.045 

Large 0.234 ± 0.056 0.277 ± 0.031 0.288 ± 0.033 0.307 ± 0.043 

 

 

 

 

 

 

 

 

 

 

 

Table 3-2: Average GAG loss to culture media (as a percentage of total initial disc weight) and 

percent water content of intervertebral disc tissue for outer annulus (OA), inner annulus (IA), 

nucleus pulposus (NP) regions.  No significant differences were noted between groups. Values are 

expressed as Average ± SEM. 

% Water content 

Group 
GAG loss to 

media OA IA NP 

Control 0.067 ± 0.007 59.65 ± 1.72 73.32 ± 1.66 78.92 ± 1.24 

Small 0.053 ± 0.006  57.1 ± 1.21 72.08 ± 1.10 80.73 ± 1.04 

Large 0.065 ± 0.009 57.36 ± 1.12 71.82 ± 1.24 80.80 ± 0.45 
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Figure 3-1: Timeline for mechanical intervention protocol. Daily loading consisted of Test 1, 

Dynamic Loading, and Test 2.  A baseline static load (0.2 MPa) was applied for the remaining culture 

duration. The intervention protocol was repeated each day for 5 days of the 6 day culture period. 

Note: timeline is not to scale 
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Figure 3-2 : Sectioning orientations for histology and viability images.  Tissue was oriented in two 

different planes to capture localized response to needle puncture injury (radial section) or a more 

global tissue response (sagittal section). Radial and sagittal sections were created for all groups tested 
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Figure 3-3 : Average ± SEM nominal dynamic loading modulus for pre-load (top) and post-load 

(bottom) tests.  A significant difference between groups or time points is indicated by sharing of a 

common symbol.
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Figure 3-4: Average ± SEM creep during the one hour dynamic loading protocol at each day.  

Significantly more creep was observed at all time points in the needle puncture groups than in the 

dynamic control group (star indicates a difference relative to all other groups at that time point. 
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Figure 3-5 : Viability images of OA (left) and NP (right) in the large needle group. Needle puncture 

regions are on top oriented radially (perpendicular to needle track, with needle track centered in 

field of view), control images are on bottom oriented sagittally ( the direction that would be 

perpendicular to the needle track if one existed). Dead cells are fluorescent and appear as red/white 

(white arrow), live cells are black (black arrow). Images are at 20X, scale bar = 100 µm 
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Figure 3-6:Representative histology images of needle puncture discs (top) and control discs (bottom) 

of the OA (L), IA (middle), and NP (R) revealing annulus fiber disruption in the needle group.  

Collagen stains red, proteoglycans blue, and cell nuclei black.  Ne Needle insertion sites were 

positioned in the center of the field of view. OA needle group image is of a large needle puncture 

group, IA and NP are of a small needle puncture. All images are at 2.5X, scale bar = 1mm.   

 OA IA NP 

Control 

Needle 

Group 



 62

Figure 3-7: Evidence of an increase in NP cell number and possible remodeling local to an insertion 

site in a large needle puncture disc.  Image on left is a 2.5X, scale bar = 1mm.  Boxed area on left is 

magnified on the right, image is at 20X, scale bar = 100 µm. 
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3.11 Study Clarifications 

 
This section is added as an addendum to the previous published chapter to 

address specific comments that arose during the dissertation defense.  

Alterations in disc height were not significant (Table 3.1), however a trend of 

increased height loss was found in the needle puncture groups between culture days (as 

stated in the conclusion.  

The immediate (day 1) decrease in nominal dynamic modulus in the needle 

puncture groups as compared to the control groups (n=10) can be futher verified by 

comparing both the needle puncture and the control groups to the ‘Low’ load group in 

chapter 4.  All of these groups were treated with similar mechanical loading protocols, 

and all (n =10 for control, n = 10 for low load group) were significantly different than 

that found in the needle puncture groups (n = 10 for large and n = 10 for small gage 

needle). 

This study contributes a possible mechanism for the needle-puncture induced 

disc degeneration models, in which alterations in disc mechanics begins a progressive 

degenerative cascade. 
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4.1 Abstract 

 

Study Design 

 
A bovine intervertebral disc organ culture model was used to study the effect of dynamic 

compression magnitude on mechanical behavior and measurement of biosynthesis rate, 

cell viability, and mRNA expression. 

Objective 

 
The objective of this study was to examine the effect of loading magnitude on 

intervertebral disc mechanics and biology in an organ culture model. 

Summary of Background Data 

 
The in vivo and cell culture response of intervertebral disc cells to dynamic mechanical 

loading provides evidence the disc responds in a magnitude dependant manner. However, 

the ability to link mechanical behavior of the disc with biological phenomena has been 

limited. A large animal organ culture system facilitates measurements of tissue 

mechanics and other biological response parameters on the same sample allowing a 

broader understanding of disc mechanobiology. 

Methods  

 
Bovine caudal intervertebral discs were placed in organ culture for 6 days and assigned to 

a static control group or one of two dynamic compression loading protocols (0.2 – 1 MPa 

or 0.2 – 2.5 MPa) at 1 Hz for 1 hour for 5 days. Disc structure was assessed with 

measurements of dynamic modulus, creep, height loss, water content, and proteoglycan 

loss to the culture medium. Cellular responses were assessed through changes in cell 

viability, metabolism, and qRT-PCR analyses. 
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Results  

 
Increasing magnitudes of compression increased disc modulus and creep, however all 

mechanical parameters recovered each day. In the annulus, significant increases in gene 

expression for collagen type I and a trend of increasing sulfate incorporation were 

observed. In the nucleus, increasing gene expression for collagen type I and MMP3 was 

observed between magnitudes and between static controls and the lowest magnitude of 

loading. 

Conclusions  
 
Results support the hypothesis that biological remodeling precedes damage to the 

intervertebral disc structure, that compression is a healthy loading condition for the disc, 

and further support the link between applied loading and biological remodeling. 
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4.2   Precis 

 

A bovine organ culture system was used to evaluate effects of dynamic compression 

magnitude on disc structure, function, viability, biosynthesis rate and real time RT-PCR. 

Results support the concept that intervertebral disc tissue structure is tolerant to applied 

mechanical compression, with an increase in biosynthesis rate and no observed 

permanent damage to the tissue structure at physiological load magnitudes.  

4.3   Key Points  

 

• The biological and mechanical responses of the cultured intervertebral disc to 
applied dynamic compression were examined  

• No permanent compromise in disc mechanical properties was observed 
throughout the culture period 

• Biosynthesis rates and gene expression responses were affected by disc region 
and dynamic compression magnitude, particularly for collagen type 1 and MMP3 

• Dynamic compression magnitude increased biosynthesis rates and did not result 
in structural disruption, suggesting it is a healthy loading condition for the disc.  

• Results suggest biological changes occur prior to structural damage to the 
intervertebral disc 

4.4   Key Words   

  
Spine, Intervertebral disc, organ culture, bovine, mechanics, dynamic compression 
loading  
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4.5 Introduction 

 
Experimental evidence points to a threshold of loading necessary for 

intervertebral disc (IVD) extra cellular matrix maintenance, where too little load (i.e., 

immobilization) will reduce biosynthesis rates and overloading can cause structural 

damage and altered biomechanical behaviors.1-3  Dynamic loading is commonly 

experienced during daily activity, and is particularly important to include when 

attempting to identify loading patterns that introduce risks to IVD structure, 

biomechanics, and biosynthesis. Furthermore, a cyclic loading component is necessary to 

distinguish between immobilization and overloading. In vivo studies demonstrated there 

is a frequency, magnitude and duration effect of applied mechanical loading on IVD 

cells,2,4 further supporting the importance of a better understanding of such loading 

patterns on the IVD.  

The motion segment complex provides 6 degree of freedom mobility, but its 

structural components are sensitive to damage under distinct loading conditions. 

Complex loading regimes (e.g.,  bending and compression), on the spine can result in disc 

damage and herniation.3,5-8 Compression loading on the spine is known to put the 

vertebral endplate at risk of fracture, which is then associated with a loss of nucleus 

pressurization due to damage at the discovertebral junction.6,9 Evidence of biological 

remodeling in disc tissue occurs in response to compressive loading magnitudes 

insufficient to cause vertebral endplate failure,2 raising the possibility that thresholds of 

structural failure overestimate the levels of loading which are detrimental to 

intervertebral disc health.  
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The biological response of the IVD to dynamic loading has been previously 

examined in vivo
1,2,10-12 and in cell culture studies,4,13,14 while the effects of mechanical 

loading on IVD structure and mechanics  have been studied extensively on non-viable 

tissue in vitro, leaving unanswered questions about the effects of such mechanical 

changes on living cell populations. Mechanical loading is known to influence the IVD, 

however unanswered questions remain regarding the dependence on other signaling 

pathways existing in vivo (e.g., proinflammatory molecules), and whether the loss of cell-

tissue matrix contact in vitro is detrimental to normal mechanical signal transduction. The 

ability to examine biological remodeling pathways while also quantifying structural and 

mechanical changes induced in response to mechanical loading is a critical step towards 

understanding how the relationship between biomechanical loading and biological 

remodeling might contribute toward a progressive degenerative cascade in the IVD.  

The use of an organ culture model facilitates investigation into cellular responses 

to mechanical loading while the disc is largely intact. Organ culture provides complete 

control over mechanical boundary conditions while allowing for measurement of 

mechanical properties throughout the culture duration. Chemical boundary conditions can 

also be controlled, eliminating the effect of other signaling pathways present in vivo, 

while maintaining viable cells and normal cell-matrix interactions. Currently, however, 

few studies have investigated the response of the IVD in organ culture to dynamic 

loading. Developing and testing a large animal organ culture system is important because 

of its ability to be more directly translated to human IVDs and also because of the ability 

to evaluate multiple mechanical and biological dependent variables on the same IVD.  
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 The aim of this study was to examine the effects of varying physiological 

magnitudes of dynamic compression on intact intervertebral disc structure, biomechanics, 

cell metabolism, and water content in three disc regions. The hypotheses were that low 

magnitudes of dynamic compression would enhance anabolic remodeling while high 

magnitudes of dynamic compression would demonstrate early signs of disc damage and 

catabolic remodeling. Specifically, dynamic compression applied to the intervertebral 

disc structure at low magnitudes of active physiological loading in a human (0.2 – 1 MPa, 

e.g., standing up from a chair15) will promote anabolic remodeling, including increased 

biosynthesis rates, while loading at larger magnitudes of active physiological loading in a 

human (0.2 – 2.5 MPa, e.g., lifting 20 kg with round back15 but less than failure of bovine 

caudal motion segment16,17) will result in early signs of remodeling including structural 

damage, loss of cell viability, and catabolic remodeling as measured through 

biomechanical properties, histology, biochemical measurements, sulfate incorporation, 

and qRT-PCR.                                                                                                                                                           

4.6  Materials and Methods  

 
Three intervertebral discs, corresponding to caudal levels c2-3, c3-4, and c4-5, 

were dissected from twelve beef cattle (ages 18-24 months) under sterile conditions 

within 4 hours of slaughter. Dissection included removal of vertebral endplates from the 

intervertebral disc using a straight edge razor blade to maintain transport through the 

endplate route.18 Following dissection, discs were rinsed in Tyrode’s Balanced Salt 

Solution (TBSS) containing 0.3 µl/ml penicillin/streptomycin and 0.1 µl/ml fungizone 

(Invitrogen, Carlsbad, CA). 



 71

Discs were assigned to one of three groups consisting of two dynamic loading 

conditions (low, high) and one static control (static). Each group consisted of N=12 

discs, with equal numbers of each disc level assigned to each group as the anatomic level 

of the disc is known to affect cell metabolism and tissue composition. Discs were placed 

into a custom built organ culture chamber described previously 18,19 and housed in an 

incubator at 37°C and 5% CO2. Culture media consisting of DMEM (4.5 g/L glucose, 

110 mg/L sodium pyruvate, with L-glutamine), supplemented with 100 units/mL of 

penicillin/streptomycin, 0.1 mg/mL gentamicin, 0.75 mg/L fungizone, 0.02 M HEPES 

buffer, 50 µg/mL ascorbic acid (Invitrogen, Carlsbad, CA), and 10mL/L FBS (Atlanta 

Biological, Atlanta, GA) was continuously circulated at 1.1 mL/min and replaced every 

two days.  

All groups were initially confined with an applied stress of 0.2 MPa for 12 

hours.19 Chambers were then individually attached to an incubator-housed loading device 

for the start of the experimental protocol (Figure 4-1). First, a one minute test (0.2-0.4 

MPa, 1Hz) was applied sinusoidally to obtain a pre-loading dynamic nominal modulus 

for all groups. Control discs (static group) were removed from the loading device and the 

0.2 MPa static load was replaced, and a dynamic load was applied to the two test groups 

(low and high). Dynamic loading consisted of one hour of sinusoidal loading at 1 Hz, 

with amplitudes of 0.2 – 1 MPa for the low load group and 0.2 – 2.5 MPa for the high 

load group. After the dynamic loading cycle, a repeat of the one minute test was 

performed to obtain a post-loading nominal dynamic modulus. After the 3 test cycles, the 

baseline 0.2 MPa static load was again applied to each chamber and at least 12 hours of 
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recovery was allowed between dynamic load cycles. Each chamber experienced loading 

once per day, adding to 5 total times during the 6 day culture period.  

Creep during one hour of dynamic loading was calculated from displacements 

that were recorded from the loading device at points corresponding to 0.2 MPa load for 

the first and last cycles of the one hour dynamic loading test, and the initial height at the 

first cycle was compared between days to compare height lost over the culture duration. 

Dynamic stiffnesses were calculated using custom written MATLAB code (The 

MathWorks, Natick, MA) and for ease of comparison across animals, all stiffness 

measurements were normalized by initial IVD cross-sectional area and presented as a 

‘nominal modulus’.  

Structural parameters assessed included changes in intervertebral disc diameter 

and height. Initial height and diameter measurements were obtained using three caliper 

measurements in each dimension, recorded prior to the start of the culturing process, and 

immediately following culture termination. Proteoglycan content released to the culture 

media was assessed using the DMMB colorimetric assay. Aliquots of culture media were 

centrifuged at 10,000 rpm for 3 minutes prior to the application of the DMMB assay. A 

standard curve was generated using chondroitin-6-sulfate and DMEM, and sample 

absorbances were read on a microplate reader.  Regional tissue water content was 

calculated following tissue dissection, weighing, and lyophilization to obtain a dry tissue 

weight.  

Cell metabolism was assessed using the 35S incorporation assay. Immediately 

following culture termination, sections of intervertebral disc tissue from each of the tissue 
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regions (OA, IA, NP) were dissected (Figure 4-1), weighed, and placed in 2 mL of 

culture medium without FBS containing 2.5 µCi of 35S (Perkin-Elmer, Boston, MA) and 

brought to an approximate osmolarity of 400mOsm by the addition of 1.5% v/v 5M NaCl 

and 0.4M KCl to reduce tissue swelling. Samples were incubated for 6 hours at 37°C and 

5% CO2, after which they were removed from the radiolabel medium and digested with 

proteinase-K (0.5 mL of 1 mg/mL at 57°C). Radioactive media was stored for each tissue 

sample to allow for later normalization. After digestion, non-incorporated sulfate was 

removed by exhaustive dialysis against distilled water. Radioactivity of samples was 

measured using a scintillation counter, and was normalized to incubation media 

radioactivity and tissue sample dry weight. To minimize potential artifacts due to GAG 

leaching that may have occurred during the radiolabel incubation step, the sample dry 

weight was calculated based on measurements of specimen wet weight and water content 

of paired tissue samples that were taken prior to the incubation (Figure 4-1).  

