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Abstract 
 

         Calcium (Ca) depletion and increased bioavailability of aluminum (Al) are 
potential consequences of soil acidification caused by acidic deposition and other 
anthropogenic factors.  Tree declines are associated with base cation depletion and 
increased Al toxicity in forest soils in North America, Europe, and Asia.  Changes in 
soil Ca and Al availability may lead to increased oxidative stress and disruptions in 
carbohydrate relationships in forest trees, as well as to substantial alterations in the 
capacity for enzymatically controlled processes of decomposition and mineralization in 
forest soils. 

         Assessments were made to determine if forest systems are prone to disruption 
associated with altered Ca and Al bioavailability.  Foliar elemental concentrations, 
foliar antioxidant enzyme activities, foliar and woody shoot carbohydrates were 
measured in sugar maple (Acer saccharum, Marsh.), and soil extracellular enzyme 
activities (EEA) were assayed at a long-term nutrient perturbation study (NuPert) in the 
Hubbard Brook Experimental Forest, New Hampshire, USA.  Treated plots received Ca 
to increase soil Ca above ambient depleted levels or Al to further reduce Ca 
availability.  Additions of Ca to soil are associated with greater Ca concentrations in 
foliage compared to leaves from trees from control and Al-addition plots.  Soil Al-
additions are associated with lower foliar phosphorus concentrations in comparison 
with foliage from trees in Ca-addition plots.  Additions of Al to soil are associated with 
higher antioxidant enzyme (glutathione reductase and ascorbate peroxidase) activities 
in foliage and lower shoot sugar (total sugars, sucrose, glucose and fructose) 
concentrations relative to trees in Ca-addition and control plots.  Al accumulations in 
distal tissues likely triggered toxicity responses reported for leaves and stems. Soil EEA 
results highlight treatment-induced alterations to soil processes.  Across soil enzyme 
systems, EEA levels are greatest in Al-addition soils in fall, but are elevated in Ca-
addition soils in spring compared with ambient conditions. Seasonal differences in EEA 
levels suggest a differential influence of soil treatments on specific soil communities.  
Within this native, mature northern hardwood forest, early indications of response in 
foundation species to Ca and Al manipulation are detected including Al-induced 
oxidative stress and resulting carbohydrate irregularities in sugar maple trees, and 
substantial seasonal swings in soil EEA: processes that could foreshadow broader 
ecosystem alterations as anthropogenic disruptions of soil Ca and Al availability 
continue. 
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 Chapter 1: Literature Review 

1.1. Forest Ecosystem Impacts of Acidic Deposition 

Forest decline is described as a “global environmental problem” by Shigihara et 

al. (2008).  Forest ecosystem health issues and tree decline in Europe, Asia, and North 

America have been associated with anthropogenic acidic deposition and resulting soil 

acidification.  A number of ecologically and economically important tree species 

including Acer saccharum, Picea rubens, Fagus sylvatica, Picea abies, Fagus crenata, 

Abies firma, and Pinus massoniana have shown sensitivity to acidic deposition and soil 

acidification (Balsberg Påhlsson 1990, DeHayes et al. 1999, Igawa et al. 2002, Hultberg 

and Ferm 2004, Jandl et al. 2004, Schaberg et al. 2006, Shigihara et al. 2008, Song et al. 

2008).   Symptoms of tree decline in these species can include loss of vigor, reductions in 

growth, crown dieback, and potentially increased mortality and reduced recruitment. 

Increased inputs of protons into soils and associated reductions in soil pH are 

linked with shifts in soil buffering systems following acidic deposition (Chadwick and 

Chorover 2001).  During soil acidification base cations such as calcium (Ca) and 

magnesium (Mg) are mobilized by protons from their exchange sites and released into the 

soil solution in a buffering process. Mobilized base cations are then vulnerable to 

subsequent leaching losses from the soil with anions (e.g., SO4
-) from acidic deposition in 

a depletion process (Huntington et al. 2000). As these base cation stores are depleted, soil 

pH is then reduced and aluminum (Al) is increasingly solubilized, often to the point of 

toxicity, which, in turn, can be followed by iron (Fe) release (Bowman et al. 2008).   
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Intensifying Fe release can further aggravate symptoms of Al toxicity in trees (Nguyen et 

al. 2005).   

 

1.2. Calcium Depletion 

One of the most significant effects of acidic deposition is the increase in the rate 

of base cation loss from soils, especially the depletion of Ca stores.  Evidence indicates 

that a variety of anthropogenic factors (most notably inputs of acidic deposition) are 

resulting in the net loss of cations from forested ecosystems throughout New England 

(Likens et al. 1996, Likens et al. 1998, Schaberg et al. 2001, Fernandez et al. 2003, 

Gbondo-Tugbawa and Driscoll 2003, Schaberg et al. 2006).  Calcium depletion by acidic 

deposition is partially dependent on the capacity of the parent geology to replenish lost 

cations through weathering.  A number of reports have documented Ca depletion in 

hardwood and coniferous forest ecosystems in other locations including Pennsylvania, 

the Southeast, the Canadian Shield, and parts of Europe, suggesting the widespread 

nature of this anthropogenic phenomenon (Huntington et al. 2000, Hultberg and Ferm 

2004, Jandl et al. 2004, Bailey et al. 2005, Duchesne and Houle 2006).  Further evidence 

for the expanding extent of this phenomenon can now be found in Asia.  A decrease in 

soil cation exchange capacity (CEC) and pH associated with acidic deposition has been 

reported for coniferous forests in China (Dai et al. 1998), while vulnerable soils and areas 

of extreme acidic deposition have been mapped (Tao et al. 2002, Wei and Wang 2005, 

Larssen et al. 2006). 
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Although generalized cation loss has many potentially negative effects on forest 

system function the loss of Ca may be particularly consequential to forest health and 

productivity.  Such evidence has been documented for red spruce (Picea rubens Sarg.) in 

New England (Schaberg and DeHayes 2000, Schaberg et al. 2002), and new research has 

implicated Ca depletion in the decline of sugar maple (Acer saccharum Marsh.) as well 

(Watmough 2002, Juice et al. 2006, Schaberg et al. 2006). Using the Till Source Model 

(TSM), Schaberg et al. (2006) were able to predict the Ca status of soils derived from 

glacial till as well as foliar Ca levels in Vermont maple forests where a significant 

relationship was found between low soil Ca and two symptoms of sugar maple decline: 1) 

elevated branch dieback, and 2) reduced basal area growth. 

Once Ca is depleted from transient and long-term stores it is lost.  In some forests 

of Europe (Sverdrup et al. 2006) and Asia (Nykvist 2000) Ca depletion is advanced to a 

point where forest harvest can no longer be considered sustainable without additional 

artificial inputs of Ca.  In other forest stands with less advanced Ca depletion, some 

degree of harvest will be sustainable if good forest management practices (such as 

leaving cation-containing bark, branches, and foliage on site) and reductions in N 

deposition are achieved (Egli 1998).  

 

1.3. Calcium Nutrition in Plant and Tree Physiology 

Calcium is distinctly spatially and temporally compartmentalized in plant cells.  

Indeed, the great versatility of its physiological function is dependent upon this 

localized organization (Berridge et al. 2000, Rizzuto and Pozzan 2006).  Even though 
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Ca is an essential micronutrient, large concentrations of its unbound form (Ca2+) within 

the cytoplasm are damaging due to its propensity to form insoluble complexes with 

phosphate ions (Bush 1995, Knight 2000).  In order to assure available phosphate and 

ATP for respiration, metabolism, and other processes, Ca2+ is actively transported out 

of the cytoplasm and sequestered in vacuoles, endoplasmic reticulum, and outside the 

plasma membrane, often as crystals of Ca oxalate (Fink 1991, Allen et al. 1995).  

Because Ca2+ is rapidly pumped out of the cytoplasm, it is immobile in the phloem, 

which is dependent on transport through the cytoplasm.  In contrast to most other 

nutrient cations (except for Fe and boron), Ca cannot be redistributed within plants to 

surmount deficiencies because of this immobility (Salisbury and Ross 1992).   

Concentrations of Ca in tissues and cells support two broadly defined and 

important functions in plants: 1) Ca adds to the structural stability membranes and plant 

cells, and 2) Ca2+ has a fundamental role in the regulation of cellular biochemistry, 

especially in mechanisms that allow cells to sense and respond to environmental stimuli 

and change (Marschner 2002).  Calcium is a key component of the middle lamella of 

cell walls where its divalent charge helps to bind proximal cells together, strengthening 

the apoplast (Salisbury and Ross 1992).  Calcium also influences and regulates 

membrane stabilization, permeability, and the gating of channels by joining carboxylate 

and phosphate groups of phospholipids, enzymes, and proteins (Palta and Li 1978, 

Legge et al. 1982, Davies and Monk-Talbot 1990).  Regardless of its role in basic cell 

structure, Ca has its greatest influence on plant physiology through its influence on 

biochemical regulation (Marschner 2002).     
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One of the most important roles of Ca is its function as a second messenger in 

the perception of environmental change and stress and the transduction of these signals 

(Bush 1995, Sanders et al. 1999, Roos 2000, Pandey et al. 2000, Pandey et al. 2004, 

Abbasi et al. 2004).  In a response cascade, environmental stimuli interact with 

membrane-bound Ca and transiently alter the permeability of the plasma membrane. 

Because of the low concentrations of cytoplasmic Ca2+, Ca2+ then streams into cells 

through a steep concentration gradient (Allen et al. 1995, Sanders et al. 1999).  Once it 

has entered the cytoplasm, Ca2+ quickly attaches to Ca-specific messenger proteins 

such as Ca-dependent protein kinases (CDPK’s) and calmodulins (CaM’s), and initiates 

a chain of physiological events (e.g., changes in enzyme activity, gene transcription) 

that help cells adapt to changes in environmental conditions. This entry of Ca2+ into 

the cytoplasm appears to be an essential first step in cellular processing of 

environmental information and initiating a broad range of physiological responses in 

plants that allows adjustment to environmental change or defense against pests and 

pathogens.  The wide array of stimuli and stresses plants respond to include low 

temperature (Monroy et al. 1993, DeHayes et al. 1997, DeHayes et al. 1999, Abbasi et 

al. 2004), drought, salinity (Sheen 1996, Cheong et al. 2003), insect infestations 

(McLaughlin and Wimmer 1999), fungal infections (Hebe et al. 1999, Gaulin et al. 

2006), oxidative stress (Jiang and Huang 2001, Schmitz-Eibeger et al. 2002), and touch 

(Takezawa et al. 1995). 

Transient hyper-polarity of plant cellular membranes is caused in part by rapid 

influx of Ca2+ into the cytoplasm and efflux of K+ and Cl-, this polarity is associated 
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with electrical signals that pulse through the symplast in response to environmental 

stimuli, such as leaf exposure to flame (Fromm and Lautner 2007).  Furthermore, signal 

strength is significantly reduced in Populus with low ambient Ca, even at a point before 

trees show symptoms of deficiency (Fromm and Lautner 2007).    Trees with low 

ambient Ca have much less ability to respond to environmental stresses and stimuli in a 

signaling continuum through the whole plant.  In addition to its generalized influence 

on stress signaling, a growing body of literature indicates that Ca is particularly 

important to the basic regulation of plant energy relations.  

 

1.3.1. Calcium and the Regulation of Plant Energy Relations 

 Free and bound Ca are essential in the signaling processes of plants (Medvedev 

2005), and these processes are important to plant energy relations.  Much of the recent 

inquiry into Ca-dependent plant physiology concentrates on this area of research.  Four 

main families of Ca-binding proteins have been identified in plants (Ludwig et al. 2004), 

including CDPK’s, CaM’s, calmodulin-like, and calcineurin-B-like proteins.  The 

CDPK’s in Plantae, Chlorophyta, and Protista function in a manner that differs from the 

Ca-signaling proteins in the other branches in the phylogeny of life, in that CDPK’s are 

able to respond directly to cytoplasmic Ca2+ (Cacyt) instead of relying on signal mediation 

by CaM (Abbasi et al. 2004).  Calcineurin B-like proteins are unique to plants and have 

been shown to modulate abscisic acid (ABA) sensitivity and synthesis (Pandey et al. 

