
University of Vermont
ScholarWorks @ UVM

Graduate College Dissertations and Theses Dissertations and Theses

6-23-2008

Modeling Recruitment/Derecruitment
Massa Christopher
University of Vermont

Follow this and additional works at: http://scholarworks.uvm.edu/graddis

This Thesis is brought to you for free and open access by the Dissertations and Theses at ScholarWorks @ UVM. It has been accepted for inclusion in
Graduate College Dissertations and Theses by an authorized administrator of ScholarWorks @ UVM. For more information, please contact
donna.omalley@uvm.edu.

Recommended Citation
Christopher, Massa, "Modeling Recruitment/Derecruitment" (2008). Graduate College Dissertations and Theses. Paper 47.

http://scholarworks.uvm.edu?utm_source=scholarworks.uvm.edu%2Fgraddis%2F47&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.uvm.edu/graddis?utm_source=scholarworks.uvm.edu%2Fgraddis%2F47&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.uvm.edu/etds?utm_source=scholarworks.uvm.edu%2Fgraddis%2F47&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.uvm.edu/graddis?utm_source=scholarworks.uvm.edu%2Fgraddis%2F47&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.uvm.edu/graddis/47?utm_source=scholarworks.uvm.edu%2Fgraddis%2F47&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:donna.omalley@uvm.edu


 

MODELING RECRUITMENT/DERECRUITMENT  

PHENOMENA IN THE INJURED MOUSE LUNG 

 

 

 

 

 

 

 

A Thesis Presented 

 

 

by 

 

Christopher Barry Massa 

 

to 

 

The Faculty of the Graduate College 

 

of 

 

The University of Vermont 

 

 

 

 

 

 

 

In Partial Fulfillment of the Requirements 

for the Degree of Master of Science  

Specializing in Biomedical Engineering 

 

 

 

 

 
May, 2008 

 
 

 

 

 



Accepted by the Faculty of the Graduate College, The University of Vermont, in 
partial fulfillment of the requirements for the degree of Master of Science, 
specializing in Biomedical Engineering. 

Thesis Examination Committee: 

Advisor 
~ d s d n  Bates, ~h .b . ,  D.Sc. y/~,\ 
Gilman Allen, M.D. 

w 

Chairperson 

Vice President for Research 
and Dean of Graduate Studies 

Date: March ZOth, 2008 



ABSTRACT 

 

Recruitment and derecruitment (R/D) of airways is known to significantly influence 

mechanical properties of the respiratory system during artificial ventilation, particularly 

in states of lung injury.  The prevailing view of this phenomenon treats airway R/D as a 

static function of pressure.  Recent experimental and clinical data suggests that this is not 

the case, but rather that R/D is an inherently dynamic process.  In order to quantitatively 

assess the dynamics of lung recruitment during mechanical ventilation we extended a 

mathematical model by Bates and Irvin (9) for the purpose of fitting experimental data.  

The model of the lung consists of a parallel network of flow pathways with identical 

resistive and elastic elements.  Each pathway is allowed to be either open, whereby it 

accumulates flow and decreases overall lung stiffness, or closed, increasing lung 

elastance and not participating in ventilation.  The pathways are characterized by unique 

critical closing and opening pressures, and opening and closing velocities, each chosen 

from probability distribution functions. The rate of transition between an open and closed 

state depends on the magnitude difference between the pressure in the respiratory system 

and each unit’s critical pressure times the airway’s opening or closing velocity constant.  

Since the exact form of the pressure dependence governing recruitment and 

derecruitment remains unknown we explored four model variants to predict how opening 

or closing behavior is altered in injury. 

The lung model was coupled with a computational model of a mechanical ventilator in 

order to simulate elastance changes following deep inflation (DI) at three levels of 

Positive End Expiratory Pressure (PEEP).  Elastance measurements came from healthy or 

lung injured mice at 4, 14, 24 or 48 hours following intratracheal instillation of saline 

(control) or hydrochloric acid (injury).  The Nelder and Mead simplex optimization 

method was used to minimize error between model variants and average experimental 

elastance for each condition.  By comparing the residual error of the fits for each model, 

we have demonstrated that only one variant was able to recreate both the transient 

response to deep inflations and the response to static PEEP.  In fitting the best model to 

data from individual mice we obtained estimates for parameters governing opening and 

closing behavior.  Statistics and model sensitivity were determined for each parameter in 

every experimental condition.  Comparison of parameter values between groups revealed 

a significant increase in closing and opening pressures from health to injury, which 

worsened with increasing injury severity.   The progressive increase in critical pressures 

as injury worsens implicates surfactant deactivation as the likely cause of increased 

propensity for airway closing during acute lung injury.   
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Chapter 1 Introduction 
 

During artificial ventilation, recruitment and derecruitment of small airways is 

known to contribute significantly to the mechanical properties of the respiratory system.  

Though derecruitment can be reduced by the application of positive end expiratory 

pressure (PEEP), the intrinsic propensity for airway collapse is exacerbated during acute 

lung injury (ALI).  The prevailing scientific viewpoint treats recruitment as a static 

function of pressure; however, recent experimental data demonstrates that recovery of 

lung function following deep inflation is transient, and that dynamic peripheral airway 

recollapse becomes more rapid and profound as lung injury matures (5).  It is known that 

the lung can tolerate periodic deep inflations – or recruitment maneuvers - to reopen 

collapsed lung regions, but that continued volleys of large breaths are injurious and 

significantly exacerbate the pathology.  Clinically, physicians struggle in an attempt to 

balance the impact of these phenomena.  The current convention is to ventilate at low 

tidal volumes over a moderate level of PEEP.  Some clinicians have tried interspersing 

recruitment maneuvers in an ad hoc fashion, often without much efficacy.   

We believe the lack of clinical efficacy in the use of recruitment maneuvers 

results in part from the lack of appreciation for the inherent dynamic nature of this 

process.  In light of the clinical and experimental evidence indicating that the dynamics 

of airway R/D are fundamentally altered in the injured lung, we argue that the question 

surrounding the use of recruitment maneuvers is not whether they should be used, but 

rather when and how often they should be employed.  It is thus therapeutically important 

to determine how deep inflations should be given in order to optimize the state of 

recruitment in the injured lung.  In order to achieve such a goal, a quantitative 
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understanding of the dynamics of recruitment and derecruitment phenomena is essential.  

At present, there exists no quantification of the distribution of pressures and rates 

governing airway opening and closing behavior.  Characterization of these distributions – 

in particular of how they evolve as injury matures - is essential to the development of an 

effective recruitment strategy that maintains respiratory function at minimal stresses to 

the lung.   

In order to determine how the distributions of these rates and pressures determine 

mechanical function in health and disease, we designed a novel computational model to 

be fit to experimental data.  We began by extending the dynamic R/D paradigm by Bates 

and Irvin (9) by altering the mechanics and structure of the model and coupling it with a 

simulated mechanical ventilator.  Once this implementation of the lung-ventilator system 

was validated, we simulated the time course of experiments measuring the stiffness of 

mouse lungs following deep inflation at three levels of PEEP.  By fitting several 

proposed models to experimental data from healthy and lung injured mice at various 

times following intracheal acid-instillation we have identified one model as paramount in 

characterizing the data.  Using the best model, we have estimated values for parameters 

governing opening and closing behavior in the experimental data.  Analysis of parameter 

values indicates that airways in the injured lung require greater pressures to open them 

and will close at higher pressures than in the healthy lung.  Comparison of these results 

with the literature suggests that the mechanism by which dynamic collapse is exacerbated 

during acid induced lung injury is primarily through the inactivation of pulmonary 

surfactants.   
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Chapter 2 Background 

2.1 Respiratory Anatomy and the Physiology of Breathing 

Respiratory function is essential for the maintenance of homeostasis, with 

cessation of ventilation uniformly resulting in tissue ischemia, eventually progressing to 

irreversible organ damage and death if untreated.  The most evident, and indeed the most 

important function of the respiratory system is to allow the exchange of soluble gasses 

between the air and the blood.  In one minute the lungs filter the entirety of the body’s 

blood volume, normally ensuring adequate delivery of oxygen to the blood and 

elimination of carbon dioxide.   

In order for the respiratory system to succeed in these functions, air must undergo 

bulk transport from the outside of the body to a surface designed for interfacial exchange 

of soluble gasses.  The primary driving force for bulk motion of gas is contraction of the 

diaphragm, a large muscle beneath the lungs that is under control by the autonomic 

nervous system.  When the diaphragm contracts the chest cavity expands downward into 

the abdomen, producing a negative pressure across the chest wall.  Air is then sucked 

through the mouth and nose into the oropharynx and into the trachea, where it enters the 

lung.  The lung is composed of a branching network of tubes, called airways, which are 

embedded in lung tissue, called parenchyma.  As the distance from the trachea increases, 

the airways decrease in size and cartilage content.  Beyond a certain distance from the 

trachea, the airways begin to have specialized structures for gas exchange called alveoli.  

The presence of alveoli becomes more frequent further down the airway tree, eventually 

terminating in a cluster of alveoli called an acinus.  Airflow is divided down the airways 

until the gas reaches these acini, where the majority of gas exchange occurs passively by 
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diffusion.  Exhalation occurs when the muscles of the respiratory system relax and gas is 

forced from the respiratory system by the elastic recoil of the lung parenchyma and chest 

wall.  The pressure remaining at the end of exhalation when the subsequent inspiration 

begins is referred to as the end expiratory pressure. 

2.2 Models of Respiratory Mechanics 

The mechanical properties of the airways and parenchymal tissues are significant 

determinants of the work of breathing and ultimate distribution of ventilation in the 

healthy and diseased lung.  In the most basic model of respiratory mechanics, the lung is 

simplified to act like a linearly resistive pipe in series with an elastic element that 

accumulates flow, while the volume, flow and pressure are, in general, functions of time, 

t.    In this “single compartment” model (Figure 1. A), airway pulmonary pressure, Paw, is 

equal to the sum of contributions of flow through the resistive tube, LV
& , and the recoil 

caused by volume, LV , distending the elastic component  

( ) ( ) ( ) 0  PtVEtVRtP LLLLaw ++= &       (1) 

where Po is the equilibrium pressure of the respiratory system within the chest wall, RL is 

the apparent lung resistance and EL is the apparent lung stiffness.  In this model changes 

to the contribution of resistance are typically interpreted as alterations in the caliber of the 

airways, while elastance changes are typically viewed as stiffening or softening of the 

parenchyma.  This model provides no insight into the mechanism by which these changes 

occur, nor does it provide any anatomic insight into localizing these alterations.  This 

model is often efficacious in time-domain characterization of respiratory mechanics, but 

it suffers the inability to separate the contributions of airway wall distension from 
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parenchymal elastance, or 

thermal losses due to 

internal resistance of 

parenchymal tissues from 

airway resistance.  

Additionally, this model neglects the frequency dependant effects arising from the inertia 

of accelerating gasses and the complex viscoelastic rheology of biologic materials.   

Several simple models have been proposed to minimize the impact of these 

shortcomings.  In 1956 Otis (49) proposed a model (Figure 1. B) with two resistive-

elastic pathways in parallel with the compartments having different time constants.  This 

model allowed for ventilation distribution heterogeneity and imparted slightly improved 

frequency dependence.  Still, the lack of anatomic fidelity precludes its utility in 

localizing pathology.  A common central airway resistance may be added (Figure 1.D), 

however this introduces another free parameter without allowing for more poignant 

inferences to be made.  Another partitioning of mechanics can be achieved by 

representing the central airways as one resistance, with airway wall compliance in 

parallel to a resistive-elastic peripheral lung component (Figure 1. C).  In this model, the 

distension of airways and the resistance of the periphery are explicitly partitioned, 

allowing for further insight in certain pathologies, particularly emphysema and chronic 

obstructive pulmonary disease  (42, 59).   

Parameter estimation in the frequency domain frequently employs a four 

parameter model which reliably characterizes the mechanics of the mammalian lung 

below 30 Hz (34). The linear airway resistance to flow, R, is placed in series with a 

 
Figure 1: Simple models of the respiratory system. 
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frequency dependant inertial term, I, and a viscoelastic tissue element, representing the 

acinar compartment.  Mechanics of the lung periphery are modeled by using “constant 

phase” viscoelastic tissue properties with impedance, Zti, 

( )
αω

η jH
Z ti

−
=  

 

where j is the unit imaginary number, ω is the angular frequency, H is the tissue stiffness, 

η is tissue hysteresivity (defined as the ratio of viscous dampening to elastic storage) and  









= −

ηπ
α

1
tan

2 1 .          (2) 

This tissue element contributes a hyperbolically decaying component to both the real and 

imaginary parts of the lung impedance with the element’s phase being frequency 

invariant.  This model has the impedance  

( )
αω

η
ω

jH
IjRZ L

−
++=        (3) 

 
Figure 2: Schematic representations of Weibel and Horsfield’s models of the lung. 
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and is adequate to characterize the function of the lung during health and mild illness; 

however, severe disease – especially when regional mechanical properties are 

heterogeneous – diminishes its reliability and accuracy (40).  Several investigators have 

adapted this model to accommodate for heterogeneity in airway and tissue properties, 

estimating distributions of parameters in various diseases (38, 39, 41, 59). 

Incorporating airway collapse and reopening into a lung model requires a 

distribution of mechanical elements whose properties depend on their state of 

recruitment.   The simplest implementation of R/D processes allows for airways to exist 

in one of two binary states - open, whereby it participates in ventilation, and closed, 

where it does not – and a relationship specifying the conditions sufficient and necessary 

to transition between each state.  The simplest and the most well accepted transition 

condition was formalized by Hickling (36), whereby each airway is assigned both a 

threshold opening pressure (TOP), above which airways will have a volume determined 

by the applied airway pressure, and a threshold closing pressure (TCP), below which 

airways will have zero volume.  Simulation using distributions of TOP and TCP allowed 

the model to recreate the Pressure-Volume relationship of the lung, as well as its response 

to PEEP (36).  The utility of this model in predicting an ideal level of PEEP was 

examined, but found unreliable, as the slope of the P-V curve is highly variable near the 

lower inflection point of the curve (35).  Additionally, the model fails to take account for 

the impact of volume history, which is known to exert time-dependant effects on 

mechanics through transient recruitment.   

In order to overcome these limitations posed by Hickling’s static recruitment 

model, Bates and Irvin (9) added a dynamic element to the process of recruitment and 
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derecruitment.  In this model, airway transition between binary states is not instantaneous 

upon crossing over the threshold pressure.  Instead, each airway approaches a transition 

between states with a rate proportional to the difference between the threshold pressure 

and the pressure delivered to the airway.  Proportionality constants relating the applied 

pressure gradient to the rate of transition between states are pulled from probability 

distribution functions for each airway.  This effectively imparts a pressure dependent 

delay to the process of transition between open and closed states that varies between 

airways, allowing for natural variation in the timing and pressure dependence of airway 

collapse.  This model was shown capable of recreating the progressive lung stiffness 

increase that occurs during mechanical ventilation solely using stochastic collapse. 

Morphometerically accurate anatomic models allow for the highest level of 

resolution, however they are generally implemented in the frequency domain as this 

greatly simplifies the governing equations.  Two commonly referenced characterizations 

of mammalian lungs that were developed from anatomic plaster casts are Weibel’s 

symmetrically branching model (64) and Horsfield’s asymmetric model (37) which uses 

recursion relations to impose self similarity in the airway tree (Figure 2).  This degree of 

complexity allows very reliable forward simulation, but direct parameter estimation 

becomes incredibly arduous due to the number of degrees of freedom imposable upon 

such model architecture.  Constant phase model parameters may however be obtained by 

fitting to the impedance spectra of the above anatomic models.  Airway segments are 

given impedances based on their geometry, with radius and length determining resistance 

through Pouiselle’s law and intertance through segment volume and gas density.  The 

division of flow down the airway tree depends on the mechanical impedance of the 
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subtended airway network.  Some flow may not be transmitted through to the subtending 

airways as distension of airway walls or compression of gas act as parallel pathways by 

which flow can be lost.  By changing the distribution of airway and tissue mechanics 

various pathologies may be simulated, and inferences may be drawn regarding the 

distribution of ventilation, work of breathing and extent of flow losses due to airway 

distension. 

2.3 Pathophysiology of Acute Lung Injury  

Acute lung injury (ALI) is a significant factor affecting morbidity and mortality in 

the intensive care unit (62).  ALI may result from pulmonary disease (eg. pneumonia), 

complications of extrapulmonary illness (eg. sepsis, pancreatitis) or traumatic injury  (29, 

51).  Patients with ALI have impaired gas exchange, alveolar flooding and increased lung 

stiffness due to obstruction or collapse of small airways.  Patchy opacities can be seen on 

a chest x-ray, indicating a diffuse rather than homogenous pathological process (18, 63).  

