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ABSTRACT 
 

The high Mr (~55 kDa) thioredoxin reductases (TR) characteristic of higher 
eukaryotes are members of the glutathione reductase (GR) family of pyridine nucleotide 
disulfide oxidoreductases. These homodimeric enzymes catalyze the reduction of a 
cognate disulfide substrate. During the enzymatic cycle, reducing equivalents pass from 
NADPH to the conserved active site disulfide via an enzyme-bound FAD and then to the 
cognate substrate. TRs are unique in the family as electrons are then transferred to the C-
terminal active site of the adjacent molecule as part of a 16 amino acid extension (in 
place of the cognate GR substrate GSSG), prior to transfer to the substrate thioredoxin. 
Each electron transfer step occurs via thiol-disulfide exchange in a multi-step process 
mediated by a conserved catalytic acid/base. Mammalian TRs require selenocysteine 
(Sec) incorporated into the Gly-Cys-Sec-Gly-OH (GCUG) C-terminal tetrapeptide motif, 
while the TR from Drosophila melanogaster (DmTR) does not, and instead contains a 
Ser-Cys-Cys-Ser-OH (SCCS) tetrapeptide motif indicating that Sec is not universally 
necessary to catalyze the reduction of thioredoxin. 

This project has achieved three major objectives; 1) development of a 
semisynthetic method for production of mouse mitochondrial TR (mTR3) for structure-
function studies, 2) establishment of a new method to study the mechanism of TR by 
using tetrapeptides in the oxidized form equivalent to the C-terminal active sites as 
substrates for the truncated forms of both enzymes, 3) determination of the crystal 
structure of DmTR. The results show that the structure of DmTR explains the 
biochemical data and has developed a new testable hypothesis in the field for the 
requirement of Sec in mammalian TR.  

We demonstrate that the tetrapeptides tested in Aim 2 were all better substrates 
for DmTR. The data also shows a far greater dependence on Sec for mTR3 than DmTR, 
which is in agreement with that observed for the collection full-length mutants produced 
for each enzyme in Aim 1. As this method of investigation is more analogous to the other 
enzymes of the GR family, the structures of the tetrapeptides determined by NMR 
spectroscopy were oriented in the active site of the both enzymes using the diglutathione 
bound in the structure of GR as template. DmTR appears to have a more open active site 
than observed in the known structure of mTR3. Residues from the helical face of the 
FAD-domain proximal to the FAD-associated active site are less bulky in DmTR to 
accommodate the hydroxyls of the serines. This is likely to make the enzyme more 
amenable for the conformational switching of the SCCS peptide necessary to protonate 
the leaving group cysteine by the proposed catalytic acid/base. In contrast, mTR3 shows 
a more restricted interface by incorporating bulkier residues at the interface in 
conjunction with the smaller Gly residues of the C-terminal sequence GCUG. The 
tetrapeptides display a conformational preference not suitable for protonation of the first 
leaving group in mTR3.  
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CHAPTER 1. 
 

INTRODUCTION TO THE THIOREDOXIN 
SYSTEM 

 
 

 

 
 
Figure 1. The physiological reducing systems. 

The Thioredoxin system (A) and the Glutathione system (B) are each dependent on the 
system reductase, TR and GR respectively. These enzymes use a common modular 
architecture to perform the function of thiol-disulfide exchange. The unique properties of 
mammalian TR compared to the other related enzymes make understanding minor 
mechanistic differences essential to the development of therapeutics targeting TR. 
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THIOREDOXIN REDUCTASE AND PHYSIOLOGY 

 

Oxygen…the key to life as we know it. Oxidation…an enemy of life as we know 

it. Oxidation is not just damage in the form of the rust on your car it is also damage 

incurred by all forms of biological macromolecules. This can lead to the inactivation of 

enzymes (1), oxidation of lipids contributing to atherosclerosis (2, 3), and DNA damage 

resulting in cancer (4, 5). While the extracellular environment is relatively oxygen rich, 

the intracellular environment is maintained in the reduced state. However, oxidation in 

both environments is also an essential process that occurs in many physiological 

reactions. The key for most oxidative processes to be beneficial rather than detrimental is 

that that the process be reversible. Because of this paradox, organisms have evolved 

systems to control and utilize oxidative processes.  

The cellular environment is maintained in the reduced state by two primary 

systems, the glutathione system (sometimes referred to as the glutaredoxin system) and 

the thioredoxin system. The key enzymes are referred to as the system reductases, 

glutathione reductase (GR) and thioredoxin reductase (TR). A comprehensive list of 

abbreviations used in this dissertation is available in Appendix A. The reductase for each 

system utilizes reducing equivalents in the form of NADPH to reduce the system’s 

respective cognate substrate, oxidized diglutathione (GSSG) or thioredoxin (Trx) (Figure 

1).  While Trx goes on directly to reduce a target substrate, there are two fates of reduced 

glutathione (GSH), the tripeptide γ-glutamylcysteinylglycine. Two molecules of GSH can 

be used to directly reduce a target or, more commonly, GSH will be used to reduce 

glutaredoxin or glutathione peroxidase (proteins similar to Trx). Many excellent reviews 



3 
 
 
 

are available on the physiological functions of both systems (6-9). The most common 

shared function between the two systems is the reduction of protein disulfides. Central to 

the function of these systems is the process of thiol-disulfide exchange mediating the 

directed transfer of electrons between reduced and oxidized species.  

 Both systems are nearly ubiquitous in all forms of life, however, there are certain 

organisms of which there are substitutions for these systems. For example, the parasite 

Trypanosoma utilizes the analogous trypanothione system rather than the glutathione 

system (10). The system reductase is trypanothione reductase (TryR) and cognate 

substrate is trypanothione. While GRs are functionally, structurally, and mechanistically 

homologous, TRs are divided into two classes: higher eukaryotes have the class I high Mr 

TR, which is the focus of this dissertation, while prokaryotes and lower eukaryotes have 

class II low Mr TRs. These two classes have partial homology on the basis of function 

and structure, but contain structural deviations and have distinct mechanisms. No GR has 

yet been identified in Drosophila melanogaster even though glutathione is utilized (11). 

In this system, the GSH pool is maintained by the thioredoxin system via Trx. 

 The essential nature of both systems makes the reductases a significant 

therapeutic target for a broad range of disease processes. For example, the protozoa of 

which TryR substitutes for GR are the cause of several tropical diseases. Therefore, TryR 

is a target under investigation as a therapeutic target (12-14). Similarly, active site 

distinctions between the high Mr TR of mammals and that of Plasmodium falciparium, 

the causative parasite of malaria, make the Plasmodium falciparium TR (PfTR) an 

attractive therapeutic target for treatment of malaria (15).  
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 Both the glutathione and thioredoxin systems are reducing equivalent donors to 

ribonucelotide reductase (RNR) (8), the enzyme responsible for conversion of 

ribonucleotides to deoxyribonucleotides (dNTPs) for DNA synthesis (16). This enzyme is 

a target under investigation for cancer therapy, see Arnér and Holmgren for a TR-based 

review (17). Initial studies performed in E. coli. showed Trx to have slightly lower 

activity than glutaredoxin (Grx) as electron donors to RNR. Though Trx was less active 

and showed ~10 fold higher Km (18, 19), the cellular Trx concentration is considerably 

higher than Grx (20, 21). Trx knockout in yeast results in a 40% reduction of the dNTP 

pool in vivo (22). However, the impact for inhibition of these systems for higher 

eukaryotes in relation to ribonucleotide reductase has yet to be determined. Elevated 

levels of TR in human tumors have been reported (23, 24) but the degree of up-regulation 

and purpose of the elevated levels is uncertain (25).   

The mammalian thioredoxin system is unique in its broad range of substrates 

compared to other systems. Transcription factors such as NF-ΚB (26, 27) involved in 

oxidative stress and inflammatory responses have been demonstrated to be redox 

regulated by Trx. This redox control of transcription factors, and its involvement in the 

response to reactive oxygen species, implicate TR as a player in afflictions such as 

rheumatoid arthritis (28), cancer (17), aging, and HIV (29). Several other substrates 

unique to mammalian TR have been identified. The antioxidant ascorbate (vitamin C) can 

be reduced by TR (30) as can lipid peroxides (31). The unique roles that mammalian TR 

plays in so many physiological processes makes understanding the mechanistic 

differences of TR homologues and the related systems imperative.  
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THE GLUTATHIONE REDUCTASE FAMILY 

 

Thioredoxin reductases from higher eukaryotes are members of the glutathione 

reductase (GR) family of pyridine nucleotide-disulfide oxidoreductases (32). The 

Structural Classification of Proteins (SCOP) identifies the protein family as FAD/NAD-

linked reductases belonging to the FAD/NAD(P) binding domain Superfamily and Fold 

(33). Proteins in this family of which structures are available are GR (34), TR (35, 36), 

TryR (37), and LipDH (38). There are many structures for most of these proteins, 

especially GR. The references given above are representative structures of each enzyme 

used in direct structural comparisons in this dissertation. Glutathione, trypanothione, and 

lipoamide are all small-molecule substrates whereas thioredoxin is a 12 kDa protein 

(Figure 2). More distantly related family members include: alkyl hydroperoxide 

reductase, NADH peroxidase, NADH-dependent ferredoxin reductase, flavocytochrome 

C sulfide dehydrogenase, and apoptosis inducing factor (AIF). Although these proteins 

are generally related via the binding of FAD and/or NAD, their structural topologies are 

quite different from the GR family as reviewed by Dym and Eisenberg (39).  

Structural Overview.  

The proteins of the GR family are homodimeric (25) and have a three domain 

modular structure, which is diagramed in Figure 3. Each contains a N-terminal FAD 

binding domain followed by a NAD(P) binding domain. Each of these domains is 

structurally similar and composed of a three-layered sandwich, which will be described 

below. These two domains bind FAD and NAD(P) in a similar manner and are oriented 
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in a head to head fashion (Figure 4), essentially a mirror image, to place the flavin and 

nicotinamide in proper orientation for electron transfer. The domains are tethered by a 

two antiparallel β-strands with each strand representing the transition from one domain to 

the other. The C-terminal domain is the dimerization/interface domain for this class of 

proteins and is generally a five-stranded anti-parallel β-sheet with two alpha helices on 

either side. The high Mr TR (class I) characteristic of higher eukaryotes are ~55 kDa per 

monomer and have an additional C-terminal extension of 16 residues (compared to GR), 

which contains an additional active site disulfide (Figure 5). Prokaryotes and lower 

eukaryotes utilize class II TRs which are ~35 kDa per monomer.  Class II TRs do not 

have the C-terminal domain characteristic of most members the GR family and dimerize 

via the FAD domain (40).  

FAD Binding Domain.  

The FAD binding domain is the most highly conserved domain among family 

members (alignment Figure 6). This is not unexpected as the FAD is permanently bound 

to the protein although non-covalently, with a few exceptions within the family such as 

fumarate reductase and sarcosine oxidase. The domain contains a variant of the 

Rossmann $"$"$ fold as the central motif in a three-layered sandwich; a five or six-

stranded parallel central sheet, alpha helices on one face, and a three-stranded anti-

parallel sheet on the other (Figure 7) (41). The anti-parallel sheet is the crossover 

connection to the directional change in the Rossmann fold. This retains the typical +3 

topology of the Rossmann fold where strand number four in the sheet is strand seven 

within the sequence. Rossmann strand four is also the transition to the NAD(P) binding 
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domain such that stand five, six for some structures, follow the NAD(P) binding domain 

in the sequence. 

 The FAD molecule is divided into two modules connected via a pyrophosphate. 

The first module is the adenosine monophosphate (AMP) and lies within a well-defined 

groove created by the topological switch in the parallel $-sheet and a hydrophobic pocket 

between the two $-sheets. The adenine lies in the pocket with the N6 coordinated by a 

backbone carbonyl in a conserved position at the N-terminus of strand one of the anti-

parallel sheet. This residue is generally a small hydrophobic residue such as a glycine, 

alanine or valine.  The ribose and phosphate extends through the groove with the 

phosphates coordinated by the highly conserved FAD binding motif. This motif is the 

most conserved sequence found within the domain. The motif is GxGxxGx(17)D/E and is 

located in the loop and N-terminal end of the helix between strands one and two of the 

Rossmann fold. The x represents any residue with some preference for hydrophobic 

residues in the 17-residue stretch. This motif provides both a structural platform and 

binding determinants for the adenosine monophosphate and pyrophosphate moieties. The 

backbone amides of the GxGxxG motif provide hydrogen bonds to the pyrophosphate 

and the D/E coordinates the 2’-OH of the ribose. In many structures, there is a conserved 

water molecule mediating the interaction with the pyrophosphate (42).  

Charge stabilization of the pyrophosphate is believed to come from the positive 

helix dipole as the GxGxxG is the N-terminal end of helix 1 of the FAD domain (43). In 

the GR and TryR structures, the glutamate side chain hydrogen bonds to both the 2’ and 

3’-OH whereas in the E. coli TR structure it appears to be the backbone carbonyl of the 

Glu and the adjacent residue that provides these bonds. There is also a conserved Thr that 
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provides a hydrogen bond to the phosphate of the AMP. The second module of the FAD 

is the flavin mononucleotide, which contains the linear ribitol and the isoalloxazine ring 

of the flavin. The ribitol places the FAD in a linear conformation above the $-sheet 

platform, placing the flavin in contact with the alpha-helical face containing the active 

site. 

 The FAD domain contains the active site disulfide representative of the GR 

family, with exception of the small TR. It is located in the extended alpha-helical 

segment that connects strand two to strand three in the parallel β-sheet. The conserved 

redox active site sequence Cys-Val-Asn-Val-Gly-Cys (CVNVGC) sequence generates a 

short alpha helix followed by a longer helix, which is separated by a short loop created by 

the VNVG. This places the cysteines on the same face such that, when oxidized, the 

disulfide bond bridges across the loop. The N-terminal Cys is referred to as the 

interchange thiol and is responsible for electron exchange with the GSSG substrate (44). 

The C-terminal Cys is the charge-transfer Cys responsible for interacting with the Flavin. 

Reaction of reduced GR with iodoacetamide results in labeling of the interchange thiol 

while the C-terminal Cys is maintained in the charge-transfer state (44).   

Immediately C-terminal to the active site is a conserved lysine that coordinates 

the N5 of the flavin. Interestingly, the small TR has a similar short helix followed by a 

longer loop yet does not contain the active site motif. The local structure is maintained 

however, the small TR loop transitions to a helix that connects directly to the crossover 

$-sheet whereas the other members of the family extend towards the NAD(P) binding 

domain and reconnect to the FAD domain through an additional helix resulting in a 

sequence insertion of ~32 residues. This results in slightly different positioning of this 
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connecting helix in E. coli TR such that it occupies the substrate binding pocket 

representative of the other members of the family. 

NAD(P) Binding Domain.  

The NAD(P) binding domain demonstrates a similar architecture to that of the 

FAD domain although it is smaller and not as well conserved. While the FAD is 

permanently bound, the NAD(P) must bind and dissociate during the catalytic cycle. 

Therefore binding is less stringent and involves an induced fit (45). The domain 

architecture also contains a three-layered sandwich with the alpha helices being shorter 

and the parallel $-sheet containing only four strands. The GxGxxG motif is also 

conserved, although not as well as in the FAD binding domain. An important difference 

is the coordination of the ribose of the similar AMP module. Members of the family that 

bind NADP rather then NAD contain a pair of arginines in the loop where the D/E 

normally resides. These residues hydrogen bond to the phosphate on the 3’-OH and it 

appears that 2’-OH points toward the solvent. A series of mutations, including the Arg 

residues, allows for switching of substrate specifity from NADPH to NADH (46). 

A conserved tyrosine from the NADP domain, Tyr197 in GR, shows a significant 

conformational change between the oxidized and reduced states of the enzyme (34, 47). 

Upon binding of NADPH, the Tyr rotates to allow the orientation of the flavin and 

nicotinamide for electron transfer. This same conformational change has also been 

reported for mouse mitochondrial TR (mTR3) (35). This residue was initially suggested 

to provide a cap to protect the flavin from access to solvent. However, mutagenesis to 

Phe, Ser, or Gly indicated the flavin is still protected. The latter two mutants, however, 
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resulted in a shift from the normal Ping-Pong Bi Bi mechanism to an Ordered-Sequential 

mechanism (48).  

 While the overall architecture is maintained within the family, there is a simple 

non-conserved sequence in a short alpha helix prior to the sequence returning to the FAD 

domain. This short helix contains the active disulfide for small TR. The end of this helix 

faces the FAD domain and contains the active-site sequence, CATC. The combined 

structures for E. coli TR demonstrate a significant conformational change that is unique 

to the Class II TR (49). The NAD(P) domain twists ~60o to expose the active disulfide to 

the open face of the structure, opposite the dimer interface, for interaction with 

thioredoxin. This sequence is GITS for GR and CISS or CITS for large TR, TryR and 

LipDH while the flanking regions are relatively well conserved. However, since this 

active site faces the dimer interface, it is inaccessible to a large substrate such as 

thioredoxin. 

The Dimerization Domain.  

The C-terminal dimerization domain represents ~30% of the sequence for the 

proteins of this family. As the name implies, it is this domain that is responsible for dimer 

formation thereby assembling the functional active site. It is this domain that provides the 

catalytic acid/base histidine for the active site of the enzyme. The conserved active site is 

composed of the FAD and the conserved disulfide (CVNVGC) from the FAD domain of 

Chain A, and the His-Glu dyad (His464 and Glu469 in Figure 5) from Chain B, as 

proposed from the crystal structures of GR (34, 50). Residues from chain B are given a 

prime designation. Implications for the His-Glu dyad will be discussed in more detail in 
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terms of the catalytic cycles covered in the next section. The His-Glu dyad is shown for 

the structures of GR and mouse TR3 in Figure 4. The communication between the FAD 

active site disulfide on Chain A and the catalytic acid/base on Chain B was verified by 

the preparation of heterodimeric GR from E. coli where one subunit contained the 

Cys47Ser mutant and the other subunit contained the His439Gln mutant (51, 52). Each 

mutant showed poor activity when prepared as a homodimer while the heterodimeric 

form showed ~50% of wild-type activity. 

Proper dimer assembly is also a significant contributor to the catalytic 

mechanism. Several mutagenesis studies have been performed with GR targeting residues 

at the dimer interface. Though dimeric enzymes require elements from both monomers, 

cooperativity has not been reported for wild type enzymes under normal conditions. The 

E. Coli GR mutant Gly418Trp results in an enzyme having high cooperativity for GSSG 

binding with Hill coefficient of 1.76 (53). Mutations in this region can also disrupt the 

standard Ping Pong mechanism (54).      

The additional thiol-disulfide exchange step characteristic of TR utilizes a 16 

amino acid C-terminal extension (absent in GR) and typically contains a Cys-Cys dyad, 

which forms an intramolecular disulfide. Upon reduction of this dyad by the N-terminal 

redox center (on the opposite chain), the substrate (Trx) can then be reduced. The 

relationship between the N-terminal active site and the C-terminal active site was 

demonstrated using the heterodimer method developed for GR by Deonarain et al. 

mentioned above. In these experiments the interchange thiol Cys88 of Plasmodium 

falciparum (PfTR), was mutated to Ala in one construct while Cys535 was mutated to 

Ala in another (55). Each of the mutants, when produced as homodimers, showed very 
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poor activity towards Trx while the heterodimers showed ~50% of wild-type activity. 

This provided evidence that the N-terminal active site was in redox communication with 

the C-terminal active site. 

With the exception of PfTR, which contains four intervening residues, the 

disulfide forms between adjacent Cys residues of the C-terminal dyad. This vicinal 

disulfide bond has a very low frequency in the Brookhaven Protein Data Bank (PDB) as 

is discussed by Perczel and coworkers (56, 57) and results in a type VII β-turn (58).  Only 

TR has been identified as having a catalytically competent vicinal disulfide. Examples of 

proteins containing a vicinal disulfide include bacterial toxins (59), the nicotinic 

acetylcholine receptor (58), hepcidin (60), and methanol dehydrogenase (61). For these 

proteins it is suspected that the vicinal disulfide has a structural function. Mercuric ion 

reductase also contains a C-terminal vicinal disulfide but it does not appear essential for 

enzyme function (62). 

Mammalian TRs (mTR) are distinguished in this group since they contain the rare 

amino acid selenocysteine (Sec, U) as part of the C-terminal dyad forming the redox-

active motif Gly-Cys-Sec-Gly (GCUG) (63, 64).  Drosophilia melanogaster TR (DmTR) 

lacks Sec as part of this motif and has the C-terminal sequence Ser-Cys-Cys-Ser (SCCS) 

(11, 65) (Figure 5).  Thus, high Mr TRs can be divided into enzymes that contain Sec and 

those that have a conventional Cys residue (66). TryR is interesting in that it also has a C-

terminal extension, but the sequence is not conserved in comparison to TR and does not 

contain the active disulfide. 
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Substrate Binding.  

Glutathione reductase is the structural model for the family and has been 

extensively studied. Both the alpha helical face of the FAD domain and the C-terminal 

end of the dimerization domain provide substrate-binding determinants for GSSG (34). 

Most of the binding contacts for GSSG in the structural complex appear water mediated 

with the most significant direct contacts formed between Chain A and GSHI. Many of the 

substrate-binding residues are conserved in TR yet the enzyme cannot reduce glutathione 

or trypanothione. The arginine in position 37 for GR serves to anchor the carboxyl group 

of GSHI. Trypanothione does not have carboxyl groups at both ends of the molecule and 

therefore has hydrophobic substitutions at position 37 and 106 and an acidic substitution 

at position 117. The extensive structural investigations of substrate binding residues for 

GR and TryR have allowed for engineering of trypanothione specificity in human GR 

(67) as 14 of 19 amino acids suggested to bind GSSG in GR are identical in TryR.   

In the case of TR, the C-terminal tail is essentially the substrate for the FAD 

domain-conserved active site substituting for GSSG (68). Since glutaredoxin and 

glutathione peroxidase are the primary targets for GSH and are similar to Trx, it is as if 

TR has evolved by incorporating the GSSG-like moiety into the protein. The size of 

thioredoxin makes it inaccessible to the active site of GR, TryR and LipDH. 

Alternatively, the C-terminal extension of rat TR occupies the binding site making it 

inaccessible to glutathione, trypanothione, and lipoamide. The conservative substitution 

to Lys in TR for Arg37 of GR was suggested to serve a similar purpose with respect to 
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coordination of the C-terminal carboxylate of rat TR1 (36). There is no current data 

pertaining to the residues involved in Trx binding for large Mr TRs. 

 

SPECTRAL CHARACTERISTICS OF FLAVIN AND FLAVOPROTEINS 

 

To better understand the methods currently used for investigating mechanistic 

details within the GR family, an introduction to the spectral characteristics of flavin must 

be presented. Much of the work describing the electronic states of flavin derivatives was 

pioneered by Vincent Massey as reviewed in (69) and has been used to distinguish 

between free flavin and flavoproteins and their mechanisms (70, 71). Many classes of 

enzymes utilize a flavin moiety, which can participate in either one-electron or two-

electron processes as investigated potentiometrically by Michaelis et al. (72). It is this 

characteristic that allows the flavin to be so versatile and results in several electronic 

states (73). Each of these states has specific spectral properties as shown in Figure 8 (74) 

using Old Yellow Enzyme as the example showing all four electronic states. The 

simplified equation most commonly shown for the reduction of FAD is described in 

equation 1. 

FAD + 2e- + 2H+ → FADH2    (1) 

The yellow color associated with a flavin derivative is indicative of the moiety in 

the oxidized state. The color comes from an absorbance peak at ~448 nm that is shifted to 

longer wavelengths for flavoproteins, ~460 nm for GR and TR (71). This peak for 

flavoproteins also has a pronounced shoulder at ~430 nm and another at ~480 nm. These 
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shoulders were determined to be a function of the hydrogen-bonding environment 

between the protein and the isoalloxazine ring (71). As with most species with an 

aromatic nature, there is also an absorbance maxima in the near ultraviolet. This peak is 

~375 nm for flavin and a slightly shorter wavelength for a flavoproteins, ~370 nm for GR 

and TR. Complete reduction of flavin to FADH2 results in a decrease in extinction for the 

UV peak and a loss of visible color. This loss of color upon reduction, however, is not 

observed in all flavoproteins (70). 

As free flavin and flavoproteins have unique properties, the same can be said for 

the GR and TR compared to enzymes such as glucose oxidase (71, 73). For example, 

photoreduction and reoxidation experiments with glucose oxidase results in all flavin 

species being observable (75). The reduction of GR, however, under physiological 

conditions displays different properties (Figure 8 inset) (76). While the spectra of the 

oxidized enzyme (spectra 1) resembles that of the free flavin, it is clear that the reduced 

form of the enzyme using NADPH (spectra 2) or sodium borohydride (spectra 3) does not 

resemble that of the reduced free flavin in the form of FADH2. The characteristic reduced 

spectrum is not typically seen in GR family proteins under normal conditions. To achieve 

this state, long incubations in excess NADPH or chemical reducing agents such as 

dithionite are most commonly required (70, 77-79). The reduced spectrum of GR instead 

appears to be a hybrid between the oxidized and anionic semiquinone states (73).  

The most notable characteristic of NADPH-reduced GR or TR is a red color that 

is demonstrated by the absorbance change at 540 nm in the inset of Figure 8. This color 

indicates the essential species and primary intermediate of the mechanism of these 

proteins, the thiolate – flavin charge-transfer complex. There is a transient covalent 
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adduct with the C4a position of the isoalloxazine ring of the flavin and active site 

cysteine. An adduct intermediate with substrate at this position is also proposed for many 

other classes of enzymes (69). This transient species becomes the primary charge-transfer 

intermediate upon reduction of the disulfide. Preliminary investigations for spectral 

characteristics of the GR protein family were performed using LipDH (80-83).  The two-

electron reduced enzyme showed the same red color mentioned above with proton 

inventories suggesting a proton from dihydrolipoamide being taken by the catalytic 

acid/base. The adduct formed between the cysteine and FAD with the subsequent 

formation of the charge-transfer complex as the reduced intermediate for the GR results 

in equation 2, which is typically how the FAD in the reaction cycle is represented for GR 

and TR. 

FAD + NADPH → FADH-    (2) 

 

THE GLUTATHIONE REDUCTASE CATALYTIC CYCLE 

 

Catalytic Overview.  

GR is a two-substrate, two-product (or three, with a GSSG producing 2 GSH) 

enzyme, shown in equation 3, following Ping-Pong Bi-Bi kinetics similar to that of 

LipDH (84, 85), as reviewed in (86). Massey and Williams (87) originally proposed the 

catalytic cycle of GR which has since been divided into two phases: a reductive half-

reaction and an oxidative half-reaction. In the reductive half-reaction, the enzyme is 
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reduced by the consumption of NADPH resulting in the formation of the thiolate-flavin 

charge-transfer complex. The enzyme is re-oxidized upon consumption of GSSG in the 

oxidative half-reaction, which is the prototypical enzymatic thiol-disulfide exchange. The 

steps in each half-reaction have been studied extensively by stopped-flow kinetics, as 

best described in (88, 89) using the spectral characteristics of the flavin. The reaction was 

predicted to be acid/base catalyzed with the residue identified in the C-terminal region of 

GR (90). A representation of the GR catalytic cycle is shown in Figure 9. 

GSSG + NADPH + H+ → 2GSH + NADP+   (3) 

His467′ for human GR (His439′ for E. coli.) from chain B has since been 

identified as the acid/base catalyst in GR and is conserved throughout the protein family. 

It has been shown to be essential in both the reductive half-reaction and oxidative half-

reaction for GR (48, 88, 91), LipDH (80, 92), and PfTR (93). His467′ is activated by 

Glu472′ (human GR) forming a catalytic dyad that acts as a potential charge-relay system 

between the dyad and the N-terminal thiol of the active site disulfide, as first proposed 

from the crystal structure of GR (50). For the discussion of the catalytic cycle, I have 

chosen to use the GR comparison as it functions to reduce a disulfide like TR rather than 

to oxidize a dithiol as is the case for LipDH.  

Flavin Spectra and Enzyme Kinetics.  

In the previous section we introduced the spectral characteristics of flavin and 

flavoproteins in terms of the redox state of the flavin in three states - oxidized, reduced, 

and charge-transfer. In terms of the catalytic cycle shown in Figure 9, there are three 
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primary flavin states but more than three steps. As can be seen in the flavin spectra in 

Figure 8, differences in the redox state results in changes throughout the spectrum. 

Therefore, a subset of relevant wavelengths has been established for kinetic analysis (88, 

89). The easiest to understand is the thiolate-flavin charge-transfer complex observed at 

540 nm. The second is a charge-transfer complex between FADH- and NADP+ at 670 

nm. The complete oxidation of flavin results in an absorbance maxima at ~460 nm but 

partial oxidation is a characteristic of these proteins during each half-reaction. Therefore 

this state is followed at 440 nm. 

The method developed at The University of Michigan by Ballou and Arscott 

utilizes a stopped-flow spectrophotometer adapted for anaerobic conditions. These 

conditions are necessary to prevent auto-oxidation of the flavin. While the rapid reaction 

kinetics using flavin spectra provides more details than steady state kinetics, it is not 

without limitations. There are several species that are spectrally equivalent and cannot be 

distinguished for GR (88) or TR (78, 79, 93). Of special interest are the catalytic 

intermediates involving the thiol-flavin charge-transfer.  