2004, 2008).  The largest group of Ca-binding proteins in plants are CDPK’s, which 
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function in signaling through phosphorylation and polarity changes (Ludwig et al. 2004, 

Medvedev 2005).  

 Calcium is required for the transcription and reproduction of the genetic 

mechanics of chloroplasts, which, among other things, provides evidence supporting the 

theory that the chloroplasts of land plants are descended from cyanobacteria-like 

organisms (Tozawa et al. 2008).  Calcium is also required for the function and structure 

of the oxygen evolving complex (OEC) in the oxidation of water, and likely needed for 

all S-state transitions in photosynthesis (the removal of the four e- from two H2O for the 

e- transport chain) (Miqyass et al. 2007).  Notably, evidence continues to build for the 

importance of Ca in multiple roles in photosynthesis, such as: 1) providing necessary 

binding sites and connections between important photosynthetic structures (i.e. PSII, 

CP29), proteins, and pigments (Jegerschöld et al. 2000), 2) control of lumen pH and 

thylakoid proton gradients and control of the xanthophyll cycle (Pan and Dilley 2000, 

Dilley 2004), 3) stomatal control and regulation of gas exchange, especially that of CO2, 

but also controlling stomatal response to light, ozone, reactive oxygen species (ROS), 

water status and humidity by controlling ABA signaling and ion channels (Vahisalu et al. 

2008, Young et al. 2006), and 4) the transfer of e- from PSII to PSI (Semin et al. 2007).  

Pan and Dilley (2000) and Dilley (2004) give evidence that Ca in and near the thylakoid 

membrane regulates adenosine triphosphate (ATP) formation, photoprotection and the 

xanthophyll cycle: in part by 1) controlling the pH of the thylakoid membrane, and by 2) 

Ca gating of proton (H+) channels in the thylakoid membrane.  If conditions favor 

photosynthesis, H+’s go to ATP production, whereas if photoinhibition begins to occur 
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Ca gates open and the H+ fluxes to the lumen acidify it. This acidity and concurrent 

activation of violaxanthin deepoxidase by Ca drive the xanthophyll cycle as ATP 

production is down regulated.   

The precursor of ATP synthase is made functional in a Ca-dependent manner as it 

binds at the outer mitochondrial membrane (von Stedingk et al. 1999).  Adenosine 

triphosphate is essential in the reactions forming the building blocks of carbohydrates, 

and many other reactions such as the formation of sucrose from glucose and fructose 

(hexoses)(Salisbury and Ross 1992).  Calcium and ATP are required for the function of 

Ca-ATPases, which are important Ca channels in biosynthesis processes, as well as in 

related Ca signaling (Medvedev 2005).  A CDPK (CPK1) binds to a Ca-ATPase at low 

Cacyt, phosphorlyzing the serine component.  When Cacyt levels are higher, such as during 

Ca2+ influx, CaM can then bind to the Ca-ATPase and remove the autoinhibition.  This is 

due to the preferential binding of Cacyt to the CDPK over CaM, for which Cacyt has a 

lesser affinity.  In this way Ca is in part regulating the use of ATP, as well as the active 

transport of Ca (Medvedev 2005). 

Sucrose synthase (SUS) activity has been shown to be CDPK dependent (Hardin 

et al. 2004), so it is likely that alterations in Ca nutrition can affect SUS activity as well.  

Sucrose surplus favors the tetramer form of SUS by CDPK-regulated signaling and 

phosphorylation of the enzyme and, thereby, the activity and products of SUS (Duncan 

and Huber 2007).  Sucrose surplus occurs when photosynthesis production is efficient, or 

when sucrose cannot be utilized or transported.  In fact, sucrose utilization by SUS is 

affected by Ca nutrition (Bhuja et al. 2004).    SUS in its dimer form recycles sucrose or 
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produces hexoses that can be used for starch synthesis, while in its tetramer form it 

provides raw materials for cellulose synthesis (Duncan and Huber 2007).   

In addition to detailed mechanistic studies of Ca influences on the biochemistry of 

plants, research at the whole plant level also suggests that the processes of photosynthesis 

are sensitive to changes in Ca nutrition.  Decreases in photosynthetic efficiency due to Ca 

deprivation are observed in Populus long before symptoms of deficiency appear (Lautner 

et al. 2005), as is the case in a pot study of tomato where nutrient levels were strictly 

monitored and controlled (Schmitz-Eiberger et al. 2002).  In both of these studies 

fluorescence yield was used to give early indication of decrease in photosynthetic 

efficiency.  Lautner et al. (2005) also found that stomatal conductance and stomatal 

response to leaf flaming were reduced in trees with less foliar Ca before the onset of other 

deficiency symptoms.  Furthermore, St. Clair et al. (2005) were able to connect foliar 

nutrient imbalances of low Ca and Mg, and high Al and Mn concentrations with 

significantly lower photosynthesis, stomatal conductance, and chlorophyll (a and b) 

content in sugar maple trees showing symptoms of decline.  

The downstream products of carbon (C) capture also reflect the influence of Ca 

nutrition at the whole plant level.  Calcium nutrition has been found to have a significant 

influence on wood formation in trees of Populus spp. where the basal area increments 

(BAI) are significantly less in deficient trees (Lautner et al. 2007).  Glucose, fructose and 

sucrose accumulated in the leaves of Ca deficient trees, which appeared to have impaired 

mechanisms of carbohydrate utilization and transport.  Further evidence of this was 

supported by the loss of starch storage in leaves, as well as lower concentrations of 
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glucose, fructose, and sucrose in other tissues, and reduced cellulosic and hemicellulosic 

content in the apoplast (Lautner et al. 2007).  

 

1.3.2. Calcium and Antioxidant Enzyme Activity 

Calcium initiates and coordinates the plant physiological responses of antioxidant 

systems to oxidative stresses (Wise and Naylor 1987).  Oxidative stresses generate 

reactive oxygen species (ROS).  Antioxidant systems help to mitigate the impacts of 

ROS, such as those produced by environmental stresses, including photooxidative 

damage at low temperatures (Wise and Naylor 1987, Polle and Rennenberg 1994, Becana 

2007).  Unscavenged ROS can result in cellular and mitochondrial dysfunction (Foyer et 

al. 1994, Yamamoto et al. 2002).  Calcium is a major constituent of the pathways that 

support antioxidant activity and increases the efficiency of many antioxidant enzymes, 

including ascorbate peroxidase (APX) (Jiang and Huang 2001).  Schmitz-Eibeger et al. 

(2002) and St. Clair et al. (2005) also explored the relationship between foliar 

antioxidants and their postulated protection of the photosynthetic apparatus in plants with 

cation imbalances.  Schmitz-Eibeger et al. (2002) found impaired antioxidant activity as 

indicated by significantly reduced superoxide dismutase (SOD) activity and increased 

peroxidase (PO) activity in the foliage of Ca deficient tomato exhibiting blossom end rot.  

St. Clair et al. (2005) used the antioxidant activities of APX and glutathione reductase 

(GR) as biochemical markers of oxidative stress in foliage, and observed higher activity 

of these antioxidants in nutrient imbalanced trees. 
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1.3.3. Potential Influence of Ca Depletion on Plant Health 

        The importance of Ca in plant sensing and signaling cannot be overemphasized.  

CDPK’s, in part, function as the sensors of abiotic and biotic stresses and fluctuations in 

environmental conditions for plants (Sangawan et al. 2001, Ludwig et al. 2004, Yang et 

al. 2004, Rodríguez et al. 2006).  Influxes of Ca2+ interacting with numerous CDPK’s are 

the front line of how plants respond to stress and stimuli, and initiate a chain of events 

that up- or down-regulate the genes controlling plant metabolism and secondary 

compound production (Sangawan et al. 2001, Abbasi et al. 2004, Ludwig et al. 2004, Liu 

et al. 2005, Rodríguez et al. 2006). Given the fundamental role Ca plays in plant 

metabolic regulation and response systems, it is possible that depletions of biologically 

available Ca could suppress the ability of plants to adequately sense and respond to 

changes in their surroundings and make them more vulnerable to decline. 

 

1.3.4. Connections between Ca and Al Physiology 

Especially of interest considering global trends of increasing soil acidification that 

both decrease Ca and increase Al bioavailability in soils, physiological responses to Al 

have been shown to be Ca dependent, including the up-regulation of 1) specific CDPK’s, 

and 2) genes involved in Ca-dependent signal transduction in Al-tolerant plants (Zhang et 

al. 2007).  In addition, greater internal stores of Ca and carbohydrates are present in Al-

tolerant cultivars, while Al-sensitive cultivars do not have the same capacity 

(Giannakoula et al. 2008).  
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Interactions between Ca deficiency and Al toxicity were identified early in the 

study of Al toxicity, where soil Ca-additions appeared to alleviate symptoms of Al 

toxicity (see review by Delhaize and Ryan 1995).  However, Ca-addition does not always 

ameliorate plant response to Al toxicity. In fact, Al has been shown to impede Ca uptake 

by plants and cause Ca deficiency, even before the point of Al toxicity (Bruce et al. 

1988).  These interactions between Ca and Al bioavailability are not only present in plant 

and tree physiology, these interactions originate within the soil matrix. 

 

1.4. Aluminum Bioavailability in the Soil 

Aluminum is exceedingly widespread as the third most common element and the 

most common metal of the Earth’s crust (Rudnick and Gao 2003).  The soil solutions in 

most temperate forests at soil pH values above 4.5 are buffered by base cations (van 

Breemen et al. 1983).   However, acid deposition has shifted some forest soils previously 

buffered by base cations in Europe and North America to be buffered by Al as cation 

stores are depleted (de Vries et al. 1995, DeHayes et al. 1999, Driscoll et al. 2001, 

Bowman et al. 2008).  Aluminum bioavailability in the soil is intrinsically connected to 

soil acidification (Kinraide 1991).  In acidic soil conditions (below pH 5) Al is found 

predominately as disassociated Al3+, which is considered the most bioavailable form of 

Al.   At pH levels below 4.5, Al3+ can dominate the acid buffering reactions of the soil 

solution (Bowman et al. 2008).  At higher pH values Al occurs as less available hydroxy 

(e.g., Al(OH)4
-) or solid phase (e.g., Al(OH)3) forms (Wagatsuma and Kaneko 1987, 

Kinraide and Parker 1990, Kinraide 1991).  Organic, organometallic and other Al 
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complexes, such as with phosphorus (P) (e.g., AlHPO4
+, AlH2PO4

2+), can also influence 

the bioavailability of Al (Ma et al. 2001, Nguyen et al. 2003).  

Aluminum released during the weathering of soil parent materials and 

anthropogenic soil acidification effectively competes with soil Ca and can greatly reduce 

the availability of Ca on soil exchange sites (Huntington et al. 2000). Aluminum greatly 

depresses the cation exchange capacity (CEC) of forest soils (Rampazzo and Blum 1992).  

Protonation may occur concurrently with Al3+ competition for exchange sites, and H+ 

may deplete Al at extremely low so pH (as soil pH falls below 3.2 to 3.5) (Bowman et al. 