Since the 1960s, clinical management of the patient with ALI has entailed endotracheal 

intubation and artificial mechanical ventilation.  Mechanical ventilation is essential to 

support life in many critically ill patients; however, the generation of high pressures or 

large volumes may actually cause or exacerbate lung injury.   

Though a plethora of novel strategies have been proposed for use in safely 

ventilating patients, the mortality associated with ALI remains between 40 and 60% in 

most epidemiologic studies, virtually unchanged since its initial characterization (63).  

One of the few interventions demonstrated efficacious in improving patient outcome is 

the introduction of low tidal volume ventilation with moderate Positive End Expiratory 
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Pressure (PEEP), which is believed to reduce injurious stresses to the lung (1, 12, 20, 60-

62).  This strategy succeeds by minimizing both over-distension of the parenchyma and 

airway collapse by ventilating with small breaths while supporting airway opening with 

static pressure during exhalation.   

An adjunct to this approach that is presently employed by some clinicians is the 

sporadic application of a larger breath, or recruitment maneuver, which generates higher 

airway pressures that reopen collapsed regions of the lung.  These recruitment maneuvers 

have been used to transiently improve gas exchange and mechanical function of the lung, 

though clinically significant responses have been observed nearly exclusively in the early 

stages of ALI when elastance increases are primarily due to derecruitment, as opposed to 

changes to the intrinsic tissue properties that appear to occur in late ALI (32, 61, 62).  

The recruiting of potential flow pathways allows for a fixed tidal volume to distribute 

more evenly throughout the lung, which in turn generates lower airway pressures.  Over 

time, some airways will derecruit, causing progressive increases in lung stiffness, 

maldistribution of tidal volume and increased injurious stresses to the lung.  At present, 

debate exists whether the application of recruitment maneuvers truly results in reduction 

of injury or if the large breaths generate high shear stresses and serve to potentate injury; 

in practice this distinction is likely dependent on disease etiology and injury severity.   

A major reason for the controversy surrounding the delivery of recruitment 

maneuvers stems from a fundamental misunderstanding of the way airways recruit and 

derecruit.  The prevalent viewpoint among most clinicians and respiratory physiologists 

treats the amount of recruited lung as a static function of pressure.  In this description of 

recruitment, lung units open instantaneously once a certain critical pressure is applied to 



 11 

an airway; similarly the airway closes immediately once its pressure falls below the 

critical pressure.  In truth, airway opening is a dynamic process which requires 

propagation of a gas plug in a fluid filled tube until the Marangoni stresses that stabilize 

the air-liquid interface are overcome (10).  Similarly, airway collapse has inherent 

dynamics associated with surfactant driven flows that reform fluid menisci, called liquid 

bridges, within the airway lumen.  At present, factors governing these dynamic processes 

are poorly understood. 

2.4 Biophysics of Airway Recruitment and Derecruitment 

The dynamic nature of airway R/D is not simply a theoretical concern and has 

been observed experimentally in vivo and in vitro, as well as in mechanically ventilated 

patients.  Modeling studies have attempted to discern what biophysical processes underlie 

airway recruitment and derecruitment phenomena, as well as to identify how this process 

is altered by and contributes to lung injury.  Whether an airway collapses upon itself or 

simply floods while maintaining its geometry may affect the dynamics of reopening (66).  

Airways that are simply flooded require a disruption to the meniscus of the fluid plugging 

their lumen, while airways that collapse may be folded upon themselves and destabilized, 

requiring a peeling apart of their walls (52, 53, 66).  Debate as to which of these 

mechanisms is prevalent in acute lung injury has yet to be resolved.  In either case, 

airways have been observed to open sequentially down the tree at varying distending 

pressures, presumably as a function of geometry and the tethering forces exerted by 

parenchyma (30, 31, 52, 53, 55, 56, 58).  Both experimental and theoretical studies have 

attempted to separate the threshold pressures for transition between opening and closing 
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from the impact of pressure on the rates of these processes.  Methodologic constraints 

have complicated the separation of these effects at length scales ranging from the single 

airway to the system level. 

Studies in the excised lung have granted insight to the global behavior 

demonstrated by reinflation under various mechanical conditions.  In a study of dynamic 

air trapping during ventilation, Frazer et. al. inflated previously degassed rat lungs at 

various rates and observed that lower flow rates and lower peak pressures lead to 

increased trapped ventilation, independent of the peak pressure reached (26).  

Subsequently, Frazer examined changes to the rat pressure-volume curve at various end-

expiratory pressures to demonstrate that 68% of rat airways are occluded by formation of 

menisci at pressures between 1.4 and 3.0 cmH2O (25).  In the face of pulmonary edema, 

menisci were demonstrated to form at higher transpulmonary pressures, indicating that 

the wet, injured lung is more prone to small airway and alveolar collapse (24).  These 

menisci were originally suggested to be foam-like in nature and exist at the level of the 

alveoli or small airways (27).  It was later demonstrated menisci may form at varying 

generations in the airway tree and form sequential obstructions to the delivery of gas to 

the lung periphery.   

The concept of sequential blockages was extended to explain the discrete nature 

of lung resistance changes during reinflation, whereby the size and time intervals 

between these discrete changes appears to be distributed according to power-law 

distributions, reminiscent to the “avalanching” behavior seen in self-organized, critical 

systems (58).  Upon reinflation of excised rabbit lungs, airways less than 2 mm in 

diameter showed a wide distribution of critical opening pressures; however, when 
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lavaged with surfactant the distribution of threshold pressures became markedly more 

narrowed, and the avalanching behavior was fully ablated (57).  Modeling of this 

phenomenon in a symmetrically branching airway tree revealed significant variation in 

the initial airway generation where blockages begin to occur, as well as a considerably 

higher threshold for subtree opening (23+/-4 cmH2O) (57).   Experiments in reinflating 

the excised dog lung have shown power law distributions of discrete lung elastance 

changes which were similarly predicted by a model of avalanching reopening (56).  

These discrete avalanches in mechanical function were correlated with acoustic evidence 

of airway reopening in several studies (16, 23, 55). 

Bench-top experiments performed in artificial airway-like systems subject to 

various fluid mechanical conditions have given insight to the biophysics that governs 

collapse at the level of the airway.  In fluid lined tubes supported by axial tension the 

relative importance of viscous and surfactant effects has been linked to the capillary 

number  

γ
µv

Ca =          (4) 

where µ is the fluid viscosity, v is the fluid velocity and γ is the surface tension of the 

lining fluid (31).  In this study threshold opening pressure was noted to increase with 

increases in µ and γ, while it decreased with increases in axial tension and airway radius.  

For values of Ca < 0.5 the empirical relationship for opening pressure  

r
Po

γ
3.8=          (5) 

was derived from the experimental data, where r is the radius.  For higher capillary 

numbers, viscous forces generated threshold opening pressures higher than those 
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predicted above.  The relevance of the empirical relationship to airways, as well as the 

validity of the model system, was confirmed by comparing the predicted threshold 

opening pressures to data obtained by direct visualization of reopening using air 

bronchograms (45).  The value for surface tension was estimated near 35 dyn/cm, 

supporting the notion that surfactant facilitates the reopening of closed airways and is 

essential for stability of the airway tree (45).  Subsequent studies in collapsed tubes with 

no axial tethering had similar yield pressures as those predicted above; however, the rates 

of airway reopening were noted to rise with increases in fluid viscosity (52).  When 

outward tethering forces were added to the benchtop model (53) the airway patency, Γ, 

was related to the pressure differential across the air-liquid interface:  

r

P

γ
∇

=Γ .            (6) 

Analysis of the predicted and observed airway reopening pressures during bubble 

propagation in elastic tubes indicates that airway walls are subjected to very high shear 

stresses during reopening conditions (30).  Subsequent experiments that exposed cultured 

cells to a moving air-liquid interface implicate steep normal pressure gradients at the 

bubble front as the likely cause of epithelial cell injury; administration of additional 

surfactant to this system was shown to completely ablate cellular injury (11).  The extent 

of injury was found curiously independent of the duration of exposure to an isolated 

pressure gradient; however, pressure gradients that were sub-injurious if given once 

resulted in cumulative injury upon repeated exposure (43).  Halpern and Grotberg studied 

the effects of surfactant on the stability of fluid lined tubes, concluding that a critical film 

thickness, εc, exists above which liquid bridges spontaneously form due to gradients in 
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surfactant concentration (33).  The value of εc was shown to decrease with increased 

surface tension and wall compliance, while the administration of surfactant was shown to 

reduce εc by 60% and to decrease the rate of collapse by a factor of five (33). 

A series of experiments in living animals has demonstrated that lung mechanical 

function in healthy and lung injured rodents is transiently recoverable following a deep 

inflation, implicating collapse as the predominant cause for increased lung stiffness 

during artificial mechanical ventilation..  In saline lavage injured mice, initial reopening 

immediately following deep inflation was impaired, followed by a significantly hastened 

and much more extensive increase in airway collapse (4).  Rats receiving high volume 

ventilation had more profound regional collapse than those receiving low volume 

ventilation with sporadic deep inflation as assessed by increasing lung stiffness and large 

uninflated regions of parenchyma on in-vitro microscopy (6). Additionally, the lungs of 

mice receiving low volume ventilation were more persistently recruitable than those 

getting high volume ventilation only (6).  In a subsequent study, mice receiving low 

volume ventilation with sporadic recruitment maneuvers had the lowest levels of 

biomarkers for lung injury severity, out performing high volume ventilation and low 

volume ventilation without recruitment maneuvers (7).  More recently, Allen et al found 

that recruitment after a deep inflation became progressively impaired over 48 hours 

following intratracheal hydrochloric acid instillation (5).  These studies suggest that the 

dynamics of recruitment and derecruitment are of significant concern in experimentally 

induced lung injury and that the beneficial response to recruitment maneuvers is 

diminished as pulmonary dysfunction worsens. 
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Chapter 3 Methods 

3.1 Modeling Recruitment / Derecruitment in a Single Airway 

Our model of recruitment and derecruitment of an individual lung unit was 

adapted from the model developed by Bates and Irvin (9).  In the original model, a lung 

unit consists of a resistance-less, collapsible airway subtending an alveolar compartment.  

The airway exists in one of two states, either fully open or fully closed.  When the airway 

is open the alveolar compartment volume is determined by the airway pressure, Paw, 

according to the Salazar-Knowles pressure-volume relationship (54), 

awKP
BeAV

−−=         (7) 

where A, B and K are empirically determined constants.  If the airway is closed, the 

compartment volume is equal to zero.  Whether an airway is open (recruited) or closed 

(derecruited) depends on its volume history represented by its position on a virtual 

trajectory.  The virtual trajectory is a formalization of the delay arising from the 

dynamics of dissolution or formation of fluid menisci that obstruct the airway and 

prohibit it from partaking in ventilation.  An airway’s position, x, on this trajectory is 

allowed to vary on the range of 0 to 1, with the endpoints corresponding to the threshold 

for transition to the closed and open state respectively.  More explicitly, an airway moves 

along the virtual trajectory by changing its value of x without any perceptible impact on 

mechanics until it reaches the boundary for transition into the opposite state.  If an airway 

is open, it will close only when its value of x reaches 0, otherwise it remains open; 

similarly, the closed airway will only open when the x value reaches 1.  This behavior is 

reminiscent of the nonlinear Schmitt Trigger circuit element, which is used to generate 

hysteresis and impart stability where a comparator would normally be used. 
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The dynamics by which an airway moves on this trajectory depend on the applied 

pressure and the values of three parameters: a critical pressure, Pcrit, an opening velocity, 

So, and a closing velocity, Sc.  Movement along the virtual trajectory is governed by a 

piecewise-linear first order differential equation 

( )
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where Paw is the pressure delivered to an airway.  Lung units receiving pressures above 

their critical opening pressure will thus move closer to opening with a rate directly 

proportional to the pressure differential, while an airway pressure below the critical 

closing pressure will cause the unit to approach closure in a similar fashion.  In modeling 

the whole lung, Bates and Irvin combined many such units in parallel, assigning each 

airway distinct values for Pcrit, So, and Sc from probability distribution functions. In 

choosing different values for parameters governing the distributions of the three 

parameters, the model demonstrated its ability to recreate a transient elastance increases 

due to airway derecruitment. 

In contrast to its predecessor, our model examines a more general 

recruitment/derecruitment paradigm which allows separate critical opening and closing 

pressures (Po and Pc) and velocities (So and Sc) for each airway (Figure 3).  In this 

instance, the relationship governing the rate of change of an airway’s location on the 

virtual trajectory is  
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When opening and closing pressures are not equal, there is a potential region of stability, 

on which x is not changing and the airway does not tend toward transition.  Once the 

airway pressure moves outside the region of stability the value of x will change as above.   

 

Figure 3: Graphical representation of virtual 

trajectory used for  R/D paradigm 

 

Figure 4: Schematic of the distributed model of 

respiratory mechanics. 

 

We also replaced the Salazar and Knowles pressure-volume model (54) used by 

Bates and Irvin (9) for each airway unit by a linear resistance in series with a linear 

elastic compartment that stores flow as a function of time (Figure 4).  The relationship 

between pressure, volume and flow for each pathway is that of the linear single 

compartment model described above.  Using this arrangement allows the lung to interact 

with a model of our mechanical ventilator, explicitly conserving flow by allowing each 

unit to dynamically accumulate volume.  All lung units were given identical values for 

airway resistance, Runit, and elastance, Eunit.  We modeled the lung using 1,250 units 

arranged in parallel so each unit receives a common pressure, Paw.   
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3.2 Origin of Experimental Data 

The experimental data used for our model fitting come from previously made lung 

elastance measurements in healthy and lung injured mice (5).  All experiments were 

performed in the Vermont Lung Center under direction of Gil Allen, M.D.  A brief 

overview of the experimental protocol is provided to place the model and resulting data 

in an appropriate physiologic context.  Experimental protocols were identical for healthy 

and injured mice except where indicated. 

Under general anesthesia (400 mg/kg tribromo-ethyl alcohol via intraperitoneal 

injection) 8-10 week old female C57/BL6 mice were given deep oropharyengeal 

instillation of 75 µl of either sterile phosphate buffered saline at pH of 7.4 (controls) or 

pH 1.8 hydrochloric acid (injured).  Mice were randomly assigned artificial ventilation 

and measurement of lung mechanics at 4, 14, 24 and 48 hours after instillation.  

Following induction of general anesthesia using intraperitoneal sodium pentobarbital (90 

mg/kg), the mice were tracheostomised using an 18 gauge metal cannula.  Each mouse 

was placed on the Flexivent (SIREC, Montreal, Canada) small animal ventilator.  All 

mice were ventilated at target delivered volumes of 0.25 mL per breath at a rate of 180 

breaths per minute.  Ventilation was performed for 8.5 minutes at three levels of PEEP 

(1, 3, 6 cm H2O) in random order. Two pressure limited deep inflations (rate of 30 per 

minute, Pmax of 30 cmH2O) were given preceeding each PEEP change to normalize 

volume history and recruit collapsed lung.  Measurements of respiratory impedance were 

made every 15 seconds using the forced oscillation technique (5).  Lung stiffness was 

measured by determining elastance, H, from fitting the constant phase model to the 

respiratory impedance spectra obtained using a two second broadband perturbation.   
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3.3 Modeling Whole Lung Behavior and Ventilator-Lung Interaction 

In order to reliably simulate the conditions of the experiment, we modeled the 

interactions between our experimental ventilator and the lung (Figure 5).  The ventilator 

breath is separated into two phases, with the inspiratory phase being driven by a volume-

controlled linear piston, while the expiratory phase is passive due to elastic recoil of the 

respiratory system, against a static PEEP.  Both of these phases have separate modeling 

equations that determine Paw in the simulated lung.   

The inspiratory phase of the breath is a quarter of a sinusoid, terminated at its 

peak.  Each breath is delivered by moving a linear piston to displace a certain volume at a 

predetermined rate.  The volume output from the ventilator, Vcyl, is divided between 

volume lost in gas compression, Vgas, and volume that proceeds into the breathing circuit.  