Cell viability was examined using 3-(4,5-dimethylthiazol-2-yl)-2,5-

diphenyltetrazolium bromide (MTT, Sigma-Aldrich, St Louis, MO) to stain vital cells 

through the formation of precipitate by active mitochondria, and ethidium homodimer-1 

(Invitrogen, Carlsbad, CA) to stain the DNA of non-vital cells with compromised nuclear 

envelopes. Tissue sections approximately 10 mm by 5 mm were dissected through the 

disc in the sagittal plane (Figure 1) and placed into a TBSS solution containing 1 mg/mL 

MTT and 1 µM ethidium homodimer -1. After a 2 hour staining period, samples were 

removed from the stain solution and placed on a shaker in TBSS for 10 minutes to 

remove excess dye. The tissue was then frozen in isopentane floated in liquid nitrogen 
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and stored at -80°C until sectioning on a cryotome. Five 10µm thick sections were taken 

for each tissue region (OA, IA and NP) beginning at the tissue surface and every 250 µm 

thereafter. For each of the 15 resulting slides, representative images were captured at 20x 

magnification (Zeiss axiocam, Zeiss, Thornwood, NY) first under fluorescent light to 

capture cells stained with ethidium homodimer -1 (Rhodamine filter : ex/em of 

546nm/617nm) and then under brightfield light to capture precipitate formed with MTT 

by vital mitochondria.  

QRT-PCR was performed on tissue isolated from the annulus and nucleus 

regions. The OA and IA were pooled to ensure sufficient tissue quantity for RNA 

isolation.  Expression levels were quantified using SYBR green for aggrecan, versican 

,collagen types I and II, TIMP -1, MMP -2, -3 and -13, and ADAMTS -4 were 

normalized to 18S expression levels (to generate ∆Ct values).  Expression levels for 

experimental groups (low and high) were normalized to tail-matched static controls (to 

generate ∆∆Ct values). 

A one-way ANOVA was used to evaluate the effect of loading group (static, low, 

high) on changes in disc mechanics, diameter, height, water content, GAG content in the 

media, and 35S incorporation. All statistical analyses on qRT-PCR data were performed 

on the ∆∆Ct values. A one way ANOVA was used to compare loading groups (low and 

high).8 Fishers PLSD post-hoc test was used to detect differences between loading groups 

with a significance level of p < 0.05 for all ANOVA tests. For qRT-PCR data an 

additional student’s t test with hypothesized mean of zero was used to evaluate statistical 
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differences between static controls (static) and loading groups (low and high) which were 

normalized to the static controls.   

4.7  Results 

 
 All data are presented as average ± SEM. No significant changes in disc height 

or diameter were found at the end of the culture period for any of the test groups. The 

average height loss was 14.8 ± 1.95% and diameter gain was 42.6 ± 1.62%. Proteoglycan 

loss to the culture media was also not significantly affected by mechanical loading with 

an average of 0.065 ± 0.004% of the initial disc wet weight. Likewise, no significant 

differences in regional tissue water content were found between groups, with regional 

differences in tissue water content maintained. Average tissue water contents were 59.25 

± 0.700 % in the OA, 73.59 ± 0.617% in the IA and 79.8 ± 0.562% in the NP. A trend of 

increasing sulfate incorporation (Figure 4-2) with increasing load magnitude was 

observed in the OA and IA; however no corresponding trend was noted in the NP. 

Viability was not significantly different between loading groups (Figure 4-3).  

 The pre-loading dynamic modulus was not significantly different between 

loading groups at any time point (Figure 4-4). There was a significant increase in the pre-

load modulus between day 1 and day 2 for all groups, but no further significant increases 

occurred throughout the culture duration for any group. The post-load dynamic modulus 

significantly increased with increasing load magnitude. Likewise, the magnitude of creep 

observed during the one hour of dynamic loading was greater with increasing load 

magnitudes (Figure 4-5).  No significant difference was noted in the starting disc height 

between days, indicating a complete recovery of the lost disc height between days. 



 76

 Gene expression in the annulus region was not found to be significantly different 

with respect to static controls (p>0.05) (Figure 4-6). Significant changes in collagen type 

1 regulation were found between loading magnitudes, with downregulation observed in 

the low group and upregulation in the high group (p=0.48).  In the nucleus pulposus, 

significant upregulation of collagen type 1 (p=0.002) and MMP3 (p=0.01) gene 

expression was observed in the low group relative to static controls. Significant 

differences in gene expression were also observed between low and high loading groups 

for collagen 1 (p=0.018) and MMP3 (p=0.01). 

4.8  Discussion 

 
The effect of dynamic compression on the mechanical and biological state of the 

intervertebral disc was examined at two loading magnitudes to test the hypotheses that 

low magnitudes of dynamic compression would increase anabolic remodeling while high 

magnitudes of dynamic compression would demonstrate early signs of disc damage and 

catabolic remodeling.  The use of an organ culture system enabled measurement of 

mechanical properties throughout the culture duration while maintaining cell viability and 

metabolism, thus allowing for regional measurements of sulfate incorporation, qRT-PCR, 

histology, and water content. Overall, the results support the concept that the 

intervertebral disc tissue structure is rather tolerant to applied mechanical compression, 

with no observed permanent damage to the tissue structure. Load magnitude dependent 

increases in anabolic mRNA expression and sulfate incorporation suggest that dynamic 

compression increases disc metabolic rate and enhances anabolic remodeling. Significant 

differences in gene expression were also observed between loading magnitudes in both 
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the annulus fibrosus and nucleus pulposus regions for collagen type I, and in the nucleus 

pulposus region for MMP3.  

The magnitude of applied loading in this study was chosen to reflect expected 

magnitudes observed in vivo.15 The nominal dynamic modulus and creep magnitude of 

the disc increased with increasing load magnitude as would be expected due to nonlinear 

material behaviors associated with tissue compaction at higher loading magnitudes, 

however all changes were fully recovered within 12 hours.  The recovery times observed 

in this study are consistent with literature on the topic, with previous studies observing 

complete recovery after 18 hours.20 Additionally, the removal of the vertebral endplates 

necessary to maintain cell viability18 has been shown to speed recovery time.21 While the 

removal of endplates from the intervertebral disc is anticipated to affect absolute values 

of local strains in the intervertebral disc, it is not expected to affect relative comparisons 

between loading magnitudes.  It is possible that the magnitude dependent increase in 

sulfate incorporation in the anulus fibrosus but not the nucleus pulposus is associated 

with a loss of pressurization in the nucleus due to removal of endplates. The loss of disc 

height and increase in disc diameter observed is consistent with previous studies on the 

bovine intervertebral disc in culture,19 and is likely associated with post mortem muscle 

relaxation resulting in an increase in disc hydration.9  The full recovery of disc properties, 

combined with no significant changes in disc height, diameter, water content and GAG 

loss to the culture media, provide evidence that applied compression loading results in no 

permanent damage to the intervertebral disc structure even up to magnitudes of 2.5 MPa.  
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Previous studies examining the biological response of the intervertebral disc to 

dynamic loading have been performed in vivo 1,2,12 and on cell cultures 4,13,14. Tissue 

culture and organ culture studies primarily examined the effects of static loading 16,18,22 or 

diurnal loading (applied osmotically23 or through compression19).  The current study 

method links the response of isolated cells to that of the in vivo situation by retaining the 

in situ cell environment. While a direct comparison across studies and methodology is 

difficult due to the use of different species, as well as varying loading magnitudes, 

frequencies and modes of application (compression, hydrostatic, tension), it is fairly 

consistent that collagen type I and MMP3 are affected by applied mechanical stimulation 

in the intervertebral disc in a region specific manner.2,14    

In conclusion, increased cell metabolism at loading magnitudes insufficient to 

cause observable disc damage in this study point to the ability of mechanical loading to 

stimulate disc remodeling as measured on gene and protein levels. Results also suggest 

that dynamic compression is a healthy loading condition due to the lack of observable 

signs of intervertebral disc damage at high stress levels in this study, combined with other 

studies on risky loading patters on the disc that defined lateral bending and flexion as the 

loading patterns that place the disc at most risk of injury.8 Furthermore, It is interesting 

that load magnitude had a progressive increase in expression of many genes in the anulus 

while collagen-I and MMP3 in the nucleus region were all down-regulated following a 

substantial increase in load magnitude. These observations demonstrate combined 

mechanical, biological, and chemical remodeling in response to dynamic compression. 

Consequently, results motivate the need for further studies on the effects of applied 
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loading on the biological response of the intervertebral disc under more damaging 

conditions that might include bending and endplate fracture under compression. 
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4.10  Tables and Figures 

 

Figure 4-1: Test protocol schematic detailing loading protocol (Top). Illustration showing tissue 

harvest protocol (Bottom). Note:schematic diagram not to scale 
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Figure 4-2: Average ± SEM sulfate incorporation rates for all testing groups (OA – outer annulus, IA 

– inner annulus, NP – nucleus pulposus). A trend of increasing sulfate incorporation was seen in the 

annulus regions, but not in the nucleus. 
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Figure 4-3: Representative viability images at 20x magnification.  black = live, white = dead.  Scale 

bar in black = 400 um.  Columns represent tissue regions (OA – outer annulus, IA – inner annulus, 

NP – nucleus pulposus) and rows represent test groups. No changes in cell viability were observed. 
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Figure 4-4: Average ± SEM nominal dynamic loading modulus for pre-load (top) and post-load 

(bottom) tests. 
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Figure 4-5: Average ± SEM height loss for the one hour dynamic loading protocol.  Significantly 

more height was lost at all time points in the high force dynamic loading groups than in the low force 

group. 
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Figure 4-6: Gene expression fold change results as average ± SEM for anabolic (aggrecan, collagen 

types I and II, versican), anti-catabolic (TIMP-1) (left column) and catabolic (MMP –2, -3, 13 and 

ADAMTS4) (right column) genes for tissue from annulus fibrosus (top row) and nucleus pulposus 

(bottom row) regions. Significant differences (p<0.05) between groups are marked with a * while 

significant differences from static controls (using a t-test with hypothesized mean of zero) are 

marked with a § symbol (found in low groups in the NP for collagen type I and MMP3). Note that 

low and high groups are normalized to tail matched static controls. 
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4.11 Study Clarifications 

 
This section is added as an addendum to the previous published chapter to address 

specific comments that arose during the dissertation defense.  

Discs were initially confined for 12 hours with an applied stress of 0.2 MPa to prevent 

disc swelling (Figure 4-7) 

  
 

 

Figure 4-7:Schematic of mechanical testing protocol. Discs were initally confined with 0.2 MPa.  A 

one-minute test from 0.2 - 0.4 MPa was performed at 1 Hz.  Then discs were loaded from 0.2 - 1 

(LOW) or 2.5 MPa (HIGH)  at 1 Hz for 1 hour.  The 0.2 MPa static load was then returned to the 

disc to prevent swelling. NOTE NOT TO SCALE 

 
Gene expression changes are defined as changes from the baseline controls 

(only loaded with 0.2 MPa static load).  
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 The radioactive tracer 35S-SO4 was used, and is mistakenly referred to 

as just 35S in this document.
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5.1  Abstract 

The creation and maintenance of the intervertebral disc extracellular matrix is 

regulated by mechanical loading, nutrition, and the accumulation of matrix proteins, 

cytokines and degradation products that are affected by aging and degeneration.  

Evidence suggests that cellular aging may lead to alterations in the quantity and quality of 

extracellular matrix produced, and the aims of this study were to examine the role of 

loading, aging, and the interaction between these two factors in intervertebral disc cell 

gene expression and biosynthesis in a controlled three-dimensional culture environment.  

Cells were isolated from young (4-6 months) and mature (18-24 months) bovine caudal 

discs and separated into annulus fibrosus and nucleus pulposus tissue.  Isolated cells were 

seeded into alginate gels and dynamically compressed for seven days at one of three 

frequencies (0.1, 1, or 3 Hz) or maintained as a static (free-swelling) control. After seven 

days, DNA and sulfated glycosaminoglycan contents were analyzed along with real time, 

quantitative reverse transcription-polymerase chain reaction analysis for collagen types I 

and II, aggrecan, and matrix metalloproteinase-3 gene expression. Results suggest aging 

plays an important role in intervertebral disc homeostasis and also influences the cell 

response to externally applied stimulation by mechanical loading.  While isolated 

intervertebral disc cells responded to mechanical compression in three-dimensional 

culture, the effect of the frequency was minimal. Altered cellular phenotype and 

biosynthesis rates appear to be an attribute of the normal cell aging process, independent 

of changes in cellular microenvironment associated with lost nutrition and disc 

degeneration. Mature cells may also have a decreased capacity to create or retain 
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extracellular matrix components in response to mechanical loading compared to young 

cells. 

5.2  Introduction 

 
Mechanical stimulation has been demonstrated to affect cell metabolism and gene 

expression in the intervertebral disc (IVD) in vivo (14-16), in situ (7), and in vitro (10, 11, 

24). However, differences in culture systems, methods of load application, and cellular 

phenotypes between species, have complicated comparison of results between studies. 

Cellular aging also has demonstrated effects in articular cartilage (17), intervertebral disc 

(20) and bone (18), among other tissues (5, 21).  Investigation of the interaction between 

mechanical stimulation and cellular aging has potential implications for the 

understanding of the mechanism of IVD degeneration, and for future repair strategies, 

such as tissue engineering and cell therapy. 

The response of the IVD to dynamic compression has been reported in vivo; 

however, limited literature exists on the effects of dynamic compression in vitro. The 

isolation of IVD cells from their surrounding matrix is advantageous for 

mechanotransduction studies as it allows for a consistent load to be applied to every cell. 

Tissue matrix mechanical properties can vary, and evidence of increased pericellular 

matrix stiffness with aging and disease in chondrocytes (1) points to changes in the 

ability of an applied load to be transduced to the cell level. The primary method used to 

apply mechanical stimulation to IVD cells in vitro thus far has been hydrostatic pressure, 

although static compression has also been studied (3).  Further investigation is needed, as 

hydrostatic pressure may fail to simulate in vivo cell mechanical stimulation pathways by 
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neglecting cell strain, and static and dynamic compression have been shown to have 

dramatically different effects (22).  