2008).  Soils on schist and granite are especially likely to release Al3+ to the soil solution 

during soil acidification (Merino et al. 2000).  Soil Ca:Al ratios have been used as 

indicators of stress levels in forested ecosystems and have been corroborated by Ca:Al in 

plant tissues (Cronan and Grigal 1995).  As soils are increasingly acidified by 

anthropogenic means in Europe, Asia, and North America, agriculture and forestry are 

further burdened by the increase in bioavailable and toxic Al3+ in soil (Weber-Blaschke 

and Rehfuess 2002, Courchesne et al. 2005, Fenn et al. 2006, Guo et al. 2007, Zhang et 

al. 2007, Zhen et al. 2007, Houde and Diallo 2008).  

 

1.5. Aluminum Toxicity in Plant and Tree Physiology 

Bioavailable Al+3 is widely considered the most toxic form of Al (Delhaize and 

Ryan 1995).  Aluminum is not known to be a plant nutrient (Salisbury and Ross 1992), 

and has long been associated with plant root damage and reductions in root growth on 

acid soils (Hartwell and Pember 1918).  It has been estimated that more than half of the 
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land on Earth suitable for cultivation is acidic, and that acid deposition and widespread 

use of acidifying fertilizers and soil amendments are quickly increasing the extent of soil 

acidification and associated Al toxicity (von Uexkull and Mutert 1995).  Since at least the 

1980’s, Al toxicity in soils acidified by acidic deposition has been implicated as a major 

factor in forest decline (McLaughlin 1985). 

Two predominant mechanisms are proposed in plant adaptation to Al toxicity, 

these are 1) exclusion and 2) tolerance (Kochian et al. 2005).   The majority of Al-

adapted plants use the exclusion mechanism (Kochian et al. 2005).  Plant species such as 

Polygonum spp. and Pinus taeda exhibit both mechanisms (Ma et al. 2001, Nowak and 

Friend 2006).  The exclusion mechanism works primarily by the exudation at root apices 

of carboxylate organic acids that form organometallic complexes (ligands) with Al such 

as with oxalate, citrate, and malate that detoxify Al in soil adjacent to the root as well as 

in the extracellular environment (de la Fuente et al. 1997, Tesfaye et al. 2001, Ma et al. 

2001, Nguyen et al. 2003, Kochian et al. 2005). In Al-adapted plants this form of 

exclusion greatly increases organic exudation into the rhizosphere and adjacent soils 

(Poschenrieder et al. 2008).  Aluminum tolerant plants also detoxify Al through the 

formation of carboxylate ligands within plants that can accumulate in vacuoles; often in 

the root but sometimes in other organs including stems and leaves (Ma et al. 2001, 

Nguyen et al. 2003).  As confirmation of the above, accumulation of Al on or within the 

root occurs for a number of plant species, including many forest trees, (Thornton et al. 

1986a, Thornton et al. 1986b, Schaedle et al. 1989, Nguyen et al. 2003), and root cell 



 

15 

walls contain many potential sites for Al binding and detoxification through root 

accumulation (Poschenrieder et al. 2008).  

A third mechanism by which plants adapt to Al toxicity is through an induced 

defense strategy.  Aluminum tolerant plants are known to up-regulate the transcription of 

genes encoding antioxidant enzyme and organic acid production (Houde and Diallo 

2008).  Aluminum toxicity increases the production of reactive oxygen species (ROS) 

and elicits the production of antioxidant enzymes in adapted plants (Richards et al. 1998, 

Boscolo et al. 2003, Panda et al. 2003).  Those plants not adapted to Al exposure are 

likely subject to greater lipid peroxidation and cellular damage by ROS (Yamamoto et al. 

2001), especially in the vicinity of the photosynthetic apparatus (Becana 2007).  Al 

toxicity may also impair mitochondria, causing excessive ROS production during cellular 

respiration, and resulting in the depletion of ATP (Yamamoto et al. 2002). 

Alterations in root morphology and reductions in shoot and root biomass have 

commonly been reported in plant and tree response to Al toxicity (Thornton et al. 1986a, 

Thornton et al. 1986b, Schaedle et al. 1989, Delhaize and Ryan 1995, Nowak and Friend 

2006). Potential mechanisms for this Al toxicity response in biomass reduction are many, 

but could include factors such as 1) overall reduction in metabolism through the reported 

down-regulation of the production of enzymes which drive the Krebs cycle (Zhang et al. 

2007), 2) potential increased demand for photosynthate from increases in organic root 

exudation (Ma et al. 2001), 3) decreased photosynthesis (Chen et al. 2005b), 4) decreased 

root surface area for uptake (Delhaize and Ryan 1995), 5) alterations in carbohydrate 

synthesis and allocation (Tabuchi et al. 2004, Hossain et al. 2005, Giannakoula et al. 
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2008), 6) inhibition of active transport through the plasma membrane (Ahn et al. 2001), 

and 7) increased oxidative stress and photoinhibition resulting in inefficient 

photosynthesis (Chen et al. 2005a). 

 

1.6. Soil Enzyme Systems and Extracellular Enzyme Activity Bioassay 

Beyond the considerable influences of Ca nutrition and Al toxicity on plant 

function and form, Ca deficiencies and excess Al availability also influence biological 

processes in the soil matrix.  Calcium concentrations were found to significantly affect 

enzyme activity in an agricultural soil (Acosta-Martínez and Tabatabai 2000).  It is the 

presence of anions from acidic deposition, such as SO4
-, in the soil solution that make 

Ca2+ cations in the soil solution susceptible to depletion by leaching (Huntington et al. 

2000).  In addition to disrupting soil and plant Ca and Al relationships, acidic deposition, 

including S and N deposition, can have strong impacts on soil enzyme activity.  The 

presence of excess SO4
- anions in the soil solution is known to inhibit the activity of 

arylsulphatase, the primary sulphatase in forest soils (Prietzel 2001), involved not only in 

the S cycle, as in the release of organic-bound S which predominates in forest soils, but 

also in other mineral cycles as well (e.g., the P cycle).  Nitrogen deposition is associated 

with significant impacts on hydrolytic soil enzymes and decomposition (Saiya-Cork et al. 

2002, DeForest et al. 2004, Sinsabaugh et al. 2004, 2005).  In the northern hardwood 

forest at the Hubbard Brook Experimental Forest in the White Mountains of New 

Hampshire, SO4
- anions are known to persist in the organic soil horizons and continue to 

impact a range of biogeochemical cycles, even though S deposition has decreased 
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(Likens et al. 2002).  Nitrogen deposition in the Northeast, on the other hand, has not 

shown a decreasing pattern, and it is estimated that N levels in soil have increased to five 

to ten times above their concentrations preceding industrialization (Galloway et al. 2003, 

Aber et al. 2003). 

The soil, itself, has many characteristics of a living organism.  An example is the 

presence of a plethora of enzymes catalyzing a great number of biochemical reactions 

and processes, enabling the interconnection of forest strata through the medium of the 

soil.  It has been suggested that the bulk of enzymes in soil are not found within the roots, 

microbes and fauna of the soil, but rather in the soil solution itself as exuded by all of 

these organismal strata to facilitate the biochemical reactions upon which these 

organisms rely for their existence (Brady and Weil 2002).  

Calcium has a role in the functionality of many enzymes, sometimes by serving as 

a structural component of the enzyme molecule (e.g., as in some arylsulphatases), by 

being an important secondary messenger in the signal transduction process, or by 

improving the efficiency of the chemical reactions that are catalyzed by enzymes (e.g., as 

with foliar L-asparaginase activity) (Sieciechowicz et al. 1988).  L-asparaginase is also an 

extracellular enzyme product of soil bacteria.  Studies of bacterial enzymes have shown 

increased activity or activation of many of these enzymes in the presence of Ca (Bernard 

et al. 1998, Barwe et al. 2001, Konno et al. 2002, Reggiani and Bertani 2003, Berteau et 

al. 2006). 

  Chitinase is an enzyme prevalent in soils where fungi are an important part of 

the decomposition process (such as in northern hardwood forest soils), and is exuded by 
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bacteria, fungi, soil invertebrates and plant roots (Paul 2007).  Chitin is a polysaccharide 

and the prominent component of the cell walls of most fungal organisms within the soil 

(Raven et al. 1999).  Insects in the order Collembola are known to consume the hyphae of 

soil fungi, and the symbiant Bacillus spp. in their gut are known to produce chitinase 

(König 2006).  Chitinase is involved in plant root and cell wall defense mechanisms 

against penetration by pathogenic fungal haustoria from organisms such as Phytophthora 

(Hodge et al. 1995, Gaulin et al. 2006). Chitinase is also required in the initiation and 

maintenance of the symbiotic relationships between mycorrhizae and plant roots, such as 

the relationship between Picea abies and the ectomycorrhizal (EM) fly agaric mushroom 

Amanita muscaria (Sauter and Hager 1989).  Several EM plant symbiants were recently 

reported to release chitinase in a defensive response to pathogenic infection of their plant 

hosts by Rhizoctonia solani (Tang et al. 2008).  Calcium is also necessary in these 

relationships between plants and mycorrhizae, as well as in symbiant relationships with 

microbes (Macció et al. 2001, Chen et al 2007).  Barwe et al. 2001 found the activity of 

chitinase in cucumber cotyledons to be increased six-fold by external application of Ca 

chloride and increased five-fold by Ca ionophores after chitinase induction with zeatin, a 

Ca-sensitive kinase, in response to a likely Ca-modulated cytokinin signal. In a study of a 

limed agricultural soil, Ca application was found to increase soil chitinase activity 

(Acosta-Martínez and Tabatabai 2000) as well as activity of soil proteases such as L-

asparaginase, and hydrolases such as arylsulphatase, β-glucosidase, but diminish the 

activity of acid phosphatase. 
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 β-glucosidase (a cellobiosidase) acts on hemicellulose and cellulose, 

polysaccharide components of plant cell walls. β-glucosidase is important in plant growth 

and facilitates cell wall expansion (Salisbury and Ross 1992).  It is also produced by 

fungal plant pathogens as haustoria penetrate cell walls and likely plays a role in disease 

and symbiant recognition in plants.  β-glucosidase is also generated by the fungal 

decomposers of leaf litter and soil O horizons prevalent in forest soils (Paul 2007).  

Under Ca deficiency in cultured carrot cells, β-glucosidase production increased over a 

thirty day period and production of extracellular protein exudates increased three-fold 

while cell growth was impaired (Konno et al. 2002).  This suggests the involvement of 

Ca in a feedback system associated with plant growth and β-glucosidase production.  

Similar feedback mechanisms involving Ca bioavailability are likely at work in the soil 

pool of extracellular enzymes.  

 

1.7. Concluding Remarks 

The majority of studies of Al toxicity in plants are pot studies of acute Al 

exposure to plants under artificial conditions (Thornton et al. 1986a, Thornton et al. 

1986b, Schaedle et al. 1989, Balsberg Påhlsson 1990, Boscolo et al. 2003, Hossain et al. 

2005).  In contrast, evidence from a long-term pot study indicates that chronic and 

comparatively lower levels of Al exposure can induce Al toxicity responses in Picea 

abies (Heim et al. 2003).   Long-term study in the field, in particular in mature, native 

forests dominated by sugar maple (a potentially vulnerable species; Schaberg et al. 2006), 

will be of even greater value than pot studies in understanding Al toxicity and global 
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trends in increased bioavailability of Al under ambient conditions.   Such field study 

would also provide a broader perspective into the understanding of the interactions 

between forest trees and the other biological strata of forest ecosystems, especially soil 

flora and fauna because the complexity of the soil matrix cannot be truly duplicated in 

confined, artificial containers. 

Further understanding of the impacts of acid deposition and subsequent soil 

acidification, Ca depletion, and increased bioavailability of toxic Al species in forest soils 

is needed if we are to continue to rely on forest resources and ecosystem services.  

