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ABSTRACT

A wireless sensor network is a network consisting of spatially distributed, sometime-
autonomous sensors, communicating wirelessly to cooperatively achieve some task. For
example, a wireless sensor network may be used for habitat monitoring to ascertain the
environment’s temperature, pressure, humidity, etc. In order for a wireless sensor
network to provide such data, one needs to ensure there is connectivity between nodes.
That is, nodes can communicate to exchange information. To analyze connectivity
between sensors, the radio communication range of each sensor, also called the
communication footprint, needs to be known. To date, the models used to analyze a
sensor’s radio communication footprint have been overly simplistic (i.e., isotropic) and
thus yield results not found in practice. Footprints are highly dependent on the
deployment environments, which are typically heterogeneous and non-isotropic in
structure.

In this work, a ‘weak-monotonicity’ (W-M) model is leveraged to represent a footprint’s
non-isotropic behavior. The work also considers the heterogeneity of the environment
through the use of the log-normal shadowing model. In particular, the usable percentage
of the W-M footprint (the area where the power exceeds the receiver threshold) in such
environments is considered through analysis and simulation. We then develop an
enhanced footprint model which overlays multiple W-M patterns and use this method to
represent experimental propagation data. The work also considers the use of graph theory
methods to analyze the connectivity of randomly deployed networks in non-
homogeneous, non-isotropic environments.
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CHAPTER 1

INTRODUCTION

1.1 Motivation

Wireless sensor networks (WSN) consist of spatially distributed autonomous sensors,
communicating wirelessly in order to cooperatively achieve some task, such as
environment monitoring, structural health monitoring or military surveillance [1]. For
example, [2] presented a wireless sensor network used for habitat monitoring on Great
Duck Island, Maine, in which temperature, pressure, humidity data was collected to
monitor the behavior of birds with the change of weather. In order to support such
applications, one finds that sensor nodes need to be deployed (sometimes randomly) over
a large area. As such, the connectivity of the network, which pertains to the wireless
communication between nodes, may not be known a priori. To better understand
connectivity among nodes, one must consider the footprint of individual sensors, where
the footprint is defined to be the effective wireless communication range as a function of
direction.

In most existing connectivity analyses, the footprint used is the disk model [18] (Fig.
1) for which the communication range of each sensor is constant in all directions. Even
though the disk model simplifies the calculation of the network, it is far and away from a
realistic representation. Footprints highly depend on the environment the device is

deployed in. These environments are typically heterogeneous and non-isotropic in



structure. In this work, we will research an improved footprint model in order to enable

more realistic simulation and analytical results of network connectivity.

ot o

Figure 1. Uniform Disc Model

1.2 Non-Isotropic Phenomena

In order to predict and analyze the wireless signal strength at a certain location, two
kinds of phenomena need to be considered: Large-scale and small-scale propagation
effects. Large-scale effects describe the change of the signal strength over large distance
scales. For example, on average the signal strength received decreases as the distance
between the transmitter and receiver becomes larger. Small-scale effects, on the other
hand, describe signal fluctuations under the influence of small changes in distance (or
time). Due to these small-scale effects, the received signal strength may change
significantly even for the same transmitter-receiver (T-R) distance. The surrounding

environment (i.e., the obstacles around the transmitter and receiver) is the main influence



on signal propagation. Such objects (e.g., trees) can attenuate the radio signal, a
phenomenon referred to shadowing. Other objects (e.g., buildings) will reflect signals
creating a multipath fading environment. Signals may also bend around large objects by
diffraction. These phenomena contribute to create a non-isotropic signal strength profile.
The log-normal shadowing model, which will be introduced more in Section 2.2.2, uses a

random variable to describe this heterogeneous property.

1.3 Link Quality Model

Energy models show the relationship between energy and transmission distance.
However, if we want to model the footprints, we also need to know the boundary of the
communication range. That is, the range within which a signal is sufficiently strong to
meet the needs of the application. One of the existing models that provides the boundary
of the communication range is the ‘Link quality model’ [12]. In that work the link quality
was assumed to be 100% within some range and 0% for the outside part. This is
effectively a unit disc representation with an idealized environment and communication
link. The link quality should be expected to change gradually with distance. [10], [15]
included a transition region, located between the good and bad region. As seen in Fig. 2,
the transition region is from distance D/ to D2. Within this transition region, the link
quality is linearly decreasing with the distance. Even though the transition region
improved the representative of link quality model, it still over simplified the footprints

making itself far away from the real footprint.
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Figure 2. Link quality model with transition region [D1, D2]

As noted earlier, due to small-scale effects, the received signal strength may vary as a
function of location even if the T-R distance is the same. In short, even if we have found
a realistic footprint, the coverage within the footprint can not be assumed to be 100%.
Some environments may be quite complex in structure and thus the signals may be very
low in certain pockets. Considering that, we need to analyze the percentage of the

footprint area with guaranteed connection, that is, its usability.

14 Contributions

Presently footprint and link quality models utilized in wireless sensor network
research are overly ideal. In this work, we present models to better represent the non-
isotropic and non-homogeneous propagation environments where sensor networks may

be deployed. Specifically, the contributions of this work are:



1. A ‘weak-monotonicity’ (W-M) model is leveraged to represent a footprint’s non-
isotropic behavior. In addition, the usability of the W-M footprint in a log-normal
shadowing propagation environment is considered through analysis and simulation.

2. An enhanced footprint model which overlays multiple W-M patterns is developed.
We illustrate that real data can be represented by our new overlapping model and thus
provide more realistic footprints of sensors.

3. We analyze the connectivity of wireless sensor networks randomly deployed in non-
homogeneous environments to find the weakest link which can ensure connectivity of
the network. This information can assist in ascertaining the robustness of the
network’s connectivity.

These contributions will help the analyses of connectivity in wireless sensor networks

and thus enhance the reliability, robustness and lifetime of these systems.

1.5 Outline

Chapter 1 presented an introduction, the motivation and the main contributions of this
work. The remainder of this thesis is organized as follows. Chapter 2 introduces related
work and model. In particular, the ‘Weak-Monotonicity’ (W-M) model is presented.
Chapter 3 will focus on usability analysis of the W-M model. Real data collection and
analysis will be discussed in Chapter 4. The connectivity analysis of the network will
discussed at Chapter 5. Finally, our conclusion for the thesis along with the future work is

presented in Chapter 6.



CHAPTER 2

RELATED WORK AND MODELS

2.1 Introduction

In this chapter, we will introduce the Weak-Monotonicity footprint model. The
energy and log-normal shadowing models which are related to our work will also be
discussed. Finally, earlier usability results, which did not take into account a non-

isotropic footprint, will be presented.

2.2 Related Footprint Work

In [3], D’Souza, et al proved that with some local geometric O-constraints, the
connectivity of the networks can be confirmed, which means any two nodes in the
network can be able to communication with each other either directly or through other
nodes. The concept of ‘f-constraints’ comes from Adaptive Topology Power Control
(ATPC), which is a local geometry algorithm which constructs a graph with only a single
parameter, ‘@’, the angle between two continuous neighbors. We illustrate this concept in
Fig. 3. Node T is the transmitting device. Five other nodes, R/, R2,..., RS, are able to
communicate with and become its neighbors. Successive neighbors construct angles, 61,
62,..., 65, between each other. If we constrain the angles to some value, for example ,

and 01, 62,..., 05 are smaller than 7, we can then say that the ‘z-constraints’ is satisfied.



Two footprint models, ‘Bounded Eccentricity’ (B-E) and ‘Weak-Monotonicity’ (W-
M), were also proposed in [3] to address the shortcomings of the traditional disk model.
The B-E model limits footprint coverage to a smaller disc area, so we can expect more
reliable links within the footprint. The W-M model is not constrained to the assumption

of isotropic coverage. The following sections describe these two footprint models.

R1 (Receiver)

RS
.~ T (Transmitter)

R3

Figure 3. Definition of parameter 0 in a graph

2.2.1 Bounded Eccentricity Model

In the ‘Bounded Eccentricity’ model (Fig. 4), each sensor contains a uniform disc
whose radius is some constant fraction of the distance to the farthest node which can be
communicated with. The sensor will then have guaranteed connectivity with all nodes in
this smaller disc. In Fig. 4, let j be the farthest node from node i that can be
communicated with and let the distance between i and j be given by d (i . J ) This distance,
d, between nodes is also referred to as the T-R (transmitter-receiver) distance. Then
‘eccentricity’, a, is the smallest number to ensure that any node, k, with the

property: d(i,k) <d(i, j)/a, is connected to i. Since connectivity is guaranteed within



the disc of radius |d(i, j)/a

, this footprint is said to provide 100% usability. Usability
will be discussed further in Section 2.5.

Furthest node

Disc model coverage
B-E model coverage verag

Guaranteed connectivity

when d(i, k)é M
a

Figure 4. 'Bounded Eccentricity' Model

In the uniform disc model, all nodes are assumed to have the same footprint. In the
bounded eccentricity model, however, node footprints are dependent on the longest
viable communication link which is therefore dependent on node location and local
environment. As such, each node’s footprint (while circular) will have different radii.
However, the B-E model is still a disc model with a footprint that is isotropic, and thus
far away from a realistic representation. Moreover, as we look into the model, we find
that we must first know the connectivity between the nodes before determining the
eccentricity, a, of the nodes in a network. As such this model is suitable for
understanding the behavior of existing networks, but not for analyzing potential

connectivity of networks prior to deployment. We also note that this model is overly



conservative, since there will be nodes outside the disc for which there will be

connectivity.

2.2.2 Weak-Monotonicity (W-M) Model

Figure 5. ‘Weak-Monotonicity’ Model

The name ‘Weak-monotonicity’ comes from ‘Monotonicity’, which describes the
properties of the traditional disc model. In the disc model, the signal strengths are same in
all directions (i.e. for all angles), so the communication range is said to be monotonic. If
node i is connected to node j, then i will be connected to any node k& with property
d(i,k) < d(i,j). However, in the W-M model, see Fig. 5, any node, that i is connected to,
should have the property d(i,k)< cos(4)-d(i, ), where 4 = Zjik . Communication links

are dependent on direction, thus the monotonicity is weaker. The footprint of the each



sensor in the W-M model is therefore a circle with the sensor itself on the boundary and
diameter of the distance from the sensor to its farthest connected neighbor. Within the
boundary, the usability is assumed to be 100%. In addition, links are assumed to be
symmetric in the model.

The W-M model has fewer restrictions than the disc model in that it is not isotropic.
In fact, it is restricted to a half plane. However this model also does not take into account
the variability of environment and resulting propagation loss, all of which contribute to
the node’s actual footprint. In [3], the W-M model was assumed to have 100%
connectivity within the circle range, but in practice, some areas may not be covered. So
in order to better represent the practical case, we should add some variances to the
coverage provided by the model. In this work, the log-normal shadowing propagation
model is applied to the W-M model to improve the existing constraints of the model.

Moreover, [3] analyzed and proved the connectivity by the W-M model, when certain
O-constraints were satisfied. In our work, more detailed information about W-M model is
given, for example, footprint usability compared to earlier results derived for the unit disc
model. In addition, Chapter 4 describes results of using the W-M model to represent

empirical data, which brings the analysis of the new model to a more practical level.

23 Log-Normal Shadowing Model

The average power of received signal, by large-scale propagation effects, decreases

exponentially with T-R distance. For example, in free-space the power decays with
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distance squared. In general, the average large-scale loss at T-R distance, d, can be

represented as:
PL(d) (iJ .
dO

or PL(d)

dB

= ﬁ(do)(w +10n log(diJ (2.2)

0

where PL is the average path-loss, which means the reduction in power density of an
electromagnetic wave as it propagates through space; d,, is a reference distance; n is the

path loss exponent, the value of which depends on the communication environment.
Obviously, the log-normal model ignores the non-isotropic property of the
environment. In order to overcome the shortcomings of the log-normal model, some
improved models have been developed, among which is log-normal shadowing model.
This model was developed for mobile communication systems, but has also been used for

wireless sensor networks [4 - 7]. The model uses a shadowing component X _, which is a

zero-mean, Gaussian random variable with standard deviation ¢ dB, to model the non-

homogeneous nature of the propagation environment.

— d
PL(d)|,, = PL(d,) L +10n log(d—) + X, (2.3)

0
To illustrate this model, Fig. 6 provides three simulated data sets (blue, red and
black). The simulations created data points at 27 different T-R distances for three
different values of n. In each case, path-loss increases as the T-R distance becomes large

and the path-loss exponent, n, determines the rate of this increase. Higher n (e.g. n = 4,

11



blue data) leads to quicker decay of the signal, which is represented by larger slope in the
figure. At a certain T-R distance, we generated 10 data points. Path-loss varies for each of
the 10 data points, which is the result of shadowing component. The range of the
variation is dependent on the standard deviation, ¢ (in dB).

The log-normal shadowing model, to some extent, improves the representation of
propagation environment by taking into account the variability of the signal power at
some distance. However, this model still has limitations and it is not suitable for all
communication environments. For example, when there are lots of obstacles and no line
of sight. In this situation, small-scale effects (i.e., multipath) must also be accounted for,

for which the Rayleigh fading model is often used [8] [9].