The Reductive Half-Reaction of GR.  

During the reductive half-reaction (Eox to EH2(B)), the FAD-associated disulfide 

from chain A is reduced upon consumption of electrons from NADPH. Three primary 

phases have been spectrally observed for this reaction (88, 89). The first phase, binding 

of NADPH and formation of the NADPH - FAD charge-transfer complex is complete 

within the dead time of the stopped-flow instrument. The second phase includes the 

reduction of FAD to form the FADH- - NADP+ charge-transfer complex. The third phase 
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transfers electrons to the N-terminal disulfide and occurs via the thiolate-FAD charge-

transfer complex. The mutant His439′Ala (E. coli GR), was reported to result in a modest 

16 fold decrease in the overall rate for the reductive half-reaction. A closer inspection 

reveals different spectra upon NADPH reduction of the wild type and mutant enzymes 

(88). The mutant enzyme at the end of the reaction has much more reduced flavin 

characteristic and less charge-transfer absorbance indicating the two proteins are in 

significantly different states. While the rate differences are addressed in the discussion, 

the magnitude of the difference in the spectra (especially at 440 nm) is not.  

The Oxidative Half-Reaction of GR.  

The oxidative half-reaction (EH2(B) to Eox) is the reduction of GSSG that results 

in the re-oxidation of GR.  For each NADPH consumed in the reductive half-reaction, 

two GSH molecules are produced from a single GSSG in the oxidative half-reaction. The 

intermediate of the oxidative half-reaction (EH2(C)) is a mixed disulfide formed between 

the cysteine of GSH I and the active site interchange thiol (Cys58) from chain A (94). 

This step is referred to as interchange.  This intermediate is seen crystallographically in 

PDB 1GRE compared with the bound oxidized GSSG in PDB 1GRA (34) now at <2 Å 

refined from the initial 3 Å structures (47). The high temperature factors of GSGII and 

the fewer direct contacts to GSHII from GR in combination with GSHI as the interchange 

moiety indicates that GSHII is likely the first leaving group. The significance of this 

intermediate is biochemically supported by GSH/GSSG equilibrium experiments and is 

hypothesized to be the major form of GR physiologically (94). Unlike the reductive half-

reaction where multiple spectral states are observed, the oxidative half-reaction is 



20 
 
 
 

followed by a single state as EH2(B) and EH2(C) are spectrally equivalent. This means: 1) 

formation of the mixed disulfide, 2) protonation of the first leaving group, 3) resolution 

of the mixed disulfide, and 4) protonation of the second leaving group are incorporated 

into a single rate constant (88).  

This challenge was partially addressed by earlier experiments using mixed-

disulfide substrates (95). The substrates GS-SNB (mixed disulfide of glutathione and 5-

thio-2-nitrobenzoic acid) and GS-SNP (mixed disulfide and 2-thio-4-nitropyridine) were 

evaluated as substrates for GR using kinetic isotope effects on kcat with varying deuterium 

concentrations. The mixed disulfide substrates have an aromatic thiol group with a low 

pKa and would not require protonation, unlike GSH. Each substrate indicated a proton 

transfer step as partially rate-limiting and results from either substrate indicated that the 

same rate-limiting step was being observed. While the aromatic thiol should be the first 

leaving group (94) with GSH as the interchange mixed disulfide, it was hypothesized 

from this data that the GSH was the first leaving group. The rationale provided is that for 

the system to be in equilibrium, the GSH would have to be the first leaving group. At 

equilibrium, the free GSH would be able to re-attack the interchange mixed disulfide. If, 

however, the aromatic disulfide were the first leaving group, the reaction should be 

irreversible. Why the aromatic disulfide would be the second leaving group in this 

experiment is not quite clear. One possibility could be a function of binding or orientation 

of this modified substrate in the active site (96), which is not accounted for.  

His439′ has been shown to be essential to the oxidative half-reaction for 

protonation of the first leaving group, the thiol of GSHII (88). This half-reaction was 

shown to be 600 fold slower in the His439′ mutant. This indicates that protonation of the 



21 
 
 
 

leaving group is essential in the oxidative half-reaction. Protonation and subsequent 

dissociation is essential to prevent the re-attack of the interchange mixed-disulfide by 

GSHII and thereby driving the reverse reaction (88). The final step of the oxidative half-

reaction is the resolution step. The resolving thiol, Cys63, attacks the interchange mixed 

disulfide and reforms the enzyme Cys58-Cys63 disulfide with release of the second 

molecule of glutathione (GSHI). Thus, the enzymatic thiol-disulfide exchange process 

characteristic of this family of proteins involves an interchange step (requiring an 

interchange cysteine) and a resolution step (requiring a resolving cysteine). 

 

THE HIGH Mr THIOREDOXIN REDUCTASE CATALYTIC CYCLE 

 

 The addition of a second thiol-disulfide exchange in TR results in a significantly 

more complicated reaction cycle (Figure 10) as best described for PfTR (93) and DmTR 

(78) with partial insight from mammalian TR (79). The reductive half-reaction of TR 

includes transfer of electrons from the N-terminal dithiol to the C-terminal disulfide (this 

is equivalent to the combination of the reductive and oxidative half-reactions in GR) as 

well as the consumption of an additional equivalent of NADPH. The oxidative half-

reaction of TR is the thiol-disulfide exchange between the C-terminal dithiol and the 

disulfide of Trx. The steady state cycle therefore alternates between two-electron and 

four-electron reduced states of TR, EH2 to EH4, as shown for DmTR (78) and PfTR (93). 

It is assumed from this work that EH4(B) is the predominant product of the reductive 

half-reaction and demonstrates an enhanced flavin-thiolate charge-transfer complex.  
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As much mechanistic detail as is inferred from this work, only three discernable 

rate constants have been determined for the entire reductive half-reaction (93) from a 

model with at least eight steps. The first constant is the consumption of the first 

equivalent of NADPH foming the FADH- - NADP+ charge-transfer complex and the 

second rate constant being the formation of the thiolate-FAD charge-transfer complex. 

This is similar to the analysis for GR. This means the third rate constant represents the 

thiol-disulfide exchange between the N-terminus and C-terminus with the spectra 

complicated by the consumption of the second equivalent of NADPH. Referring to 

Figure 10, these are the steps from EH2(B) to EH4(B).    

Mutation of either residue of the His-Glu catalytic dyad for PfTR results in 

significant decreases in rate for both the reductive half-reaction and the oxidative half-

reaction (93) with the His mutation almost completely destabilizing the thiolate-flavin 

charge-transfer complex. Similar results are seen by the authors for the equivalent 

mutations in DmTR, but have yet to be published. This is in agreement with that observed 

for the equivalent mutants in GR (88, 89) and LipDH (97, 98).  Similarly, mutation of the 

equivalent Glu477 in human TR results in a 6 fold reduction in kcat (99). The perturbation 

of the reductive half-reaction appears greater in magnitude for the His mutation in PfTR 

than mentioned above for GR. These results indicate 1) the importance of the catalytic 

acid/base in both half-reactions for GR and TR; 2) could imply the catalytic acid/base is 

also involved in thiol-disulfide exchange between the C-terminus of TR and the disulfide 

of Trx. The latter has been proposed in a mathematical model for mammalian TR (100) 

where the His would be directly involved in the exchange by deprotonation of the 
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attacking thiolate of TR and/or protonation of the leaving group thiol of Trx. However 

there is currently no experimental evidence for this.  

It is quite possible that the decrease in rate for the His and Glu mutants of PfTR 

(93, 101) represents the unfavorable formation of EH2(B) rather than catalytic association 

with Trx. The authors note that the thiolate charge-transfer complex in the His mutant is 

nearly absent. If the model of the catalytic cycle is correct and EH2(B) is formed prior to 

Eox during reoxidation in these experiments, the His mutation could be a function of 

reoxidation of the N-terminal disulfide instead. Like the reductive half-reaction, three rate 

constants were determined for the oxidative half-reaction of PfTR. The first rate constant 

for the His or Glu mutants is 50% of the wild type enzyme and is attributed to the thiol 

disulfide exchange with Trx indicating these residues are not directly involved with Trx. 

The second rate constant is attributed to the reaction of EH2(D) with the excess Trx in the 

experiment. This rate would reflect conversion from EH2(B) to EH2(D) and is 

significantly slower in the His and Glu mutants. The third rate constant is the slowest of 

the three and reflects the complete reoxidation of the flavin.  

It can be interpreted from this data that the decrease in rate for the His and Glu 

mutants for PfTR in the oxidative half-reaction are actually steps in the reductive half-

reaction. Each of the three rate constants for the oxidative half-reaction is significantly 

lower than the rates determined for the reductive half-reaction (93). This is consistent 

with results for DmTR where the single determined rate constant of 11 s-1 was suggested 

to be the conversion of EH2(B) to EH2(D) during the oxidative half-reaction (78). The 

overall rate constant of 5 s-1 for reduction of Trx was determined, indicating this step is 

the major contributor to the overall rate of DmTR. An interpretation that is completely 
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consistent for what is observed for GR where the protonation of the first leaving group in 

the oxidative half-reaction is the overall rate-limiting step (88, 95). The only caveat being 

that GSSG is now replaced by the C-terminal disulfide in TR. This may sound confusing 

at first, but it can be better understood by comparing Figure 9 to Figure 10 and 

establishing the important relationship in equation 4.  

EH2(B) → Eox  (GR)  =  EH2(B) → EH2(D)  (TR)   (4) 

 

SELENOCYSTEINE IS ESSENTIAL TO MAMMALIAN TR 

 

 Earlier in the Introduction, it was implied that mammalian TR has unique 

functional properties in comparison to the other proteins in the family. Yet we have not 

discussed what makes mammalian TR unique. For simplification purposes, TRs have 

been discussed in general terms of the catalytic cycle, since all high Mr TRs share the 

active site containing C-terminal extension. There are two major subclasses of this C-

terminal active site. Looking more closely at the sequence alignment in Figure 5, the one 

letter code U (selenocysteine) is in the penultimate position for mammalian forms while 

others contain C (the one letter code for cysteine).  Therefore the two classes are those 

whose active site contains a Cys-Cys dyad and that which contains a Cys-Sec dyad, 

where Sec is the three letter code for selenocysteine.       

  Sec containing proteins are found in prokaryotes, eukaryotes and archea but are 

relatively rare. In humans for example, only 25 proteins have currently been identified 

that contain Sec (102). Sec is inserted co-translationally at the ribosome during protein 
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synthesis but requires a unique cis element and several unique trans factors as the codon 

for Sec is the normal termination codon UGA (Figure 11). The cis element is the 

selenocysteine insertion sequence (SECIS), a specific stem loop structure in the mRNA. 

This sequence is adjacent to the UGA codon in prokaryotes but is found in the 3΄ 

untranslated region for eukaryotes (see (102) and references therein). It also requires 

specialized enzymes for the assimilation and incorporation of selenium into Sec (103, 

104). The process is metabolically expensive for the organism and challenging to 

manipulate for the scientist interested in recombinant protein production.  

Bacterial formate dehydrogenase was the first enzyme where selenium was 

demonstrated as required for function (105). Several other enzymes, such as glutathione 

peroxidase and 5΄ deiodinases, were also identified as requiring selenium though the 

nature of the selenium moiety was not clarified, as reviewed by (106). Enoch et al. 

demonstrated that selenium was likely a covalent component of formate dehydrogenase 

and suggested the presence of a selenol (107). In the following year, selenium was 

identified as incorporated into the selenoprotein A, an essential component of clostridial 

glycine reductase, as Sec by the Stadtman group at the NIH (108). The same group did 

not identify Sec as the penultimate residue in human TR (63) until 20 years later. Sec 

since has been shown to be essential to the function of mammalian TR. Replacement of 

the catalytic Sec residue in the mammalian enzyme with a Cys residue results in a large 

decrease (>100 fold) in catalytic activity towards the cognate substrate Trx (109). Sec is 

incorporated into the mammalian TR C-terminal sequence, Gly-Cys-Sec-Gly (GCUG) 

(63).  
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Selenium is an essential trace element and the key component of many 

biologically important selenocompounds (110, 111) but is also toxic at increased 

concentrations (112, 113). The incorporation of Sec into mammalian TR is responsible 

for expanding the substrate range to include peroxides and lipid peroxides (31, 114), 

ascorbate (30, 115) and seleno-compounds such as selenite (116), methylseleninate (117), 

selenodiglutathione (118). This indicates TR may also be a component of the systems 

regulating the seleno-metabolite pool (17). Sec incorporation into TR has also been 

proposed to be one of the links between selenium supplementation and cancer prevention 

(119) as reviewed by (120).  

While the incorporation of Sec may provide a selective advantage by expanding 

the substrate range, it is not required to catalyze the reduction of Trx by TR. One such 

example is DmTR, which has high activity towards its cognate Trx and good activity 

towards Trx from E. coli (11, 65).  Gromer et al. (65) proposed that it is the flanking 

serine residues in the Ser-Cys-Cys-Ser (SCCS) motif that aid in deprotonating the 

catalytic Cys residue, thus obviating the need for Sec in this enzyme.  Yet, when the Ser 

were mutated to Gly residues, only a 7 fold reduction in activity is observed. This is not 

the >100 fold loss in activity for the mutation of Sec to Cys in the mammalian enzyme or 

for mutating the catalytic His in GR (88) or PfTR (93, 101). The same authors proposed 

the conserved His (His106) as a second catalytic acid/base in DmTR (65). However, 

mutation to Phe or Gln results in a similar 3-7 fold loss in activity as observed in the 

mutation of the C-terminal Ser residues (121) with the author’s interpretation being that 

His106 was not essential to catalysis. Clearly there is a discrepancy in the interpretation 

of these very similar results. It was also recently reported that the mitochondrial TR from 
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Caenorhabditis elegans (CeTR2), which has a Gly-Cys-Cys-Gly (GCCG) motif, also has 

a high activity towards E. coli Trx (122). In CeTR2 there are no flanking Ser residues. 

This is also the case for PfTR which has the sequence Gly-Cys-Gly-Gly-Gly-Lys-Cys-

Gly (GCGGGKCG) (55, 123, 124).  

 

SPECIFIC AIMS 

 

 The question this project addresses can be phrased based on the direction of the 

approach. For those who focus on mammalian TR, the question is “why selenocysteine?” 

Taking into consideration that other higher eukaryotes catalyze the same reaction without 

Sec, the question may also be phrased “why not cysteine?” It has been long inferred that 

Sec is essential for mammalian TR due to the low pKa of Sec (~5.2) making it a better 

nucleophile than Cys which has a pKa ~8.3 (125). This is the motivation behind the 

proposal of Gromer et al. on the function of the flanking Ser for DmTR (65). However 

CeTR and PfTR function without flanking Ser residues. It is also hypothesized that the 

low pKa of Sec makes it a better leaving group. However the catalytic acid/base essential 

to both half-reactions is conserved throughout the protein family, so why would the low 

pKa of Sec be essential to mammalian TR but not DmTR, CeTR2, or PfTR? The purpose 

of this project is to develop a testable hypothesis for the requirement of Sec in 

mammalian TR. 

Aim 1 is to develop a method for semisythetic production of mammalian TR. The 

method produces the full-length enzyme from a ligation of two separately produced 

modules using expressed protein (126-128). A truncated form of TR missing the three C-
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terminal amino acids is produced for the first module as a TR-intein-chitin binding 

domain fusion protein in E. coli. The second module is a C-terminal peptide with a N-

terminal Cys. Using this method we will generate C-terminal mutants for structure 

function studies to investigate the positional and sequence dependence of Sec in the C-

terminal active site for mammalian TR. This method will allow 1) avoidance of the 

complications of Sec incorporation by recombinant methods, 2) the incorporation of 

synthetic functional groups or site-specific radiolabels that would not be possible using 

standard recombinant techniques. 

Aim 2 is to develop a new technique, termed peptide complementation, to study 

the mechanism of TR. This technique will allow us to look at a specific reaction in the 

catalytic cycle in a manner similar to that of GR. The formation of an intramolecular 

disulfide bond between vicinal residues like that of the C-terminus of TR results in an 

eight-membered ring. This ring must be opened (reduced) by the FAD-associated active 

site during the catalytic cycle. Oxidized tetrapeptides, equivalent to the C-terminus of TR 

are used as substrate for the truncated form of TR missing the final three residues. These 

tetrapeptides are reduced by the FAD-associated active site just as GSSG is reduced by 

the same active site in GR. This approach will allow us to determine the activity of Cys-

Cys and Cys-Sec peptides in this step of the catalytic cycle for correlation to activities of 

the semisynthetic mutants. 

Aim 3 is to determine the crystal structure of DmTR for comparison to 

mammalian TR. The NMR structures of the tetrapeptides established as substrates for the 

truncated TR are modeled into the active site by orientation of the Cys residues to the 

binding orientation of GSSG in the structure of GR.  The structure and peptide modeling 
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is expected to correlate to the biochemical data collected from Aims 1 and 2 and develop 

a new hypothesis for the requirement of Sec for mammalian TR. 

 
 



 

 

 

Figure 2. Glutathione reductase family cognate substrates. 

Substrates of the Glutathione Reductase family of pyridine nucleotide disulfide 
oxidoreductases. The substrates are labeled with the shown redox state in parentheses. 
Diglutathione (GSSG) (34), trypanothione (37), and dihydrolipoyl (129) are small 
molecule substrates while thioredoxin (Trx) (130) is a ~12 kDa protein. The reversible 
disulfide of Trx with the conserved sequence Cys-Gly-Pro-Cys is shown. 
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Figure 3. Diagrammatic representation of GR structure. 

Glutathione reductase on the left is compared with thioredoxin reductase on the right. 
Each homodimer is assembled in a head to tail fashion. Each monomer has a N-terminal 
FAD domain, a central NADP domain, and a C-terminal dimerization domain. The 
conserved FAD-associated active site disulfide is indicated in gray. The GR substrate 
GSSG is shown in blue while the C-terminal disulfide active site for TR is in red. 
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Figure 4. Ribbon diagram of GR and TR. 

(Top) Ribbon diagram of glutathione reductase (34) showing the FAD (ruby), the bound 
GSSG (blue), catalytic residues (red). (Bottom) Ribbon diagram of mouse thioredoxin 
reductase 3 (35) showing the FAD (ruby), the bound NADP (black), catalytic residues 
(red), the arrows indicate the 16 amino acid C-terminal extension. The N indicates the N-
terminus of each monomer. 

32 
 
 
 



 

 

Figure 5. Multiple sequence alignment (C-terminal). 

Multiple sequence alignment generated by Clustal W (131) of the C-terminal 
dimerization domain with either the PDB ID or accession number in parentheses. The 
sequences are glutathione reductase (GR) from H. sapiens (PDB 1GRA), GR from E. coli 
(PDB 1GER), Thioredoxin reductase (TR) 2 from H. sapiens (Q9NNW7), TR1 from R. 
norvegicus (PDB 1H6V), TR3 from M. musculus (PDB 1ZKQ), TR1 from C. elegans 
(AF148217_1), TR3 from C. elegans (NP_498971.1), TR from P. falciparum 
(NP_704777.1), TR1 from D. melanogaster (AF301144_1), TR from A. mellifera 
linguistica (AAP93583.1), TR from A. gambie (CAD30858.1), mercuric reductase 
(MerA) from B. licheniforms (CAC14663.1), dihydrolipoamide dehydrogense (LipDH) 
from H. sapiens (EAL24389.1), trypanothione reductase (TryR) from T. congolense 
(AAA30258.1). The catalytic acid base dyad is His464 and Glu469 (Drosophila TR 
numbering). 
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Figure 6. Multiple sequence alignment (FAD Domain). 

Multiple sequence alignment generated by Clustal W (131) of the FAD domain with 
either the PDB ID or accession number in parentheses. The sequences are glutathione 
reductase (GR) from H. sapiens (PDB 1GRA), GR from E. coli (PDB 1GER), 
Thioredoxin reductase (TR) 2 from H. sapiens (Q9NNW7), TR1 from R. norvegicus 
(PDB 1H6V), TR3 from M. musculus (PDB 1ZKQ), TR1 from C. elegans 
(AF148217_1), TR3 from C. elegans (NP_498971.1), TR from P. falciparum 
(NP_704777.1), TR1 from D. melanogaster (AF301144_1), TR from A. mellifera 
linguistica (AAP93583.1), TR from A. gambie (CAD30858.1), mercuric reductase 
(MerA) from B. licheniforms (CAC14663.1), dihydrolipoamide dehydrogense (LipDH) 
from H. sapiens (EAL24389.1), trypanothione reductase (TryR) from T. congolense 
(AAA30258.1). The alignment shows the FAD binding motif (Top) and conserved FAD-
associated active site sequence C57VNVGC62 (Bottom) (Drosophila TR numbering). 
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Figure 7. The FAD domain topology. 

(Left) The Rossman Fold of the FAD-Binding Domain from rat thioredoxin reductase 1 
(36). The conserved GxGxxGx(17)D/E is Gly19 to Gly23 as the phosphate binding motif 
and D-42 to coordinate the ribose of the adenosine. This is the Top panel of the alignment 
in Figure 6. (Right) The topology diagram of the domain shows arrows indicating strands 
and columns indicating helicies. The N indicates the NADP domain and the red arrow 
indicates the active site CVNVGC. 
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Figure 8. Spectral properties of flavin. 

Spectral characteristics of the flavin moiety of Old Yellow Enzyme in various redox 
states taken from (74). The inset is of the human glutathione reductase taken from (76) in 
the oxidized form (1), NADPH reduced (2), and sodium borohydride reduced (3). The 
spectral characteristics of the reduced GR under normal conditions do not resemble that 
of the reduced flavin. It best represents a mixture between the oxidized and the anionic 
semiquinone. The shoulder at 540 nm (inset) is the charge-transfer complex between the 
flavin and the C-terminal Cys of the FAD-associated active site. 

 
 
.
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Figure 9. The catalytic cycle of GR. 

The Catalytic cycle of Glutathione Reductase. The steady state cycles between Eox and 
EH2. From Eox to EH2(B) is the reductive half-reaction. From EH2(B) back to Eox is the 
oxidative half-reaction. The colors for each enzyme species represent the characteristic 
wavelength: the oxidized enzyme is yellow (440 nm – 460 nm), the FADH- - NADP+ 
charge-transfer complex is shown in blue (670 nm), and the thiolate-FAD charge-transfer 
complex is shown in red (525 nm – 540 nm). The GSSG substrate is shown in green, the 
catalytic acid/base from Chain B is shown in gray. Diagram adapted from (93).  
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Figure 10. The catalytic cycle of TR. 

The Catalytic cycle of Thioredoxin Reductase. The steady state is though to cycle 
between EH2 and EH4. From Eox to EH4(B) is the reductive half-reaction. From EH4(B) 
back to EH2(B) is the oxidative half-reaction. The enzyme species color code is as shown 
in figure 9. The C-terminal disulfide and the catalytic acid/base from Chain B are shown 
in gray. The substrate thioredoxin is shown in green. Diagram adapted from (93). 
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Figure 11. Docoding of the UGA codon. 

Eukaryotic decoding of the UGA codon for the cotranslational incorporation of 
selenocysteine into proteins (132, 133). 
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CHAPTER 2: 
 

SEMISYNTHESIS OF MAMMALIAN 
THIOREDOXIN REDUCTASE 

 
 
 
 

 
 

 
Figure 12. Representation of semisynthetic TR. 

Semisynthesis of mammalian thioredoxin reductase. Selenoproteins are difficult to 
produce recombinantly due to the complicated cellular machinery, which must be 
manipulated for decoding of the UGA Sec codon. Semisythesis produces the wild type 
enzyme by the ligation of two modules via a thioester intermediate: 1) the truncated form 
of the enzyme missing the three C-terminal amino acids and 2) the synthetically produced 
C-terminal tripeptide Cys-Sec-Gly. 
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Here, we report the development of an alternative method for producing an active 

mammalian TR containing selenocysteine. This method uses expressed protein ligation to 

create a semisynthetic TR. TR contains selenocysteine in a C-terminal tripeptide with a 

Cys-Sec-Gly sequence, where the Sec residue is the penultimate amino acid (63). The 

location of the Sec residue in the C-terminus (Figure 12) makes TR an ideal candidate 

for semisynthesis. Our strategy for producing a semisynthetic TR is shown in Figure 13. 

Introduction to Semisynthesis.  

The term semisynthesis refers to the production of a functional entity, a single 

polypeptide chain enzyme for example, from two or more separately produced 

components. There are three categories of semisynthesis: 1) native chemical ligation 

(NCL), 2) expressed protein ligation (EPL) which is intein mediated, and 3) 

complementation. Unlike the first two techniques (127), complementation is a non-

covalent association of the components. The best example of complementation is the 

production of functional ribonuclease from two separate polypeptide chains achieved by 

Richards (134). This technique will be addressed in Chapter 4.  

The ligation methods both require the formation of a thioester intermediate at the 

C-terminal end of the N-terminal fragment, which is attacked by the N-terminal Cys of 

the C-terminal fragment. In native chemical ligation, the thioester is generated by 

synthetic means whereas in expressed protein ligation (Figure 14) the thioester is 

generated at the junction of a fusion protein. The fusion protein contains the N-terminal 

piece of the protein of interest followed by an intein. The thioester is formed at the fusion 
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protein junction by the N-terminal Cys of the intein. Like complementation, this 

technique has also been used successfully with ribonuclease (135), as well as for 

producing modified potassium channels (136, 137), and to investigate cell-signaling 

mechanisms (138) using modified phosphoproteins. 

The intein is a naturally occurring self-splicing protein element found in several 

simple organisms such as certain bacteria as well as single-cellular eukaryotes (139). 

Analogous to RNA self-splicing introns, which join two flanking exons, the intein 

catalyzes the ligation of two flanking protein segments (140). This reaction is catalyzed 

via formation of a thioester intermediate formed by the N-terminal Cys of the intein. 

Upon ligation of the segments, the intein is released, as reviewed in (141). 

Most often the two ligation techniques are used independently to assemble two 

fragments, as we have used with EPL to produce semisynthetic TR. However, the two 

methods can be used is combination to perform a two-step ligation product from three 

fragments (Figure 15). This has been utilized for the insertion of a fluorescent probe in 

between the Src homology domains 2 and 3 of a protein tyrosine kinase (142). In this 

method, the C-terminal domain  (containing an N-terminal Cys) is produced 

recombinantly and purified. The label to be inserted is incorporated into a short, 

synthetically produced peptide. This peptide includes three features: a C-terminal 

thioester, the incorporated label, and a N-terminal factor Xa protease sequence.  This 

peptide is mixed with the C-terminal domain to form the first ligated product by NCL. 

The product is treated with the factor Xa protease generating a new N-terminal Cys. The 

N-terminal domain is produced as the intein fusion protein of which the new N-terminal 

Cys will attack the thioester resulting in the final product by EPL.  
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METHODS 

 

Peptide Synthesis.  

Fmoc-selenocysteine(pMob)-OH was synthesized as reported previously(127, 

128). This derivative of Sec was then used to make the Cys-Sec-Gly tripeptide (CUG) or 

the Ac-GCUG tetrapeptide using solid-phase peptide synthesis as described (143). 

Peptide were purified by preparative HPLC from the Shimadzu Corporation (Kyoto, 

Japan) and verified by Matrix Assisted Laser Desorption Time of Flight Mass 

Spectrometry on a Voyager DE PRO Workstation from Applied Biosystems 

(Framingham, MA). A comprehensive list of materials used in this dissertation is 

available in Appendix B.   

Mutagenesis and Transformation.  

DNA primers were purchased from Integrated DNA Technologies Inc. 

(Coralville, IA) for the mutation of the Sec residue (encoded by TGA) at position 489 to 

cysteine (encoded by TGT) (mutant Sec489Cys). A comprehensive list of PCR primers 

used in this dissertation is available in Appendix C. The template used was plasmid 

pTR3, which contained the full-length sequence of the mouse thioredoxin reductase-3 

gene (mTR3 GenBank accession number AF171053) was a generous gift from Vadim N. 

Gladyshev. Mutagenesis was performed by PCR on the GeneAmp PCR System 2400 

from Perkin-Elmer Life Sciences Inc. (Boston, MA) using Vent DNA polymerase. The 

http://pubs.acs.org/cgi-bin/pubmed/db&uid=AF171053


PCR product was purified using the QIAquick purification kit from Qiagen (Valencia, 

CA) according to product instructions. The PCR product containing the mutated sequence 

was inserted into the pTYB3 plasmid (New England Biolabs) by restriction digestion 

with Nco I and Sap I for 2 h at 37 C followed by purification with a Qiagen spin 

column, and ligation with T4 DNA ligase at 16 C for 16 h. The ligase was heat 

inactivated at 70 C for 30 min, followed by incubation at 37 C with Eco RI. Eco RI 

cuts only the plasmid that has not been ligated with the PCR insert, thus enriching the 

pool of positive clones. The resulting plasmid (pTYB3TR), also containing the gene for 

ampicillin resistance and a T7 promoter, was used to produce the thioredoxin reductase-

intein-chitin binding domain fusion protein in E. coli ER2566 cells.  