Knowledge of alterations to carbohydrate relationships in trees brought about by 

progressive anthropogenic soil acidification and associated reductions in available Ca and 

increases in bioavailable Al in native forests will be key to understanding potential 

impacts to C sequestration as well as to forest productivity. Calcium depletion can disrupt 

plant energy relations and reduce tree woody growth.  In addition, Al toxicity can divert 

C stores toward protective measures (e.g., antioxidant production and activity) and away 

from biomass accrual.  These responses to altered Ca nutrition and Al toxicity may be 

pertinent to all forest trees when meaningful thresholds in Ca and Al availability are 

crossed.  However, given that ecologically dominant trees generally have greater access 

to nutrients, water, light, and substrate within forests (Whittaker 1953), the influence of 

acid-induced soil cation perturbations may be especially meaningful for this class of trees 

because they can dominate fluxes in many ecosystem services (e.g., C sequestration, 

water cycling, etc.). These dominant trees are ecosystem foundation species upon which a 

diversity of species relies.  If greater stress is detected among these trees, this could 
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implicate acid deposition in significant physiological disruptions and potentially in 

broader alterations of ecosystem integrity and function.  In addition, other measures of 

forest ecosystem function are needed to bring about a better, more integrated 

understanding of such impacts to all ecosystem strata at their confluence in the soil 

matrix. Bioassays of extracellular soil enzymes provide such a tool, because enzymes are 

the products of genetic and environmental interactions across many ecosystem strata, and 

are likely to be influenced by Ca and Al dynamics.  New England, and especially the 

Hubbard Brook Experimental Forest, where inputs of acid deposition and soil Ca 

depletion are well documented, provides fertile ground (by literally being the opposite) to 

test the nature and extent of physiological and ecological disruptions associated with 

acid-induced perturbations in cation relationships.  Science and society need to better 

understand this potential threat to ecosystem function and stability if we are to safeguard 

the many ecosystem services provided by the Northern Forest. 
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2.2. Abstract 

            Calcium (Ca) depletion and increased bioavailability of aluminum (Al) are 

potential consequences of soil acidification caused by acid deposition and other 

anthropogenic factors.  These changes in Ca and Al availability have been shown to alter 

some physiology in tree species.  However, little analysis has been conducted on impacts 

in mature hardwood forests, including soluble carbohydrates and antioxidants in 

dominant canopy trees, and enzymes in forest soils involved in mineralization and 

decomposition.  We measured foliar elemental concentrations, foliar antioxidant enzyme 

activities, foliar and woody shoot carbohydrates in sugar maple (Acer saccharum), and 

soil extracellular enzyme activities (EEA) at a long-term nutrient perturbation study 

(NuPert) at the Hubbard Brook Experimental Forest, New Hampshire, USA. Treated 

NuPert plots received Ca to increase soil Ca above ambient depleted levels or Al to 

compete with Ca and further reduce Ca availability.  Additions of Ca to soil are 

associated with greater Ca concentrations in foliage compared to leaves from trees in 

control and Al-addition plots. Soil Al-additions are associated with lower foliar 

phosphorus concentrations in comparison with foliage from trees in Ca-addition plots.  

Although Al concentrations in leaves appeared unaffected by soil Al-treatment, additions 

of Al to soil are associated with higher antioxidant enzyme (glutathione reductase and 

ascorbate peroxidase) activities in foliage and lower shoot sugar (total sugars, sucrose, 

glucose and fructose) concentrations relative to trees in Ca-addition and control plots.  

We propose that Al accumulations in distal (likely root) tissues triggered toxicity 

responses that we report for leaves and stems.  Soil EEA results highlight treatment-
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induced alterations to soil processes.  Across soil enzyme systems EEA levels are greatest 

in Al-addition plots in fall, but are elevated in Ca-addition plots in spring compared with 

ambient conditions, suggesting impacts to specific soil communities.  Within this native, 

mature northern hardwood forest, we detect early indications of ecosystem response to 

Ca and Al manipulation including Al-induced oxidative stress and resulting carbohydrate 

irregularities in sugar maple trees, and substantial seasonal swings in EEA: processes that 

could foreshadow broader ecosystem alterations as anthropogenic disruptions of soil Ca 

and Al availability continue.   

 Key words: acidic deposition; soil acidification; calcium depletion; aluminum 

bioavailability; sugar maple; antioxidants; GR; APX; CAT; carbohydrates; EEA  
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2.3. Introduction 

 Calcium (Ca) is a biologically necessary nutrient, the presence and availability 

of which in forested ecosystems is governed through the interplay of numerous natural 

processes, including atmospheric additions, mineral weathering, soil formation, plant 

uptake and growth, forest stand dynamics, and leaching losses (Likens et al. 1998).  

Mounting evidence indicates that a variety of anthropogenic influences, including inputs 

of acid deposition (Likens et al. 1996), nitrogen (N) saturation (Aber et al. 1998, 2003), 

forest harvesting (Federer et al. 1989, Hultberg and Ferm 2004), changing climatic 

conditions (Tomlinson 1993), soil aluminum (Al) mobilization (Lawrence et al. 1995), 

and declines in atmospheric base cation deposition (Hedin et al. 1994) are altering 

biogeochemical cycles and depleting Ca from terrestrial ecosystems.  Chief among these 

drivers of Ca loss is the pollution-induced acidification of the soil matrix and through-fall 

leaching of aboveground strata causing an imbalance between the rate of Ca entry into 

ecosystems and the loss of exchangeable Ca (Likens et al. 1996, 1998, Driscoll et al. 

2001, Hultberg and Ferm 2004).  Net Ca depletion occurs when the rate of Ca loss 

exceeds the supply of Ca into the ecosystem.  Although many regions of the world are 

susceptible to acidification-induced Ca depletion (including parts of North America, 

Europe and Asia) New England is among the regions uniquely vulnerable because, 1) 

regional soils and geology, often have little capacity to release Ca to the soil matrix 

through weathering (Hornbeck et al. 1997, Fenn et al. 2006), and 2) the region is 

downwind of population centers that include a number of coal-fired power plants and 

other stationary and mobile fossil fuel combustion sources which contribute to region-
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wide inputs of acidic deposition (National Atmospheric Deposition Program or NADP 

data, annual data summaries 1997-2007).  By altering the bioavailability of Ca, and also 

Al, which competes with Ca in biological systems, acidic deposition is likely altering the 

presence and function of Ca in forest systems (DeHayes et al. 1999, Schaberg et al. 

2001).  

Calcium is an essential element in physiology, and its relatively unique qualities 

give the molecule many roles throughout the phylogeny of life.  For example, Ca has a 

primary role in supporting plant structure and cellular membrane integrity (Bangerth 

1979).  Perhaps more importantly, Ca’s unique binding and electrochemical properties 

give its ionic form Ca2+ a plethora of functions in biochemical pathways and feedback 

systems. These include enzymatic pathways (Pan and Dilley 2000, Tozawa et al. 2008), 

evolution of oxygen and other components of photosynthesis (Dilley 2004, Miqyass et al. 

2007), and signaling, sensing, and response to environmental factors and stressors 

(Abbasi et al. 2004, Medvedev 2005). Calcium is also critical in the biosynthesis and 

transport of the structural carbohydrate components that comprise wood and much of the 

other biomass in forests (Lautner et al. 2007, Duncan and Huber 2007).  Thus, among 

other influences, adequate Ca stores are necessary to support the ability of the forest to 

sequester carbon (C) and to produce carbon-intensive forest products, which have direct 

relevance to overall C cycling and climate change.  Because of its biological importance 

in so many processes, depletion of Ca could have serious ecological and economic 

impacts on forest health, productivity, and reliant ecosystem services. 
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In addition to displacing exchangeable Ca via protonation and, thereby, increasing 

Ca leaching and loss, acidic deposition mobilizes soil Al (Shamrikova et al. 2005).  In 

acidified soils, Al often enters the soil solution as the cation Al3+.  In soil, Al3+ is shown 

to compete with Ca2+ for uptake by plants, exacerbating Ca deficiencies (Bruce et al. 

1988, Rengel and Elliott 1992).  Aluminum as Al3+ can also be directly phytotoxic 

(Kinraide 1991).  To limit potential Al toxicity, plants have evolved various carbon-

intensive compensatory mechanisms, especially those which exclude Al from roots, or 

hyperaccumulate Al within roots limiting Al transport and toxicity to above-ground 

tissues (Marschner 2002, Kochian et al. 2005, Poschenrieder et al. 2008).  Nonetheless, 

Al can be transported to stem and leaf tissues and trigger initial signs of toxicity, 

including 1) oxidative stress eliciting antioxidant response, (Yamamoto et al. 2002, 

Boscolo et al. 2003, Panda et al. 2003, Ezaki et al. 2005); and 2) alterations in 

carbohydrate physiology (Balsberg Påhlsson 1990).  Interest in the importance of soil Al 

mobility and Al toxicity in plants is increasing worldwide as soils are increasingly 

anthropogenically acidified (Weber-Blaschke and Rehfuess 2002, Courchesne et al. 2005, 

Zhang et al. 2007, Zhen et al. 2007, Houde and Diallo 2008). 

Although changes in ecosystem Ca and Al availability may be broadly pertinent 

to the health and productivities of forests, some species are likely to be particularly 

susceptible to perturbations in the cycling of these cations (DeHayes et al. 1999, 

Schaberg et al. 2001).  For example, sugar maple (Acer saccharum Marsh.), a tree of 

ecological and economic importance, is among the species found to be sensitive to Ca 

and Al levels found in acidified forest soils (Thornton et al. 1986a). Indeed, imbalances 
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of soil Ca and Al concentrations are implicated in declines of sugar maple in the 

Northeast and adjacent Canada (Ouimet et al. 2001, Duchesne et al. 2005, Fenn et al. 

2006, Schaberg et al. 2006).  

Throughout much of the Northern Harwood Forest sugar maple is a dominant 

keystone species (Horsley et al. 2002).  Therefore, Ca and Al-induced alterations to the 

physiology and health of sugar maple are likely to extend beyond this one species and 

influence the myriad of species found with it that rely on C inputs associated with rapidly 

decomposing litter and the intensive Ca cycling of the species (Dijkstra and Smits 2002, 

Dijkstra 2003).  For example, in Québec beneath healthy sugar maple trees on soils with 

Ca addition and associated reductions in available Al, the diversity of Collembola (and 

microbial biomass) markedly increased as compared to beneath trees with ambient 

conditions of little exchangeable Ca and greater available Al in the soil (Chagnon et al. 

2001). 

The Nutrient Perturbation Experiment (NuPert) at the Hubbard Brook 

Experimental Forest (HBEF) in New Hampshire is an ideal location to explore the 

relationship between disturbances of bioavailable Al and Ca and potential impacts on 

forest ecosystem health and function. At HBEF, Ca depletion and acidic deposition are 

well documented, and it is estimated that half of the exchangeable Ca has been depleted 

from the soil profile by acidic deposition (Likens et al. 1998).  The NuPert experiment is 

dominated by sugar maple, has long-term replicated additions of soil Ca and Al, and is 

proximal to NADP data collection at HBEF.  Recent work at NuPert provides evidence of 
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lessened decline symptoms, improved tree health and growth due to Ca-addition, 

although no signs of Al toxicity had been noted to date (Huggett et al. 2007).  

Here, we report on new research at NuPert that builds upon past measures of tree 

Ca nutrition and physiology to broaden measures of Ca deficiency and explicitly test for 

early signs of potential Al toxicity in the dominant sugar maple trees at this site.  