The compressed gas volume is given by  

( ) Lcylgasgas VVttVtV ∆−∆+∆−=)(       (10) 

where cylV∆  is the change in cylinder volume and LV∆  is the change in respiratory 

system volume between the previous data point, separated by a time step ∆t.  The 

pressure generated by compressing gas within the cylinder is given by  

)()( tVEtP gasgasgas =         (11) 

where Egas is the elastic modulus of the gas.  Because gas compression is a parallel 

process to the delivery of gas to the respiratory system, Paw, is equal to the pressure 

delivered to the respiratory system after accounting for the pressure drop that occurs 

through the ventilator tubing and tracheal cannula: 
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Once the ventilator piston has reached its target displacement volume the expiratory 

phase is entered and respiratory function is supported only by a fixed PEEP.  Pressure 

during the expiratory phase is determined by the lung’s volume and elastic recoil.   
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Figure 5: Diagramatic and schematic representation of ventilator - lung interaction.   

 

Airway pressure is used to calculate the state of recruitment by changing the value of x as 

described above and opening or closing new lung units as appropriate.  Global lung 

mechanics are, in turn, calculated as function of the newly determined state of 

recruitment in the sense that the resistance and elastance of the whole lung depend on the 

number of airways participating in ventilation.  Noting that closed airways will have zero 
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conductance and zero compliance we obtain expressions for RL and EL as a function of 

recruitment: 
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These relationships demonstrate that, in general, the properties of the lung’s resistance 

and elastance are governed by time varying parameters that hyperbolically decrease as a 

function of open lung.   

Flow for each open airway at time t is determined by rearranging the equation of 

motion for the single compartment model.   

( ) ( ) ( )( )unitiaw
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&       (15) 

Total flow into the respiratory system can then be determined by summation of individual 

airway flows over all i 

( ) ( ) ( ) ( )( )∑∑
==

∆−−==
N

i

unitiaw

unit

N

i

iL EttVtP
R

tVtV
11

1
&&     (16) 

Similarly, the volumes in each airway and in the whole lung can be found by summation 

in time, which in our discrete case simply consists of adding the present volume 

increment to the volume at the previous time point: 

( ) ( ) ( ) ( ) ( ) ( ) ttVttVtVttVttVtV iiiLLL ∆+∆−=∆+∆−= && ;    (17) 

We have verified analytically that computing total flow into the lung based on global 

lung mechanics gives the same flow as individually summing flows over all the open 

elements: 
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Because the relationship only applies to airways participating in ventilation  
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In order to ensure that ventilation is appropriately distributed we compute flows 

individually to each airway, since the flow they receive is inversely related the present 

volume of the unit.   

Initial validation of the model system was performed by analyzing its behavior 

over the course of several ventilator breaths.  This analysis was performed with all 

airways initially closed using distributions of recruitment/derecruitment parameters that 

favor a stable, mostly-open lung.  Original choices of time step, ∆t, were insufficient in 

characterizing the pressure, volume and flow consistently over adjacent breaths.  Low 

sampling rates were noted to cause breath initiation before the previous exhalation fully 

terminated, resulting in “virtual air trapping” at higher lung volumes and longer 

respiratory time constants.  In this phenomena, there is not enough temporal resolution to 

capture complete exhalation at end expiration.  Initialization of the subsequent breath 

begins at higher lung volume, and lung volume increases without bound.  Early 
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simulations demonstrated that the model also required an even number of time points per 

breath, synchronized to identical points within each cycle in order to prevent adjacent 

breaths from varying in 2-4 breath couplets.  At a ventilator rate of 180 breaths per 

minute a sample rate of 60 Hz was found ideal in removing variability between breaths 

while imparting only modest computational burden (~100,000 time steps per simulation).  

Once the appropriate time step was determined the model’s opening behavior was 

examined from a closed state at varying tidal volumes and values of Runit and Eunit.  Peak 

airway pressure and the extent of recruitment were found highly dependant on the values 

of VT and Eunit.  Final values for Runit and Eunit were chosen as 2,500 cmH2O s L
-1
 and 

27,500 cmH2O L
-1
 to ensure that the near fully recruited lung is mechanically similar to 

the healthy lung; the value of VT was chosen to match experimental conditions. 

3.4 Simulations 

Our initial simulations test the impact of model architectures on the goodness of 

fit by comparing various adaptations of the model to the average elastance time courses 

from each experimental condition (control and injured at 4 times post-instillation).  

Following objective model comparison (detailed below) the best fit model was used for 

parameter estimation using each of the experimental elastance profiles from the 

individual mice. 

In all simulations we have assumed that the opening and closing velocities for 

each airway, So and Sc, are described by hyperbolic distributions, each characterized by 

one free parameter, so or sc, so that 

[ ] [ ]1,0
~;

1,0
~
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s
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unif

s
So co .      (19) 
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The closing pressure distribution was modeled as Gaussian with parameters Pcµ and Pcσ 

governing the mean and standard deviation respectively.  We have posed four potential 

models to fit the experimental data (Figure 6).  In the simplest model, opening pressures 

and opening velocities were set equal to the closing pressures and velocities.  We have 

separately examined the effects of allowing the opening and closing velocities to be 

unequal, as well as shifting the mean of the opening pressure distribution a constant 

amount, ∆P, relative to the closing pressure distribution.  Finally, simulations were 

performed where both changes were incorporated into to the model.  

 Each simulation begins 

with an initialization routine 

consisting of 30 seconds of 

ventilation at a PEEP of 1 

cmH2O, providing a standard 

baseline from which all 

recruitment maneuvers are 

performed, mimicking the conditions in the experimental protocol.  After initialization, a 

two-breath deep inflation is performed to recruit collapsed lung and ventilation proceeds 

for 8.5 minutes.  The ventilation sequence is repeated from the baseline state for 

ventilation over PEEP levels of 1, 3 and 6 cmH2O.  The model simulates ventilation by 

repeatedly calling a subroutine to simulate 15 seconds of ventilation, ending with an 

estimate of the respiratory system elastance, E.  Each call to the subroutine uses the 

ending respiratory state from the previous function call as the initial values for the next 

15 seconds of ventilation.  All measurements are synchronized to the experimental 

 
Figure 6: Model evolution from 3 to 5 parameters, with 2 

intermediate varients. 

Separation of slopes and pressures are done in parallel, then 

combined.   
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measurements and were obtained by curve fitting the single compartment equation of 

motion 

( ) ( ) ( )tEVtVRtP LLaw += &        (20) 

to pulmonary pressure, volume and flow over the course of 4 breaths.   Once the entire 

elastance time course has been simulated, the values at each point are compared to the 

experimental values and the error quantified.  

All simulations were run on a Dell Pentium 4 desktop computer with CPU clock 

speed of 3.40 GHz and 1.00 GB of ram.  Simulations were written and performed using 

the Matlab software package (Mathworks, Natick MA) running under Microsoft 

Windows XP.  Each iteration of the model takes 28 seconds to initialize the model and 

produce the elastance values from the ventilation course at all three levels of PEEP. 

3.5 Model Fitting  

Parameter estimation was performed by minimization of ΦΜ, the root mean 

square error between model elastance, EM, and experimental elastance, H(ti), 
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where K is the number of elastance measurements and θ is the vector containing current 

values of parameters being estimated. Initial attempts at fitting the model were made 

using a grid search algorithm.  Due to the tortuous nature of the parameter space the best 

fit solution was highly dependent on the initial grid points chosen and local, rather than 

global minima were often reached.  This strategy also required an excessive number of 

iterations to result in convergence, especially given the fine nature required of the starting 
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grid in order to increase the probability of capturing the global minimum.  For a grid with 

equal numbers of points per parameter the computational time, T, increases exponentially 

as a function of grid size, S, in points per parameter, and as a power function of the length 

of the parameter vector, L: 

  L

oSTT =          (22) 

where To is the duration of one iteration.  Computational time for this approach is shown 

in Figure 7 for various grid sizes and parameter numbers with To at 28 seconds. 
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Figure 7: Grid search efficiency as a function of grid size and parameter number 

 

An adaptive grid search strategy was investigated, however the fit’s sensitivity to the 

location of initial grid points was found to predominate over grid size or number of 

adaptations.  Logarithmically spaced grids were also investigated without any significant 

reduction in computational burden and no increase in reliability or accuracy.  This fitting 

approach was abandoned early in the course of the project, as its unreliability necessitated 
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frequent observation of simulation progress and the repeated rerunning of simulations at 

substantial computational times.   

In considering the number of parameters, the duration of each iteration and lack of 

closed form solution to the fitting problem, we next examined the Nelder and Mead 

simplex minimization algorithm (46) to estimate the values of the parameters that best 

characterize the data.  This method uses a geometric approach to traversing an L 

dimensional error space.  This approach to model fitting can be most simply understood 

by examining a visual example in a two-dimensional parameter space (Figure 8).  The 

model begins by evaluating the model at a user specified initial condition { }
00 210 , XX=θ  

and storing the error value { }( )
00 210 , XX=Φ θ .   

A geometric “simplex” 

is generated by evaluating the 

model at one additional point 

for each parameter in the 

model.  For this example case, 

two additional points are 

required, creating a triangle in 

the two-dimensional space.  

Our implementation of this 

method chooses the additional 

points by adding 10% to one parameter at a time so that the three vertices of the initial 

simplex are the triangle composed of points: 

 
Figure 8: Diagrammatic representation of traversal of a 2-D 

parameter space using a simplex optimization method 
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[ ] [ ] [ ]{ }
000000 212121 10.1,,,10.1,, XXXXXX ×× .  We desire to move this simplex until we 

are within a certain resolution of either the minimum value of the function or until the 

parameter changes are appropriately minute.  To do this we begin by labeling each of the 

vertices based on their residual error so the comparatively best (point B), intermediate 

(point I) or worst (point W) vertices are represented by the green, blue and red vertices in 

Figure 8 respectively.  We also label the midpoint of the axis created by the line segment 

BI  through the two best points as the “centroid” (point C) of the simplex.  A reflection 

of point W about BI  produces the vertex R (light blue in Figure 8), where the function is 

evaluated.  A set of rules is used to determine the location of the next point based on 

comparison of the residual errors at each point: 

1. If ( )B=Φ θ  < ( )R=Φ θ  < ( )W=Φ θ : Replace W with R and reevaluate 

)(BIR∆ , the light blue triangle in Figure 8.  (Reflection of the simplex) 

2. If ( )R=Φ θ  < ( )B=Φ θ : Extend the simplex by evaluating the point E by 

doubling the value of R so E lies at twice the distance from the centroid, along 

the line WCR  

a. If ( )E=Φ θ  < ( )R=Φ θ : Replace W with E and evaluate )(BIE∆ , the 

orange triangle in Figure 8.  (Extension of the simplex) 

b. If ( )E=Φ θ  < ( )R=Φ θ : Replace W with R and evaluate )(BIR∆ , the 

light blue triangle in Figure 8.  (Reflection of the simplex) 

3. If ( )W=Φ θ  < ( )R=Φ θ : Contract simplex and replace W with the midpoint 

of WC , inner vertex I, generating the grey triangle in Figure 8. (Contraction 

of the simplex) 
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Combinations of the reflection, extension and contraction operations above are generally 

sufficient to traverse a fairly well behaved parameter space.  In general, this approach is 

robust enough to identify parameters whose values may span over 7 orders of magnitude 

(8).  Sensitivity to initial conditions was considerably diminished and minima reliably 

determined from reasonable initial guesses based on crude estimates from a rough grid 

search.  Termination criteria for the optimization method were chosen so that relative 

function changes fell within 5x10
-4
, while relative tolerances on the parameters were 

below 5x10
-4
 percent.  This was generally achieved in under 250 iterations, costing 

roughly 2 hours of computational time per fit.   

Our initial simulations test the impact of model architectures on the goodness of 

fit by comparing adaptations of the model to the average elastance time courses from 

each experimental condition (healthy and injured at 4 time points).  Following objective 

model comparison (detailed below) the best model was fit to each of the elastance 

profiles from the individual mice for parameter estimation from each subject. 

3.6 Model Comparison 

All models were fit to the average elastance time courses within each of the 8 

study groups (control and injured mice at each of the 4 time points) for the purpose of 

identifying models capable of capturing the trends in dynamic collapse.  In order to 

objectively compare the models, we have employed the corrected Akaike Information 

Criterion (AICC) (2, 13) 
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where Lθ is the length of the parameter vector for a given model and SSR is the sum of 

squared residuals between a given model fit and the data.  Since our performance criteria 

for minimization was a root mean square error, our AICC score was computed as 

( ) ( ) ( )( )
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++
+++Φ=

212
12ln2, .   (24) 

This measure was chosen since it allows simultaneous comparison of several models with 

different degrees of freedom at substantial penalty for the addition of free parameters, 

choosing the model that best characterizes the data in the maximum likelihood sense.  

The AICC was computed for each model on for each experimental condition and 

comparisons were made across all models for each condition.  Using the differences 

between AICC scores for a given model and the model with minimum AICC 

( ) { }
jCMCMC AICAICAIC ,,, min−=∆ ,      (25) 

probabilities that a particular model, M, best describes the data were determined as  
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The model with the highest Akaike derived probability can thus be considered the 

candidate model with the maximum likelihood from those models tested. 

3.7 Parameter Estimation, Comparison of Groups  

Once the best fit model was chosen, parameter values for each mouse were 

determined by fitting the model to the individual subjects.  Within each of the 8 groups of 

subjects the means and standard deviations were obtained on each parameter.  

Comparison of statistical significance between groups was performed using a two-way 
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Analysis of Variance (ANOVA) to assess the independent effects of injury and time after 

instillation, as well as the combined effect of injury over time.  All two-way ANOVA 

calculations were performed using the statistics toolbox in Matlab.   

In order to show the differences in parameter distributions we have reconstructed 

probability distribution functions for the critical pressures and velocities based on the 

average parameter values from each condition.  Plots of the rate constant distributions 

display histograms of the actual distribution of So and Sc from each simulation.  Using a 

one parameter hyperbolic distribution virtually assures a few dramatic outliers that 

possessed extraordinarily fast opening or closing rates.  To handle presenting this 

visually, all histograms were truncated to lump airways with rate constants outside of the 

range [.0025, 2] into the right-most bin.  Inclusion of the exact values of these few, sparse 

airways would dramatically influence the appearance of the histograms and obscure the 

distribution of the vast majority of the airways participating in ventilation.  Visualization 

of the critical pressures was done by plotting Gaussian distributions using estimated 

means and standard deviations.  All healthy subjects were pooled together, as no 

significant changes in parameters was observed in these groups.  

3.8 Sensitivity Analysis 

For the model determined most likely in explaining the data given the Akaike 

scores, sensitivity analysis was performed about each minimum to see how well each 

mouse’s elastance fit is described by an individual parameter.  For each individual mouse 

the sensitivity to each parameter, Si, was assessed by determining the fractional change in 

model error for a given perturbation to each parameter value 
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where θ 0 and Φ0 are the optimal parameter values and corresponding error, while θ P and 

EP represent the parameter value and error associated with the perturbation from the 

optimal value.  Fractional change in error was chosen so that the error change could be 

compared between subjects and across groups.   

To compare model sensitivities to Pcσ, ∆, SO, and SC each of these parameters was 

changed by a 5% perturbation about the optimum value in both the positive and negative 

directions. The perturbation chosen for Pcµ  was the addition or subtraction of 0.25 

cmH2O to the parameter value.  This was chosen because fractional changes to the 

control values were nearly negligible, due to their proximity to zero. Additionally, since 

some values of Pcµ  were below zero, fractional changes in the values would not allow for 

zero crossing.  Finally, physiologic changes in this parameter between health and disease 

appear additive rather than multiplicative.   Normalization of the change in error by the 

relative change in each parameter value allows the comparison of sensitivity directly 

between parameters.  Where applicable, isosurfaces of the error space for pairs of 

parameters were investigated to determine how error covaries in the region of a solution. 
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Chapter 4 Results 

4.1 Verification of Model Behavior 

In order to validate the model’s ability to faithfully recreate ventilator-lung 

interactions we first examined its response to the ventilator waveform used 

experimentally over several breaths.  Figure 9 shows the airway pressure, lung volume 

and flow upon being ventilated from the fully closed state.  The high pressure generated 

in the first few breaths begins to recruit new flow pathways, decreasing the lung’s 

apparent resistance and elastance.  As the lung opens, peak airway pressures fall, while 

the total lung volume and total pulmonary flow increase. 

 
Figure 9: Model response to ventilation from a fully closed state. 

 A.  Airway pressure.  B.  Lung Volume.  C.  Pulmonary Airflow.  D.  Fraction of lung that is open.  Note 
that as the fraction of lung increases airway pressure decreases, while flow and volume increase until the 

fraction of open lung reaches an approximate steady state. 