Path Loss (dB)

10 10’ 10
T-R Distance (m)

Figure 6. Path-Loss vs. T-R Distance (6 = 3)
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24 Connecting Footprints with Energy Needs

If one wishes to communicate with farther nodes, the most direct approach is to
simply increase the transmission energy. But if this approach is used, how does the added
transmission energy impact the node’s overall energy availability and lifetime? This
question is what the energy models try to answer.

The simply energy model—‘Path-Loss Model’ can be expressed as follow [12]:
E=E +E =a+p-d" (2.4)
Where the energy cost per bit, E, over the distance d includes both the transmitting E,

and receiving E, energy. « is the energy cost of transmitter and receiver electronics; [
is the transmit amplifier constant; # is the pass loss exponent. Equation (2.4) emphasizes
that energy costs are proportional to transmission distance (i.e., footprint size). [13][14]
added the energy consumed for processing data to the transmission energy, which

resulted in the equation:
E=E +E =a+p-d"+E, (2.5)
Where E, is the data processing energy.
The path-loss model above is simple and easy to calculate, but the model still
assumes that the communication contour of the sensor is continuous and isotropic.
However, as already discussed, the transmission of the signal is affected by the

environment, such as obstacles and geometric conditions. Most propagation

environments are not homogeneous and thus »n alone can not capture the heterogeneity.

13



As noted, our work aims to provide better footprint methods which can subsequently be

used to better understand the energy needs for sensor nodes.

25 Early Usability Results

Because of the shadowing caused by the environment, there will be pockets in a
footprint with high signal loss. So if a signal threshold is set, which is the minimal
received power needed to have a reliable link, we will want to know the usability of some
area. ‘Usability’ is percentage of the area that will be truly covered, i.e., having signal
power higher than the threshold. The usability of circular (unit disc) coverage has been
analyzed in the context of cellular systems [8]. In cellular systems, the communication
occurs between cellular towers and mobile phones. Cellular transmitting towers are
typically 150-270 feet in height [17]. So a line-of-sight can be expected between the top
of the tower and a good portion of the coverage area. Thus, the disc model is a good
choice for cellular systems. Using nomenclature and results presented in [8], usability,
U(y,R), of an area of radius R (i.e. circular disc) is the percentage of the area with

received power higher or equal to ¥, was calculated by the following equation:

1
nR?

U(y,R)= #jpr[zvr(rb ylda=——["["Pp(-)> 7] r-dr-d6 (2.6)

In which, Pr[P,(r)> y] is the probability [Pr] that the received power [P, ] at distance r
from the transmitter exceeds the connectivity threshold .

According to log-normal shadowing model, equation (2.3), Pr[P.(r)>y] can be
described as:
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PP()> 71= Q[@J -1 —1erf[@J

o 2 2 o2
=l—lel’f y—[P,—(ﬁ(d0)+10n10g(r/d0))] (2.7)
2 2 o2 .

Where, again, #n is the path loss exponent and ¢ is the standard deviation of the Gaussian
process (in dB). To solve the above equation, we utilize the Q function [8] and the error

function (erf) [8], which have the following properties:

o)~ o f-os( 5]
0(z)=1-0(-2)

erf(z)= %J‘:e"’“z dx

These functions are introduced to analyze the probability of the Gaussian distribution, on

which the log-normal shadowing model is based.

. r
Since — =

r R
—.—, we have
d, R d,

PL(r)=10n log[dLJ +PL(d,)

0

=10n 1og[d£j +10n log[%j +PL(d,) (2.8)

0

Substituting the expressions in (2.7) with (2.8), Pr[P.(r) > 7] can be expressed as:

Pr[Pr (r) > 7/] = % —%erf[ Y- [Pz — (E(do )"‘ lon;(j/%R/do )+ 10n log(r/R))]J

Letting a= (7 — P, +PL(d,)+10nlog(R/d, ))/(7\/5,
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and b=(10n loge)/ax/i.

The path-loss at the boundary, where » = R, becomes

1 1
P[P, (R)> y]= -~ erf(a)
2 2
Finally, the usability within the boundary is given by

I 1

t r
U(}/,R)—E—F!r-erf(a +blnEJdr

U(y,R)= %(1 —erf(a)+ exp(l _bzz"b j{l - erf(l _b"b m . (2.9)

In Fig. 7, each curve represents a specific value of the boundary coverage; i.e.,
percentage of boundary locations where the signal exceeds the threshold y. We determine
the usability of the footprint by first calculating equation (2.9) as a function of o/n (such
as presented in [8]). For example, if the path-loss exponent, n, and standard deviation, o,
are both 3, then

Standard Deviation 3

Path - Loss Exponent 3

In this case our usability result will lie along the line defined by the x-axes being 1. If the
probability of signal being higher than the threshold at the boundary is known to be 60%,
then the usability of the total area within the boundary will be 89.7%. As seen in Fig. 7,
this result is found from following the 60% edge of coverage curve, back to the x-axis
value of o/n =1 and then determining the y-axis term (89.7%).

As illustrated in Fig. 7, the usability within a footprint increases in accordance with

the boundary probability. For example, if the boundary is closer to the transmitter, higher

16



boundary connectivity can be expected. Likewise, the usability of footprint should
increase. On a specific curve, the usability decreases as the value of o/n increases. Since
higher shadowing component leads to greater chance of pockets with no connectivity, the
usability will decrease as ¢ increases. In addition, if the propagation environment has
lower n, the signal power will drop more slowly with distance there. So the slope of the

curve decreases as o/n increases.
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Figure 7. Curves of usability for circular coverage and log-normal shadowing

environments
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2.6 Conclusion

This chapter introduced the W-M model that provides a method to overcome the main
limitation of the disc model which is ignoring the non-isotropic properties of actual
footprints. The log-normal shadowing model has been discussed in this chapter as well.
This model uses a random variable to characterize the variance of signal power at some
distance due to non-homogeneous environments. Based on the log-normal shadowing
model, the usability analysis was introduced, which describes the percentage of some
area with signal strength higher than some threshold. However, these early usability
analyses were built upon the disc model. A usability analysis of the W-M model will be

presented in the next chapter.
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CHAPTER 3

USABILITY ANALYSIS FOR THE WEAK-MONOTONICITY MODEL

3.1 Introduction

While early usability results based on the disc model were appropriately derived for
cellular systems, these results are not suitable for wireless sensor networks. Sensor nodes
tend to be embedded on or within structures and thus may not have a line of sight view to
adjacent nodes. We contend that the W-M model is a better footprint model, since it
allows us to account for heterogeneity. However, in practice footprints are neither purely
directional, as given by the W-M model. As such, we propose that by using multiple W-
M footprints, one can represent complex footprints. For example, in Fig. 8, three
overlapping W-M circles with different radii, R/, R2, R3, and angles between successive
circles, 61, 62, 63, are shown, the contour of which is the footprint of the node. In this
chapter, we first analyze the usability of a single W-M circle. Then we use simulations to

characterize the usability of footprints with multiple W-M circles such as shown in Fig. 8.

3.2 Derivation of Usability for the W-M Model

In the earlier analysis of the usability (2.5), which is based on the traditional disc

model, a node is located at the center of the disc at point ‘o’, and the distance from the

node to any other node ‘m’ is ‘r’, which is the length of om (Fig. 9). However, in the

‘Weak-Monotonicity’ model, the node will no longer be at the center but should be on the

19



boundary of the disc area. Let the point »’ be the node as illustrated in Fig. 9, so the

distance from it to ‘m’, which is ‘d’, will be the length ;n .

Figure 8. Proposed improved footprint consisting of three overlapping W-M

circles

Figure 9. Geometry for usability analysis of the W-M model
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By the law of cosines,

—_—

+ —2‘ Hom cos Lmop
or d*=R*+r>—2RrcosB;
giving d=\/R2+r2—2chosB. (3.1)

Thus we find the relation between the T-R distance in the new model, variable ‘d’, and
the old model, variable ‘#’. We can now use the equations in the early analysis to acquire
results for the W-M model.

Recalling equation (2.6) and (2.7), we have

U(y,R)= (r)>7/]-dA— Pr[P >7/] r-dr-do
Where Pr[P. (r) >y]= Q[@J %— ;erf[y 057_6}
—l—lerf ;/—[P,—(E(d0)+10n10g(r/d0))] (3 2)
202 o2 '
Resulting in

U(%R):Lj-znj-k{%_%erf[y—[l’t—(E(do)+lOnlog(d/dO))]J}r-dr‘dH 63

aR* o Jo O'\/E

For the W-M analysis, we note that angle § = B in Fig. 9 and that we need to replace the
r, which is distance in the old model, with the new d.

Given equation (3.1), equation (3.3) becomes
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U(y,R)=

1 2r R |1
nR? '[0 '[0 {5
y —l:P, —[ﬁ(d0)+10n10g[\/R2 +7”> —2Rrcosf ;JH

0

1
——er -I'-dl’"de
2 4 o2
We rewrite the above into two integrals.
1 27 ¢R ]
U(y,R)= e IO IO E-I/-dr-dH
y—| P - ﬁ(d0)+10nlog[\/R2 +7° —2Rrcos -IJ
Lo b dr-do
el Ll " v
(3.4)

The first integral on the right side of equation (3.4) can be calculated out as follows:

! [ L arap=—1 [’ L a0 ar
2 R’ 2

0

= 12 Rﬂ-r-drz 12-[171R2J:l
7R= 70 R \2 2

To solve the second integral of (3.4) we note that

VR? + 1% —2Rrcos0 2R R?+r2 —2Rrcos0
log| =log| —- .
d, d, 2R

JR* +r* —2Rrcos@
dO

Thus the expression ﬁ(a’0 )+ 10n log[ J in (3.4), which represents

the mean path-loss at distance , becomes
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ﬁ(r) =10n log[ 7 + PL(a’0 )
0

2 2 _ .
:1onlog£‘z—RJ+10nlog[‘/R o 2RFCOSHJ+PL(dO)

VR? 412 —2ch0s9J —

(3.5)

. 2R

Replace the expression of mean path-loss in (3.2) with (3.5), Pr[(P.(r)> y)] can be

expressed as

Pr[P,(r)> 7]
y—| P.—| PL(d,)+10nlog 2R +10nlog VR 417 =2Rrcosd
=———er
2 2 o2
_1
2
DI 2R 2 2
y — P, + PL(d,)+10n log[dJ +10n log(\/R +7r° —=2Rr COSQ)— 10nlog(2R)
1 0
——er,
2 4 o2
(3.6)
Bringing (3.6) into (3.4), the usability of the W-M footprint is given by
U(y,R)=%— 27:R2 jj”j;erf a +blog(\/R2 +r? —2chos9)—c]-r-dr-d9 (3.7)
where Nt + PL(d,)+10nlog(2R/d, )

o2 ’

_ 10n

b=—r.
o2
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_ 10n

- %

As with the unit circle usability result, we can glean the W-M footprint usability from its

C

-10g(2R).

coverage at the boundary. For the W-M model, we define the extent of the boundary to
be the point of the furthest communication, that is, where » = 2R . At the boundary, thus,

the coverage percentage is given by

P 28)> 1] - =T Lo )

av2 (3.8)

1

= 5—%”/[(0)

No closed form solution to (3.7) is known, and as such we solve it numerically (in
our case, using Matlab). For example, given

1) the distance to the farthest node

2) signal threshold

3) power received at reference distance (d, =1m)

4) path-loss exponent

5) standard deviation for shadowing component
we can calculate the usability by (3.7). To illustrate this method and considering realistic

numbers for sensor networks, we have R=7339m ; y=-100dBm ;

P.(d,)=P - PL(d,)=—-65dBm; n=3; o =3. Solving (3.7) we find

U(y,R)=92.28%

is the usability for this W-M footprint.
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33 Analysis of Usability Results
As expected, usability decreases as coverage radius becomes larger. In Fig. 10,

R2>R1. Let C(Rl) and C(R?.) specifically be the coverage area of the footprint with
radius R/ and R2. We note that C(Rl)c C(R?.) and the shaded region represents
C(R2)\ C(R1), which means the area include in C(R2), but not in C(R1). Since the
shaded region is further from the transmitter than C(Rl), the power received in this
shaded area is lower than that of C(R1). Considering that the usability of C(R2) is

averaged over C(Rl) and the shaded region, the result will be lower than the usability of

C(R1).

o

.

N

MY

N\

S\

A\

A\

1
Transmitter

Figure 10. Enlarge of coverage area as increase of radius
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Figure 11. Usability-Radius curves of different shadowing coefficients for fixed path

loss exponent (n = 3).
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Figure 12. Usability-curves of different path-loss exponent for fixed shadowing

coefficient (¢ = 4).
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Employing our result of (3.7), Figs. 11 and 12 show the curves of usability-radius for
various path-loss exponents or shadowing coefficients when fixing the other. Both these
figures show that the usability of each curve becomes lower as radius increases. In Fig.
11, n is fixed. Curves representing higher shadowing coefficients have lower usability,
which means that greater shadowing effects increase the probability that a signal is lower
than the threshold within the footprint. If we look further, we can find out that when the
radii are larger than some value, here it is around 11 m, relationship of the curves start
inverting. Curves with higher ¢ become the ones having lower usability, which is as we
expected. Since in the further area, the average link reliability is really low, larger ¢ can
offer higher probability of good link (i.e. greater chance of positive interference). In Fig.
12, we can find out that larger n leads to quicker drop of usability as shadowing
coefficient fixed.