Furthermore, to expand assessments beyond previous tree-based measures, we also 

present assessments of extracellular enzyme activity (EEA) in soil to evaluate the 

influence of Ca and Al-treatments on part of the soil matrix. The utility of using EEA to 

monitor the responses in functional capacity (C decomposition and mineralization 

especially) of fungi and bacteria to anthropogenic changes has been demonstrated in 

response to N deposition in sugar maple forests (Carreiro et al. 2000), but to our 

knowledge EEA has not been evaluated in response to anthropogenic changes in Ca and 

Al availability.  Extracellular enzymes in the soils at NuPert originate from microbes 

(here, bacteria, micro-fungi, and similar organisms), mycorrhizae and other symbiants, 

saprotrophs, grazers, predators, micro and macroinvertibrates, Plantae, and other flora 

and fauna. Contributions of enzymes to soil come through many processes including root 

growth, root exudation, litterfall and decomposition, floral and faunal death, and 

deposition of faunal fecal material. As such, EEA measures provide an integrated 

analysis of the influence of Ca and Al-treatment on many biological strata that converge 

in the soil matrix. 
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2.4. Methods 

2.4.1. Study Site 

The HBEF is part of the White Mountain National Forest near West Thornton, 

New Hampshire, and exists on metaschist and granitic geologies within the Northern 

Hardwood Forest.  The HBEF is an LTER (Long Term Ecological Research) site, where 

acid-induced Ca depletion in soils is studied intensively (Likens et al. 1996, 1998).  

Calcium addition in 1999 to an experimental watershed at the HBEF has been associated 

with lessened sugar maple decline symptoms within that watershed, and improved 

colonization of mycorrhizal symbiants in sugar maple (Juice et al. 2006).  Soil Ca-

addition has been made over a longer term at the NuPert experiment at the HBEF.  

NuPert consists of twelve randomly selected elevationally similar (716 m to 762 m) 45 

m2 plots, with four replicates of three soil fertilization treatments: Ca-addition, control 

(no treatment and representative of ambient Ca-depleted conditions), and Al-addition. 

Calcium was applied as CaCl2 from 1995 until 1998, and afterwards as wollastonite 

(CaSiO3) (Table 1). Wollastonite forms through the contact metamorphosis of inter-

bedded limestone and silicate sand-derived geologies, and provides a long-term release 

form of Ca. Calcium additions approximate Ca availability levels in the soil before 

anthropogenic atmospheric deposition depleted Ca pools at HBEF (Likens et al. 1998).  

Aluminum additions were included in the NuPert experiment primarily to reduce Ca 

availability through competitive uptake where Al occupies Ca exchange sites.  

Secondarily, additions of AlCl2 at NuPert contribute to acidity (Lewis acid) and reflect 
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the increased Al bioavailability associated with progressive soil acidification and Ca 

depletion through time. 

 

2.4.2. Tree-based Measures 

 2.4.2.1. Sample Collection.  Five dominant or co-dominant sugar maple trees 

were used for all tree-based measures in each NuPert plot. Branches of sugar maple 

(woody shoots and foliage) were collected from sun-lit portions of the canopy using a 

shotgun in August 2006. Due to technical problems with the shotgun, only three of the 

four treatment replications at NuPert were sampled.  Twelve leaves free of fungal 

damage, herbivory, or decay, and four 5 mm x 20 mm woody shoots were collected from 

each tree for foliar and shoot measures.  Samples were placed into resealable plastic bags 

and frozen on dry ice in the field for transport.  Once in the laboratory, all were kept at -

80° C until further analyses were conducted.  Leaf samples were analyzed to measure 

sugar, starch, and elemental concentrations, and were used to assay the activities of three 

antioxidant enzymes.  Shoot tissues were analyzed to measure sugar and starch 

concentrations.  All tree-based measures were based on well-established protocols. 

 

2.4.2.2. Foliar Elemental Analysis. In the laboratory, sugar maple leaves from 

NuPert and NIST (National Institute of Standards and Technology) apple and peach 

leaves as standards were oven-dried at 70° C and ground using a Wiley Mill to pass 

through a 2 mm screen.   Using the block digest methods of Issac and Johnson (1976), 

0.25 g of dried, ground leaves of samples and standards were placed into digestion tubes.  
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Following this, the foliage was then run through a series of H2SO4 acid and H2SeO3 

digestions where two Teflon™ boiling chips and 7 ml of Se / sulfuric acid digest solution 

were added to each tube, and the contents brought to 400° C.  After this temperature was 

reached 3 mL of 30% H2O2 was added to each tube and heated for 30 minutes. After 

cooling, each sample was brought to 75 ml adding de-ionized distilled water and 

homogenized with a vortex mixer. Cation concentrations of Al, Ca, K, Fe, Mg, Mn and P 

were then analyzed by Varian Vista (Varian Inc., Palo Alto CA) inductively coupled 

plasma atomic emission spectrometry (ICP-AES).  Tissue standards were within 5% of 

NIST certified values for each element analyzed. 

 

 2.4.2.3. Foliar Antioxidant Enzyme Activity.  Enzyme activity was assayed of 

ascorbate peroxidase (APX, E.C. 1.11.1.11), glutathione reductase (GR, E.C. 1.6.4.2), 

and catalase (CAT, E.C. 1.11.1.6). Extraction procedures, were adapted from the methods 

of Pell et al. (1999), where leaf blade tissues, exclusive of larger vascular tissues, were 

frozen in liquid N and ground with mortar and pestle.  Homogenization of 0.2 g of frozen 

tissue for 30 s in a 2 mM buffer of 90 mM potassium phosphate (pH 7.8), 1.0 mM 

ethylenediamineteteraacetic acid (EDTA), 5.0 mM ascorbate, 4% 

polyvinylpolypyrrolidone (PVPP), 1.5% polyvinylpolypyrrolidone (PVP-40T), and 8% 

glycerol used a homogenizer (Brinkman Instruments, Inc., Westbury NY), and was 

followed by centrifugation (Sorvall Ultra 80 centrifuge, DuPont Co., Wilmington, DE) at 

15,850 g for 15 min. at 4° C.  Processed samples were then frozen at -80° C until each of 

the antioxidant enzyme activity assays were performed. For all antioxidant enzyme 
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systems, measurements used for linear calculations were from the dynamic ranges of 

calibration curves to estimate enzyme activities. 

Ascorbate peroxidase activity was determined using the methods of Nakano and 

Asada (1981).  Briefly, APX activity (µmol ascorbate min-1 mg-1) was calculated from 

spectrophotometric measurement (DU800 UV/VIS spectrophotometer, Beckman-Coulter, 

Inc., Fullerton, CA) of the linear decrease in absorbance at 290 nm (extinction coefficient 

2.8 mM-1 cm-1) of a 1 mL reaction mixture of 50 mM potassium phosphate (pH 7.0), 0.1 

mM EDTA, 0.5 mM ascorbate, 0.15 mM H2O2, and 10 µL of sample extract, with final 

activity corrected by subtraction of ascorbate activity and non-enzymatic ascorbate 

breakdown.  

Glutathione reductase activity (µmol TNB min-1 mg-1) was quantified according 

to the methods of Smith et al. (1988) and Pell et al. (1999).  Here the 1mL reaction 

mixture consisted of 50 mM potassium phosphate (pH 7.8), 0.1 mM EDTA, 0.2 mM 

nicotinamide adenine dinulceotide phosphate (NADPH), 0.5 mM 5,5’-dithiobis 2-

nitrobenzoic acid (DTNB), 0.2 glutathione oxidoreductase (GSSG), and 50 10 µL of 

sample extract.  Linear increases in absorbance of DTNB reduced to GSH were measured 

at 412 nm (extinction coefficient 14.15 mM-1 cm-1) for 120 s. 

Catalase activity (µmol H2O2 min-1 mg-1) was ascertained using the methods of 

Aebi (1984) from a reaction mixture containing 50 mM potassium phosphate (pH 7.0), 10 

mM H2O2, and 10-30 µL of sample extract.  Linear reductions in absorbance were 

measured at 240 nm (extinction coefficient 43.6 mM-1 cm-1) for 30 s. 
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2.4.2.4. Carbohydrate Analysis.  Soluble carbohydrates were measured using 

methods adapted from Hinesley et al. (1992).  Carbohydrate concentrations were 

expressed as mg / cm3 dry weight for leaves and as mg / g dry weight for woody tissue. 

Pith, bark, phloem and cambium from woody tissue samples were removed prior to other 

sample processing.  After sample preparation, soluble carbohydrates were extracted into 

80% ethanol and centrifuged (Sorvall Ultra 80 centrifuge, DuPont Co., Wilmington, DE) 

to separate the ethanol supernatant containing the carbohydrates from the pellet.  Pellets 

from the woody tissue samples were saved for starch analysis.  For leaf tissue, 

chlorophyll was removed from the soluble sugar ethanol supernatant using a C18 Sep-

Pak Plus Cartridge (Waters Corporation, Milford, MA).  Sub-samples of the filtered 

supernatant from the woody and foliar samples were dried at 37° C in limited volume 

inserts, reconstituted in 200 µl 0.1 mM Ca EDTA and filtered through a 0.45 µm syringe 

filter.  Then, samples were analyzed by high performance liquid chromatography (HPLC) 

for glucose, fructose, sucrose, stachyose, raffinose and xylose using a Waters HPLC with 

a Sugar-Pak column (Waters Corporation, Milford, MA).  The column was maintained at 

90º C and 0.1 mM Ca EDTA was used as the solvent at a flow rate of 0.6 ml min-1.  

Sugar concentrations were quantified using Waters Millennium™ 2000 software. 

 After being separated from the ethanol supernatant, the pellets from the woody 

tissue samples were gelatinized with 0.2 N KOH, boiled for 30 minutes in a water bath, 

and neutralized with 1 M acetic acid.  Solubilized starch from these samples was then 

hydrolyzed to glucose with amyloglucosidase (E.C. 3.2.1.3, #10115, Fluka Chemical Co., 

Ronkonkoma, NY) in 0.1 M acetate buffer (pH 4.5), incubated at 55° C for 30 min, and 
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the reaction terminated by boiling for 4 min.  This step was followed by centrifugation 

for 10 min at 3000 rpm, and the starch content quantified from the supernatant by 

assaying for glucose (glucose assay #115-A, Sigma Chemical Co., St. Louis, MO) as 

described by Hendrix (1993).  Samples and glucose standards were read with an ELX 

800UV universal microplate reader (BioTek Instruments, Inc., Winooski, VT) at 492 nm.  

Starch concentrations were calculated using glucose standard curves. 

 

2.4.3. Soil-based Measures 

2.4.3.1. Sample Collection.  Soil cores, 2.5 cm across and 10 cm deep, were 

collected with a soil core sampler (Oakfield Apparatus Corporation, Goleta, CA) in 

September 2007 and May 2008.  The 10 cm depth was chosen to sample both the O and 

the proximal portion of the A or E horizons of the spodosol, and the range of collection 

dates covered the most active enzyme activity periods for Northern Hardwood Forest soil 

profiles (Myers et al. 2001, Sinsabaugh et al. 2004). Three cores were randomly collected 

from each treatment plot interior well away from peripheral influences, providing a total 

of 36 cores per collection date.  Results from preliminary tests using nine soil cores per 

plot for the EEA assays indicated that three cores per plot would be sufficient to account 

for the variability within individual plots for hydrolytic and proteolytic enzyme activities 

within individual plots during summer (when tests were conducted; data not shown). 

Upon collection, sample cores were placed into Nasco Whirl-Pak® collection 

bags, sealed and packed with dry ice in a cooler for transport to the laboratory.  Samples 
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were stored at -80° C until EEA assays were performed.  This storage temperature kept 

the enzyme activity of the soil samples suspended prior to analysis (Bélanger et al. 1997).  

 

2.4.3.2 Extracellular Enzyme Activity Assays.  Thirty-six samples were 

collected on each of two sampling dates, generating 72 total samples for EEA analysis.  