It is difficult to differentiate the cellular response to aging from that of exposure 

to a degenerative environment since the two are often coupled. Decreased cellular 

function and altered synthesis of extracellular matrix components have been 

demonstrated in articular chondrocytes with normal aging (17), reducing both the 

quantity and quality of repaired matrix after damage. A recent study on IVD cells 

demonstrated increasing incidence of cellular senescence correlated with increased disc 

degeneration, potentially indicating that fewer cells populate the matrix following 

necrosis and/or apoptosis (6), again leading to diminished capacity for repair. A shift in 

cell phenotype in the nucleus pulposus also occurs in some species, with some (pig, rat, 

rabbit) retaining notochordal cells into maturity, whereas others (human, cow, sheep) lack 

this cell type (9).   

This study was composed of three aims. Aim 1 addressed whether tissue donor 

age affects IVD cell synthesis and gene expression in three-dimensional alginate culture.  

Bovine IVD tissues, from young (4-6 months) and mature (18-24 months) caudal discs, 

previously shown to compare well with IVD tissue from humans aged <15 years and 15-

40 years, respectively (4), were used to ensure relative homogeneity in genetic, 

nutritional, and other environmental factors.  Cells isolated from tissue of a greater age 

were hypothesized to have a reduced capacity for recreating extracellular matrix, with 

reduced DNA and sulfated glycosaminoglycan (sGAG) contents, and lower expression of 

anabolic genes, such as collagen types I and II and aggrecan.  Aim 2 sought to determine 
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whether dynamic compression loading would affect IVD cell synthesis and gene 

expression in a frequency dependent manner. Increasing compression frequency was 

hypothesized to increase the accumulation of extracellular matrix and DNA synthesis, 

and to increase anabolic gene expression. Aim 3 was to determine the interaction between 

age and dynamic loading frequency.  We hypothesized that decreases in cell metabolism 

associated with age could be counteracted by an increased cell metabolism brought about 

by mechanical stimulation, with similar GAG and DNA contents achieved at higher 

frequencies between young and mature tissue-derived cells, and similar patterns of gene 

expression. 

5.3 Materials and Methods 

Intervertebral discs (IVD) were removed from five young (4-6 months) and five 

mature (18-24 months) bovine tails. Nucleus pulposus (NP) and annulus fibrosus (AF) 

tissue were separated by careful dissection and placed in washing medium (high glucose 

DMEM, 10% fetal bovine serum, 200 U/ml penicillin and streptomycin, 0.50 µg/ml 

amphotericin-B, 10%  fetal bovine serum (FBS), 50 µg/ml ascorbic acid and 0.5% v/v 

5M NaCl and 0.4M KCl to adjust medium osmolarity) for 4-6 days followed by cell 

isolation through enzymatic digestion consisting of 1 hour of pronase (0.2%) and 8-10 

hours of collagenase type IV (0.2% for AF, 0.125% for NP) at 37C with constant 

agitation.  The resulting cell suspensions were passed through a 70 µm mesh sieve and 

washed twice with phosphate buffered saline (PBS).  A one-time expansion at a high cell 

density (8 x 106 cells/mm2) was performed when necessary to achieve adequate starting 
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numbers of cells. The duration of monolayer expansion was less than nine days, with 

medium changes every three to four days.  

Alginate gel constructs were created in 96 well plates using a slow set technique 

(13), with cells seeded at a density of 4 x 106  cells/ml. After curing, gels were placed into 

mechanical stimulation test dishes with culture medium (high glucose DMEM, 100 U/ml 

penicillin and streptomycin, 0.25 µg/ml amphotericin-B, 10% FBS, 50 µg/ml ascorbic 

acid and 0.5% v/v 5M NaCl and 0.4M KCl to adjust medium osmolarity to be similar to 

that in the IVD in situ) and allowed to equilibrate overnight in a 5% O2 incubator. 

Mechanical stimulation consisted of 2 hours of daily compressive strain from 2-

12% for 7 days at one of three frequencies (0.1, 1 or 3 Hz). Additionally, an unstimulated 

(free-swelling) control was maintained.  After 7 days of loading, gels were harvested for 

analysis. For all groups, gels were maintained at 37C, 5% O2. Media was changed every 

3-4 days, and was saved at –80C for later analysis. 

Nitrite concentrations were measured from aliquots of cell culture medium saved 

at each medium change using the Griess reaction (Promega, Madison, WI). Standard 

curves were generated with unused culture medium.  For each 50 µl sample of culture 

medium, 50 µl of sulfanilamide was added and allowed to incubate for 5-10 minutes 

away from light.  Then 50 µl of N-1-napthylethylenediamine dihydrochloride (NED) 

solution was added to the wells and again incubated 5-10 minutes protected from light.  

Sample and standard curve absorbance was analyzed at 550 nm on a microplate reader. 

Resulting molar concentrations were normalized to the number of gel constructs present 

in each dish. 
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Gels were dissociated by the addition of 1 mL of a 55 mM sodium citrate 

solution. Cell viability was checked using 1µM calcein-AM and 1µM ethidium 

homodimer-1 (LIVE/DEAD kit, Invitrogen, Carlsbad, CA) in PBS, which was incubated 

for 15 minutes before visualization. The remaining dissociated gel was centrifuged and 

the supernatant carefully removed from the separated pellet and stored. Pellets and 

supernatants were digested (300 µg/mL papain, 10 mM L-cystine, 10mM EDTA and 100 

mM sodium acetate) at 60ºC overnight.  Both pellet and supernatant digests were 

analyzed for DNA content and sGAG content.  DNA content was determined using a 

Picogreen assay kit (Picogreen, Sigma, St. Louis, MO). sGAG content was determined 

with 1,9-dimethylmethylene blue (DMMB) adjusted to a pH of 1.5 to minimize alginate 

interference. Chondroitin-6-sulfate was used to generate the standard curve. 

Real time, quantitative reverse transcription-polymerase chain reaction  (qRT-

PCR) was performed on dissociated gels (n = 5 per group). After RNA isolation and 

cDNA transcription, gene expression of 18S rRNA, aggrecan, collagen types I and II, and 

matrix metalloproteinase (MMP3) was analyzed using bovine gene-specific primers  and 

SYBR Green.  Transcript levels were normalized to that of the 18S rRNA housekeeping 

gene. 

Statistical analyses were performed for each of the hypotheses.  First, a one way 

ANOVA (p<0.05) followed by a Bonferroni post-hoc test was performed for loading 

effects (LOAD, hypothesis 1) by comparing each loaded group with the age-matched 

control and again for aging effects (AGE, hypothesis 2) by comparing data between ages 

at matched condition points.  Finally, a two-way ANOVA was performed to address the 
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interaction between aging and loading effects (AGE*LOAD) again followed by a 

Bonferroni post-hoc test. 

5.4 Results 

 
Viability was maintained throughout the experiment with >93% of cells viable 

after culturing and loading.  

DNA content (Table 1) was greater in mature NP cell constructs  (286.2 ± 65.4 

ng) versus young NP cells (68.2 ±6.4 ng) (p=0.02), and was not significantly affected by 

loading in the NP. No significant statistical interaction between age and load was found 

in DNA content in the NP. In the AF, DNA content increased in young AF cells (181.7 ± 

21.5 ng) versus mature AF cells (103.3 ± 10.0 ng)  (p<0.0001), and was also affected by 

loading (p<0.0001), with pair-wise increases in the 0.1 Hz (156.5 ± 28.8 ng) and 3 Hz 

(182.4 ± 18.6 ng) loading groups versus controls (87.8 ± 18.6 ng) and 1 Hz loading (93.3 

± 9.2 ng). A statistical interaction between age and load was also found (p<0.0001). 

GAG content (Table 1) in the NP was not significantly different between ages 

(p>0.7), between loading groups (p>0.7), and no interaction was seen between the groups 

(p>0.7). In the AF, an effect of age was observed, with higher GAG contents in mature 

(43.5 ± 1.62 µg) than young AF constructs (37.6 ± 1.84 µg) (p = 0.05).  No significant 

effect of loading or relationship between groups was observed (p>0.4). 

When the sGAG content was normalized to the matched DNA content of each 

construct (Figure 1), the value was greater in young NP constructs (0.656 ± 0.047 µg/ng) 

versus mature NP constructs (0.228 ± 0.031 µg/ng) (p<0.0001). No effect of loading was 

found in the NP (p=0.2); however, a statistical interaction between age and load was 
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observed in the NP (p<0.0001). In the AF, a higher sGAG/DNA content was observed in 

mature AF constructs (0.445 ± 0.028 µg/ng) compared to young AF constructs (0.26 ± 

0.025 µg/ng)  (p<0.001). The 3 Hz load group had lower sGAG/DNA (0.25 ± 0.022 

µg/ng) compared to all other loading groups (0.4 ± 0.031 µg/ng) (p<0.0001). 

Furthermore, a significant interaction between age and load was found (p<0.001). 

Nitrite concentrations (Figure 2) in the medium containing both the AF and NP 

cell constructs remained consistent, without significant differences between young and 

mature constructs, and between loading groups. No significant interaction between age 

and load was found for either cell type. 

In the NP (Figure 3), expression of collagen types I and II increased significantly 

in mature cells as compared to young cells (p<0.03). No significant effect of loading was 

observed (p=0.1). However, a significant relationship between age and loading was 

observed (p<0.001), with expression of collagen types I and II decreasing in young cells 

and increasing in mature cells with increasing loading frequency. Aggrecan gene 

expression in the NP was not significantly affected by age or loading, and no significant 

interaction was found between the two (p>0.05). MMP3 gene expression was 

significantly affected by age (p<0.02) but not by loading (p=0.2), with a significant 

interaction observed between the two (p<0.05). In the AF (Figure 4), collagen type I 

expression was significantly affected by aging and 3 Hz loading, and a significant 

interaction was also observed between the two (p<0.001). Expression of collagen type II, 

aggrecan and MMP3 were all affected by aging and 1 and 3 Hz loading (P<0.001) in the 

annulus. 
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5.5  Discussion 

This study examined the effects of animal age and loading frequency on 

extracellular matrix production and gene expression of isolated IVD cells in 3D gel 

culture. Young and mature IVD cells remained viable and mechanically responsive in 3D 

alginate culture. Generally, anabolic gene expression was increased in mature cells and 

catabolic gene expression of MMP3 was decreased. However, less sGAG/DNA 

production was observed in mature cells than in young cells.  Therefore, increasing age 

increased the anabolic, and decreased the catabolic gene expression of IVD cells, but this 

shift was not reflected in terms of the level of sGAG production. Loading effects were 

typically frequency independent, indicating that the application of mechanical stimulation 

had a similar effect regardless of the frequency it was applied. Overall, age was a 

dominating factor over loading. A significant interaction between age and loading was 

observed in some cases, particularly in the AF where loading had very distinct anabolic 

and catabolic responses for mature and young cells. 

This study is among the first to examine the response of isolated disc cells to 

dynamic compression. Increased hydrostatic loading frequencies have been shown to 

decrease DNA content in the NP (11) and increase DNA content in the AF, leading to a 

decreased sGAG/DNA content (19).  Similarly, this study observed greater DNA 

contents in the mature NP and the young and mature AF, which further translated into 

reduced sGAG/DNA contents, suggesting that these cells proliferate at a higher rate than 

they produce extracellular matrix. In the young NP, however, an increase in the 

sGAG/DNA value was noted with loading, possibly indicating an age-related change in 
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the ability for these cells to produce and accumulate sGAG in response to loading. 

Expression levels of aggrecan and collagen type II have also been shown to be 

upregulated with dynamic hydrostatic loading (24). In this study, an upregulation of 

collagen type II was observed in mature NP cells, but not in young NP, or any AF cells.  

In addition, an upregulation of collagen type I was observed in both mature AF and NP 

cells, possibly indicating a difference in the cell response to compression versus 

hydrostatic loading, but not in the young NP or AF, again indicating an age related 

change in the cellular response to loading. 

Alginate has been shown to be a suitable culture system for IVD NP cells (12, 

23), but may (2, 3, 12) or may not (8) be appropriate for AF cells. No indication of 

phenotype shift in the AF cells were seen in this study, with levels of gene expression for 

collagen type I and aggrecan maintained in control samples after seven days relative to 

day zero (data not shown). Previous studies of IVD cells cultured in alginate have also 

indicated a dramatic decrease in cell viability (8), which was not observed in this study, 

also consistent with previous work (12).  It should be noted that in this study the duration 

of monolayer expansion was also kept to a minimum to ensure phenotype maintenance 

(23).   

This was a displacement-controlled loading experiment with compression 

frequency being varied and load duration remaining constant. Consequently, both strain 

rate and duty cycle were varying with the frequency effects. Interestingly, however, very 

few frequency effects were detected, suggesting that cell strain had larger effects on IVD 

cells than strain rate or duty cycle in alginate. The three-dimensional alginate matrix is 
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not expected to generate much pressurization under compression loading, in contrast to 

the highly viscoelastic IVD tissue matrix, so we further interpret these findings as cell 

strain effects in three-dimensional culture rather than a true simulation of compression.  

Based on these results, we conclude that aging plays an important role in IVD 

homeostasis and also influences the cell response to externally applied stimulation by 

mechanical loading.  While isolated IVD cells respond to mechanical loading, the effect 

of the loading frequency was minimal, and mature cells may also have a decreased 

capacity to create or retain extracellular matrix components in response to mechanical 

stimulation compared to young cells. These results indicate that altered cell phenotype 

and biosynthesis rates are an attribute of normal cell aging processes, consistent with 

previous studies in different tissues (17), and demonstrating that aging effects are 

independent of changes in cellular microenvironment associated with degeneration and 

decreases in cell nutrition.   
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5.7  Tables and Figures  

 
 

Table 5-1: Average GAG (ug) and DNA (ng) content plus/minus SEM for constructs. Stars (*) 

indicate significantly lower amounts between age groups, (#) indicate significant differences between 

loading groups 
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Figure 5-1: GAG/DNA content (ug/ng) of the nucleus pulposus (top) and anulus fibrosus (bottom) 

after seven days.  Values are shown as averages plus/minus SEM. Results for cells derived from 

young tissue are shown in black, mature cells in grey.  Stars (*) indicate significantly lower amounts 
between age groups, bars – indicate significant differences between loading groups. 
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Figure 5-2: Nitrite concentrations (uM) normalized to the number of constructs in each well of the 

nucleus pulposus (top) and anulus fibrosus (bottom) after seven days.  Values are shown as averages 

plus/minus SEM. Results for cells derived from young tissue are s shown in black, mature cells in 

grey.  No significant differences were found between groups. 
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Figure 5-3: qRT-PCR data for nucleus pulposus cells. Results for cells derived from young tissue are 

shown in black, mature cells in grey. Values are shown as averages plus/minus SEM.  Stars (*) 

indicate significantly lower amounts between age groups, bars – indicate significantly lower amounts 
between age groups, bars – indicate significant differences between loading groups. 
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Figure 5-4: qRT-PCR data for anulus fibrosus cells. Results for cells derived from young tissue are 

shown in black, mature cells in grey.  Values are shown as averages plus/minus SEM. Stars (*) 

indicate significantly lower amounts between age groups, bars – indicate significantly lower amounts 
between age groups, bars – indicate significant differences between loading groups. 
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5.8 Study Clarifications 

 
This section is added as an addendum to the previous chapter in review for 

publication to address specific comments that arose during the dissertation defense. 