E. coli DH5  cells, purchased from Stratagene (La Jolla, CA) were transformed 

with pTYB3TR by addition of 100 ng of plasmid to 200 µL of cells and incubation on ice 

for 30 min. The cells were heat shocked at 37 C for 2.5 min and placed back on ice for 

5 min. A 1 mL aliquot of LB broth was added to the cells and the mixture incubated at 37 

C for 60 min. The cells were then plated onto LB-ampicillin agar and incubated 

overnight. Colonies were then picked and used to inoculate 3 mL of 2×YT medium 

containing 0.2 mg/mL ampicillin and grown in a shaking incubator for 24 h at 37 C. 

The plasmid was purified from culture using the Perfectprep Plasmid Mini Kit from 

Eppendorf (Hamburg, Germany). Transformants were screened by restriction analysis 

and then analyzed by agarose gel electrophoresis. Positive clones were then sequenced to 

verify the complete coding sequence of mTR3.  

An additional construct was also generated for the truncated form of TR missing 

the C-terminal tripeptide Cys-Sec-Gly (mTR3-G487) using the method above. This 
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construct is used to produce either the truncated form of the enzyme or for ligation of the 

synthetic peptides to produce the wild type enzyme by semisynthesis.  

Thioredoxin Reductase Expression and Cleavage from Chitin Resin.  

The full-length U489C mutant and a truncated version of mTR3 that was missing 

the C-terminal CUG tripeptide were expressed in E. coli ER2566 cells (New England 

Biolabs). The cell culture (6 L) contained 0.2 mg/mL ampicillin, and cells were grown at 

25 C until an OD of 0.6 at 600 nm was achieved. Expression was then induced for 6 h 

by the addition of IPTG to a final concentration of 0.5 mM. Cells were harvested by 

centrifugation and frozen at -20 C overnight. The cell pellet was homogenized with 300 

mL of buffer containing 150 mM sodium chloride (NaCl) in 50 mM 3-(N-

morpholino)propanesulfonic acid (MOPS) at pH 7.0 and probe-sonicated on ice for 20 

min. The suspension was then centrifuged at 9000 rpm in a Beckman J21B preparative 

centrifuge (JA-14 rotor) from Beckman Coulter (Fullerton, CA).  

The supernatant was gravity-loaded onto a column containing chitin resin (New 

England Biolabs) with a bed volume of 50 mL, and the column was washed with 

MOPS/NaCl until the absorbance at 280 nm of the eluant dropped to <0.1. For the 

truncated product and the full-length U489C mutant, the column was then equilibrated 

with cleavage buffer [50 mM MOPS, 150 mM NaCl, and 70 mM N-

methylmercaptoacetamide (NMA) or β-ME (pH 7.2)]. The resin-bound TR-intein fusion 

protein was then incubated with this buffer at 4 C overnight.  
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Ligation of the CUG Peptide to Truncated Construct.  

The ligation of the synthetic CUG peptide to the truncated enzyme was performed 

with concomitant cleavage from the chitin resin. The resin-bound truncated construct was 

cleaved from the chitin resin with cleavage buffer containing 12 mM peptide (305 µmol-

100 mg) added directly to the chitin column. On the basis of typical protein yields, this 

represents a 3000:1 peptide:protein ratio. For a more optimized procedure with respect to 

ligation efficiency, the same amount of peptide (in cleavage buffer) was added to the 

chitin column in which only half the total amount of protein (supernatant from 3 L of cell 

culture instead of 6 L) was loaded onto the column. For a direct comparison of our 

methods of TR production, the peptide Cys-Cys-Gly (CCG) was also ligated to produce 

the Sec489Cys mutant by semisynthesis. 

Final Purification of Enzymes.  

The protein was batch eluted from the chitin resin with 1-3 column volumes of the 

cleavage buffer, depending on preparation scale. The ligated product was dialyzed 

extensively with the MOPS/NaCl buffer at pH 7.0 with a molecular mass cutoff of 6000 

Da for removal of any unligated peptide. A separate control experiment was performed in 

which the truncated form of mTR3 was isolated in the same manner as the semisynthetic 

TR. Each step in the purification of the truncated mTR3 was the same except that 

tripeptide CUG was not added to the chitin column.  

The pooled protein fractions were prepared for the next step in the purification by 

the addition of Tris to 50 mM and ammonium sulfate to 1.0 M, and the pH was adjusted 
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to 7.5. Samples were then gravity-loaded onto a column containing Fast Flow 6 Low 

Substitution Phenyl Sepharose from Pharmacia-Amersham Biosciences (Uppsala, 

Sweden) with a bed volume of 60 mL. Protein was eluted from the column with a 400 

mL gradient of ammonium sulfate (from 1.0 to 0 M) with collection of 4 mL fractions. 

Collected fractions were evaluated by the absorbance at 280 nm and 460 nm, as well as 

12% SDS-PAGE. Fractions containing mTR3 were pooled, dialyzed against 10 mM 

potassium phosphate and 10 mM NaCl (pH 7.8), and gravity-loaded onto DEAE-

Sephacel from Sigma Diagnostics (St. Louis, MO) with a bed volume of 60 mL. The 

protein was eluted with a 400 mL linear gradient of NaCl (from 10 to 300 mM), 

collecting 4 mL fractions. Fractions containing mTR3 were verified by SDS-PAGE, 

pooled, dialyzed against 100 mM potassium phosphate (pH 7.4), 1 mM EDTA, and 150 

mM NaCl, and concentrated using Centriprep 10 concentrators from Millipore (Bedford, 

MA). The purification process was monitored via 12% Tris-glycine SDS-PAGE with 

Novex precast gels from Invitrogen (Carlsbad, CA) and stained as previously described 

(144).  

Determination of the Selenium Content of the Semisynthetic TR.  

Semisynthetic TR was analyzed by inductively coupled plasma mass 

spectrometry (ICP-MS) to determine the selenium content of the enzyme. The TR 

samples were in phosphate-buffered saline, and the corresponding buffer was also 

analyzed in parallel as a control. The selenium content (in parts per million) was then 

recalculated to the molar amount of the analyzed protein.  
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"Off-Resin" Ligation Efficiency.  

The cell extract from 6 L of E. coli cells was loaded onto a chitin-agarose column 

as described above. After being extensively washed with column buffer, the resin was 

treated with cleavage buffer to elute the protein. The eluate was concentrated as before 

and then dialyzed against 50 mM MOPS buffer (pH 7.0) with 150 mM NaCl to remove 

excess NMA. The concentrated protein sample was then divided into four aliquots. The 

CUG tripeptide was added to each of three aliquots at a concentration of 5 mM: one 

aliquot received 50 mM NMA, the second aliquot received 50 mM NADPH, and the third 

aliquot received buffer. The fourth aliquot received only buffer, contained no peptide, 

and served as the negative control. The samples were allowed to incubate at room 

temperature for 4 h, after which they were dialyzed against 50 mM potassium phosphate 

buffer (pH 7.4) containing 150 mM NaCl and 1 mM EDTA to remove excess peptide and 

reagent. After dialysis, the samples were assayed using 90 µM thioredoxin (Trx) to 

determine a specific activity.  

Enzymatic Characterization of Thioredoxin Reductase.  

The TR mutants were assayed for activity towards DTNB, Trx, and hydrogen 

peroxide as described by Arner (145). All assays were performed on a Cary 50 UV/VIS 

spectrophotometer from Varian (Walnut Creek, CA) at 25 oC, pH 7.0, and were initiated 

by addition of enzyme. Concentration of homodimeric TR was determined using the 

flavin extinction coefficient of 22.6 mM-1cm-1. Activity was monitored over two minutes 

and Vo determined from the linear fit. Plots of Vo/ET vs. substrate concentration were fit 
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by the Michaelis-Menten equation using KaleidaGraph 4.02 from Synergy Software 

(Reading, PA) and activities reported as moles of NADPH consumed per minute per 

mole of homodimeric TR. 

DTNB Reductase Activity.  

The DTNB assay contained 0.2 mM NADPH and 10 mM EDTA in 100 mM 

potassium phosphate. For each concentration of DTNB, activity was corrected for 

background by addition of buffer only. Activity was measured by the increase in 

absorbance at 412 nm, calculated using the extinction coefficient for TNB-, 13.6 mM-

1cm-1, and divided by two to account for the production of 2TNB- per NADPH consumed. 

The concentration of TR in the assay was 2 nM. 

Thioredoxin Reductase Activity.  

The Trx assay contained 0.15 mM NADPH, 1 mM EDTA, and 10 mg/mL insulin 

in 50 mM potassium phosphate. Activity was background corrected for each 

concentration of Trx by addition of buffer only as well as in the absence of substrate. 

Activity was measured by the decrease in absorbance at 340 nm for the consumption of 

NADPH and calculated using the extinction coefficient of 6200 M-1cm-1. The 

concentration of the semisynthetic mTR3 in the assay was 2 nM. The concentration of 

each mutant TR was adjusted to achieve a similar change in absorbance at 340 nm as that 

of semisynthetic TR.  
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Peroxidase Activity.  

The hydrogen peroxide assay for semisynthetic mTR3 is formulated similar to 

that of the DTNB assay with activity measured at 340 nm and background corrected as 

with the previous assays. The concentration of semisynthetic TR in the assay was 50 nM 

and the concentration of each mutant TR was adjusted to achieve a similar change in 

absorbance 340 nm. 

Production of Thioredoxin.   

The clone containing the gene for Trx A from Escherichia coli was a gift from 

Ronald T. Raines (146) and was produced similar to methods previously described (32). 

Calcium chloride competent E. coli BL21DE3 cells were transformed with 50 ng of DNA 

and plated onto LB agar supplemented with 200 µg/mL ampicillin. Single colonies were 

used to inoculate 100 mL ampicillin-containing LB media and allowed to shake overnight 

at 37 oC. 

One liter of LB media supplemented with 200 µg/mL ampicillin was inoculated 

with 10 mL of starter culture and grown to an OD of 0.6 at 600 nm while shaking at 37 

oC in a C25KC Shaker Incubator from New Brunswick Scientific. The cells were induced 

for 3 hours at 37 oC with 0.5 mM IPTG then harvested by 10 minute centrifugation at 

10,000 rpm in a JA-14 rotor using a Model J-21B centrifuge from Beckman and pellets 

frozen at –20 oC. 

 Cells were thawed on ice, homogenized in 20 mM Tris pH 8.4 containing 1 mM 

EDTA, and lysed by probe sonication using a Branson Sonifier. The lysis was 
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centrifuged as above for 90 minutes and the supernatant loaded onto DEAE sephacel, 70 

mL bed volume, from Sigma-Aldrich equilibrated in the lysis buffer. After loading, the 

column was washed with buffer until the OD at 280 nm of the effluent was 0.05. The 

sample was eluted using two 400 mL gradients containing NaCl (0 mM to 0.1 mM and 

0.1 mM to 0.25 mM). Fractions were collected and evaluated by absorbance at 280 nm 

and SDS-PAGE. Fractions containing Trx were pooled adjusted to 60% ammonium 

sulfate and centrifuged as above for 60 minutes. The pellet was solubilized in a minimal 

volume of 20 mM Tris pH 8.4, 250 mM NaCl, and 1 mM EDTA. 

 A 2mL sample was loaded onto a Sephacryl S-100 HR (98 cm X 3.3 cm) gel 

filtration column from Pharmacia-Amersham Biosciences (Uppsala, Sweden) 

equilibrated with sample buffer. Collected fractions were evaluated by absorbance at 280 

nm and SDS-PAGE. The fractions containing Trx were pooled, concentrated using an 

Amicon Ultra with 5000 molecular weight cutoff from Millipore. Purity was >95% as 

judged by 15% SDS-PAGE and Trx concentration was calculated using the extinction 

coefficient at 280 nm of 13,700 M-1. 

Determination of the Mass of Truncated and Semisynthetic TRs.  

The enzymes were concentrated to 1 mg/mL in 10 mM ammonium bicarbonate 

buffer (pH 8.0). The protein samples were then spotted on a 100-well plate at various 

dilutions. A solution of sinnapinic acid at 10 mg/mL was overlaid onto the protein spots, 

and the samples were left to air-dry. A Voyager-DE MALDI-TOF mass spectrometer in 

the linear mode was then used to analyze the samples. The instrument was externally 

calibrated using BSA.  



Peptide Mass Mapping of Tryptic Fragments.  

Purified thioredoxin reductase (truncated or semisynthetic) at a concentration of 

0.3 mg/mL was digested using 10 µg/mL sequencing grade trypsin (Promega) in 150 mM 

ammonium bicarbonate at 37 C for 16 h. The digested sample was stored frozen until 

mass spectrometric analysis. Samples for MALDI-TOF were prepared by serial dilution 

in 10 mg/mL matrix, 2,5-dihydroxybenzoic acid (DHB), or -cyano-4-hydroxycinnamic 

acid (CHCA), with a 50% acetonitrile/0.05% TFA mixture as a diluent. Samples were 

applied to the MALDI plate as 1 µL spots and dried under vacuum.  

A Voyager-DE PRO Workstation (Applied Biosystems) was used to analyze 

MALDI-TOF samples. Positive ion spectra (mass + H+) were collected in reflector mode 

with an accelerating voltage of 20 000 mV and a delayed extraction time of 175 ns. Data 

were collected as the accumulated spectra containing a minimum of 10 spectra at 50 laser 

shots per spectrum. Monoisotopic masses were corrected by external calibration using 

Applied Biosystems Calibration Mixture 2: angiotensin I (1296.6853), ACTH clip 1-17 

(2093.0867), clip 18-39 (2465.1989), and clip 7-38 (3657.9294) prepared in the 

equivalent matrix. The resulting (mass + H+) data were compared to a theoretical digest 

generated using the ExPASy Peptide Mass Proteomics tool.  

Digested samples were also analyzed by LC-MS using a Thermo-Finnigan LCQ 

Deca XP Plus liquid chromatograph via ion trap mass spectrometry with peaks subjected 

to MS/MS fragmentation sequencing by collision-induced dissociation. Full MS of parent 

ions and MS/MS fragmentation data were processed using the Turbo-SEQUEST database 

for peptide identification. The mass + H+ of the semisynthetic C-terminal tryptic 
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fragment (SGLEPTVTGCUG), molecular formula of Se1C44H73N12O18S1 representing the 

oxidized form, was compared to the theoretical isotope pattern generated using MS-

Isotope from USCF ProteinProspector version 4.0.5.  

 

RESULTS AND DISCUSSION 

 

Expression and Purification.  

We have constructed a fusion protein that consists of mouse thioredoxin 

reductase-3, intein, and chitin binding domain. The chitin binding domain is a small 

peptide that has a high affinity for the chitin-agarose fusion, and this resin provides a high 

level of purification of the fusion protein. The fusion construct is made so that glycine 

487 of mTR3 is the amino acid at the junction between mTR3 and the intein. Addition of 

a cleavage buffer containing thiol (NMA, β-ME or DTT) causes elution of the thioester-

tagged mTR3 from the affinity column. The fusion protein appears as a band near 110 

kDa in the 12% SDS-PAGE gel. Figure 16 shows a 12% SDS-PAGE gel of pooled 

protein fractions from each step in the purification process. As the chitin resin is an 

affinity resin, the purity of the eluted mTR3 (either truncated or semisynthetic) is very 

good with only minor contaminants showing. These contaminants are removed after the 

phenyl-sepharose and DEAE chromatographic steps as shown in Figure 16. The elution 

profile for semisynthetic mTR3 for each column is shown in Figure 17.  

The purity of the truncated mTR3 is such that large crystals can be grown from 

the purified enzyme (Chapter 5). The purity of the semisynthetic enzyme is similar to 
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that of the truncated enzyme as shown in Figure 16. The purity is also verified by the 

characteristic absorbance spectra of TR. Three main peaks are observed for the oxidized 

enzyme (86). The 275 nm peak is the protein peak and the 370 nm and 460 nm peaks are 

the characteristic flavin peaks. The flavin spectra are shown in Figure 18 and a summary 

of corresponding wavelengths in Table 1. For the oxidized form of the enzyme, the 460 

nm peak is expected to be larger than the 370 nm peak at a ratio of ~1.1 which is what is 

typically observed for our proteins. A purity ratio of ~8.5 for the 275 nm to 460 nm peak 

has been established for rat TR1 (109). The rat TR1 and mTR3 have similar predicted 

extinction coefficients for the protein sequence (147), 59,205 and 60,110 M-1cm-1 

respectively. Therefore, the 275 nm to 460 nm ratio should be similar for mTR3. Purified 

mTR3 also shows a 275 nm to 460 nm ratio of ~8.5.  

The purified proteins have excellent stability when stored in the final dialysis 

buffer of 50 mM potassium phosphate pH 7.4, 150 mM NaCl, 1 mM EDTA. Storage at 4 

oC shows no loss of activity for >12 months. Preparation of a 50% glycerol stock for 

storage at –20 oC showed no loss in DTNB reductase activity after 18 months. Protein 

solution is concentrated most effectively using the Millipore Amicon Ultra. The storage 

pH of 7.4 and the DEAE purification at pH 7.8 is to aid in the solubility. Concentrated 

protein stored at pH 7.0 tended to form precipitate which can partially be recovered by 

incubation with DTT. Precipitate was also observed for higher yield preps during the 

dialysis step prior to the DEAE purifcation, which was addressed by using pH 7.8 during 

this step. However, the protein must still remain dilute until bound to the column and 10 

mM NaCl is added to help prevent the precipitation. These observations lead to the 

conclusion that the solubility is significantly dependent on salt concentration. At 150 mM 
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NaCl the limit of solubility is 10 – 15 mg/ml. Increasing to 300 mM NaCl allows for 

concentration to 30 mg/ml, which was critical to the crystallographic progress in Chapter 

5.      

Selenium Content of the Semisynthetic Enzyme.  

The selenium content of the semisynthetic enzyme determined by ICP-MS was 

found to be 0.63 mol of selenium/mol of enzyme. Our yield of TR from this method was 

24 mg from 6 L (4 mg/L) of cell culture. The selenium content of the semisynthetic 

enzyme using half the bound resin of the initial trial was found to be 0.91 mol of 

selenium/mol of enzyme, with a yield of 9 mg of enzyme from 3 L (3 mg/L) of cell 

culture. By comparison, the selenium content of the recombinant mTR3 prepared by 

fusing a bacterial SECIS element to the 3' end of the gene had a selenium content in the 

range of 0.4-0.5 mol of selenium/mol of enzyme depending on the preparation (148). In 

both cases, the final preparations of enzymes are a mixture of the truncated form and the 

full-length form. The ligation efficiency can be estimated from ICP-MS analysis since the 

ligated tripeptide is the only source of selenium for the enzyme. 

DTNB Reductase Activity.  

A summary of activities for DTNB is shown in Table 2. DTNB is a small 

molecule disulfide that is a non-physiological substrate as can be seen by the high 

micromolar to low millimolar values for Km. These high values for Km are consistent with 

reports in the literature, however unlike with the substrate Trx, kcat is rarely reported for 

DTNB (Table 3). The wild type TR from rat and human shows significantly higher 
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activity towards DTNB than a Sec to Cys mutant (109) or a C-terminal truncation (149). 

Therefore, it is rather surprising to see that all of our mutant forms have very high DTNB 

reductase activity (>60% of wild type). However, for each of the mutants, the Km is 3 to 7 

fold higher, resulting in a significant decrease in catalytic efficiency, kcat/Km. The 

semisynthetic wild type at 63% and 91% selenium incorporation have similar activities. 

The 63% incorporation has ~5% greater activity than the 91% but the higher 

incorporation has the higher kcat/Km.   

A similar phenomena has been reported for the non-selenium containing DmTR 

and PfTR. The C-terminal mutant Cys535Ala of PfTR shows 64% of wild type activity 

with ~2 fold increase in Km, while mutation of the FAD associated Cys88 has essentially 

no activity (55). The same is the case for DmTR where the C-terminal mutants display 

DTNB reductase activity with a 7 fold increase in Km (78). Unfortunately, no kcat is 

reported for DmTR of PfTR. These results are similar to what we observe for mTR3. It is 

not clear why there is such a broad range of activities for DTNB by these proteins while 

the range of activities for Trx are rather narrow. Regardless of whether there is a relevant 

value for kcat, it does provide an alternative means to semi-quantitatively assess the 

production of a functional protein for those mutants that are inactive to Trx. The 

questions regarding DTNB as a substrate for the truncated and mutant forms of TR will 

be further addressed in the following chapters.      

Activity toward Thioredoxin.  

The peptide complementation system described above led to the development of a 

semisynthetic enzyme that covalently links the tripeptide containing Sec to the main body 



58 
 
 
 

of the enzyme through a peptide linkage. The semisynthetic enzyme could be constructed 

by addition of peptide CUG to the cleavage buffer, as described above. Since this peptide 

has an N-terminal cysteine residue (and is not N-acylated), the sulfhydryl group of the 

cysteine residue can attack the C-terminal thioester group of the enzyme. Rearrangement 

then occurs to the amide form (141). To test whether the peptide becomes truly 

incorporated into the enzyme, we tested the ability of the semisynthetic enzyme to reduce 

Trx. The presence of a Sec residue has been shown to be necessary to reduce E. coli Trx 

with high efficiency (109). The semisynthetic enzyme at a concentration of 2 nM 

exhibited excellent activity toward E. coli Trx in comparison to both the truncated form 

and a mutant form of the enzyme in which a cysteine residue replaces Sec489 as part of a 

full-length construct. A Michaelis-Menten plot for our semisynthetic construct in 

comparison to the Sec489Cys mutant is shown in Figure 19, and a summary of our 

kinetic data is given in Table 4. As shown in Figure 7, the Sec489Cys mutant has much 

lower activity, as would be expected and as was reported previously (109). In contrast to 

the cysteine mutant enzyme, our semisynthetic enzyme shows very high activity, with 

values of kcat ranging from 1500 to 2220 min-1, depending on the preparation. This high 

activity strongly indicates that the C-terminal tripeptide was successfully ligated to the 

thioester-tagged enzyme. The enzyme preparation with a higher kcat value resulted from 

using a higher peptide:protein ratio during the ligation and resulted with an enzyme with 

a higher selenium content (91% Se). The truncated enzyme (ending with amino acid 487 

and missing the tripeptide) has no detectable activity toward oxidized Trx. 

The thioredoxin reductase activity of our enzyme compares very favorably to the 

value of 3000 min-1 reported for rat TR1 (145, 150). The Km for thioredoxin of our 
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semisynthetic enzyme is in the range of 35-70 µM. This is 10-20-fold higher than the Km 

reported for rat TR1 with human Trx, but the sequences of the two enzymes are only 56% 

identical so some difference in Km is to be expected (the difference is between the 

cytosolic form of the rat enzyme and the mitochondrial form of the mouse enzyme). This 

is nearly identical for that observed for the originally identified human TR (24) which 

showed a 3.7 µM Km for rat Trx but 34.0 µM Km for E. coli Trx as was the case for rat 

TR1 with E. coli Trx (145, 150). As was observed for the DTNB assays, the Sec489Cys 

produced recombinantly or by semisynthesis display similar kinetic parameters. 

Comparison of the Activity of Semisynthetic TR to That of Recombinant TR.  

The activity of the semisynthetic enzyme was compared to that of the 

recombinant mTR3. The latter protein was expressed in E. coli and contained 0.5 equiv 

of selenium (148). The recombinant TR enzyme is made by fusing a bacterial SECIS 

element to the 3' end of the TR3 gene. This allows for heterologous expression of the 

recombinant enzyme in E. coli. The results in Figure 20 show that the recombinant 

mTR3 and the semisynthetic mTR3 have similar activities with both E. coli Trx and 

recombinant rat Trx2. The recombinant mTR3 has an estimated kcat of 1770 min-1. These 

data further verify that the semisynthetic method resulted in a functional TR. 

Peroxidase Activity.  

Mammalian thioredoxin reductases also exhibit hydrogen peroxidase activity. 

This activity is a characteristic feature of the mammalian enzymes because non-selenium-

containing TRs have been shown to have little, if any, hydrogen peroxidase activity 
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(109). Figure 21 shows the results of our hydrogen peroxidase activity assays with our 

semisynthetic enzyme and the Sec489Cys mutant. The mutant enzyme has barely 

detectable hydrogen peroxidase activity, while the semisynthetic enzyme shows high 

peroxidase activity with a kcat of 71 ± 7 min-1 and a Km of 6.6 ± 0.50 mM. This rate was 

achieved with 200 nM semisynthetic enzyme present in the assay though the plot shows 

very poor saturation. The kinetic data derived from Figure 21 compare favorably to the 

data reported by Zhong and Holmgren (109) for reduction of H2O2 by human placental 

TR1. The high peroxidase activity of our enzyme provides additional strong support for 

the incorporation of the selenocysteine-containing tripeptide by our semisynthetic 

approach. 

Ligation Efficiency for Off-Resin Ligations.  

As shown in Figure 13, our method of making a semisynthetic TR makes use of 

the addition of the oxidized tripeptide to a thiol-containing cleavage buffer, which is then 

added directly to the resin-bound protein. The thiol in the cleavage buffer can either 

liberate the protein from the resin to produce a thioester-tagged protein or reduce the 

oxidized tripeptide, which in turn could directly attack the resin-bound protein and 

become incorporated as part of the polypeptide chain. Alternatively, the liberated 

thioester-tagged protein can undergo a thioester exchange reaction with the reduced 

tripeptide and then be incorporated into the polypeptide via a stable amide bond. All three 

pathways lead to the eventual incorporation of the tripeptide into the larger polypeptide 

of mTR3. The key to ligating this tripeptide to the larger polypeptide of mTR3 is keeping 

this tripeptide reduced by using a large excess of thiol in the cleavage buffer. The thiol in 
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the cleavage buffer functions to effect cleavage of the resin-bound protein and also to 

keep the tripeptide reduced so that it can ligate to the liberated thioester-tagged protein.  

We compared the efficiency of the ligation when the peptide is added directly to a 

slurry of resin-bound TR and cleavage buffer to that of addition of the peptide to a 

semipurified, concentrated form of the thioester-tagged TR off-resin. Concentrated 

thioester-tagged protein was treated with either oxidized peptide or oxidized peptide with 

70 mM NMA. After dialysis to remove excess peptide and reagents, the resulting 

enzymes were assayed for thioredoxin reductase activity. The results are summarized in 

Table 5 and clearly show that the efficiency of ligation is much higher when the peptide 

is added directly to the slurry of resin-bound TR and cleavage buffer. One reason for this 

decline in efficiency when the ligation is done off-resin is that the lifetime of the 

thioester-tagged TR may be short in this protein context. Hydrolysis of the thioester 

would yield the C-terminal carboxylate form of the protein, which is unproductive with 

respect to ligation. Second, the reduced tripeptide can directly attack the resin-bound TR-

intein fusion protein with concomitant ligation. This process should be kinetically faster 

than when an intermediary thiol attacks first.  

In the absence of thiol, the CUG peptide is likely to oxidize to form the 

intramolecular selenylsulfide or dimeric peptides. Either fate will decrease the ligation 

efficiency. An interesting observation is that the NADPH ligation sample resulted in 

three fold higher activity than the buffer only ligation. This suggests that the enzyme can 

reduce the tripeptide to promote ligation. This would not be unexpected as the conserved 

FAD-associated active site functions to reduce the C-terminal selenylsulfide during the 

catalytic cycle. 
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Determination of the Mass of Truncated and Semisynthetic TRs.  

The mass spectrographs of the truncated and semisynthetic TRs are shown in 

Figure 22. The predicted masses of the truncated and semisynthetic enzymes are 52,857 

(carboxylate form) and 53,164 Da, respectively. The experimentally observed masses 

were 52,787 and 53,144 Da, respectively, and are in good agreement with the expected 

values. An overlay of the two spectra shows a clear mass increase due to the presence of 

the ligated peptide. The experimental mass increase of the semisynthetic enzyme is 357 

Da, which is very close to the expected mass increase of 329 Da. 

Peptide Mass Mapping of Tryptic Fragments.  

To unambiguously demonstrate that our peptide had been ligated to the C-

terminus of mTR3, we undertook a peptide mass mapping experiment. In this 

experiment, both the truncated and semisynthetic enzymes were digested with trypsin and 

analyzed by MALDI-TOF MS and ESI-MS. Figure 23 shows a peptide with a sequence 

of SGLEPTVTGCUG found in the ESI-MS experiment, which is at m/z 1169.3 

(calculated value of m/z 1169.4). The mass of this peptide corresponds exactly to the 

mass of the C-terminal peptide containing Sec. Further proof of the identity of this 

peptide is provided by a MS/MS experiment shown in Figure 24. In this experiment, the 

peptide is fragmented by collision-induced dissociation (CID), and the resulting ions 

unambiguously identify the sequence of the peptide as the peptide corresponding to the 

C-terminus. This data in combination with the enzymatic activity data indicate successful 

semisynthetic production of mTR3. Identification of the C-terminal tryptic fragment 
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SGLEPTVTGCUG is very difficult using MALDI-TOF. The sequence is very is 

hydrophobic and, as trypsin cut C-terminal to Lys and Arg, is less likely to hold a 

positive charge. Should this technique be used for future analysis, the protease LysC 

would be a better choice. LysC will cut C-terminal to Lys only and the sequence 

preceding our C-terminal Fragment is Lys-Arg. Digesting with LysC would leave the N-

terminal Arg and likely improving the ionization using MALDI. Approximately 70% of 

the total peptides were identified by mass mapping (Figure 25). A summary of all of the 

identified peptides is available in Figure 26. 