A suite of substrates, including methylumbelliferone salts and L-serine-7-amido-4-

methylcoumarin (Sigma Chemical Co., St. Louis, MO) was selected for flourometric 

measurement of hydrolytic and proteolytic enzymes involved in the soil processes of 

bacterial (here referring to organisms such as Archaea, Bacteria, and Eucarya) and fungal 

decomposition and mineralization (Coleman et al. 2004, Coleman 2008).  EEA can be 

interpreted as a quantitative measure as well as a qualitative measure of the functionality 

of these processes in soils (Sinsabaugh et al. 2008).  In addition, enzyme systems for 

which Ca either directly or indirectly plays a role in their efficiency, production, or 

structure were preferentially assessed (Bernard et al. 1998, Acosta-Martínez and 

Tabatabai 2000, Berteau et al. 2006).  The enzyme activities of phosphatase (E.C. 

3.1.3.2), sulphatase (E.C. 3.1.6.1), β-glucosidase (E.C. 3.2.1.21), chitinase (E.C. 

3.2.1.14), and xylosidase (E.C. 3.2.1.37) were measured in fall and spring.  β-

cellobiosidase (E.C. 3.2.1.91) activity was assayed in fall only, while the measurement of 

serine protease (E.C. 4.3.1.17) activity was only assayed in the spring.  

Overall EEA methodology followed well-established protocols (Saiya-Cork et al. 

2002, Sinsabaugh et al. 1993, Sinsabaugh et al. 2002, Sinsabaugh et al. 2004).  Frozen 

soil cores (-80° C) were thawed and immediately processed for EEA.  For sample 
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processing, 1 g of each homogenized sample was placed in 100 mL of 50 mM sodium 

acetate buffer solution titrated with acetic acid to the average ambient pH of the samples 

(determined separately, data not shown). The solution was kept agitated, and 200 µL of 

the solution was micropipetted into sterile, black 96-well polystyrene plates (NUNC ™, 

Fisher Thermal-Scientific, Rochester, NY) and combined with the appropriate 50 µL of 

200 µM MUF or methylcoumarin substrate (16 wells per sample, 3 samples per plate), or 

50 µL 10 µM MUF or methylcoumarin (8 wells per sample) standard, the remaining 24 

wells each with 250 µL of buffer (8 wells), buffer and standard (8 wells), or buffer and 

substrate (8 wells) for assay. Control plates with 8 wells each per sample consisting of 

200 µL of the buffer sample mixture and an additional 50 µL buffer were used to provide 

comparisons needed for activity calculations.  After 3 hrs of incubation at 20° C, enzyme 

activity was assayed fluorometrically (BioTek Instruments, Inc., Winooski, VT).   

Enzyme activity (µmol hr-1 g-1) was calculated from 16 subsamples per sample, 

extraneous parameters and bulk density adjusted for, and averaged to obtain 36 data 

points per assay.  

 

2.4.4. Statistical Analyses 

Analysis of variance (ANOVA) was conducted using the fit model procedure in 

the JMP 5.1 software package (SAS Institute, Cary, North Carolina) to test for treatment 

differences in tree-based and soil-based measures associated with Ca and Al addition.  

For tree-based data, significance tests utilized a fully nested design in which treatment 

differences were tested with the mean square for plot within treatment, and plot 
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differences were tested with the mean square for tree within plot (Montgomery 2001).  

Examples of ANOVA tables for this analysis appear in Table 2 (A and B).  Soil-based 

EEA data for individual enzyme systems were also tested using a fully nested design in 

which treatment differences were tested with the mean square for plot within treatment, 

and plot differences were tested with the mean square for sample within plot.  A mixed 

model was employed to test for differences among EEA means from all enzyme systems 

attributable to treatment, enzyme system, and the interaction of treatment and enzyme 

system within the otherwise nested design at NuPert (Montgomery 2001).  Examples of 

ANOVA tables for this analysis appear in Table 2 (C and D).  The impact of seasonal 

change in EEA across enzyme systems (Δ = May activity – September activity) was also 

evaluated using this mixed model design.  Here, negative activity values indicate greater 

EEA activity in September and positive values indicate greater EEA activity in May.  

Specific differences among treatments for all ANOVA were tested using Tukey’s HSD 

post hoc test.  When necessary, tree-based and soil EEA data were transformed (Log10y, 

y4, or 1/y) prior to statistical analyses to fulfill assumptions of ANOVA.  Correlation 

analysis was used to assess the possible mechanistic association among tree-based 

measures and better understand physiological responses to treatment. Results were 

considered significant if P < 0.05, unless noted otherwise. 

 

2.5. Results 

 

2.5.1. Tree-based Measures 
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2.5.1.1. Foliar Elemental Analysis.  Trees in the Ca-addition plots had increased 

foliar Ca concentrations relative to trees in the Al-addition and control plots (Table 3).  

Resulting concentrations in the foliage from trees on Ca-addition plots was above the 

sufficiency threshold of 5000 µg/g documented for sugar maple trees (Kolb and 

McCormick 1993).  Aluminum treatment was associated with reductions in 

concentrations of foliar P in trees relative to trees in the Ca-treatment (Table 3).  The 

critical level of P in foliage for health in sugar maple has been estimated to be between 

1000 µg/g and 1200 µg/g (Ouimet and Camiré 1995). Foliar concentrations of P were 

well above this threshold in the trees from the Ca-addition plots (1390 ± 50 µg/g), while 

the P concentrations in foliage of trees from the control plots were just above this 

estimate (1210 ± 30 µg/g). In trees from Al-addition, the P concentrations in foliage may 

have been deficient or were barely meeting the sufficiency threshold (1140 ± 30 µg/g).  

No differences in foliar nutrition attributable to soil treatments were detected for foliar 

Mg, Mn, and Al.  Even for trees on Al-addition plots, foliar Al concentrations were 

below the 32 µg/g to 60 µg/g reported for healthy sugar maple trees (Kolb and 

McCormick 1993). 

 

2.5.1.2. Foliar Antioxidant Enzyme Systems.  In two of the three enzyme 

systems assayed (Fig. 1A and B, GR and APX), Al-treatment was associated with higher 

foliar antioxidant activity relative to trees in the other treatment groups.  Glutathione 

reductase activity (Fig. 1A) in the foliage of trees from the Al-addition soils was more 

than six times the activity of the trees from the control and Ca-addition treatments (F2, 6 = 
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29.75, P < 0.001).   For APX (Fig. 1B), antioxidant activity was lowest in the leaves of 

trees from the Ca-treatment, intermediate activity levels were found in leaves of trees 

from control plots, and the greatest APX activity was measured in the foliage of trees 

from the Al soil treatment (F2, 6 = 19.54, P = 0.002).  No differences in CAT activity 

associated with treatment were found (Fig. 1C, F2, 6 = 1.62, P = 0.275), which is a 

response similar to that reported for maize following Al-treatment (Boscolo et al. 2003).  

Several significant but slight correlations between the activities of foliar antioxidant 

enzyme systems and foliar Ca concentrations were detected for all trees regardless of 

treatment.  In general, greater concentrations of foliar Ca were associated with decreased 

GR (r = -0.31, P = 0.046) and APX (r = -0.42, P = 0.005) activities, and with increased 

CAT activity (r = 0.46, P = 0.002). 

 

2.5.1.3. Foliar Carbohydrates.  No significant differences in foliar carbohydrates 

attributable to treatment were found, although there tended to be greater glucose 

accumulations within the leaves of trees from the Al-treatment (P = 0.088, Table 3).  

When all trees regardless of treatment were evaluated, a weak positive correlation was 

found for the concentrations of foliar sucrose/total sugars and Ca (r = 0.36, P = 0.018), 

and a weak negative correlation existed between the concentrations of foliar fructose/total 

sugars and Ca  (r = -0.38, P = 0.012). In general, the concentrations of sucrose increase, 

and the concentrations of fructose and glucose decrease in foliage as Ca concentrations 

rise.  Similarly, weak correlations between foliar Al and soluble carbohydrate 

concentrations exist.  Foliar Al and sucrose/total sugar concentrations were negatively 
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correlated (r = -0.33, P = 0.030), and foliar Al and fructose/total sugar concentrations 

were positively correlated (r = 0.38, P = 0.012).  

 

2.5.1.4. Woody Shoot Carbohydrates.  Consistent treatment differences were 

detected in shoot sugar concentrations. Lower concentrations of sugars were found in 

shoots of trees from Al-treatment plots relative to trees from other treatments for total 

sugars, sucrose, and fructose (Fig. 2A, B, and D).  Trees in Al-treated plots have smaller 

glucose concentrations in their shoots than trees from control plots, while trees in Ca 

plots show intermediate (but statistically indistinguishable) concentrations of glucose 

(Fig. 2C).  Concentrations of raffinose, xylose, and starch were similar among treatments 

(Fig. 2E, F, and G). Numerous linear correlations between foliar Al and shoot 

carbohydrate concentrations exist when data from all trees were analyzed.  For example, 

wood glucose was correlated positively with foliar Al concentration (r = 0.50, P < 0.001), 

while woody total sugar, sucrose, and xylose concentrations had slight negative 

correlations with foliar Al (r = -0.39, P = 0.011; r = -0.48, P = 0.001, r = -0.35, P = 

0.023, respectively). 

 

2.5.2. Soil-based Measures of Extracellular Enzymes 

2.5.2.1. September 2007 EEA Assays. Across all enzyme systems in fall, 

enzyme activity measurements from the Al-treatment are higher than those from control 

plots, with measurements from the Ca-treatment being intermediate and indistinguishable 

from those of the Al-treatment (Fig. 3A; F2, 8 = 11.68, P = 0.004).  Five of the six 
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individual enzyme system assays exhibited this same general trend in activity. However, 

only for the assays of β-glucosidase and xylosidase assays (Fig. 3C and E; P = 0.097 and 

P = 0.084, df = 2, 6) did these patterns approach statistical significance. 

 

2.5.2.2. May 2008 EEA Assays. For enzyme activity across all enzyme systems, 

means differed among all three treatments (Fig. 4A, F = 146.872, 8, P < 0.001), with 

activities highest for samples from the Ca-treatment, lowest for samples from control 

plots, and intermediate for samples from the Al-treatment.  All six of the individual EEA 

assays in May (Fig. 4 B-G) showed a similar pattern among treatment means as seen for 

EEA measurements across enzyme systems with activity levels higher for samples from 

Ca-addition plots and lower for samples from Al-addition and control plots.  This pattern 

was distinguishable for two of the six individual assays.  Phosphatase activity was higher 

for samples from Ca-addition plots relative to measurements from the other treatments 

(Fig. 4B, F2, 9 = 6.58, P = 0.017).  In addition, β-glucosidase activity was higher for 

samples from the Ca-addition relative to samples from control plots, with enzyme activity 

of samples from Al plots being intermediate and indistinguishable from levels measured 

for the other treatments (Fig. 4C, F2, 9 = 6.91, P = 0.012). 

 

2.5.2.3. Seasonal Fluxes in Soil EEA.  Seasonal changes (Δ = May activity – 

September activity) across all enzyme systems (F2, 8 = 20.66, P < 0.001) were observed 

among treatments (Fig. 5).  Negative values in Fig. 5A indicate greater activity in 

September, while positive values indicate greater activity in May.  Enzyme activity levels 
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among soil cores from Ca-addition plots increased from September to May, whereas 

levels decreased from September to May for samples from the Al-addition plots (Fig. 

5B).  Samples from the control plots showed relatively little change in activity levels 

through time, especially as compared to the samples from Ca-addition plots (Fig. 5B). 

