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Dedicated to the memory of Dr. Ryogo Kubo, whose work on fluctuation phenomena

shall always be considered the crowning jewel of non-equilibrium statistical mechanics
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”At quite uncertain times and places,

The atoms left their heavenly path,

And by fortuitous embraces,

Engendered all that being hath.

And though they seem to cling together,

And form associations here,

Yet, soon or late, they burst their tether,

And through the depths of space career.

So we who sat, oppressed with science,

As British asses, wise and grave,

Are now transformed to wild Red Lions,

As round our prey we ramp and rave.

Thus, by a swift metamorphosis,

Wisdom turns wit, and science joke,

Nonsense is incense to our noses,

For when Red Lions speak, they smoke.

Hail, Nonsense! dry nurse of Red Lions,

From thee the wise their wisdom learn,

From thee they cull those truths of science,

Which into thee again they turn.

What combinations of ideas,

Nonsense alone can wisely form!

What sage has half the power that she has,

To take the towers of Truth by storm?

Yield, then, ye rules of rigid reason!

Dissolve, thou too, too solid sense!

Melt into nonsense for a season,

Then in some nobler form condense.

Soon, all too soon, the chilly morning,

This flow of soul will crystallize,

Then those who Nonsense now are scorning,

May learn, too late, where wisdom lies.”

-James Clerk Maxwell, ”Molecular Evolution”
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Hierarchy in the Static Fluctuation-Dissipation Theorem of One-Component Plasmas

Joshuah T. Heath
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Directed by Kenneth I. Golden, Ph.D.

Fluctuation-dissipation theorems (FDTs) link transport coefficients (density response

functions, conductivities, electric susceptibilities, etc.) to equilibrium n-point correlation

functions. Of special importance to us is the applications of the FDT to one component plas-

mas and binary ionic mixtures. When applied to such systems, the fluctuation-dissipation

theorem provides invaluable insight into response functions and transport coefficients across

the non-equilibrium spectrum. After an in-depth review of the FDT and linear response

theory, we focus upon expanding the work of K.I. Golden and G. Kalman (J. Stat. Phys.

3, 87 (1972); Annals of Phys. 141, 160 (1982)) , which proposes a nonlinear response the-

ory for magnetic field-free classical plasmas. We attempt to re-formulate the hierarchy of

static fluctuation-dissipation relations in terms of external density response functions. This

provides a systematic formalism for calculating higher order correlation functions in terms

of lower-order ones. In future studies, we plan to derive relationships between the screened

and external response functions in the RPA (or any suitable approximation method which

takes account of particle correlation effects beyond the RPA). This will then provide insight

into the hierarchy of static structure functions and their correlation functions.



Chapter I

INTRODUCTION

In this dissertation, I will focus upon a mathematical investigation into the realm of a clas-

sical, one-component plasma in zero magnetic field. In short, this thesis will investigate

the mathematical relationship between fluctuations about equilibrium and the responses to

external forces in the plasma species afore-mentioned. This theorem, known as the fluctua-

tion dissipation theorem, relates the density-response function to the structure function

of our multilayer plasma and began as a generalization of the Langevin equation in Brown-

ian motion. Indeed, the fluctuation dissipation theorem (or FDT) can be used to describe

the fluctuations about equilibrium of any fluid. Nevertheless, it has immense promise when

applied to the realm of plasma physics, and can accurately describe the dynamical and

static properties of multilayer plasmas via statistical mechanical perturbation theory. This

is of immense importance to astrophysics and technological fabrication due to the fact that

the modeling of binary ionic mixtures will help us better understand the stellar interiors

in carbon-oxygen white dwarfs, as well as the layered charge particle systems that arise in

layered multiple-quantum-well structures. [15]

In the pages that follow, I will mainly look into the static fluctuation dissipation

theorem, which relates the response function to the equilibrium pair correlation function.

The main focus of this work will be to expand the work done by K.I. Golden and G. Kalman

on the nonlinear fluctuation dissipation theorem, an expansion upon the static FDTs, a gen-

eralization of the second law of thermodynamics, and a major contribution to the statistical

study of Coulomb systems. Of particular interest will be the Golden-Kalman-Silevitch pa-

per published in Vol 6 of the 1972 issue of the Journal of Statistical Physics. Whereas the

conventional FDT relates the equilibrium correlations of a system and the linear response

of said system to an external perturbation, the nonlinear FDT relates said correlations and

the nonlinear response of the system. This is to be expected–the response of a certain

system should not be restricted to merely the linear, and indeed the quadratic and even

cubic response functions have been studied before in, not only plasma physics, but also

crystal physics and nonlinear optics. [28][2] By utilizing a velocity-average-approximation

in addition to fluctuation-dissipation relations, one might be able to establish a hierar-

chy of response functions of steadily increasing nonlinearity for the static one-component

plasma, as investigated in the paper ”Plasma response functions, fluctuation-dissipation

relations and the Velocity Average Approximation”, published in the 1982 edition of An-

nals of Physics by K.I. Golden and G. Kalman. Their derivation will be recast in a spatial

Fourier-transform formalism and expanded, resulting in a general hierarchy of static FDT’s.
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Chapter II

DEVELOPMENT OF THE FLUCTUATION-DISSIPATION

THEOREM

The science of statistical physics began in 1738, when Daniel Bernoulli first established

the ”billiard ball” model of the gas laws derivation, which relied upon the theory that gas

consists of large amounts of high-velocity particles [19]. This embryonic stage of modern

kinetic theory, together with Bernoulli’s insight into the connection between pressure and

tempertature via the principle of conservation of mechanical energy, proved to be a fore-

shadow of the revolution against the caloric theory of heat to come a century later with the

publication of ”On Matter, Living Force, and Heat” by Joule in 1847, which first stated

that kinetic energy is coverted into heat via frictional forces. Caloric theory, which stated

that an increase in heat produced an increased quantity of the repulsive liquid ”caloric”

being added to each matter particles (and thus explaining thermal expansion), finally gave

way to kinetic theory with the publication of a paper by German chemist Karl Kronig, who

assumed that particles moved in straight lines until they collided with other matter. This

paper paved the way for such men as Rudolf Clausius and James Clerk Maxwell to advance

kinetic theory into the latter 19th century, the former introducing the mean-free-path the-

ory of gas molecule dynamics and the latter first theorizing a random locomotion of gas

molecules as well as deriving the well-known velocity distribution function.

In 1872, kinetic theory reached its zenith as scientists began to look beyond equilibrium

processes and into the realm of nonequilibrium thermodynamics. Maxwell’s distribu-

tion of molecular velocities, published in the paper ”Illustration of the Dynamical Theory

of Gases” and now given by

f(v) =
( m

2πkT

)3/2
exp

(
−mv2

2kT

)
dv (2.0.0.1)

(where m is the mass of each particle, k is Boltzmann’s constant, and T is the absolute

temperature), we notice that this distribution only holds if we are at thermal equilibrium

[9]. To fully understand the transition gases experience when exiting the state of equilib-

rium, Austrian physicist Ludwig Boltzmann came up with the expression known as the

Boltzmann equation. By relating macroscopic laws in terms of microscopic forces between

molecular collisions, Boltzmann’s equation laid the groundwork for non-equilibrium statis-

tical mechanics (NESM) and is a perfect illustrator of the key idea behind the philosophy of

NESM: to understand macroscopic phenomena in a real (i.e., non-ideal) system via looking

2



from a microscopic vantagepoint.

Nevertheless, one important piece was still missing from statistical physics at the time

of Boltzmann that was crucial to the understanding of such non-ideal systems: the con-

sideration of the atom. Though the atom’s (and, thus, the molecule’s) existence was first

postulated near the dawn of the 1800’s by French scientist Antoine Lavoisier, the century

closed with scientists still less than positive of the atom’s existence, or at the very least

the role of atoms in macroscopic phenomenon. Many influential physicists, Ernest Mach

included, have gone so far as to claim that it was quite possible to completely ignore the

role of atomic influences in the world of physical study, and even Boltzmann has been

quoted with stating that the fluctuations of large numbers of atoms would vanish on the

macroscopic scale; i.e., that such phenomena would be generally invisible to contemporary

instruments:

In the molecular theory, we assume that the laws of the phenomena found in nature do

not essentially deviate from the limits that they would approach in the case of an infinite

number of infinitesimally small molecules...It is indispensable for any application of the in-

finitesimal calculus to molecular theory; indeed, without it, our model which strictly deals

always with a large finite number, would not be applicable to apparently continuous quanti-

ties...