In this study, the term sGAG – meaning sulfated glycosaminoglycans, is used as 

the term GAG – meaning glycosaminoglycans was used in previous chapters.  For all, the 

measurement of GAG content was based on the presence of sulfated glycosaminoglycans 

present.  The interchangeable use of these two terms is commonly accepted in this field. 

The hypothesis around ‘reduced DNA' in mature tissues means the mature cells 

would proliferate less, and therefore at the end of the culture period the constructs with 

mature cells would have a lower DNA content.
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CHAPTER 6 Application of Clustering and Biclustering Analyses to 

Explore the Role of Mechanics, Aging, Time, and Culture Model on 

Gene Expression Patterns  

6.1 Introduction 

 Advances in technology have dramatically increased the amount of data 

available from biological experiments.  For example, microarray experiments can result 

in the output of 30,000+ genes from a single sample, which must then be compared to 

one or more other samples also containing 30,000+ genes to identify meaningful trends 

and the genes associated with such trends. Fortunately, advances in computing power 

have increased the reasonable number of comparisons in a given experiment, and 

expanded the potential to contribute to significant findings.  While there is no substitute 

for careful experimental planning to concisely address proposed hypotheses, the advent 

of such powerful tools as microarray or proteomic assays motivates the development of 

robust and powerful computing tools capable of handling such large volumes of data. 

Therefore, as technology continues to advance, and the questions researchers ask 

continue to become more complex, data analysis methods will become a key 

consideration.  

One method that can be used to begin to identify meaningful trends is clustering 

analysis. Clustering is a means by which data is assembled into groups that are 

associated, typically by either a distance or correlation metric. A variety of metrics exist.  

Two of the most commonly used are Euclidian distance and Pearson correlation 
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coefficient (D'Haeseleer, 2005). Both have been used successfully in orthopaedic 

applications, for example clustering gene expression data from orthopaedic tissues 

(Fitzgerald et al., 2006, Fitzgerald et al., 2004) and to evaluating size ranges of 

intervertebral disc replacements (Lei et al., 2006).  

Once a distance metric is chosen, the choice of clustering type is made.  Two of 

the most common classes of clustering algorithms are called hierarchical and partitioned 

clustering. Hierarchical clustering is where each cluster is subdivided into smaller and 

smaller clusters to include the data (D'Haeseleer, 2005). The result can often be 

represented as a dendrogram or tree. The level at which to stop linking the data together 

can be chosen (referred to as cutting the tree or dendrogram at a point). Examples of 

hierarchical clustering include single linkage and complete linkage methods.  In 

partitioned clustering, the data is divided into a predetermined number of subsets, divided 

by the data point’s proximity to the nearest cluster. Examples of partitioning algorithms 

are k-means and fuzzy c-means clustering (D'Haeseleer, 2005). The differences between 

these methods can be visually seen below (Figure 6-1, concept from D'Haeseleer, 2005). 
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Figure 6-1: Visual representation of clustering methods.  The top two represent hierarchical 

methods, where data points are grouped into larger and larger clusters. Meaningful clusters can be 

isolated by cutting the clustering tree at a certain cluster number (4 for the top right image).  The 

bottom two panels represent partitioning methods. In k-means, (bottom left) three optimal cluster 

centers are found (red circle with x) and each data point is chosen to belong exclusively to one or 

another group.  In fuzzy c-means (bottom right) optimal cluster centers are found (red, blue, yellow 

circles with X) and each data point can belong to a combination of the cluster centers (green data 

belongs to red and yellow centroids) 

 

Ideally, similar groups are found between clustering methodologies (regardless of 

grouping metric), the groups are stable when the data is subjected to small perturbations, 

and the results of the clustering are biologically meaningful. The challenge to be able to 

visualize the data, and the resulting clusters, still exists after clustering is completed. This 

is because the clusters will exist in the same N number of dimensions as the data (for 
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example in 27 genes or in 24 experimental groups).  The next challenge therefore, is to 

reduce the dimensionality of the variable space to aid in visualization in 2D or 3D. 

Principal component analysis (PCA) is a method of multivariate analysis first 

introduced in 1901 by Pearson.  The underlying theory is to reduce the dimensions of a 

data set by identifying and combining related variables into new variables, which 

represent the majority of the variation of the data.  In this way, data that is composed of 

many variables can be reduced and visualized in a smaller coordinate system to aid 

visualization of complex data.  

Non-negative matrix factorization (NMF) can also be used to change the variable 

space of the analysis.  NMF, developed in 1999 (Lee and Seung, 1999), works by 

decomposing the dataset into two matrices with non-negative entries which allows for the 

visualization in a ‘k’ space where k is the number of groups present (Ulloa-Montoya et 

al., 2007). The original dataset is reproduced by the addition of the data present in each 

matrix rather than a cancellation of positive and negative elements as in PCA.  This 

makes the relevance and interpretation of these decomposed matrices more intuitive.  

NMF was applied to yeast data and was estimated to be up to two times more accurate 

than traditional approaches (Kim and Tidor, 2003).  Unlike PCA, which has been used in 

one previous study of orthopedic tissue mechanobiology (Fitzgerald et al., 2006), the 

application of NMF to biological problems and data is relatively new and has never been 

applied to the study of orthopaedic tissues. 

It is the goal of this study to apply computational tools developed to handle 

complex data to visualize the gene expression data from a variety of experimental 
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conditions including mechanical loading (control and 0.1,1,and 3 Hz), cellular aging 

(cells from mature or young intervertebral disc tissue), and time (time points at 7, 14 and 

21 days). The clustering aspect of this study is defined by two goals. First, the goal was to 

find experimental groups that are linked by similar gene expression profiles, indicating 

the response to those experimental conditions are similar. Second, the goal was to find 

genes that are commonly linked by experimental protocols, indicating the genes have a 

similar response to the experimental conditions. (Figure 6-2) The first goal can be 

thought of as seeking to determine what independent variables (in this case aging, loading 

and time) are similar, and the second goal as exploring which genes have similar 

expression patters in response to aging, loading, and time. For example, by grouping the 

experimental conditions together, one may find all the young cell experiments group 

together, meaning the effects of age dominate all other experimental conditions.  

Likewise, by grouping the genes together, similar expression patterns may be found in 

three selected genes, meaning those genes are most likely regulated along a common 

pathway or by a common upstream factor. 
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Figure 6-2: Two clustering approaches were used; first experiments were clustered using their gene 

expression as a phenotype (L), and clustering genes that exhibit similar expression patterns between 

experimental conditions (R). In both simplified examples shown here, H and L indicate a ‘high’ or 

‘low’ gene expression respectively. The data from the first two columns is represented as the x and y 

axis of the associated graph.  In both cases, two groups were similar (row is highlighted with the 

same color) and the data points are shown graphically along with a circle representing they are 

‘clustered’ 

Next, in an attempt to further characterize the data set, the experimental groups 

found to cluster together (similar phenotype, red rows in Figure 6-2, Left) were identified 

and the data matrices were isolated.  The isolated data matrices were then transposed and 

subject to clustering of their gene expression (Figure 6-2, Right), in a process known as 

biclustering. The utility of this approach was to determine what genes were responsible 

for the different experimental ‘phenotypes’ observed from the first aim.   

The further application of this model was two-fold. First, the predictive value in 

experimental group “phenotype” was established by attempting to use the patterns 

developed to predict groupings for the data presented in study #2.  The intention of this 

approach was to determine if any phenotype patterns were conserved between studies, 
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which would further support their role in intervertebral disc mechanotransduction.  

Second, the predictive ability of the clusters for gene expression response was explored.  

To this end, four gene sets, whose behavior in the intervertebral disc is better known from 

literature, were held back from the initial analysis and used as a test set. These genes are 

known to associate with other genes used in the initial analysis to establish the clusters 

and their centroids, so their membership should be predictable based on the presence of 

their known associates. The ability to predict those gene cluster memberships would 

further validate the ability for clustering analysis to highlight important functional 

groupings between related genes. The overall goal of these two applications was to 

determine whether the discovered experimental and gene expression pattern clusters 

possessed any predictive value.   

6.2  Methods 

6.2.1 Experimental framework 

 
The proposed experimental groups are similar to those described in Study #3 with 

the addition of a time component to the response (Table 6-1). Briefly, IVD cells were 

isolated from the AF and NP of bovine caudal discs and seeded into alginate gel matrices. 

The three effects under investigation include mechanical loading, age and time of culture.  

To investigate mechanical loading effects, a dynamic compression regime was applied to 

the alginate-IVD cell matrices at three frequencies (0.1, 1 3 Hz) while maintaining an 

unloaded control. To explore age effects, two ages of bovine samples were used: 4-6 

months, simulating approximately a <15yr old human disc and 18-24 months, simulating 
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a 15-40 yr old (Demers et al., 2004). Samples were collected at 7, 14 and 21 days to 

examine the time course of the response.   

Table 6-1: Experimental groups.  4 loading conditions (Control, 0.1, 1, and 3 Hz) will be explored at 4 

time points (Days 0, 7, 14, 21) and in young and mature cells for a total of 32 experimental groups per 

tissue (AF or NP).   

 Day 0 Day 7 Day 14 Day 21 

Control Mature/Young Mature/Young Mature/Young Mature/Young 

0.1 Hz Mature/Young Mature/Young Mature/Young Mature/Young 

1 Hz Mature/Young Mature/Young Mature/Young Mature/Young 

3 Hz Mature/Young Mature/Young Mature/Young Mature/Young 

 

Quantitative RT-PCR was performed as described in chapter 5. To control for 

comparisons made across PCR runs (requiring different batches of SYBR green which 

are typically variant due to manufacturing processes), a control sample of reference 

bovine IVD cDNA was run on each plate and the threshold value for this control sample 

was maintained across plates.  The genes that were analyzed (Table 6-2) were chosen for 

their implied or explicit role in the maintenance or pathology of IVD tissue representing 

the most likely candidates for illustrating functional differences between groups. 

Similar to previous strategies in clustering analysis (Fitzgerald et al., 2006, 

Fitzgerald et al., 2004) genes were also chosen to represent a spectrum of the biological 

processes, including matrix proteins and proteases, anti-catabolic protease inhibitors, 

transcription factors, and signaling molecules.  These functional classifications are used 

very loosely in this study.   
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Table 6-2: 31 genes were analyzed using real-time RT-PCR for all 32 experimental groups in each 

tissue (AF or NP). 

Matrix Proteins 
Collagen I   Collagen II   Collagen III   CollagenVI  
Aggrecan  Versican  Decorin  Biglycan   Link 
Vimentin  Fibronectin 

Matrix 
Proteases 

MMP1  MMP2  MMP3  MMP13  ADAMTS4   ADAMTS5 

Anti-Catabolic TIMP1 TIMP2 TIMP3 

Transcription 
factors 

c-fos  c-jun   MAPK   STAT3   ilk    

Signaling 
molecules 

TGFβ   CTGF   IGF   IL-6 

Housekeeping GAPDH   18S 

 
Matrix proteins 
 
Collagen 

Type I collagen is a main component of the anulus fibrosus, but does not 

contribute much to the nucleus pulposus.  Previous studies, (including study #2) have 

shown a change in the regulation of collagen I with mechanical loading in the 

intervertebral disc (Wuertz et al., 2007). Type I is also typically associated with a tissue 

that has a predominant mechanical function of resisting tensile forces, and is 

correspondingly present in tendons and ligaments as well.  Type II is the opposite case, 

where it contributes heavily to the nucleus pulposus, but less to the annulus fibrosus.  

Type II Is typically associated with a tissue that mainly resists compressive forces and is 

present in articular cartilage. Type III collagen has been reported to increase 

pericellularly with increased age in the intervertebral disc (Gruber et al., 2007) and also 

increases with disc degeneration (Roberts et al., 2006), however it is also one of the first 
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collagen types present in the intervertebral disc during development (Hayes et al., 2001).  

Collagen VI is a major structural element of microfibrils, reported to be present in the 

intervertebral disc (Yu et al., 2007) and is located pericellularly (Eyre et al., 2002).  The 

pericellular collagen matrix has been shown to be a mechanism for mechanical signal 

transduction in articular cartilage (Alexopoulos et al., 2005), a role it likely assumes in 

the intervertebral disc as well.   

Proteoglycans 

Proteoglycans typically fall into two classes, the large aggregating proteins 

(aggrecan and versican) and the small leucine rich repeat proteins (SLRPs) including 

decorin and biglycan among others.  Aggrecan and versican are highly present in the 

intervertebral disc, both in the annulus and nucleus (Benjamin and Ralphs, 2004, Melrose 

et al., 2001).  Decorin and biglycan have also been reported in the intervertebral disc 

(Melrose et al., 2001) and have been shown to be affected at early time points by 

experimentally induced disc degeneration, potentially through mechanical changes 

induced by the needle puncture (Melrose et al., 2007). Both molecules have been shown 

to upregulate in response to static compression in the AF (Chen et al., 2004).  Link 

protein serves to anchor the glycosaminoglycan (GAG) chains to the central hyluronan 

core to create proteoglycans.  It has been shown to have functional differences with aging 

in chondrocytes (Plaas et al., 1988) and is present in the intervertebral disc (Roberts et al., 

1994). Extensive changes in the proteoglycans of cartilage have been noted with 

increasing animal age (Buckwalter et al., 1994, Buckwalter et al., 1985), including a 

decrease in the aggregating capacity of these molecules.  This has also been shown in the 
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intervertebral disc (Buckwalter et al., 1994) and is likely associated with a decrease in 

proteoglycan retention in cultures of mature intervertebral disc cells. 

Other structural components 

Vimentin, along with actin and microtubules, make up the cells internal 

cytoskeleton, and play a role in cell adhesion and migration in some cell types (Ivaska et 

al., 2007). Previous studies in the intervertebral disc have shown AF cells, but not NP 

cells, respond to static compression through and upregulation in of vimentin gene 

expression (Chen et al., 2004).   Fibronectin is a glycoprotein associated with wound 

healing responses which and also have been shown to increase with degeneration in the 

IVD (Oegema et al., 2000). Fibronectin gene expression has also been reported to be 

upregulated in the IVD in response to increased compression (Guehring et al., 2005) and 

may functionally decrease aggrecan and collagen II gene expression in the nucleus 

pulposus (Anderson et al., 2005).  

Matrix Proteases 

Matrix metalloproteinases or MMPs, are of interest to intervertebral disc 

maintainence and turnover as they degrade many extracellular matrix proteins. MMP1 is 

also known as interstitial collagenase, and will break down collagen types I, II and III 

(Entrez gene file). MMP2, also known as gelatinase-A, is known to degrade collagen type 

IV (Entrez gene file), and is released by the NP cells in response to TNFα in IVD 

degeneration (Seguin et al., 2006). MMP3, known as stromelysin 1, degrades the 

proteoglycans described above, fibronectin and collagen III as well as other collagen 
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types and glycoproteins.  MMP13, or collagenase 3, degrades collagen types I and III, 

and is particularly effective at degrading type II.   