 

 

2.6. Discussion 

 

2.6.1. Tree-based Responses in a Forested Ecosystem 

 Foliar elemental analysis indicates that soil treatments alter foliar Ca and P 

concentrations in mature sugar maple trees (Table 2).  In particular, foliar Ca levels in 

trees from the Ca-treatment were at least 2800 µg/g above the species-specific deficiency 

threshold of 5000 µg/g for sugar maple trees (Kolb and McCormick 1993). In addition, 

foliar P was lower in trees from Al-addition plots relative to those from Ca-addition plots. 

Past experiments have show that Ca fertilization can increase (Moore et al. 2000, Wilmot 

et al. 1996), decrease (Moore and Ouimet 2006, Ouimet and Fortin 1992), or not alter 

(Long et al. 1997) the P concentrations of sugar maple leaves.  Differences in sugar 

maple foliar P nutrition in these other experiments may have occurred because of other 

factors in addition to the Ca-treatment, such differences in the source of Ca-treatment 

(e.g., dolomitic lime which may contain other cations also influencing nutrition), the 

amount of Ca-treatment, parent geology and soil, or other factors.  Furthermore, although 

soil Al-treatment typically increases the P content of roots, including sugar maple roots, it 
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decreases the P content of aboveground plant tissues (Thornton et al.1986a, b, Liang et 

al. 2001, Quartin et al. 2001).  The unequal distribution of P in plants exposed to 

bioavailable Al results from the formation of Al and P organic complexes in and exuded 

from roots, which inhibit P availability and transport to shoots (Hodson and Evans 1995, 

Liang et al. 2001, Nguyen et al. 2003).  Whatever the causes, in our study foliar P levels 

associated with Al-addition (1140 ± 30 µg/g) were at the lower limit of sufficiency or 

may have been at deficiency levels (1100 ± 100 µg/g) for sugar maple trees (Ouimet and 

Camiré 1995).  Other studies have shown that the health and productivity of sugar maple 

trees may be limited by disruptions to P nutrition associated with acidic deposition, 

particularly N deposition (Gradowski and Thomas 2006).   

Previously at NuPert, Ca-treatment was associated with increased wound closure, 

increased annual basal area increment growth, and greater crown vigor, as well as 

decreased branch dieback for intermediate crown class sugar maple trees relative to trees 

in Al-addition and control plots (Huggett et al. 2007).  No increases in foliar Al or 

changes in growth and health were associated with Al treatment by Huggett et al. (2007).  

In contrast, in the current study the Al-treatment is associated with significant changes in 

plant physiology.  In particular, Al-treatment is associated with a six-fold increase in the 

activities of two of the three foliar antioxidant enzyme systems analyzed (GR and APX, 

Fig. 1A, B). We interpret these increases in APX and GR activity as an indication of 

elevated oxidative stress in trees from Al-addition plots.  Aluminum toxicity is known to 

heighten oxidative stress and cause the accumulation of reactive oxygen species (ROS) in 

plant tissues, and instigates the production of antioxidant enzymes that serve as protective 
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defense compounds (Panda et al. 2003, Chen 2006, Becana 2007, Houde and Diallo 

2008).  Aluminum treatment to soil also results in significantly lower concentrations of 

fructose, sucrose, and total sugars in woody stems in comparison to the concentrations of 

these carbohydrates found in trees exposed to ambient conditions (control) or soil Ca 

treatment (Fig. 2A-D). 

Differences in Al concentrations in foliage due to soil Al treatment were not 

detectable, yet physiological differences in trees due to soil Al treatment were evident. 

These physiological influences include increased antioxidant enzyme activity and 

reductions in sugar concentrations in woody shoots.  We looked for patterns across all 

sampled trees in order to more thoroughly examine the relationship between Al 

concentrations in foliage and physiological differences.  Correlation analyses further 

highlight the potential associations between Al-treatment and plant C relations at NuPert. 

Foliar Al concentrations were negatively correlated with foliar sucrose/total sugar 

concentrations and were positively correlated with foliar fructose/total sugar 

concentrations.  These correlations may reflect an association between greater Al in 

leaves and a reduced capacity for sucrose production from component hexoses in leaves, 

and impaired transport of sucrose to stems and labile stores of other soluble 

carbohydrates. This mechanistic explanation is consistent both with the literature (e.g., in 

Lautner et al. (2007) where a similar pattern was observed in Populus spp. and further 

associated with reductions in wood formation). A mechanistic association between Al 

and carbohydrate concentrations is also consistent with our treatment-based results of low 

concentrations of woody stem carbohydrates (total sugars, sucrose, and fructose) in trees 
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from Al-addition plots relative to trees in Ca-addition and control plots. These treatment-

based differences occurred even though these foliar Al concentrations were a third to half 

of the lower range limit (32 µg/g) of foliar Al levels reported for healthy sugar maple 

trees (Kolb and McCormick 1993). A definable threshold of Al toxicity in sugar maple 

trees in the field has yet to be determined. However, our report of increased oxidative 

stress for trees in Al-treated plots and reduced stem carbohydrates for trees with foliar Al 

concentrations lower that the range reported for health sugar maple trees suggest that Al 

toxicity may occur at foliar Al concentrations previously though to be safe. Schaberg et 

al. (2006) also found that foliar concentrations of Al below those reported by Kolb and 

McCormick (1993) were associated with toxicity, here as reduced growth of sugar 

maples in the field. 

There are many reasons why Al-treatment could reduce tissue sugar storage.  

Prominently, Al toxicity is known to reduce the quantity of photosynthetic pigments and 

decrease gross and net photosynthesis in a range of plant species (see reviews by Roy et 

al. 1988, Chen 2006).  In addition, because Al-treatment reduces C assimilation more 

than it does light absorption capacity, it can also increase the risk of photooxidative 

damage in leaves (Chen et al. 2005a, Becana 2007).  The resulting increase in 

photooxidative stress triggers the production of antioxidant enzymes including APX and 

GR that partially protect sensitive tissues (Chen et al. 2005b).  Notwithstanding this 

protective influence, reductions in soluble carbohydrates often follow protracted Al-

treatment (Chen 2006).  Furthermore, increases in oxidative stress and associated 

reductions in C relations likely extend beyond those associated with Al-induced 
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alterations of plant photosystems.  Yamamoto et al. (2002) found that Al-treatment 

instantaneously suppresses mitochondrial activity and that, after about 12 h, this triggers 

the production of ROS, a decrease in cellular respiration, a depletion of ATP, and a 

cessation of growth.  

At NuPert, the increases in antioxidant activity (oxidative protection) and 

associated reductions in shoot sugar concentrations may result from Al-induced 

alterations in oxidative stress and photosystem functions that have been commonly 

reported for a wide-range of plant species and tissue types (see review by Chen 2006).  

However, increased Al availability is also known to reduce P concentrations in leaves and 

shoots, thereby affecting ATP cycling and ATP-dependent H+ transport (Liang et al. 

2001), which is a critical biochemical component of cell wall growth and extension 

(Salisbury and Ross 1992).  Because the foliage of Al-treated trees has P concentrations 

that at most barely meet sufficiency standards for sugar maple, it is possible that low P 

availability contributes to the more direct influences of Al on cell ATP and energy 

relations already under strain from physiological stress.  Validation of these hypotheses at 

NuPert awaits experimental analysis.  

The combined effects of Al-treatment that we report are the first signs that 

protracted Al-treatment is now altering the physiology and health of sugar maple trees at 

NuPert.  Changes in foliar physiology were not accompanied by detectable alterations in 

foliar Al concentrations. This may be expected because many plants preferentially 

sequester Al in below-ground sinks; by forming carbohydrate intensive organic soil 

complexes with Al formed through the exudation of organic acids from root apices; or 
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through hyperaccumulation and detoxification of Al in root cell walls (Ma et al. 2001, 

Kochian et al. 2005, Poschenrieder et al. 2008). Furthermore, the most dramatic effects of 

Al toxicity are often seen as morphological changes of roots (Delhaize and Ryan 1995, 

Hossain et al. 2005).  Thus, it is possible that biologically relevant concentrations of Al 

may exist within plant roots but not be evident at the leaf level.  Indeed, our EEA 

analyses indicate that the soil treatments at NuPert influence belowground processes. 

 

2.6.2. Soil-based Responses in a Forested Ecosystem 

Extracellular enzyme activity is interpreted as a direct measure of the potential 

functionality of soil processes (Carreiro et al. 2000, Sinsabaugh et. al 2008).  Here, we 

assay the activities of extracellular enzymes that are involved in fundamental ecosystem 

processes including mineralization (phosphatases and sulphatases), hydrolytic organic 

decomposition (β-glucosidase, β-cellobiosidase, and xylosidase) and the breaking of 

bonds in more recalcitrant or amide-bonded substances (chitinase and L-serinase 

protease).  The enzymes we assayed are involved in the cycling of C, N, P and S in soil 

(Acosta-Martínez and Tabatabai 2000).  Soil Ca and Al-additions at NuPert have various 

influences on EEA, most notably causing decided seasonal swings in enzyme activities 

across enzyme systems (see Figs. 3A, 4A, and 5). 

  Aluminum is known to cause considerable increases to the organic acid 

exudation from plants into the soil matrix (Ma et al. 2001) potentially influencing the 

formation of soil aggregates and providing hydrolytic substrate for decomposition and 

mineralization (Coleman 2008). Organic acid leakage could also represent a shunting of 
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carbohydrates away from tree growth to the soil as a defense mechanism (Poschenrieder 

et al. 2008), and our results for woody stem carbohydrates are consistent with this 

hypothesis.  Protective organic-metal complexes form which may simultaneously limit Al 

toxicity and consume available P (Hodson and Evans 1995, Nguyen et al. 2003, Coleman 

et al. 2004).  Aluminum also causes an accumulation of P in plant roots (Roy et al. 1988), 

increasing P competition among ecosystem strata in the adjacent soil.  Alone or in 

combination, these Al-induced changes likely have a notable impact on the enzyme 

activities in the rhizosphere and proximal soils. Our measure of low foliar P nutrition in 

the Al-treatment plot samples relative to those from Ca-addition is consistent with the 

possibility of reductions in soil P availability with Al-addition.  The potential for P 

immobilization would be greatest in soil horizons with high organic contents similar to 

the ones sampled for this study.   

Our measure of greater EEA of phosphatase in the Ca-addition plots relative to 

the other plots is consistent with higher potential P mineralization in these plots in spring, 

this may be influential in providing the greater foliar P nutrition seen in the sugar maple 

trees growing on these plots.  It is also likely that the greater P concentrations in sugar 

maple leaves from Ca-addition plots are also found in the litterfall from these trees, this 

potential source of P in substrate may, itself, cause the greater EEA of phosphatase in the 

soils of Ca-addition plots.  

Greater EEA of β-glucosidase in the Ca-addition plots in spring indicates that 

greater rates of decomposition are occurring in these plots in spring (Carreiro et al. 2000, 

Sinsabaugh et al. 2004).  β-glucosidase is particularly important in the break-down  of 
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cellulose from leaves (Carreiro et al. 2000). The low activity of β-glucosidase on control 

plots may indicate that decomposition could be impaired here (as well as in ambient 

conditions) in spring.  We document greatest enzyme activities across enzyme systems 

within the Al-addition plots as compared to ambient soils in fall, and a greater upsurge of 

enzyme activity in the Ca-addition soils relative to the Al-addition and control treatments 

in spring.  In other studies, fall and spring are peaks of enzyme activity and of associated 

bacterial/fungal biomass in a range of healthy northern hardwood forests where sugar 

maple trees dominate (Myers et al. 2001, Sinsabaugh et al. 2004).  The relative lack of 

activity or seasonal change in EEA across enzyme systems (∆ = May activity –September 

activity, Fig. 5) in the untreated plots relative to the activities in the Al- and Ca-additions 

is notable, and may indicate a substantial inhibition of soil enzyme systems under 

ambient conditions at NuPert, with neither fungal nor bacterial components dominating 

soil flora.  A peak of EEA activity in the fall is associated with an increase in fungal 

activity in the hardwood forest at that time (Myers et al. 2001, Sinsabaugh et al. 2004).  