The usability of W-M footprint is lower than that of a disk footprint having the
equivalent maximum T-R distance. This difference between this new result and the
earlier analysis of usability is due to that the percentage of the signal above the threshold
on the boundary is no longer uniform, since the points on the boundary have various
distances from the node, while in the early work they are on the circle centered by the
node. However, the influence of n and ¢ to signal power are the same, following log-
normal shadowing model, so we can see same influence on usability in the W-M model

and the disc model.
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34 Simulation for Single Footprint
We expect the analysis of usability with over-lapping weak-monotonicity discs (Fig.
8) to be difficult and thus we will use simulation to analyze such complex footprints. The
routines to be discussed are included in the attached CD. To validate the simulation
method we first compare its results to the analytical results for a single W-M footprint
(Equ. 3.7).
As seen in Fig. 13, we generated nodes, N,, (i =1,2,...), uniformly deployed on an

L (m)x L, (m) area. We let node ¢, with coordinate (R, 0), be the transmitter and F, with

coordinate (R,?.R) be the farthest node. R is the radius of the footprint circle. For

illustration, in Fig. 13, we have L_= L,=2R=16m;R=8m.

F {Farthest Node)

16 TTTT
7
12
E
P 8 H
O
4
33
0 0 4 -“?(:I":'ansmitter) 12 16

Lx (m)
Figure 13. Simulation of ‘Weak-Monotonicity’ Model with Matlab
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Next, we generate Gaussian distributed numbers with zero mean and standard deviation,
o, and let these numbers be the shadowing component, X _, of the received signal at each
node. Using equation (2.3), the log-normal shadowing model simulates the received

power at each node. We consider a reference distance, d, of 1m and P, (do ), the power

at reference distance, to be —65dBm . This value —65dBm was collected by practical
test at distance 1m when the transmit power is 0 dBm . Node F with coordinator (R,2R)
is the farthest node from the transmitter and thus has signal power
P.(F)=-65dBm—10-n-log(2R)+ X,
Matlab simulation was then used to find the percentage of nodes with received power
higher or equal to the threshold within the footprint area, which is the usability. Fig. 14
illustrates these simulation results, based on the setting of path-loss exponent n» =3 and
standard deviation o = 3. The signal threshold was set at —90 dBm , which is represented
in the figure as the horizontal line. —90 dBm represents a reasonable receiver threshold
for low power wireless sensor nodes [12].

This simulated deployment of 6561 nodes uniformly spaced over an area of
16 mx16 m is represented as data points in the figure. The black curve is the average
signal power over distance, which is Fr(d)=—65 dBm —301log(d) . Because of the
Gaussian shadowing component, almost all the simulated data points were around the
average value within the range of + 20, which are represented as red dashed curves.
Using this curve, we can calculate the usability of different range as a function of T-R

radius as the ratio of the number of points above —90 dBm to all points (i.e. 6561).
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Figure 14. Distance-Power Received curve of simulation (¢ =3; n = 3; 6561 nodes)

Table 1 gives the values of (A] (r,R), average simulated usability, each of which was

averaged over 10 simulations. U (r,R) is the value of the theoretical usability calculated
using equation (3.5) and R is the radius of the footprint. Both the path loss exponent ()
and shadowing coefficient (o) are fixed at 3 for these results. Fig. 15 shows the curves of
the values in Table 1, from which we can find that the simulation results agree with the
theoretical result. The errors between them are quite small, the average of which is 0.22%.
Thus our simulation appears to be a good method to analyze usable area within the

weakly-monotonic defined footprints.
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Table 1. (a) Simulation results (Threshold =-90 dBm; 6 =3; n = 3)

Usability (Threshold =-90 dBm; 6 =3; n=3)

R Im | 15m | 2m | 25m 3m 3.5m 4m 4.5m Sm | 55m | 6m
U(r, R) 1 1 0.999 | 0.993 | 0.966 | 0910 | 0.831 | 0.742 | 0.655 | 0.576 | 0.507
U(r,R) 1 1 0.998 | 0.993 | 0.965 | 0910 | 0.831 | 0.741 | 0.659 | 0.578 | 0.505

Table 1. (b) Simulation results (Threshold =-90 dBm; 6 =3; n=3)
Usability (Threshold =-90 dBm; 6 =3; n =3)

R 6.5m Tm 7.5m 8m 8.5m 9m 95m | 10m 10.5m 11m
U(r,R) 0448 | 0397 | 0354 | 0317 | 0286 | 0.259 | 0235 | 0.215 0.197 0.181
U(r,R) 0450 | 0.398 | 0.355 | 0.318 | 0.285 | 0.259 | 0.234 | 0.214 0.196 0.181

Table 1. (¢) Simulation results (Threshold =-90 dBm; 6 =3; n =3)
Usability (Threshold =-90 dBm; 6 =3; n=3)

R 11.5m 12m 12.5m 13m 13.5m 14m 14.5m 15m
U(r,R) 0.167 0.154 0.143 0.133 0.124 0.116 0.109 0.102

; 0.102

U(F,R) 0.166 0.154 0.142 0.133 0.124 0.116 0.108
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Figure 15. Usability-Radius curve with n =3 and ¢ =3 (From Table 1)

35 Simulation of Overlapping W-M Footprints

The above analysis only considers the footprint for a single sensor and one that has
directivity. However, in practice, a sensor network may consist of 10s to 100s or more
nodes. Sensors will be expected to communicate with other sensors that surround them
and thus multiple W-M footprints may be needed to model this. So the situation will be
much more complicated than simply adding together the results of multiple W-M
footprints. We use our validated simulation method to analyze this new footprint.

As an example, Fig. 16 gives an example footprint created using three overlapping

W-M footprints with equal radii, separated by 120°. The usability results of this example
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Figure 17. Usability vs. radius curve for W-M based footprint and a unit disk
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Figure 18. Usability vs. radius curve for multiple overlapping footprint circles

34



Fig. 18 shows the usability curves of multiple overlapping circles. As the number of
circles increases (Fig. 19), the usability gets closer to the disc model. This result is easy
to understand, because with the increase of circles, the whole footprint becomes more

like the disc model. This result gives us another point of validation of our simulation.

Figure 19. Different number of overlapping footprint circles compared with disc

model

Obviously the scenarios presented are purely illustrative, but since real environments
may have many obstacles, signal propagation will highly depend on the direction and
range. As such, we can use our W-M approach to create a general footprint model (such
as illustrated in Fig. 8) for an individual node having an arbitrary number of lobes, with
arbitrary radii and angles as given by (3.9).

N
footprint = | JWM(R, ,6,) (3.9)

i=1

With (3.9), simulations of networks can now be developed in which the footprint
parameters for each node (N, R, ) can be uniquely defined or provided randomly through

distributions.
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3.6 Conclusion

The derivations of the usability for W-M model were presented in this chapter. This
result was used to validate an alternative analysis approach using simulation. The results
of these two methods have been shown to agree quite well. The simulation work has been
further validated in the scenarios with overlapping W-M circles. In the next chapter, these
overlapping scenarios of W-M model will be used to develop footprints to represent

empirical data.
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CHAPTER 4

DEVELOPING A W-M BASED MODEL FOR EMPIRICAL DATA

4.1 Introduction

In this chapter, we leverage the overlapping W-M model to develop footprints for
empirical data collected in three indoor settings. First, the locations, equipment and test
set up for the measurements are introduced. We then analyze the empirical data collected
to ascertain the log-normal shadowing parameters. Finally, a W-M based footprint is

proposed to matche each scenario.

4.2 Test Method

To illustrate the use of our proposed W-M based footprint, we collected path loss data
for three indoor scenarios. The data was collected in the corridors on the 3™ floor of
Votey Hall at the University of Vermont:

The following equipment was used:
— A-Systems Inc. signal generator (Fig. 20a)
— Rohde & Schwarz FSH6 spectrum analyzer (100 KHz-6 GHz) (Fig. 20b)

— Tape measures are used to determine the T-R distance in our measurements.
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= w
(a) Transmitter: A System Inc signal (b) Receiving spectrum analyzer: Rohde

generator & Schwarz FSH6 spectrum analyzer

Figure 20. Main equipment

The set up is shown in Fig. 21. The transmitter height was set to 72 ¢m (Fig. 22). The
receiving antenna was fixed at the height of 70 ¢m and connected to the spectrum
analyzer (Fig. 23). The frequency was set to 2.4 GHz, the lower end of the frequency
band commonly used for sensor networks, and the transmitting power to 0 dBm . Data
was collected every 0.5m, from 1 m to 10 m (T-R distance) in each direction. Since the

width of the corridor is 2.6 m, in some directions we could not reach 10 m.
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Figure 21. Measurement set up

Figure 22. Transmitter height is 72 cm
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Figure 23. Receiving antenna and spectrum analyzer

4.3 Scenario I

43.1 Application

For Scenario I, the signal transmitter is put by one side of the corridor at 3" floor in
Votey Hall. This scenario may represent a wall mounted network that communicates
down a long corridor. We took measurements every 0.5m from 1m to 10m, in 19 different
directions, from 0° to 180°, as in Fig 24. In Fig. 24, data was collected at each
intersection of the radial and circular lines. 222 data points in total were collected for this

scenario. When a sensor node is deployed in a narrow place and located really close to a
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large obstacle on one side, like this scenario, the footprint constructed by this scenario

can be applied, since the footprint will be really similar.

T-E. Distance (m)

-
™

&

180°
174.375°
2.6m 16875
163,125
157.5°
Figure 24. Measurement locations for Scenario I
43.2 Data

Table 2. (a) Data set for Scenario 1

Scenario I: Measurement Data (-dBm)
Angle (Degree)
0 5625 | 1125 |16875| 235 | 3375 45 5625 | 675
1 401 4n 36.4 385 373 393 412 403 A5
15 [ 457 406 416 394 42.1 393 403 38 40.1
2 463 9 452 43.5 44.7 4209 426 40.2 42
25 | 485 457 430 44.4 424 43 43 442 455
3 505 481 458 48 433 451 479 a3
35 | 04 49 4 47 42.1 dé 473 423
4 552 47 4 486 423 494 508
45 | 492 476 491 47 43 494
5 553 481 q7.5 48 S04
55 59 492 S0z 339 0.4
G 63.7 543 52 531 496
65 | 685 4.5 49 55 50
7 557 0.2 A a 51
75 | 4a 497 313 3la
8 a3 523 524 584
85 | 565 528 534 569
9 (R al.4 ] a3
95 fif 555 S83
10 56.4 a5 56

T-R Distance (m)
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Table 2. (b) Data set for Scenario I

Scenario I: Measurement Data (-dBm)
Angle (Degree

o0 1125 (12375 135 |14625( 1575 | 163.125 [168.75 (174375 | 180
1 40.2 40.5 383 407 4 429 41.1 44 386 403
15 | 387 424 40.5 407 413 w7 40.5 452 422 422
2 43.5 413 413 421 437 49 423 475 41.4 4.5
25 | 4448 456 418 LI 48.5 464 45.1 427 44.2 464
3 43 442 488 423 473 433 438 J3E

35 529 48 449 339 45.1 48.2 i
—- 4 487 6 8 47 469 S7a 357

E [45 46.4 gl 318 442 453 53
§ 5 485 517 493 554 A1
_‘g 55 0.1 4.8 46 .6 45.4 1.2
(=] 1] g 338 37 315 386
E 65 479 518 517 502 565
7 558 508 508 353
75 3TE 0.5 302 877
8 313 04 57 3.2
85 629 53 553 5.4
9 573 58.5 593 fE.1
95 5y 385 A2
10 385 571 706

T-E Distance (m)

Figure 25. Color map for Scenario I

The empirical data we collected in Scenario I is listed in Table 2. In order to give a
better description of the signal power in this scenario, Fig. 25 shows the color map of the
data, in which we use colors to represent different signal power. The standard deviation
of all data in our measurements is about 0.44 dB, which is obtained by taking 10 data

points at a specific location and calculating the standard deviation of these 10 data.
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4.3.3  Analysis

The raw data from our measurements is provided in Table 2. In the following
discussion, we will characterize the measurements using the parameters found in the log-
normal shadowing model (i.e. n and ). This approach is often taken using the entire data
sets [8]. We will also do such global characterizations. However, to assist in our
development of the overlapping W-M footprint, we will ascertain these parameters as a
function of measurement direction as well.

Fig. 26 illustrates the data points of Table 2 and path-loss exponents. Each line

represents a linear relationship between the signal power and 10 x log(di) , so the slope
0

of it is the path-loss exponent, 7, in this direction. As expected, we find out from Fig. 26
that all lines have positive slopes, which means in all direction signal power drops as the
T-R distance gets bigger. Most of the data points do not exactly fall on the linear lines.
They scatter around the lines, which can be explained by the existence of the shadowing.
The average of all n shown in the figure is 2.06. We only average over the directions in
which the T-R distance can reach 9m, ignoring directions having fewer data. In those
longer directions, shadowing coefficients are also calculated and listed in Table 3, the
average of which is 2.6. Fig. 27 plots the curves of n and ¢ at different directions. We

find that the curves both have symmetry in that higher at two ends and lower in the

middle. This is as what we expected, because the environments are symmetric about 90°.