 

 Recording the flow and volume from a sample of airways during the initial and 

final breaths of the initialization routine demonstrates that regional heterogeneity of 

ventilation decreases as the state of recruitment stabilizes (Figure 10). It should be noted 

that intratidal derecruitment occurs profoundly during the initial onset of ventilation 
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(Figure 9. D, Figure 10).  Recruitment reduces the peak to peak variability in flow and 

volume, as well as the occurrence of intratidal collapse and reopening (Figure 10).  

During the initial breaths, few lung units are open and most of the tidal volume is 

captured by relatively few airways resulting in high airway pressures, high regional flows 

and overdistension.  The maximum flows for the initial breaths are four times higher than 

in the steady state condition, while the peak volumes are twice as high.     

 
Figure 10: Sample flow and volume profiles 

Comparison of flow (top) and volume (bottom) from a sample of 40 airways during the initial (left) and 

final (right) two breaths of the initialization routine.   

4.2 Model Fits to Average Elastance Time courses  

We have begun by fitting each of the 4 proposed models to the healthy elastance 

data, beginning with the simplest model (3 parameters).  Figure 11 shows the average 
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elastance time courses for healthy mice at each of the 4 time points, as well as the best fit 

at each time point for each proposed model.  In each figure, experimental data are  

A      B 

   
C         D 

   
Figure 11: Experimental data from healthy mice shown with each model fit 

A:  3 Parameter.  B: 4 Parameter – critical pressures the same, opening and closing velocities separated.  

C:  4 Parameter – velocities the same, opening and closing pressures separated.  D:  5 Parameter – 

opening and closing velocities and pressures different. 

 

given by the closed circles, while model elastances are given by the solid lines.  The three 

parameter model (Figure 11 .A) was barely able to recreate any PEEP responsiveness and 

possessed no significant dynamic behavior following deep inflation.  Additionally, this 

model was unable to demonstrate full recruitment of collapsed lung in response to deep 

inflation.  Introducing a constant separation of opening and closing velocities produced 

very little qualitative or quantitative differences in model fits (Figure 11 .B).  Allowing 
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the opening and closing pressures to be unequal produced a dramatic improvement in the 

model’s ability to recreate some dynamics of collapse, as well as improving the initial 

recruitment response following deep inflation (Figure 11.C).  In allowing both opening 

and closing velocities and pressures to differ, the model had far greater ability to recreate 

the initial response to recruitment maneuvers, PEEP response and dynamics of collapse 

seen experimentally (Figure 11.D and 8).  Model residual errors are quantified and 

displayed with those from the injured data in Table 1 and Figure 14 below. 

A        B 

  
C         D 

   
Figure 12: Experimental data from injured mice shown with each model fit 

A:  3 Parameter.  B: 4 Parameter – critical pressures the same, opening and closing velocities separated.  C:  

4 Parameter – velocities the same, opening and closing pressures separated.  D:  5 Parameter – opening and 

closing velocities and pressures different. 

 

Model elastances obtained by fitting the model to the average injured data at each 

time point following instillation are shown in Figure 12 with solid triangles representing 
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stiffness from the experimental data and solid lines representing the model fits.  Similarly 

to what is seen in the healthy mice, the three parameter model is incapable of recreating 

any significant dynamic recruitment/derecruitment behavior (Figure 12.A).  Allowing the 

opening and closing velocities to differ introduces some dynamic response and ability to 

recreate PEEP dependence (Figure 12.B).  This model is not recruitable enough following 

deep inflation and the dynamics of collapse are not correct, in particular at low PEEP and 

as the duration following injury increases.  Separation of the opening and closing 

pressures considerably improves the recruitment response after DI and matches the early 

time course of elastance changes, however this model plateaus quickly and does not 

allow for more gradual collapse (Figure 12.C).  The five parameter model is able to 

successfully recreate the dynamics of the recruitment response and subsequent collapse at 

all three levels of PEEP (Figure 12.D and Figure 13). 

 
Figure 13: Best model ealastance values when fit to the average experimental data 

Circles and Triangles represent the experimental data from healthy and injured mice 

respectively, while solid lines are the model elastances using the 5 parameter model. 
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4.3 Model Comparison and selection 

The residual errors for each model and each average time course are summarized 

in Table 1 and Figure 14.  In all experimental conditions the residual error is lowest for 

the 5 parameter model.  Probabilities that each model characterize the data were made 

from Akaike scores in order to choose the best model (in the maximum likelihood sense) 

while appropriately penalizing the addition of free parameters.  Table 2 demonstrates that 

these probabilities strongly favor the 5 parameter model with separate opening and 

closing rate constants and pressures, despite the additional degrees of freedom.     

The best model fits (solid lines) are shown with the experimental data (colored 

triangles) enlarged in Figure 13.  The average root mean square error on all fits is 1.003.   

 
Figure 14: Comparison of errors as function of model architecture, time and injury condition 

 



 40 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2: Akaike probabilities for each model and condition 

 Model A B C D 

4 Hour 2.64E-08 3.02E-10 4.78E-10 1 

14 Hour 8.23E-10 2.94E-09 6.72E-10 1 

24 Hour 1.09E-09 1.39E-11 2.45E-10 1 

Healthy 

48 Hour 1.02E-09 1.76E-10 3.36E-06 0.999997 

4 Hour 1.83E-24 2.34E-23 8.65E-19 1 

14 Hour 1.22E-25 7.16E-28 3.49E-18 1 

24 Hour 6.22E-19 1.09E-18 8.24E-17 1 

Injured 

48 Hour 8.9E-22 1.66E-21 3.21E-16 1 

4.4 Model Fits on Individual Experimental Data  

By averaging the elastance time courses over each condition we obtained a mean 

fit profile that was compared to the mean and standard deviation of the experimental data.  

Shown below in Figure 15 are the average model fits to the experimental data from all 4 

healthy conditions, while the average injured fits are shown in Figure 16.  In both cases 

only several data points from the mean curve fell outside the standard error of the 

Table 1: Root mean square errors for each model and condition 

 Model A B C D 

4 Hour 1.1832 1.3104 1.2921 0.64481 

14 Hour 1.209 1.1225 1.1745 0.59231 

24 Hour 1.1828 1.3058 1.1956 0.58458 
Healthy 

48 Hour 1.3369 1.362 1.0064 0.65923 

4 Hour 5.7275 5.1132 3.7023 0.9959 

14 Hour 7.3834 8.3474 4.2084 1.1816 

24 Hour 7.4686 7.0867 6.2062 1.9201 
Injured 

48 Hour 6.8924 6.5281 4.4925 1.4492 
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experimental measurements Table 3. It should be noted that the model fits have a 

variance that can not be directly separated from the experimental variability, so no 

standard deviation of the fit is displayed on these graphs.  Average root mean square 

errors for each condition are summarized in Table 4 below.  Note that these are the 

averages of the fitting errors in each condition, rather than the error between the average 

fit and the average data. 

A         B 

C         D 

  
Figure 15: Mean model fit compared with average experimental data - Healthy Mice 
Data shown as mean +/- standard deviation for healthy mice, with  at 4, 14, 24, 48 hours. 
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A        B 

 
C         D 

 
Figure 16: Mean model fit compared with average experimental data – Injured mice   

Data shown as mean + standard deviation for injured mice at 4, 14, 24, 48 hours. 

 
Table 3: Percentage of model points falling outside mean +/- standard error of data 

 4 Hour 14 Hour 24 Hour 48 Hour 

Health 5.333333 10.66667 5.333333 2.666667 

Injury 1.333333 1.333333 2.666667 5.333333 

 
Table 4: Average residual error between model fit and average experimental data 

 4 Hour 14 Hour 24 Hour 48 Hour 

Health 0.8406 0.7916 0.7261 1.4567 

Injury 1.8826 2.0479 3.695 4.5038 

4.5 Individual Parameter Determination 

Values for each set of estimated parameters were recorded for each of the 

individual mice.  Presented are the average parameter values for the 5 parameter model, 

as well as their standard deviations (Figure 17, Figure 18, Table 5).  Changes in these 
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values are reported as percentages, except for the mean of the closing pressures, Pcµ, are  

is reported as absolute changes.  Because the mean closing pressure in the healthy mice is 

very close to zero and changes greatly in injury, reporting this as a percentage would 

somewhat overstate the importance of this change (percentages appeared in the range of 

30,000 percent difference).  No statistically significant difference in any parameter was 

reported within the 4 groups of healthy mice.  The most pronounced, and only 

statistically significant parameter change from health to injury was an increase in Pcµ.  

As injury severity increased, both the opening and closing pressures progressively 

increased, though the changes between time points were not statistically significant.  

Additionally, no statistically significant changes in their separation, ∆P, were seen over 

time.  The rate of opening increased slightly in early injury, but fell to below the control 

level by 24 and 48 hours.  Unexpectedly, no significant differences in the closing and 

opening velocity constants or the standard deviation of the pressure distributions were 

seen between any health and injury conditions. 

Table 5: Parameter values obtained using the five parameter model 

All data shown as mean +/- standard deviation. 
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A        B 

    
C 

 
Figure 17: Average parameter values governing pressure distributions for each condition 

* denotes statistical significance compared to the all four control groups. 

     
Figure 18: Average parameter values governing rate constant distributions for each condition 

4.6 Comparison of Critical Pressure Profiles 

Histograms of the distributions of opening and closing velocity slopes for each 

condition are displayed in Figure 19.  Rate constants are displayed using a logarithmic 
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spacing of bin widths, and plotted semi-logarithmically in x.  The y-axis shows the 

number of airways having in a given bin, normalized per 1000 airways.  The distribution 

of opening and closing slopes for the airways does not significantly change from health to 

injury, or between injury conditions as it matures.  In comparing the opening velocity 

constant distribution to the closing constants, the opening rates appear to be 

logarithmically shifted to the right by approximately one decade.   

Changes to the average mean and standard deviation of the critical pressure 

profiles are presented graphically in Figure 20.  Panels A and B show the closing and 

opening pressure distribution generated by the average parameter values for the healthy 

simulations, while Panels C and D represent the injured mice.  In the healthy mice there 

are no apparent substantial differences among the different time points.  Each of the 

injury time points displays noticeably different pressure profiles from the control, as well 

as between time points.  Initally, the distributions of critical pressures are much more 

peaked in injury than the control conditions. With increasing injury severity the mean of 

the distributions continues to increase, as does the width of the pressure distribution.   
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Figure 19: Distribution of opening and closing Slopes 
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Figure 20: Average closing and opening pressure distributions 

Healthy subjects are shown in the top two graphs, while the injured mice are shown as the bottom plots. 

4.7 Sensitivity Analysis 

For each individual set of parameters, model sensitivity was measured in both 

positive and negative directions about the minimum due to potential asymmetry of the 

parameter space. Average sensitivities were analyzed by experimental condition and are 

displayed in Figure 21 and Figure 22 as a mean with standard deviation as error bars.  

The injury condition displayed the most sensitivity to changes in the mean of the closing 

pressure distribution, while the healthy mice were nearly insensitive to changes in this 

parameter.  By contrast, both the values of So and Sc had pronounced impact on the fit in 

the healthy mice, while neither significantly altered goodness of fit in the injured ones. 

 



 48 

Sensitivity in the negative direction Sensitivity in the positive direction 

      
 

    
 

   
Figure 21: Model sensitivity to changes in pressure distributions 
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Sensitivity in the negative direction Sensitivity in the positive direction 

      
 

  
Figure 22: Model sensitivity to changes in distributions of velocity constants 
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Chapter 5 Discussion 
 

Alterations to the nature of recruitment and derecruitment processes during 

mechanical ventilation have been implicated in numerous experimental and clinical 

studies of acute lung injury (3-7, 32, 61).  Recent data challenge the long upheld view 

that recruitment is a static function of pressure in the lung, and rather indicate that this 

process is inherently dynamic (3-7).  As such, lung stiffness can not be viewed simply as 

a function of pressure, but rather as a function of pressure history and time (9).  The 

clinically relevant implications of this finding on ventilator management are potentially 

far-reaching, but they have remained bounded by the lack of quantification of specific 

alterations to the parameters that give rise to dynamic R/D behaviors.   

Bates and Irvin proposed the first model of global lung mechanics to incorporate 

dynamics into the process of airway recruitment and derecruitment (9).  Rather than 

allowing recruitment to be a static function of pressure, this model describes the R/D 

behavior in the lung by incorporating a nonlinear memory element that stores the impact 

of pressure history on airway opening or closing.  In simulating sinusoidal ventilation, the 

model mimicked the hysteretic behavior of the Pressure-Volume curve, in particular 

demonstrating that volume history dramatically affects this relationship by changing the 

lung’s state of recruitment.  In allowing the model lung to have particular distributions of 

closing pressures and closing rates, this model demonstrated a progressive increase in 

lung stiffness throughout simulated ventilation, similar to dynamic collapse seen in acute 

lung injury.  

The goal of our study was to extend the model of Bates and Irvin to determine 

distributions of parameters governing R/D phenomena in healthy mice, as well as to 
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characterize specific alterations to these distributions that occur during states of acute 

lung injury.  To achieve such a goal we tested several potential model architectures that 

deviate from the original model to identify the model that best characterized the data for 

parameter estimation.  To the best of our knowledge, our model is the first to precisely 

recreate the transient response of lung elastance following deep inflation.  In modeling 

this phenomenon we have provided the first quantitative description of dynamic R/D 

parameters that give rise to the complex behavior seen in ALI.  We believe these data to 

be an invaluable prerequisite to future experimental and theoretical evaluation of the 

safety and efficacy of ventilation strategies. 

5.1 Interpretation and Significance of Results 

Several modeling studies (22, 26, 27, 35, 36) have previously indicated that a 

separation of opening and closing pressures gives rise to the hysteresis of the pressure-

volume relationship during a ventilatory cycle.  By incorporating a memory element that 

accounts for the role of pressure history in recruitment, Bates and Irvin (9) demonstrated 

that such hysteretic behavior could also be recreated if the rates of opening and closing 

processes were separated, while the closing pressure was equal to the opening pressure.  

In light of this, it was essential to determine whether one or both of these mechanisms 

contribute significantly to the dynamics of progressive derecruitment.  Initially we posed 

four potential model architectures that link the process of airway recruitment and 

derecruitment to distributions of opening and closing pressures and rate constants.  In 

fitting each model to the average lung stiffness from experimental data and computing 

Akaike probabilities on each, we have determined that opening and closing rate constants 
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must be independent of each other and that a separation of opening and closing pressures 

is essential to demonstrating the dynamic recruitment and derecruitment behavior seen 

experimentally.  These preliminary model fitting exercises demonstrate that the 

incorporation of a separation of both pressure and rate quantities is necessary and 

sufficient to characterize all three prominent features of the experimental data: the initial 

recovery following deep inflation, the transient recollapse that occurs during ventilation, 

and the differential response to varying PEEP.  

By fitting this model to all of the individual mice we have estimated values for the 

parameters that govern the dynamics of R/D.  By averaging the parameter values over all 

mice in each condition we have obtained means and standard deviations on each of the 

parameters, allowing direct comparison between experimental conditions. Interestingly, 

the only statistically significant changes that occur between health and disease are a 

parallel increase in both the mean of the critical closing pressure and the mean of the 

opening pressure.  The opening and closing pressures increase progressively with injury 

severity, though the changes between injury conditions are not statistically significant.  In 

examining the distributions of opening and closing pressures it is clear that the pressure 

dependence of recruitment is significantly altered in disease.  Early in the course of injury 

the pressure distributions are significantly narrowed compared to the control mice, 

however the width of the distributions grows as injury progresses.  In injured states, a 

significant portion of the lung has closing pressures that are experienced during tidal 

ventilation making the injured lung more prone to spontaneous collapse.  Additionally, 

the pressure required to reopen these airways is increased, making recruitment 

significantly more challenging and potentially more injurious.  No change was observed 



 53 

between health and injury to either the values of So and Sc or the ultimate appearance of 

the distributions of these velocity constants.  Our analysis shows that the distributions of 

rate constants for the opening process are inherently faster than those governing closing, 

with the entire histogram logarithmically shifted to the right by nearly a decade.    

Review of the literature suggests that the alterations to recruitment parameters 

estimated by our model are best explained mechanistically by an inactivation of 

respiratory surfactant.  Several studies (45, 52, 53, 66) have indicated that airway opening 

pressures increase substantially with surfactant inactivation-mediated increases in surface 

tension.  In contrast, the rate of reopening once this yield pressure is exceeded was found 

to be dramatically affected by changes to the viscosity of airway lining fluid, but was 

insensitive to changes in surface tension (52). This suggests that alteration in mucus 

production is not a significant determinant of altered reopening behavior in this 

experimental model of acute lung injury.  We therefore conclude that increased surface 

tension is responsible for the increases in airway opening pressures seen experimentally. 