–Ludwig Boltzmann, Lectures on Gas Theory, translated to English by Stephen G. Brush

Of course, this didn’t stop many young physicists at the turn of the century to try and

find conclusive evidence for atoms. One such physicsit (Albert Einstein) attempted to

solve this problem via a study of Brownian motion (”On a Motion of Small Particles in a

Stationary Liquid, as Required by the Molecular Kinetic Theory of Heat”).

The study of Brownian motion began in 1828, when the Scottish-born botanist Robert

Brown began studying the motion of miniscule particles in pollen-infested water [5][8]. These

particles exhibited an irregular, seemingly random motion that could not be explained by

contemporary science, and their movement soon became known as Brownian motion. The

locomotion of these particles was characterized to be independent of eachother, to become

more rapid in the smaller particles than the larger, to be independent of the density or

general composition of the particle in question, to be directly proportional to temperature,

and to be perpetual. Only in the mid-19th century did scientists began to believe that

Brownian motion was caused by collisions with the molecules in the fluid. Such men as

Christian Wiener, Giovanni Cantoni, Joseh Delsaulx, and Ignace Carbonelle proposed that

Brownian motion was caused by some sort of molecular disturbance, either by ”ether atoms”

in the case of Wiener or the thermal motion of the liquid itself by Cantoni. However, such

a theorem faced opposition by the cytologist Karl von Nageli and even soon-to-be Nobel

3



laureate William Ramsey, who believed there was some other explanation for the random

walk of Brownian motion, such as a dichotomy between attractive or repulsive forces felt

by the moving particle itself.

The theory of atoms and molecules was finally brought into the forefront of Brownian

motion research in the late 19th century, when French physicist Jean Baptiste Perrin sug-

gested that Brownian motion could result from the perpetual collision of elastic molecules.

Only in 1905 did a mathematical describtion come to scientific attention, derived by Al-

bert Einstein and, independently, William Sutherland and Marian von Smoluchowski. In

Einstein’s paper, classical hydrodynamics was used to determine the effect of molecules on

the viscosity of a solvent, and comes to two important results: the connection between the

coefficients of viscosity of a liquid with suspended particles (η∗) and that without (η):

η∗ = η(1 +
5

2
φ) (2.0.0.2)

(where φ is the volume fraction occupied by the molecules); and the determination of the

coefficient of diffusion (D) of the molecules:

D = µkT (2.0.0.3)

where T is the absolute temperature of the fluid in which the Brownian particles are mov-

ing, k is Boltzmann’s constant, and µ is the measurement of the mobility of the Brownian

particles. The latter result is of great importance to us, as we will see in the derivation of

this cofficent to follow.

Einstein’s original calculation of the coefficient (commonly known as the Einstein-

Sutherland derivation) relies heavily upon two opposing physical theories: Stokes’ hydro-

dynamic theory (which stated that the Brownian particle is much larger than the molecules

of the liquid, and is thus uneffected by said molecules’ motion) and van’t Hoff’s osmotic

theory (which stated that the particle suspended in the liquid behaves in a similar fashion to

the liquid molecules, and is thus bound by the same physical laws as molecular agitation).

Though Einstein was able to reconcile these two theories, there was a major problem in

Einstein and Sutherland’s original derivation. In said derivation, one finds that the average

displacement of the Brownian particle as a function of time is

〈x̄2〉 = 2Dt (2.0.0.4)

where D is the diffusion coefficient, t is the time interval in question, and the angular brack-

ets denote an equilibrium average. This leads to the conclusion that the mean squared
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displacement of the Brownian particle is temporally linear. Unfortunately, such a theory

disagreed with experimental results to try and measure the instantaneous velocity of the

particles, which yielded inconsistent measurements. Though Einstein was one of the first

scientists to give us a mathematical description of Brownian motion and thus accurately

determine the existence of molecules, the theory was fundamentally flawed when consider-

ing the mean squared displacement of the Brownian particles at short times. The theory

wouldn’t be corrected until 1908, when French physicist Paul Langevin first derived the

famous Langevin equation, the first known example of a stochastic equation, an equa-

tion which describes the time-evolution of a random process. This equation might be de-

rived from looking at the equation of motion of N particles of mass m and radius r, given by

mẍ = fs(t) + fb(t) = −αẋ(t) + fb(t) (2.0.0.5)

Here, fs is the viscous drag force (or Stokes’ force) experienced by a particle in the liquid

of viscosity η, fb is the random fluctuating force of the particles, and α = 6πηr is a con-

stant. By imposing a Markovian approximation, the Langevin equation might be derived as

〈x̄(t)2〉 =
6kT

α

(
t− m

α

(
1− exp(− α

m
t)
))

(2.0.0.6)

This equation agrees with experimental results, and leads to the final form of the Einstein

diffusion coefficient D:

D =
1

N

∫ ∞
0

dt〈v(t) · v(0)〉 (2.0.0.7)

Note that we no longer have any direct temperature or mobility dependence. Instead, we

have the diffusion coefficient, a kinetic coefficent which describes the diffusion of the parti-

cles, expressed in terms of the autocorrelation function of the velocity, a dynamic quantity

which measures the fluctuation of the Brownian particles’ velocity. Thus, we see clearly

from the above equation that there is a connection between the macroscopic diffusion of

the particles and the microscopic fluctuations, and may indeed by considered one and the

same physical phenomenon. Therefore, by by examining the equlibrium state of the parti-

cles, we may determine properties of the particles outside equilibrium, and we thus come to

the conclusion of this exercise: Einstein’s corrected diffusion coefficient for the diffusion of

Brownian particles is the first example of a fluctuation-dissipation theorem [22]. Because of

its status, eqn. 2.2.3.24 is also known as a fluctuation dissipation theorem of the first

kind, and, as we will see later, it is also the first example of a Green-Kubo formula.

Similarly, we may derive the fluctuation-dissipation theorem of the second kind by utilizing

5



the generalized Langevin equation, which gives us

D =
1

2πβ2C̃s(0)
(2.0.0.8)

where C̃s(ω) is the temporal Fourier transform of the correlation function Cs(t) and where

I have taken ˜̄x(ω = 0) = 0. This is the main result of this section and tells us important

information about the first fluctuation dissipation theorem. Basically, the relation above

states that the Einstein diffusion coefficient D is only sensitive to long time, equilibrium

behavior of C̃s(ω), due to the fact that

2πC̃s(ω = 0) =

∫ ∞
−∞

dt′Cs(t
′) = D (2.0.0.9)

where D is the steady-state drag coefficient. Hence, unless the integral of the first fluctutation-

dissipation relation diverges as a result, the dynamic memory of C̃s(ω) are averaged within

D. This furthers the deep connection between fluctuations at equilibrium and diffusion,

and is thus a statement of the second fluctuation dissipation relation.

In the above, we have looked at the first two relations which relate thermal fluctuations

to the diffusion of the system in the example of Brownian motion. Such relations weren’t ex-

panded upon until the mid-20th century, when the works of Hazime Mori, Robert Zwanizig,

and others generalized the theory of Brownian motion to encompass the evolution of any

thermodynamic system via analysis of the random observable X. This value may by any

parameter, and the key to its advancement of nonequilibrium statistical mechanics is its re-

lation to the irreversible behavior of the thermodynamical system as a whole. Such a result

will lead us to a derivation of most-quoted format of the fluctuation-dissipation theorem, a

generalization of the relations stated above to any macroscopic system [31].