 
  

 
 
 



 
 

 
Figure 13. Method for semisynthetic production of mTR3. 

Thiol-mediated cleavage of the mTR3-intein fusion construct by addition of exogenous 
thiol. The junction between mTR3 and the intein exists in equilibrium between amide and 
thioester forms. Addition of exogenous thiol causes cleavage of the target protein from 
the thioester form of the fusion protein. (B) Mechanism of incorporation of tripeptide 
CUG into the mTR3-intein fusion protein. The ligation is achieved by adding oxidized 
tripeptide to the cleavage buffer containing 70 mM thiol. The excess thiol both reduces 
the tripeptide and causes cleavage of mTR3 from the intein fusion. The reduced peptide 
can then attack the thioester-tagged protein and become stably ligated to the protein 
because of the presence of the N-terminal amino group, which enables rapid 
rearrangement to the amide form of the protein. 
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Figure 14. Mechanism of expressed protein ligation. 

Example of semisynthesis using expressed protein ligation utilizes a target-intein-chitin 
binding domain fusion protein. Generation of the thioester at the ligation junction is 
catalyzed by the N-terminal Cys of the intein. Figure adapted from (135, 139). 
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Figure 15. Native chemical ligation and expressed protein ligation. 

Example of Semisythesis using native chemical ligation (Ligation 1) and expressed 
protein ligation (Ligation 2) to insert a label in between two protein domains adapted 
from (142). Both protein domains are produced recombiantly, with the N-terminal 
domain produced as the intein fusion protein. The factor Xa protease cleaveage site 
produces a new N-terminal Cys for Ligation 2 
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Figure 16. SDS-PAGE of semisynthetic and recombinant mTR3. 

SDS (12%)-PAGE characterization of recombinant mouse thioredoxin reductase 3: lane 
1, cell culture pre-induction; lane 2, IPTG-induced cell culture; lane 3, supernatant of the 
cell lysate; lanes 4 and 8, molecular mass markers; lane 5, truncated TR cleaved from the 
intein on-resin by 2-mercaptoethanol and eluted from the chitin resin; lane 6, truncated 
TR eluted from the phenyl-Sepharose column; lane 7, truncated TR after elution from the 
DEAE column; lane 9, purified semisynthetic TR after elution from the DEAE column; 
and lane 10, purified truncated TR cleaved from the intein on-resin by the amino acid 
cysteine. 
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Figure 17. Chromatographic elution profiles for semisynthetic mTR3. 

Elution profile of semisynthetic mTR3 from phenyl sepharose (■) and DEAE Sephacel 
(●). The plot also shows the fraction of the elution gradient (▬). 
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Figure 18. Flavin spectra for semisynthetic and recombinant mTR3. 

Absorbance spectra for semisynthetic (●), Sec489Cys mutant (□), and truncated (●) 
thioredoxin reductase 2 in 50 mM potassium phosphate pH 7.4, 150 mM NaCl, 1 mM 
EDTA 
 
 

Table 1. Spectral properties of mTR3. 

 

         λmax nm  λmax Absorbance Ratioa  

Enzyme 1 2 3 (1) / (2) (3) / (1) 

Semisynthetic 463 376 275 1.04 ± 0.11 8.55 ± 0.91 

Sec489Cys 462 375 276 1.00 ± 0.15 8.10 ± 0.22 

Truncated 463 377 276 1.11 ± 0.05 8.66 ± 0.65 

 
aRatios are averages for 3 preparations of the semisynthetic, 3 preparations of the 
Sec489Cys mutant, and 6 preparations of truncated. 
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Table 2. DTNB reductase activity of mTR3 semisynthetic and mutant enzymes. 

 

Enzyme kcat (min-1) Km (mM) kcat / Km
(s-1 M-1) 

 

aTR-Gly487 856 ± 43 2.72 ± 0.43 5.2 x 103

bTRSec489Cys 794 ± 78 1.75 ± 0.41 7.6 x 103

cTR-semisynthetic Sec489Cys 908 ± 37 3.08 ± 0.32 4.9 x 103

TR-semisynthetic (63% Se) 1307 ± 102 0.59 ± 0.16 3.7 x 104

dTR-semisynthetic (91% Se) 1251 ± 71 0.46 ± 0.09 4.5 x 104

 
aThe truncated enzyme ends at Gly487 and is missing the C-terminal tripeptide. 
 
bThe full-length mutant in which cysteine replaces the catalytic selenocysteine residue 
and is produce recombinantly. 
 
cThe full-length mutant in which cysteine replaces the catalytic selenocysteine residue 
and is produce by semisynthesis. 
 
dData from optimized procedure using a higher ratio of peptide to protein as described 
under Methods. 
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Table 3. DTNB reductase activity reported for homodimeric TR in the literature. 

 

Enzyme at (min ) -1  (mM) 

Rat TR1 native (109) 2666  

Rat TR1 native (150) 4000 

109) 126 

330 ± 36 0.7 ± 0.2 

0.66 

Rat TR1 recombinant (151) 1726 0.12 

Rat TR1 Sec to Cys mutant (  

Human TR native (149) 4000 0.08 

Human TR truncated (149) 92 4.5 

Human TR Sec498Cys (149) 34 0.7 

nopheles gambiae (152) A

Plasmodium falciparum (15) 1176 0.21 
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Enzyme kcat (min-1) Km (µM) 
(s  M-1) 

 

Table 4. Activity of semisynthetic and mutant mTR3 towards thioredoxin. 

 
kcat / Km

-1

a No activity No activity  TR-Gly487 NA

b 4.1 ± 0.11 49.1 ± 3.2 103

c 4.2 ± 0.24 72.5 ± 8.6 1.0 x 103

1500 ± 81 5

d  2220 ± 78 67.6 ± 6  105

e 3000   106

TRSec489Cys 1.4 x 

TR-semisynthetic Sec489Cys 

TR-semisynthetic (63% Se) 35 ± 5 7.1 x 10

TR-semisynthetic (91% Se) 5.4 x

rat TR1 35 1.4 x

aThe truncated enzyme ends at Gly487 and is missing in e. 

ch cysteine replaces the c c seleno ine residue 
and is produce recombinantly. 

ull-length mutant in which cysteine replaces the catalytic selenocysteine residue 
and is produce by semisynthesis. 

dData from optimized procedure using a higher ratio of peptide to protein as described 
under Methods. 

eTaken from (145, 150), purified from rat liver and assayed using E. coli Trx. 

 the C-term al tripeptid

bThe full-length mutant in whi atalyti cyste
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Michaelis-Menten plot of V /E  vs thioredoxin concentration for semisynthetic enzyme 
 a 

tic data are the average of four replicates per Trx 
n.  

Figure 19. Trx activity plot for semisynthetic mTR3. 
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(□) and the Sec489Cys mutant (● with insert). Both curves could be fitted to
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Figure 20. Trx activity of semisynthetic and engineered SECIS produced mTR3. 

oli by using an engineered SECIS The activity of the recombinant TR produced in E. c
element (148) is represented by the circles.  The activity of the semisynthetic TR is 
represented by the squares.  E. coli thioredoxin (closed symbol) and rat thioredoxin-2 
(open symbol) were used as substrates. 
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Figure 21. Peroxidase activity plot for semisynthetic mTR3. 

Peroxidase activity of semisynthetic enzyme ( ) and the Sec489Cys mutant (●). Activity 
is reported as moles of NADPH oxidized per minute per mole of homodimeric enzyme. 
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Table 5. Comparison of methods used to construct a semisynthetic TR. 

 
Chitin Resin Reductant aTR concentration in 

assay [nM] 
mol 

NADPH/min/mol 
TR 

On NMA 2 1008 

Off NMA 100 48 

Off NADPH 100 27 

Off none 100 8 

aThe enzyme was assayed using 90 µM thioredoxin as substrate.  All other assay 
conditions were the same as those described in Methods. 

 



 
 

Figure 22. MALDI-MS of semisynthetic and truncated mTR3. 

The semisynthetic (theoretical average mass = 53,164) spectrum is in black with an 
average mass of 53,144, and the truncated (theoretical average mass = 52,857 for 
carboxylic acid, 52,944 for thioester tagged) spectrum is in light gray with an average 
mass of 52,787. The difference in mass is clearly observable. The semisynthetic spectrum 
has a shoulder, which lines up with the peak of the truncated spectrum. The peak width of 
the semisynthetic enzyme shows that it is a mixture of the two forms. 
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Figure 23. ESI-MS of semisynthetic mTR3 C-terminal tryptic fragment. 

ESI-MS of the C-terminal tryptic fragment of mTR3, peptide sequence 
GLEPTVTGCUG. The peptide corresponds to the C-terminal peptide of mTR-3 
ontaining the ligated tripeptide CUG. The inset at the right is the predicted isotope 
attern for this peptide containing selenium. The mass of the peptide corresponds to the 

oxidized form as would be expected for a peptide containing selenocysteine. 
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Figure 24. ESI-MS-MS of semisynthetic mTR3 C-terminal tryptic fragment. 

ESI-MS-MS of the C-terminal tryptic fragment of mTR3, peptide sequence 
SGLEPTVTGCUG. The peptide was fragmented by Collision-Induced Dissociation. Ions 
produced by fragmentation are labeled in the figure with the corresponding peptide 

quence. 
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A. 

 
 
B. 

MGGQQSFDLLVIGGGSGGLACAKEAAQLGKKVAVADYVEPSPRGTKWGLGGTCVNVGCI
KKLMHQAALLGGMIRDAHHYGWEVAQPVQHNWKTMAEAVQNHVKSLNWGHRVQLQDRK
KYFNIKASFVDEHTVRGVDKGGKATLLSAEHIVIATGGRPRYPTQVKGALEYGITSDD

TRTLNLE

P
V
IFWLKESPGKTLVVGASYVALECAGFLTGIGLDTTVMMRSIPLRGFDQQMSSLVTEHME
SHGTQFLKGCVPSHIKKLPTNQLQVTWEDHASGKEDTGTFDTVLWAIGRVPE
KAGISTNPKNQKIIVDAQEATSVPHIYAIGDVAEGRPELTPTAIKAGKLLAQRLFGKSS
TLMDYSNVPTTVFTPLEYGCVGLSEEEAVALHGQEHVEVYHAYYKPLEFTVADRDASQC
YIKMVCMREPPQLVLGLHFLGPNAGEVTQGFALGIKCGASYAQVMQTVGIHPTCSEEVV
KLHISK RSGLEPTVTGCUG

 

igure 25. MALDI-TOF of semisynthetic mTR3 digested with trypsin. 

ge mass spectrum for trypsin digest of semisynthetic mTR3. A 
few peptides are indicated for orientation. (B) Sequence coverage for the trypsin digest of 
semisynthetic mTR3 using MALDI-TOF (AA) with additional fragments identified by 
ESI-MS (AA

F

(A) MALDI-TOF avera

). 
 



 
Figure 26. Mass spectrometry peptide mapping for trypsin digests of mTR3. 
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CHAPTER 3. 

 

STRUCTURE-FUNCTION STUDIES OF THE C-
TERMINAL TETRAPEPTIDE MOTIF OF 

THIOREDOXIN REDUCTASE USING 
SEMISYNTHESIS 

 
 
 

 
 

 
Figure 27. The pathway for transfer of electrons to Trx by mTR3. 

The catalytic cycle for mammalian thioredoxin reductase. This Chapter investigates 
structural details of the C-terminal vicinal selenylsulfide between Cys488’ and Cys489’. 
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In the study pre  production of mouse 

mitochondrial thioredoxin reduc

the C-te ng TR 

m Drosophila melanogaster ymes can be divided chemically: 

those containing Sec and those containing Cys, and they can also be divided structurally: 

 site contains a vicinal disulfide and that which does not, Plasmodium 

group. 

The vicinal disulfide forms an eight-membered ring that must be a) opened by the FAD 

ated dithiol and b) closed after reduction of the substrate thioredoxin (Trx). Each of 

e of the ring 

increases by three atoms and likely reducing the strain. The second is proper orientation 

of the catalytic residues involved in each step. The results show that insertion of Ala 

residues between the cysteines in DmTR results 100 fold or greater decrease in Trx 

activity whereas the equivalent insertions between the Cys and Sec residues of mTR3 

results in only a 4 fold decrease.  

We have also investigated the role of the C-terminal carboxylate charge. In the 

structure of rat TR1 (36) it was suggested that the conserved position, Lys29, would form 

a salt bridge with the C-terminal carboxylate to correctly position the C-terminus for 

thiol-disulfide exchange with the N-terminal active site. A similar role was suggested for 

Arg351 from a TR-Trx complex modeling study (100). In neither case is biochemical 

evidence provided. As either Lys29 or Arg351 could serve different functions, simple 

 
sented here, we have used semisynthetic

tase (mTR3) to investigate the enzymatic dependence on 

rminal structure of the Sec-containing TR compared to the Cys-containi

(DmTR). These enzfro

those whose active

falciparum (PfTR). Here we have investigated two forms of the vicinal disulfide 

associ

the steps in the catalytic will have structural implications in two forms. Firstly is the 

inherent energy strain of the ring. For each intervening residue the siz
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utagenesis would be unable to distinguish a specific interaction. Therefore, we have 

used semisynthesis to modify the C-terminal carboxylate to a neutral carboxamide. This 

mutant shows a significant increase in catalytic activity indicating that the proposed salt 

bridge is likely not involved in catalysis. 

Finally, we have investigated the dependence on the relative position of Sec in the 

Cys-Sec dyad for mTR3. We have produced the mutant Gly-Sec-Cys-Gly (GUCG) that 

shows poor activity similar to Sec489Cys. This indicates the Sec incorporation is for a 

specific function and that the residue must be the C-terminal moiety of the dyad. This 

relates directly to the results for the Ala insertion mutants and suggests that the role of 

Sec is not in nucleophillic attack on Trx but possibly as the leaving group during thiol-

disulfide exchange with the N-terminal active site. 

 

METHODS 

 

 produced by Fmoc solid phase synthesis 

as previously described (

Biosystems (Framingham, MA). Synthesis of the CUG peptide with C-terminal 

m

Peptide Synthesis.  

Selenocysteine containing peptides were

143). Peptide were purified by preparative HPLC from the 

Shimadzu Corporation (Kyoto, Japan) and verified by Matrix Assisted Laser Desorption 

Time of Flight Mass Spectrometry on a Voyager DE PRO Workstation from Applied 

carboxyamide utilized a similar protocol with the exception of substitution of Fmoc-PAL 
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Cloning and Expression of mTR3.   

Cloning and Expression of DmTR.  

The Drosophila melanogaster TR clone (accession number AF301144), was a 

generous gift from Stephan Gromer.  For production of DmTR in E. coli, we subcloned 

the cod  (via PCR amplification) into plasmid pTYB1 of the Impact 

System

resin from PE Biosystems (Hamburg, Germany) to yield the carboxamide upon cleavage 

from the resin. 

The expression, purification and semisynthesis for mutants in this section are as 

described in the previous chapter. An additional mutant of mTR3 with the C-terminal 

sequence of Ser-Cys-Cys-Ser (SCCS) was produced by mutagenesis (via PCR 

amplification). Reaction conditions and methods were as described for the GCCG mutant 

in Chapter 2. To help the reader distinguish the mTR3 mutants from the DmTR mutants 

in this study, the abbreviation mTR3 will precede the C-terminal sequence (mTR3-

GCUG for example).  

ing region of DmTR

 from New England Biolabs, to generate the TR-intein-fusion protein.  Primers 

were purchased from Integrated DNA Technologies Inc. (Coralville, IA).  Primers were 

designed for production of the full length TR containing the C-terminal tetrapeptide Ser-

Cys-Cys-Ser (SCCS488-491), a truncated TR, removing the C-terminal tripeptide CCS489-

491, the full-length mutants Ser-Cys-Ala-Cys-Ser (SCACS488-492) and Ser-Cys-Ala-Ala-

Cys-Ser (SCAACS488-493). 
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of Vent DNA Polymerase, 2-3 mM magnesium chloride, in a volume of 

100 µL.  Each PCR was performed on a GeneAmp PCR System 2400 from Perkin Elmer 

Life Sciences, Inc. (Boston, MA) using 25 cycles with the following parameters: 96 oC 

for 45 

oli DH5α cells were made competent via the Inoue method (153) 

and the d DNA.  The culture was plated onto LB agar 

containing 200 µg/mL ampicillin and incubated at 37 oC.  Individual colonies were used 

to inoc

ein and are affinity purified from chitin agarose as described 

for the mTR3 (Chapter 2). Escherichia coli ER2566 cells were used for production of 

The PCR reaction mixtures contained 100 pg template DNA, 50 pmol of each 

primer, 2 units 

sec, 50 oC for 30 sec, and 72 oC for 180 sec.  The product was analyzed by 

analytical agarose gel electrophoresis and then purified using the QIAquick Purification 

Kit from Qiagen (Valencia, CA).  The PCR product and plasmid pTYB1 were each 

incubated with Kpn I and Nde I for 2 h at 37 oC, purified using the QIAquick kit, then 

ligated at 16 oC for 16 h using T4 DNA ligase at 37 oC. To enhance the amount of 

positive clones, the ligation was digested Sal I, a unique restriction site removed upon 

product insertion.  E. c

n transformed with 50 ng of  purifie

ulate 100 mL of LB containing 200 µg/mL ampicillin and allowed to shake at 37 

oC overnight.  Plasmids were purified using the QIAfilter Plasmid Prep Midi from 

Qiagen, screened by 1% analytical agarose gel electrophoresis, and verified by 

sequencing at the University of Vermont DNA Sequencing Facility using an ABI 3100-

Avant Genetic Analyzer. 

Production of C-terminal Mutants of DmTR.  

Each of the TR mutants from Drosophila are expressed as the TR-intein-chitin 

binding domain fusion prot
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recomb

Thioredoxin Activity pH Optima.  

rx was tested as a function of pH for each construct. Due to the 

insolubility of insulin below pH 7.0, each assay utilized 500 µM Trx, which is 

approximately ten times greater than the calculated Km. To avoid differences in ionic 

strength

inant wild-type (WT) and mutant DmTR. The cells were transformed with 50 ng 

of plasmid, plated on LB-ampicillin plates containing 200 µg/mL ampicillin, and 

incubated at 37 °C overnight.  A single colony was used to grow a 100 mL inoculum 

culture of LB (200 µg/mL ampicillin). This culture was incubated overnight at 37 °C with 

shaking. Ten milliliters of inoculum culture was added to a 1 L baffled Pyrex Fernbach 

flask containing TB media at pH 7.0 containing 200 µg/mL ampicillin. The cells were 

incubated at 37 °C with shaking (100 rpm) until the O.D. 600 nm reached 1.0. The cells 

were then chilled on ice until the temperature decreases to 20 °C and induced by adding 

IPTG to a to final concentration of 0.5 mM followed by incubation at 20 °C overnight 

with shaking (100 rpm). The cells were harvested by centrifugation in a Beckman J21B 

centrifuge (JA-14 rotor) at 7000 X g at 4 °C for 10 min and then stored at –20 °C. Cells 

are thawed on ice and homogenized in MOPS buffer, and lysed by sonication with a 

Branson 350 Sonifier (Danbury, CT). The wild type enzyme, C-terminal sequence SCCS, 

as well as the C-terminal sequence mutants SCACS and SCAACS were released from the 

intein by the addition of NMA.  

Activity towards T

, each assay contained buffer with a final concentration of 30 mM citrate/ 30 mM 

Tris/ 30 mM phosphate adjusted from pH 5.5 to 9.5 with the exception of the GUUG 

mutant which required the profile to be extended to pH 10.5. The concentration of TR in 
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Production of TR.  

e number of positive clones was performed with Sal I as 

there is also a Hind III restriction site in the DmTR coding sequence. The expression of 

DmTR was significantly increased in TB media versus LB media. Initial production of 

the tru

the assay was that which was used for the Trx Michaelis-Menten profile: 2nM for wild 

type mTR3 and 25 nM for wild type DmTR. The concentration for each mutant was 

adjusted to get signal similar to that of the respective wild type. Each assay contained 

0.15 mM NADPH and 1 mM EDTA. The activity was measured at 340nm and 

background corrected. The data in duplicate were normalized to the percent of maximal 

activity for each given mutant and plotted as Activity % vs. pH.  

 

RESULTS AND DISCUSSION 

 

The expression and purification methods for DmTR are identical to mTR3 with 

the exception of expression in pTYB1 rather than pTYB3. The reason for this is due to 

the presence of Nco I and Sap I restriction sites within the DmTR sequence. The 

background digest to increase th

ncated form of DmTR yielded approximately 20 mg per 6L of cell culture in LB 

media. This was also the case for mTR3 in the previous chapter. Expression in TB media 

yielded 20-30 mg per 1L of media for DmTR.  Improvement was also shown for mTR3, 

though not to the same degree (35 mg per 6L culture). Subsequently, the mutants 

produced for this study were produced in TB media as described in the methods section 

of this chapter. 
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 band still remaining on 

e resin after a 24-hour incubation with cleavage reagent. Like mTR3, very little elution 

aining a cleavage reagent (lane 9). This experiment 

ielded 127 mg from 6L of cell culture (21 mg/L), with a significant amount still retained 

on the resin. Estimation from the SDS-PAGE and NaOH strip of the chitin resin indicates 

only about 50-70 % is cleaved from the intein. Cleavage of DmTR from the intein was 

also tes

A representative SDS-PAGE for expression and chitin cleavage for the wild type 

DmTR can be seen in Figure 28. Excellent solubility of the fusion protein is 

demonstrated by comparison of the lysate supernatant (lane 13) and the lysate pellet (lane 

12). For each of the cleavage reagent cocktails, the eluant and chitin retained samples 

respectively are shown. The cleavage from the intein was significantly slower than 

observed for truncated mTR3 as can be seen by the fusion protein

th

is observed with buffer not cont

y

ted from pH 7.5 to 8.5 using NMA with similar results. Yield was only slightly 

improved by sequential rounds of incubation with fresh cleavage reagent. This indicates 

that a significant amount of DmTR remains as the fusion protein. 

The truncated form of DmTR shows incomplete cleavage from the intein though 

yield in this step is not an issue due to the high level expression for DmTR. Poor cleavage 

from the intein was seen with the mTR3-SCCS mutant where the majority of the fusion 

protein was retained on the resin. The yield for this mutant was only 2.6 mg for 6L of cell 

culture. This is less than 10 % of a typical yield for mTR3. These results indicate that a 

Ser residue at the intein cleavage junction is partly inhibitory for our system.    
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Sufficient activity towards the natural substrate Trx has been shown to be 

dependent on the incorporation of selenocysteine as the penultimate reside in mammalian 

thioredoxin reductase. During the TR catalytic cycle the conserved cysteine position is 

expected to form a disulfide intermediate with Cys52 and the Sec489΄ being the leaving 

group. Upon resolution of this disulfide and release of the C-terminus in its reduced form, 

the Sec residue is then the attacking nucleophile to form a mixed selenylsulfide with the 

substrate Trx. The re-oxidation of the C-terminus occurs by attack on the mixed 

selenylsulfide by the resolving cysteine, Cys488΄, of mTR3 with subsequent release of 

reduced Trx. As shown in Table 6, sequence containing the C-terminal carboxamide was 

considerably more active (3010 min ) than the naturally occurring carboxylic acid (2220 

min ). The mTR3-GUCG shows similar activity to the Sec489Cys mutant, 8.3 and 4.1 

min  respectively, while the mTR3-GUUG mutant was even less active. As indicated by 

the % peptide incorporation, the ligation reaction is less efficient with Sec as the residue 

attacking the thioester. However, even with correction for the incorporation, the GUCG 

and GUUG mutants would still have poor activity compared to wild type. Mutation to the 

SCCS motif of DmTR shows similar activity to that of the Sec489Cys mutant. Similar 

results for the human homologue of TR have recently been reported (154). Interestingly, 

the insertion mutants mTR3-GCAUG and mTR3-GCAAUG show ~25 % of the wild-

type activity. 

 The TR activity was also evaluated as a function of pH. Both the leaving group 

and nucleophillic effects of the conserved selenocysteine position would be expected to 

Activity of mTR3 Towards Thioredoxin.  

-1

-1

-1
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contrib e on pH. The optimal pH for activity 

towards Trx was determined for each of the TR mutants from pH 5.5 to 9.5 with the 

exception of the mTR3-GUUG mutant, which required pH 10.0 to reach maximal 

activity, Figure 29. Both the wild type carboxylic acid and carboxamide achieve optimal 

activity at a similar pH, approximately 7.0 to 7.2, whereas the Sec489Cys mutant has a 

pH optimum between pH 8.0 and 8.5. This is as would be expected due to the pK  of 5.3 

for selenocysteine and the pK  of 8.2 for cysteine where at physiological pH the cyteine is 

expected to be protonated and therefore less nucleophillic than the selenol.  

This is not the observation for the mTR3-GUCG mutant where the interchange 

position and the resolving position have been reversed. For this mutant, there is only a 

modest alkaline shift in pH optima to which is still 0.5 units lower than the Sec489Cys 

mutant Figure 29. This mutant has a similar k  for Trx as the Sec489Cys at pH 7.0. The 

pH optima measured during the steady state is likely to include a contribution from the 

resolving position of TR. In the wild-type enzyme with high activity, the low pK  of the 

selenol is expected to dominate the reaction profile. In the mutants with lower activity, 

however, we begin to see the impact of the resolving position. This may explain the 

lower pH optima for the mTR3-GUCG mutant where the selenocysteine is in the 

resolving position.   

 The insertion mutants mTR3-GCAUG and mTR3-GCAAUG have activity 

towards Trx that is 25 % of wild type and is 100 fold higher than the mTR3-GUCG and 

mTR3-GCCG mutants yet the pH optima is near 8.0. In these insertion mutants, the 

relative position of the Sec has been retained. If the Sec position were responsible for 

interchange with the N-terminal active site, one would expect poor activity for the Ala 

ute to the observed activity dependenc

a

a

cat

a
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Low Activity TR Trx Assays and Consumption of NADPH.  

in Chapter 1 

(Figure

H2 and EH4. Therefore, TR mutants that have poor activity towards 

insertion mutants. Therefore the insertion is expected to impact: 1) the strain on the ring 

formed when in the C-terminus exists in the oxidized state and; 2) the potential distance 

the TR resolving cysteine would be from the mixed selenylsulfide between Sec489΄ and 

Cys32 of Trx. It would be expected that both of these difference would affect the rate but 

a shift in the pH optima higher than that of the mTR3-GUCG mutant is unexpected.  

The proposed general mechanism of a high Mr TR was discussed 

 10) in terms of individual steps. Theses steps are an extrapolation of the 

mechanistic investigations of GR where each type of enzyme has two distinct cycles; the 

reductive half reaction where NADPH is consumed to reduce the enzyme and the 

oxidative half reaction where the enzyme is re-oxidized by consumption of the cognate 

substrate GSSG or Trx. GR converts between the oxidized form (Eox) and the 2-electron 

reduced form (EH2) to complete both cycles, with consumption of 1 equivalent of 

NADPH. The addition of the C-terminal active site for TR requires an additional 

equivalent of NADPH (EH4) to be consumed before Trx can be reduced. Fully reduced 

GR (EH4) or TR (EH6) form extremely slowly. This means that TR in the steady state 

will cycle between E

Trx could still consume 1-2 equivalents of NADPH per subunit in the pre-steady state. 

And this is what we typically observe in the Trx assay.  

Enzymes that have the lowest activity towards Trx require 1-2 µM enzyme in the 

assay. When performing these assays, it was observed that there was a significant change 

in absorbance at 340 nm after addition of mutant TR to the cuvette (~5 seconds). This is 
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ivity 

mutants produced are functional enzymes.  

Activity for DmTR Towards Thioredoxin.  

 using reagents other than thiol. 

The ne

due to the high TR concentration resulting in a visible consumption of NADPH at the 

start of the assay followed by the slow decrease in absorbance during the assay even in 

the absence of Trx. While this analysis is at best semi-quantitative compared to the 

establish stopped-flow method developed by Arscott, Ballou, and Williams (78, 93), it 

does provide support in addition to the DTNB reductase activity that the low act

The Trx activity of the mutants produced for DmTR can be seen in Table 7. 

Residue insertions between the Cys residues for DmTR results in a loss of activity that is 

much greater than that observed for mTR3. Both mutants show poor activity towards Trx 

with a 142 fold and 328 fold decrease from wild type respectively. Nearly identical 

results are observed for mitochondrial TR from Caenorhabditis elegans (CeTR2) where 

Ala insertions result in >100 fold loss in activity (Brian M. Lacey, personal 

communication). This is in stark contrast to the equivalent mutations for mTR3 which 

still retain ~20 % of the wild type activity. The only difference is the Sec residue for 

mTR3. 