ADAMTs molecules (a disintegrin and metalloproteinase with thrombospondin 

motifs) proteins are involved in the breakdown of aggrecan in the intervertebral disc (Le 

Maitre et al., 2004). ADAMTs 4 and 5 were analyzed as their role in degrading cartilage 

proteoglycans have been previously illustrated  

Anti-catabolic factors 

TIMP (tissue inhibitor of metalloproteinases) proteins generally inhibit MMP 

activity. In addition, TIMP3 will inhibit ADAMTS proteins, and has been shown to 

change with age in the NP (Tsuji et al., 2007).   

Transcription factors 

Six factors in signal transduction were chosen for analysis in this study.  The first 

three, c-fos, c-jun and MAPK were chosen to compare with the work of Fitzgerald et al. 

(Fitzgerald et al., 2006), and are all known to be affected by mechanical loading in other 

orthopaedic tissues such as bone and cartilage. MAPK also has other functions in signal 

transduction, therefore its classification as a transcription factor is very liberal. STAT3 

and integrin linked kinase (ILK) are a transcription factors and a kinase along the 

integrin-mediated mechanical signaling pathway, also both known to be regulated by 

mechanical conditions. Again the classification of ILK as a ‘transcription factor’ is very 

loose, and it should be thought of as a means of signal transduction. 

Signaling molecules 
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Four cytokines were chosen for investigation.  The first, transforming growth 

factor β (TGFβ) is a growth factor known to stimulate mesenchymal stem cell 

differentiation down a chondrogenic lineage, upregulating aggrecan and collagen type II. 

TGFβ expression has also been shown to change with age in the IVD (Murakami et al., 

2006).  Insulin-like growth factor (IGF) has been shown to stimulate IVD cell 

proliferation in vitro (Pratsinis and Kletsas, 2007) and confer anti-apoptotic effects 

(Gruber et al., 2000). Connective tissue growth factor (CTGF) has been shown to 

upregulate biosynthesis by intervertebral disc NP cells (Erwin et al., 2006). Interleukin-6 

(IL-6) polymorphisms have been shown to be associated with scoliosis (Aulisa et al., 

2007), and IL6 has been shown to be upregulated in an IVD model of persistent 

inflammation (Ulrich et al., 2007).  

Housekeeping genes 

 GAPDH and 18s are two commonly used housekeeping genes for qRT-PCR. 

Both housekeeping genes were used as GAPDH has been shown to be affected by 

mechanical loading in the intervertebral disc (Lee et al., 2005).   

Other molecules were also investigated in the course of this study.  IL1 and TNFα 

were initially examined as they have both been reported to increase with increasing 

degeneration in the intervertebral disc (Le Maitre et al., 2004).  No evidence of either 

molecule was found in the bovine intervertebral disc. Gene sequences associated with 

primers for other growth factors, such as EGF, and transcription factors such as ELK, 

were not available for bovine and were therefore not created.   
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6.2.2 Computational Framework 

Computation was performed using the MATLAB software package. A clustering toolbox 

freely available (www.fmt.vein.hu/softcomp) was used and modified for analysis.  

Normalization of Data 
 

 The gene expression data was first normalized by the gene expression levels of 

the housekeeping genes GAPDH and 18s. The magnitudes of the clusters then had to be 

standardized.  Fundamentally, this step is required to ensure the methods are not 

‘overwhelmed’ by large magnitudes of change in gene expression levels, and instead are 

focused on the overall patterns of expression changes between mechanically stimulated 

and unstimulated cells.   

In previous studies (Fitzgerald et al., 2006, Fitzgerald et al., 2004), re-weighting 

of the data matrix was accomplished by: 
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Where X is a gene expression vector, F is the vector of gene expression data from an 

unstimulated control (all =1), Sx is the modified standard deviation of gene X (after 

normalizing to unstimulated control, T was the number of time points (experimental 

variables) and Z is the resulting standardized expression vector. One disadvantage of this 

method is the loss of the control sample, which may provide important information when 

comparing between old and young at matched time points, or between time points.  To 
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retain the control time point while still standardizing the data, a normalization method to 

re-scale all expression values for a given gene between 0 and 1 will be used. All 

clustering analyses will be performed on this re-scaled data.  

 

Clustering metric 

The first metric used was the Euclidian distance.  Euclidian distance is defined by: 

            ( )∑ −=
i

ii vxD
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                                                   (3) 

Where D is the distance metric, xi is the value of a clustering group (ie: gene) at a 

condition i (ie: experiment), and vi is the centroid value also at condition i.   

To confirm meaningful clusters found by Euclidian distance, another distance 

metric, manhattan distance, was also used.  This metric is given by: 

∑ −=
i

ii vxD )(                                             (4) 

Again where D is the distance metric, xi is the value of a clustering group (ie: gene) at a 

condition i (ie: experiment), and vi is the centroid value also at condition i.   

Clustering 
 

 The general form of the data matrix X to be clustered is (n x m) where the n 

rows are the groups to be clustered and the m columns are the characteristics used to 

define the groups for clustering (attributes groups are clustered on).   

K-means clustering 

 The k-means clustering algorithm goes as follows: 
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1. Randomly assign k cluster centroids 

2. Calculate membership list and distances using a distance metric. 

Points are assigned to their closest centroid 

3. Recalculate centroids to be at the center of the membership list 

4. Re-calculate membership list and distances and reassign points to 

closest centroid 

5. Repeat until the centroids move less than a certain given tolerance. 

Fuzzy c-means clustering 

The fuzzy c-means clustering algorithm goes as follows: 

1. Compute initial clusters by: 
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2. Compute the distance between data points and the cluster centroids, update 

membership partition list 

3. Repeat until centroids move less than a given tolerance. 

The variable g given above is a weighting factor that determines the degree of 

fuzziness in the clusters.  It is constrained to be 1>>∞ g .  As g approaches 1, the 

clustering algorithm becomes a hard portioning algorithm like k-means. In contrast, as g 

approaches infinity, the clusters become maximally fuzzy.  A value of g = 2 was used for 

this entire analysis.     
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Validity Indices 

 One concern with the implementation of clustering methods such as K-means 

and Fuzzy C means clustering is the a priori specification of cluster number.  The 

exploration of cluster numbers used is important.  The approach is to find the minimum 

number of clusters capable of describing the data, or where the value added by the 

addition of each sequential cluster starts to decrease. Too many clusters will over-

represent the data and may separate groups, which have a meaningful interaction while 

too few clusters may artificially combine two groups, which should be considered 

separate.  Two methods exist for exploring the efficiency of the number of clusters 

chosen.  The first method is to pick a large cluster number (highly segregate the data) and 

combine clusters based on predetermined criteria, for instance combining until the 

combination of two clusters will lead to very large, not well separated clusters. The 

second method is to evaluate the clustering results from increasing cluster numbers using 

sets of validity indices.  Each validity index represents a different feature of the 

determined clusters; so more than one index is typically consulted to determine whether 

the cluster number best describes the data.   

In this study, two measurements were used in evaluating the results from k-means 

clustering, and six for the results from fuzzy c-means clustering. The hard partitions 

resulting from the k-means only lend to evaluation with two of the validity indices that 

are reasonable to implement, however the two measurements chosen have been shown to 

be effective in determining the best cluster number in other studies of gene expression 

data (Dave, 1996). K-means clustering is also sensitive to the initial positioning of the 



 128

cluster centers, so it was considered a priority to run the algorithm many times to 

establish a globally optimal solution. The nature of the partitions from fuzzy c-means, 

where data points can belong to many groups, makes this method less sensitive to initial 

cluster position (however some sensitivity still exists, particularly where cluster center 

numbers increases relative to the size of the data set.  

Modified Partition Coefficient (MPC) 

 The commonly used partition coefficient (PC) evaluates the amount of 

overlapping between clusters (Bezdek et al., 1981).  However, PC increases with 

increasing cluster number (c) making its utility suspect.  This study used a modified 

version of the partition coefficient, which eliminates the scaling with c (Dave, 1996). The 

MPC for a given cluster number c is given by: 
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Where mij is the membership of data point j in cluster i and N is the number of data 

points. 

Partition Index (SC) 

Partition Index is a sum of individual cluster validity indices divided by the fuzzy 

cardinality of each cluster (Bensaid et al., 1996). SC is given by: 
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Where mij is the membership of data point j in cluster i, xj is the value of x at condition j,  

vi is the centroid value in centroid i, N is the number of conditions, vk is the value of the 

centroid in centroid k.  Partition index is a ratio of the sum of compactness and separation 

of clusters. 

Separation Index (S) 

 The separation index examines the ration between the compactness of the 

clusters and the separation between clusters at their minimum distance (Bensaid et al., 

1996).  Separation index, S, is given by: 
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Xie and Beni’s Index (XB)  

 Xie and Beni’s index quantifies the ratio of total variation within the clusters 

and the separation of the clusters (Xie and Beni, 1991). XB was used for both k-means 

and fuzzy c-means cluster evaluation, although it is intended for fuzzy c-means. It was in 

this way used to see how a non-optimal validity index would perform for a given method. 

XB is given by: 
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Where m = 2.  The optimal cluster solution should minimize this index, as ideally the 

clusters have less variation than they are separated. 

Dunn Index (DI) 

 The goal of the Dunn Index is to identify well-separated and compact clusters. 

The application of this index to fuzzy clustering requires hard partitioning of the data, 

and can be computationally expensive (Ray et al., 1999).  The Dunn index was used for 

both k-means and fuzzy-c-means cluster evaluation.  
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Perturbation of Data 
 

 To verify the robustness of the clustering analysis, gaussian noise was added to 

the data and re-analyzed for reproducibility. The noise added was scaled to a magnitude 

of +/- the standard error of the mean of the data.  This is expected to be a very robust 

amount of noise, as the within sample variation is typically significantly less than 

between samples. 

 To quantify the amount of agreement between two output clusters (for example, 

between perturbed data set #1 and the original data) a measure called the Rand index will 

be used.  Given two matrices, one representing the membership matrix of the perturbed 

data (PB) and one representing the original data (OD), the Rand index (RI) is given by: 
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Where a is the number of points (data points, meaning experimental groups or genes) that 

are in the same cluster in PB and OD, b is the number of points in different clusters 

between PB and OD, c is the number of points in the same cluster in PB and different in 

OD, and d is the number of points in different clusters in PB, but the same cluster in OD.  

In this index, a and b are measures of similarity between the two generated cluster 

membership lists, and c and d are measures of dissimilarity.   

 

6.2.3 Visualization of the results through factorization  

 

Again, the general form of the matrix X is (n x m).  Factorization can then be 

accomplished by the general form: 
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Where W and H are matrix factors, of dimension n x r  and  r x m respectively.  The 

columns of W define the new groups, which are a combination of the original groups 

such that they represent the original data set within the new reduced dimensions. The 

columns of H are then the data corresponding to the new combined groups. The rank, r, is 

chosen such that 

             nmrmn <+ )(                                     (14) 
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The form of the matrices W and H vary between the factorization method chosen and are 

described in detail below.  

Principal component analysis 

 

 In PCA, W and H are constrained such that the columns of W are orthonormal 

and the rows of H are orthogonal to each other.  The overall row data is then represented 

by a linear combination of each distributed representation of the column data.  Each 

individual representation is uniquely defined as an eigenvalue representation.   

 To find the PCA coordinates, singular value decomposition (SVD) was applied 

to the gene expression data covariant matrix. To accomplish this, the n x m data covariant 

matrix X is decomposed as: 

                                         T
VUX Σ=                               (15) 

Where the columns and rows of U (size n x n) are orthonormal and the rows and columns 

of VT (size m x m) are orthonormal. Σ is an (n x m) diagonal matrix, such that the 

diagonal elements are ,0...1 ≥≥≥ rσσ  and 0... ),min(1 ===+ mnr σσ . Finally r =  rank(A) 

= the number of rows and columns in X. 

 The k most significant components were determined, where k<4 for 3D plotting.  

The utility of this assumption was also examined by noting each eigenvalue, and ensuring 

the top 3 were sufficient to account for the majority of the data.  These components were 

then used to do ‘k-dimensional’ PC analysis.   

                  XUX
t

kk ≡                                                         (16) 

where the m columns of X were projected onto the linear space spanned by the first k 

columns of U (Uk are columns 1 through k of U).  The eigenvectors of 
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                                          AAT<ATA>                      (17) 

Is the principal components basis for the columns of A<AT>.  Then the data in principal 

component axes is  

      Y = UTX                                              (18) 

 and the covariance matrix  

         YYT/(n -1)                                                 (19) 

is then diag(Vi)nxn., the rows of Y are uncorrelated. 

Non-negative Matrix Factorization 

 

 In NMF, one requirement is that the sparsity of the matrices be low. Another 

requirement is that each entry in the matrix W and H must be positive.  Since only 

additive combinations are allowed, this leads each component to be more representative 

of the whole, and their combination to truly represent the concept of the sum of the parts 

is the whole.  This can be quite useful as well, as each component now has a more 

intuitive meaning. No longer is the message only in the summation of the parts, but rather 

now each part has a meaning as well, revealing meaningful patterns inside the complex 

data (Pascual-Montano et al., 2006, Lee and Seung, 1999).   

 Initial random guesses were created for the matrices W and H.  Under the 

constraint that the updated values must be positive, the matrices will update to 

approximate (Kim and Tidor, 2003) 
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The optimization criterion used by both Lee and Seung, and Kim and Tidor, 2003 was to 

minimize the RMS error between the data and reduced dimension data such that 

    WHVE −=                                      (22) 

6.2.4 Implementation of the algorithms 

  As stated in the introduction, this analysis consisted of two aims. The first goal 

was to find experimental groups that linked by similar gene expression profiles and the 

second goal was to find genes that are commonly linked by experimental protocols.  

Similarities in experimental groups 

In general terms, the investigation of similar experimental groups was 

implemented by clustering the gene expression data as shown in Figure 6-2a, particularly 

the form of the clustering matrix X (n x m) was created with the n experimental 

conditions by the m gene expression data.   The flow of the implementation is shown in 

(Figure 6-3).  
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Figure 6-3: Experimental flow chart 

 

After data matrix normalization and scaling, k-means clustering was applied to 

the data, with cluster number (k = 2-10) and run 10 times. From there, the XB and DI 

validity measures were compared to determine ideal cluster number. The k-means cluster 

algorithm was then run 20 times with the determined ideal cluster number to determine 

an optimal solution where the distance between centroids and data points was minimized.  

The membership list and centroid locations were saved. 

Fuzzy c-means clustering was likewise applied, with the exception that the 

algorithm is more insensitive to initial centroids positioning, reducing the need to run the 
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algorithm repeatedly to obtain a globally optimal answer.  Also, more validity indices 

were examined, as the ability for shared membership can also lead to more options with 

respect to cluster number. Therefore, fuzzy c-means clustering was performed on 

normalized data by running the algorithm 10 times with clusters (c = 2-10) and evaluating 

the validity indices MPC, S, SC, XB and DI for optimal cluster number. The fuzzy c-

means clustering algorithm was then run with the optimal cluster number to obtain 

membership lists and centroids for the run with the minimal distance between centroids 

and data points. 