 Our measure of September enzyme activity across enzyme systems (Fig 3A) 

indicates a higher activity in fall in the Al-addition plots as compared to soils in control 

plots.  We speculate that the higher EEA across enzyme systems in fall (Fig 3A) could 

indicate that Al-treatment favors the fungal contingent of the soil.  Soil fungi are known 

to be considerably more tolerant of acidity than the majority of soil bacteria (Coleman et 

al. 2004).  In our study, the lowest pH values (determined separately, data not shown) 

were found in the Al-addition plots, which is consistent with the speculation that Al-

addition to soil favors the fungal community over the bacterial community. Even though 
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pH was lowest in the soils with Al-addition in fall as compared to the other soil 

treatments, Al-addition plots had the highest enzyme activities in fall.  This potentially 

indicates that the effect on activity was more likely attributable to differences in soil 

community composition rather than to a direct effect of pH on enzyme activity.  This may 

reflect influence of pH on community composition.  Other possible influences of Al-

addition to soil on sources of extracellular enzymes include Al toxicity to roots and 

microbes, and through Al-induced changes in root exudation, as from Al-induced plant 

exudation of carboxylates and resulting changes in soil flora (Weisskopf et al. 2008). 

Typically, the spring increase of EEA activity in the hardwood forest is associated with 

the soil bacterial and bacterial grazer communities, potentially favored by wetter spring 

conditions.  Bacteria and associated soil fauna continue the processes of decay, 

mineralization, mobilization and immobilization begun by the fungi in fall (Myers et al. 

2001, Sinsabaugh et al. 2004). We note greater EEA activity in spring in the plots with 

soil Ca-addition. Our results (Fig. 4A, B, C) are consistent with greater activity of the 

bacterial community in the spring in the Ca-addition plots as compared to Al-addition 

plots.  However, enzyme activity across enzyme systems in control plots seems impaired 

relative to enzyme activity in Al-addition plots in spring (Fig 4A), suggesting a complex 

response to Ca and Al soil additions as well as partially inhibited mineralization and 

decomposition under ambient conditions.  The intensive Ca cycling in sugar maple 

dominated forests (Dijkstra and Smits 2002, Dijkstra 2003), may be an important factor 

influencing this complexity.  Increases in bacterial biomass have been associated with 

Ca-addition and associated reductions in available Al beneath sugar maples in Québec 
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(Chagnon et al. 2001), but the capacity of these soils for enzyme-driven processes was 

not investigated.  Phosphatase and β-glucosidase are enzymes that catalyze reactions 

involved in mineralization and decomposition (Carreiro et al. 2000, Sinsabaugh et al. 

2008). Our individual EEA assays of phosphatase and β-glucosidase in May (Fig. 4 B, C) 

are consistent with greater capacity for spring mineralization in Ca-addition plots relative 

to control and Al-addition plots, and greater potential spring decomposition in the Ca-

addition plots as compared to control soils.  Validation with PLFA (phospholipid fatty 

acid) analyses could help determine the nature, state of stress, and composition of the soil 

communities at work in the NuPert experiment.  

 

2.6.3. Conclusions 

Our study is novel in documenting Al toxicity in dominant trees in a soil cation 

manipulation study in a mature hardwood forest.  This is in contrast to numerous pot and 

greenhouse-based studies of Al toxicity in seedlings, including sugar maple (Thornton et 

al. 1986a, Thornton et al. 1986b, Schaedle et al. 1989, Weber-Blaschke and Rehfuess 

2002, Naik et al. 2009). Furthermore, our measures of Al toxicity due to soil Al-addition 

(increases in foliar antioxidant activity and significantly lower concentrations of soluble 

sugars in woody shoots) exist despite no leaf-based evidence of increased Al uptake.  

Indeed, alterations in physiology associated with the Al-addition treatment occur at foliar 

Al concentrations that are low compared to many sugar maple trees (Kolb and 

McCormick 1993).  This apparent disparity may result from the disproportionate 

concentration of Al in root tissues, or in organic exudate complexes in the rhizosphere 
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(Ma et al. 2001, Marschner 2002, Poschenrieder et al. 2008).  It is possible that root 

accumulations of Al can trigger a more systemic toxicity, including physiological 

alterations in distal tissues that do not directly accumulate toxic levels of Al.  Further 

analysis of sugar maple root P and Al concentrations at NuPert would confirm this 

speculation.  Our results for foliar antioxidants likely indicate that foliar Al levels 

previously reported as normal (Kolb and McCormick 1993) are actually toxic, as is 

consistent with other reports for sugar maple (Schaberg et al. 2006). Furthermore, our 

results for woody shoot carbohydrates indicate that C assimilation and transport from 

leaves are impaired by increases in soil Al.  Although some indications of Al toxicity 

appear to be ameliorated by soil Ca-addition, such as foliar APX activity, this is not 

apparent in foliar GR activity or Al-induced changes in shoot sugar concentrations.  A 

lack of consistent ameliorating influence of Ca on Al toxicity symptoms highlights the 

importance of direct Al toxicity relative to indirect protection or damage due to the 

competitive interactions of Ca and Al.  Furthermore, treatment differences in soil EEA 

measures that we document suggest that manipulations of soil Al and Ca nutrition have 

ecosystem implications beyond influences on tree physiology, health, and productivity.  

However, because treatment differences in soil EEA vary with season, it is clear that 

influences on these measures (and the life forms that generate these enzymes) are 

complex and require additional and more detailed analyses.  

Our study hints at the relationships between the keystone species of sugar maple 

and soil communities, but these relationships require further clarification.  Soil treatments 

at NuPert are changing the Ca and P concentrations in foliage, primarily expressed as 
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improved Ca and P nutrition in foliage from Ca-addition plots.  Litterfall from sugar 

maple trees from Ca-addition plots likely also reflect the improved nutrition of living 

foliage, especially for Ca because it is functionally immobile in plants and remains in 

leaves through autumn senescence.  Greater EEA of phosphatase activity in the Ca-

addition plots suggests a correlation between foliar P and enzyme activity in the soil.  It is 

possible that the litterfall also retains the improved P nutrition measured in the living 

leaves of these trees.  Chagnon et al. (2001) found increased bacterial biomass, and 

increased diversity and change of dominance in Collembola genera associated with 

increased Ca nutrition of litterfall in response to liming two years after treatment in a 

sugar maple forest (where reductions in soil available Al also occurred).  At HBEF, Fisk 

et al. (2006) found that Collembola abundance decreased for the first two years after soil 

treatment with Ca in watershed 1, but rebounded in the third year after treatment with a 

change in dominance in elevations dominated by sugar maple (e.g., Folsomia no longer 

dominant).  NuPert, with its longer history of soil treatments, would likely better inform 

our understanding of impacts of anthropogenic soil alterations of soil Ca- and Al-

additions on soil faunal communities.  Our measure of greater EEA of β-glucosidase 

activity in Ca-addition plots as compared with control plots is likely associated with 

bacteria producing this enzyme, and these bacteria are also found in the gut of 

Collembola (König 2006), so it is possible that there is a relationship between the greater 

β-glucosidase activity and populations of Collembola. Other strata may benefit from 

changes in the nutritional status of sugar maple foliage.  Foliar herbivores may benefit 

from this improved nutrition, and in Québec declines in populations of leaf-mining 
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Lepidoptera have been associated with sugar maples in decline with poor Ca nutrition 

(Martel and Mauffette 1997). Likewise, avian populations of “canopy snatchers” and 

“canopy foliage gleaners” (birds that consume such insects) have also shown a negative 

relationship with a decline index for sugar maple in Québec (Darveau et al. 1997).  

Declines in sugar maple as a keystone species and alterations in foliar nutrition have 

implications for other ecosystem strata below and aboveground.   

Calcium depletion and widespread soil acidification with associated increases in 

bioavailable Al have serious implications for global forests.  After approximately 12 

years of intermittent soil amendment, we have found evidence of oxidative stress and 

carbohydrate imbalance in dominant trees of a keystone species, and disturbance of forest 

soil enzyme systems at HBEF associated with treatment, especially Al-addition.  

However, because a common symptom of advanced Al toxicity in a range of plant 

species is a reduction in whole plant biomass and growth, both above and below ground, 

(Thornton et al. 1986a, Thornton et al. 1986b, Schaedle et al. 1989, Schaberg et al. 2000, 

Weber-Blaschke and Rehfuess 2002, Nguyen et al. 2003, Nowak and Friend 2006), the 

perturbations that we note may be the precursors of more consequential alterations of tree 

physiology, forest function and productivity.  As such, continued anthropogenic soil 

acidification that reduces available Ca and increases available Al could further impair 

ecosystem health beyond the measures we document, and notably diminish forest carbon 

sequestration by trees at a time when it is most needed to buffer atmospheric C increases. 
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Fig. 1.  Foliar glutathione reductase (A), ascorbate peroxidase (B), and catalase (C) antioxidant 
enzyme activity in summer 2006 for sugar maple (Acer saccharum) trees from soil Ca-addition, 
control, and Al-addition plots at the NuPert experiment, Hubbard Brook Experimental Forest, New 
Hampshire. Activity level values are means ± SE.  Contrasting letters above bars denote 
statistically significant (P < 0.05, Tukeyʼs HSD post hoc) differences among treatments. 
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Fig. 2.  Woody shoot carbohydrate concentrations of total sugars (A), sucrose (B), glucose (C), 
fructose (D), raffinose (E), xylose (F), and starch (G) in summer 2006 for sugar maple (Acer 
saccharum) trees from soil Ca-addition, control, and Al-addition plots at the NuPert experiment, 
Hubbard Brook Experimental Forest, New Hampshire.  Values are means ± SE.  Contrasting 
letters above bars indicate statistically significant (P < 0.05) differences among treatments using 
Tukeyʼs HSD post hoc test. 
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Fig. 3.  September 2007 extracellular enzyme activity (EEA) assessed across enzyme systems 
(A) in soil treatments of Ca-addition, control, and Al-addition at the NuPert experiment, Hubbard 
Brook Experimental Forest, New Hampshire.  Individual EEA assays in fall are of phosphatase 
(B), β-glucosidase (C), β-cellobiosidase (D), xylosidase (E), chitinase (F), and sulphatase (G).  
Activity level values are means ± SE.  Contrasting letters above bars indicate statistically 
significant (P < 0.05) differences among treatments using Tukeyʼs HSD post hoc test. 
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Fig. 4. May 2008 extracellular enzyme activity (EEA) assessed across enzyme systems (A) in 
soil treatments of Ca-addition, control, and Al-addition at the NuPert experiment, Hubbard Brook 
Experimental Forest, New Hampshire.  Individual EEA assays in spring are of phosphatase (B), 
β-glucosidase (C), serine protease (D), xylosidase (E), chitinase (F), and sulphatase (G).  Activity 
level values are means ± SE.  Contrasting letters above bars indicate statistically significant (P < 
0.05) differences among treatments using Tukeyʼs HSD post hoc test. 
 
 



 

79 

 

Fig. 5. Seasonal change (Δ = May activity – September activity) in soil extracellular enzyme 
activities (EEA) across enzyme systems (A), and means of EEA across enzyme systems over 
time (B) in Ca-addition, control, and Al-addition treatments between September 2007 and May 
2008 at the NuPert experiment, Hubbard Brook Experimental Forest, New Hampshire. Seasonal 
differences in enzyme activities across enzyme systems are means ± SE in A, whereas only 
mean values are plotted in B.  Contrasting letters above bars indicate statistically significant (P < 
0.05) differences among treatments using Tukeyʼs HSD post hoc test. 
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