As shown in Fig. 24, the two ends of curves represent the directions close to the wall (i.e.

closer to 0° and 180"), while the middle ones represent the directions in between, further
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to the wall. The x-axis represents the direction number, which we define in the row of

‘Direction’ in Table 3.

Signal Power--Scenario |
75 -

70 - .0 -
= 5.625° *
11.25°
16.875°
163.125°
-168.75°

174.375°

o0 =3.0278
=2.2981

65

55

Signal Power (-dBm)

0 2 4 6 8 10

10xLOG10(T-R Distance) (m)

Figure 26. Signal power vs. T-R distance (Scenario I)

Table 3. Shadowing coefficient () and path loss exponent () for Scenario I

Angle (°) 0 5.625 | 11.25 | 16.875 | 163.125 | 168.75 | 174.375 180 Aver-

Direction 1 2 3 4 5 6 7 8 age
n 2298 | 1.820 | 1.765 2.144 2175 1.333 1.920 3.028 | 2.0605
o 4402 | 2.591 | 1.763 2.366 3478 2.744 3.100 3463 | 2.6009
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Figure 27. n and o distribution for Scenario I

43.4  Proposed Method for Determining W-M Footprint
If we assume that receiving signal powers at the reference distance, d,, are P, same

in all directions and ignore shadowing coefficients, signal power at T-R distance d will be

P(d)=P, —10n 1og(di). (4.1)

0

By (4.1), we can find out that for specific receiving power level P, the T-R distance is

d P, -P
log — |=—2—. 4.2
g{doJ 10 42
In different directions
log[le
_\dy) _m (4.3)
[dzJ nl
logl —
dO
Let d, =1, then
logd, _nm, (4.4)
logd, n,
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So the relationships between the radii of W-M circles in directions with different

path-loss exponents are built. For example, if we know that in direction i, path-loss

. . . n, 2 :
exponent, 1, equals 2 and in another direction j, n; =3, we can get — = 3 So if we

n;

set a signal power threshold as the boundary of the W-M circle, the radii of the W-M

logr,

logr,

circles in these two directions will have the relationship =—, where 7, andr;

specifically represent the radius of direction i and j. Since we have calculated out path-
loss coefficients in different directions, we propose to build a W-M circle in each of these
direction and the relationships between the radii of these circles are derived from
equation (4.4).

From equation (4.4), we can find that the relationship is logarithmic. So, small
differences in n will lead to large differences in radii. Considering this problem, we plot
the W-M footprint for Scenario I in logarithm scale in Fig. 28. So the ratio of radii for
any two circles equals to the ratio of n for these two directions. Thus the differences of
radii are not too large now and can be kept in one figure. We can get a better idea of what
the footprint look like from Fig. 28. The radii of circles are based on the value of n in
Table 3. In directions with lower n, the circles are larger than other directions. These
circles are overlapping with each other. The contour of them is regarded as the footprint

of the transmitter, “T’. If we change the signal threshold P, the radii of all circles will

change, but the relationship between them does not change. So the shape and the contour

of the footprint will be same.
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Figure 28. W-M footprint for Scenario I in logarithmic scale

Even though the W-M footprint in Fig. 28, marked by red curve, does not fit perfectly
with data in Table 2 and Fig. 25, it is better than the disc model, which would make the
signal power equivalent at same distance. If we look at the red part of our contour, which
is the footprint, we can find that in different directions, the contour belongs to different
W-M circles. So in these directions the signal powers are determined by the path-loss
exponent of their own W-M circles in our footprint model. Thus if we want to predict the
signal power of some point, we should use the path-loss exponent of the direction this
point located at.

In Fig. 28, we can generally separate the footprint into two parts, left and right. The left
part is mostly covered by the W-M circle for the direction of 11.25°, while on the right
the footprint is mostly covered by the circle for the direction of 168.75°. So we
specifically use the path-loss exponents of these two directions to determine the signal

strength on two sides of the footprint, which are 1.765 for the left and 1.333 for the right.
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For each part, we calculate the average value of the signal powers we measured at 1m in
directions belonging to this part and set this average value as the reference signal power

P, of this part. From table 2, we get the average value of 39.48 for the left and 40.1 for

the right part. Thus we can predict the signal powers of all locations for this scenario in
both parts based on their own path-loss exponent and reference signal power. Having the
predicted values of all locations, comparing them with the real data we collected, we can

decide the error of our W-M footprint model for each location by the following equation:

P-p
Error =—
P
where P represents the predicted value and P represents the real data we collected.

We use the same equation to quantify the errors of disc model. The average value of all
path-loss exponents in Table 3 was used, which is 2.0605. We set the average value of all
the data we collected at 1m as the reference signal power. Table 4 illustrates the errors of
two models. We can find that except for directions of 0° and 180°, the errors of W-M

model are smaller than disc model. So is the average error.

Table 4. (a) Error of two models for Scenario I

Scenario I: Error (%)

Angle (Degree)

0 5.625 | 11.25 | 16.875 | 22.5 | 33.75 | 45 | 56.25 | 675 | 90 | 1125

W-M | 738 | 587 | 475 | 445 | 522 | 3.82 | 413 | 935 | 498 | 405 | 3.77

Model

Disc [ 578 | 939 | 936 | 7.31 | 9.79| 6.58 | 7.31 | 1221|722 | 6.3 | 6.44
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Table 4. (b) Error of two models for Scenario I

Scenario I: Error (%)

Angle (Degree)

1238 | 135 | 146 | 157.5 | 163.1 | 168.75 | 174.38 | 180 Average

W-M| 821 511|284 | 483 | 582 | 526 5.73 | 12.02 5.95

Model

Disc | 11.33 | 6.21 | 5.88 | 11.51 | 6.24 | 1095 | 8.48 | 7.19 8.25

4.4 Scenario 11

44.1 Application

Scenario II is illustrated in Fig. 29. ‘T’ is the transmitter, which is located at the
middle of the corridor. The area is separated into 4 sections: I, II, Il and IV, as shown in
Fig. 29. In each section, directions are defined by degrees range from 0° to 90° clockwise.
At the intersections of two continuous sections, directions are defined as both 0° and 90°.
For example, the intersection line of section I and II is defined both as 90° of section I
and as 0° of section II. 224 data points are collected in this scenario at cross points in Fig.

29. This scenario might be applicable to a mobile wireless device traveling through a

corridor.
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Figure 29. Measurement locations for Scenario I1
44.2 Data

Table 5 contains the empirical data of Scenario II. The color map of this scenario is

plotted in Fig. 30.

Table 5. (a) Data set for Scenario 11

Scenario II: Measurement Data (-dBm)

Angle (Degree)
I I
IO 225 | 45 [675 | 73125 | 78.75 | 84375 |[90(MVO(D)|( 5625 | 1125 | 16875 | 225 45 | 675
1 366 372373378 | 408 398 387 40 436 | 398 384 [392]401] 374
15 HNF[HNE]| 399 43 4.4 436 4.4 | 411 41.5 43 | 387
2 49 6 45 428 428 4dh 444 | 452 439 [451
25 S84 433 458 48.5 49.4 47 459 475 [ 4438
3 468 | 443 49.5 533 8.5 448 | 503 457 [ 443
35 428 517 54.5 335 475 54 45.4
~ | 4 455 4.1 47 a0l 49 465 467
E 45 0.2 343 SEE 05 | 485
§ 5 5389 502 478 498 | 6da
'g 55 &l 539 653 548 | 490
2|6 335 5.7 492 341 | 523
E 65 0.5 369 34.5 338 | 539
7 55 50 55.1
75 498 339 502
8 3z 612 3135
85 541 354 485
9 55.5 317 f3.7
95 4901 489 56.1
10 0 49.1 499
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Table 5. (b) Data set for Scenario 11

Scenario II: Measurement Data (-dBm)

Angle (Degree)
m IAY
0IyOMn| 23 | 45 | 675 | 7313 | 7875 | B4 |[P0(IyOIV)[ 5625 ) 1125 | 169 | 23 | 45 | 675
3E3 W[ M3 O3S | A | 302 [3ET JBE 6.7 40 384|386 | 371 | 402
3BA | 47 | 407 | 401 453 42 414 [ 305 [ 401 [399[ 400
411 442 438 | 449 429 512 519 | 423|449
05 | 454 [ 451 [476 439 415 409 | 435|473
02 | B9 409 | 449 474 454 | 343 | 448 [ 451
46 5 478 425 455 497 426 | 495
- 3lA 48 (452 444 472 301 [ 511
E a0l [ 574 47 8 44.2 511
§ 400 | 545 409 524 | 04
-g 539 |52 533 494 | 97
=) B8 |03 351 474 fl.2
E 2 [567 A1 .5 32
529 8.5 54.1
507 529 511
324 07 48
262 284 55
643 B 568
544 543 582
J3E 285 05
Angle (%)
T-E. Distance (m) /D
= : 0 (-dBr)
&0
2.6m 40

Figure 30. Color map for Scenario 11

4.4.3  Analysis

We use n and o to characterize the data collected in this scenario. In Fig. 31, data in

Table 5 are fit into straight lines and # are calculated out for directions, which have more
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than 12 data points. , o and their average values are shown in Table 6 and plotted in Fig.

32.
Sglal Power-Scenario Il ©78.75°(1)
70
B 84.375°(1)
_ 90°(1)y 0°(11)
é % 5.625°(1l)
5 % 11.25%(1)
E 78.75°(1ll)
§ 84.375°(1l)

90°(llly 0°(IV))

5.625°(1
0 2 4 6 8 10 ™

10XLOG10(T-RDistance) (m) 11.25°(1V)

Figure 31. Signal Power v.s. T-R distance (Scenario II)

Table 6. (a) Shadowing coefficient (¢) and path loss exponent (n) for Scenario 11

Section I 1
Direction 1 2 3 4 5
Angle (°) 78.75 84.375 90°/0 5.625 11.25
n 1.758 1.054 1.458 1.566 1.941
o 2.880 3.141 4.886 3.472 4253

Table 6. (b) Shadowing coefficient (¢) and path loss exponent (n) of scenario 11

Section I v
Direction 6 7 8 9 10 Average
Angle (°) 78.75 84.375 90/0 5.625 11.25
n 2.153 1.864 2292 1.657 1.947 1.769
o 3.012 3715 4293 4366 3739 3776
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Figure 32. n and o distribution for Scenario 11

In Fig. 32, we do not find similar trend of curves in Fig. 27. Considering that in this
scenario the transmitter is set at the middle of hall way, there is no direction along the

wall, which can be the reason of our failure finding similar trend.

444  W-M Footprint

The logarithmic W-M footprint of Scenario II is plotted in Fig. 33. The circles on the
right side of the transmitter are generally bigger than the left ones, which is caused by the
fact that » is larger at left. The environment of the hall way was not symmetric enough.
For example, the construction materials are different. Since that the number of rooms,
doors, windows and the area of walls are different on two sides of the hall way and they
are of different materials, they would add various influences on signal propagation.
Moreover, the transmitter was not located at the middle of the whole hall way. It is closer
to the left end (the side of Section III and IV in Fig. 29). All of these can lead » into

different values on the left and right side. Thus, the footprints on the left and right are not
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same. However we can still find some symmetry in the shape of the footprint. These are

just what we expect.

Figure 33. W-M footprint for Scenario II in logarithmic scale

Like what we did for Scenario I, we compare the errors of our W-M model and disc
model. We still use the average value of n and average value of data at 1m to calculate
the errors of disc model. The footprint for the scenario can also be separated into left ans
right parts. The right part of our W-M footprint is dominant by circle for the direction of
84.375° in section I. The left part consists of 3 circles. However, to simplify the
calculation, we only use the circle for direction of 5.625° in section IV. The errors for this

scenario are listed in Table 7.
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Table 7. (a) Error of two models for Scenario 11

Scenario II: Exror (%0)

Angle (Degree)
I I
OIVYO(M|| 225 45 | 675 | 73125 | TRTS | B4375 (90(Iy0()| 5625 | 1125 | 16875 |225| 45 |675
SwM| 661 |489]|343[1056] 398 [11.19] 902 | 891 [808|301 | 342 [3.19|4.16]4.33
=]
= Disc | 587 |417[228|736 | 383 [A67 | 582 | BE2 | 516|503 | 306 |296|557[3A1
Table 7. (b) Error of two models for Scenario II
Scenario II: Error (%)
Angle (Degree)
| m v Average
o0(IyOIM| 225 | 45 | 675 | 73125 | TR.TS | B4.375 | 90(IDYOIV)| 5625 | 1125 | 16875 (125 45 |675 a4
Slwm| 047 |261|7.04|521] 521 | 404 | 593 553 | B4Z | 742 | 323 |393) 247428 5.56
=
= |Disc| 117 [333[732[48 | 611 | 305 | AB2 553 | BF7 | BE | 367 |409) 34 |3B1] 402

In Table 7, we can find that for Scenario II, the average error of disc model is lower

than W-M footprint. This might caused by the fact that we use the path-loss exponent for

the direction of 84.375° in section I for our error calculation of the right part W-M

footprint. This direction has much smaller » than other directions on the same side. We

can see in Fig. 33, the largest circle on the right is much bigger than the other circles on

the right. Table 7 (a), which represents the errors of the right side, gives larger errors of

W-M model. This small » might be caused by errors during our measurement. However,

on average W-M only is only worse than disc model by 0.84%, which is quite small.
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4.5 Scenario II1

4.5.1 Application

In Scenario III, the transmitter ‘T’ is located at the corner of the hall way. 193 data
points are collected in 13 directions range from 0° to 90°, as shown in the Fig. 34 as the
cross points. If a sensor node is deployed at a corner of corridors, we can use this

scenario to analyze the footprint of'it.