The theorem to be described is quite peculiar in the sense that it was developed after

a thirty to forty year hiatus after the application of the Langevin equation to Brownian

motion. Though some kind of the fluctuation-dissipation theorem was theorized by Harry

Nyquist in the 1920’s, the now accepted theorem developed by Callen and Welton was pub-

lished in 1951–over four decades after Einstein introduced the diffusion coefficient. This

theorem is given by

=(X̃(ω)) = −1

2
ωβS(ω) (2.0.0.10)

where X is an observable and S(ω) is the power spectrum. The theorem above perfectly

relates the response function of the frequency of the system to the correlation function of a

pair of observables, and is thus a more general discription of the FD relations mentionied

6



earlier. Now, the Brownian motion of particles in a liquid solvent can be generalized to the

perturbation of any macroscopic system. Furthermore, it is important to note that, whereas

the results from the fluctuation dissipation theorem of the second kind related frictional

to random forces, (3.3.0.74) relates the response function describing a perturbation to a

correlation function. Thus, the above is a fluctuation-dissipation theorem of the first kind.

More importantly, recall that the correlation function describes the system at equilibrium,

and the response function describes the linear response beyond equilibrium. Thus, the

fluctutation-dissipation theorem, a theory which finds its genesis in an attempt to relate

microscopic fluctuations to macroscopic dissipitative phenomenon, might be considered a

bridge between equilibrium and non-equilibrium thermodynamic processes, and was thus a

major advancement in contemporary statistical mechanics.

The fluctuation-dissipation theorem might be generalized beyond Brownian motion if we

consider the theorem of linear response, which states that, in the precense of a perturbing

agent F (t′), the change in the average of the observable χ is

∆〈X(t)〉 =

∫ t

−∞
dt′F (t′)χAX(t− t′) (2.0.0.11)

where χAX(t− t′) is the response function of observables A and X, which is given by

χAX(t− t′) = 〈{A(0), X(t− t′)}〉 = β〈Ȧ(0); X(t− t′)〉 (2.0.0.12)

This expression is a generalized fluctuation-dissipation theorem. No longer are we consid-

ering the motion of Brownian particles; instead, we have derived a formalism that describes

the response to an external perturbation of a general system of particles, and related said

response to the canonical correlation. It is important to note where the fluctuation and

dissipation come into the picture: here, the fluctuation is a result of the correlation func-

tion, and the imaginary part of the dissipation is described by the Fourier transform of the

correlation χ(ω), where the imaginary and real components of the susceptibility (χ′′(ω) and

χ′(ω)) might be related via the Kramers-Kronig relations

χ′(ω) =
1

π

∫ ∞
−∞

dω′
χ′′(ω′)

ω′ − ω
χ′′(ω) = − 1

π

∫ ∞
−∞

dω′
χ′(ω′)

ω′ − ω
(2.0.0.13)

These relations might then lead to integral identities known as sum rules.

In this general framework of susceptibilities, the classical, dynamical FDT is given as

χ′′(ω) = −1

2
ωβS(ω) (2.0.0.14)

7



which becomes

S(k, ω) = − 2

βnω
χ′′(k, ω) (2.0.0.15)

in a nonuniform medium, where S(k, ω) is the Fourier transform of the autocorrelation

function, known as the structure factor. Integrating over all possible ω values, we obtain

the classical static FDT

S(k) = 1 + ngk =
1

βn
χ̂(k, ) (2.0.0.16)

where gk is the one-particle distribution function.

The main application of the FDT to be investigated in this work is to electrodynamic

systems. The study of electrodynamic linear response found its foundations in the develop-

ment of the Kramers Konig relations above. [12] The sum rules which resulted from these

relations could then be applied to better understand conductivity and dielectric functions,

in both the long wavelength and short wavelength (i.e., k dependent ) regimes [36]. The

macroscopic consequences of the former have been the topic of intense interest in the scien-

tific community, with such scientists as Klimontovich, Rukhadze, and Silin spending much

time on the topic. However, of particular historical interest to us is the work of Golden and

Kalman on the relations between the external and the internal conductive and dielectric

quantities in the framework of linear response. Though Landau might be considered the

father of many of the advancements pertaining to linear response [25], it is Golden and

Kalman who presented the groundbreaking idea of a tensor fluctuation-dissipation theorem

for multicomponent couloumb systems pervaded by an external magnetic field in 1969.

8



Chapter III

HIERARCHY OF STATISTICAL MECHANICAL RESPONSE

FUNCTIONS IN ONE-COMPONENT PLASMAS

3.1 Introduction to the Nomenclature and Derivation of the Linear and
Quadratic FDT

Here, we begin the main bulk of the thesis and presentation of new material. However,

before we dive into the original work, let us first briefly review the essential nomenclature

of our system–i.e., the classical plasma. We begin by defining the particle density n(r) and

its Fourier transform, n(k):

n(r) =
∑
i

δ(r− xi) = n0 + δn(r) n(k) =
∑
i

eik·xi = Nδk + δn(k) (3.1.0.17)

If we are to consider the static fluctuation-dissipation theorem, then we must consider our

system in a state of equilibrium. This system consists of one-component plasma particles,

each carrying a charge Ẑe immersed in an external potential φ̂(r) = Q̂/r → φ̂(k) = 4πQ̂/k2.

Therefore, it is trivial to then define the external potential energy as

Û(k′) = Zeφ̂(k′) =
4πZeQ̂

k′2
(3.1.0.18)

it is important to note that k′ 6= 0 to perclude the possibility of a divergence in the pertur-

bation. The system itself is described by the Liouville distribution function

Ω =
exp(−βH)∫
dΓ exp(−βH)

(3.1.0.19)

In the precense of an external perturbation, the Hamiltonian for our system is perturbed via

H = H(0) + Ĥ (3.1.0.20)

where the unperturbed Hamiltonian for a system of N electrons in an electron background

is given by

9



Figure 1: A diagram of our system, where all plasma particles are represented as point
charges. The plasma particles (blue) are immersed in a weak external potential energy
originating from an external charge Q (red).

H0 =
N∑
i=1

p2i
2m︸ ︷︷ ︸

kinetic energy
of particles

+
1

2
e2

N∑
i,j=1, i 6=j

φij(xi − xj)︸ ︷︷ ︸
particle-particle
interactions

+Hpb +Hbb (3.1.0.21)

where Hpb and Hbb is the Hamiltonian for the particle-background interaction and the

background-background interaction, respectively, and

Ĥ =
1

V

∑
k′ 6=0

Û(k′)n(−k′) (3.1.0.22)

with the microscopic density defined as

n(−k′) =
∑
i

exp(ik′ · xi) (3.1.0.23)

which follows directly from (3.1.0.18). Notice that, in (3.1.0.22), we have specificially ex-

cluded the k′ = 0 term. This is due to the fact that, at k′ = 0, the potential will diverge,

and thus is an un-physical solution. Therefore, we now take the equilibrium Liouville dis-

tribution as

Ω(0) =
exp(−βH(0))∫
dΓ exp(−βH(0))

(3.1.0.24)

and, likewise, define the average microscopic density at equilibrium as

10



〈δn(k)〉(0) =

∫
dΓΩ(0)n(k)−Nδk (3.1.0.25)

If we are to define the general form of the average microscopic density, we have to introduce

the external density response function χ̂(k′, k′′, k′′′, ...kq), in which the equation of density

response becomes a constitutive relation:

〈δn(k)〉 =
1

V q−1

∑
k′,k′′....kq

χ̂(k′, k′′, ...kq)Û(k′)Û(k′′)...Û(kq)δk′+k′′+...+kq−k (3.1.0.26)

where we have taken our sum response out to qth order.