To evaluate the sensitivity of the found membership lists, the process was 

repeated for 3 sets of Gaussian perturbed data.  To corroborate the results, the process 

was also repeated using a correlation coefficient metric.   

2. Similarities in gene expression profiles 

The same protocol was followed for grouping genes exhibiting similar profiles, 

except the X (n x m) matrix was created with the n gene expression data by the m 

experimental conditions. The data were normalized and scaled along the gene dimension 

to reduce the effect of large gene expression magnitude differences between genes. 

Therefore, in addition to clustering of the full data sets (all AF or all NP), the matrix was 

also partitioned into young and mature subsets.  The subset clustering was performed to 

examine whether one age (mature or young) was dominating the overall clustering, which 

was possible since the scaling and normalization did not occur in the matrix dimension 

containing the experimental dimension (m). 
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Three genes, MMP13, TIMP2, and ADAMTS5 were ‘held back’ from the data set 

for later comparison and were therefore not used to determine cluster sets.  

3. Gene patterns implicated in experimental grouping 

The experimental groups belonging to each cluster determined from the k-means 

clustering of experimental phenotype (as in part 1) were isolated.  The data matrices were 

transposed, and the data was examined for similarities in gene expression profiles (as in 

part 2).  Again, k-means and fuzzy clustering algorithms were implemented as shown in 

Figure 6-3. 

4. Predictive value of clustering results  

To examine whether the clustering results could be applied universally to the 

study of intervertebral disc mechanobiology, data from reported in study #2 was 

compared to the clustered groups found in this work (Table 6-3).   

Table 6-3: Comparison between groups from study #2 (chapter 4) and clustered data experimental 

groups as well as analyzed genes 

 

Group from Study #2 Group from Study #3 
Genes used in both studies 

(used for comparison) 

Control Mature control (unloaded) 

Low load (1 MPa, 1 Hz) 

High Load (2.5 MPa, 1 Hz) 

Mature  1Hz  7 day 

Collagen I and II, 

Aggrecan, Versican, 

TIMP1 

MMP2, MMP3, ADAMTS4 
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The comparison between the studies is not perfect for several reasons.  First, study #2 

was an organ culture model whereas the data used for clustering was in vitro (isolated) 

cells seeded into alginate matrices.  Organ culture maintains the normal cell-matrix 

contacts, which may play a crucial role on cell signaling which are missing from the in 

vitro model the clustered gene data was created from. Also, the comparisons between the 

applied loads is not ideal, as study #2 varied magnitude of applied compression while 

clustered data varied in frequency of load (and was at a consistent magnitude).  

Therefore, a group of high or low load grouping with the 1 Hz loading condition from the 

current gene expression set would be considered interesting.  The comparison is quite 

close as far as age of the cells (both from mature IVDs) and that both experiments 

consisted of 7 days of loading followed by a time point.    

 Finally, the ability for the clustered genes to predict the presence of other genes 

not included in the creation of the original clustering set was examined.  Here, three sets 

of genes that were not used to create the original cluster centers were plotted and the 

distances between their locations in ‘expression space’ and established centroids were 

compared to determine which cluster center each would be assigned to with each 

clustering algorithm.  Evidence from intervertebral disc literature suggests they should all 

be grouped with particular genes used to create the original clusters, meaning that the 

new data points should show memberships similar to their known associates. For k-

means this means being closest to the desired centroid according to Euclidian distance 

metric. The assumption is that these genes would likely be hard partitioned into the 
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cluster if the distance (between the gene and centroid) is similar to the distances between 

the other members of the cluster and the centroid. 

6.3 Results 

6.3.1 Experiment clustering 

 
6.3.1.1 K-means 

In the AF, K-means clustering resulted in an optimal cluster number of 4.  

Validity indices XB and DI for cluster numbers ranging from 2 – 10 are shown in Figure 

6-4.  After running the algorithm 20 times using k = 4, the optimal cluster membership 

list was generated (Figure 6-6). Cluster 1 contained mature 7 day control and 1 Hz, 

Mature 14 day 1 Hz and 3 Hz, Young 14 day control, 0.1 Hz and 3 Hz, and mature 21 

day control and 1 Hz. Cluster 2 contained mature 21 day 0.1 Hz. Cluster 3 contained 

mature 7 day 0.1 Hz and young 21 day control, 0.1 and 1 Hz. Cluster 4 contained mature 

7 day 3 Hz, all young 7 day groups, mature 14 day control and 0.1 Hz, Young 14 day 1 

Hz, mature 21 day 3 Hz and young 21 day 3 Hz.   

In the NP, K-means clustering resulted in an optimal cluster number of 6.  

Validity indices XB and DI for cluster numbers ranging from 2 – 10 are shown in Figure 

6-5.  The optimal cluster membership list was again generated after running the algorithm 

20 times with k=6 Figure 6-7. Cluster 1 contained mature 7-day control, 0.1 Hz and 3 Hz.  

Cluster 2 contained mature 7 day 1 Hz, Mature 14 day 0.1 Hz and mature 21 day 1 Hz.  

Cluster 3 contained young 7-day control and 1 Hz, mature 14-day control, and mature 0.1 

Hz at 21 days.  Cluster 4 contained young 7-day 0.1 Hz and 3 Hz, and mature 21-day 
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control and 3 Hz.  Cluster 5 contained mature 14-day 1 Hz and 3 Hz, and cluster 6 

contained all young 14-day and 21-day samples. 

 The AF group, containing only 4 clusters for an ideal solution, can possibly be 

thought of as less complex than the NP, which required 6 clusters for a full description.  

This could mean that the response to loading and aging in the AF is fairly uniform.  In 

both tissues, the young cells tend to come to a greater cluster membership agreement at 

21 days (mostly yellow for AF, all purple for NP), supporting the idea that they are able 

to respond in vitro to mechanical loading, or to re-establish a state of homeostasis, on a 

more rapid time frame.   

The AF response also increased in the number of clusters with time.  The seven 

day samples only had a k = 2 (red and green), the 14 day samples had a k=3 (red, green 

and blue), and the 21 day samples had all four clusters (red, green, blue and yellow), 

possibly indicating the different cell age and response to load needs time to fully develop, 

or is significantly affected by the time those cells spend in culture. 

In the NP, a different trend over time is seen, with k=4 for the seven day samples, 

all six clusters needed for the 14 day time point, and again k=4 for the 21 day time point.  

This could indicate the response of the NP is on a more rapid time-scale than that of the 

AF.   
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Figure 6-4: XB and DI validity measurements for AF k-means clustering of experimental 

'phenotypes'. The optimal cluster number was found to be k=4 (shown with black line) 
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Figure 6-5: XB and DI validity measurements for NP k-means clustering of experimental 

'phenotypes'. The optimal cluster number was found to be k=6 (shown with black line) 
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Figure 6-6: Cluster membership for AF experimental 'phenotype', where the optimal cluster number 

was determined to be k = 4. Each color corresponds to a different cluster (meaning each group with 

the same color belongs to the same cluster) Loading groups are the columns; age and time of 

sampling are the rows. 

 

 

Figure 6-7:Cluster membership for NP experimental 'phenotype', where the optimal cluster number 

was determined to be k = 6. : Each color corresponds to a different cluster (meaning each group with 

the same color belongs to the same cluster). Loading groups are the columns; age and time of 

sampling are the rows. 
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6.3.1.2 Perturbation of data 

 The gene expression data was perturbed by the addition of a noise term centered 

at zero, with a gaussian distribution of +/- the standard error of the mean average for the 

expression values. After the addition of the noise, the procedure outlined in Figure 6-3 

was repeated. 

 In the AF, the optimal cluster number was again determined to be k = 4 by 

validity measurements XB and DI (Figure 6-8).  The membership list of the optimal run 

was consistent between the perturbed and original data for 2/3 of the perturbed data sets, 

with all inconsistencies occurring in the third perturbed data set. Eleven groups were 

affected by the addition of data noise in the third perturbation: All the 3 Hz load groups 

except young 21 day, mature and young 14 day 1 Hz and mature 21 day 1 Hz, both 

mature and young 14 day 0.1 Hz, and mature 21 day controls.   

 In the NP, the three sets of perturbed data again yielded an optimal number of 

clusters of k = 6 based on XB and DI validity measurements (Figure 6-9). The NP groups 

were more affected by noise, with 2/3 of the perturbed data sets causing different 

clustering results.  As with the AF, 11 groups were unaffected by noise: all Mature 7 day 

groups, the Mature 14 day 0.1 Hz, Young 14 day control, Mature 21 day 1 Hz and all the 

Young 21 day groups (Figure 6-10 bottom).   

 The perturbation of the groups suggests the AF groups are more stable, and 

closer to the cluster memberhip centroids than in the NP.  It is also interesting to note that 

the amount of variability with perturbation is dependent on mechanical loading, with 

most of the 3 Hz groups exhibiting a cluster chage with perturbation, and only one of the 
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controls exhibiting some chage with perturbation.  The NP, however, did not follow such 

a trend with mechanical loading.  

Table 6-4: Rand Indexes for clusters generated from data with the addition of gaussian noise.  A 

Rand Index of 1 means complete agreement between matrices, and approaching zero means no 

association between matrices 

 Perturbation 1 Perturbation 2 Perturbation 3 

AF 1 1 0.815217 

NP 0.942029 0.923913 0.887681 
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Figure 6-8: XB and DI validity measurements for AF k-means clustering of experimental 

'phenotypes'. Three runs with perturbed data (blue, red and yellow) along with the original indices 

(blue) are shown.  The optimal cluster number was found to be k=4 in all cases (black line) 
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Figure 6-9: XB and DI validity measurements for NP k-means clustering of experimental 

'phenotypes'. Three runs with perturbed data (blue, red and yellow) along with the original indices 

(blue) are shown. The optimal cluster number was found to be k=6 in all cases (black line) 
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Figure 6-10: Cluster membership for AF experimental 'phenotype' (top) and NP ‘phenotype’ 

(bottom. The optimal cluster number was determined to be k = 4 for the AF and k = 6 for the NP.  

Each box corresponding to a group is divided into 4 slivers corresponding to perturbed data 1, 2, and 

3, then the original data. Each color corresponds to a different cluster (meaning each group with the 

same color belongs to the same cluster). When repeated incidences of a particular cluster 

membership were found, the boxes were grouped (for instance, in the AF mature 7 control group had 

4 slivers of green, which were grouped to be one big green Likewise, Young 7 day control in the AF 

had 3 slivers of red and one of blue, so the three reds were grouped and the blue was separate).  

Loading groups are the columns; age and time of sampling are the rows. Note the AF is represented 

with 4 colors, but for ease of interpretation between runs, the NP is in separate colors for separate 

clusters between runs unless the cluster membership was maintained for a full block for another 

group (for example mature 7 1 Hz and Mature 14 1 Hz share ‘red’ as mature 7 1 Hz membership 

was maintained throughout) 
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6.3.1.3 Manhattan city block metric 

The resulting clusters were insensitive to the choice of distance metric used to 

evaluate membership.  Each was run 20 at the cluster number found to be optimal for the 

Euclidian distance metric (k = 4 for AF, k = 6 for NP).  For both the AF and NP, the 

results from the optimal run were identical whether using the Euclidian distance or 

Manhattan city block metric. 

6.3.1.4 Fuzzy c-means 

 As with k-means clustering, fuzzy c-means clustering in the AF resulted in an 

optimal cluster number of 4.  Validity indices MPC, SC, S, XB and DI are all shown in 

Figure 6-11.  The optimal cluster membership is shown in Figure 6-12.  A table with each 

group’s membership percentage is also provided (Table 6-5). 

 Cluster memberships with the fuzzy c-means clustering, corresponded to those 

with the k-means clustering.  As expected, the groups found to be sensitive to 

perturbation were also found to be contributing to clusters other than their primary 

memberships in higher percentages than other clusters, indicating their status as groups 

which may be transitioning between clusters.   
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Figure 6-11: MPC, SC, S, XB indices for AF experimental 'phenotype' grouping.  The optimal cluster 

number was found to be c = 4, indicated with a black line. 
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Figure 6-12: Cluster memberships for AF experimental 'phenotype'. Each color corresponds to a 

separate cluster.  Fuzzy c-means allows for a membership in multiple clusters. O – mature (old), Y – 

young, the number is the experimental time point, then loading is indicated by a C – control, L – 0.1 

Hz or Low, M – 1 Hz or Medium, and H – 3 Hz or High. 
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Table 6-5: Cluster membership as a table for AF experimental 'phenotype'.  Color of cells 

corresponds to their value of membership where >0.75 is red, 0.5 - 0.74 is yellow, 0.25 - 0.49 is green, 

0.1 - 0.24 is blue, and white is<0.1. . For naming convention, M – mature, Y – young, the number is 

the experimental time point, then loading is indicated by a C – control, L – 0.1 Hz or Low, M – 1 Hz 

or Medium, and H – 3 Hz or High. 
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Fuzzy c-means clustering in the NP resulted in an optimal cluster number of 5.  

Validity indices MPC, SC, S, XB and DI are all shown in Figure 6-13.  The optimal 

cluster membership is shown in Figure 6-14.  A table with each group’s membership 

percentage is also provided (Table 6-6). 

The representation of the NP group by only c = 5 (instead of k=6 in k-means 

clustering) is both an example of the utility of fuzzy clustering and an indication of the 

transitory nature of the NP cell response.  The concept can be understood as imagining 

that there was one cluster from the k-means clustering which was made up of samples, 

which were situated between two other clusters, but sufficiently different to warrant their 

own group.  With the application of fuzzy c-means clustering, one can see that this set of 

samples could be more accurately described as a combination of these two groups rather 

than as their own group. The presence of these samples, which exist between clusters, 

indicates the response of the NP is more variable than that of the AF. 
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Figure 6-13:  MPC, SC, S, XB indices for NP experimental 'phenotype' grouping.  The optimal 

cluster number was found to be c = 5, indicated with a black line. 
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Figure 6-14:Cluster memberships for NP experimental 'phenotype'. Each color corresponds to a 

separate cluster.  Fuzzy c-means allows for a membership in multiple clusters. O – mature (old), Y – 

young, the number is the experimental time point, then loading is indicated by a C – control, L – 0.1 Hz 

or Low, M – 1 Hz or Medium, and H – 3 Hz or High. 
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Table 6-6: Cluster membership as a table for NP experimental 'phenotype'.  Color of cells 

corresponds to their value of membership where >0.75 is red, 0.5 - 0.74 is yellow, 0.25 - 0.49 is green, 

0.1 - 0.24 is blue, and white is<0.1. For naming convention, M – mature, Y – young, the number is the 

experimental time point, then loading is indicated by a C – control, L – 0.1 Hz or Low, M – 1 Hz or 

Medium, and H – 3 Hz or High 

 

6.3.2 Gene Expression Clustering 

 
6.3.2.1 Full data sets, Kmeans clustering 

K-means clustering of the AF gene expression values resulted in an optimal 

cluster number of k = 4 (Figure 6-15). Cluster 1 contained collagen types I and II, 

aggrecan, and its catabolic counterpoint adamts4. Cluster 2 contained decorin and 

vimentin. Cluster 3 contained IGF, IL6, versican, link, fibronectin MMP3 and TIMP1.  