To test the validity of this conclusion we compared the opening pressures 

estimated using our computational model with those predicted on theoretical grounds for 

small airways (see Appendix).  To do this we balanced the pressure, viscous and surface 

tension induced stresses at an air-liquid interface in a circular airway with a radius of 0.2 

mm.  We have calculated a theoretical value of 7 cmH2O for the opening pressure which 

is similar to the values predicted by our model (4.0 cm H2O in healthy mice to 8.0 cm 

H2O in the lung injured mice).  The Capillary number for this system (Ca ~ 2.00x10
-4
) 

also indicates that interfacial behavior in an airway of this size is significantly more 

determined by surface tension than viscosity.  These observations strongly agree with our 
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conclusion that altered surface tension, presumably through surfactant dysfunction, is 

responsible for the change in airway reopening behaviors seen in injury. 

Increases in opening pressures during injury may be a significant mechanism by 

which cellular injury occurs in ventilator induced ALI.  Studies of moving air bubbles 

over cultured pulmonary epithelial cells have demonstrated that injury is caused by the 

steep normal pressure gradient located at the front of the moving finger of air (11).  

Increases in the yield pressure required to initiate reopening is expected to dramatically 

increase the magnitude of the pressure gradient established before bubble propagation.  

Damage to the epithelial layer was completely ablated by the addition of synthetic 

pulmonary surfactant to the system, through a reduction of the interfacial pressure 

gradient (11).  Pressure gradient magnitude is inversely related to the capillary number in 

this system, which indicates that cellular injury decreases with increases in Ca.   Injury is 

thus worsened by increased surface tension and decreases in fluid viscosity or reopening 

velocity.  Several studies (11, 43, 65) have demonstrated that cultured pulmonary 

epithelial cells are considerably more prone to death during slow as opposed to fast 

reopening processes.  This observation may be especially worrisome clinically, given that 

our model predicts an increase in surface tension and, potentially, a decrease in opening 

velocity, since the pressure differential driving the rate of reopening (not the same as the 

normal pressure gradient causing injury) will have fallen in injury, while the rate constant 

remains the same.  Another concern from these studies arises from the observation that 

repeated exposure to pressure fronts that appear initially to be sub-injurious have been 

shown to cause cumulative injury that increases with the number of insults (43, 65).  This 
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underscores the need for effective recruitment that does not allow for repeated closure 

and reopening during ventilation. 

Though the biophysics literature has more thoroughly characterized reopening 

phenomena, the majority of the behavior seen in the experiments we have modeled is that 

of progressive collapse.  Evidence suggests that the increase in closing pressures also 

results from surfactant inactivation mediated increases in surface tension (14, 33, 50).  

Studies performed in rigid tubes have demonstrated that fluid instabilities spontaneously 

arise in annular geometries where a thin film coats the walls and an immiscible fluid of 

different density fills the core of the tube (14).  The rate of development of spontaneous 

collapse is dependent on the film thickness, ε, and surface tension, γ.  In a non-rigid tube, 

collapse appears to result from fluid-elastic instabilities during wave propagation, 

whereby surfactant driven thin film motion deforms the boundaries of the airway wall, 

resulting in closure if outward-directed elastic forces are overcome.  Collapse of 

compliant airways appears to result from this fluid-elastic instability secondary to the 

amplification of fluid waves (33), though peripheral airways may act more like rigid 

tubes due to mechanical support from the parenchyma (14).  Which mechanism 

predominates in injury remains unknown, however the importance of film thickness in 

both cases is similar.  Surfactant inactivation has been attributed to a decrease in the 

threshold film thickness, εc, above which liquid bridges will form, resulting in incrased 

airway closure.  One study performed in elastic tubes noted that addition of surfactant to 

a model airway system resulted in a 60% reduction in εc and five-fold increase in the 

duration of patency before collapse occurs (33).  This alteration to the rate of collapse 

may appear paradoxical to the conclusions of our study; however, the rate of collapse 
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must be thought of as the product of the airway’s closing rate constant and the gradient 

between applied and critical pressure.  In the presence of increased closing pressures the 

pressure differential driving airway instability decreases, given that applied pressure 

remains the same.  This in turn reduces the rate of airway closure independent of changes 

to the rate constant.   

Visualization of the rate constant histograms show that the entire distribution of 

opening rate constants is ten-fold faster than the distribution of closing pressures and 

unchanging between health and injury.  This disparity is most simply explained by a 

mechanistic difference between the processes of airway opening and closing: closing is 

related to either stable fluid meniscus formation or fluid-elastic instability, while 

reopening is governed by the kinetics of driving a bubble of air through some closed 

region.  Also, axial support from parenchymal tethering forces acts in opposition to the 

closing of an airway, which may retard the rate of collapse.  Interestingly, the inherent 

rates of both opening and closing processes appear invariant between health and disease 

even though the pressure dependence has been altered, arguing against the significance of 

parenchymal tethering since fluid extravasation into the lung tissue during early ALI as 

well as fibrin accumulation in late injury would both be expected to alter the apparent 

contribution of parenchymal tethering forces.  In summary, our rate constant data can 

neither provide explicit support nor refutation for either the theory of closure through 

liquid bridge formation or compliant collapse with structural deformation.   

Our sensitivity analysis reveals significant differences in model sensitivity to the 

mean of the closing pressure distribution.  In the injured mice, the data are clearly best 

characterized by the value of Pcµ, while the healthy mice are least sensitive to changes in 
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this variable.  We have examined the possibility that this may be an artifact of the 

normalization used in computing dΦ/dX for the critical closing pressure.  Since we have 

used an absolute, rather than percent change, to the value of Pcµ and then subsequently 

normalized to this change, the denominator of this sensitivity measure may be biased by 

the relative difference in the parameter change between healthy to diseased condition.  In 

order to determine the impact that this effect would have on the sensitivity measure, we 

computed dΦ/dX for various magnitudes of ∆Pcµ and found that the variability in the 

normalized sensitivity measurement changed no more than ~7% in all conditions, using 

reasonably small perturbations.  Given these simulations, the relative insensitivity to the 

opening pressure in healthy mice is likely not due to computational artifact.  Another 

more satisfying explanation for this observation is that such a large portion of the healthy 

lung is above the closing pressure, especially at the higher levels of PEEP, that slightly 

shifting Pcµ results in only a small fraction of the lung moving to a state where it can 

collapse.  Paradoxically, this slight increase in collapse may in turn increase airway 

pressures so that a similar fraction of the lung is now above its (slightly lower) opening 

pressure, causing the model elastances to change only slightly.  The opposite effect may 

be a sufficient explanation for the sensitivity to this parameter in the injured mice; since 

so many of the lung’s airways are above this closing capacity at various levels of PEEP 

incremental changes can dramatically influence the goodness of fit.  Sensitivity to all 

other parameters was comparable between groups and no statistically significant 

differences were observed.  
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5.2 Critical Appraisal and Model Limitations 

In order to employ the R/D paradigm within our simulations several modifications 

to the work of Bates and Irvin became necessary.  Our first modification to the model 

was the departure from the Salazar and Knowles equation (54) to describe peripheral lung 

mechanics and the adoption of the single compartment model for each unit.  Use of a 

parallel arrangement of single compartment units allows the whole lung resistance and 

elastance to vary inversely with the state of airway recruitment.  This also allows the 

airway motion equations to be explicit in volume, flow and pressure, as opposed to 

relating volume to pressure alone.  This change facilitates the conservation of flow during 

ventilation.  The downside to using our model over Salazar and Knowles is that the 

peripheral mechanical elements do not exhibit an increase in elastance due to strain 

stiffening behavior demonstrated in lung tissue at higher volumes.  Though the 

significance of this effect has not been examined, we believe that the effect of 

recruitment and derecruitment would likely predominate over strain stiffening in these 

conditions, though incorporation of tissue mechanical properties that are nonlinear 

functions of volume is a logical extension of our analysis.  

In coupling the lung model with an implementation of the ventilator we have 

allowed for the resistance and gas compression occurring within the experimental 

equipment to be accommodated for directly.  The current ventilator paradigm is hard-

coded into the model, requiring modification to the current programs in order to simulate 

ventilation strategies that significantly differ from the current approach.  In particular 

changes to the ventilation frequency or the length of the interval between measurements 

will require an alteration of the sampling rate and window length in order to avoid the 
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virtual-auto PEEP problem mentioned in the methods section.  A method of directly 

visualizing the impact of these changes on the pressure, volume and flow waveforms over 

several breaths has been incorporated into the code so that values for the sample rate and 

window length can be chosen to appropriately meet user defined design criteria.  The 

windowed approach to data storage in 15 second parcels was originally employed to 

minimize the amount of data required for storage, by replacing it after each measurement 

interval.  The current implementation of the model can easily be modified to remove this 

windowed approach to simulating the data in favor of some other data structure that is 

less sensitive to these timing variables.   

Our current method of determining the value of respiratory elastance is 

determined by fitting the equation of motion for the single compartment model to the 

pressure, volume and flow tracings from the model.  At present the curve fitting is 

accomplished with the Levenberg-Marquardt algorithm using end expiratory RL and EL 

for initial guesses.  This curve fitting approach was chosen for determination of EL, as it 

was initially unclear which was the best equation to characterize the effective elastance.  

Since the equation of motion for the single compartment is linear in both R and E, this 

approach to parameter estimation is unnecessarily intense compared to solving a simple 

linear least squares problem with a simple matrix inversion operation in Matlab.  Despite 

this, Matlab’s code profiler only attributes 0.7% of the simulation time to the estimation 

of EL.   In fact, an estimate of average EL may even be obtained by taking an average of 

the value for EL over a few breaths every 15 seconds of ventilation based on the number 

of open lung units.  It is presently unknown how well this measure would compare with 
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the effective elastance of the respiratory system calculated by curve fitting.  Since the 

model is linear and subject to similar assumptions, a very good agreement is expected. 

Our final model uses 1,250 terminal airways to recreate the 

recruitment/derecruitment behavior seen experimentally.  In preliminary studies fitting 

the four potential models to the average elastances we initially used 2,500 airways.  Once 

the model fitting was completed we compared the goodness of fit and the elastance time-

courses to additional simulations performed with 500, 750, 1250, 2000 and 5000 airways.  

The model fit was nearly invariant to all of the potential choices of airway numbers listed 

above, except for the 500 airway case in which the trend in the data was the same, but the 

elastance tracings became slightly more jagged, with approximately 5% increase in error.   

One of the most important factors affecting the behavior of the model is the tidal 

volume that it is driven with.  Estimates of parameters were found to change significantly 

if the tidal volume of the model was varied.  This is not a practical issue in our 

simulations since the target volume displacement is known for these measurements.  It 

should be considered when comparing the distributions generated in these simulations to 

those from other experimental data that may be conducted at other tidal volumes.  Of 

lesser importance than tidal volume, but still of potentially significant consequence is the 

model sensitivity to the value of Eunit.  Changing the value of Eunit by 5% with all other 

parameters held constant caused an increase in the error of  60-80%, depending on the 

injury condition.  Interestingly, fairly small changes to Eunit, on the order of 1%, actually 

caused a slight decrease (~7.5%) in the model error.  We had chosen the value of 22 

cmH2O for EL of the fully open lung, which is slightly lower than the elastance of the 

healthy mouse lung measured 15 seconds after deep inflation.  The figure we used was 
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chosen below the measured value as there is likely to have been some collapse that 

occurs during this time period, as well as the potential for incomplete recruitment in 

response to the DI.  Simulations have not been performed where model parameters are fit 

with varying values of tissue elastance.  It would, however, be interesting to quantify the 

precise impact this has on model parameters.  Since tidal volume is such a strong 

determinant of these estimates, the relative importance of tissue elastance, or its coupling 

with tidal volume should be examined, as these sensitivities were incompletely explored. 

Though a normal distribution of critical pressures has been widely reported in the 

literature (15, 28, 35, 36, 51), the true underlying distribution of these quantities is more 

than likely not perfectly Gaussian.  We have also performed simulations whereby the 

distribution of opening and closing pressures are distributed log-normally; however, these 

yielded roughly 2-2.5 fold higher errors than the normally distributed case (data not 

shown).  This increase in error may be due in part to the limitations of using only a scale 

and shift parameter to determine the shape of the log normal distribution, as the shape 

parameter will unpredictably effect the mean, standard deviation, kurtosis and skewness 

of the distribution.  A more controllable implementation of this distribution may be 

generated by shifting and scaling a Gaussian distribution and then projecting it into log-

space using a Jacobian transformation.  Some simulations fitting the log-normal 

distributions of critical pressures resulted in negative values for ∆P, which are 

counterintuitive and presumably non-physiologic.  The possibility exists that this results 

from finding a local minimum that may be avoided by using a constrained optimization 

algorithm that requires ∆P to be positive.  Previous studies have also posed that the 

opening pressures may be uniformly distributed.  This was felt unlikely to be a realistic 
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distribution in our model, as most of the models that use the uniform distribution 

generally incorporate branching in the airway tree and simulate cascades of progressive 

airway opening (55-58).  Increasing model complexity by incorporating additional airway 

branching and the potential for serial collapse and reopening is scientifically relevant and 

may be an area for future exploration.  As an early simulation of this 

recruitment/derecruitment paradigm, we avoided this degree of complication and were 

able to successfully characterize the experimental data with a minimal number of free 

parameters.  Early simulations were performed with both hyperbolic and uniform 

distributions of So and Sc; however, simulations with the uniform distributions were 

found not to converge to reasonable elastance time courses.  In general, future studies 

applying this model to other experimental data sets may benefit from simulation with 

these alternative distributions of pressures and rate constants, as the behavior in other 

experimental conditions may be better approximated this way.   

In the absence of any firm evidence in the literature that provides a functional 

relationship between opening and closing pressures we elected to begin with a constant 

separation of these quantities.  Though the incorporation of a separation of airway 

opening and closing pressures was instrumental in fitting the model to the data, we have 

no reason to believe that a point estimate of the separation would characterize the 

biophysics better than some non-zero variance formulation.  We have therefore examined 

simulations where the critical pressure separation has an additional degree of freedom; 

however, this was not found to improve the model fit.  In allowing the distribution of ∆P 

to be distributed uniformly on [0, ∆Pmax] there was an increase in the residual error of the 

model, indicating that this particular distribution did not appropriately reflect the 
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separation between opening and closing pressures.  That is not to say that some other 

distribution of pressure separations would not fit the data better.  In fact, increasing the 

number of free parameters would be expected to decrease the residual error (provided the 

models are nested).  Using some distribution of opening pressures, for example a uniform 

distribution on [∆Pmin, ∆Pmax], may increase the goodness of fit, but the cost of the 

additional free parameter may not be justified.  Similarly, allowing for the standard 

deviation of the opening distribution to vary independently of the closing distribution 

may cause a reduction in residual error.  It should be noted again that our results describe 

distributions in this particular injury condition in one species and are not directly 

generalizable beyond this case without outside validation by testing potential model 

variants as appropriate. 

Alternative approaches to the Nelder and Mead Simplex algorithm (46) were 

examined for fitting the model to the data.  One advantage of using a search algorithm is 

that it requires only calls to the model function during an iteration, as opposed to having 

to numerically calculate derivatives of the cost function.  Though a closed form analytic 

expression may conceivably exist for the model’s partial derivatives, the dependence of 

the initial mechanical state of the model after deep inflation on the model parameters 

significantly complicates the determination of such a solution.  A higher order 

optimization scheme would thus require using numerical estimates of first and second 

order partial derivatives for generation of components of the Gradient and Hessian 

matrices.  This strategy was not attempted because it was felt it would require far greater 

computational time to compute these matrices without increasing the robustness of the 

approach.   
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Another concern regarding the approach to fitting the model regards the need to 

determine with high certainty that the optimal solution is in fact a global, rather than local 

minimum.  Though we are confident we have obtained the correct physiologically 

bounded solutions, the need to ensure convergence to the physiologic global minimum in 

medical-grade technological applications can not be understated, so that clinical decisions 

are based on the appropriate values.  Investigation of algorithms that can more effectively 

span the parameter space for other physiologically relevant minima may be a worthwhile 

venture.  A significant downside to application of global optimization routines is the 

increase in the number of iterations required for a solution to be reached.  The typical 

termination criterion for this approach is to accept the set of parameters generating the 

lowest error after a predetermined number of iterations is reached.  This introduces the 

problem of not assuring convergence, as the user defined number of iterations is 

considered a weak criterion for termination.  If convergence needs to be assured, any 

traditional optimization technique may be used about the “minimum” found by the global 

technique. 