We may similarlly define the triangle symmetry for the quadratic structure factor and

response function, respectively:

S(k′, k′′; −k) = S(−k, k′; k′′) = S(k′′, −k; k′) (3.1.0.27)

χ̂(k′, k′′) = χ̂(−k, k′) = χ̂(k′′, −k) (3.1.0.28)

The hierarchy of static fluctuation-dissipation theorems for a classical, one-component

plasma was first tackled by K.I. Golden and G. Kalman in their 1982 Annals of Physics

paper [14]. In this paper, the static structure factors are expressed in terms of the one, two,

and three-particle distribution function g, h, and i:

S(k′) = 1 + ngk′

S(k′, k′′) = 1 + ngk′ + ngk′′ + ngk′+k′′ + n2hk′k′′

S(k′, k′′, k′′′) = 1 + ngk′ + ngk′′ + ngk′′′ + ngk′+k′′ + ngk′′+k′′′

+ ngk′+k′′′ + ngk′+k′′+k′′′ + n2hk′k′′

+ n2hk′′k′′′ + n2hk′k′′′ + n2hk′+k′′k′′′ + n2hk′′+k′′′k′ + n2hk′′′+k′k′′ + n3ik′k′′k′′′ (3.1.0.29)

From these relations, one may establish the linear, quadratic, and cubic static FDTs, but

the mathematical complexity leading to the end result makes it nearly impossible to estab-

lish higher orders, such as the quartic. What one needs is a simpler derivation of the above,

which might be done be inputting our perturbed Hamiltonian into the Liouville distribution

function. This gives us
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Ω =
exp(−βH)∫
dΓ exp(−βH)

=
exp(−β(H(0) + Ĥ))∫
dΓ exp(−β(H(0) + Ĥ))

=
exp(−βH(0)) exp(−βĤ)∫
dΓ exp(−βH(0)) exp(−βĤ)

(3.1.0.30)

Now, if we assume that the perturbation is small enough, we may expand the exponential

in the numerator and denominator to obtain

Ω = Ω(0) 1− βĤ + β2

2 Ĥ
2 − ...∫

dΓΩ(0)
(

1− βĤ + β2

2 Ĥ
2 − ...

)
= Ω(0) 1− βĤ + β2

2 Ĥ
2 − ...

1− β〈Ĥ〉+ β2

2 〈Ĥ2〉 − ...
(3.1.0.31)

If one wishes to derive the linear static FDT, one need only look at those terms that go as

far as Ĥ, therefore giving us

Ω = Ω(0) 1− βĤ
1− β〈Ĥ〉

= Ω(0)
(

1− βĤ
)(

1 + β〈Ĥ〉
)

(3.1.0.32)

where we have taken

1

1− β〈Ĥ〉
≈ 1 + β〈Ĥ〉 (3.1.0.33)

Therefore, we obtain from (3.1.0.32) the following form of the linear Liouville distribution:

Ω(1) = Ω(0)
(

1− βĤ
)(

1 + β〈Ĥ〉
)

= Ω(0)
(

1 + β〈Ĥ〉 − βĤ + β2Ĥ〈Ĥ〉
)

≈ Ω(0) + βΩ(0)
(
〈Ĥ〉 − Ĥ

)
= Ω(0) + Ω(1) (3.1.0.34)

where

Ω(1) = −βΩ(0)
(
Ĥ − 〈Ĥ〉

)
(3.1.0.35)
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Now, if one notes that 〈n(−k)〉 = 0 for k 6= 0, one obtains

〈Ĥ〉 =
1

V

∑
k′ 6=0

Û(k′)〈n(−k′)〉 = 0 (3.1.0.36)

Therefore,

Ω(1) =
−βΩ(0)

V

∑
k′ 6=0

Û(k′)n(−k′) (3.1.0.37)

Now that we have the first-order Liouville distribution, we calculate the first order density

response to obtain our final result. First, a trivial calculation gives

〈δn(k)〉(1) =

∫
dΓΩ(1)δn(k)

=

∫
dΓΩ(1)n(k)−Nδk

∫
dΓΩ(1)

=

∫
dΓΩ(1)n(k) (3.1.0.38)

where we have deleted the second term due to the fact that we have taken k 6= 0. This

gives us

〈δn(k)〉(1) =

∫
dΓΩ(1)n(k)

=

∫
dΓ

−βΩ(0)

V

∑
k′ 6=0

Û(k′)n(−k′)

n(k)

= − β
V

∑
k′ 6=0

Û(k′)

∫
dΓΩ(0)n(−k′)n(k)

= − β
V

∑
k′ 6=0

Û(k′)〈n(k)n(−k′)〉

= − β
V

∑
k′ 6=0

Û(k′)〈δn(k)δn(−k′)〉

= −βnS(k)Û(k) (3.1.0.39)

The last line of (3.1.0.39) follows from the consequence of the invariance of the homogenous

system under spatial translation. However, we know that

〈δn(k)〉(1) = χ̂(k)Û(k) (3.1.0.40)
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Hence, one obtains the linear external response function as

χ̂(k) = −βnS(k) (3.1.0.41)

Note that (3.1.0.41) reproduces the linear fluctuation-dissipation theorem in [14], but recast

in the language of a more popular density response function formalism.

Now, let us procede to the somewhat more involved derivation of the quadratic static

FDT. We begin this derivation by expanding the Liouville distribution function to quadratic

terms–namely,

Ω = Ω(0) 1− βĤ + β2

2 Ĥ
2

1− β〈Ĥ〉+ β2

2 〈Ĥ2〉
(3.1.0.42)

To simplify this, let us start by calculating

1

1− β〈Ĥ〉+ β2

2 〈Ĥ2〉
(3.1.0.43)

This might be greatly simplified if we recall that we made the simplification that 〈Ĥ〉 = 0,

thus giving us

1

1− β〈Ĥ〉+ β2

2 〈Ĥ2〉
=

1

1 + β2

2 〈Ĥ2〉
≈ 1− β2

2
〈Ĥ2〉 (3.1.0.44)

Therefore,

Ω = Ω(0)

(
1− βĤ +

β2

2
Ĥ2

)(
1− β2

2
〈Ĥ2〉

)
= Ω(0)

(
1− βĤ +

β2

2
Ĥ2 − β2

2
〈Ĥ2〉+

β3

2
Ĥ〈Ĥ2〉 − β4

4
Ĥ2〈Ĥ2〉

)
≈ Ω(0)

(
1− βĤ +

β2

2
Ĥ2 − β2

2
〈Ĥ2〉

)
= Ω(0) − βΩ(0)Ĥ +

β2

2
Ω(0)

(
Ĥ2 − 〈Ĥ2〉

)
= Ω(0) + Ω(1) + Ω(2) (3.1.0.45)

Hence, we write the quadratic Liouville distribution as
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Ω(2) =
β2

2
Ω(0)

(
Ĥ2 − 〈Ĥ〉2

)
=

β2

2V 2
Ω(0)

∑
k′,k′′ 6=0

Û(k′)Û(k′′)
(
n(−k′)n(−k′′)− 〈n(−k′)n(−k′′)〉

)
(3.1.0.46)

Carrying out the second order density response, one obtains

〈δn(k)〉(2) =

∫
dΓΩ(2)δn(k)

=

∫
dΓΩ(2)n(k)−Nδk

∫
dΓΩ(2)

=

∫
dΓΩ(2)n(k)

=

∫
dΓ

 β2

2V 2
Ω(0)

∑
k′,k′′ 6=0

Û(k′)Û(k′′)
(
n(−k′)n(−k′′)− 〈n(−k′)n(−k′′)〉

)n(k)

=
β2

2V 2

∑
k′,k′′ 6=0

Û(k′)Û(k′′)

(∫
dΓΩ(0)n(−k′)n(−k′′)n(k)−

∫
dΓΩ(0)〈n(−k′)n(−k′′)〉n(k)

)

=
β2

2V 2

∑
k′,k′′ 6=0

Û(k′)Û(k′′)
(
〈n(k)n(−k′)n(−k′′)〉 −Nδk〈n(−k′)n(−k′′)〉

)
=

β2

2V 2

∑
k′,k′′ 6=0

Û(k′)Û(k′′)〈n(k)n(−k′)n(−k′′)〉
∣∣∣∣
k 6=0

(3.1.0.47)

where k = k′ + k′′. Now, we may represent the above in terms of the structure factor via

〈n(k)〉(2) =
β2

2V 2

∑
k′,k′′ 6=0

Û(k′)Û(k′′)〈n(k)n(−k′)n(−k′′)〉
∣∣∣∣
k 6=0

=
β2n

2V

∑
k′,k′′ 6=0

Û(k′)Û(k′′)S(k′, k′′)δk′+k′′−k

=
1

V

∑
k′,k′′ 6=0

χ̂(k′, k′′)Û(k′)Û(k′′)δk′+k′′−k (3.1.0.48)

Eqs. (3.1.0.47) and (3.1.0.48) provide the quadratic FDT:

χ̂(k′, k′′) =
β2n

2
S(k′, k′′) (3.1.0.49)

which is the same result obtained by Golden, Kalman, and Silevitch in their earlier paper,

but again recast here in the more popular density response function formalism [14].