Cluster 4 had the highest membership, containing the transcription factors cfos, cjun, 
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mapk, stat3 and ilk, the growth factors TGFB and CTGF, the small proteoglycan 

biglycan, collagen type III and VI, the catabolic factors MMP1 and MMP2, and the anti-

catabolic factor TIMP3 (Table 6-7). 

K-means clustering of the NP gene expression values resulted in an optimal 

cluster number of k=4 (Figure 6-16).  Cluster 1 contained collagen type I and 

ADAMTS4. Cluster 2 contained collagen type II, and aggrecan, versican, mmp3 and 

TIMP1and 3, link and decorin, fibronectin, and vimentin. Cluster 4 was composed of the 

transcription factors cjun, cfos, stat3, mapk and ilk, the catabolic factors MMP1 and 

MMP2, collagen type III and type VI, biglycan, and the growth factors CTGF and TGFB. 

Cluster 4 was composed of IL6 and IGF (Table 6-7). 
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Figure 6-15: XB and DI validity measurements for AF k-means clustering of genes. The optimal 

cluster number was found to be k=4 (shown with black line) 
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Figure 6-16: XB and DI validity measurements for NP k-means clustering of genes. The optimal 

cluster number was found to be k=4 (shown with black line) 
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The genes composing each cluster for both the AF and NP are shown in Table 

6-5.  ‘Linked’ genes, which appear together in each cluster, share a common color in the 

list.  

Table 6-7: Membership of each cluster for the AF and NP with k-means clustering.  

 
 

6.3.2.2 Full data sets, fuzzy c-means 

Fuzzy c-means clustering in the AF resulted in an optimal cluster number of c = 3.  

Validity indices MPC, SC, S, XB and DI are all shown in Figure 6-17.  The optimal 

cluster membership is shown in Figure 6-18 with a table with each group’s membership 

percentage also provided (Table 6-8). 
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Figure 6-17:MPC, SC, S, XB indices for AF gene grouping.  The optimal cluster number was found 

to be c = 3, indicated with a black line. 
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Figure 6-18: Cluster memberships for AF genes. Each color corresponds to a separate cluster.  

Fuzzy c-means allows for a membership in multiple clusters 
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Table 6-8: Cluster membership as a table for AF genes.  Color of cells corresponds to their value of 

membership where >0.75 is red, 0.5 - 0.74 is yellow, 0.25 - 0.49 is green, 0.1 - 0.24 is blue, and white 

is<0.1 

 

In the NP, fuzzy c-means clustering resulted in an optimal cluster number of 5. 

Validity indices MPC, SC, S, XB and DI are shown in Figure 6-4, While a solution may 

seem apparent at c = 3 as in the AF, note the scale on the scale on SC, which should be 

minimized.  While the solution of c=3 does result in a small jump in SC in the AF, it is 

only of 0.5, whereas in the NP it results in a jump of 2.   The optimal cluster membership 



 164

is shown in Figure 6-20, again with a table of group memberships also provided (Table 

6-9).  

In both the AF and NP, genes displayed a greater amount of membership in 

multiple clusters than in the experiment grouping approach.  This could be due to either 

the participation of these genes in multipole pathways, or alternatively be an effect of the 

combination of old and young data sets, possibly adding a source of noise to the data. To 

address this, the old and young data sets were also analyzed separately. 

 

 

Figure 6-19: MPC, SC, S, XB indices for NP gene grouping.  The optimal cluster number was found 

to be c = 5, indicated with a black line. 
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Figure 6-20: Cluster memberships for AF genes. Each color corresponds to a separate cluster.  Fuzzy 

c-means allows for a membership in multiple clusters 
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Table 6-9: Cluster membership as a table for NP genes.  Color of cells corresponds to their value of 

membership where >0.75 is red, 0.5 - 0.74 is yellow, 0.25 - 0.49 is green, 0.1 - 0.24 is blue, and white 

is<0.1 
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6.3.2.3 Sub-matrix analysis – Kmeans 

The AF and NP matrices were partitioned into old and young AF and NP (four 

total sub-matrices) to remove and identify any influence each age had on the overall gene 

expression patterns found when grouping the genes from the intact data sets.   The AF 

and NP gene membership lists varied between the young and old, and both also varied 

from the intact data sets.  The Rand indices for these groups were computed to further 

quantify the similarities (and differences) between the sub-matrices and the full data set, 

and between the mature and young sub-matrices.(Table 6-10) 

Table 6-10: Rand indices indicating similarities in memberships between sub-matrices (with each 

other and with the full data set).  Indices were based on memberhip lists from an optimal run. 

 

Rand Index 

(Mature and Young) 

Rand Index 

(Young and Full Set) 

Rand Index 

(Mature and Full Set) 

AF 0.695 0.874 0.698 

NP 0.625 0.788 0.720 
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Table 6-11: Membership lists for Mature and Young AF and NP generated by clusterinng the sub-

matrices 

 

 

6.3.3 Gene patterns in experimental grouping 

 
  The experimental groups found to be clustered in part 1 were now separated 

from the overall gene expression matrix (n = 4 for AF, n = 6 for NP).  Those sub-matrices 

were then transposed, and the genes clustered. This can be conceptually understood by 

thinking of the experimental groups representing separate phenotypes, and the goal is to 
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now cluster the genes representing each phenotype to determine the patterns of regulation 

occurring within each. K-means clustering was used for all the clustering described. 

AF 
 

Optimal cluster numbers were determined for each group from XB and DI 

validity indices.  The optimal cluster number was determined to be k=4 for groups 1 and 

2, and k = 3 for groups 3 and 4. Tables of each group’s cluster membership are shown 

below. Group 1 contained mature 7-day control and 1 Hz, Young 14 day control, 1 Hz 

and 3 Hz, and Mature 21 day 3 Hz.  Group 2 contained Mature 7 day 0.1 Hz and 3 Hz, all 

Young 7 day, and Mature 14 day control and 0.1 Hz. Group 3 contained Mature 14 day 1 

Hz and 3 Hz, Young 14 day 0.1 Hz, Mature 21 day control and 1 Hz groups 

NP 

Optimal cluster numbers were k = 3 for all groups except groups 1 and 2 which 

had an optimal cluster number of k = 4. Each cluster member is shown below (Table 

6-13). Group 1 contained mature 7-day control, 0.1 Hz and 3 Hz.  Group2 contained 

Young 14 day 0.1 Hz and 1 Hz.  Group 3 contained young 7-day control and 1 Hz, 

mature 14-day control, and mature 0.1 Hz at 21 days.  Group 4 contained young 14 

control and 3 Hz, and all Young 21 day samples.  Group 5 contained mature 14-day 1 Hz 

and 3 Hz, and Group 6 contained Mature 7 day control, 0.1 Hz, 3 Hz and Mature 14 day 

1 Hz and 3 Hz samples. 
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Table 6-12: Gene memberships for each experimental outcome cluster in the AF.   
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Table 6-13: Gene memberships for each experimental outcome cluster in the NP.   

 
 

6.3.4 Predictive model 

 
The next step was to determine whether the groups that clustered have any 

predictive value.  The two-fold approach to this question sought to first address the 

ability for the model to predict future experimental groups, and second to predict gene 

relationships from the data. 

6.3.4.1 Predicting other genes 

To assess the ability for the developed clusters to describe future gene expression 

values, three genes were ‘held back’ from the analysis assigning clusters.  After clusters 

were defined, the gene expression values for MMP13, TIMP2, and ADAMTS5 were 

normalized and the Euclidian distance from the optimal run cluster centers were 

determined.  The gene was then assigned to the closest centroid. As illustrated in section 
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6.3.2.3, the combination of mature and young gene expression values could influence the 

membership of the genes of interest.  Therefore, the genes were paired with centroids in 

the mature and young sub-matrices in addition to the combined (full) data set.  

 In the full data set of the AF (Table 6-14), MMP13 was found associated with 

collagen types I,II ADAMTS4, versican, MMP3, TIMP1 and IGF. In the sub-matrices, 

the membership only differed with the addition of link and IL6 and the removal of 

ADAMTS4 in the mature cells, and the addition of IL6 in the young AF. ADAMTS5 was 

always associated with ADAMTS4 in all clusters. TIMP2 was in a group with another 

TIMP at all analyses, however was associated with TIMP1 in the mature cells, but 

TIMP3 in the full data set and in the young sub-matrix analysis. 

In the NP (Table 6-15), MMP13 was associated with ADAMTS4 for all clusters.  

ADAMTS5 associated with ADAMTS4 again for all groups, except in the young NP 

where it instead with decorin IGF, IL6, and ILK.  TIMP2 always associated with decorin 

IGF and IL6.  

The range of distances found between the ‘held back’ genes and their closest 

cluster were similar to the distances between the other genes and the centroids as well, 

indicating that MMP13, TIMP2 and ADAMTS5 were members of their respective 

centroids and not significantly outside of the area enclosed by the cluster.   
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Table 6-14: Gene distance from centroids found for the  full, mature and young full AF data set 

except the three genes 'held back'.  The gene is expected to belong to the group it is closest in space to 

(smallest distance between the gene expression value and cluster centroid). The smallest value is in 

bold. Groups correspond to those shown in Table 6-7 

Full Set Group 1 Group 2 Group 3 Group 4 

MMP13 0.691 0.901 1.212 1.271 

ADAMTS5 0.690 0.853 0.942 1.107 

TIMP2 0.643 0.678 0.632 0.765 

 

Mature Group 1 Group 2 Group 3 Group 4 

MMP13 0.540 0.748 0.825 0.804 

ADAMTS5 0.519 0.680 0.493 0.564 

TIMP2 0.343 0.529 0.619 0.339 

 

Young Group 1 Group 2 Group 3 Group 4 

MMP13 0.459 0.827 0.864 0.926 

ADAMTS5 0.415 0.809 0.767 0.986 

TIMP2 0.544 0.480 0.479 0.625 
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Table 6-15: Gene distance from centroids found for the full, mature and young NP data except the 

three genes 'held back'.  The gene is expected to belong to the group it is closest in space to (smallest 

distance between the gene expression value and cluster centroid). Groups correspond to those shown 

in Table 6-7 (NOTE: members are not the same between AF and NP) 

Full Group 1 Group 2 Group 3 Group 4 

MMP13 0.5517 0.645 0.726 0.384 

ADAMTS5 0.457 0.491 0.522 0.439 

TIMP2 0.364 0.507 0.334 0.499 

 
 

Mature Group 1 Group 2 Group 3 Group 4 

MMP13 0.444 0.612 0.666 0.756 

ADAMTS5 0.280 0.407 0.442 0.461 

TIMP2 0.392 0.265 0.534 0.468 

 
 

Young Group 1 Group 2 Group 3 Group 4 

MMP13 0.339 0.231 0.299 0.236 

ADAMTS5 0.349 0.323 0.261 0.276 

TIMP2 0.207 0.197 0.120 0.136 
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6.3.4.2 Predicting groups of experiments based on ‘ phenotype’ 

 To ascertain whether the experimental ‘phenotype’ clusters could be associated 

with groups from another type of experiment, the data from the study described in 

chapter 3 was used as a test set of data for the experimental phenotype clustering 

described in section 6.3.1.   Here, the goal was to determine which experimental groups, 

meaning the data used throughout this clustering analysis, were most related to the three 

test groups from chapter 3, namely control (static load at 0.2 MPa), Low load (0.2 – 1 

MPa at 1 Hz) and High load (0.2 – 2.5 MPa at 1 Hz).  While similarities exist between 

the studies (bovine IVD, mature discs for both), the experimental groups differed from 

the test groups in mechanism of load application (displacement control for experimental, 

load control for test), culture method (in alginate for experimental, in situ for test) and 

also in duration (21 days total for experimental, 7 days for test).   

 The test data was only composed of 8 genes in addition to the two housekeeping 

genes: collagen types I and II, aggrecan, versican, TIMP1, mmp2 and mmp3 and 

ADAMTS4.  To maintain the structure of the other known data, the full set of 

experimental data was used to find optimal cluster centroids, and then the centroid 

dimensions corresponding to these 8 genes were separated and used to calculate the 

distances reported.   

 For the AF, membership was found between the test groups and two of the four 

clusters.  The average distance between the test groups and the experimental centroids 

was 0.457 (Table 6-16).  In the NP, each test group was a member of a different cluster, 
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with an average distance of 0.142 between test groups and experimental cluster centroids 

(Table 6-17). 

Table 6-16: Distances between test groups and cluster centroids found from experimental 

'phenotypes' in the AF.  The lowest value, and therefore cluster membership, is noted in bold.  

Groups correspond to those in Figure 6-6 

 
Group 1 

(Green) 

Group 2 

(Red) 

Group 3 

(Blue) 

Group 4 

(Yellow) 

Control (0.2 MPa, Static) 0.776 0.597 0.930 0.440 

Low (0.2-1MPa, 1 Hz) 0.563 0.596 1.026 0.406 

High (0.2-2.5MPa, 1 Hz) 0.526 0.534 0.934 0.579 

 

 
 

Table 6-17: Distances between test groups and cluster centroids found from experimental 

'phenotypes' in the NP.  The lowest value, and therefore cluster membership, is noted in bold.  

Groups correspond to those in Figure 6-7 

 Group 1 

(Yellow) 

Group 2 

(Red) 

Group 3 

(Black) 

Group 4 

(Green) 

Group 5 

(Purple) 

Group 6 

(Blue) 

Control 
(0.2 MPa, Static) 

0.772 0.372 0.305 0.285 0.148 0.491 

Low 
(0.2-1MPa, 1 Hz) 

1.374 0.890 0.417 0.182 0.152 0.079 

High 
(0.2-2.5MPa, 1 Hz) 

0.464 0.454 0.247 0.201 0.391 0.831 
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6.4 Discussion 

Clustering analysis was used to explore gene expression patterns present in 

experimental data.  The use of a more robust analysis than simply plotting each variable 

separately was warranted, as the number of independent (24) and dependent (26) 

variables was large. Four approaches to exploring the data set were proposed.  The first 

approach, clustering of the independent variables (experimental groups) based on their 

gene expression phenotype, sought to find patterns in the way the experimental groups 

responded to the independent variables.  The second approach, clustering the dependent 

variables  (gene expression values), first explored the universal gene expression patterns 

in the intervertebral disc (all AF or NP groups), and then utilized known associations in 

the data (old versus young) to examine more tightly associated gene expression patterns.  

The third approach, taking the experimental groups from part 1 and clustering their gene 

expression values in a process known as biclustering, sought to determine what aspects of 

the gene expression profiles contributed to the separate experimental phenotypes.  

Finally, the ability for the patterns revealed by clustering to predict classifications on the 

gene and experimental phenotype level was analyzed. 