Two methods worth mentioning for global optimization are the Simulated 

Annealing (44) technique and Evolutionary Optimization using Genetic Algorithms (17, 

19, 21).  In contrast to traditional optimization strategies, where only decreases in 

residual error are accepted and considered as moving closer to the desired minimum, 

these strategies will elect to introduce some iterations that increase the model error, 

occasionally moving the model away from the neighborhood of a local minimum and 

allowing it to search for a new optimal solution.  The search operation used in Simulated 

Annealing (SA) adds a perturbation to the parameter vector whose magnitude and 
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direction is based on a point chosen at random on the surface of an L-dimensional unit 

hypersphere.  After evaluating the function at the new parameter set, it determines if the 

error has been reduced.  If error has decreased, the step is always accepted; however, if 

there is an increase in error a probabability of acceptance that is inversely related to the 

magnitude of the error is calculated.  A uniform random number is chosen on the interval 

[0,1] and compared to the acceptance probability: if the random number is less than the 

acceptance probability, this step is retained, otherwise the algorithm rejects this change 

and reverts to the previous value.  Genetic algorithms use the natural processes of 

recombination and natural selection to evaluate the model at permutations of tested 

solutions (19).  The process begins with a population of several proposed optimal 

solutions – or design vectors - which it evaluates before subjecting them to evolutionary 

operations.  Several potential operations can be performed, including breeding pairs of 

solution vectors to generate new “child” design vectors, and random mutation by the 

addition of spontaneous perturbation to certain solution components.  The introduction of 

randomly generated “immigrant” solutions to the population generates new design 

vectors unrelated to the initial population.  The new population of parameters from the 

children, mutants and immigrants can increase the diversity in potential solutions by 

spanning large regions of parameter space.  The genetic algorithm evaluates the function 

at each member of the population and uses the residual error to whittle down the possible 

solutions by only accepting the best few parameter sets.  Iteration of this algorithm over 

time reduces the presence of weak parameter values that poorly characterize the data, 

eventually reaching the neighborhood of an optimal solution.   
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The primary limitation which prohibits clinical use is the long duration of the 

fitting process.  Currently, one iteration of this model takes approximately 28 seconds of 

computational time.  At roughly 200-250 function calls required for convergence, one 

fitting routine takes approximately 2 hours to complete.  This delay between acquisition 

and parameter estimates significantly precludes its utility at the bedside, and certainly 

rules out its application in embedded model control within a ventilator, at least in its 

present form.  Strategies to reduce the computational burden and increase its potential use 

at the bedside are discussed in greater detail below. 

5.3 Model Utility and Future Directions 

The observation that mechanical changes in ALI can be recreated solely through 

stochastic collapse supports the recent body of literature arguing against changes in 

intrinsic tissue mechanical properties as the predominant cause for apparent parenchymal 

stiffening.  The pressure and rate constant distributions generated by our fitting exercise 

provide quantification of the precise derangement to recruitment behaviors seen in acid 

induced lung injury.  This provides insight into both the biophysics of R/D in this 

particular injury model, as well as a conceptual basis for future advances in design of 

ventilator protocols.  To this end, the computational model has potential utility in 

studying other types of experimental lung injury, differential response to injury in 

different strains of mice or different organisms and future adaptation for clinical 

application. 

Applying the same model in mice with lung injury of differing etiology may shed 

light on mechanical differences between pathologies at the airway level.  Comparison of 



 67 

the experimental data used in our study with a saline lavage injury from an earlier study 

in our lab (4) demonstrates a significant difference in response to recruitment maneuvers, 

as well as the extent and rapidity of derecruitment.  It is particularly relevant to compare 

the derangements to R/D phemonena in different models of ALI as significant debate 

exists about the extent and impact of heterogeneity in the patient population on 

appropriate management strategies (28, 29, 47, 48, 63).  Specific alterations to 

recruitment processes in various injuries should be quantified by fitting to experimental 

data where the identical ventilator protocol is used following saline lavage (drowning 

model), simulated fat emboli-syndrome with oleic acid exposure, nebulized endotoxin 

exposure or experimental sepsis with mechanical ventilation following cecal puncture.  

Another potential use for the model is to examine the differential effects of acid 

instillation in the same ventilator protocol in other mouse strains or in other model 

species.  Similarly, the effect of various pharmacologic agents could be evaluated in 

terms of their effect on altering R/D behaviors.  In comparing experimental studies it may 

be an important consideration to use the same ventilator protocol, as there is synergy 

between the injury caused by the primary insult and the mechanical stresses that cause 

ventilator induced lung injury (VILI). 

This model in its current form may be less than ideal in studying pure VILI that 

results solely from parenchymal overdistension at high tidal volumes or the excessive 

shear injury of collapse at low PEEP.  In these situations, high mechanical stresses cause 

an injury that is progressive during the data collection period.  Fitting this model to the 

entirety of the data would lump progressive mechanical alterations together, averaging 

over the incremental changes that occur over relatively short time scales.  A compromise 
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may be to fit the model sequentially to overlapping windows of the data and estimate 

how VILI changes the estimates of parameter values over time, using the parameter 

estimates of the previous window as the next window’s initial guess.   

In order to further increase the utility of this model, some quantification of the 

injurious nature of mechanical ventilation should be sought.  Given that the distributions 

of R/D properties are now known for healthy and injured mice, some quantitative 

measure that correlates with injury severity can be posed for the assessment and 

optimization of ventilation in each condition.  This injury function should account for the 

impact of parenchymal overdistention, regional collapse and cyclic reopening and 

closing; however, the relative importance of each processes in promoting injury are 

unknown.  The mathematical form of the injury function can be tested and validated by 

assessing it in each measurement period and ensuring that it correlates with other 

established measures of injury severity from the experiment.  Differing injury conditions, 

such as those outlined above could be assessed objectively to quantitatively determine the 

extent of injury experienced in various experimental models.  Additionally, biochemical 

or physiologic markers of injury may be correlated with levels of tissue stress in the 

model, which may help identify measurable candidate biomarkers that correlate with our 

index of injury severity. 

Establishing a reliable function to quantify the extent of injury given distributions 

of recruitment and derecruitment parameters allows for several areas of model 

exploration.  One potential application is in the determination of optimal tidal volume and 

PEEP in conventional ventilation by minimization of the injury cost function.  

Additionally, optimal settings for conventional ventilation may be compared with other 
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experimental techniques, such as variable tidal volume ventilation, whereby the 

amplitude of VT varies probabilistically between breaths.  Potential optimal ventilator 

strategies may subsequently be validated in-vivo by comparison of each strategy for 

efficacy and correlation with biochemical and mechanical measures of injury severity.  

Of particular interest is the assessment of how well the dynamics of mechanical changes 

compare to the model prediction.  These combined experimental / model / optimization 

studies, if successful in animals, may demonstrate potential utility in the clinical 

management of human patients in the intensive care unit. 

In its present implementation, the model takes far too much time to be used 

directly in any kind of embedded, model-based ventilator control or on-line, dynamic 

assessment of lung mechanics in intensive care patients.  The first necessary adaptation 

that will hasten its use in a direct clinical application would be to transition to a compiled 

programming language capable of interfacing with clinical hardware.  It is expected that 

using a compiled language will significantly reduce the computational time per iteration.  

Using the Matlab Profiler we have determined that 97% of the simulation time is 

determined by the length of the protocol and the sample rate, not the number of elastance 

estimates made.  One advantage of moving to a human patient is that breathing frequency 

decreases and the sample rate can be reduced significantly below 60 Hz, which lessens 

the number of points required for simulation.  Preliminary simulations will have to be run 

with human respiratory parameters to determine an acceptable simulation rate.  Another 

way to increase the speed of the model is to construct a diagnostic ventilator waveform 

designed to produce optimized information for the purpose of fitting our model.  At 

present, the design criteria for such a waveform are unknown, but should consist of 
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perturbations that take into account the immediate and transient response to deep 

inflation, as well as the recruitment response to PEEP.  By measuring lung mechanics 

more frequently, the model may be able to fit a larger volume of data with more pertinent 

information at reduced simulation time.  Eventually, the predictions of parameter 

distributions at the bedside may be used in embedded model control of ventilation, by 

dynamically optimizing ventilator parameters that reduce the injury potential of a 

ventilator strategy. 

Several modeling concerns arise when considering the use of this model in 

humans, especially intensive care patients.  One shortcoming of this model is that it may 

not accurately simulate the elastance time courses of larger animals with considerably 

more rigid chest cavities.  Incorporation of a chest compliance element in series with the 

lung is essential to the application of this model to analysis of human data, especially in 

certain chest pathologies or under the influence of pharmacologic sedation/paralysis both 

of which increase the rigidity of the chest wall.  Nonlinearities introduced by the 

endotracheal tube or expiratory flow limitation may alter the estimates of respiratory 

parameters and should be entertained when considering determining mechanics from the 

ICU patient, especially given the potential sensitivity to the value of tissue stiffness used 

in the model. 

Another concern arises with regard to the patient on ventilatory assist, whereby 

respiratory function is partially supported, but not controlled by the mechanical 

ventilator.  In these patients, identifying a waveform to drive the model lung for 

parameter estimation and the eventual prediction of ventilation efficacy becomes nearly 

impossible, as the pressures the model will generate are a function of the model’s state of 



 71 

recruitment.  There may be several potential ways around this issue, including placing a 

pneumotachometer within the ventilator circuit and fitting the model to measured 

pressure and flow rather than estimated elastance, though the practical complications 

arising from such a venture may outweigh the information garnished by this approach.  

Another complicating factor comes from the difficulty in determining lung volume, and 

its resulting contribution to lung mechanics.  Reliably estimating this quantity, especially 

in the face of pathology, adds another level of complexity to an already difficult clinical 

engineering problem.  If these shortcomings could be reasonably overcome, a modeling 

approach similar to ours would have great value in predicting optimal settings for the 

patient on ventilatory support, particularly in Airway Pressure Release Ventilation 

(APRV), where patients breathe freely over high levels of static pressure with periodic 

“exhalations” to a lower PEEP in order to clear CO2.  Our modeling could be used to 

identify optimal high and low pressures and the transition timing that will allow 

spontaneous ventilation over a pressure range that is both minimally injurious and 

comfortable in the awake patient.   Optimized APRV that adapts to the patient’s state of 

recruitment may even be an ideal strategy for weaning ventilator dependant patients off 

mechanical ventilation.   
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Chapter 6 Conclusions 
 

In this study we examined the quantitative nature of how airway recruitment and 

derecruitment behaviors change during acute lung injury.  Through simulation of 

stochastic airway collapse we have recreated the time course of elastance changes seen in 

experimentally ventilated mice.  In fitting various models to the data, we have determined 

that opening and closing rate constants must be independently distributed, while the 

opening and closing pressures must not be equal in order for the model to capture all 

relevant features of recruitment and progressive collapse.  Using this insight, we have 

estimated values of parameters governing R/D phenomena and determined that a parallel 

increase in airway opening and closing pressures is responsible for impaired recruitment 

seen in ALI.  It appears as though these increases in both critical pressures are 

progressive as injury matures, though the finding is not statistically significant.  These 

observations point toward surfactant deactivation rather than mucous plugging as the 

likely mechanism by which derecruitment is exacerbated.  

Optimization of lung recruitment in the intensive care unit must take into account 

the dynamic nature of stochastic airway derecruitment.  Characterization of the 

distributions of pressure and rate constants that govern this behavior is an invaluable 

precursor to the design and assessment of novel ventilator strategies in intensive care.  In 

quantifying parameters governing these distributions we provide data that can be 

incorporated into novel forward-simulations for evaluation and optimization of 

ventilation, in particular, recruitment maneuvers, PEEP and variable tidal volume 

ventilation. 
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A.4 Sample Code for Computational Model 
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A.1:  Nomenclature Table 

AICC,M: Akaike Information Criterion for model M 

( )MCAIC ,∆  : difference between AICC scores for model M and the minimum AICC 

ALI:  Acute Lung Injury 

Ca :  Capillary Number (ratio of viscous to surface tension effects γµvCa = ) 

E:  Model effective lung elastance estimated by fitting single compartment model 

LE :  Effective lung elastance computed from recruitment  

Egas:  Elastic modulus of gas compression in ventilator cylinder 

Eunit :   Elastance of an individual lung unit  

H :  Elastance from the constant phase model (Experimenal Elastance) 

I:  Inertia of gas acceleration 

j : Unit Imaginary Number 

K  : Number of elastance measurements 

L: Length of the parameter vector 

Lθ : Length of the parameter vector, θ 

{ }
jCAIC ,min : Model with the minimum AICC,M score 

N: number of airways 

Nopen :  Number of open airways 

( )DP MΦ  = Probability that model M is correct out of tested models, given the data. 

0P :  Equilibrium pressure of the respiratory system in the chest wall. 

( )tPaw :  Airway Pressure 

Pcrit:  Airway critical pressure in original Bates and Irvin model 

Pc : Airway critical closing pressure 

Pcµ :  Mean of the closing pressure distribution 

Pcσ  : Standard deviation of the closing pressure distribution 

Pgas:  Pressure generated by gas compression in the ventilator cylinder 

Po : Airway critical opening pressure  

∆P : Distance between closing and opening pressures. 
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PEEP:  Positive End Expiratory Pressure 

r :  radius of an airway 

R:  Model effective lung resistance estimated by fitting single compartment model 

eqR :  Internal resistance of ventilator tubing and tracheal cannula 

LR :  Effective lung resistance computed from recruitment 

Runit : Resistance of an individual lung unit 

R/D:  Recruitment/Derecruitment  

S: Grid size, in points per parameter 

=iS Sensitivity of a model to parameter i, ( iθ∂Φ∂ ) 

Sc : Airway closing velocity constant 

sc : Hyperbolic shape constant for closing velocity distribution 

So : Airway opening velocity constant 

so : Hyperbolic shape constant for opening velocity distribution 

SSR: Sum of squared residuals between a given model fit and the data 

T : Computational time  

To: is the duration of one iteration 

t : Time 

∆t : Time step 

v:  Fluid velocity 

Vcyl : Volume displaced by the ventilator cylinder 

Vgas : Volume of gas lost to compression not entering the respiratory system 

( )tVL :  Lung Volume at time t 

( )tVL
& :  Flow into or out of the lung at time t 

VT:  Ventilator Tidal Volume 

awKP
BeAV

−−= :  Salazar and Knowles Equation (A,B,K empirical constants) 

x : Airway position on virtual trajectory determining Schmitt Trigger gating 

LZ :  Impedence of the Lung 

tiZ :  Impedance of constant phase tissue elements 

α :  Constant Phase Model Tissue Hysteresistivity Exponent ( ( )112 tan −−= ηα π ) 
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εc: Critical Thin film thickness for airway collapse 

γ : Surface Tension 

Γ : Airway patency of model  

η :  Hysteresistivity of Constant Phase Model 

µ :  Viscosity of airway lining fluid 

0Φ : Error at function minimum in sensitivity analysis 

MΦ : Root mean square error between model M and experiment 

PΦ : Error following perturbation in sensitivity analysis 

ω :  Frequency of Respiratory Oscillations 

θ: Vector of parameter values   

0θ : Parameter value at function minimum in sensitivity analysis 

Pθ : Parameter value after perturbation in sensitivity analysis 
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A.2:  Table of Simulation Parameters 

 

All values presented are stored in the params.m file  

 

Regular Ventilation Parameters 

Dt .0166666666 

Period .3333 

Breaths / Interval 45 

Seconds / Interval 15 

Tidal Volume 25 ml  
 

 

Deep Inflation Parameters 

Dt .005 

Period 2 

Breaths / Interval 2 

Peak Pressure 30 cmH2O 

 

 

Model Mechanical Parameters 

Number of paths 1250 

Open Lung EL 22 cmH2O/mL 

Open Lung RL 2 cmH2O*s/mL 

Egas 185 cmH2O/mL 

Rtube 0.41 cmH2O*s/mL  
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A.3:  Analytic Model of Airway Opening 

A simple analytical treatment of reopening behavior in flooded, uncollapsed 

airways underscores the importance of surfactant in determining meniscus stability in the 

pulmonary airways.  We begun by examining a rigid, cylindrical tube containing two 

immiscible fluids, one in the liquid and one in the gas phase.   