15



3.2 Derivation of the Cubic Static Fluctuation-Dissipation Theorem
and the Quadrangle Symmetry

One of the most important implications of the above derivations of the linear and quadratic

static FDTs is its simplicity. The derivation described above is easily used to extend the

static FDT to third order. To do this, let us first expand the numerator and denominator

of the Liouville distribution function to the cubic order, giving us

Ω = Ω(0) 1− βĤ + β2

2 Ĥ
2 − β3

6 Ĥ
3

1− β〈Ĥ〉+ β2

2 〈Ĥ2〉 − β3

6 〈Ĥ3〉
(3.2.0.50)

Because we have taken 〈Ĥ〉 = 0 (see above), we ultimately are left to simplify

1

1 + β2

2 〈Ĥ2〉 − β3

6 〈Ĥ3〉
= 1− β2

2
〈Ĥ2〉+

β3

6
〈Ĥ3〉 (3.2.0.51)

Therefore, we now obtain the Liouville distribution out to cubic order as

Ω = Ω(0)

(
1− βĤ +

β2

2
Ĥ2 − β3

6
Ĥ3

)(
1− β2

2
〈Ĥ2〉+

β3

6
〈Ĥ3〉

)
= Ω(0)

(
1− β2

2
〈Ĥ2〉+

β3

6
〈Ĥ3〉 − βĤ +

β3

2
Ĥ〈Ĥ2〉 − β4

6
Ĥ〈Ĥ3〉

+
β2

2
Ĥ2 − β4

4
Ĥ2〈Ĥ2〉+

β5

12
Ĥ2〈Ĥ3〉 − β3

6
Ĥ3 +

β5

12
Ĥ3〈Ĥ2〉

− β6

36
Ĥ3〈Ĥ3〉

)
≈ Ω(0)

(
1− β2

2
〈Ĥ2〉+

β3

6
〈Ĥ3〉 − βĤ +

β3

2
Ĥ〈Ĥ2〉+

β2

2
Ĥ2 − β3

6
Ĥ3

)
= Ω(0) − βΩ(0)Ĥ +

β2

2
Ω(0)

(
Ĥ2 − 〈Ĥ2〉

)
− β3

6
Ω(0)

(
Ĥ3 − 3Ĥ〈Ĥ2〉 − 〈Ĥ3〉

)
= Ω(0) + Ω(1) + Ω(2) + Ω(3) (3.2.0.52)

Hence, we write the cubic Liouville distribution as

Ω(3) = −β
3

6
Ω(0)

(
Ĥ3 − 3Ĥ〈Ĥ2〉 − 〈Ĥ3〉

)
= − β3

6V 3
Ω(0)

∑
k′,k′′,k′′′ 6=0

Û(k′)Û(k′′)Û(k′′′)

×
(
n(−k′)n(−k′′)n(−k′′′)− 3n(−k′)〈n(−k′′)n(−k′′′)〉 − 〈n(−k′)n(−k′′)n(−k′′′)〉

)
(3.2.0.53)
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For the third order density response, one then obtains

〈δn(k)〉(3) =

∫
dΓΩ(3)δn(k)

=

∫
dΓΩ(3)n(k)−Nδk

∫
dΓΩ(3)

=

∫
dΓΩ(3)n(k)

=

∫
dΓΩ(0)

(
− β3

6V 3

∑
k′,k′′,k′′′ 6=0

Û(k′)Û(k′′)Û(k′′′)

(
n(−k′)n(−k′′)n(−k′′′)

− 3n(−k′)〈n(−k′′)n(−k′′′)〉 − 〈n(−k′)n(−k′′)n(−k′′′)〉
))

n(k)

= − β3

6V 3

∑
k′,k′′,k′′′ 6=0

Û(k′)Û(k′′)Û(k′′′)

(∫
dΓΩ(0)n(−k′)n(−k′′)n(−k′′′)n(k)

− 3

∫
dΓΩ(0)n(−k)n(−k′)〈n(−k′′)n(−k′′′)〉 −

∫
dΓΩ(0)〈n(−k′)n(−k′′)n(−k′′′)n(k)〉

= − β3

6V 3

∑
k′,k′′,k′′′ 6=0

Û(k′)Û(k′′)Û(k′′′)

(
〈n(−k′)n(−k′′)n(−k′′′)n(k)〉

− 〈n(k)n(−k′)〉〈n(−k′′)n(−k′′′)〉 − 〈n(k)n(−k′′)〉〈n(−k′)n(−k′′′)〉

− 〈n(k)n(−k′′′)〈n(−k′)n(−k′′)〉 −Nδk〈n(−k′)n(−k′′)n(−k′′′)〉
)

= − β3

6V 3

∑
k′,k′′,k′′′ 6=0

Û(k′)Û(k′′)Û(k′′′)

(
〈n(−k′)n(−k′′)n(−k′′′)n(k)〉

∣∣∣∣
k 6=0

− 〈n(k)n(−k′)〉〈n(−k′′)n(−k′′′)〉
∣∣∣∣
k 6=0

− 〈n(k)n(−k′′)〉〈n(−k′)n(−k′′′)〉
∣∣∣∣
k 6=0

− 〈n(−k)n(−k′′′)〉〈n(−k′)n(−k′′)〉
∣∣∣∣
k 6=0

)
(3.2.0.54)

where k = k′ + k′′ + k′′′. Notice that we have utilized the triangle symmetry above to

expand the three-fold correlation function 3n(−k′)〈n(−k′′)n(−k′′′)〉. This thus allows us to

represent the above in terms of the respective structure factors:
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〈n(k)〉(3) = −β
3n

6V 2

∑
k′,k′′,k′′′ 6=0

Û(k′)Û(k′′)Û(k′′′)

(
S(k′, k′′, k′′′)δk′+k′′+k′′′−k

−NS(k′)S(k′′)δk−k′δk′′+k′′′ −NS(k′′′)S(k′)δk−k′′′δk′+k′′

−NS(k′′)S(k′′′)δk−k′′δk′+k′′′

)
= −β

3n

6V 2

∑
k′,k′′,k′′′ 6=0

Û(k′)Û(k′′)Û(k′′′)δk′+k′′+k′′′−k

(
S(k′, k′′, k′′′)

−NS(k′)S(k′′)δk−k′ −NS(k′′′)S(k′)δk−k′′′

−NS(k′′)S(k′′′)δk−k′′

)
=

1

V

∑
k′,k′′,k′′′ 6=0

χ̂(k′, k′′, k′′′)Û(k′)Û(k′′)Û(k′′′)δk′+k′′+k′′′−k (3.2.0.55)

where we have defined the cubic density response function as

χ̂(k′, k′′, k′′′) =

− β3n

6

(
S(k′, k′′, k′′′)−NS(k′)S(k′′)δk−k′ −NS(k′′′)S(k′)δk−k′′′ −NS(k′′)S(k′′′)δk−k′′

)
(3.2.0.56)

Note that (3.2.0.56) is a far more transparent version of the cubic static FDT derived in

[14], where the Kronecker delta contributions in (3.2.0.55) were absorbed in the definition

of the four-point structure function. However, we may simplify this greatly if we introduce

the hierarchal correction coefficient P , which we define in the cubic case as

P (k′, k′′, k′′′) = 1− 1

S(k′, k′′, k′′′)

(
NS(k′)S(k′′)δk−k′+NS(k′)S(k′′′)δk−k′′′+NS(k′′)S(k′′′)δk−k′′

)
(3.2.0.57)

Therefore giving us the cubic static FDT as

χ̂(k′, k′′, k′′′) = −β
3n

6
S(k′, k′′, k′′′)P (k′, k′′, k′′′) (3.2.0.58)

Notice that, with the above derivation, we obtain a somewhat different result then that

obtained by Golden and Kalman in their 1982 article. It has the same general form, but

this derivation makes explicit the factor P . This will prove useful when we go onto higher

orders in the next subsection.
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In the same vein as the quadratic density response function, we note the cubic response

obeys a cyclic rotation of its wave vector arguments–a symmetry known as the quadrangle

symmetry. Recall that, by definition, the triangle symmetry tells us that

S(k′, k′′; −k) = S(k′′, −k; k′) = S(−k, k′; k′′) (3.2.0.59)

where it is understood that k = k′ + k′′, thereby guaranteeing the same triangle symmetry

for the external response function:

χ̂(k′, k′′) = χ̂(k′′, −k) = χ̂(−k, k′) (3.2.0.60)

via (3.1.0.49). Therefore, we can similarly define the quadrangle symmetry as

S(k′, k′′, k′′′; −k) = S(k′′, k′′′, −k; k′) = S(k′′′, −k, k′; k′′) = S(−k, k′, k′′; k′′′)

(3.2.0.61)

The quartic analog of (3.2.0.60) is not as trivial as the above due to the hierarchal correction

coefficient P (k′, k′′, k′′′). Therefore, to illustrate the relation

χ̂(k′, k′′, k′′′) = χ̂(k′′, k′′′, −k) = χ̂(k′′′, −k, k′) = χ̂(−k, k′, k′′) (3.2.0.62)

we must first show that the quadrangle symmetry is obeyed in the P -coefficent; that is, that

P (k′, k′′, k′′′) = P (k′′, k′′′, −k) = P (k′′′, −k, k′) = P (−k, k′, k′′) (3.2.0.63)

To show this, we first recall (3.2.0.57), and let k′ → k′′, k′′ → k′′′, k′′′ → −k, and −k→ k′.

This gives us

P (k′′, k′′′, −k)

= 1− 1

S(k′′, k′′′, −k)

(
NS(k′′)S(k′′′)δk′+k′′ +NS(k′′)S(−k)δ−k′+k +NS(k′′′)S(−k)δk′+k′′′

)
= 1− 1

S(k′, k′′, k′′′)

(
NS(k′′)S(k′′′)δk−k′′′ +NS(k′′)S(−k)δk−k′ +NS(k′′′)S(−k)δk−k′′

)
= 1− 1

S(k′, k′′, k′′′)

(
NS(k′)S(k′′′)δk−k′′′ +NS(k′′)S(k′)δk−k′ +NS(k′′′)S(k′′)δk−k′′

)
= P (k′, k′′, k′′′) (3.2.0.64)
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by virtue of noting that k = k′ + k′′ + k′′′ in the Kronecker delta and (3.2.0.59). Similar

cyclic permutations yield the other terms in the quadrangle symmetry of the correction

factor:

P (k′′′, −k, k′)

= 1− 1

S(k′′′, −k, k′)

(
NS(k′′′)S(−k)δk′′+k′′′ +NS(k′′′)S(k′)δk′′+k′ +NS(−k)S(k′)δk′′−k

)
= 1− 1

S(k′, k′′, k′′′)

(
NS(k′′)S(−k)δk−k′ +NS(k′′′)S(k′′)δk−k′′′ +NS(k′′)S(k′)δk′+k′′′

)
= 1− 1

S(k′, k′′, k′′′)

(
NS(k′′)S(k′)δk−k′ +NS(k′′′)S(k′)δk−k′′′ +NS(k′′′)S(k′′)δk−k′′

)
= P (k′, k′′, k′′′) = P (k′′, k′′′, −k′′) (3.2.0.65)

P (−k, k′, k′′)

= 1− 1

S(−k, k′, k′′)

(
NS(−k)S(k′)δk′′′−k +NS(−k)S(k′′)δk′′′+k′′ +NS(k′)S(k′′)δk′′′+k′

)
= 1− 1

S(−k, k′, k′′)

(
NS(k′′′)S(k′)δk′′′−k +NS(−k)S(k′′)δ−k+k′ +NS(k′′′)S(k′′)δk−k′′

)
= 1− 1

S(−k, k′, k′′)

(
NS(k′′′)S(k′)δk′′′−k +NS(k′)S(k′′)δ−k+k′ +NS(k′′′)S(k′′)δk−k′′

)
= P (k′, k′′, k′′′) = P (k′′, k′′′, −k) = P (k′′′, −k, k′) (3.2.0.66)

3.3 Extention to Higher Orders: The Quartic FDT and the General
FDT Formula

In the above subsections, we have rederived the static FDT for one-componet plasmas via

an expansion of the Liouville distribution function. Such a derivation is much simpler than

the route as expressed in 5.2.2., and might be applied to higher orders with ease. This is

shown below for the quartic case; i.e., χ̂(k′, k′′, k′′′, k′′′′). This is the

First, we extend the Liouville distribution function to quartic order, giving us

Ω = Ω(0) 1− βĤ + β2

2 Ĥ
2 − β3

6 Ĥ
3 + β4

24 Ĥ
4

1− β〈Ĥ〉+ β2

2 〈Ĥ2〉 − β3

6 〈Ĥ3〉+ β4

24 〈Ĥ4〉
≈ Ω(0) 1− βĤ + β2

2 Ĥ
2 − β3

6 Ĥ
3 + β4

24 Ĥ
4

1 + β2

2 〈Ĥ2〉 − β3

6 〈Ĥ3〉+ β4

24 〈Ĥ4〉
(3.3.0.67)
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Noting that

1

1 + β2

2 〈Ĥ2〉 − β3

6 〈Ĥ3〉+ β4

24 〈Ĥ4〉
= 1− β2

2
〈Ĥ2〉+

β3

6
〈Ĥ3〉 − β4

24
〈Ĥ4〉+

β4

4
〈Ĥ2〉〈Ĥ2〉

(3.3.0.68)

Therefore,

Ω ≈ Ω(0) 1− βĤ + β2

2 Ĥ
2 − β3

6 Ĥ
3 + β4

24 Ĥ
4

1 + β2

2 〈Ĥ2〉 − β3

6 〈Ĥ3〉+ β4

24 〈Ĥ4〉

= Ω(0)

(
1− βĤ +

β2

2
Ĥ2 − β3

6
Ĥ3 +

β4

24
Ĥ4

)(
1− β2

2
〈Ĥ2〉+

β3

6
〈Ĥ3〉 − β4

24
〈Ĥ4〉+

β4

4
〈Ĥ2〉〈Ĥ2〉

)
= Ω(0)

(
1− β2

2
〈Ĥ2〉+

β3

6
〈Ĥ3〉 − β4

24
〈Ĥ4〉+

β4

4
〈Ĥ2〉〈Ĥ2〉 − βĤ +

β3

2
Ĥ〈Ĥ2〉 − β4

6
Ĥ〈Ĥ3〉+

β2

2
Ĥ2

− β4

4
Ĥ2〈Ĥ2〉 − β3

6
Ĥ3 +

β4

24
Ĥ4

)
= Ω(0) − βΩ(0)Ĥ +

β2

2
Ω(0)

(
Ĥ2 − 〈Ĥ2〉

)
− β3

6
Ω(0)

(
Ĥ3 − 3Ĥ〈Ĥ2〉 − 〈Ĥ3〉

)
+
β4

24
Ω(0)

(
Ĥ4 − 6Ĥ2〈Ĥ2〉 − 4Ĥ〈Ĥ3〉+ 6〈Ĥ2〉〈Ĥ2〉 − 〈Ĥ4〉

)
= Ω(0) + Ω(1) + Ω(2) + Ω(3) + Ω(4) (3.3.0.69)

Therefore, we can now extract the quartic Liouville distribution function, and perform den-

sity response:

Ω(4) =
β4

24
Ω(0)

(
Ĥ4 − 6Ĥ2〈Ĥ2〉 − 4Ĥ〈Ĥ3〉+ 6〈Ĥ2〉〈Ĥ2〉 − 〈Ĥ4〉

)
=

β4

24V 3
Ω(0)

∑
k′,k′′,k′′′,k′′′′ 6=0

Û(k′)Û(k′′)Û(k′′′)Û(k′′′′)

×
(
n(−k′)n(−k′′)n(−k′′′)n(−k′′′′)− 6n(−k′)n(−k′′)〈n(−k′′′)n(−k′′′′)〉

− 4n(−k′)〈n(−k′′)n(−k′′′)n(−k′′′′)〉+ 6〈n(−k′)n(−k′′)〉〈n(−k′′′)n(−k′′′′)〉

− 〈n(−k′)n(−k′′)n(−k′′′)n(−k′′′′)