Clustering on the experimental level revealed less complexity in the AF than in 

the NP (determined by the overall cluster number, four for the AF, 6 for the NP). In both 

tissues, the young cells at day 21 had mostly come to a consistent clustering, which can 

possibly be interpreted as a stable, or more ‘normal’ phenotype.  This would be expected, 

as the cells are recreating the extracellular matrix within the alginate, and over time they 

would have accumulated a volume that would place them back in a more ‘normal’ level 
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of interaction with the surrounding environment. In the young NP, the cells had largely 

reached this ‘normal’ point by day 14, whereas it appears that the mature NP never 

achieved a stable clustering, either with the NP (all with the same stable point) or on its 

own (all mature cells having a stable point, separate from that of the young). It is likely 

that the inability of the mature NP cells to recreate a robust, functioning extracellular 

matrix, as reported earlier, would be detrimental to the re-establishment of this ‘normal’ 

point.   

In the AF, however, it appears that the mature cells at day 21 after 0.1 Hz 

loading were able to achieve a common ‘phenotype’ with the young AF cells at the same 

time. It is possible that the application of this low frequency load was enough to stimulate 

the cells, but not high enough to effect transport of the matrix molecules through the 

alginate and away from the cells.  This also suggests that the AF cells may be less 

sensitive to the negative effect aging had on the NP cells.  Additionally, the earliest time 

point (day 7) immediately followed the application of the seventh day of loading, and can 

possibly be thought of as the phenotypic response of each cell to early mechanical 

stimulation.  In the AF, a common phenotype was shared by young and old, with the 

exception of the mature controls and 1 Hz at day 7, again supporting the concept that the 

AF cells are less sensitive overall to the effects of aging. 

Turning to the clustering of gene expression data, some trends are readily 

apparent.  In the AF and NP, certain genes tend to stay together, for instance collagen 

type II, aggrecan, and versican which are all structural members of the IVD which would 

be expected to be upregulated in response to compression.  MMP3 and TIMP1 also 
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grouped together, which may indicate the catabolic nature of MMP3 may be regulated 

and counteracted by its inhibitor TIMP1. Biglycan and collagen type VI are also similarly 

regulated, indicating the importance of this small proteoglycan together with this major 

component of the pericellular matrix of the intervertebral disc cells. The association of 

MAPK, a signalling factor known to be affected by dynamic compression and collagen 

type III also indicates the response of the IVD to dynamic compression thorugh a 

remodeling pathway similar to development, as collagen type III is the earliest collagen 

type present throughout the fetal IVD. Further segmenting the data based on age reveals 

patterns that were obscured by the different magnitudes of gene expression levels 

between age groups. Interestingly, using an index to compare between the membership 

lists generated by mature and young genes, the similarity between the young and full sets 

is higher than that between mature and young, or between mature and the full set.  This 

implies the full set is being more highly influenced by the behavior of the young gene 

expression, and therefore the young gene expression values tend to have a greater 

magnitude (be more highly expressed).   

The biclustering analysis of the experimental phenotypes provides insight into 

the gene patterns responsible for the differentiation between phenotypes.  In the AF, it is 

notable that the ‘normal’ day 21 phenotype is the only one where collagen types I and II 

and aggrecan are all members of the same cluster (as was seen with the overall gene 

cluster analysis of the AF). While collagen type I is more present in the AF of the 

intervertebral disc, the genes may have a more similar expression in this case where 

compression is being applied to the cell, rather than tensile loads as normally experienced 
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in vivo.  MMP2 also exists alone in a cluster in this phenotype, in contrast to the other 

phenotypes where it is usually associated with other genes, notably the anti-catabolic 

genes TIMP1 and TIMP3.  In the NP, the stable phenotype is notably characterized by a 

disconnect between collagen type I and the block of collagen type II and aggrecan.        

The universal nature of the patterns found through the aspects of clustering 

analysis was examined on the experimental phenotype and the gene level.  First, by 

clustering the experimental phenotypes to determine cluster number and centroids of 

clusters, and then comparing the locations of particular ‘test’ experimental phenotypes to 

these clusters, further insight into the similarity of the ‘test’ groups to the experimental 

groups can be determined.  In the AF, the test groups ‘Control’ and ‘Low’ both 

corresponded to the same cluster, which was also the cluster described above as a 

‘normal’ phenotype.  This result is highly encouraging, as the in vivo discs would not 

have to recreate their extracellular matrix, and would therefore be expected to be at this 

‘normal’ phenotype.  The ‘High’ load group corresponded to a cluster including the 

mature AF cells at control and 1 Hz loading at 7 days.  The common factor in these 

groups is potentially an attempt at early remodeling.  In the NP, all three ‘test’ groups fell 

into a different experimental phenotype cluster.  ‘Control’ NP was closest to the ‘normal’ 

NP phenotype described above.  Again, this would be fully expected, as these cells are in 

vivo and would therefore not need to recreate the extracellular matrix.  The ‘Low’ load 

group corresponded to a cluster with two members, Young 14 day 0.1 Hz and 1 Hz.  This 

could be interpreted as phenotype close to ‘normal’, particularly as the perturbation of the 

experimental phenotypes through gaussian noise often results in those groups also in a 
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cluster with the ‘normal’ phenotype.  The ‘High’ load group corresponded to a cluster 

containing four members, two of the young 7 day (0.1 and 3 Hz) and two mature 21 Hz 

(control and 3 Hz).  While the interpretation of this cluster is not immediately obvious, by 

taking a lesson from the correspondence of the ‘High’ AF to a cluster exhibiting an early 

attempt at remodeling, one can speculate that the ‘High’ NP is also corresponding to that 

type of cluster.  This would imply the young NP cells are more quickly able to affect an 

early remodeling response than the mature NP cells (7 days in young versus 21 days for 

mature). 

The second method to examine the applicability of the clusters to unknown data 

was to examine the cluster memberships of ‘test’ genes.  Three genes were used for this 

analysis, MMP13, TIMP2 and ADAMTS5.  In all cases, genes were found to be 

associated with clusters at distances well within the range of distances found for other 

cluster members, indicating they were fully associated with their membership clusters. 

MMP13 and ADAMTS5 were both associated most commonly with ADAMTS4 in both 

the NP and AF tissue. In the AF, TIMP2 was in a group with another TIMP at all 

analyses, however was associated in the NP with with decorin IGF and IL6.  

Finally, the visualization of the clusters was facilitated through the use of two 

variable-space transformation and reduction techniques.  Both methods resulted in 

images that were reduced in dimension, thus enabling visualization of the results in two- 

or three-dimensions. 
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6.5 Conclusions 

 
The application of clustering techniques to illuminate patterns in intervertebral 

disc mechanobiology is a very promising direction for future research.  Patterns in both 

experimental phenotypes and in gene level responses can be found in data, which is 

composed of many groups in both independent and dependent variables. Biclustering 

further identifies those genes, which are candidates for further exploration.  Most 

interestingly, the clustering patterns found seem to be applicable to other intervertebral 

disc study models, and to genes unseen by the clustering algorithm, thus reinforcing the 

exciting role gene clustering can have in describing the intervertebral disc cell response 

to applied conditions. 
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CHAPTER 7  Summary  

The mechanical and biological response of the intervertebral disc to compression 

loading, aging, and time was examined through the use of organ culture and cell culture 

models.  Annulus fibrosus disruption through needle puncture quickly decreased the 

compressive modulus of the intervertebral disc.  However, the disc was resistant to 

damage and alteration in mechanical properties through the application of compression 

alone, highlighting the importance of annulus integrity to the overall mechanical behavior 

of the IVD.  Some evidence of biological remodeling was observed histologically in the 

nucleus pulposus of the needle-punctured discs. No large effects of dynamic compression 

on the gene expression of matrix molecules typical of the intervertebral disc, nor on the 

biosynthesis of sulfated glycosaminoglycans was noted. Mechanical compression applied 

to isolated cells from young and mature animals demonstrated significant effects of aging 

on the ability for the intervertebral disc cells to recreate extracellular matrix over seven 

days in culture.  Aging also interacted with the frequency of applied load to affect gene 

expression profiles, however the effect of aging on the cells was much more influential 

than the effect of applied compression loading.    

A dynamic compression-loading regime is not damaging to the mechanical 

properties of the intervertebral disc.  Even at high magnitudes of loading, the 

intervertebral disc did not display any alterations in structural or mechanical parameters, 

supporting the concept that the disc is highly adapted for resisting compression loading.  

The main structural and mechanical weak point in the disc structure is therefore likely the 

vertebral endplate. 
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 Disc mechanics were significantly affected by annulus fibrosus disruption. In the 

case of needle puncture, a decrease in compressive modulus was almost instantaneous.  

Such a defect would be induced by nucleus pulposus herniation, which would be 

particularly detrimental to the mechanical behavior of the intervertebral disc as the loss of 

nucleus pulposus tissue would also result in a decrease in the ability for the disc to 

pressurize, thus resulting in increased compressive, rather than normal tensile forces, on 

the annulus fibrosus.   

Alterations in disc mechanics may precede significant changes in disc 

extracellular matrix composition and synthesis. However, some genes may be regulated 

by mechanical loading, for example collagen type I and MMP3 both found to be 

upregulated in organ culture model of dynamic compression.  Aging is of critical 

importance to the cells of the intervertebral disc, and particularly the nucleus pulposus.  

Normal aging processes result in nucleus pulposus cells, which are less able to create 

robust, functional, extracellular matrix. Additionally, while young nucleus pulposus cells 

can achieve a stable response to mechanical loading over time, mature nucleus pulposus 

cells do not. In the annulus fibrosus, some level of mechanical stimulation can facilitate a 

stable ‘normal’ gene expression profile in both young and mature animals.   Interestingly, 

the expression of matrix components present early in development are also present in the 

isolated intervertebral disc cell populated alginate gel, indicating the cells may follow a 

common template to recreate the extracellular matrix after injury or other insult.  This 

provides a mechanism for the age-related increase in collagen type III pericellulary, 

where a cell would respond through a thickening of the pericellular matrix rather than an 
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effective, tissue-level repair response.  The association of collagen type III with MAPK, a 

transcription factor stimulated by mechanical loading, futher supports this theory.  The 

association of major structural molecules (collagen types I and II, aggrecan and versican) 

with each other also indicates the more effective repair response is slower, and is not as 

readily achieved in old cells versus young cells. 

Future studies should address the role of more complex loading conditions, such 

as combined bending and compression, in affecting disc cell mechanobiology. More 

complex loading conditions are more likely to lead to mechanical disruption of the disc, 

which may have large biological implications. The mechanism behind annular disruption-

induced loss of mechanical function should also be explored in more depth, as that has 

potential implications for the recovery of a disc following discography, discectomy, or 

following any potential regenerative techniques for the nucleus pulposus where access 

through the AF would be necessary. The role of aging on intervertebral disc health is a 

topic that has implications for the ability of a disc to respond and repair over the course 

of an animal/human’s lifetime. Studies on the role of aging on the response to loading 

and pharmacological interventions would therefore be warranted.  Finally, the use of 

clustering analysis is a promising means to describe the effects of many input variables 

on the biological response of the disc and may eventually be used to define “normal” 

phenotypes, and also define “abnormal” and “damaged” phenotypes from their 

quantitative distances from normal phenotypes.  Future work can lead to a descriptive 

map of intervertebral disc cell responses, and hopefully provide a means by which 



 186

biological processes leading to intervertebral disc degeneration can be reduced, 

counteracted, or treated. 
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Appendix 1: Immunohistochemistry methods 

 

Immunohistochemistry methods for images in Chapter 2. 
 
Purpose: 
Visualization of collagen extracellular matrix molecules in 18-24 mo. old bovine 
intervertebral disc (IVD) tissue. 
 
Procedure: 

Tissue samples were removed from the bovine IVD (see diagram). Tissue was 

then placed in 10% neutral buffered formalin for 4 hours at 4C.  After removal from the 

formalin, the samples were rinsed briefly in PBS and placed in a solution of 30% sucrose 

at 4C overnight.  Tissue samples were then placed in cryomolds, coated in OCT and 

frozen using liquid nitrogen cooled isopentane, and stored at –80C until sectioning.  

Tissue blocks were sectioned into 10 µm thick slides, transferred to superfrost plus slides, 

and stored at –80C. 

Slides were removed from the –80C freezer and allowed to dry for 20 minutes at 

room temperature.  Sections were then fixed in acetone for 5 min at room temperature in 

a fume hood).  After removal from the acetone, slides were allowed to dry for 5 mins and 

rehydrated in PBS.  Slides were then transferred to Thermo Shandon Sequenza Slide 

racks and washed again with PBS (200µl 3x).  Slides were then washed with 0.1% 

Triton-X at room temperature for 15 minutes, followed by another wash with PBS (3x).   

Due to the bovine’s age and the formalin fixation, a pretreatment step was 

necessary.  The enzymes of interest were decided to be Hyluronidase (1,000 units in PBS, 

pH = 5.0), Pronase (in PBS, pH = 7.4), Proteinase-K (1mg/ml in ammonium acetate pH = 
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6.5), Collagenase (1mg/ml in 0.1M Tris and 1mMol calcium chloride dihydride, pH = 

7.5), and Trypsin (0.5% in PBS).  The following protocols were attempted: 

Protocol 1) 
 Pronase – 15 min at 37C 
 Hyluronidase – 1 hr at 37C 
Protocol 2) 
 Proteinase K – 15 min at 37C 
  Hyluronidase – 1 hour at 37C 
Protocol 3)  
 Collagenase – 1 hour at 40C 
 PBS – 1 hour at 37C 
Protocol 4) 
 Collagenase – 1 hour at 40C 
 Hyluronidase – I hr at 37C 
Protocol 5) 
 Trypsin – 15 min at 37C 
 PBS – 1 hour at 37C 

 
 
 Blocking of non-specific interactions was accomplished by incubating the slides 

with 1% BSA, 0.1% Gelatin, 0.05% Tween-20, and 2% normal goat serum overnight at 

4C (also can be done for 1 hour at RT).  Slides were washed with PBS (3x) followed by 

incubation for 1.5 hours at room temp in primary antibodies for collagen I (mouse) and 

VI (rabbit) both at 1:100 dilution, 1.0% BSA and 0.1% gelatin. Again slides were washed 

in PBS (1x) and fluorescently conjugated antibodies (1:100) in PBS were added.  Slides 

were incubated for 1.5 hour at room temp, followed by a PBS wash (3x).  DAPI at 0.25 

mg/ml in PBS was then added for 5 minutes at room temp.  Coverslips were mounted on 

the slides using aqueous gel mounting medium, they were allowed to dry overnight and 

clear nail polish was used to seal the edges.  
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Summary of observations: Protocol 4 found to be ideal. 
Blue = DNA  Green = Type VI Collagen  Red = Type I Collagen 
Pronase + Hyluronidase 

    
NP NP/Inner AF Inner AF Outer AF 

Proteinase-K + 
Hyluronidase 

   

    
NP NP/Inner AF Inner AF Outer AF 

Collagenase Only    

 

   

NP NP/Inner AF Inner AF Outer AF 

Collagenase + 
Hyluronidase 

   

    
NP NP/Inner AF Inner AF Outer AF 

Trypsin    

  

 

 

NP NP/Inner AF Inner AF Outer AF 
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Appendix 2: Data for clustering analysis 
 
Overall number of biological replicates used 
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NP Tissue samples 
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AF Tissue Samples 
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