 
Diagram of the simplified airway model used 

 

Balancing the fluid and surface stresses in the normal direction at an interface of arbitrary 

geometry gives us 

( )nnTn ⋅∇=⋅⋅ γ  

where n is the unit vector normal to the surface, γ is the surface tension of the interface 

and T is the fluid stress tensor.  This stress tensor contains the contributions due to both 

pressure stresses and fluid shear stresses  

 ( )[ ]T
P uuIT ∇+∇+−= µ  

where P is the pressure, I is the identity matrix, µ is the viscosity and u is the velocity 

vector.  The force balance on the meniscus then gives the relationship 

( ) ( )[ ]dSPdA
SA

∫∫ ∇⋅∇−⋅∇−∇= un µγ0  
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Noting that the normal shear stress, τ, is produced when the meniscus is moving and is 

proportional to the x-velocity gradient in the radial direction, we obtain 

r

ux
rx ∂

∂
−= µτ  

as the only pertinent stress in our analysis.  Integration over the domain of our geometry 

and rearranging gives the following relationship for the interfacial force balance 

( ) ( ) ( ) ( ) ( )θπτθπγπ cos2cos22 rrrP wall+=∆  

where wallτ is the shear stress of the fluid contacting the wall at the interface and θ is the 

contact angle between the fluid and the wall.  

We have used these equations to estimate the required opening pressure for a 

specific limiting case of this problem and discussed the implications of geometry, contact 

angle and moving menisci on our estimates.  We have assumed that collapse occurs in 

airways with a radius of approximately 0.1 mm and a surface tension, γ, of 35 dyn/cm.  

For a static interface, wallτ = 0 as there exists no velocity gradient within the fluid.  We 

have assumed the meniscus to be hemispherical with a contact angle of 0 radians as this 

configuration generally minimizes the Gibbs free energy of the interface.  Additionally, 

this provides an estimate of the maximal stress at the limiting case of this geometry. 

Examining this case of a static meniscus reduces the equations to  

( ) ( )1-
24

2

4

1-3 m N 700
m 10

N 107

m 10

2
m N 1035

2
=






 ×
=






×=






=∆ −

−

−
−

r
P γ  

( ) OcmH 7
N/m 98.0665

OcmH 1
m N 700 22

21- =






×=∆P  

which is of similar order to our model’s parameter estimates for opening pressures (4.0 

cm H2O in healthy mice to 8.0 cm H2O in the lung injured mice).  Several factors may be 
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examined that effect the value of this estimate.  In the case of a moving meniscus, the 

pressure required to disrupt the air-liquid interface is higher due to the addition of shear 

stresse.  The impact of viscous effects versus surface tension effects may be assessed by 

evaluating the capillary number assuming a meniscus velocity, U, of 1 cm/s and a 

viscosity approximately equal to that of water 

 
( )( ) 4

1-3

-12-14

10 2.00
m N 1035

s m 10s Pa 1082.6 −
−

−−

×=
×

×
≈=

σ
µU

Ca . 

Such a small capillary number in this regime indicates that the surface tension dominates 

viscous forces; however, decreases in surface tension or increases in either fluid viscosity 

or velocity would result in an increased importance of the viscous contribution to 

interfacial stresses. 
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A.4: Sample Code for Computational Model 

The sample code provided consists of the m-files to fit the model to each of the individual 

mouse elastance time courses from the injured mice.  Several variants of the basic 

program structure were used depending on the precise fitting exercise being performed 

(ie. Different file names and dimensions for fitting on individual vs. average data).  Since 

the code is preserved with only minor changes between exercises we have chosen to 

include one example from each archetype of function used in the modeling. 

 

The following files are included: 

 

• minimize_Edif  - This function imports the experimental data, determines initial 
guesses, and calls the optimization routine, stores the optimal parameter values 

and elastance data to disc, plots the data and calls the sensitivity analysis 

subroutine. 

• model_compare_elast – This function contains all information to run one iteration of 
the model by initializing parameters, calling the appropriate subfunctions (e.g. 

ventcycle) to match the ventilator protocol and outputting the error between one 

model iteration and the experimental data.  (elast_fit_plot performs the same 

computations, however it also graphically displays the elastance data and 

percentage of open lung as a function of time) 

• ventcycle – Performs the actual 15 second ventilation operation and calls REfit_nlin2 to 
determine effective EL from the model.  Functions “Initalize_model.m” and 

“DI.m” use the same structure, but different parameters with no estimation of EL. 

• sens_analysis – Performs sensitivity analysis on the model parameters given their 
optimal values and the residual error at that point. 

• calc_stats.m – Calculates statistics on each optimal parameter. 
• REfit_nlin2 – Performs non-linear regression to estimate the values of EL and RL from 

the Pressure, Volume and Flow tracings generated by the model over 4 breaths. 

 

Not included in this appendix are any stand-alone functions explicitly for plotting data, 

generating new random number draws or other more trivial tasks. 
 

 
% minimize_Edif  - imports experimental data, determines initial 
guesses, calls optimization routine, stores the optimal parameter 
values and elastance data to disc, plots the data and calls the 
sensitivity analysis subroutine. 
 
tic 
format long 
% Initalize variables and set optimization tolerances/parameters 
options = OPTIMSET('display','iter','TolX',5e-5,'TolFun',5e-
5,'MaxFunEvals',350); 
[dt, period, cycles, tmax, measures, n_paths,  Eunit, Runit, Egas, 
Rtube, RL, EL, IE, A, DI_dt, DI_period, DI_cycles, DI_tmax] = params(); 
global Exp_data; 
global Exp_time; 
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global X; 
global collumnbank 
 
% Specify Lognormal Distribution or Plotting? 
ln_on = 2; 
ploton = 0; 
gen_new_rands(n_paths,ln_on)  %Generate new Random Numbers 
 
slopes  = dlmread('slopes.txt'); %Import Opening Slopes 
slopes2 = dlmread('slopes2.txt'); %Import Closing Slopes 
 
%Choose Appropriate Pressure Distribution 
if ln_on == 1 
    presses = dlmread('Pc.txt'); 
else 
    presses = dlmread('Pressures.txt'); 
end 
 
% Import Experimental Data 
ALI_data = dlmread('Injured_individual_data.csv',',',1,0); 
Exp_time = ALI_data(:,1); 
 
% Generate Matrix of Initial Guesses 
Xbank = [-0.078563 5.6436 0.024601 0.0042108 3.5219; 
         -0.039985 4.5028 0.034730 0.0049404 3.7645; 
         -0.041435 3.0645 0.031707 0.005457 4.4315; 
          0.1969 3.9027 0.045241 0.0054051 5.2364; 
          2.7833 2.8755 0.040509 0.0039209 3.5460; 
          3.1468 2.6506 0.037368 0.0047305 3.5201; 
          4.0768 3.6492 0.025666 0.0044427 3.4470; 
          4.2990 3.7432 0.024261 0.0048129 3.3983]; 
 
% Initalize Variables         
collumnbank = [2:10, 12:19, 21:28, 29:37]; 
num_sims = length(collumnbank); 
Pc_mean  = zeros(1,num_sims); 
Pc_std   = zeros(1,num_sims); 
Po_mean  = zeros(1,num_sims); 
Po_std   = zeros(1,num_sims); 
xstore   = zeros(num_sims,5); 
rmsstore = zeros(1,num_sims); 
Elog     = zeros(num_sims,length(Exp_time)); 
Openlog  = zeros(num_sims,length(Exp_time)); 
 
start = 2; 
term = num_sims; 
% Begin Fitting Model to all Data (Start to Term) 
for j = start:term; 
    collumn = collumnbank(j); 
    Exp_data = ALI_data(:,collumn); 
    clear f_temp 
     
    % Test each potential starting X to find best initial guess. 
    for k = 1:8; 
        X = Xbank(k,1:5); 
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        [Ejunk,Ojunk,f_temp(k-4)] = elast_fit_plot(X,0); 
    end 
    [val,I] = min(f_temp(:)); 
    X = Xbank(I+4,:); 
 
    % Use Nelder + Mead Simplex Search to minimize model_compare_elast 
    [xstore(j,:),rmsstore(j),exitflag] = 
fminsearch(@model_compare_elast, X,options); 
 
end 
 
% Estimate critical Pressure distribution characteristics + plot output 
for j = start:term; 
 
   collumn = collumnbank(j); 
   Exp_data = ALI_data(:,collumn); 
    
   [Elog(j,:),Openlog(j,:),R(j,:)] = elast_fit_plot(xstore(j,:),1); 
    
if ln_on == 1 
[Pc_mean(j),Pc_std(j),Po_mean(j),Po_std(j)]=lnplot(xstore(j,1),xstore(j
,2),xstore(j,5)) 
else 
                 
Pc_dist(j,1:n_paths) = xstore(j,1) + xstore(j,2)*presses; 
Po_dist(j,1:n_paths) = xstore(j,1) + xstore(j,2)*presses + xstore(j,5);    
Pc_mean(j) = mean(Pc_dist(j,:)); 
Po_mean(j) = mean(Po_dist(j,:)); 
Pc_std(j) = std(Pc_dist(j,:)); 
Po_std(j) = std(Po_dist(j,:)); 
 
   end 
end 
 
% Store Data To Disc 
start = 1; term=length(collumnbank); 
p_span(start:term) = 
100*rmsstore(start:term)./(max(Elog(start:term,:)') - 
min(Elog(start:term,:)')); 
A = [xstore(start:term,1:2)'; Pc_mean(start:term); Pc_std(start:term); 
Po_mean(start:term); 
Po_std(start:term);xstore(start:term,3:5)';rmsstore(start:term);p_span(
start:term)]; 
B = [Exp_time,Elog(start:term,:)']; 
C = [0,collumnbank(1:term);B]; 
dlmwrite('model_fit.csv',A); 
dlmwrite('model_output.csv',C); 
 
% Begin Plotting Routines 
Econtrol = mean(Elog(1:4,:)); 
Datacontrol = mean(ALI_data(:,2:5)'); 
Data = [Datacontrol;ALI_data(:,7:10)']; 
figure(), 
hold on; 
plot(Exp_time,[Econtrol;Elog(5:8,:)]);plot(Exp_time(:),Data(:,:)','.') 
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xlabel('Time (s)') 
ylabel('Elastance cmH20*s^2/L') 
legend('Control','4 Hours','14 Hours', '24 Hours', '48 Hours') 
 
% Perform Sensitivity Analysis 
[plus_sens,minus_sens,plus_err,minus_err] = 
sens_analysis(xstore,rmsstore) 
 

 
function [RMSR] = model_compare_elast(parameters); 
 
% model_compare_elast(parameters) takes the 5 parameters from the R/D 
model 
% and uses them to compute an elastance time course, which it  
% compares to the experimental data in the column numbered 'column' of 
% ALI_data.  This function contains all information to run one 
iteration of the % model by initializing parameters, calling the 
appropriate subfunctions (e.g.  
% ventcycle) to match the ventilator protocol and outputting the error 
between  
% one model iteration and the experimental data. 
 
global Exp_data;  
global Exp_time; 
 
kmax = 3; 
mmax = 25; 
 
% Initalize Constant Variables 
[dt, period, cycles, tmax, measures, n_paths, Eunit, Runit, Egas, 
Rtube, RL, EL, IE, A, DI_dt, DI_period, DI_cycles, DI_tmax] = params(); 
Esample = zeros(kmax,mmax); 
Opensample = zeros(kmax,mmax); 
Emag = zeros(kmax,mmax); 
%masterE = zeros(1,length(1 + (kmax-1).k.*mmax)); 
%masteropen = zeros(1,length(1 + (kmax-1).*mmax:k.*mmax)); 
 
PEEP_list = [1,3,6]; 
 
slopes = dlmread('slopes.txt')'; 
slopes2 = dlmread('slopes2.txt')'; 
pressures = dlmread('Pressures.txt')'; 
 
% Assign parameters 
Pc_mu = parameters(1); 
Pc_sd = parameters(2); 
so = parameters(3); 
sc = parameters(4); 
delta_P = parameters(5); 
 
% Generate distributions of R/D parameters. 
Pcrit = zeros(1,n_paths); 
So = zeros(1,n_paths); 
Sc = zeros(1,n_paths); 
Pcrit(:)  = Pc_mu + pressures.*Pc_sd; 
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So(:)     = so./slopes; 
Sc(:)     = sc./slopes2; 
 
R = zeros(1,measures); 
E = zeros(1,measures); 
Pc0 = zeros(1,measures); 
VL0 = zeros(1,measures); 
VLdot0 = zeros(1,measures); 
V0 = zeros(1,measures); 
Vdot0 = zeros(1,measures); 
X0 = zeros(1,measures); 
Xstate0 = zeros(1,measures); 
 
%  Initalize model from closed state 
PEEP = PEEP_list(1); 
m = 1; 
[Pcint,VLint,VLdotint,Vint, Vdotint,Xint, Xstateint, R, E] = 
initalize_model(Pcrit, So, Sc, delta_P,PEEP); 
 
% Begin ventilation at each PEEP, cycle through protocol 
for k = 1:kmax; 
     
    PEEP = PEEP_list(k); 
    [Pc0,VL0,VLdot0,V0, Vdot0,X0, Xstate0, R,E,open] = 
ventcycle(Pcint,VLint,VLdotint,Vint, Vdotint,Xint, Xstateint, R,E, 
Pcrit, So, Sc,delta_P, PEEP); 
    [Pc0,VL0,VLdot0,V0, Vdot0,X0, Xstate0, R,E,open] = 
ventcycle(Pc0,VL0,VLdot0,V0,Vdot0,X0,Xstate0,R,E,Pcrit, So, 
Sc,delta_P,PEEP); 
    [Pc0,VL0,VLdot0,V0, Vdot0,X0, Xstate0, R,E,open] = 
DI(Pc0,VL0,VLdot0,V0,Vdot0,X0,Xstate0,R,E,Pcrit, So, Sc,delta_P,PEEP); 
 
    mc(1) = 1; 
    Etrend(1) = E; 
    Rtrend(1) = R; 
    opentrend(1) = open; 
 
    for m = 1:20; 
        [Pc0,VL0,VLdot0,V0, Vdot0,X0, Xstate0, R,E,open] = 
ventcycle(Pc0,VL0,VLdot0,V0,Vdot0,X0,Xstate0,R,E,Pcrit, So, 
Sc,delta_P,PEEP); 
        mc(m) = m; 
        Etrend(m) = E; 
        Rtrend(m) = R; 
        opentrend(m) = open; 
    end 
 
    for m = 21:mmax 
        [Pc0,VL0,VLdot0,V0, Vdot0,X0, Xstate0, R,E,open] = 
ventcycle(Pc0,VL0,VLdot0,V0,Vdot0,X0,Xstate0,R,E,Pcrit, So, 
Sc,delta_P,PEEP); 
        [Pc0,VL0,VLdot0,V0, Vdot0,X0, Xstate0, R,E,open] = 
ventcycle(Pc0,VL0,VLdot0,V0,Vdot0,X0,Xstate0,R,E,Pcrit, So, 
Sc,delta_P,PEEP); 
        mc(m) = m; 
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        Etrend(m) = E; 
        Rtrend(m) = R; 
        opentrend(m) = open; 
    end 
     
    % Store elastance and fractional opening information 
    Esample(k,:) = Etrend(:); 
    Opensample(k,:) = opentrend(:); 
    masterE(1 + (k-1).*mmax:k.*mmax) = Esample(k,:)'; 
    masteropen(1 + (k-1).*mmax:k.*mmax) = Opensample(k,:)'; 
end 
 
%Compute Residual Error 
SSR = sum((Exp_data(:) - masterE(:)).^2); 
% Display parameter values and RMS Error. 
[parameters] 
RMSR = [sqrt(SSR/75)] 
 
 

 
function [Pcint,VLint,VLdotint,Vint, Vdotint,Xint,Xstateint, R, E, 
open] = ventcycle(Pcint,VLint,VLdotint,Vint, Vdotint,Xint, Xstateint, 
R,E, Pcrit, So, Sc,delta_P,PEEP,deltavect); 
plotson = 0; 
[dt, period, cycles, tmax, measures, n_paths,  Eunit, Runit, Egas, 
Rtube, RL, EL, IE, A, DI_dt, DI_period, DI_cycles, DI_tmax] = params(); 
% disp('Experimental Breaths') 
time = zeros(1,ceil((cycles*tmax))); 
Vcyl = zeros(1,ceil((cycles*tmax))); 
Vgas = zeros(1,ceil((cycles*tmax))); 
Pc = zeros(1,ceil((cycles*tmax))); 
V = zeros(n_paths,ceil((cycles*tmax))); 
VL = zeros(1,ceil((cycles*tmax))); 
Vdot = zeros(n_paths,ceil((cycles*tmax))); 
VLdot = zeros(1,ceil((cycles*tmax))); 
Pgas = zeros(1,ceil((cycles*tmax))); 
n_open = zeros(1,ceil((cycles*tmax))); 
x = zeros(n_paths,ceil((cycles*tmax))); 
avg_x = zeros(1,ceil((cycles*tmax))); 
xstate = zeros(n_paths,ceil((cycles*tmax))); 
DV = zeros(1,ceil((cycles*tmax))); 
    
for m = 1:measures 
breath = 0; 
 