Modifications of the C-terminal carboxylate of DmTR show a gain in activity 

similar to that of mTR3 (Adam P. Lothrop, personal communication). These 

modifications are produced by cleavage from the intein

utral hydroxamic acid produced by cleavage with hydroxylamine shows a 70 % 

increase in activity, which is in agreement with that observed for the mTR3 carboxamide 

mutant. The thiocarboxylate produced by cleavage with ammonium sulfide also shows 
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Comparison of DTNB Reductase Activities.  

The small molecule disulfide DTNB has long since been used for quantification 

of free thiols in proteins (155) as well as to evaluate thiol-disulfide exchange reactions 

(156), a

s the semisynthetic wild-type enzyme has a kcat of 1251 ± 71 min-1. The increase 

in kcat f

this increase in activity along with a 3 fold decrease in Km. The pH optima for the wild 

type enzyme is ~8.0 with no change observed with either of the carboxyl variants. An 

alkaline shift is observed for the Ala insertions mutants (Figure 30) as it is for the 

equivalent mutants from CeTR2. These trends are identical to that observed for mTR3. 

s is the process catalyzed by TR. The DTNB can therefore be a substrate for the 

C-terminal selenylsulfide (or disulfide) and the N-terminal disulfide as discussed in the 

previous chapter. Each TR in this study displays significant DTNB reductase activity. We 

also observe product inhibition with very high concentrations of DTNB near 5-10 times 

Km. In both mTR3 and DmTR, the presence of the C-terminus imparts an increase in 

DTNB reductase catalytic efficiency (kcat/Km) compared to the truncated forms of TR. 

This is consistent with that observed for DmTR (78) as well as PfTR (55). 

For our truncated form of the mTR3 (Table 8), we observe a kcat of 856 ± 43 min-

1 wherea

or the wild type represents the activity of the selenylsulfide relative to the N-

terminal disulfide towards DTNB. The truncated enzyme also exhibits a 6-fold increase 

in Km compared to wild type. This increase in Km is also seen in full length Sec489cys 

mutant as well as the semisynthetic mTR3-GUCG and mTR3-GUUG forms. The 

semisynthetic variants mTR3-GCAUG and mTR3-GCAAUG do not display a significant 

difference in kcat compared to the truncated yet have Km values similar to that of the wild 
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R 

(55). The mTR3 low efficiency group (5000-20,000 s-1 M-1) includes the truncated, 

SCCS, GCCG, GUCG, and GUUG mutants. The wild-type efficiency group (~5 X 104 s-1 

M-1) in

ces in both kcat 

and kcat  

f

type. The DTNB reductase data can therefore be divided into three groups on the basis of 

catalytic efficiencies (kcat/Km) that correlate to Trx activities. The mutants with poor Trx 

activity have the lowest DTNB efficiency and are similar to truncated mTR3. This is 

attributed to the increase in Km, as has been reported for mutants of DmTR (78) and PfT

cludes both Ala insertion mutants where the single Ala shows an increase in 

efficiency while the double Ala shows a decrease. The C-terminal carboxamide mutant is 

distinguished as a high efficiency group at 105. This is >10 fold higher than the wild-type 

group when the 28 % lower selenium content of this mutant is taken into consideration. 

The non-selenium containing DmTR also show excellent activity towards DTNB 

with results that very similar to the mTR3. The respective wild type enzyme has a kcat of 

178 min-1 for truncated DmTR (Table 9), and 157 min-1 for the wild type. This is ~12 % 

the activity seen in the wild-type mTR3. The DmTR also shows the decrease with the 

double Ala insertion seen with the mTR3. There are much smaller differen

/Km for DmTR. For mTR3 there is a 10 fold increase in kcat/Km while it is only 3

old for DmTR. The kcat/Km for DmTR fall into the low efficiency group for mTR3. The 

C-terminal hydroxamic acid of DmTR shows a significant increase in efficiency (2.3 

fold). The thiocarboxylate does show an increase in activity but has identical efficiency 

when compared to wild type. These results are in agreement with what is observed in the 

mTR carboxamide mutant where neutralization of the negative charge at the C-terminus 

results in an increase in catalytic efficiency.  
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Peroxidase activity is characteristic of the selenium incorporation in mammalian 

TR. Like DTNB, it also has been reported to have a low millimolar Km and is likely not a 

physiologically relevant activity for the enzyme. Peroxidase activity plots for thioredoxin 

reductase previously reported show poor saturation, but have been limited to 

concentrations less than 5 mM (109, 157). In performing this study, we have expanded 

the profile to 70 mM peroxide. The results demonstrate poor saturation for wild type 

carboxylic acid and carboxamide forms, Figure 31A, as well as the Sec489Cys mutant. 

We previously reported an activity of 71 ± 7 min  with a Km of 6.6 ± 0.5 mM when 

limiting the analysis to substrate concentrations equivalent to that reported in the 

literature (5 mM). After repeated extended analysis of the wild type carboxylic acid 

enzyme we observe an activity of 1753 ± 257 min  with a Km of 259 ± 33 mM using 50 

nM enzyme while the carboxamide has an activity of 3204 ± 351 min  with a Km of 167 

± 17 mM using 20 nM enzyme. A result of this is the extremely low kcat/Km which are 

>100 fold lower than DTNB (Table 10).   

As shown in Figure 31B, the profiles of the mTR3-GCAUG, mTR3-GCAAUG, 

and mTR3-GUCG mutants display a different property, however. The mTR3-GUCG 

required 500 nM enzyme and shows only about 10-15 % of the activity of the mTR3-

GCAUG and mTR3-GCAAUG yet each of these three mutants shows saturation with 

estimated Km values of 14 mM, 6.8 mM, and 9.5 mM respectively. These values are in 

better agreement with previous estimations. The interpretation of this data is that, while 

the wild type enzyme displays significant peroxidase activity, a definitive estimation of 

Peroxidase Activity of Semisynthetic mTR3.   

-1

-1

-1
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kinetic present a reasonable binding event. 

We have, however, produced three mutants with mM K  values are more indicative of a 

potential binding event. A complete summary of the data is shown in Table 10. 

We also tested the impact of the concentration of the co-substrate NADPH on the 

saturation profile. Figure 32A shows the wild-type enzyme while Figure 32B shows the 

mTR3-GCAUG mutant. With each enzyme the saturation curve remains the same from 

25 µM to 500 µM NADPH. In each case, progress curves remained linear over the 2-

We have determined that the Cys containing enzymes are far more dependent on 

vicinal residues to reduce the natural substrate Trx than the Sec containing enzyme from 

mouse. The mTR3 mutant GCAUG retains 16 % k  while the GCAAUG mutant has 22 

% k  when compared to the wild type sequence GCUG. This is in stark contrast to that 

which is observed for DmTR and CeTR2. The SCACS mutant for DmTR shows a 142 

fold reduction in k  while the GCACG mutant for CeTR2 shows a 145 fold reduction in 

k . For the double insertion, the SCAACS mutant for DmTR shows a 328 fold reduction 

in k  while the GCACG mutant for CeTR2 shows a 90 fold reduction in k .  

parameters is not applicable, as it does not re

m

minute time frame of the assay with the exception of the 25 µM NADPH at the 70 mM 

peroxide concentration where linearity was maintained to 90 seconds due to eventual 

depletion of NADPH. A characteristic of the DTNB assay is the observation of product 

inhibition at very high concentrations of substrate. This effect is not observed with H2O2 

as substrate.   

Interpretation of Structure-Function Study.  

cat

cat

cat

cat

cat cat
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ecreased 

energy 

Ala insertions shift to pH 8.5 (Figure 30). The kinetic parameters are 

determined at pH 7.0 where wild type mTR3 activity is at maximum. At this pH, the 

mTR3 Ala insertions still retain 70-80 %, the wild type DmTR 80%, and the DmTR Ala 

insertio

or electron 

transfer from the FAD associated disulfide by salt bridge formation during the catalytic 

Insertion of each Ala is expected to progressively reduce the ring strain. In a 

strictly chemical sense, the larger ring is expected to be more stable and therefore less 

reactive in the ring opening step. In contrast there should be a corresponding d

barrier to closing the ring. Therefore, the combined impact of ring strain on the 

enzymatic cycle is currently unknown and cannot be eliminated as a contributing factor 

in each of these enzymes. This is demonstrated by the partial loss of activity for the 

GCAUG and GCAAUG mTR3 mutants. However, simply replacing a single selenium 

atom in the ring with a sulfur atom, as is the case for both DmTR and CeTR, results in a 

far greater loss of activity.  

The pH optima determined for wild type mTR3 is 7.0-7.2 while the Ala insertions 

both shift to pH 8 (Figure 29).  Similarly, the wild type DmTR has an optimal pH of 7.5 - 

8.0 while the 

n 50 %, of their respective maximal activities. However, the shift in the pH 

optima is only responsible for ~20 % of the loss in activity for the Ala insertions and 

adjusting solution pH will not recover the 100 fold loss in activity observed in DmTR and 

CeTR2. The identical shift in pH optima indicates an alteration in the same chemical step, 

but one that is compensated for by the presence of selenium in mTR3. 

We have also investigated the impact of the negative charge of the C-terminal 

carboxylate in catalysis. It was suggested from the crystal structure of the rat enzyme that 

the conserved Lys26 could serve as an anchor to position the C-terminus f
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cycle (

r than 3 fold increase in activity with a 10 fold increase in 

kcat/Km 

From interpretation to hypothesis. 

36). If this were a critical interaction, alteration of the C-terminus would be 

expected to decrease activity. A second possibility is that the proximity of the negative 

charge to electron and proton transfer during the enzymatic cycle would be inhibitory to 

the enzyme in which case neutralization should result in an increase in activity. Our 

results indicate that a specific interaction with, or charge contribution from, the C-

terminal carboxylate does not appear critical to catalysis.  

Neutralization of the carboxylate charge by conversion to the carboxamide for 

mTR3 results in a 2-fold increase in activity towards Trx and peroxide. The carboxamide 

mutant also shows a greate

with the negatively charged substrate DTNB. These results are similar to what is 

observed for small peptide thiol-disulfide exchange reactions investigated by Zhang and 

Snyder (158) where the 5-fold decrease in thiol disulfide exchange for the peptide Cys-

Cys compared to Cys-Cys-Ala was hypothesized to be due to the proximity of the 

carboxylate to the thiol. Substitution to a hydroxamic acid for DmTR also shows the 

same behavior as the mTR3 carboxamide with both Trx and DTNB as substrate. The lack 

of a change in pH optima indicates a chemical step has likely not been altered in these 

variants but possibly involves product release. 

Under Michaelis-Menten conditions we are looking at the impact on the overall 

rate of catalysis. Therefore, the effect we see reflects the combination of the ring opening 

step, where the C-terminus becomes reduced, and the ring closing step, where the C-

terminus is re-oxidizes after electron transfer to Trx. Each step is broken into two coupled 
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TR and CeTR Ala mutants as 

there is

 ring formation by reducing the energy 

barrier of ring strain but becomes less favorable due to the increase in conformational 

entropy. Again, these forces should impart the same effect for each of the equivalent TR 

mutant

reactions (Figure33); 1a) formation of a mixed disulfide with 1b) the first leaving group, 

and 2a) resolution of the mixed disulfide with 2b) a second leaving group. If these 

mutants perturb the structural position for formation of either mixed disulfide, one would 

expect equivalent results. Since this is not what is observed for the Ala insertions, we can 

eliminate 1a from each step as the critical point for mTR3. However, this assumption 

must be made cautiously due to the low activity for the Dm

 no biochemical data that defines which Cys forms the interchange with the FAD 

associated active site.  

Once the mixed disulfide is formed, the structural position should be fixed and 

therefore its role as the second leaving group should also be retained, eliminating 2b from 

each step. Resolution of the mixed disulfide in the ring opening step is performed by the 

FAD-associated resolving cysteine Cys62 and is conserved, therefore 2a for the ring 

opening can also be eliminated.  

Even after elimination of several reactions for mTR3 we are still left with the first 

leaving group (1b) of the ring-opening step and the TR-Trx mixed disulfide resolution 

(2a) of the ring closing step. The ring closing step is governed by two opposing forces. 

For example, insertion of residues will favor

s in the absence of an altered chemical step. Therefore it is the hypothesis here that 

disruption of the vicinal disulfide results in the alteration of an enzymatic chemical step, 

likely during ring opening, that is more critical in the non-selenium containing TRs. This 

is supported by the alkaline shift in pH optima observed for each TR by increasing the 
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size of the ring. With such the dramatic loss of activity of mTR3 with Trx for the GUCG, 

GCCG, and SCCS mutants in comparison to the GCAUG and GCAAUG mutants, we 

conclude that maintaining the Sec C-terminal to the Cys is essential but the vicinal nature 

is not.  

Each of the mTR3 mutants produced in this study that display poor Trx and H2O2 

activity fall into the DTNB efficiency category (due to increased Km) characteristic of the 

truncated enzyme. This is important, as it is likely that the DTNB reductase activity of 

these mutants is attributed to the FAD-associated active site. We suspect that the loss of 

activity

c of a chemical reaction and not enzymatic. Therefore, 

one wo

  

 for these mutants is due to the poor reduction of the C-terminal motif by the 

FAD-associated active site (the ring opening step). This is best demonstrated by the 

mutant mTR3-GUCG. This mutant also has significantly lower Trx and H2O2 activity 

with DTNB efficiency similar to that of the truncated enzyme. The peroxidase activity 

profile of the WT is characteristi

uld expect the peroxidase reaction to be independent of the Sec position once the 

C-terminal motif is reduced. Since a significant loss in activity is observed 

experimentally, this further supports our interpretation that the C-terminal motif is not 

efficiently reduced in the ring opening step. Combining the results from all three 

substrates (Trx, DTNB, and H2O2) we hypothesize that the Sec is required for mTR3 in 

the ring opening step, likely functioning as the leaving group (LG1 in Figure 33). We 

will address this hypothesis experimentally in the next Chapter.  

  



 

Figure 28. SDS-PAGE of DmTR cleavage from the intein. 

Evaluation of DmTR cleavage from the intein with alternative reagents by 10 % SDS-

after NMA elution; lane5, ammonium sulfide eluted; lane 6, resin after ammonium 

lane 9, buffer only eluted; lane 10, resin after buffer elution; lane 11, blank; lane 12, pre 

stripping with 1% SDS. Eluant lanes represent equivalent loads, as do the lanes 

 

 

PAGE. Lane 1, loaded chitin resin; lane 2, markers; lane3, NMA eluted; lane 4, resin 

sulfide elution; lane 7, hydroxylamine eluted; lane 8, resin after hydroxylamine elution; 

induction; lane 13, cell lysate supernatant. Resin-bound samples are evaluated by 

containing the resin strip. 
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Table 6. Semisynthetic mTR3 thioredoxin reductase activity. 

 

Enzyme kcat (min-1) Km (µM) % Peptide 
Incorporation 

kcat / Km 

(s-1 M-1) 
amTR3-G- COO- No activity No activity NA NA 

bmTR3-GCCG- COO- 4.1 ± 0.11 49.1 ± 3.2 NA 1.4 x 103

mTR3-SCCS- COO- 5.0 ± 0.06 32.0 ± 8.8 NA 2.6 x 103

cmTR3-G-CUG- COO- 2220 ± 78 67.6 ± 6 91 5.5 x 105

dmTR3-G-CUG-CONH2 3010 ± 351 41.6 ± 5.0 63 1.2 x 106

mTR3-G-UCG- COO- 8.3 ± 0.1 36.1 ± 1.3 32 3.8 x 103

TR3-G-UUG- COO- 1.2 ± 0.1 64.8 ± 16.1 10 3.1 x 102m

mTR3-G-CAUG- COO- 350 ± 14 20.8 ± 3.5 100 2.8 x 105

mTR3-G-CAAUG- COO- 501 ± 41 34.9 ± 10.0 100 2.4 x 105

erat TR1 3000 35 NA 1.4 x 106

aThe truncated form of the enzyme missing the C-terminal tripeptide Cys-Sec-Gly. 

bThe full length mutant Sec489Cys.  

cThe wild type enzyme, the hyphen between Gly and Cys (or Sec) indicates production 
by semisynthesis. 

dThe wild type enzyme produced by semisynthesis with a C-terminal carboxamide. 

eTaken from (145, 150), purified from rat liver and assayed using E. coli Trx. 



 

 

Figure 29. Trx activity as a funct H for mTR

Activity towards thioredoxin as a function of pH for semisynthetic mutants of mTR3. The 
- 

C

 

ion of p 3. 

key indicates the C-terminal sequence following mTR3-G; -GCUG-COO (●), -GCUG-
ONH2 (○), -GCAUG (♦) -GCAAUG (∆), -GUCG (◊), -GUUG (■), -GCCG (▲). 
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Table 7. DmTR thioredoxin reductase activity. 

 

Enzyme kcat (min-1) Km (µM) 
kcat / Km

(s-1 M-1) 
aTR-S- COO- No activity No activity NA 

bTR-SCCS- COO- 299.4 ± 7.4 173.3 ± 8.1 2.9 x 104

cTR-SCCS-CONHOH 513.3 ± 33.3 172.5 ± 21.7 5.0 x 104

dTR-SCCS-COS- 491.9 ± 19.6 67.8 ± 7.3 1.2 x 105

TR-SCACS- COO- 2.12 ± 0.3 298.3 ± 58.0 118 

TR-SCAACS- COO- 0.91 ± 0.2 166 ± 58.0 91 

aThe truncated form of the enzyme missing the C-terminal tripeptide Cys-Cys-Ser. 

bThe wild type enzyme.  

e produced as the C-terminal hydroxamic acid (Adam P. Lothrop). 

carboxylate (Adam P. Lothrop). 

cThe wild type enzym

dThe wild type enzyme produced as the C-terminal thio

 



 

 

Figure 30. Trx activity as a function of pH for DmTR. 

Activity towards thioredoxin as a function of pH for the DmTR mutants SCCS (●), 
). SCACS (□), SCAACS (▲
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Table 8. DTNB reductase activity for semisynthetic mTR3. 

 

Enzyme kcat (min-1) Km (mM) 
kcat / Km

(s-1 M-1) 
amTR3-G-COO- 856 ± 43 2.72 ± 0.43 5.2 x 103

bmTR3-GCCG- COO- 794 ± 78 1.75 ± 0.41 7.6 x 103

mTR3-SCCS- COO- 627 ± 18 0.53 ± 0.19 2.0 x 104

cmTR3-G-CUG- COO- 1251 ± 71 0.46 ± 0.09 4.5 x 104

dmTR3-G-CUG-CONH2 3284 ± 133 0.13 ± 0.02 4.2 x 105

mTR3-G-UCG- COO- 751 ± 51 1.61 ± 0.34 7.8 x 103

3

1010 ± 26 0.26 ± 0.03 6.5 x 104

mTR3-G-CAAUG- COO- 999 ± 44 0.43 ± 0.08 5.6 x 104

mTR3-G-UUG- COO 914 ± 18 1.84 ± 0.12 8.3 x 10

mTR3-G-CAUG- COO

-

-

aThe truncated form of the enzyme missing the C-terminal tripeptide Cys-Sec-Gly. 

bThe full length mutant Sec489Cys.  

cThe wild type enzyme, the hyphen between Gly and Cys (or Sec) indicates production 
by semisynthesis. 

dThe wild type enzyme produced by semisynthesis with a C-terminal carboxamide. 
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Table 9. DTNB reductase activity for DmTR. 

Enzyme kcat (min-1) Km (mM) 
kcat / Km

(s  M ) 

 

-1 -1

aTR-S-COO- 178.0 ± 7.0 0.75 ± 0.09 4.0 x 103

bTR-SCCS-COO- 157.0 ± 12.4 0.22 ± 0.07 1.2 x 104

TR-SCACS-COO- 187.5 ± 17 0.20 ± 0.06 1.7 x 104

TR-SCAACS-COO- 94.9 ± 4.1 0.25 ± 0.03 6.3 x 103

aThe truncated form of the enzym e C-t tide Ser. 

b . 

e missing th erminal tripep  Cys-Cys-

The wild type enzyme

 



 
 

Michaelis-Menten plots in the form of Vo/ET vs. hydrogen peroxide concentration for 
 reductase C-terminal mutants. Panel A shows the wild-type 

enzyme with the naturally occurring carboxylic acid (●) and wild-type peptide sequence 
roduced as a C-terminal carboxamide (□). Panel B shows the GCAUG (●), GCAAUG 

(□), and GUCG (○) mutants. 
 

  

 

Figure 31. Peroxidase activity for mTR3 mutants. 

mammalian thioredoxin

p
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Table 10. Peroxidase activity of semisynthetic mTR3. 

 

Enzyme kcat (min-1) Km (mM) 
kcat / Km

(s-1 M-1) 
amTR3-G- COO- 2.1 ± 0.04 65 ± 17 0.5 

bmTR3-GCCG- COO- 19.6 ± 1.9 233 ± 36 1.4 

cmTR3-G-CUG- COO- 1753 ± 257 259 ± 46 113 

mTR3-G-CUG-CONH2 3204 ± 351 167 ± 24 320 

TR3-G-CAAUG- COO- 125 ± 6.4 6.8 ± 1.2 306 

d

mTR3-G-UCG- COO 19.7 ± 0.8 9.5 ± 1.2 35 

mTR3-G-UUG- COO

-

- 6.0 ± 0.7 47 ± 10 2.1 

mTR3-G-CAUG- COO- 284 ± 3.9 14 ± 0.7 338 

m

aThe truncated form of the enzyme missing the C-terminal tripeptide Cys-Sec-Gly. 

The full length mutant Sec489Cys. 

cThe wild type enzyme, the hyphen between Gly and Cys (or Sec) indicates production 
by semisynthesis. 

dThe wild type enzyme produced by semisynthesis with a C-terminal carboxamide. 

b



 
 

Figure 32. Peroxidase activity as a function of NADPH concentration. 

activity for s c mTR DPH co trations at 25 
 200 µM (○ ×  is wild , B is the C-

Hydrogen peroxidase emisyntheti 3 with NA ncen
µM (●), 100 µM (□),
terminal mutant GCAUG. 

), and 500 µM ( ). Panel A  type
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Figure 33. Steps of thiol-disulfide exchange for TR. 

The steps for thiol-disulfide for thioredoxin reductase that occurs between the FAD-
associated active site (Cys57, Cys62) and the C-terminus, the ring opening step. 1a) Upon 
reduction of the FAD-associated disulfide, Cys57 will form the interchange (IC) with a 
Cys from the C-terminus with the other Cys being the first leaving group (LG1) which 
would need to be protonated (1b) if Cys but would not be if Sec. The resolution step, 2a 
and 2b, should proceed as in the GR cycle. The same general cycle subsequently occurs 
between the C-terminus or TR in the reduced state and the oxidized disulfide of Trx and 
would be the ring closing step. 
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CHAPTER 4. 
 

 TRUNCATED THIOREDOXIN REDUCTASE AS A 
DISULFIDE OXIDOREDUCTASE INVESTIGATED 

BY PEPTIDE COMPLEMENTATION 
 

 
 

 
 

Figure 34. Peptide complementation of TR. 

Peptide Complementation of thioredoxin reductase (TR). Oxidized tetrapeptides 
orresponding to the C-terminal c

fo
active site motif of TR are substrates for the truncated 

rm of the enzyme in a manner similar to glutathione reductase and its cognate substrate 
idized glutathione. 

  
ox
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In the course of developing the semisynthetic method, we also attempted to 

produce a non-covalent semis  a technique called peptide 

complementation. In such a system, a truncated enzyme missing part of its active site can 

b  

complements nt example 

f peptide complementation is the S-protei /S-peptide system developed by Richards 

(134).  In our peptide complementation system, we demonstrate that tetrapeptides in the 

oxidized form equivalent to the C-terminal active sites of both mTR3 and DmTR, only 

weakly complement thioredoxin reductase activity but behave more like substrates for the 

truncated enzymes. This is reasonable because as part of the enzyme, the oxidized form 

of the C-terminal tetrapeptide must be reduced by the N-terminal redox-active dithiol 

during the enzymatic cycle. A disulfide bond formed between vicinal Cys-Cys (or Cys-

Sec) residues results in the formation of an eight-membered ring and this assay examines 

the kinetics of the ring opening step that occurs during the enzymatic cycle of TR. The 

observation that oxidized tetrapeptides can serve as substrate for the truncated forms of 

onstrate that TR, like GR, may be considered a disulfide oxidoreductase where its 

33 of Chapter 3). We observe that for each of the peptides assayed, DmTR showed higher 

ctivity than mTR3. There is also a dramatic dependence for Sec in the second position 

demonstrated by mTR3 but not DmTR.    

 

ynthetic TR by using

e restored to full or partial activity by exogenous addition of a synthetic peptide that

 the active site with the missing amino acids. The most promine

o n

TR dem

own C-terminus is the cognate substrate (Figure 35). Using this assay we can isolate the 

ring-opening step for TR in a manner analogous to the GSSG reduction by GR (Figure 

a
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ETHODS 

 

were prepared by Fmoc solid-phase peptide synthesis and oxidized to the monomeric 

MALDI-TOF mass spectrometry using a Voyager-DE PRO from Applied Biosystems 

mTR3 using conditions similar to the DTNB assay and enzyme concentrations were 

corrected for background in the absence of enzyme as well as in the absence of substrate, 

to the uniqueness of this system, we have reported the activity values for each peptide as 

o T

 

tested in comparison with the ligated 

isynthetic mTR3 as only three amino acids out of a total of 490 are missing from the 

M

Activity of truncated TR towards C-terminal Tetrapeptide Substrates.   

Tetrapeptides Ac-GCUG(ox), Ac-GCCG(ox), Ac-SCUS(ox), and Ac-SCCS(ox) 

form using a newly described procedure for making disulfide bonds on-resin (143).  The 

peptides were purified by preparative HPLC and verified as intramolecular disulfides by 

(Framingham, MA).  The peptides were treated as substrates for the truncated DmTR and 

adjusted to get a signal at 340 nm as is seen in the thioredxin (Trx) assay.  Activity was 

measured by the decrease in absorbance at 340 nm for the consumption of NADPH, 

and plotted as mole of NADPH consumed per minute per mole of homodimeric TR. Due 

the slopes of the plot of V /E  vs. peptide concentration. Each peptide assayed is then 

evaluated as a fold difference in slope when compared to another peptide.   

 

RESULTS AND DISCUSSION 

A peptide complementation approach was 

sem
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e. Peptide Ac-GCUG was synthesized and tested for its ability to 

complement” the truncated enzyme missing tripeptide CUG. This tetrapeptide is N-

acylated and begins with a glycine residue and as such, cannot ligate to the thioester-

tagged enzyme produced from the intein fusion. Variations of the Trx assay were 

perform

Truncated TR as a Disulfide Reductase.   

Preliminary results demonstrated that the oxidized tripeptide Cys-Sec-Gly-

hen added to the assay mixture containing NADPH and 

uncated TR (Figure 36) with an activity of 260 min-1.  The low affinity observed for the 

peptide

intact enzym

“

ed in which Trx, insulin, or both were missing from the assay. The results of 

these experiments are summarized in Table 11 and demonstrate that the selenium-

containing peptide was required for NADPH consumption. The function of the insulin in 

the assay is to provide a source of oxidant for Trx so that the concentration of the 

oxidized Trx remains high during the course of the assay. When Trx was absent, the 

oxidized form of the peptide was reduced by the truncated form of the enzyme, resulting 

in the consumption of NADPH. The results in Table 1 show that more NADPH is 

consumed when both Trx and insulin are present in the assay mixture. The transiently 

formed enzyme/peptide complex may reduce Trx, or the resulting reduced peptide may 

reduce Trx. These results indicate that the peptide is primarily acting as a substrate for 

the truncated enzyme, rather than forming a reconstituted enzyme as in the S-protein/S-

peptide complex (134). 

OH(ox) is a substrate for mTR3 w

tr

 by the enzyme, is likely the result of minimal binding contacts in this 

complementation system.  When the selenium atom is replaced with a sulfur atom in the 
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G/GCUG) would not have a significant difference in Km as a 

result of the substitution of a selenium atom for a sulfur atom. The data demonstrates a 

dramatic difference in the rate of peptide turnover in this step of the reaction mechanism 

betwee

homologous peptide CCG(ox), the activity is reduce to 0.81 min-1, indicating that the ring 

opening step is greatly affected by the replacement of a selenium atom with a sulfur 

atom.  

We subsequently tested oxidized tetrapeptides as substrates for both DmTR and 

mTR3 so that we could fully examine the effect of flanking residues on either side of the 

Cys-Cys or Cys-Sec dyad.  We tested the tetrapeptides: Ac-GCUG(ox), Ac-GCCG(ox), 

Ac-SCCS(ox), and Ac-SCUS(ox) (all as the oxidized, monomeric-cyclic peptides) as 

substrates for the truncated enzymes.  A summary of the kinetic data for ring opening is 

given in Table 12 with the plots shown in Figure 37. Comparing Ac-GCUG(ox) to Ac-

GCCG(ox) demonstrates that there is a 308 fold decline in activity in mTR3 and only a 

36.2 fold decrease for DmTR. The ratio of ring-opening rates for the peptides Ac-

SCUS(ox) and Ac-SCCS(ox) with mTR3 is 511 fold while the equivalent comparison is 

only 5.65 fold with DmTR, Table 13. Since the assays do not reach saturation, 

differences in Km must still be taken in consideration when comparing Ser and Gly 

containing peptides. However, it is reasonable to assume that the equivalent peptide pairs 

(SCCS/SCUS and GCC

n the two enzymes. There is a 10 to 100 fold greater dependence on the Sec 

residue for mTR3 compared to DmTR for these peptide pairs.      