)
(3.3.0.70)
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〈δn(k)〉(4) =

∫
dΓΩ(4)δn(k)

=

∫
dΓΩ(4)n(k)−Nδk

∫
dΓΩ(4)

=

∫
dΓΩ(4)n(k)

=

∫
dΓ

(
β4

24V 3
Ω(0)

∑
k′,k′′,k′′′,k′′′′ 6=0

Û(k′)Û(k′′)Û(k′′′)Û(k′′′′)

×
(
n(−k′)n(−k′′)n(−k′′′)n(−k′′′′)− 6n(−k′)n(−k′′)〈n(−k′′′)n(−k′′′′)〉

− 4n(−k′)〈n(−k′′)n(−k′′′)n(−k′′′′)〉+ 6〈n(−k′)n(−k′′)〉〈n(−k′′′)n(−k′′′′)〉

− 〈n(−k′)n(−k′′)n(−k′′′)n(−k′′′′)〉
))

n(k)

=
β4

24V 3

∑
k′,k′′,k′′′,k′′′′ 6=0

Û(k′)Û(k′′)Û(k′′′)Û(k′′′′)

×
(∫

dΓΩ(0)n(−k′)n(−k′′)n(−k′′′)n(−k′′′′)n(k)

− 6

∫
dΓΩ(0)n(−k′)n(−k′′)〈n(−k′′′)n(−k′′′′)〉n(k)

− 4

∫
dΓΩ(0)n(−k′)〈n(−k′′)n(−k′′′)n(−k′′′′)〉n(k)

+ 6

∫
dΓΩ(0)〈n(−k′)n(−k′′)〉〈n(−k′′′)n(−k′′′′)〉n(k)

−
∫
dΓΩ(0)〈n(−k′)n(−k′′)n(−k′′′)n(−k′′′′)n(k)〉

)
=

β4

24V 3

∑
k′,k′′,k′′′,k′′′′ 6=0

Û(k′)Û(k′′)Û(k′′′)Û(k′′′′)

×
(
〈n(−k′)n(−k′′)n(−k′′′)n(−k′′′′)n(k)〉

− 6〈n(k)n(−k′)n(−k′′)〉〈n(−k′′′)n(−k′′′′)〉

− 4〈n(k)n(−k′)〉〈n(−k′′)n(−k′′′)n(−k′′′′)〉

+ 6Nδk〈n(−k′)n(−k′′)〉〈n(−k′′′)n(−k′′′′)〉

−Nδk〈n(−k′)n(−k′′)n(−k′′′)n(−k′′′′)〉
)

=
β4

24V 3

∑
k′,k′′,k′′′,k′′′′ 6=0

Û(k′)Û(k′′)Û(k′′′)Û(k′′′′)

×
(
〈n(−k′)n(−k′′)n(−k′′′)n(−k′′′′)n(k)〉

∣∣∣∣
k 6=0

− 6〈n(k)n(−k′)n(−k′′)〉〈n(−k′′′)n(−k′′′′)〉
∣∣∣∣
k 6=0

− 4〈n(k)n(−k′)〉〈n(−k′′)n(−k′′′)n(−k′′′′)〉
∣∣∣∣
k 6=0

(3.3.0.71)
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=
β4

24V 3

∑
k′,k′′,k′′′,k′′′′ 6=0

Û(k′)Û(k′′)Û(k′′′)Û(k′′′′)

×
(
〈n(−k′)n(−k′′)n(−k′′′)n(−k′′′′)n(k)〉

∣∣∣∣
k 6=0

− 〈n(k)n(−k′)n(−k′′)〉〈n(−k′′′)n(−k′′′′)〉
∣∣∣∣
k 6=0

− 〈n(k)n(−k′)n(−k′′′)〉〈n(−k′′)n(−k′′′′)〉
∣∣∣∣
k 6=0

− 〈n(k)n(−k′)n(−k′′′′)〉〈n(−k′′)n(−k′′′)〉
∣∣∣∣
k 6=0

− 〈n(k)n(−k′′)n(−k′′′)〉〈n(−k′)n(−k′′)〉
∣∣∣∣
k 6=0

− 〈n(k)n(−k′′′)n(−k′′′′)〉〈n(−k′)n(−k′′)〉
∣∣∣∣
k 6=0

− 〈n(k)n(−k′′′′)n(−k′′)〉〈n(−k′′′)n(−k′)〉
∣∣∣∣
k 6=0

− 〈n(k)n(−k′)〉〈n(−k′′′)n(−k′′′′)n(−k′′)〉
∣∣∣∣
k 6=0

− 〈n(k)n(−k′′)〉〈n(−k′′′)n(−k′′′′)n(−k′)〉
∣∣∣∣
k 6=0

− 〈n(k)n(−k′′′)〉〈n(−k′′)n(−k′′′′)n(−k′)〉
∣∣∣∣
k 6=0

− 〈n(k)n(−k′′′′)〉〈n(−k′′)n(−k′′′)n(−k′)〉
∣∣∣∣
k 6=0

(3.3.0.72)

where we have used the quadrangle permutation symmetry to expand the six- and four- fold

correlation functinon. Representing this in terms of the static structure factors, we finally
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obtain the quartic static FDT for one-component plasmas:

〈n(k)〉(4) =
β4

24V 3

∑
k′,k′′,k′′′,k′′′′ 6=0

Û(k′)Û(k′′)Û(k′′′)Û(k′′′′)δk′+k′′+k′′′+k′′′′−k

×
(
S(k′, k′′, k′′′, k′′′′)−NS(k′, k′′)S(k′′′)δk′′′+k′′′′

−NS(k′, k′′′)S(k′′)δk′′+k′′′′ −NS(k′, k′′′′)S(k′′)δk′′+k′′′

−NS(k′′, k′′′′)S(k′)δk′+k′′′ −NS(k′′′, k′′′′)S(k′)δk′+k′′

−NS(k′′, k′′′)S(k′)δk′+k′′′′ −NS(k′′′, k′′′′)S(k′)δk−k′

−NS(k′′′, k′′′′)S(k′′)δk−k′′ −NS(k′′, k′′′′)S(k′′′)δk−k′′′

−NS(k′′, k′′′)S(k′′′′)δk−k′′′′

)
=

1

V

∑
k′,k′′,k′′′,k′′′′ 6=0

χ̂(k′, k′′, k′′′, k′′′′)Û(k′)Û(k′′)Û(k′′′)Û(k′′′′)δk′+k′′+k′′′+k′′′′−k

(3.3.0.73)

whence the quartic response function is given by

χ̂(k′, k′′, k′′′, k′′′′) =

β4n

24

(
S(k′, k′′, k′′′, k′′′′)−NS(k′, k′′)S(k′′′)δk′′′+k′′′′

−NS(k′, k′′′)S(k′′)δk′′+k′′′′ −NS(k′, k′′′′)S(k′′)δk′′+k′′′

−NS(k′′, k′′′′)S(k′)δk′+k′′′ −NS(k′′′, k′′′′)S(k′)δk′+k′′

−NS(k′′, k′′′)S(k′)δk′+k′′′′ −NS(k′′′, k′′′′)S(k′)δk−k′

−NS(k′′′, k′′′′)S(k′′)δk−k′′ −NS(k′′, k′′′′)S(k′′′)δk−k′′′

−NS(k′′, k′′′)S(k′′′′)δk−k′′′′

)
=
β4n

24
S(k′, k′′, k′′′, k′′′′)P (k′, k′′, k′′′, k′′′′) (3.3.0.74)

with the quartic hierarchal correction coefficient given by
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P (k′, k′′, k′′′, k′′′′) = 1− 1

S(k′, k′′, k′′′, k′′′′)

(
NS(k′, k′′)S(k′′′)δk′′′+k′′′′

+NS(k′, k′′′)S(k′′)δk′′+k′′′′ +NS(k′, k′′′′)S(k′′)δk′′+k′′′

+NS(k′′, k′′′′)S(k′)δk′+k′′′ +NS(k′′′, k′′′′)S(k′)δk′+k′′

+NS(k′′, k′′′)S(k′)δk′+k′′′′ +NS(k′′′, k′′′′)S(k′)δk−k′

+NS(k′′′, k′′′′)S(k′′)δk−k′′ +NS(k′′, k′′′′)S(k′′′)δk−k′′′

+NS(k′′, k′′′)S(k′′′′)δk−k′′′′

)
(3.3.0.75)

We remind the reader that P (k′, k′′, k′′′, k′′′′), like S(k′, k′′, k′′′, k′′′′) is identical to

P (k′,k′′,k′′′, k′′′′; −k), where k = k′ + k′′ + k′′′ + k′′′′. Furthermore, we observe that P is

invariant under cyclic rotation of its wave vector arguments, a symmetry which we refer to

as the pentangle symmetry.