T-R Distance (m)

. 1 2 3 4 5 B 7 5 9 10, _
50
s 84375
2.6m
5 7875
: a5 s625 §75° 73.125° -
3 3375
b
Ao
=
8
-
B 22,5
7
g
16.875°
g
,
e a
WS Ewest d1e3
———»
' G !

Figure 34. Measurement locations for Scenario I11
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4.5.2

Figure 35. Color map for Scenario 111

57

Data
Table 8. Data set for Scenario 111
Scenario III: Measurement Data (-dBm)
Angle (Degree)
0 5625|1125 | 16875 |225|3375 | 45 |5625 |67S5 | 73125 |7T8B.T75 (84375 90
1 439 | 446 452 43.4 41.5 | 40.1 423 | 424 | 596 53.4 472 43 387
15| 307 412 426 448 47 449 [ 308 57 643 545 447 428 409
2 | 415 429 443 44 5 ddé | 538 [ 427 | 489 77 fd 35 517 0.5 49 2
25| 466 | 466 d46.6 45 434 | 63 (431 | 478 | 443 481 518 543 508
3 |428 | 499 S0 4075 | 425 521 | 542 | SBA | 482 515 S48 54 2 535
35| 529 | 498 463 463 a3 | 513 51 03 532 5a 5TE 06
—_ 4 | 94| 50E 0.4 505 d29 | 514 A09 54 52 47 7 5laé 556
Er 45| 543 | 503 502 485 521 | 502 548 | 521 429 562 554 631
g 5 | 553 a5 467 49 4 479 48 490 | 517 574 40 .4 675 648
g 55| 518 63 49 5 536 a0.7 572 a0 6 537 B85 631
= 6 | 3EE | 516 S0.8 555 53.7 632 548 a0.4 i3] 606
E 65 | 502 s045| 547 bl 547 i1 ] 583 a6, 7 5.2 678
T | M2 521 563 55 542 579 6135 609
TS| 677 | 538 5d A 545 593 [all] 605 548
8 |al7y | 515 52.5 597 573 6.9 6l.5 591
BS5| 505 519 574 455 568 585 6135 505
9 | 9| 556 A09 5355 584 643
95| 68l | 5355 53 a0.E BE.2 642
10 | 672 | 583 S & a6, [ ] 6.7
T-E. Distance (m)
_E
N
2.
5
— 450
==
.
=4 I 140
B
8| B 170
gt
S
B.
v IO ]
(-dBm)




We list the data collected from Scenario III in table 8 and plot the color map in Fig.

35. So we can read the signal power more clearly.

4.5.3

Analysis

Like the other two scenarios, n and ¢ are used to analyze the data for this scenario as

shown in Fig. 36, Table 9 and Fig. 37 to give us a basic idea about the propagation

environment, where the empirical data are held. Like Fig. 27, in Fig. 37, we can find that

the path loss exponents are higher at two ends of the curves, which represent the places

close to the wall.
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Figure 36. Signal power vs. T-R distance (Scenario I11I)
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Table 9. Shadowing coefficient (6) and path loss exponent (n) for Scenario III

Angle (°) 0 5.625 11.25 16.875 73.125 78.75 84.375 90 Aver-
Direction 1 2 3 4 5 6 7 8
age
n 2.545 1.423 1.237 1.376 0.344 1.712 2.145 2299 | 1.635
c 3.785 3.294 2221 3.218 4.035 3.928 4278 4401 | 3.645

N
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~ o w o ~ o
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Direction #

o 4

Direction #

Figure 37. n and o distribution for Scenario 111

454  W-M Footprint

In this scenario, the transmitter is at the comer. The logarithmic footprint built is

shown in Fig. 38. Generally directions closer to vertical line have larger W-M circles than

directions closer to horizontal lines, which reflects »n calculated by the empirical data in

these directions. We can find that the footprint has two trends. One goes right and the

other goes down. These are just directions along the wall. So these trends are reasonable

in this scenario with transmitter at the corner. If we use disc model, these trends will not

be reflected. Table 10 shows the errors of W-M footprint model in Fig. 38 and footprint

built by disc model. Even though, we still see errors of our W-M footprint, in most of the
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directions, W-M footprint reflects smaller errors than disc model. On average, W-M

footprint is better than disc model as well.

Figure 38. W-M footprint for Scenario III in logarithmic scale

Table 10. Error of two models for Scenario I11

Scenarie III: Exror (%0)

Angle (Degree)
0 |5625 1125 16875 |225|33.75| 45 |5625| 675 | 73125 |78.75 | 84375 | 90 |Average

W-M[502] 423 [ 1596 | 4592 1526|749 |89 | B35 |1483[ 1079|835 | 726 [749] 746
Disc | 721012 1221 1005 (101 951 (1317 778 [1296) 702 | 586 | &78 |72 9.0

Maodel
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4.6 Conclusion

In this chapter, we introduce the test set up and describe three scenarios specifically.
The empirical data we collected in these scenarios are listed and plotted into color map to
give a clear representation. We calculate out the path-loss exponents and shadowing
coefficients of directions in each scenario. After that, a W-M footprint consisting of
overlapping W-M circles is built for each scenario based on the n, which determines the
radius of W-M circle in each direction. Then we calculate the errors of our W-M footprint
and compare with disc model. Even though W-M footprints we built are not perfect,
generally it is better than the disc model. Analyses of the footprint in this chapter and
previous chapters are focusing on single node. We will go up to the system level and

analyze the network connectivity in the next chapter.
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CHAPTER S
CONNECTIVITY ANALYSIS FOR RANDOMLY DEPLOYED

NETWORKS IN SHADOWING ENVIRONMENTS

51 Introduction

In the earlier chapters we investigated a means to improve the modeling of
communication footprints for individual nodes. In this chapter we move to the system
level and focus on the connectivity between nodes randomly deployed to form networks.
Better analysis of the network connectivity will provide useful information for the
improvement of network reliability, which is a key issue in wireless sensor networks.
Graph theory is used to analyze these networks. Some relative definitions in graph theory
are introduced first. Then connectivity in wireless sensor networks is specified. After
that, we present an algorithm to analyze the connectivity of randomly deployed networks

and discuss the results from its use.

5.2 Connectivity

5.2.1 Connectivity in Graph Theory

Graph Theory is a specific area of mathematics focusing on the study of graphs.
Before we take advantage of the graph theory to analyze the connectivity of wireless

sensor networks, some relevant terms will be first defined. From graph theory [16], a
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graph G is a triple consisting of a vertex set /(G), an edge set £(G) and a relation that

associates with each edge two vertices called its endpoints.

Graph may exhibit two kinds of connectivity: Connectivity and Edge-connectivity,

which are defined as follows: [16]

e Connectivity of Graph G: the minimum size, &, of a vertex set S such that G-S is
disconnected or has only one vertex. A graph is k-connected if its connectivity is at
least k.

o Edge-connectivity of Graph G with at least two vertices: the minimum size of a
disconnecting set (a set F < E(G) such that G-F has more than one component). A

graph has at least two vertices is k-edge-connected if every disconnecting set has at

least k edges.
Vi U
U2
us ué
V4 V2
U3
U4

V3
(b) Graph A: (a) Graph B:
Vertex connectivity=2, Vertex connectivity=1,
Edge connectivity=3. Edge connectivity=1.

Figure 39. Example graphs

To better understand these terminologies, two graphs are shown in Fig. 39 as

examples. Graph A4 has a vertex set V(d4)={V1,72,.,76} and an edge set
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E(A):{V1V2,V1V3,V1V4,...} of size 11; Graph B has a vertex set

V(B)={U1,U2,...,U6} and an edge set E(B) = {U1U2, U1U6,U3U6,U4U6,U5U6}.

Edges are represented by their endpoints. For example, an edge connecting vertices
V1 and V2 is called edge VIV2. Graph B is 1-connected, since that if we delete one vertex,
like U6 or Ul, the graph is no-longer connected. In Graph 4, no matter which vertex is
deleted the graph is still connected. If we want to disconnect 4, the minimal size of the
vertex set, S, to be deleted from V(A) is two. For example, by removing vertices '/ and
V2 the graph is disconnected. To determine the edge-connectivity of graphs, we should
focus on edge sets. In Graph B, discarding only one edge can make it disconnected, such
as UIU2. Graph B has the same edge connectivity as vertex connectivity. However, this
is not always true. For Graph 4, as discussed above, the vertex connectivity is two, but
deleting two edges cannot disconnect the graph. The minimal size of disconnecting edge
set, F, is three. One example set is F/ = {V'1V'2, V2V 6,V 2V 3}.

Graph theory presents another definition for connectivity: A graph G is connected if
it has a u,v-path whenever u,v e V(G) (otherwise, G is disconnected). So here G is
connected means G is 1-edge-connected and this definition can be served as another
definition of 1-edge-connectivity. For example, if in Fig. 39 (b), whichever pair of

vertices we choose, a path can be found. Pair {U2, U4} has a path {U2U1, UlUe, U6U4};

pair {U2, US} has a path {U2U1, UlUe, U6U5}; etc. So, Graph B is connected.
Below we present some other definitions important for the content in this chapter.

These concepts are illustrated using Fig. 39 and 40.
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e When u and v are the endpoints of an edge, they are adjacent or are neighbors.

e Weighted graph: a graph with numerical labels on the edges.

e Complete graph: simple graph in which each two vertices are adjacent.

e Subgraph (of graph G): a graph whose vertices and edges all belong to G.

e Spanning subgraph: a subgraph containing each vertex.

e Cycle: a graph with an equal number of vertices and edges whose vertices can be
placed around a circle so that two vertices are adjacent if and only if they appear
consecutively along the circle.

e Spanning tree: a spanning, connected, acyclic subgraph.

e Minimum spanning tree: spanning tree with minimum sum of edge weights.

e Component: maximal connected subgraph. So a connected graph has only

component, which is itself.

U1

US U2 U2

U3 U3

U4

(a) Complete graph (b) Spanning subgraph (c) Subgraph (2 components)
Figure 40. Example complete graph and subgraphs

Fig. 40 (a) gives an example of a complete graph, which is constructed by adding

edges to graph B in Fig. 39 (b) until each vertex connects with every other. Since all
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vertices and edges of Fig. 40 (b), (c) and Graph B in Fig. 39 (b) belong to the complete
graph shown in Fig. 40 (a), they are subgraphs of it. Among these subgraphs, Fig. 40 (c)
has two components which consist specifically with vertex set {U 4,U 5} and
{U 2,U3,U 6}. On the other hand, Fig. 40 (b) and Graph B have only one component and
have the same vertex set as Fig. 40 (a), so they are spanning subgraph. Meanwhile, graph
B has no cycles, so it is also a spanning tree. However, Fig. 40 (b) has a cycle
{U 3U4,U4U6,U6U 3}, thus it is not a spanning tree. A weighted graph can be built, if

we add a weight to each edge. Then we can find a minimum spanning tree of the graph.

5.2.2 Connectivity in a Wireless Sensor Network

What we are concemed with in wireless sensor networks is edge-connectivity, that is,
is there a communication link (an edge) between two sensor nodes (vertices). To
illustrate the use of graph theory, we assume in this chapter that our sensor network
consists of a number of nodes randomly deployed (with a uniform distribution) over a
surface. We will use graph theory methods to find the relationship between the
connectivity of this sensor network and several parameters (e.g., density of nodes, path-

loss exponent, and variability in path-loss).

5.2.3 Randomness in the Network Model
A uniform distribution over some range [a,b] means that any value within the range

has equal probability. The probability density function (pdf), f (x) , and cumulative
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density function (cdf), F (x), of the uniform distribution are listed as follows (See Fig.

41):
0 forx<a
! fora<x<b _
f(x)=4b-a o Fl(x)= rd fora<x<b
0 forx>aorx<b b-a
1 forx>b
Ja F(x) a
1
b-a \ |
0 E E R
0 a b

Figure 41. pdf curve and cdf curve of Uniform Distribution

In our case, nodes are unitformly distributed over a plane. The locations ot the nodes
depend on both x and y coordinators. So both these values will be uniformly distributed
in two dimensions. For example, if nodes are deployed over an area AxB , x-
coordinators will be uniformly distributed over [O,A] and y-coordinators will be
uniformly distributed over [O,B]. Thus the locations of the nodes follow the joint pdf and
cdf of uniform distribution. The joint pdf for an area of a <x <b,c <y <d is (See Fig.
42):

1
f(x,y)=1(b-a)fd~c)
0

fora<x<b,c<y<d

others
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0 E
0 a b

Figure 42. Joint pdf of uniform distribution.