Prior to the cloning of DmTR, the peptide Ac-GCAUG(ox) was assayed in 

comparison to Ac-GCUG(ox) for truncated mTR3 (Figure 38). For this peptide, the Sec 

is retained C-terminal relative to Cys but separated by a single Ala residue. The fold 
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tide Ac-GUCG(ox). The peptide was not completely purified therefore a value for 

direct c

 Indication of a Critical Leaving Group Effect for mTR3.  

p because of the strong 

electro

difference for this pair GCUG/GCAUG was only 8.4 fold, which is minor in comparison 

to the 308 fold for GCUG/GCCG with mTR3. Preliminary results were also obtained for 

the pep

omparison to the other peptides is not possible. However, the crude peptide was 

assayed with both mTR and DmTR with no difference in activity observed between the 

two enzymes. Neither mTR nor DmTR showed activity to the disulfide substrates cystine, 

homocystine, or GSSG.  

Finally, we also assayed peptides containing the non-protein D-isomer of cysteine 

substituted individually for the two positions. There was no activity observed for Ac-

GCDCLG(ox) or Ac-GCLCDG(ox) for mTR3. DmTR (Figure 39) showed a 3 fold 

decrease in activity for Ac-GCDCLG(ox) compared to Ac-GCCG(ox) and no activity for 

Ac-GCLCDG(ox). This difference in activity observed by a stereo-isomer substitution 

indicates there is an additional structural component impacting the ring opening step. 

The data in Chapter 3 demonstrates that the truncated forms of both enzymes can 

catalyze the reduction of the disulfide DTNB.  An explanation of why DTNB is a 

substrate for TR but cystine is not has been partially addressed by Ascott and coworkers 

(94) in applications with the mixed disulfide R-S-S-TNB (TNB-S is 5-thio-2-

nitrobenzoate).  In this example, TNB-S- will be the leaving grou

n withdrawing properties of the 2-nitrobenzoate group. Such mixed disulfides are 

also easier to break than a typical disulfide bond because they are highly polarized.  This 

property has been used in investigating the mechanism of GR. The mixed disulfide 
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nd the S-Se bond is also much weaker than a typical disulfide 

bond d

 

tion 

relative to Cys (C-terminal) is retained. It can therefore be hypothesized that the necessity 

for Sec in mTR3 is its function as the leaving group in the ring opening step. 

Correlation to C-terminal Structure-Function Results.  

between glutathione and TNB-S- (G-S-S-TNB) is a substrate for GR with kinetic isotope 

effects indicating a single proton transfer step as rate limiting (95). The interpretation of 

this data is that the departing GSH would require protonation but the TNB-S- would not. 

Therefore, we posit that DTNB is a substrate for TR due to the very low pKa (4.75) of the 

leaving group thiol that is formed upon reduction of this disulfide (159). 

The exact same situation exists in the peptide Ac-GCUG(ox), which has a low 

pKa leaving group (Se) a

ue to the polarization in the bond conferred by the Se atom. By comparing the rate 

of reduction of peptide Ac-GCUG(ox) vs. peptide Ac-GCCG(ox) by the truncated mTR3, 

this large difference in the rate of ring opening between these two peptides can be 

understood in terms of leaving group pKas. This is further supported by the 8.4 fold 

decrease in ring opening for the GCUG/GCAUG pair compared to the 308 fold decrease 

for the GCUG/GCCG pair for mTR3. In the Ac-GCAUG(ox) peptide, the Sec posi

A comparison of full-length TR activities determined by the steady-state Trx 

activity and the data for the ring opening step assayed with the truncated TR is shown in 

Table 14. Taking into consideration that the data from the two methods are derived rather 

differently, there is a remarkable level of agreement between the two methods. For 

DmTR, the GCUG/GCCG and SCUS/SCCS pairs correlate 20% and 30% of the loss in 

Trx activity to the ring opening step while the GCUG/SCCS are within 50%. In each pair, 
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he Sec to Cys in 

mTR c

A second possibility is that the reaction cycle requires a second catalytic base 

which is functional in DmTR but non-functional or absent in mTR3. For example, one 

base w

there a greater fold difference in ring opening than observed in Trx activity. For mTR3, 

the fold difference in activity for the GCUG/GCCG pair for Trx is 292 and ring opening 

is 308. This near identical result is also observed for the GCUG/GCAUG pair with 6.3 

and 8.4 fold difference in activity observed by the methods respectively. From this 

analysis, we hypothesize that the loss in Trx activity upon mutation of t

an be attributed to the reduction in the rate of ring opening. 

While these results from the two methods are in agreement, and peptide 

complementation data lead us to a leaving group effect hypothesis, the question of why 

still remains. Why would Sec be required as a leaving group if the catalytic base is 

conserved in TR? A simplified interpretation would be that DmTR has a functional 

catalytic base but mTR3 does not. However, the well-established model based on 

mechanistic studies with GR and recently with TR from Plasmodium falciparum (93), 

indicate that the catalytic His is essential for multiple steps in the reaction cycle (see 

Figure 10 of Chapter 1). Therefore, if mTR3 did not have a functional base it should 

have little or no activity regardless of whether it contains Sec or not.  

ould be required for protonation of the first leaving group and another for 

protonation of the second leaving group that is generated upon resolution of the 

interchange mixed-disulfide. Based on sequence alignments, this residue was proposed to 

be His106 in DmTR (65). However, this residue is also conserved in mammalian TRs, 

and mutation of His106 to Phe in DmTR results in only a 3 fold reduction in activity 

(121). Finally there is no explanation as to why cystine is not a substrate for DmTR 
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oposed function of Ser 

acting 

 will examine this 

questio

 

considering its activity towards the Cys-Cys cyclic peptides. The same conundrum exists 

for GR where GSSG is a substrate but cystine activity is poor (160) even though both 

molecules are intermolecular cysteine disulfides.  

There is also an interesting observation when considering the Ser and Gly 

containing sequences for the two enzymes. DmTR shows no preference for SCCS or 

GCUG with either assay method yet mTR3 does. Based on the pr

as a general acid/base in the DmTR motif (65), there should be better agreement 

between the two enzymes. The peptide complementation data shows minor rate 

enhancement by replacing Gly with Ser in a Cys-Cys or Cys-Sec peptide indicating some 

potential functionality of the Ser residues. However, there is still no explanation as to 

why the SCCS motif cannot replace the GCUG motif in mTR3, as they appear 

interchangeable for DmTR. It also does not explain why the effect Sec has with both 

methods for mTR3 and why it is muted in DmTR. Our conclusion is that there is a 

structural difference between mTR3 and DmTR, other than the C-terminal tetrapeptide 

motif, responsible for the requirement for Sec in mTR3. Chapter 5

n and correlate the enzymatic data to structural differences between these two 

enzymes.  
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Using oxidized tetrapeptides equivalent to the C-terminal motif of TR as substrates for 
the truncated enzyme we are able to look at steps in the catalytic cycle in a manner 
equivalent to GR, TryR or LipDH and their cognate substrates (34, 37, 130). The 
tetrapeptides are the cognate substrate in the peptide complementation assay. 

Figure 35. Cognate substrates revisited for truncated TR. 
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Table 11. Summary of TR/Ac-GCUG peptide acomplementation kinetics. 

 
bEnzyme 100 µM peptide 160 µM insulin 3 µM Trx 

cRate (nmoles 
NADPH/min) 

 

TRGly487 + + + 4.20 ± 0.60 

TRGly487 + - - 2.25 ± 0.21 

TRGly487 + - + 1.96 ± 0.086 

TRGly487 + + - 2.60 ± 0.062 

aEnzyme assays were performed in a volume of 600 µL containing 100 mM potassium 
phosphate buffer, pH 7.0, 1 mM EDTA, with 8.4 µM enzyme.  Other assay components 
are as indicated in the table. 

bIndicates that the truncated form of the enzyme ends at residue 487. 

monitoring the loss of NADPH at 340 nm. cThe rate is calculated by 



 
 

s observed as the concentration of tripeptide increases in the 
assay.  The truncated enzyme could not be saturated with tripeptide due to solubility 

tide turnover were 
calculated by measuring the slope of a plot of NADPH consumption (in min-1) vs peptide 

 

Figure 36. Peptide complementation of mTR3 with CUG(ox). 

Rate of reduction (ring opening) of oxidized tripeptide CUG(ox) with truncated mTR3.  
A linear increase in activity i

limits of the peptide under the assay conditions. The rates of pep

concentration (in mM). 
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Table 12. Summary of activities toward tetrapeptides for the truncated TRs. 

 

Enzyme 
aPeptide (turnover 
rate in min-1/mM)    

 Ac-SCCS(ox) Ac-SCUS(ox) Ac-GCCG(ox) Ac-GCUG(ox) 

bmTR3-G 0.21 107.3 0.06 18.5 

cDmTR-S 57.0 (271)d 322.6 (3) 2.4 (40) 87.0 (4.7) 

aThe rate of peptide turnover was determined at pH 7.0 in potassium
escribed in the methods.  The relative activities for the individual peptides are the slopes 

 phosphate buffer as 
d
from the titration curve in min-1/mM. 

bMouse mitochondrial TR missing the C-terminal tripeptide Cys-Sec-Gly. 

cDrosophila melanogaster TR missing the C-terminal tripeptide Cys-Cys-Ser. 

dThe ratio of rates (fold difference) between DmTR-S and mTR3-G are given in 
parentheses in bold. 
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E
SC

(Se/S) 

GC  

(Se/S) 

GCUG/SCC

 (Se/S) 

SCCS/GCCG 

 (S/S) 

SCUS/GCUG 

(Se/Se) 

 

Table 13. Ratio of peptide turnover rates for the truncated TRs. 

 

nzyme 
US/SCCS GCUG/ CG S 

a R3-G c511 308 mT 88.1 3.5 5.8 

b 5.65 36.2 .5 7 DmTR-S 1 23. 3.7 

aMouse mitochondrial TR missing the C-terminal tripeptide Cys-Sec-Gly. 

nce) between the peptide pair. 

bDrosophila melanogaster TR missing the C-terminal tripeptide Cys-Cys-Ser. 

cThe ratio of rates (fold differe



 

 

Figure 37. Rate of ring opening for tetrapeptides(ox). 

Rate of reduction (ring opening) using oxidized tetrapeptides as substrates for truncated 
enzymes DmTR (solid) and mTR3 (dashed).  (A) Peptide Ac-GCUG(ox) as substrate; (B) 
Peptide Ac-SCUS(ox) as substrate; (C) Peptide Ac-GCCG(ox) as substrate; and (D) 
Peptide Ac-SCCS(ox) as substrate.   
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Figure 38. Rate of ring opening Ac-GCAUG(ox) for mTR3. 

Rate of reduction (ring opening) using the oxidized tetrapeptides Ac-GCUG(ox) (solid) 
and Ac-GCAUG(ox) (dashed) as substrates for truncated mTR3. The Activity for the Ac-
GCUG(ox) was 14.0 while the Ac-GCUG(ox) activity was 1.66. This results in an 8.4 
fold activity ratio. 
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TR. Figure 39. Rate of ring opening for Ac-GCDCLG(ox) with Dm

Rate of reduction (ring opening) using oxidized tetrapeptides as substrates for truncated 
DmTR. The peptide Ac-GCCG(ox) as substrate is shown in black. The peptide Ac-
GCDCLG(ox) as substrate is shown in grey. 
 

130 
 
 
 



131 
 
 
 

Table 14. Rates of ring opening step compared to full-length TR activities. 

 

Peptide pair DmTR eDmTR-S mTR3 fmTR3-G 

 bFull length Ring Opening Full Length Ring Opening. 

GCUG/GCCGa c7.5 36.2 292 308 

SCCS/GCCG 7.5 23.7 0.7 3.5 

GCUG/SCCS 1 1.5 435 88.1 

8.4 GCUG/GCAUG N.D.d N.D. 6.3 

aThe DmTR full length data is taken from (65). 

bActivities from thioredoxin assay. 

cThe numbers represent the ratio of each pair. 

dNot determined. 

eMouse mitochondrial TR missing the C-terminal tripeptide Cys-Sec-Gly. 

fDrosophila melanogaster TR missing the C-terminal tripeptide Cys-Cys-Ser. 
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CHAPTER 5.  
 

THE CRYSTAL STRUCTURE OF THIOREDOXIN 
EDU ASE FR  DROSOPHILA 

LANO STER W H TETR PEPTID
MODELING FOR COMPARISON WITH 

MALI N THIO DOXIN DUCTA  

R CT OM
ME GA IT A E 

MAM A RE  RE SE
 
 

 

 

Figure 40. The crystal structure of mTR3. 

The homodimeric structure of the mTR3 with a zoom of the key conserved catalytic 
components NADPH (blue), FAD (yellow), and N-terminal disulfide from chain A 
(green backbone). The Glu-His pair from chain B (orange backbone) is also shown. The 
structure is mTR3 from this Chapter. The NADPH is from (35). 
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In ord ires Sec but 

TR fro

crystal ptide 

sequence Cys-Cy e X-ray crystal 

structure of mouse mitochondrial TR (mTR3) in the truncated for (missing the C-terminal 

 

ed 

iglutathione bound to GR as a template. DmTR has a more open tetrapeptide binding 

enzyme and accommodates peptide Ser-Cys-Cys-Ser(ox) in a cis 

n 

ontrast, mTR3 shows a more narrow tetrapeptide binding pocket, which restricts the 

 

 

 

 

 
er to explain why mammalian thioredoxin reductase (TR) requ

m Drosophila melanogaster (DmTR  we have solved the X-ray 

 structure of DmTR in the truncated form (missing the C-terminal tripe

s-Ser) at 2.4 Å resolution. We have also solved th

) can utilize Cys,

tripeptide Cys-Sec-Gly) at 2.25 Å resolution, though refinement is not complete. The 

NMR structures of the oxidized tetrapeptides used in the peptide complementation

studies were oriented in the active site of both mTR3 and DmTR using oxidiz

d

pocket than the mouse 

conformation that allows for protonation of the leaving group Cys by His464′. I

c

mammalian redox-active tetrapeptide Gly-Cys-Sec-Gly to a trans conformation. This 

places the Sec residue further away from the conserved catalytic histidine residue into a 

position unsuitable for protonation. The analysis here explains why DmTR can function 

with Cys but mTR3 requires Sec as a low pKa leaving group.   
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ETHODS 

 

300 mM NaCl and 1 mM EDTA then concentrated to 26 mg/mL.  Crystals were grown at 

containing 6 µL protein, 3 µL reservoir, and 1 µL of 10 mM NADP.  Crystals (280 x 100 

crystal in reservoir solution containing 4 % increments of ethylene glycol for 4 min per 

ir solution containing 150 

M MES pH 5.5, 2 % ethylene glycol, and 23 % PEG 6000.  Hanging drops were 8 µL 

 size with 5 µL of protein, 2 µL of reservoir, and 1 µL of 10 mM NADP.  Crystals 

1000 x 240 x 240 µm) were fully grown in 1 to 3 days. Cryoprotection was achieved by 

ipping the crystal in reservoir solution containing either a final concentration of 36 % 

EG 6000 or 25 % ethylene glycol for 5 minutes. 

 

M

Crystallization of TR from Drosophila.   

Purified DmTR was dialyzed against 10 mM potassium phosphate pH 7.4 with 

20 oC using the hanging drop diffusion method with a reservoir solution containing 200 

mM succinate pH 5.5 and 22 % PEG 6000.  Hanging drops were 10 µL in volume 

x 100 µm) were fully grown in 5 to 7 days. Cryoprotection was achieved by dipping the 

step until a final concentration of 20 % was achieved. 

Crystallization of TR from Mouse.   

Purified mTR3 was dialyzed against 10 mM potassium phosphate pH 7.4 with 

300 mM NaCl and 1 mM EDTA then concentrated to 25 mg/mL.  Crystals were grown at 

20 oC using the hanging drop diffusion method with a reservo

m

in

(

d

P
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ollection, Structure Determination and Refinement for DmTR.   

Data was collected at –169 °C using a Rigaku RU-H3R generator with a copper 

rotating r. The data was indexed using DENZO 

and scaled and merged using SCALEPACK (161).  The structure of rat TR1 (PDB 

1H6V) was used for molecular replacement routines with CNS (v 1.1)(162).  The cross-

rotation search yielded a single peak 2.8σ above the mean and the translational search 

found a peak 2.1σ above the mean.  Rigid-body refinement reduced the R-factor to 0.46 

for data from 15 to 2.4 Å.  Data were processed using space group R32.  Model building 

was based upon simulated-annealing omit map interpretation with the graphics program 

O (163).  Successive rounds of refinement were performed by simulated annealing, 

occupancy, and B-factor refinement using CNS and CCP4 (164).  In the later stages of 

refinement, the position of the FAD as well as the NADP (minus the nicotinamide 

moiety aps. Final refinement was performed using 

REFMAC5 (

The oxidized tetrapeptides Ac-GCUG, Ac-GCCG, and Ac-SCCS were examined 

by NMR spectroscopy and found to exist as a population of four major conformers 

Data C

 anode on a Mar345 image plate detecto

) was determined by fitting omit m

165) in CCP4, version 5.0.2, with the entire model as a single TLS group. 

Electrostatic surface maps were computed using GRASP (166). All electrostatic maps are 

in units of kT/e where k is the Boltzmann’s constant, T is the absolute temperature, and e 

is the proton charge. The scale is –11 (red), 0 (white), and +11 (blue). Images were 

generated using PyMOL (167).    

C-terminal Peptide Structure and Docking.  
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(Deker

with a vicinal disulfide bridge (58).  Each of the four conformers was placed at the 

reaction interface proximal to the conserved flavin-associated active site sequence 

CVNVGC of both DmTR and mTR3 (PDB 1ZKQ) (35).  Because of the high similarity 

between the reaction mechanisms of GR and TR, we used the orientation of oxidized 

glutathione (GSSG) in the active site of GR (PDB 1GRA, (34)) to orient the structures of 

our oxidized peptides in the active site of TR.  The disulfide bond of the oxidized 

peptides was placed in an orientation similar to that of the disulfide bond of GSSG and 

evaluated for the potential to form the interchange mixed-disulfide as well as for 

positioning of the leaving group in relation to the catalytic histidine of GR and TR.  

Additional restrictions on the placement of the peptide were imposed by the covalent 

interchange mixed-disulfide structure of GR (PDB 1GRE (34)).  Using the two GR 

structures, priority was given in the peptide modeling to the first step (interchange) of the 

GR GSSG-dependent oxidative half-reaction by super-positioning of the Cβ and sulfur 

(or selenium) atoms to the interchange cysteine of glutathione I (GSH I).   

Independent fits for each peptide were performed for both cysteines in peptide 

SCCS(ox), or the Cys and Sec in peptide GCUG(ox), as the interchange residue. 

Alignments were performed using the graphics program O (163). Each aligned 

conformation was evaluated for steric and electrostatic interactions. (Note: In the analysis 

below TR3 as deposited for the structure 

1ZKQ (

numbering system. For reference, this places Sec as residue 523 rather than residue 489.) 

 and Hondal, unpublished) as has been previously described for a similar peptide 

we have used the residue numbering for m

35) to make it easier for the reader should they wish to view the PDB file. The 

authors of this deposited structure retained the mitochondrial leader sequence in their 
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Crystallization of TR.  

 for mTR3 did 

provide

 

    

RESULTS AND DISCUSSION 

 

In the methods section of this Chapter are the optimized conditions for 

crystallization of mTR3 and DmTR. Both enzymes went through extensive screening to 

achieve these conditions and throughout the optimization process, some key trends and 

observations were made. The optimized conditions for mTR3 generated amazing crystal 

formation that could be observed in real time and resulted in extremely large crystals 

(Figure 41). It is expected that these crystals could be used for high-resolution studies in 

the future. The current space group is I4122 and the data is 95 % complete at 2.25 Å with 

the current Rfree at 31.7 % (Table 15). However, the mouse structure refinement was not 

completed, as it was published by another group (35). Therefore, this published structure 

was used for the analysis within this Chapter. The crystallization process

 the groundwork to crystallize DmTR in a much shorter time frame.  

Both enzymes have several observations in common. The primary challenge was 

hypernucleation, usually in the form of long thin needles. An example of this effect is 

shown in Figure 42. Both enzymes preferred PEG 6000 as the precipitant with lower 

molecular weight PEGs resulting in either increased hypernucleation or no development 

and higher molecular weight PEGs typically resulting in precipitation of the protein 

rather than crystal formation. This effect could also be reduced by the addition of a small 

molecular weight PEG such as 1000 or the addition of ethylene glycol. These additives
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re effective in the 1 % – 5 % range with the ethylene glycol being the most effective. 

0 could range from 18 % to 25 % with protein 

oncentrations in the 20 – 30 mg/mL range. This high concentration could be achieved by 

increasing the NaCl to 300 mM in the protein dialysis buffer prior to concentrating. 

Lower protein concentrations resulted in hypernucleation.  

zymes was a 

modifie

we

The concentration of PEG 600

c

An increase in buffer concentration was also a contributor to producing fewer and 

larger crystals. Most commercial screens begin with 100 mM buffer, but 150 – 200 mM 

buffer was most effective for these proteins. Both proteins preferred pH 5.5 and could 

form crystals with MES (preferred by mTR3), succinate (preferred by DmTR), or citrate 

as buffer. A decrease in pH inhibited crystal formation while an increase in pH increased 

the hypernucleation. Screens with pH > 7.0 most commonly resulted in either 

precipitation of the protein or conversion of the needles to clusters of a thin, hair-like 

morphology. Phosphate buffers were to be avoided as they often formed salt crystals, 

especially when screening with metal salts (often zinc or calcium) as the precipitant. As a 

result of this experience, the protein storage buffer was reduced to 10 mM phosphate 

buffer for crystallization samples. The final key to crystallization of these en

d droplet ratio. It is typical to use equal volumes of reservoir solution and protein. 

The best crystal conditions for TR used reservoir solution at half the volume of the 

protein. 

Cryoprotection was deemed necessary for diffraction of both proteins as room 

temperature capillary mounts were not suitably stable for the time to collect a data set, 

and as crystals of equal size were 1 – 2 Å higher in resolution when cryoprotected. The 

means of cryoprotection, however, was usually trial and error. Four different data sets 
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and d) 25 % ethylene glycol. 

This in

Crystal Structure of TR from Drosophila.   

VK).  Residues 487 and 488 showed weak density (Figure 44) and high B 

factors

were collected for mTR3 and three were collected for DmTR with each having different 

conditions. Each DmTR condition contained ethylene glycol but the method varied from 

a single concentration soak for 5 or 10 minutes to the 2 % incremental additions used for 

the data set resulting in the final structure. The mTR3 conditions were a) increasing to 36 

% PEG 6000, b) 30 % glycerol, c) 14 % ethylene glycol 

consistency in conditions resulted in the consumption of large numbers of crystals. 

Fortunately, crystals were not a limiting factor due to their rapid growth for both 

enzymes. However, for DmTR especially, individual droplets had a limited lifespan once 

we began removing crystals. Upon accessing a droplet, precipitation of non-crystallized 

protein began to develop and the remaining crystals mottled. An individual drop could be 

used for 1 – 2 hours before the crystals became unusable.  

A representative crystal used to collect the data is shown in Figure 43.  The 

crystal belongs to the space group R32, has a single monomer in the asymmetric unit, and 

the physiological dimer is generated by the two-fold symmetry axis. The final model has 

an Rfree of 24.7 % at a resolution of 2.4 Å (Table 16).  Truncated DmTR has 488 residues 

of which 8-488 were observed in the electron density and deposited in the final model 

(PDB 2N

, which agrees with previous results where the electron density of the C-terminal 

tail containing the second redox active disulfide of the enzyme was either very weak or 

absent in the crystal structures of rat TR1 (36) and mTR3 (35).  The overall fold is as 

expected for a GR family member with an N-terminal FAD-binding domain, a NAD(P)-
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n in Figure 47. DmTR shares 

55 % sequence identity with mTR3 and the majority of sequence deviations are found on 

external loops, primarily in the NADP-binding domain.  A distinct difference in the 

structu

binding central domain, and C-terminal dimerization domain (Figure 45).  The position 

of the FAD and NADP were verified during refinement by multiple iterations of 

annealing while omitting the cofactors. The enzyme has low affinity for the oxidized 

form of the NADP cofactor, which is evident in the crystal structure by the absence of 

clear density for the nicotinamide moiety and high B factors for the remaining atoms of 

the cofactor. The physiological dimer is generated by the crystallographic two-fold 

symmetry and is shown in Figure 46.   

 The DmTR model has a RMS residual of 0.84 Å upon least squares superposition 

of the Cα atoms to those of mTR3 (PDB 1ZKQ), 1.15 Å to rat TR1 (PDB 1H6V) (36), 

and 1.16 Å to human GR (PDB 1GRA) Table 17.  A structural overlay of DmTR and GR 

displaying the essential catalytic components of GR is show

res is observed at the interface where thiol-disulfide exchange takes place between 

the FAD-associated disulfide and the C-terminal disulfide motif of the adjacent monomer 

of TR.  Helix 1 (residues 19-29), helix 3 (residues 97-121) and helix 6 (residues 335-347) 

compose the Rossman fold helical face of the FAD-domain.  Helix 1 contains the 

conserved Lys26, previously suggested as a potential anchor for the carboxyl terminus 

(36), while helix 2 contains the conserved active site sequence CVNVGC.  

Helix 3 is of particular interest as the residues projecting toward the interface are 

each smaller compared to the mammalian enzymes containing Sec (Figure 48A).  For 

DmTR the residues are Val110, Thr114, and Asp117 as is the case for A. gambie and A. 

mellifera, which have C-terminal sequences similar to that of DmTR (TCCS and SCCS, 
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ted for Phe 

404’ fo

respectively).  While valine occupies position 110 in DmTR, bulkier amino acids Leu or 

Ile are found at the equivalent position in mammalian TRs.  Threonine114 of DmTR is 

replaced by either His or Tyr at this position in the mammalian enzyme (Figure 48B).  

The amino acid at position 117 is most variable when comparing sequences, Asp in 

DmTR, but is the bulkier Gln (numbered 146) in mTR3.  Additionally in both 

mammalian TR structures (rat TR1 (36) and mTR3 (35)), these residues also project 

towards the interface. 

In addition to residue substitutions in helix 3, the widening of the substrate-

binding site is contributed to by the rotation of helix 3 away from the active site and 

towards the dimer interface. This is analogous to the rotation observed for the equivalent 

helix, Figure 49, in trypanothione reductase (TryR) when compared to GR for 

accommodation of the larger trypanothione substrate (37, 168). The movement is limited 

to turns 2-5 of the 6-turn helix from Asn105 to Leu118 (this is Asn134 to Leu147 in 

1ZKQ) with a maximum shift of 1.68 Å at Val110. The source of this shift does not 

appear to be a function of residue substitutions at the packing between helix 2 and 3 but 

rather a packing interaction between His 106 in helix 3 and Phe404’. This residue is 

within the helix between stands 3 and 4 of the dimerization domain of the second 

molecule and follows a conserved bulky hydrophobic residue, which packs within the 

dimerization domain. While His106 is conserved in TR there is a Thr substitu

r the mammalian enzymes (Thr437’ in 1ZKQ). His 106 was previously suggested 

to be a base catalyst for DmTR (36) however results from recent mutagenesis studies 

indicate a structural role instead (121).  
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The electrostatic surface potential calculated for DmTR was compared to that of 

mTR3, rat TR1, and GR (Figure 50). The most electropositive was GR and the most 

electronegative was rat TR1 in the general ranking (+++) GR, mTR3, (-) DmTR, (---) rat 

TR1. While the three TRs show significant differences, neither shows significant 

electropositive potential at the GR substrate-binding pocket. This is significant in three 

areas. The first is in the lack of activity for TRs toward GSSG. The GSSG molecule 

contains four acidic groups that must be stabilized in the substrate-binding pocket for GR. 

The unsuccessful attempt in the literature to convert human TR1 to a GR by a 16 amino 

acid C-terminal truncation and mutagenesis concluded the failure to do so was due to the 

negative electrostatic potential of TR (149). This conclusion is consistent with the 

equivalent observation in DmTR. 

The second point is in reference to the loss in activity reported upon mutation of 

the serines in the DmTR motif to aspartic acids (65).  Each of the mutants, DCCG, 

GCCD, and DCCD showed less activity than the GCCG mutant. Firstly, increasing the 

local negative charge surrounding and electron transfer step is expected to be 

unfavorable. Second, this introduction of local charge at an already electronegative active 

site would be less favorable as well.       

The final area of significance is the difference in DTNB reductase activity 

observed for truncated forms of TR. Truncated mTR3 shows very high DTNB reductase 

activity (856 min ), which is 60 % of the wild type activity. The truncated DmTR shows 

good activity (178 min ), which is nearly identical to the wild type activity. These results 

Electrostatic Surface Potential of DmTR.  