        %Carry over current model state to next measurement course 
        VL(1) = VLint; 
        Pc(1) = Pcint; 
        Vcyl(1) = 0; 
        VLdot(1) = VLdotint; 
        V(:,1) = Vint; 
        Vdot(:,1) = Vdotint; 
        x(:,1) = Xint;  
        xstate(:,1) = Xstateint; 
        R = RL; 
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        E = EL; 
 
    % Enter loop to control ventilation and paramater estimation 
    for t = 2:ceil(cycles*tmax); 
        time(t) = t.*dt;            % Keep  
         
        Vcyl(t)  = A.*.05*abs(sin(pi.*(t)/(tmax)));         
        % Cycle between piston and peep for IE ratio of 1:1 
        if Vcyl(t) < Vcyl(t-1); %mod(t,tmax/2) == 0; 
            IE = 1; 
        else 
            IE = 0; 
        end 
          
         if IE == 1 
             % Exhale Passively against PEEP 
             Vgas(t)  = 0; 
             Pgas(t)  = 0; 
             Pc(t)    = PEEP + (Rtube/(Rtube+RL))*(VL(t-1).*EL - PEEP); 
         elseif  IE == 0; 
       
            Vgas(t)  = Vgas(t-1) + (Vcyl(t) - Vcyl(t-1)) - (Pc(t-1) - 
 VL(t-1)*EL)*dt/(Rtube + RL) ; 
            Pgas(t)  = Egas*Vgas(t); 
            Pc(t) = Pgas(t) - (Rtube/(RL))*((Pc(t-1) - VL(t-1).*EL)); 
     
         else 
         end 
 
        %  
        n_open(t) = 0;            % Zero out number of open lung units 
         
        % Cycle through individual flow pathways 
        for i = 1:n_paths 
             
            % Determine opening velocity of airway i at time t 
            if Pc(t) > Pcrit(i) + delta_P; 
            x(i,t) = x(i,t-1) + So(i).*(Pc(t) - Pcrit(i) - delta_P)*dt; 
            elseif Pc(t) < Pcrit(i); 
                x(i,t) = x(i,t-1) - Sc(i).*(Pcrit(i) - Pc(t))*dt; 
            else 
                x(i,t) = x(i,t-1); 
            end 
             
     % Determine if airway transitions between open/closed state and 
     % track number of presently open airways 
            if x(i,t) <= 0; 
                x(i,t) = 0; 
                xstate(i,t) = 0; 
            elseif x(i,t) >= 1; 
                x(i,t) = 1; 
                xstate(i,t) = 1; 
                n_open(t) = n_open(t) + 1; 
            else 
                xstate(i,t) = xstate(i,t-1); 



 92 

                if xstate(i,t) == 1; 
                    n_open(t) = n_open(t) + 1; 
                else 
                end 
            end 
             
     % Determine flow and volume in airway i at time t 
            if xstate(i,t) == 1; 
                Vdot(i,t)  = (1/Runit)*(Pc(t) - V(i,t-1)*Eunit); 
                V(i,t) = V(i,t-1) + Vdot(i,t)*dt; 
     % Add total lung volume and flow resulting from airway i at time t 
                VLdot(t) = VLdot(t) + Vdot(i,t); 
                VL(t)  = VL(t) + V(i,t); 
            else 
                V(i,t) = V(i,t-1); 
            end 
        end     
 
        if n_open(t) == 0; 
            RL = Runit; 
            EL = Eunit; 
        else 
           RL = Runit./n_open(t); 
           EL = Eunit./n_open(t); 
        end  
    end 
     
if m == measures 
    % Estimate values of R,E from plots; 
    [E,R,SSR] = REfit_nlin2(VL, VLdot, Pc, EL,RL, t, time, tmax); 
    open = sum(Xstateint); 
else 
end 
    
if plotson == 1 
ventplot(time,Pc,VL,VLdot) 
    %if m >= 5 
        figure,hold on 
        plot(time(:),sum(xstate,1)/n_paths) 
        title('Number of open paths') 
    %else 
    %end 
 
    if m >= 1000;%mmax; 
% show recruitment: Vdot,V,airway_start,airway_end,start,end,tmax) 
        recruit_plot3d(Vdot,V,1,40,1,3,tmax);      
    else 
    end 
     
else 
end 
 
    VLint     = VL(t); 
    Pcint     = Pc(t); 
    Vcylint   = 0; 



 93 

    VLdotint  = VLdot(t); 
    Vint      = V(:,t); 
    Vdotint   = Vdot(:,t); 
    Xint      = x(:,t);  
    Xstateint = xstate(:,t); 
 
if m < measures;     
    Pc = zeros(1,ceil((cycles*tmax))); 
    V = zeros(n_paths,ceil((cycles*tmax))); 
    VL = zeros(1,ceil((cycles*tmax))); 
    Vdot = zeros(n_paths,ceil((cycles*tmax))); 
    VLdot = zeros(1,ceil((cycles*tmax))); 
 
    %Carry over current model state to next measurement course 
    VL(1) = VLint; 
    Pc(1) = Pcint; 
    Vcyl(1) = 0; 
    VLdot(1) = VLdotint; 
    V(:,1) = Vint; 
    Vdot(:,1) = Vdotint; 
    x(:,1) = Xint;  
    xstate(:,1) = Xstateint; 
    R = RL; 
    E = EL; 
    open = sum(Xstateint); 
 
else     
end 
end 
 

 
% function [plus_sens,minus_sens,plus_err,minus_err] = 
sens_analysis(xstore,rmsstore) 
% Sensitivity Analysis 
% clear Xtrend, clear error_p, clear error_n 
%Initalize / Globalize Variables 
[dt, period, cycles, tmax, measures, n_paths,  Eunit, Runit, Egas, 
Rtube, RL, EL, IE, A, DI_dt, DI_period, DI_cycles, DI_tmax] = params(); 
global Exp_data; 
global Exp_time; 
global X; 
global collumnbank 
 
% Import Distributions, Experimental Data & Parameters 
slopes  = dlmread('slopes_health.txt'); 
slopes2 = dlmread('slopes2_health.txt'); 
presses = dlmread('Pressures_health.txt'); 
ALI_data = dlmread('Healthy_individual_data.csv',',',2,0); 
Exp_time = ALI_data(:,1); 
Parameter_sets = dlmread('Healthy model_fit.csv',',',0,0); 
xstore = Parameter_sets([1,2,7,8,9],:)'; 
rmsstore = Parameter_sets(10,:)'; 
Healthy_margs = [1,5; 6,10; 11,15; 16,20;];  
Healthy_sims =  [1:5, 6:10, 11:15, 16:20];  
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collumnbank = [2:6, 8:12, 14:18, 20:24]; 
 
L = length(collumnbank)                % number of data sets imported 
P = 5;                              % number of Parameters 
 
Pbank = [.25, .5, 1];  % Pc Increment 
 
m = 1; 
%Scroll through experimental data set 
for i = 1:L 
    collumn = collumnbank(i); 
    Exp_data = ALI_data(:,collumn); 
    sim_num = Healthy_sims(i) 
 
    k = 1;   % Handle Pc Differently 
    Xi = xstore(i,:); 
 
    %  Compute sensitivity in positive direction 
    Xi(k) = xstore(k) + Pbank(m); 
    error_p(i,k) = model_compare_elast(Xi); 
    plus_sens(i,k) = (Xi(k) - xstore(i,k) )./(xstore(i,k));; 
    plus_err(i,k) = (rmsstore(i) - error_p(i,k))/rmsstore(i); 
 
    %  Compute sensitivity in negative direction 
    Xi(k) = xstore(k) - Pbank(m); 
    error_n(i,k) = model_compare_elast(Xi); 
    minus_sens(i,k) = (Xi(k) - xstore(i,k) )./(xstore(i,k));; 
    minus_err(i,k) = (rmsstore(i) - error_n(i,k))/rmsstore(i); 
 
    %  Scroll through other 4 parameters and record sensitivity 
    for k = 2:P; 
         
        ik = [i    k   ] 
         
        Xi = xstore(i,:); 
        Xi(k) = .95*Xi(k); 
        Xtrend_n(i,k) = Xi(k); 
        error_n(i,k) = model_compare_elast(Xi); 
        minus_sens(i,k) = (Xi(k) - xstore(i,k) )./(xstore(i,k));; 
        minus_err(i,k) = (rmsstore(i) - error_n(i,k))/rmsstore(i); 
 
 
        Xi = xstore(i,:); 
        Xi(k) = 1.05*Xi(k); 
        Xtrend_p(i,k) = Xi(k); 
        error_p(i,k) = model_compare_elast(Xi); 
        plus_sens(i,k) = (Xi(k) - xstore(i,k) )./(xstore(i,k));; 
        plus_err(i,k) = (rmsstore(i) - error_p(i,k))/rmsstore(i); 
 
    end 
     
end 
 
dE_dX_plus(1:L,:)  = plus_err(1:L,:)./plus_sens(1:L,:); 
dE_dX_minus(1:L,:) = minus_err(1:L,:)./minus_sens(1:L,:); 
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plus_output = plus_err(1:L,:); 
minus_output = minus_err(1:L,:); 
 
dlmwrite('plus_output_health.csv',plus_output,',') 
dlmwrite('minus_output_health.csv',minus_output,',') 
 
margs = Healthy_margs; 
 
for i = 1:4; 
  avgplus_health(i,:) = mean( plus_output(margs(i,1):margs(i,2),:) ); 
  avgminus_health(i,:) = mean( minus_output(margs(i,1):margs(i,2),:) ); 
  stdplus_health(i,:) = std( plus_output(margs(i,1):margs(i,2),:) ); 
  stdminus_health(i,:) = std( minus_output(margs(i,1):margs(i,2),:) ); 
  avg_dE_dX_plus_health(i,:) = mean( 
dE_dX_plus(margs(i,1):margs(i,2),:) ); 
  avg_dE_dX_minus_health(i,:) = mean( 
dE_dX_minus(margs(i,1):margs(i,2),:) ); 
  std_dE_dX_plus_health(i,:)=std(dE_dX_plus(margs(i,1):margs(i,2),:)); 
  std_dE_dX_minus_health(i,:) = std( 
dE_dX_minus(margs(i,1):margs(i,2),:) ); 
end 
 
dlmwrite('avg_plus_health.csv',avgplus_health,',') 
dlmwrite('avg_minus_health.csv',avgminus_health,',') 
dlmwrite('std_plus_health.csv',stdplus_health,',') 
dlmwrite('std_minus_health.csv',stdminus_health,',') 
 
dlmwrite('avg_dE_dX_plus_health.csv',avg_dE_dX_plus_health,',') 
dlmwrite('avg_dE_dX_minus_health.csv',avg_dE_dX_minus_health,',') 
dlmwrite('std_dE_dX_plus_health.csv',std_dE_dX_plus_health,',') 
dlmwrite('std_dE_dX_minus_health.csv',std_dE_dX_minus_health,',') 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%  Code Below Ommitted, Identical content on Injured Data Sets.  %%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 

%  calc_stats.m  - Calculates mean and standard deviations on each  
% parameter for each individual animal.  Current Configuration for  
% Injured data only.  Identical code exists for Healthy mice. 
 
% Initalize, Globalize Variables + Import Data 
global Exp_data; 
global Exp_time; 
global X; 
ALI_data = dlmread('ALI_data.csv',',',1,0); 
Exp_time = ALI_data(:,1); 
ALIbank = [7:10]; 
Elog = dlmread('model_output.csv',',',1,0); 
Elog = Elog'; 
A = dlmread('model_fit.csv'); 
 
% Set margins and dimensions from data 
margs = [1,9; 10,17; 18,25; 27,34]; 
dim_a = size(A); 
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% Cycle through 4 time conditions (4,14,24,48 hrs) 
for i = 1:4; 
    head = margs(i,1); % Beginning column of data for time point  
    tail = margs(i,2);  % Final column of data for time point 
     
    for j = 1:dim_a(1)  % Cycle through parameters) 
        averages(j,i) = mean(A(j,head:tail)); % Average parameters 
        stds(j,i)     = std(A(j,head:tail));    % parameters Std dev. 
 
    end 
     
    % Shift by one to match column labels to elastance tracings 
    head = head+1; 
    tail = tail+1;  
     
    % Compute Average and std.dev of E(t) for each condition 
    averageE(i,:) = mean(Elog(head:tail,:)); 
    stdevE(i,:)   = std(Elog(head:tail,:)); 
     
    collumn = ALIbank(i); 
    Exp_data = ALI_data(:,collumn); 
 
    % Plot Average model E with Average Experimental elastance 
    figure() 
    plot(Exp_time(:),Exp_data(:),'b.',Exp_time(:),averageE(i,:),'r-
',Exp_time(:),(averageE(i,:) + stdevE(i,:)/sqrt(margs(i,2)-
margs(i,1)+1)),'r--',Exp_time(:),(averageE(i,:) - 
stdevE(i,:)/sqrt(margs(i,2)-margs(i,1)+1)),'r--') 
 xlabel('Time (s)') 
 ylabel('Elastance cmH20*s^2/L') 
 
% Compute error between average model and average experiment 
MSQR(i) = sqrt(sum((Exp_data(:) - averageE(i,:)').^2)/75); 
end 
 
CVs = stds./averages; %Coefficient of Variation for each Parameter 
 
%Write Parameter Stats 
dlmwrite('averages.csv',averages); 
dlmwrite('stds.csv',stds); 
dlmwrite('CVs.csv',CVs); 
 
CVE = stdevE./averageE; %Coefficient of Variation for each Elastance 
 
%Write Elastance Stats 
dlmwrite('averageE.csv',averageE); 
dlmwrite('stdevE.csv',stdevE); 
dlmwrite('CVE.csv',CVE); 
 
% Create matrix of average parameters 
xstore_t = [averages(1:2,:); averages(7:9,:)]; 
 
% Scroll through each condition, plotting model evaluated at average  
% parameter value with average elastance. 
for j = 1:4;      
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    collumn = ALI_bank(j); 
    % Exp_data = AVG_data(:,collumn); 
   
    [Elog_t(j,:),Openlog_t(j,:),R_t(j,:)] = 
elast_fit_plot(xstore_t(:,j),1); 
end 
 
 

function [E,R,resnorm] = REfit_nlin2(VL, VLdot, Pc, EL,RL, t, time, 
tmax); 
 
% Truncate Data to 4 breaths 
    t = round(t-1); 
    tmax = round(tmax); 
    Xdata = [VL(t-4*tmax:t)' , VLdot(t-4*tmax:t)']; 
    Ydata = Pc((t-4*tmax:t))'; 
 
x0 = [EL; RL]; % Vectorized initial guess 
options = optimset('TolFun',1e-8,'Tolx',1e-8);  % Set options 
 
%Minimize fun (two compartment model) using least squares curve fit 
fun = @(x,xdata) x(1).*xdata(:,1) + x(2).*xdata(:,2); 
[PARS,resnorm] = lsqcurvefit(fun,x0,Xdata,Ydata,0,1000,options); 
 
E = PARS(1); R = PARS(2);    % Pass E,R 
plotson = 0; 
if plotson == 1; 
% Plot 2-cpt model fit and Actual model pressure  
Pnew = Xdata(:,1).*PARS(1) + Xdata(:,2).*PARS(2); 
 
 figure, 
 hold on 
 plot(time(t-length(Ydata):t), Pc(t-length(Ydata):t),'r-', time(t-
length(Ydata)+1:t), Pnew(:),'b:') 
 %plot(Pc(t-length(Ydata):t),'r-') 
 %plot(Pnew(:),'b:') 
 legend('Actual Pressure Tracing', 'Model Fitting') 
 % plot(time(t-length(Ydata):t), (Pnew(:) + abs(residual)) ,'k+', 
time(t-tmax:t), (Pnew(:) - abs(residual)), 'k+') 
else 
end 
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