Note that the quartic static FDT given above is an entirely new result. By proposing a

new derivation of the FDT hierarchy, we have thus been able to expand to higher orders.

More importantly, by examining the first four terms, we can propose a general combinator-

ical formula for the qth order of the static FDT. Such a general equation might be easily

derived via taking into consideration the Taylor expansion of the Liouville distribution func-

tion, which gives us

χ(k′, k′′, ...k(q)) = (−1)q
βqn

q!
S(k′, k′′, ...k(q))P (k′, k′′...k(q)) (3.3.0.76)

Of course, the hierarchal correction coefficient is a little-bit less trivial. I propose the gen-

eral form of the coefficient, up to qth order, as

P (k′, k′′...k(q)) =

1− 1
S(k′,k′′...k(q))

∑q−2
i=1

∑
|i|fk〈Q

|i|
q 〉, q ≤ 3

1, q < 3
(3.3.0.77)

Here, Q
|i|
q is the i-subset of the set Qq of all densities n(−k′), n(−k′′), ...n(−k(q),

∑
|i| is the

set over all i-subsets, and the horseshoe operator fk is defined as

f〈j〉k = 〈n(k)`〉〈j〉
∣∣∣∣
k 6=0

, ` 6= j (3.3.0.78)

where j and ` are some product of densities.

To test this theory, we first note that the linear and quadratic cases are trivial, because

they have a hierarchal correction coefficient of P . Therefore, let us look at the cubic rela-

tion. Setting q = 3 in (3.3.0.76), we obtain
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χ̂(k′, k′′, k′′′) = −β
3n

6
S(k′, k′′, k′′′)P (k′, k′′, k′′′) (3.3.0.79)

where P (k′, k′′, k′′′) is given by (3.3.0.77) as

P (k′, k′′, k′′′) = 1− 1

S(k′, k′′, k′′′)

∑
|1|

fk〈Q
|i|
3 〉

= 1− 1

S(k′, k′′, k′′′)

∑
|1|

fk〈(n(−k′), n(−k′′), n(−k′′′))|i|〉

= 1− 1

S(k′, k′′, k′′′)
fk

(
〈n(−k′)〉+ 〈n(−k′′)〉+ 〈n(−k′′′)〉

)
= 1− 1

S(k′, k′′, k′′′)

(
〈n(k)n(−k′)〉〈n(−k′′)n(−k′′′)〉

∣∣∣∣
k 6=0

+ 〈n(k)n(−k′′)〉〈n(−k′)n(−k′′′)〉
∣∣∣∣
k6=0

+ 〈n(k)n(−k′′′)〉〈n(−k′)n(−k′′)〉
∣∣∣∣
k 6=0

)
(3.3.0.80)

which is identical to the form found in the previous subsection, except in terms of the den-

sity correlation functions. A similar result might be found for the quartic relationship by

setting q = 4 in (3.3.0.76) and (3.3.0.77), yielding

χ̂(k′, k′′, k′′′, k′′′′) =
β4n

24
S(k′, k′′, k′′′, k′′′′)P (k′, k′′, k′′′, k′′′′) (3.3.0.81)
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P (k′, k′′, k′′′, k′′′′) = 1− 1

S(k′, k′′, k′′′, k′′′′)

2∑
i=1

∑
|i|

fk〈Q
|i|
4 〉

= 1− 1

S(k′, k′′, k′′′, k′′′′)

(∑
|1|

fk〈Q
|i|
4 〉+

∑
|2|

fk〈Q
|i|
4 〉
)

= 1− 1

S(k′, k′′, k′′′, k′′′′)

(∑
|1|

fk〈(n(−k′), n(−k′′), n(−k′′′), n(−k′′′′))|i|〉

+
∑
|2|

fk〈(n(−k′), n(−k′′), n(−k′′′), n(−k′′′′))|i|〉
)

= 1− 1

S(k′, k′′, k′′′, k′′′′)

(
fk

(
〈n(−k′)〉+ 〈n(−k′′)〉+ 〈n(−k′′′)〉

)
+ fk

(
〈n(−k′)n(−k′′)〉+ 〈n(−k′)n(−k′′′)〉

+ 〈n(−k′)n(−k′′′′)〉+ 〈n(−k′′)n(−k′′′)〉+ 〈n(−k′′′)n(−k′′′′)〉
)

= 1− 1

S(k′, k′′, k′′′, k′′′′)

(
〈n(k)n(−k′)〉〈n(−k′′)n(−k′′′)n(−k′′′′)〉

∣∣∣∣
k 6=0

+ 〈n(k)n(−k′′)〉〈n(−k′)n(−k′′′)n(−k′′′′)〉
∣∣∣∣
k 6=0

+ 〈n(k)n(−k′′′)〉〈n(−k′)n(−k′′)n(−k′′′′)〉
∣∣∣∣
k 6=0

+ 〈n(k)n(−k′′′′)〉〈n(−k′)n(−k′′)n(−k′′′)〉
∣∣∣∣
k 6=0

+ 〈n(k)n(−k′)n(−k′′)〉〈n(−k′′′)n(−k′′′′)〉
∣∣∣∣
k 6=0

+ 〈n(k)n(−k′)n(−k′′′)〉〈n(−k′′)n(−k′′′′)〉
∣∣∣∣
k 6=0

+ 〈n(k)n(−k′)n(−k′′′′)〉〈n(−k′′′)n(−k′′)〉
∣∣∣∣
k 6=0

+ 〈n(k)n(−k′′)n(−k′′′)〉〈n(−k′)n(−k′′′′)〉
∣∣∣∣
k 6=0

+ 〈n(k)n(−k′′)n(−k′′′′)〉〈n(−k′)n(−k′′′)〉
∣∣∣∣
k 6=0

+ 〈n(k)n(−k′′′)n(−k′′′′)〉〈n(−k′)n(−k′′)〉
∣∣∣∣
k 6=0

)
(3.3.0.82)

which is identical to the form derived via an expansion of the Liouville distribution, only

in terms (once again) of the density correlation functions.

27



Chapter IV

CONCLUSION AND FUTURE WORK

The purpose of this dissertation was two-fold. The first was to review the current

literature in the FDT and compile a concise summary of its history and development. The

second purpose of this thesis, however, was to diverge from this past work and develop a new

theorem based upon the development of the nonlinear static FDT for the one-component

plasma done by Kenneth Golden, Gabor Kalman, and Michael Silevitch in the 1970s and

1980s. In particular, from the linear, quadratic, and cubic FDT relations developed by

Golden and Kalman in 1982, the author and K. Golden then developed a general hierarchy

for the qth relations via a Taylor expansion of the Boltzmann factor in the numerator and

denominator of the Liouville distribution function and an exploitation of density response

theory. From this, (3.3.0.74) and (3.3.0.76) were introduced, which are the main products

of this thesis and completely new results.

At this point, one question still remains, and that is where do we go from here? Here,

the answer is three-fold. The first path that the authors will take in this present research

is to the case of binary ionic mixtures. In the pages covered, we have limited our view to a

single-component plasma system. If we expand to the case of binary ionic mixtures, then

we would be able to use our model to describe the two-component plasmas found in carbon-

oxygen white dwarfs. The second path would be to derive a hierarchy in the dynamical FDT

for one-component plasmas. Such a hierarchy could be tested by taking the static limit and

observing whether or not we obtain the static relations just described. We may also utilize

the general formula derived above to relate the screened density response functions to the

external response, and thus generate a formalism for obtaining the cluster expansion for

the q + 1-point correlation function for the 3D one-component plasma. Now, we are finally

well positioned to expand the constitutive relations for the response function out to cubic

order.
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