-1

-1
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are in s forms of human TR1 (149) and mutant 

rat TR1 (109) which show very low DTNB reductase activity (33 min-1 and 63 min-1 

respectively) that are <5 % of the respective wild types. DTNB, like GSSG, is a 

negatively charged substrate with a carboxylic acid group on each TNB-. Upon reduction 

of the DTNB disulfide, the low pK  of the TNB thiolate means it will be unprotonated. 

This results in a significant generation of local negative charge during the reaction. The 

activity trends for DTNB with the truncated TRs follow the electronegativity trends 

where mTR3 is the least electronegative and has the highest activity while rat TR1 is the 

most electronegative and has the least activity. Similar results have been recently 

reported for the reactivity of a reversible disulfide on the surface of yellow fluorescent 

protein with GSSG (169). Engineering of a more positive electrostatic surface by 

mutagenesis of three local surface residues to Arg resulted in a 13-fold increase in the 

rate of thiol-disulfide exchange for the negatively charged GSSG but very little change in 

the reactivity towards the neutral substrate HED (2-mercaptoethanol in disulfide form) or 

the positively charge substrate cysteamine disulfide (169). Therefore, the increase in K  

for DTNB as well as the difference in activities between mutant forms of different TRs 

could be explained by comparing differences in the active site surface electrostatic 

potentials. This is further supported by the observed increase in DTNB efficiency upon 

neutralization of the C-terminal carboxylate in mTR3. 

One of the key questions in the TR mechanism is how the C-terminal redox dyad 

is reduced by the N-terminal redox center on the opposite subunit.  The C-terminal redox 

tark contrast to that reported fot truncated 

a

m

Alignment of Tetrapeptides with GSSG.   
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peptide Ac-SCCS(ox) to the thiol-

disulfide interchange step observed in GR ( mation of the mixed-disulfide 

between Cys57 and a Cys from the C-terminus of the second molecule of TR in the 

Drosop

center is either a Cys-Cys or Cys-Sec dyad as we have introduced earlier.  Our analysis 

begins with the known conformations of a Cys-Cys(ox) dyad (which are rare in protein 

structures) that have been reported previously.  For example, the solution structure of Ac-

Cys-Cys-NH2(ox) has been examined by NMR spectroscopy and found to exist as a 

mixture of four different conformers (58, 170).  These conformers are designated as C+, 

C-, T-, and T′-.  The designations “C” and “T” represent the geometry of the peptide 

bond as either cis or trans, whereas the designations “+” and “-” refer to the helicity of 

the disulfide bond.  It was found that peptide Ac-Cys-Cys-NH2(ox) also had a second T- 

conformer that is defined by a larger separation of Cα atoms and this peptide was 

designated as T′-.  Our NMR solution studies of peptides Ac-SCCS(ox), Ac-GCCG(ox), 

and Ac-GCUG(ox) also show that the same four major conformers described by Reitz 

and coworkers are also the major conformers of these three peptides which are 

summarized in Table 18 (Deker and Hondal, unpublished).   

The observation that oxidized tetrapeptides can serve as substrate for the 

truncated forms of TR demonstrate that TR, like GR, may be considered a disulfide 

oxidoreductase where its own C-terminus is the cognate substrate.  Using this 

relationship and the available structures for GR, we started by asking the question: which 

of the four known conformers of Cys-Cys(ox) aligns with GSSG in the GR structure?  

We therefore aligned the four known conformations of 

34).  The for

hila homodimer would represent the binding of GSSG in GR (PDB 1GRA) and 

the formation of the subsequent mixed-disulfide intermediate (PDB 1GRE).  We 
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r each of the alignments, no 

additio

hypothesize that this step, interchange, is to be structurally and biochemically conserved 

between GR and TR. The comparison of these two GR structures shows the primary 

difference is the movement toward each other of the interchange Cys (Cys58 of GR) side 

chain and the Cys side chain from GSH I.  Using GSH I of GSSG as a reference (Figure 

47), each tetrapeptide was fit such that the position and angle of the cysteines involved in 

the interchange step were equivalent.  

Altogether, we evaluated eight possible orientations for a given tetrapeptide in the 

active site of TR because each of the four conformations can be overlaid with the sulfur 

atoms of GSSG in two different orientations (by rotation of 180°), which would either 

place the N-terminal Cys in the interchange position or the C-terminal Cys in the 

interchange position. To form the interaction between the C-terminal carboxylate and 

Lys29 in rat TR1 (Lys26 in DmTR or Lys56 in 1ZKQ) proposed by Sandalova (36), the 

C-terminal Cys or Sec must be in the interchange position. Fo

nal electrostatic interactions or hydrogen bonds are predicted without requiring 

significant changes of the peptide positioning such that the chemistry is unlikely to occur. 

This is not unexpected as: 1) the C-terminal tail is quite mobile, 2) is normally covalently 

attached to the protein and likely does not require binding contacts (demonstrated by the 

peptide assays), and 3) even in GR, most of the contacts with the GSSG substrate are 

water mediated (see Chapter 1) only a few interactions are direct contacts.   

Upon alignment of the sulfur atoms of peptide SCCS(ox) with the sulfur atoms of 

GSSG, it is clear that peptides in the C+ conformation place the leaving group Cys (C-

terminal Cys) in a favorable position for protonation from His464′ (His467′ in GR, 

His497′ in mTR3, see Figure 51A).  This histidine has been shown to be essential for GR 
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r to align the C-terminal sulfhydryl of peptide 

SCCS(

chains of Ser.  

The T-

(88) and proposed as a conserved acid/base catalyst throughout the protein family (97, 

168) including TR (93, 99).  Maintaining the interchange position and angle for the trans 

(T- and T-′) peptides, however, results in a rotation of the leaving group Cys by 

approximately 90o (Figure 51B) as is also observed for the C- conformation.  This moves 

it away from His464′ by increasing the distance from 3.5 Å to 5.1 Å and to an angle not 

reasonable for protonation.  In orde

ox) in the T- conformation with the GSH II Cys so that it would be in a favorable 

position for protonation from His464′, the interchange cysteine (N-terminal Cys of 

SCCS(ox)) must be rotated away from the interchange residue (Cys57). Therefore, for 

protonation of the first leaving group by His464′, the ring must be in the C+ 

conformation.  

Figure 52 models the interface between subunits where the oxidized tetrapeptide 

would be reduced by the N-terminal redox center in DmTR and mTR3, respectively.  As 

can be seen in the Figure, the binding pocket for the oxidized tetrapeptide is significantly 

larger in the case of DmTR (Figure 52A) compared to that of mTR3 (Figure 52B).  This 

larger binding pocket in DmTR can accommodate the larger size of the C+ conformer of 

the SCCS(ox) tetrapeptide.  The distance from the NH of the N-terminal Cys to the CO of 

the C-terminal Cys is larger in the C+ conformer than in the T- conformer.  In addition, 

the larger binding pocket of DmTR can also more easily fit the bulkier side 

 conformer is much more compact and forms a tight turn structure that is better 

accommodated in the binding pocket of mTR3.   

Using this same analysis with the mTR3 structure published by Biterova et al. 

(35) (PDB 1ZKQ) using our NMR structures of GCUG(ox) (Deker and Hondal, 
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residues of helix 3 that makes this a poor fit in the binding pocket. 

Sec with Cys greatly impairs this ring 

opening step as can be seen in 

unpublished), we find that GCUG(ox) in the T- conformation with Cys in the interchange 

position appears to be the most favorable conformation for interchange with Cys86 from 

chain A.  With Sec oriented in the interchange position, an unfavorable interaction with 

the carbonyl from the adjacent Cys residue occurs with His497′, but we would like to 

emphasize that we cannot rule out the T- orientation with Sec in the interchange position.  

The fit of the GCUG(ox) tetrapeptide in the binding pocket of mTR3 is shown in Figure 

52D. A surface representation of tetrapeptide SCCS(ox) in the C+ conformation docked 

in the binding pocket of DmTR is shown in Figure 52C for comparison.  A stereo 

diagram of tetrapeptide GCUG(ox) in the C+ conformation positioned in the binding 

pocket of mTR3 is shown in Figure 53.  This stereodiagram clearly shows the steric 

clashes from the 

The peptides GCDCLG and GCLCDG fall into structural classifications different 

than the other peptides. Introduction of the D-form amino acid in either position results in 

a rigid structure that is 100% in a single conformation. Placing D-Cys in the first position 

results in a T- like conformation while placing it in the second position results in a T+ 

like position. As seen in Figure 54A, the D-L peptide is more compact and is fits at the 

reaction interface while the L-D peptide shown in Figure 54B is very elongated and is 

not well fit to the reaction interface. 

Structural Explanation for the Peptide Complementation Data.  

In the mammalian enzyme, replacement of 

Table 12 Chapter 4.  For example, the ratio of turnover 

rates for peptides Ac-SCUS(ox) and Ac-SCCS(ox) is 511 fold, which is similar to the 
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f the 

tetrape

NB is a substrate for TR and cystine is not. Since 

DmTR can utilize cysteine in the SCCS or GCCG motif, the final piece of the answer is 

the structure. Both DTNB and cystine are linear intermolecular disulfides. A linear 

molecu

308 fold difference between peptides Ac-GCUG(ox) and Ac-GCCG(ox).  These data 

strongly support our hypothesis that the ability of mTR3 to protonate the leaving group in 

the ring opening step of the catalytic cycle is greatly impaired compared to DmTR.  Our 

interpretation that proton transfer to the leaving group is partially rate limiting is in 

agreement with conclusions made about the GR mechanism, where proton transfer from 

His467′ to the thiol of GSH II has also been shown to be partially rate limiting (94, 95). 

In DmTR, the presence of a Sec residue does not radically alter the rate of ring 

opening as it does for mTR3.  For example, if we compare the ratio of turnover rates for 

peptides Ac-SCUS(ox) and Ac-SCCS(ox) we see only a 5.65 fold difference.  This ratio 

is increased to 36 fold when comparing peptides Ac-GCUG(ox) and Ac-GCCG(ox).  A 

24 fold increase is observed for DmTR when the effect of flanking residues o

ptide motif is examined by comparing the ratio of turnover for peptides Ac-

SCCS(ox) and Ac-GCCG(ox).  In the mammalian enzyme, the presence of flanking 

serine residues on either side of the Cys-Cys or Cys-Sec dyad only slightly (3-6 fold) 

improves the activity (Table 13 Chapter 4).  These data indicate that the ability of 

DmTR to protonate the leaving group is not impaired, as is the case for the mammalian 

enzyme, since it allows for the C+ conformation. This interpretation provides a better 

answer to the question as to why DT

le in not likely to be able to adopt the C+ type conformation conferred by the 

intramolecular vicinal disulfide ring, which is why DTNB with its low pKa is a substrate 

but cystine is not.    
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o 

likely 

Other crystallization trials.  

ed previously, the available TR structure from rat (1H6V) (36) and 

When this data is put in context with the structural data, we can explain the loss of 

activity when Sec is replaced with Cys in the mammalian enzyme and why Cys-

containing TRs (such as DmTR) can function with high activity. DmTR has a more open, 

interfacial active site than the mammalian enzyme.  The residues from helix 3 proximal 

to the FAD-associated active site are less bulky to more freely accommodate the 

hydroxyls of the adjacent serines (SCCS).  The increase in the available space is als

to make the enzyme more amenable to the conformational switching of the 

SCCS(ox) peptide from T- (trans) to C+ (cis) necessary to protonate the leaving group 

cysteine during interchange.  The GCDCLG(ox) peptide, due to its rigid nature, is likely to 

require extra space for rearrangement rather than a simple ring flip to receive the proton 

from His464′. This would account for the lower activity in DmTR compared to Ac-

GCCG(ox) and lack of activity with mTR3. In contrast to DmTR, the mammalian TRs 

have evolved a more restricted active site by incorporating bulkier residues on helix 3. 

This smaller active site shows a steric preference for Gly compared to Ser and was unable 

to accommodate either peptide in the C+ conformation without requiring significant 

rearrangement of the active site. Exclusion of the C+ conformation would make Sec 

essential as the first leaving group in the ring opening step for mTR3. 

Several other crystallographic approaches to study TR were investigated but are 

currently without success. The structure reported in this Chapter is of the truncated form 

of DmTR used in the peptide complementation studies, as was the case for the mTR3 

structure. As indicat
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mouse 

 the cryoprotectant. 

The results from these experiments and absence of the C-terminus from the previously 

published TR structures demonstrates the significance of using the peptide 

comple

(1ZKQ) (35) do not have structural information for the C-terminus. Crystallization 

of the semisynthetic mTR and the wild type DmTR was attempted but have yet to 

produce diffraction quality crystals. In the case of mTR3, clusters of thin, hair-like quasi-

crystals developed. Attempts to furthur evaluate these were limited by material. 

With DmTR, the starting material is not limiting but issues with hypernucleation 

and rapid needle formation are currently hampering diffraction quality crystal 

development. Variations in buffer, PEG, pH, additives, and protein concentration that 

were successful with the truncated forms have not been useful with the full length 

enzyme. The addition of reducing agent or NADPH has also been explored and did 

partially reduce the hypernucleation, but this is counter to the aims of this project as it is 

the oxidized form of the C-terminus that we are interested in.  

Co-crystallization and soaking-in experiments have been explored with mTR and 

the peptide CUG(ox). Data sets were collected and difference Fourier did not reveal any 

bound peptide. These experiments are hampered by the low solubility of the mammalian 

motif and the low affinity the enzyme shows for the small peptide, as discussed in the  

previous Chapter. Not only are high concentrations of peptide required to saturate the 

enzyme, but the low affinity also means it is likely to be displaced by

mentation approach to establish a GR-like system for TR. Establishing this GR – 

truncated TR relationship demonstrates the relevance of the peptide modeling.   

As indicated in the Introduction, there is no structural or biochemical information 

on the interaction between TR and Trx. Co-crystallization of mTR3 with Trx was briefly 
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 the Trx 

active 

ox state of mTR3 several 

other m

investigated. The crystals and a SDS-PAGE gel are shown in Figure 55. Addition of Trx 

to the droplet resulted in beautiful crystals (Figure 55A) but the Trx remained in the 

droplet (Figure 55B). Formation of a covalent complex was also investigated, as was 

done for TR from E. coli (49, 171). Following this previous work, we cloned

site mutant Cys32-Gly-Pro-Ser (wild type is Cys32-Gly-Pro-Cys) and the C-

terminal mTR mutant Gly-Ser-Cys-Gly. The Cys32 in Trx is reacted with DTNB to form 

a Trx-TNB mixed disulfide, which can be attacked by the C-terminal Cys in the mTR3 

mutant to form the complex. After many variations of this experiment, only Trx dimer 

and no complex was observed. It was concluded that several side reactions could be 

occurring. We first demonstrated that the truncated mTR3 reduced the Trx-TNB disulfide 

via the N-terminal active site. Secondly, depending on the red

ixed disulfides could form to prevent the desired complex.  

 



 

 

Figure 41. Crystal of mTR3 with x-ray diffraction pattern. 

The space group currently used in refinement is I4122. The data processed to >95 % 
complete at the limit of the range collected, 2.25 Å. 
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Table 15. Crystallographic statistics for amTR3-G. 

 
Cell Parameters  
space group I4122 
a, b, c (Å) 110.509 
 110.509 
 208.025 
Data Collection Statistics  
     resolution range (Å) 15 – 2.25 
     unique reflections 29,494 
     completeness (%) 95.6 (95.4) 
     redundancy 5.23 
     Rmerge

b (%) 8.1 
     I/σ 21.3 (6.6) 
Model Statistics  
     Rwork

c 28.3 
     Rfree

d 31.7 
     # Atoms, non-hydrogen  
        Protein 3679 
        Ligand 53 
     r.m.s. deviation, bonds (Å) 0.008 
     r.m.s. deviation, angles (o) 1.08 
     Ramachandran plot (%)  
        most favored regions 86.3 
        additionally allowed 12.7 
        generously allowed 1.0 
        disallowed regions 0.0 

aMouse mitochondrial TR missing the C-terminal tripeptide Cys-Sec-Gly. 
ment of diffraction intensity 

ction excluded from refinement 

b
PRmerge = ΣΣI(h)BjB - <I(h)>/ ΣI(h), where I (h)j is the jth measure

of reflection h and <I(h)> is the average intensity of reflection h for all j measurements.   
cRwork = Σ(|FBoB| - |FBcB|)/Σ|FBoB|.   
dRfree is calculated using a test set of 10% of the refle

 



 

 

 

 

Figure 42. Hypernucleation of TR crystals. 

Example of the hypernucleation in the needle form seen for mTR3 (shown) and DmTR. 
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Figure 43. Crystal of DmTR with x-ray diffraction pattern. 

The crystal and diffaction pattern for the structure of DmTR solved at 2.4 Å resolution 
work = 19.8 %, Rfree = 24.7%). 

 

(R
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Table 16. Crystallographic statistics for aDmTR-S. 

 
Cell parameters  

space group R32 

a, b, c (Å) 
151.487 
151.487 
134.259 

Data collection statistics  
wavelength (Å) 1.5418 
resolution range (Å) 15 – 2.4 
unique reflections 22,987 
completeness (%) 98.7 (90.3) 
redundancy 7.85 
Rmerge (%)b 5.9 
I/σ 36.8 (2.8) 

Molecular replacement search models 1H6V 
Model statistics  

Resolution (Å) 15 – 2.4 
Rwork

c 19.8 
Rfree

d 24.7 
Refined model  

# amino acid residues 480 
# FAD molecules 1 
# NADP molecules 1 
# Water molecules 121 

# Atoms, non-hydrogen  
protein 3684 
ligand 92 

r.m.s. deviation, bonds (Å) 0.011 
r.m.s. deviation, angles (°) 1.359 

 
89.0 

additionally allowed 9.6 

49.14 
Range of B-factors (ÅP

2
P) 39.6 – 95.7 

Ramachandran plot (%) 
most favored regions 

generously allowed 0.7 
disallowed regions 0.7 

Average B-factor (ÅP

2
P) 

aDrosophilia melanogaster TR missing the C-terminal tripeptide Cys-Cys-Ser. 
bRmerge = ΣΣI(h)BjB - <I(h)>/ ΣI(h), where I (h)j is the jth measurement of diffraction intensity 

f reflection h and <I(h)> is the average intensity of reflection h for all j measurements.   
cRwork = Σ(|FBoB| - |FBcB|)/Σ|FBoB|.   
dRfree is calculated using a test set of 10% of the reflection excluded from refinement 

P

o



 
 

  

 

Figure 44. O  DmTR C-terminus. 

 

mit density map for
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igure 45. The crystal structure of DmTR. 

he figure shows a cartoon representation of TR (left), the structure of DmTR (right), and 
the protein sequence (bottom). The color-coding correlates the linear sequence to 

mplified three-domain architecture. 
The dimerization domain (black) is continuous with the sequence while the FAD binding 

omain and NADP binding domain are not. For example, segment 1 extends beyond the 
NADP binding domain and contributes to the dimerization interface and segment 5 is 
within the FAD binding domain but is C-terminal to the NADP binding domain. 

F

T

segments in the structure. The description of TR is si

d
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Figure 46. The homodimeric model of DmTR. 

hain A in green and chain B in gray.  The The homodimeric model of DmTR with c
SCCS(ox) tetrapeptide in the C+ is oriented with Cys489′ as the interchange and shown 
in space-filling model. The NADP without the nicotinamide moiety is indicated in blue, 
the FAD in dark red. The prime designation for residue numbers indicates the B chain of 
the TR homodimer. 
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Structural alignment of DmTR and GR. 

Structural alignment of Glutathione Reductase (1GRA) (34) and DmTR (Green). The 
tic components are shown along with 

Figure 47. 

residue numbers are for DmTR. Essential cataly
GSSG in purple 
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Table 17. Least squares structural comparison of the aGR family. 

 

Structure 1 Structure 2 bR.M.S.D. Å 

 

cDmTR dmTR3 (1ZKQ) 0.84 

DmTR eRat TR1 (1H6V) 1.15 

DmTR GR (1GRA) 1.16 

DmTR fTryR (1BZL) 1.23 

GR TryR 1.09 

 
aGlutathione Reductase (34). 

bC-alpha deviation. 

at cytosolic TR (36). 

fTrypanothione reductase (37).  

 

cDrosophila melanogaster TR. 

dMouse mitochondrial TR (35). 

eR
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.  A
 

 
 
B. 
 
                               106      110     114    117                                   404 
DmTR1 HKLVQS EFFIP 
AmlTR EALRTAVQN FIP 
 AgTR ATLTES FFIP 
MmTR3 KTMAEA FTVA 
 HsTR2 RKMAEAVQNH L H Q TVA 
 RnTR1 EKMTES PLEWTVP 

 CeTR1 NHLRDS EYTIS 

 

Figure 48. Tetrapeptide binding pocket ribbon overlay. 

Panel A is a close-up view of the SCCS(ox) tetrapeptide (blue) in the C+ conformation 
with Cys 489′ as the interchange residue positioned in the DmTR structure (green) with 
an overlay of the mTR3 (PDB 1ZKQ) (35) colored in salmon.  The residues for mTR3 
are indicated in parentheses.  Panel B is a multiple sequence alignment generated with 
ClustalW (131) with either the PDB ID or accession number in parentheses. The 
sequences are TR1 from D. melanogaster (AF301144_1), TR from A. mellifera 
linguistica (AAP93583.1), TR from A. gambie (CAD30858.1), TR3 from M. musculus 
(PDB 1ZKQ), TR2 from H. sapiens (Q9NNW7), TR1 from R. norvegicus (PDB 1H6V), 
and TR1 from C. elegans (AF148217_1). The alignment shows helix 3 from Chain A 
along with the loop from the dimerization domain of Chain B. The numbering is in 
accordance with the TR from Drosophila. 

    
VQNHIKSVNWVTRVDLRDK PT

HVKSVNWVTRVELRTK PTEF
VQNHIKSVNWVTRVDLRDQ PTE
VQNHVKSLNWGHRVQLQDR PLE

VKS NWG RV LQDR PLEF
VQNHIGSLNWGYRVALREK 

VQDHIASLNWGYRVQLREK PL



  

 

Figure 49. GR, TryR structural overlay. 

Structural overlay of glutathione reductase in blue/light blue (1GRA) (34) and 
 is identical to the previous figure 
modate the larger trypanothine 

trypanothine reductase (1BZL) ( 7) red/pink. The iew3  v
demonstrating the equivalent helical shift to accom
substrate vs. GSSG. 
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Figure 50. Electrostatic surface potentials. 

Electrostatic surface potential showing a close-up of the reaction interface where thiol-
disulfide exchange occurs between the conserved N-terminal dithiol and the C-terminal 
tetrapeptide of TR or the GSSG substrate for GR. A) GR (1GRA) (34); B) mTR3 (1ZKQ) 
(35); C) DmTR; D) rat TR1 (1H6V) (36). 
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Table 18. Tetrapeptide conformer distribution. 
Conformer distributions (%) determined by NMR for oxidized tetrapeptides (Deker and 
Hondal unpublished results). 
 

aConformer Ac-GCUG Ac-GCCG Ac-SCCS 

C+ b 9 33 47 

C- 0 6 5 

T- 70 47 40 

T-‘ 21 14 8 

 
aThe orientation of the peptide bond between the Cys-Cys or Cys-Sec 
dyad can be cis (C) or trans (T). 

 
  bThe helicity (+ or -) of the disulfide bond. 



 

 

Figure 51. SCCS(ox) aligned with GSSG. 

Alignment of The 
tetrapeptide st R spectroscopy and placed in the active 

sition) in the GR 
red) and the helical loop of the 

conserved active site sequence CVNVGC, which are components of chain A.  Also 
shown is Arg473′ from the B chain as well as His464′ and Glu469′, which are analogous 
to His467′ and Glu472′ in GR.  The oxidized C-terminal disulfide of the B chain is 
reduced by the FAD-associated disulfide of the A chain during the enzymatic cycle.  The 
residues from TR are in gray, oxidized glutathione is in purple, the tetrapeptide is in 
green, and omit electron density for the 2.4 Å structure is shown.  Cys57 of DmTR is in 
position for interchange with GSH I and the Cys489 of the SCCS(ox) tetrapeptide, which 
is indicated by the orange dashed line.  Glutathione II is in position from protonation 
from His464′ as is Cys490′ of the SCCS(ox) tetrapeptide when in the C+ conformation 
(Panel A), but not when in the T- conformation (Panel B) as indicated by the red dashed 
line.  Only the cysteines for the SCCS(ox) peptide and GSSG are shown for simplicity.   

 
 
 
 

the tetrapeptide SCCS(ox) in the structure of TR from Drosophila.  
ructures were determined by NM

site of TR in accordance to the position of GSH I (the interchange po
structure (PDB 1GRA).  Shown is the FAD cofactor (dark 
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Figure 52. DmTR and mTR3 surface potentials with peptide fits. 

Electrostatic surface potential calculated using for TR showing a close-up of the reaction 
interface where thiol-disulfide exchange occurs between the conserved N-terminal dithiol 
nd the C-terminal tetrapeptide of the adjacent subunit containing the 8-membered ring 
at must be opened during redox cycling. (A) Interface for DmTR; (B) Interface for 
TR3 (PDB 1ZKQ) (35); C) The tetrapeptide SCCS(ox) in the C+ conformation with 
ys489′ in the interchange position for DmTR; D) The tetrapeptide GCUG(ox) in the T- 

with Cys522′ in the interchange position for mTR3. 

  
 

a
th
m
C



 

 
Figure 53. Stereo-view of mTR3 with GCUG(ox) C+. 

Stereo diagram for mTR3 (PDB 1ZKQ) (35) showing residues from helix 3 along with 
the tetrapeptide GCUG(ox) in the C+ conformation with Cys522′ (sulfur in yellow) in the 
interchange position and Sec523′ (selenium in orange) in the leaving group position.. 
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Figure 54. Ribbon view of GCDCLG(ox) and GCLCDG(ox) fits. 

Alignment of the testrapeptides GCDCLG(ox) (A) and GCLCDG(ox) (B) in the active site 
of mTR3 (Salmon) (35) and DmTR (green). 
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Figure 55. Co-crystallization trial of mTR3 and Trx. 

A) Crystals (length 1.5 mm) with the oily background the thioredoxin. B) 12% SDS-
PAGE of the crystal drop. Lane 1, Markers; lane 2, purified mTR3; lane 3, purified Trx, 
lane 4, blank, lane 5; mTR3 crystal from condition without Trx; lane 6 and 8, mTR3 
crystal from co-crystallization trials; lanes 7 and 9, droplet solution from co-
crystallization trials after crystal formation. 
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CHAPTER 6.  
 

CONCLUSION AND MODEL 
 
 
 
 
 

 
 

igure 56. Model for the requirement of SecF  in mammalian TR. 

Prior to the formation of the interchange mixed disulfide, the Cys-containing TR from 
Drosophila melanogaster undergoes conformational change to the cis (+) conformation 
for protonation of the first leaving group (left). The structure of DmTR accommodates the 
flanking Ser residues as well as the peptide in the cis (+) conformation. The structure of 
the mammalian enzyme restricts the peptide to the trans (-) conformation (right) 
preventing protonation of the first leaving group. The low pKa of the selenol (Se-) of Sec 
obviates the need for protonation during the ring opening step.  
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The dissertation presented here has completed three specific aims: 1) development 

of a semisynthetic technique (Ch 3 for structure-function studies 

(Chapter 3), 2) deve ion (Chapter 4), to 

vestigate the mechanism of TR, and 3) determination of the crystal structure of DmTR 

hapter 5) for comparison with mammalian TR. The results from these aims represent a 

gnificant contribution to our field. The structural comparison of mammalian and 

Drosophila melanogaster TRs, in combination with biochemical evidence from full 

length and truncated enzymes has generated the first hypothesis (Figure 56) for the 

requirement of Sec in mammalian TR in the 10 years since Sec was first identified in the 

enzyme. 

We have shown that maintaining Sec in the C-terminal position of the dyad is 

ssential to mTR3 function but that the vicinal motif is not. The data from the peptide 

tion of Sec in mTR3 is 

mily. Our hypothesis that protonation of the first leaving group is partially rate limiting 

in the catalytic cycle of TR is complete agreement with the current understanding of the 

mechanism of GR (88, 94, 95).  

 

  

apter 2) to produce mTR

lopment of a new technique, peptide complementat

in

(C

si

e

complementation assays show that the loss in activity by muta

attributed to a loss in activity in the ring opening step. The structural positioning of the 

oxidized tetrapeptides in accordance with the interchange step of GR with GSSG explains 

why the low pKa of Sec is required for the mammalian enzyme but not DmTR even 

though the catalytic acid base, the His-Glu dyad, is conserved throughout the protein 

fa
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EEPING MECHANISMS IN PERSPECTIVE  

 

derstanding the common elements of a general mechanism is as important as 

underst

K

The GR protein family is an ideal module for the merger of a structural biology 

and biochemical analysis to understand how evolution selects for a common approach to 

an essential process. That process is thiol-disulfide exchange. Each enzyme then adapts to 

a specific need on the basis of a target or a cognate substrate. For example GR, TR and 

TryR function to reduce their cognate disulfides by consumption of NADPH whereas 

LipDH functions to generate NADH by consumption of the cognate dithiol. So, not only 

does a common architecture evolve for compensation of a different cognate substrate, but 

also allows for shifting of equilibrium to reverse the direction of the reaction.  