The joint cdf for an area of @ < x < b,c < y <d is (See Fig. 43):

F(x,y)= jjf(xay)' dudy

(E)b)x(gg Zbyy d
1 I F(x,y)f;rz b,y>d1
( )Eb—agéd—c;c )

Figure 43. Joint cdf of uniform distribution.
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Besides the locations of nodes, another random variable, which is the variability in
path-loss, is also include in our scenario. However, this random variable has Gaussian
distribution (per the log-normal shadowing model) and will impact the link reliability (i.e.

probability of edge connectivity).

5.2.4 Building Graph and Connectivity Probability Matrix

Fig. 44 shows 30 nodes deployed within a 20 mx20m area. In order to better
analyze the random networks by graph theory, we build a graph and a matrix to represent
a random network. Thus we can analyze the connectivity and try to improve the
reliability of the network by the graph and matrix.

A weighted graph is built where vertices represent the nodes and edges represent the
connections between nodes. If two nodes can communicate with each other, they are
neighbors in the graph. In the graph, each edge has a weight which is the probability of
the corresponding pair of nodes being able to communicate with each other. As discussed
in Section 2.3, the probability is influenced by #n, d, o (See 2.3).

Using the probability for all links, a NxN symmetric matrix (N—number of
nodes/vertices) is built based on the graph. In the matrix, every column and row
represents one of N nodes i. And the value of (i, j) is the probability of connection
between node i and j. We call this matrix the ‘Connectivity Probability Matrix’ for the
network shown in Fig. 44, a subset of connectivity probability matrix is given in Table 11.
This table is only for a subset of Nodes 1 through 5, the complete connectivity probability

matrix for 30 nodes in Fig. 44 can be found in Appendix A.
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20

Figure 44. Random node deployment graph for N =30, n =3, ¢ =3 (Minimal k =1

connectivity probability of this graph is 0.99992)

Our objective now is to understand the probability that our network will be connected.
This probability is dependent on the “weakest link” in the graph, that is the edge which
has the highest probability and when removed disconnects the graph. Based on the graph
and connectivity probability matrix, the threshold of link reliability, which can provide

the 1-connectivity of the network, can be decided.
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Table 11.

Connectivity probability matrix example

Connectivity Probability Matrix

Node 1 2 3 4 5
1 1 0.031317 8x1071 1 0.315355
2 0.031317 1 0 0.73997 0.874972
3 8x1071 0 1 5.14x107" 6.27x107
4 1 0.73997 5.14x107 11 1 0.999998
5 0315355 0.874972 6.27x107" 0.999998 1

53 Simulation

In order to better understand the connectivity of randomly deployed networks, the
minimal link reliabilities with various N, n and ¢ need to be analyzed. Considering that
the number of nodes can be very large and that the locations of the nodes are random, a
routine was developed to simulate different scenarios. In our simulation, we can vary the
parameters (N, n, o) of the network by changing the corresponding variables in the

routine.

5.3.1 Kruskal’s Algorithm

Based on the graphs we build, the reliability of networks becomes equivalent to the
connectivity of the graph. Using graph theory vernacular, our objective can be translated
into finding a spanning subgraph with maximum weight (i.e., a spanning subgraph with

maximum sum of edge-weight). Kruskal’s algorithm aims at finding the minimum
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spanning tree. If we change the probability of each link to its complement of 1, our goal
will become finding a minimum spanning subgraph, the objective of Kruskal’s algorithm.
The only difference is that cycles do not harm in our objective, so we can accept a
spanning subgraph, and not require a tree.
Kruskal’s algorithm can be summarized as follows: [16]

Kruskal’s Algorithm
Input: A weighted connected graph (such as Fig. 44)
Idea: Maintain an acyclic spanning subgraph H, enlarging it by edges with low weight to
form a spanning tree. Consider edges in non-decreasing order of weight, breaking ties
arbitrarily.
Initialization: Set E(H)=0
Iteration: If the next cheapest edge has end points in two separate components of H, then

include it; otherwise, discard it. Terminate when H is connected.

Considering that cycles do no harm in our case, we do not need to confirm it is a tree. So

the step of checking if the lightest edge has end points in two separate components can be

omitted. We directly include the lightest edge at each iteration. However, we still regard

the probability of each link as the weight. So what we try to find is the maximum

spanning subgraph not minimum. Thus our modified Kruskal’s algorithm is as follows:
Modified Kruskal’s Algorithm

Input: A weighted complete graph
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Idea: Maintain a spanning subgraph H, enlarging it by edges with high weight to form a
connected spanning subgraph. Consider edges in decreasing order of weight.
Initialization: Set E(H)=0

Iteration: Include the next heaviest edge at edge step. Terminate when H is connected.

Based on this algorithm, a Matlab program was developed to fulfill the goal (included
in attached CD). The flow chart for this routine is presented in Fig. 45. The basic idea of
the program is that at each iteration search the next largest value in the connectivity
probability matrix, add this edge/link to the subgraph/network, and then check if the
subgraph/network is connected. The key point in this program is checking the
connectivity of the subgraph/network. The method used was counting the remaining
components of the subgraph as edges continuously added in. So when the number of
remaining components equals one, the spanning subgraph is connected.

To track the number of components, a matrix, C, is built, which represents the
components of the graph. Also, a variable m is defined, to keep track of the number of
components. In C, each column represents a component, and nodes included in this
component are listed as values in this column. So the number of non-empty columns is
the number of components, m. If we have a connected graph, C should include one
column with all nodes and all the other columns are empty. (i.e., m will equal to 1.)

At each iteration, an edge is added to the subgraph, and C is searched to find the
adjacent vertices of it. For example, edge uv with adjacent vertices # and v. If u and v are

in the same column, the process ends. If they are not in the same column, assume that
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search C and find out that u is in column 7, and v is in column ;. At the end of this process
uv will combine components i and j. Vertices in these components will be in the same
component. Thus we add all values in column j to column 7, and set column j to be all
zeros (Decreasing m by 1). If m equals 1, the maximum value found in this iteration is

the probability of the weakest link we need to confirm & = 1 connectivity.

Search probability matrix, find
heaviest edge/link uv;

Set this value in the probability
matrix to be zero

u,v in the same
column

A 4

Search C, find u, v ]7

u,v not in the
same column

A\ 4
Add values in column of v to
column of u;

Set column of v to be all zeros;
Number of components. m=m-1

m # 1 Check m ]

Stop

Figure 45. Flow chart of the modified Kruskal’s algorithm
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5.3.2 Example of the modified Kruskal’s Algorithm

To better understand the algorithm, an example is illustrated in this section. We
begin with a connectivity probability matrix, P, for a 5 node network. Fig. 46 shows the

initialized graph, which has five isolated vertices and no edges.

Table 12. Initialized connectivity probability matrix

Connectivity Probability Matrix, P
Node 1 2 3 4 5
1 0.029103 | 0.999909 | 0.002468 | 0.991689
2 0.029103 0.999924 | 0.559533 1
3 0.999909 | 0.999924 0.909933 1
4 0.002468 | 0.559533 | 0.909933 0.601714
5 0.991689 1 1 0.601714
5O
20
ol
©3
©4

Figure 46. Initialized graph

Initialization of the component matrix, C is as Table 13. Since no edges are included
in the subgraph now, graph consists of five isolated nodes, each being a component. So in

Table 13, five non-empty columns exist, each of which has a non-zero value representing
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the node included in this component. That is the number of components (i.e., non-empty

columns): m=5

Table 13. Initialized component matrix

Components Matrix, C
1 2 3 4 5
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

In the following iterations, numbers colored red in the matrixes are updated values in
the current and previous iterations. If the connectivity probability matrix has more than
one equal maximum value in current iteration, the first encountered when searching will
be set as the maximum. Moreover, since P is symmetric, only the upper triangle part is
searched to find the maximal value and updated.

The iterations are as follows:

Iteration 1:

e P(2,5) is found to be the largest value by searching through P. This value in P
represents the heaviest edge in the complete graph, i.e. strongest link in the network.
(There are two values in P equal 1. P(2, 5) is the first one by our searching order, so
program will choose it as the largest one at this step.)

e We search through C to decide which columns (i.e. components) these two endpoints
belong to. The result is that 2° is in column 2, 5’ is in column 5. They are in

different columns (i.e. components). So we combine these two columns to make them
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one component in our updated matrix C. The graph after the first iteration is shown in

Fig. 47.

Table 14. Component matrix after 1st iteration

Components Matrix, C
1 2 3 4 0
0 5 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
f 5 \\,« ................
_______ ol
©3
°4

Figure 47. Graph after 1st iteration

e Decrease the number of components: m =5-1=4

Combined to be

~ one component

e Set P(2,5)=0, since this edge has been considered in the current iteration.

The connectivity probability matrix, P after the first iteration now becomes:
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Table 15. Connectivity probability matrix after 1st iteration

Connectivity Probability Matrix, P
Node 1 2 3 4 5
1 1| 0.029103 | 0.999909 | 0.002468 | 0.991689
2 0.029103 1| 0.999924 | 0.559533 0
3 0.999909 | 0.999924 1| 0909933 1
4 0.002468 | 0.559533 | 0.909933 1| 0601714
5 0.991689 1 1| 0.601714 1

Iteration 2:

e Search P— The maximum value is P(3,5)=1.

e Search C— ‘3’ and ‘5’ are in different columns.

e Combine the columns that vertices ‘3’ and ‘5’ arein.—» m=4-1=3

e SetP(3,5)=0.

Table 16. Component matrix after 2nd iteration

Components Matrix, C
1 0 3 4 0
0 0 2 0 0
0 0 5 0 0
0 0 0 0 0
0 0 0 0 0
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Combined to be
"~ one component

Figure 48. Graph after 2nd iteration

Table 17. Connectivity probability matrix after 2nd iteration

Connectivity Probability Matrix, P
Node 1 2 3 4 5
1 1| 0.029103 | 0.999909 | 0.002468 | 0.991689
2 0.029103 1| 0.999924 | 0.559533 0
3 0.999909 | 0.999924 1| 0909933 0
4 0.002468 | 0.559533 | 0.909933 1| 0601714
5 0.991689 1 1| 0.601714 1

Iteration 3:

e Search P— Maximum value is P(2, 3) = 0.999924.

e Search C— ‘2’ and ‘3’ are in the same column, which means they are already

connected and in the same component.

e Go on to the next iteration.

e SetP(2,3)=0.
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Table 18. Component matrix after 3rd iteration

Components Matrix, C

1 0 3 4 0
0 0 2 0 0
0 0 5 0 0
0 0 0 0 0
0 0 0 0 0

z,l ’ 5 \\\\\

2

B \'. ol

\\\\\ ‘;/,
°4

Figure 49. Graph after 3rd iteration

Table 19. Connectivity probability matrix after 3rd iteration

Connectivity Probability Matrix, P
Node 1 2 3 4 5
1 0.029103 | 0.999909 | 0.002468 | 0.991689
2 0.029103 0 0.559533 0
3 0.999909 | 0.999924 0.909933 0
4 0.002468 | 0.559533 | 0.909933 0.601714
5 0.991689 1 1 0.601714
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Iteration 4:
e Search P— Maximum value is P(1, 3) =0.999909.
e Search C— ‘1’ and ‘3’ are in different columns

e Combine the columns ‘1’ and ‘3’ arein.—» m=3-1=2

o SetP(1,3)=0.

Table 20. Component matrix after 4th iteration

Components Matrix, C
1 0 0 4 0
3 0 0 0 0
2 0 0 0 0
5 0 0 0 0
0 0 0 0 0

Combined to be
"~ one component

O4

Figure 50. Graph after 4th iteration
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Table 21. Connectivity probability matrix after 4th iteration

Connectivity Probability Matrix, P
Node 1 2 3 4 5
1 0.029103 0 0.002468 | 0.991689
2 0.029103 0 0.559533 0
3 0.999909 | 0.999924 0.909933 0
4 0.002468 | 0.559533 | 0.909933 0.601714
5 0.991689 1 1 0.601714

Iteration 5:
e Secarch P— Maximum value is P(1, 5)=0.991689.

e Search C— ‘1’ and ‘5’ are in the same columns and already connected. — Go on to

the next iteration.

e SetP(l,5)=0.

Table 22. Component matrix after Sth iteration

Components Matrix, C
1 0 0 4 0
3 0 0 0 0
2 0 0 0 0
5 0 0 0 0
0 0 0 0 0
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Figure 51. Graph after Sth iteration

Table 23. Connectivity probability matrix after Sth iteration

Connectivity Probability Matrix, P
Node 1 2 3 4 5
1 0.029103 0 0.002468 0
2 0.029103 0 0.559533 0
3 0.999909 | 0.999924 0.909933 0
4 0.002468 | 0.559533 | 0.909933 0.601714
5 0.991689 1 1 0.601714

Iteration 6:

e Secarch P— Maximum value is P(3, 4) = 0.909933.

e Search C— ‘3’ and ‘4’ are in different columns

¢ Combine the columns ‘3’ and ‘4’ arein.—> m=2-1=1
e SetP(3,4)=0.

e m=]. Stop!
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Table 24. Component matrix after 6th iteration

Components Matrix, C

I 0 0 0 0

3 0 0 0 0

2 0 0 0 0

5 0 0 0 0

1 0 0 0 0
5

2

4

Figure 52. Graph is connected after 6th iteration.