Un

anding the unique elements of a specific mechanism within a protein family. 

Taking both sets of elements into consideration is essential for structure-based design of 

therapeutics to be effective (6, 14). TR is unique within the protein family in that its own 

C-terminus is the cognate disulfide substrate for the conserved active site. This adds an 

additional thiol-disulfide exchange reaction prior to reduction of its true cognate substrate 

Trx. We expect that the common element is the interchange step resulting in the mixed 

disulfide with the conserved FAD-associated active site. We hypothesize that this step is 

structurally and biochemically conserved between GR and TR. 
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 MAMMALIAN TR  

ccount for 

the nec

low pKa of the Sec would 

become essential due its inability to be protonated by His 497΄ (PDB 1ZKQ). The trans 

conform tion also shows an intramolecular hydrogen bond between the C-terminal 

carboxylate and the amide hydrogen of the penultimate cysteine in the NMR structures of 

the peptides containing a terminal Gly. This would contribute to the stability of the trans 

MODEL FOR THE REQUIREMENT OF SEC IN

 

Selenocysteine has been shown to account for the broad substrate range unique to 

mammalian TRs, including its ability to reduce peroxides (114) and ascorbate (115, 172). 

It has been assumed that the incorporation of the selenium atom in mammalian TR for the 

lower pKa expected for Sec compared to Cys (109), however, one must distinguish a 

selective advantage (broad substrate range) from a necessary function (reduction of Trx). 

The low pKa of Sec does not account for the requirement of Sec demonstrated by the 

dramatic loss in Trx activity upon mutation of the Sec to Cys if the base-catalyzed 

mechanism of the GR family is conserved. The structural analysis here could a

essity for the selenium atom in the mammalian TR.  

Both the Ac-GCUG(ox) and Ac-GCCG(ox) peptides show an equilibrium shift 

towards the trans peptide conformation while Ac-SCCS(ox) shows an equilibrium 

favoring the cis conformation.. Alignment of these peptides in the active site of mTR3 

according to the interchange step of GR also shows a preference for the peptides in the 

trans conformation. In our model, the more restricted tetrapeptide binding pocket of 

mammalian TR resulting from incorporation of bulkier residues and a shift of helix 3 

restricts the peptide to the trans conformation and does not accommodate the flanking 

serines of the Drosophila motif. In the trans conformation, the 

 

a
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 the rate of 

itching to the cis conformation. This could contribute to the decrease in activity 

reporte

conformer and result in the shift in equilibrium to trans and decreasing

sw

d for the mutation of the terminal Ser to Gly (Ser491΄) for the Drosophila TR that 

is not observed for the equivalent mutation for Ser488΄ (65).  

The TR from Drosophila has evolved a different tetrapeptide binding pocket than 

that of the mammalian form of the enzyme. The residues from helix 3 proximal to the 

FAD-associated active site are less bulky to accommodate the hydroxyls of the flanking 

serines of the SCCS motif and allow the peptide to adopt the cis conformation. The 

increase in the available space is likely to make the enzyme more amenable for the 

conformational switching of the GCCG peptide from trans to cis necessary to protonate 

the leaving group cysteine during interchange.  

Our hypothesis is that the catalytic cycle for TR is a dominated by a leaving group 

effect. The first leaving group (Sec in mTR3) must either be in position for protonation 

from the catalytic His during the ring opening step or have a significantly lower pKa. An 

alterative brought to light in the Introduction and in Chapter 3 is the question of 

nucleophilicity. While there is no disagreement in the likely nucelophilic difference 

between Sec and Cys or that the flanking serines in DmTR may increase nucleophilicity, 

the question is the fold contribution. Whitesides (173) and Hupe (156) have characterized 

the rates of thiol-disulfide exchange as a function of pKa, as reviewed in (174, 175). 

Using a series of alkyl and aromatic nucleophiles of determined pKa, Hupe and co-

workers determined an ~3.2 fold change in rate per pKa unit (156). While these systems 

are simplistic in that they do not account for protein conformations, it is rather striking 

that it requires a >3 pKa unit shift for a given nucleophile to produce a 10-fold change in 
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nucleop

 be more difficult to reduce. This is what 

we obs

rate. This is important in that a thee pKa unit difference is that which has been estimated 

for Cys compared to Sec (125).  

It has been postulated that the Sec residue is the attacking nucleophile in the 

reduction of Trx (109).  This is due to the selenolate of a Sec residue being more

hilic than the thiolate of a Cys residue.  Indirect evidence supporting this 

hypothesis is the hydrogen peroxidase activity of the enzyme (63, 68), which is abolished 

upon mutation of Sec to Cys (109). However another role for Sec is as the leaving group 

position of the dyad during the ring opening step as we have argued in our model.  

Placing the Cys residue in the leaving group position by switching positions of the Sec 

and Cys residues should significantly decrease the activity towards all three substrates is 

this study, as the C-terminal selenysulfide would

erved in our results in Chapter 3. 

The kinetic profile of the hydrogen peroxidase activity of the WT enzyme is more 

like that of a chemical reaction (2nd order kinetics) rather than an enzymatic reaction. 

Therefore one would expect the position of Sec to have little impact on the peroxidase 

activity. However, switching positions of the two atoms (S and Se) results in a 30 fold 

decrease in peroxidase activity when selenium content is normalized. A probable 

explanation for this is that the selenylsulfide in this mutant is poorly reduced in the assay. 

This interpretation is further supported by the near WT activity of the Ala insertion 

mutants for all three substrates. These mutants would maintain Cys in the interchange 

position and Sec in the leaving group position of the ring opening step according to our 

model.  
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nce in the Trx assays for the equivalent mutants 

(Chapte

our model that the ring opening step is where Sec is required for mammalian TR 

and that it is likely a function of the chemistry.  

BINDING OR CHEMISTRY (kcat/Km). 

  

The structural interpretation here raises the question of what is actually being 

observed in the peptide complementation assays in Chapter 4. Since the assay conditions 

do not reach saturation, the representation of the plot is in the form of kcat/Km. Can we 

distinguish between binding or conformation and chemistry in our data? In terms of our 

interpretation, we have developed a model that results in the chemistry being dependent 

on binding the correct conformation of the peptide in the ring opening step. In this 

interpretation, the only assumption is that the selenium is not a binding determinant for 

the peptide, which is quite reasonable. The support for this comes from the agreement in 

the fold difference in the kcat/Km of the peptide pairs in the peptide complementation 

assays when compared to the fold differe

r 4, Table 14). 

In the Trx assay, there is very little difference in the apparent Km for Trx between 

the GCUG, GCCG and SCCS mutants of mTR3 (Chapter 3). Similar results are observed 

for the Trx activity with mutants of DmTR published by Gromer et al. (65), which 

included the C-terminal mutants GCUG, GCCG and SCUS in comparison with the wild 

type SCCS. Therefore, the >200 fold difference in kcat/Km for the mutants of mTR3 is 

attributed to the >200 fold difference in kcat. This is the same order of magnitude 

difference in the kcat/Km determined in the peptide complementation assays (308 fold for 

the GCUG/GCCG and 88 fold for the GCUG/SCCS). The agreement of these numbers 

supports 
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lating the results for the truncated TR assays in 

a more simplified form (Table 19) to that which has been observed in the literature for 

GR (T

y the latter (GS-STNB) is a substrate for GR since it has the low 

pKa TN

only require protonation upon resolution 

Our model can be understood by re

able 20). The truncated forms of mTR3 and DmTR have good activity towards 

DTNB (thiol pKa = 4.75 (159)) and GCUG (Sec pKa = 5.2 (125)). The peptide GCCG is a 

substrate for DmTR as the tetrapeptide binding pocket for DmTR allows for the C+ 

conformation whereas mTR3 does not. Neither enzyme has activity for cystine, since 

there is no ring structure to place the leaving group in the correct orientation for 

protonation by the catalytic His. This is the same interpretation that can be made for GR. 

The thiol pKa for glutathione is 8.6 (175), however GR binds GSSG in the correct 

disulfide orientation for the catalytic cycle to occur. This is not the case for the mixed 

disulfides GS-SCy (160) and GS-STNB (95) with each only having a single glutathione 

moiety and not likely to have the disulfide in the correct orientation for protonation of the 

first leaving group. Onl

B- leaving group, just like the tetrapeptide GCUG has the low pKa leaving group 

of Sec.   

 

OUR MODEL AND A MECHANISTIC EVOLUTIONARY ADVANTAGE 

  

Incorporation of Sec into mammalian TR may be an evolutionary advantage 

beyond a broader substrate range. In the proposed mechanism of GR, His 464΄ would 

protonate both the leaving group GSHII and then GSHI upon resolution of the 

interchange mixed disulfide. Incorporation of selenocysteine would eliminate the need 

for the first leaving group protonation step and 
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of the i

formation of the FADH- - NADP+ charge-transfer complex then the formation 

f the thiolate-FAD charge-transfer complex EH2(B) (Please refer to Figure 10 in 

e 

the reduction of the C-terminal disulfide terminating at EH4(B). This indicates that 

reducti

nterchange. Upon re-oxidation of the vicinal disulfide with transfer of electrons to 

Trx, the peptide bond would likely be in the trans conformation. Incorporation of Sec as 

the first leaving group would remove the necessity for cis/trans conformational 

switching. The differences in the two ring opening steps we hypothesize here are shown 

in Figure 57 (mTR3) and Figure 58 (DmTR). 

 

SUPPORT FROM THE STOPPED-FLOW TR LITERATURE  

 

Minimal characterization has been done for the WT mammalian enzyme with the 

stopped-flow technique described in Chapter 1 (79). The initial characterization of DmTR 

(78) and analysis of mutants of PfTR (93) provide significant support to the model we 

have presented here. In the DmTR study (78), a kcat was determined for Trx as ~ 5 s-1. For 

the reductive half-reaction, three rate constants were determined; k1 ~ 100 s-1, k2 ~ 49 s-1, 

and k3 ~ 21 s-1. The first two rate constants are essentially the reductive half-reaction of 

GR with 

o

Chapter 1 for the remainder of this discussion). Therefore, the third rate constant must b

on of the C-terminal disulfide is rate limiting in the reductive half-reaction. This is 

not surprising as with GR the protonation of the first leaving group in the oxidative half-

reaction is rate limiting (88, 95). A single rate constant was determined for the oxidative 

half-reaction for DmTR of ~ 11 s-1 (65). This led the authors to conclude that a step in the 
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oxidative half-reaction was rate limiting overall. This, however, does not necessarily 

mean the nucleophilic attack on Trx, as was clarified in the analysis PfTR. 

The PfTR work is most interesting as it includes the mutants of the His-Glu dyad 

(93). The results for the reductive half-reaction are similar to that of DmTR. Again k1 is 

the largest at 425 – 815 s-1 depending on the mutant or the pH. This is the formation of 

the FADH- - NADP+ charge-transfer complex and is only weakly affected by the 

ignificantly affected 

by the mutations, between ~ 30 to 150 fold. The k3 for PfTR, the reduction of the C-

terminu

mutations. As with DmTR, k2 is ~ 50 % of k1 for the WT PfTR and s

s by the N-terminus, is ~ 5 % of k2 and again is dramatically reduced by either 

mutation. With PfTR the reduction of the C-terminus is rate limiting in the reductive half-

reaction, to an even greater extent than in DmTR.  

For PfTR, three rate constants were estimated for the oxidative half-reaction. The 

k1 was the fastest of the three and similar to k3 of the reductive half-reaction with the His 

and Glu mutants ~ 50 % of wild type. The other two rate constants were very slow with 

k2 ~ 10  % of k1, and k3 rate limiting (wild type). Each of these constants was significantly 

lower for the mutants. In this analysis of PfTR it was proposed that k1 is the reduction of 

Trx (EH4(B) to EH2(B)) and that the other two rate constants are EH2(B) back to Eox. 

Therefore, in both half-reactions, the reduction of the C-terminus would be rate limiting 

and thereby rate limiting overall. This interpretation can then be extrapolated to the 

DmTR results where the step in the oxidative half-reaction that is rate limiting likely 

involves the EH2(B) to Eox steps. The k1 for PfTR being unaffected by the His or Glu 

mutations indicates that the dyad is not involved in the transfer of electrons to Trx as 

suggested by Brandt (100), but is essential to the reduction of the C-terminus.  
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-membered ring only in the trans 

configu

the SCCS 

 

CONTRADICTIONS TO THE TR LITERATURE 

While there is a contribution of the flanking Ser residues to the activity of DmTR, 

it is only a 7 fold increase over the activity of flanking Gly residues (65). Therefore, the 

Ser can hardly be seen as critical when compared to the >100 fold loss in activity upon 

mutation of the Sec in mTR3 (157) or mutation of the catalytic base in PfTR (93). The 

other point of contention with our model is that the proposal for the Ser residues 

facilitating thiolate formation is that it is based on the tetrapeptide modeled in all trans 

configurations (65). Comparing the NMR structures of the SCCS(ox) tetrapeptide, the 

hydroxyls of the Ser residues face the eight

ration and not in the cis configuration (Figure 59). Based on our analysis, the Ser 

hydroxyls would not be correctly oriented in the cis configuration during the ring opening 

step.  

It is still feasible that the hydroxyls could impact the oxidative half-reaction by 

increasing the nucleophilicity of the attacking thiolate. The seven fold loss in activity for 

DmTR could be accounted for by a decrease in pKa of the attacking thiolate. However, it 

cannot account for the loss in activity for the SCCS mutant of mTR3, which is even 

below that of the GCCG mutant. The same results were also demonstrated for human TR 

where the SCCS mutant shows less activity than the GCCG mutant (154). The results 

from the human TR SCCS mutant (hTR-SCCS) were interpreted by the authors to be a 

function of the oxidative half-reaction. Both half-reactions were slow in comparison to 

WT with the oxidative half-reaction determined to be 200 fold slower in 
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mutant. A closer inspection of the data presented does raise a question of the reaction 

lf-reaction (A) spectra 6 to the 

xidative half-reaction (B) spectra 2, it would appear that the latter has not reached 

EH4(B)

c (36, 109) is the leaving group upon ring opening and those who suggest that it is 

the int

conditions (Figure 60). Comparing the reductive ha

o

. One of the primary characteristics of EH4(B) is an enhanced thiolate-flavin 

charge-transfer complex at 540 nm (93) which is much lower in Figure 60B spectra 2 

than Figure 60A spectra 6. The 460 nm peak also does not appear shifted to shorter 

wavelengths as would be expected. Figure 60C is the oxidative half-reaction of PfTR for 

spectral reference (93). 

 

SEC AS LEAVING GROUP OR INTERCHANGE 

  

The TR field is split as to the function of Sec in the catalytic cycle. While its role 

as the nucleophile for Trx reduction is universally accepted, there are those who suggest 

that Se

erchange (35). However, prior to the data we present here, no biochemical 

evidence was provided for either hypothesis. The high activity of the mTR3-GCAUG and 

mTR3-GCAAUG mutants would support our model that Sec is the leaving group position 

and not the interchange position. If Sec were the interchange, the insertion of residues 

would be expected to prevent the interchange step from occurring during ring opening. 

The Sec-relative position in DmTR (Cys490΄) has been suggested as the 

interchange (78) and is in partial disagreement with our model. This suggestion was 

generated from the difference in spectral properties of Cys489΄Ser and Cys490΄Ser 

mutants. The Cys489΄Ser mutant showed a persistent FAD-thiolate charge-transfer 
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he data produced in these studies and proposal for Sec as the leaving group in 

model generating an extended list 

 experiments of which the most direct will be discussed here. The first suggestion is the 

produc

as 

the con

complex. It was suggested that this was due to a stable mixed-disulfide between the 

interchange thiol Cys57 and Cys490΄. In our modeling, there is no chemical distinction in 

the SCCS or GCCG peptides as both residues in the dyad are Cys. Therefore, it is quite 

possible that Cys490΄ forms the interchange with Cys57. This would suggest that the two 

enzymes have different mechanisms, which we suspect is unlikely. 

 

SUPPORTING EXPERIMENTS  

 

T

the ring opening step for mammalian TRs is a testable 

of

tion of DmTR-SCAUS by semisynthesis. Recovering activity compared to the 

DmTR-SCACS mutant would support our model. In both mutants, there are still the 

flanking serines except that there is not the vicinal disulfide. We suggested, based on the 

high activity of mTR3-GCAUG and mTR3-GCAAUG, that the Sec position is the 

leaving group and that we have not moved the interchange position or dramatically 

affected the attack on Trx. Similar results for DmTR-SCAUS would make for a 

convincing argument that both enzymes have a similar mechanism. Standard molecular 

biology techniques can be used to test the effect of the residues from helix 3 proposed 

formational and peptide determinants for the two enzymes. The Thr114 DmTR 

substitution for His or Tyr in mammalian TR would be the position of choice. A 

collection of full length and truncated mutants was generated for DmTR that were not 
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evaluated enzymatically but whose likely functions have been discussed. These mutations 

provide opportunities for future crystallographic studies. 

     



 
Figure 57. Model for mTR3 ring opening steps. 

The steps of ring opening within the reductive half-reaction for mTR3 with the C-
terminal tetrapeptide GCUG in the tans (-) conformation. Binding of NADPH and 
formation of the FADH-NADP+ charge -transfer complex (Boxed k1), thiolate-FAD 
charge-transfer complex (k2), formation of the interchange mixed disulfide with Sec 
(orange) not requiring protonation (k3), resolution of the mixed disulfide (k4) and 
protonation of the Cys (k5). 
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Figure 58. Model for DmTR ring opening steps. 

The steps of ring opening within the reductive half-reaction for DmTR with the 
tetrapeptide SCCS in the cis (+) conformation. Binding of NADPH and formation of the 
FADH-NADP+ charge -transfer complex (Boxed k1). The peptide in the trans (-) 
conformation must undergo conformational change the cis (-) (k2) then cis (+) (k3). The 
thiolate-FAD charge-transfer complex (k4), formation of the interchange mixed disulfide 
(k5) with Cys489’ requiring protonation (k6), resolution of the mixed disulfide (k7) and 
protonation of the Cys49’ (k8). 
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able 19. Substrates for truncated TR. 

 

nzyme DTNB GCUG GCCG cCyS-SCy 

 
T

E

aDmTR-S + + + - 
bmTR-G + + - - 
 
aDrosophila melanogaster TR missing the C-terminal tripeptide Cys-Cys-Ser. 

b

 cGS-SCy dCyS-SCy 

Mouse mitochondrial TR missing the C-terminal tripeptide Cys-Sec-Gly. 

cCystine. 

 

Table 20. Substrates for glutathione reductase. 

 

nzyme E aGS-SG bGS-STNB

GR + + - - 
 
aThe natural substrate diglutathione (GSSG). 

bGlutathione-TNB mixed disulfide taken from (95). 

cGlutathione-cysteine mixed disulfide taken from (160). 

dCystine taken from (160). 

 



 

 

Figure 59. Orientation of flanking serine hydroxyls. 

Orientation of the flanking Ser hydroxyls in the SCCS(ox) tetrapeptide in trans 
onfiguration (left) and the cis configuration (right). The Ser hydroxyls would not be 

     

c
correctly oriented to impact thiolate formation during the ring opening step when in the 
cis configuration. 
 
 
 

190 
 
 
 



 

 

Figure 60. Interpretation of human TR-SCCS. 

Interpretation of the human Ser-Cys-Cys-Ser TR mutant (hTR-SCCS) from (154) 
reprinted with permission (176). A is the reductive half-reaction of hTR-SCCS. Spectra 
1 is oxidized hTR-SCCS, spectra 4 is the addition of 1.7 equivalents of NADPH, spectra 
5 is 3.3 equivalents of NADPH, spectra 6 is 7.7 equivalents of NADPH. B is the 
Oxidative half-reaction of hTR-SCCS. Spectra 1 is the oxidized hTR-SCCS, spectra 2 is 
reduction with 2.1 equivalents of NADPH, spectra 3 is reoxidation after addition of Trx. 
C is the oxidative half-reaction of wild type TR from Plasmodium falciparum (PfTR) as a 
reference (93). Spectra 1 is the oxidized PfTR, spectra 2 is reduction with 2.2 equivalents 
of NADPH, spectra 3 and 4 are time points following addition of Trx. It is possible that 
the slow oxidative half-reaction in the experiment is the incomplete reduction of hTR-
SCCS, based on the lack of shift in the 460 nm peak to shorter wavelength and the 
weaker thiolate FAD charge-transfer complex at 540 nm. 
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APPENDIXES  

 

AMP, Me, 2-mercaptoethanol; CATC, the sequence Cys-

CID, 

Crystal

diethylaminoethyl; DmTR, Drosophila melanogaster TR; dNTP, deoxyribonucleotide 

triphosphate; DTNB, 5,5’-Dithio-bis(2-nitrobenzoic acid); DTT, dithiothreitol; EDTA, 

ethylenediamintetraacetic acid; EH2, 2-electron reduced (1 NAPDH equivalent) 

flavoprotein; EH4, 4-electron reduced (2 NAPDH equivalent) flavoprotein; Eox, oxidized 

flavoprotein; EPL, expressed protein ligation; ESI-MS, electrospray ionization mass 

spectrometry; FAD, flavin adenine dinucleotide; Fmoc, 9-fluoroenylmethoxycarbonyl; 

GCCG, the tetrapeptide Gly-Cys-Cys-Gly; GCUG, the tetrapeptide Gly-Cys-Sec-Gly; 

GITS, the sequence Gly-Ile-The-Ser; GR, glutathione reductase; GSH, reduced 

glutathione (γ-glutamylcysteinylglycine); GSH I, interchange glutathione; GSH II, first 

leaving group glutathione; GSSG, oxidized diglutathione; HPLC, high pressure liquid 

chromatography; H2O2, hydrogen peroxide; ICP-MS, inductively coupled plasma mass 

spectrometry; IPTG, isopropyl-β-D-thiogalactopyranoside; LB, Luria-Betami Media; 

LipDH, dihydrolipoamide dehydrogenase; MALDI-TOF, matrix-assisted laser desorption 

ionization time of flight mass spectrometry; MES, 2-(4-Morpholio)-Ethane Sulfonic 

 
A. ABBREVIATIONS 

 

adenosine monophosphate; β-

Ala-Thr-Cys; CCG, the tripeptide Cys-Cys-Gly; CeTR; Caenorhabditis elegans TR; 

collision induced dissociation; CISS; the sequence Cys-Ile-Ser-Ser; CNS, 

lography and NMR system; CUG, the tripeptide Cys-Sec-Gly; DEAE, 
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Acid; Mr, molecular weight; MOPS; 3-(N-Morpholino) Propane-Sulfonic Acid; mTR3, 

mouse mitochondrial TR; NADH, reduced nicotinamide adenine dinucleotide; NADP+, 

oxidized nicotinamide adenine dinucleotide hosphate; NADPH, reduced nicotinamide 

denine dinucleotide phosphate; NF-ΚB, nuclear factor kappa B; NMA, N-

methylmeraptoacetamide; NMR, nuclear magnetic resonance; PDB, Protein Data Bank; 

PEG, polyethylene glycol; PfTR, TR from Plasmodium falciparum; RMSD, root mean 

squared deviation; RNR, ribonucleotide reductase; SCCS, the tetrapeptide Ser-Cys-Cys-

Ser; Sec, selenocysteine; SDS-PAGE, sodium dodecyl sulfate polyacrylamide gel 

electrophoresis; SECIS, selenocysteine insertion sequence;  TB, terrific broth; TNB-, 

thiobis(2-nitrobenzoic acid) anion; TR, thioredoxin reductase; Trx, thioredoxin; TryR, 

trypanothine reductase; U, the one-letter abbreviation for selenocysteine; WT, wild type; 

Xa, protease Xa.   

 

 p

a
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B. COMPREHENSIVE LIST OF MATERIALS 

cording to manufacturers guidelines. Recombinant E. coli thioredoxin 

as purchased from American Diagnostica (Greenwich, CT). DTNB, NADPH, NADP+, 

Bovine Pancreatic Insulin and N-Methylmercaptoacetamide (NMA) were purchased from 

Sigma-Aldrich (St. Louis, MO). Hydrogen peroxide 30% solution was purchased from 

J.T Baker (Phillipsburg, NJ). The PEG 6000 used for crystallization was purchased from 

Fluka (Sigma-Aldrich). All other chemicals were purchased from either Sigma-Aldrich or 

Fisher Scientific and were of reagent grade or better. 

 

Solvents for peptide synthesis were purchased from EMD Biosciences (San Diego, CA). 

Fmoc amino acids were purchased from Synpep Corp. (Dublin, CA). Resins for solid-

phase synthesis were purchased from Novabiochem (San Diego, CA). All PCR primers 

were purchased from Integrated DNA Technologies Inc., and PAGE purified (Coralville, 

IA). Restriction endonucleases Nco I, Sap I, Hind III, Eco RI, Nde I, Sal I, Kpn I, Vent 

DNA polymerase, plasmids pTYB1 and pTYB3, chitin agarose beads, T4 DNA ligase, 

and reaction buffers were supplied by New England Biolabs (Ipswich, MA). All 

restriction enonucleases, Vent DNA Polymerase, and T4 DNA ligase were used with the 

supplied buffers ac

w
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GTGCCACC-3’ (labeled 

mTRC52-57A-Rev). 

 

CLONING OF DROSOPHILA TR WITH pTYB1 

 

Upstream primer 5′ – AACAGACATATGGCGCCCGTGCAAGG – 3′ (labaled dmup2).   

 

C. LIST OF PCR PRIMERS 
 

CLONING OF MOUSE TR3 WITH pTYB3 

 

Upstream mTR3  (labeled TRup2). 

Downstream mTR3-GCCG 5’-

ACAGCCGCTCTTCAGCAGCCACAGCAACCAGTCACA-3’ (labeled TRCYS). 

Downstream mTR3-SCCS 5′-

ACAGCCGCTCTTCAGCAGGAACAGCAAGAAGTCACAGTAGGCTCC-3′ (labeled 

TRser). 

Downstream mTR3-GSCG 5’-

ACAGCCGCTCTTCAGCAGCCACAGGAACCAGTCACA-3’ (labeled mTR-C488S). 

QuickChange Stratagene Mutagenesis Forward mTR3-Cys52Ser/Cys57Ser 5’-

GGTGGCACCTCTGTCAACGTGGGTTCCATACCCAAGAAGC-3’ (labeled 

mTRC52-57A-fwd). 

QuickChange Stratagene Mutagenesis Reverse mTR3-Cys52Ser/Cys57Ser 5’-

GCTTCTTGGGTATGGAACCCACGTTGACAGAG
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Downstream DmTR-SCCS 5′-

ACAGCCGGTACCCTTGGCAAAGCAGCTGCAGCAGCTGGCCGG -3′ (labeled 

mdown2L). 

CAGCCGGTACCCTTGGCAAAGCAGCTGGCCGGCGTGGGG-3′ (labeled 

GGTACCCTTGGCAAAGCAGCTGCAGGCGGCGCAGCTGGCCGGCGTG

QuickChange Stratagene Mutagenesis Forward DmTR His464Ala 5’-

CAACACCGTGGGCATCGCCCCCACTACCGCCGAAGAG-3’ (labeled 

QuickChange Stratagene Mutagenesis Reverse DmTR His464Ala 5’-

HIS464reverse). 

QuickChange Stratagene Mutagenesis Forward DmTR His106Ala 5’-

AGTCCGTACAGAACGCCATTAAGTCCGTCAACTGG-3’ (labeled 

His106f2). 

d

Downstream truncated DmTR-S488 5′- 

A

dmdown2s). 

Downstream DmTR-SCACS 5′- 

ACAGCCGGTACCCTTGGCAAAGCAGCTGCAGGCGCAGCTGGCCGGCGTGGG-

3′ (labeled DmTR-CAC). 

Downstream DmTR-SCAACS 5′- 

ACAGCC

GG-3′ (labeled DmTR-CAAC). 

HIS464forward). 

CTCTTCGGCGGTAGTGGGGGCGATGCCCACGGTGTTG-3’ (labeled 

CTGGTGC
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genesis Reverse DmTR His106Ala 5’-

orward DmTR Glu469Ala 5’-

 Stratagene Mutagenesis Reverse DmTR Glu469Ala 5’-

CGGTAGTG-3’ (labeled E469Areverse). 

 

QuickChange Stratagene Mutagenesis Forward Trx Cys36Ser 5’-

GGTGCGGTCGGTCCAAAATGATCGC-3’ (*labeled TrxC35Sfw).  

QuickChange Stratagene Mutagenesis Reverse Trx Cys36Ser 5’-

GCGATCATTTTGGACGGACCGCACC-3’ (labeled TrxC35Srev). 

 *Cys36 is correct, the C35 was a typo in ordering. 

 

 

 

 

 

QuickChange Stratagene Muta

CCAGTTGACGGACTTAATGGCGTTCTGTACGGACTGCACCAG-3’ (labeled 

His106rev2). 

QuickChange Stratagene Mutagenesis F

CACTACCGCCGCAGAATTCACCCGGCTG-3’ (labeled E469Aforward). 

QuickChange

CAGCCGGGTGAATTCTGCGG

 

CLONING OF THIOREDOXIN 
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