Table 25. Connectivity probability matrix after 6th iteration

Connectivity Probability Matrix, P
Node 1 2 3 4 5
1 0.029103 0 0.002468 0
2 0.029103 0 0.559533 0
3 0.999909 | 0.999924 0 0
4 0.002468 | 0.559533 | 0.909933 0.601714
5 0.991689 1 1 0.601714
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After six iterations, the network is connected and the weakest link has been found.

The weakest link to confirm & = 1 connectivity is P(3, 4) = 0.909933.

54 Results and Discussion

We used modified Kruskal’s algorithm to analyze connectivity within simulated
networks as the following parameters were varied: path loss exponent, n; shadowing
component, 6, and number of nodes deployed, N. The results of the simulations are

plotted in Fig. 53-55. Each data point in figures is averaged over 10 runs.

Average Probability (0=3) Average Probability (0=3)

-

o
o

o
o

<
~

Average Probability
Average Probability

N
N

o
L

20 40 60 80 100
Number of Nodes (N)

Path Loss Exponent (n)

Figure 53. Average of weakest link in shadowing environments (¢ = 3)

In Fig. 53, the curves in the left figure represent the influence of n on average
probability based on specific N. We can see all curves in it show trend of decreasing
reliability as n becomes larger. The influence of the path loss exponent to the link
probabilities is to be expected, since as we know, the signal strength becomes weaker as
the path loss exponent becomes large. Curves in the right figure of Fig. 53 represent the

influence of N based on specific n. If we choose a specific x-value, N, curves representing
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higher n, will have a larger y-value, average probability. This is caused by the influence
of n, which has also been shown in the left figure. Moreover, we can see that the link
reliability increases with the number of nodes. This phenomenon is caused by the fact
that larger N means higher density of nodes, so they will be closer to each other on
average. Thus higher link reliability can be expected in simulation results of larger N.
Similar results can be found in the left figure as well. If we fix x-value in the left, curves

representing larger N, resulting in higher y-value, average probability.

Average Probability (No Shadowing) Average Probability (No Shadowing)

1k 1
2 2
5 08 S 08 ——n=2
3 3 = n=25
o ) =2.
a 06 a 06 —&—n=3
[ () -
204 204 n=3.5
o s —%—n=4
Z 02 < 02

0 ‘ ‘ ‘ 0 Ex ‘

2 25 8 35 4 20 40 60 80 100
Path Loss Exponent (n) Number of Nodes (N)

Figure 54. Average of weakest link without shadowing coefficient (¢ = 0)

Fig. 54 contains the curves of average probability without shadowing coefficient. If
we do not consider shadowing in the propagation environment, when the locations of
nodes are fixed, the connection between each pair of nodes in the network would be
either connected (100%) or disconnected (0%). So all data points of average probability
in Fig. 54 are averaged over a series of 1 and 0, which consists of the results of 20 runs. If
comparing the figures of Fig. 54 with their corresponding figures with shadowing
coefficient, in Fig. 54, we can conclude that they have similar increasing or decreasing

property. For example, both the left figure in Fig. 53 and Fig. 54 illustrate the decreasing

86



trend of signal as n become larger. Thus, even though the shadowing component
influences the signal propagation and footprint, it does not change the influences of n, N

on the link reliability.

Average Probability (n=3)

1.11
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=
808 - ——N=20
o =
E 07 | ——N=30
) —A— N=40
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g
Z 05-
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2 25 3 35 4 45 5 55 6

Sigma (o)

Figure 55. Average of weakest link by varying shadowing component (o)

As the shadowing component, in Fig. 55, the curves do not have increasing or
decreasing trends, but we can find out that the curves represent higher N are flatter than
the lower ones. So as we expected the networks with higher node-density have

consistently higher robustness, especially in highly variable environments.
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5.5 Conclusion

The connectivity of random graphs was discussed in this chapter. Definitions from
Graph theory are brought in to better describe the random networks. An algorithm is
adapted to decide the weakest link confirming 1-connectivity of a random graph. The
parameters in the algorithm (e.g. path loss exponent, n, shadowing component, o, number
of nodes, N) can be changed to simulate specific settings of networks. Using the
algorithm, various network scenarios were simulated. From the results, we can find out
that the probabilities of the weakest links increase (i.e., network becomes more robust) as
the number of nodes increases; decrease as the path-loss exponent increases and has no
obvious trend as the shadowing component changes. While the first result is intuitive,
these latter two provide interesting insight that should be considered when developing a

sensor network.

Clearly, these results are dependent on the specific graph configurations. In our work,
attempts were made to analytically solve this problem of an arbitrary distribution of N
nodes. However, this problem proved intractable. That being said an analysis of expected

link distance for N = 2 nodes was conducted and is included in Appendix B.
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CHAPTER 6
CONCLUSION

In this work, we have leveraged the W-M model to better represent the wireless

communication footprints for sensor nodes. Analyses of empirical data and usability for

log-normal shadowing have been presented for this model. In addition, we also analyzed

the connectivity of wireless sensor networks at the system level. We conclude this thesis

by reviewing the significant contributions and identifying avenues for future work.

6.1 Contributions of Work

‘Weak-Monotonicity’ model is investigated to better represent the communication
footprints for wireless sensors.

The W-M model is viewed to be more suitable for representing practical signal
footprint than the transitional disc model. This model improves upon the commonly
used disc model assuming the footprint to be isotropic, which is really not the case,
considering that the footprint is highly influenced by the environment, which is non-
isotropic.

Usability of the W-M footprint is analyzed for log-normal shadowing environments.
Because of the fact that signal propagation is influenced by the environment, which is
also non-homogeneous, even at the same T-R distance, signal power may vary. Log-
normal shadowing model provides a better way to characterize the signal propagation
in that this model uses a shadowing component to represent the variability of the

signal power. We present in Chapter 2 an analysis of the usability which is the
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percentage of the area with signal power strong enough to make reliable links.
Usability analysis had been done for disc model in previous work and in this work we
have introduced it for the W-M model.

A footprint model consisting overlapping W-M footprints is proposed.

W-M model is directional, so it can overcome the main shortcoming of the disc
model. Moreover, in Chapter 3, we use overlapping multiple W-M footprint circles to
model a more realistic contour of the real footprints in various scenarios.

Empirical data was collected and analyzed in context of the overlapping W-M model.
Three indoor scenarios were considered in Chapter 4. While the W-M model did not
give a perfect way of representing the empirical data, the approach is demonstrated to
be more realistic than the disc model.

Connectivity of randomly deployed wireless sensor networks is explored.
Understanding of the network connectivity can help us improve the reliability of
wireless sensor networks. In order to better analyze the connectivity of wireless
sensor networks, graph theory is employed in Chapter 5. Networks are described by
graphs, for example, vertices represent nodes and edges represent links. Link
reliability is defined to each link based on log-normal shadowing model as the
probability of this link to have signal power high enough to build a reliable
connection. A connectivity probability matrix is then built to represent link
reliabilities between each pair of nodes. Based on this matrix, an algorithm is
developed to find the highest link reliability threshold, the link with probability

higher than which are considered to be connected, confirming 1-connectivity of
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randomly deployed networks. Simulation results were presented which illustrate the
influence of the number of nodes deployed, path-loss exponent and shadowing

coefficient to the network connectivity.

6.2 Future Work

Even though the W-M model is directional and viewed herein to be better than the
disc model, it still has limitations. From the empirical data we collected in Chapter 4, we
find that the contour of each signal power level is not as smooth as our model. This is
because of the existence of the shadowing. The shadowing contour may be like Fig. 56.
So a coefficient describes the fluctuation of the signal contour might be introduced into

the footprint model to represent the fluctuation of the footprint contour.

ans cr

Figure 56. Signal contour

The empirical work of Chapter 4 just considered indoor settings. However, signal

propagation in an outdoor area differs from indoor. For example, we might get better line
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of sight and have more/fewer obstacles outdoors. More data can be collected at outdoors
to evaluate the W-M modeling approach.

Also, the footprint model did not explicitly consider what type of antenna the sensor
utilizes. The W-M model is clearly directional and provides a contour that may be
achieved by a wall mounted patch antenna. However, sensor nodes typically utilize an
omni-directional antenna and thus our empirical data did likewise. In short, work may be
done to consider the antenna pattern and environmental influences on a jointly footprint.

In the connectivity analysis, the link reliabilities are built up on log-normal
shadowing model and just dependent on the distance in between, general path-loss
exponent and shadowing coefficient. So the link reliability is not directional. As we
already discussed before, the signal propagation is directional because of the influence of
non-isotropic environment. So consideration about the direction should be added into the
analyses of connectivity. Moreover, all our analyses of connectivity are theoretical.
Analyses of empirical networks deployed over some area can be worked on to better
understand the real case. If the basic information like number and location of nodes is
known for some real network, the W-M model, in conjunction with log-normal
shadowing model, can be use to evaluate the connectivity prior to deployment.

Knowing the influence of the path-loss exponent, shadowing coefficient and number
of nodes on the network connectivity, we can try to find a reasonable density of nodes for
a wireless sensor network in order to provide a good balance between the robustness and

cost according to the application and requirements of the work.
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6.3 Conclusion

The W-M model provides us with a better way to represent wireless communication
footprints, which is important for the analysis of wireless sensor networks. We believe
that we can use overlapping W-M footprints to build more realistic footprint contour.
Usability of the W-M model helps us better analyze effectiveness of communication for a
sensor node. Since our theoretical and simulation results turn out to be agree with each
other quite well, we can use simulation to find out the usability of some specific footprint,
which is more efficient than theoretical derivative. At the network level, an algorithm has
been developed to find the strongest weakest link of a randomly deployed network, which
can make the network connected. We can vary the number of nodes, path-loss exponent
and shadowing coefficient to set up a specific network according to what we need. We
hope this work helps researchers analyze the wireless sensor networks more accurately
and to design wireless sensor systems which save energy, have extended lifetime, and

improved robustness.
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APPENDICES

Appendix A

Connectivity Probability Matrix for Fig. 44

Node 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 ;../Tf.r 0.031317| SE-15 1 0315355 16E-05 | 0999973 | 0.112341 1 1E-15 | 0000371 | 0479474 | 0.000222 | 0.999987 | 0636452  0.999543
2 |0.031317 f/T.rr I} 0.73997 |0.874972 | 36E-10 | 9.24E-08 | 1.29E-12 | 7.3E06 0 JAAE-OT | 403E-11 | 0.000268 | 0003969 | 1.37E-09 | 091423
3 8E-15 0 i../T;f S14E-11 | 62VE-07 | 0946356 | 445E-13 | R.12E-10 0 0847778 | 065707 | 23ZE-10|0.178457 | 1. 47E-07 | 1.46E-08 | 1 09E-09
4 1 073997 | 5.14E-11 f/aTﬁf (0.959908 | 0.003939 | 0.754212 | 0.009521 | 0.587252 | 7.2E-14 |0.10973% | 0.070078 | 0229924 1 0310921 1

5 |0315355|0.874972 | 6 27E07 | 0.990003 fxi?;f 0097199 | 0.001807 | 1.11E-05 | 5.74E-05 | S02E-12 | 0.875867 | 9.33E-05 | 0.900040 | 0.005400 | 0003022 1

6 | 16E-05 | 3.6E-10 | 0044356 | 0.003939 | 0.007109 ffJf..r (.000648 | 0.038791 | 1 26E-09 | 0.403256 1 0.025635 | 0.09066 | 0.504436 | 0243000 | 0014825
T |0.008073 | 9.24E-08 | 445E-13 | 0.754212 | 0001307 | 0.000648 /fJf..r 1 0.990031 | 1.84E-11 | 0.000941 1 1 B6E-05 | 0.999605 1 0.270572
8 |0.112341 | 129E-12| 9.15E-10|0.009521 | 1.11E-05 | 0035791 1 ;../T..r 005925 | 297E-06 | 0.007052 1 1 51E-05 | 0797724 1 0.001503
9 1 73E-06 I} 0587252 | 5.T4E-05 | 1.26E-09 | 0.999931 | 0.03928 ;..JT;) 0 1.36E-05 | 0314497 | 1 92E-09 [0.387559 | 0.241412 [ 0.094053
10 | 1E15 0 0347778 | 7EE-14 | 5.0ZE-12 | 0.40325 | 1.84E-11 | 2.97E-06 0 /.l;rfa.a_u_mam 2AAE07 | AAEE-06 | 6.A5E-09 | 203E-06 [ 29E-13
11 |0.000371 | S6AE-07 | 065707 |0.109788 | 0.873567 1 0.000941 | 0.007052 | 1.36E-08 | 0.008162 f/+/f 0.00906 1 0852537 | 0.134329 | 0.535906
12 0479474 | 405E-11 | 282E-10 | 0.070078 | 9.33E-05 | 0.028635 1 1 0.314497 | 2 44E-07 | 0.00906 fxi?/f 381E-05 | 0871035 1 0.012832
13 | 0.000222 | 0.000268 | 0178457 | 0220024 | 0.990040 | 099064 | 1.8EE-05 | 1.51E-05 | 1 92E-09 | 6 68E-D4 1 JELE05 fxi?..r (.651435 | 0.001904 | 0.70827
14 | 0.999087 | 0.003069 | 1 47E-07 ! 0.005409 | 0.504436 | 0.990605 | 0.797724 | 0.387500 | 6.A5E-09 | 0802537 | 0971055 | 0651435 /fi?/.r (1.000014 1
15 |0.486482 | 1.27E-09 | 1 46E-08 | 0310921 | 0.003028 | 0.243099 1 1 0241612 | 203E-06 | 0134329 1 0.001904 | 0995914 i..!T..r 0113416
16 |0.599843 | 0.91423 | 1.09E-09 1 1 0014825 | 0270572 | 0.001505 | 0.096G055 | 2.9E-13 | 0335906 | 0012938 | 0.70837 1 0113416 ;..!T;J
17 |0.009575 | 23E-09 |0.038601 |0.106484 |0.116747 1 0321353 | 0.956746 | 1.16E-05 | 00567764 1 0942422 | 0871797 | 099744 | 0999704 | 0.134938
18 | 62308 0 0.08243 | 5.99E-07 | 7.06E-07 | 0999180 | 0.000236 | 0.609628 | 1. 52E-10 | 0997947 | 0.57338 | 0289347 | 0.003725 | 0.010761 | 0549329 | 7.16E-07
19 |0.012885 | 9.58E-06 | 0140762 | 0.563027 | 0.988711 1 0021245 | 0.05526 | 1.41E-06 | 0.001025 1 0.082542 ! 0.990504 | 0523607 | 0.838687
20 |0.000126 | 525E-10 | 0672028 [0.011826 | 0.10179 1 0.006788 | 0.213827 | 211E-0% | 0.327019 1 0.170709 | 0.996168 | 0.7841 55 | 01652009 | 0.030712
21 |0.817076 | 0.099874 | 6.31E-10 ! ! 0.002311 | 0.004777 | 443E-06 | 0001828 | 1E-14 |0.172285 | 5.86E-05 | 0797227 | 0991452 | 0001463 1
22 0000115 |0.219011 | 5. 55E-05 0511495 1 0056062 | 8.34E-08 | 1.66E-09 | 3.86E-10 | 7.4E-12 | 0820162 | 1 02E-08 1 0.113554 | .99E-07 | 0882831
23 |1253E08 0 0717355 | 3. 54E-07 | 4.63E-06 1 592E-03 | 0115527 | 7 32E-12 | 0.999995 | 0.93391 | 0.037234 | 0.044835 | 0.007135 | 0159607 | 1 25E-06
24 | 29E09 |221E-09 |0999915 ) 4.1E-05 |0.133188 | 0999917 | 2.39E-09 | 5.73E-08 | 1.3E-14 | 0.003837 1 6.19E02 1 0.003138 | 457E-06 | 0.000883
25 |0.004977 | 1E-15 | 3.15E-13|3.19E-05 | 3.08E-09 | 76E-05 |0.993013 1 0.020961 | 2.32E-08 | 469E-06 1 251E-09 | 004305 | 0999998 [ 1 95E-04
26 | 1.19E-08 | 6.05E-06 | 0.295523 | 0.000485 | 0.76047 | 0578661 [ 2.33E-10 [ 25E-10 | 21E-14 | 1L.7E-07 | 0995075 | 6.02E-10 ! 0.00212 | 7.25E-08 | 0.013008
27 |4DIE-1D 1] S37E-06 | 161E-10 | 9.63E-12 | 005186 [0.000169 (0653596 | 1.43E-11 | 0.642841 | 0.000371 | 0217771 | 402E-08 | 1.87E-05 | 0.204518 | 6.79E-11
28 |0.993344 | 1.06E-08 I} 0039877 | 1.54E-07 | 2.21E-11 | 09953437 | 0.049834 1 0 1.15E-10 | 0.245622 | 635E-12 [0.036502 | 0.111569 [0.001422
29 |407E07 | 8.15E-07 | 0828718 | 0.003424 | 0796375 | 0999377 | 8.78E-02 | 4.06E-07 | 1.79E-12 | 0.000164 1 673507 1 0056996 | 499E-05 ) 0.04371
30 |09936164 1 1E-15 1 0989441 | 1.33E-07 | 0.004674 | 1 66E-07 | 0.0940664 0 3.17E-05 | 4.52E-06 | 0.001817 | 0605338 | 6.12E-05 1
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17 18 19 20 21 22 23 24 25 26 27 28 29 30
0.009575 | 6.28E-08 | 0.012885 | 0.000126 |0.217076 | 0.000115 | 1. 23E-08 [ 2.9E-09 | 0.004977 | 1.19E-08 | 291E-10 | 0.993344 | 4.07E-07 [0.993616
4.3E-09 0 0.58E-06 | 5.25E-10 | 0.099874 | 0219011 1 221E-09 | 1E-15 [A.93E-06 0 1.06E-08 | 8.15E-07 1
0.032601 | 0.08243 |[0.140762 | 0678028 | 6 31E-10 | 5.55E-05 | 0717355 (0999915 | 3.15E-13 | 0295523 | 3.37E-06 0 0888718 | 1E-15
0.106454 | 590E-07 | 0.563027 | 0.011826 1 0.311405 | 5.54E-07 | 41E-05 | 3.19E-05 | 0.000425 | 1.61E-10 | 0039877 | 0.003424 1
0.116747 | 7.06E-07 | 0.088711 | 0.10179 1 1 4.63E-06 | 0.133188 | 3.08E-09 | 076047 | 963E-12 | 1.52E-07 | 0.796875 [ 0980441

1 09951589 1 1 0.002311 | 0.056062 1 0999917 | 7AE05 0578661 | 0.05186 | 221E-11 (0999877 | 1.33E-07
0.321353 | 0.000956 | 0.021945 | 0.006788 | 0.004777 | 8.34E-08 | 5.02E-05 [ 230E-00 | 0.998013 | 2.33E-10 | 0.000149 | 0.992843T | 8.78E-0% [ 0.004674
0.956746 | 0600628 | 005526 | 0213827 | 443E-06 | 1 66E-09 | 0.115527 [ 5. 73E-08 1 2.5E-10 | 0653596 | 0.049834 | 4.06E-07 | 1 66E-O7
1.16E-05 [ 1.52E-10 | 1. 1E-06 | 2.11E-08 [ 0001828 | 3.86E-10 | 732E-12 [ 1.3E-14 | 0020961 | 2.1E-14 | 1 43E-11 1 1.79E-12 | 0.054066
0.056776 | 0997047 [0.001025 | 0327919 | 1E-14 | 74E-12 | 0999005 (0003857 | 2.32E-02 | 1.7E-07 | 0642841 0 0.000164 0

1 0.57338 1 1 0172285 | 0820162 | 0.93301 1 4.69E-06 | 0995075 | 0.000371 | 1.15E-10 1 5.17E-05
0.942422 | 0289367 | 0.082542 | 0.170709 | 5.86E-05 | 1.08E-08 | 0.037234 [ 6.19E-08 1 6.08E-10 | 0217771 | 0.2456342 | 6.75E-07 [ 4.52E-06
0.871797 | 00037235 1 0.0906168 | 0.797227 1 0.044835 1 2.51E-09 1 4.02E-08 | 6.35E-12 1 0.001817
0.00744 [0.010761 | 0999504 | 0.784155 | 0001452 | 0.113554 | 0.007135 | 0.003138 | 0.04305 | 0.00212 | 1.87E-05 | 0.036802 [ 0.056896 | 0605338
0.999704 | 0549329 | 0.523607 | 0.652009 | 0.001463 | 9 99E-07 | 0.159607 | 4.87E-06 | 0.99999% | 7.25E-05 | 0.204518 |0.111569 | 499E-05 [ 6.12E-05
0.134038 | 7.16E-07 | 0.838687 | 0.030712 1 0.282821 | 1. 25E-06 [0.000883 | 1.95E-06 | 0013008 | 6.79E-11 |0.001422 | 0.04371 1
fffTﬁf 0.005002 1 1 0.009537 | 0.005523 |0.999005 | 042116 | 0111209 | 0018285 | 0.418306 | 5.09E-07 | 0.A08EY | 6.45E-06
0.905002 1./47/.! 0.502179 | 0999974 | 7.93E-00 | 2.53E-02 1 0.011557 | 0.068211 | 433E-06 1 2.23E-11 | 0004264 | 3.20E-13

1 0.508179 1.{&7;;.4 1 0.546808 | 0.851253 | 0821771 | 0008025 | 705E-05 | 0928845 | 0.000450 | 1.38E-08 [0.990000 1 0.001328

1 0.905978 1 fffTﬁf 0.003428 | 0.027433 1 0088743 | 0.001217 | 0268533 | 0.159105 | 4.9E-10 [0.992647 | 3.92E-07
0.009537 | 703E-09 | 0.5468938 | 0.003428 1./47/.! 0.000337 | 3.04E-02 [0.001497 | 1.95E-09 | 0.070335 | 2.03E-13 | 6 47E-06 | 0.075067 1
0.005523 | 2.53E-08 [0.851255 | 0.027433 | 0990337 1.{&7;;.4 TATE-07 | 0788367 | 1.6E-13 1 5.6E-14 | 5.04E-13 | 0990152 | 0.095541
0.909005 1 0.821771 1 3.04E-08 | 7 AFE-O7 fffTﬁf 0.222552 | 0001887 | 0.000305 | 0.005849 | 5 52E-13 [0.093208 | 1.16E-12
042116 | 0011557 | 0998025 | 0.088743 | 0.001407 [ 0788367 | 0.222552 1./47/.! THEE-12 1 1.05E-07 0 1 1.3E-08
0.111209 | 0065211 | 7.98E-05 | 0.001217 [ 1 5E-09 | 1.6E-13 | 0001287 [ 7 66E-12 ifJfﬁ.r. 1.0E-14 | 0.432584 | 0.054497 | 5.11E-11 | 2.31E-10
0.018285 | 433E-06 [ 0.928845 | 0.268533 | 0.070333 1 0.000305 1 1.9E-14 fﬁfTﬁf 508E-12 1 1 3.48E-06
0.412596 1 0.000459 1 0.159105 | 205E-13 | 56E-14 | 0095840 | 1 05E-07 | 0.432584 | 5.08E-12 J.IJT/.( 1.17E-11 | 3.45E-02 0
5.09E-07 | 225E-11 | 1.38E-08 | 49E-10 | 6 47E-06 | 5.04E-13 | 5.52E-13 1] 0.054497 1] 1.I7E-11 ;rrlef 6E-15 | 0.001071
0.6028T | 0.004864 | 0.999500 | 0002667 | 0.075067 [ 0.599152 | 0093208 1 511E-11 1 345E-08 | AE-15 fﬁfTﬁf 3.08E-06
6.45E-06 | 820E-13 | 0.001328 | 3.02E-07 1 0.095541 | 1.16E-12 | 1.3E-08 | 2.31E-10 | 3.43E-06 0 0.001071 | 3.08E-06 J.IJT/.(
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Appendix B

Derivation of Average Distance between Two Nodes Randomly Deployed in a Unit

Square

y

A
1

A('xA aJ’A)
B('xB aJ’B)
> X

0 1

Figure 57. Distance between two nodes in a unit square.

In Fig. 57, 4 and B are any two randomly deployed nodes. The coordinates of them
are A(x,,y,) and B(x,,y,), where x,,y,,x,,y, are random variables uniformly

distributed over [O, 1]. The distance between these two points is:

D(AB):\/(XA_XB)2+(yA_yB)2 (B.1)

The average distance between two randomly deployed nodes is the expected value of

D(4B).

So E[D(AB)]= E[\/('XA _x3)2 +(yA _yB)2j| (B.2)
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Since all random variables here are uniform distributed over [0, 1] and probability density

function of uniform distribution is f (x) =1, we can calculate

E[xA]:E[xB]:E[yA]:E[yB]:.gx'f(x)'dx:!x'dx:%xz . :% (B.3)
E[xj]:E[xé]:E[yj]zE[yé]z!xz -f(x)-dxz.!x2 -dxz%x3 0 :% (B.4)

Considering that x ,,y ,,x,,y, are mutually independent random variables,

Bl )= Bl ] Blvl= 5 Bl l= £l Blvl= 1

So we get

E[(xA _x3)2 +(yA _yB)z]
= [ +x2 =203, + 32 42 =207 ]

:E[xj]+E[x§]—2E[xA ]E[xB]+E[yj]+E[y§]_2EbA]EUB]

(B.5)

Bring the values of equs. (B.3) and (B.4) into equ. (B.5),

So e w0 = =2 0577

Thus the average distance between two nodes randomly deployed within a unit square is

about 0.577.
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