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Abstract

Recent advances in high throughput technologies have led to an increasing amount of rich
and diverse biological data and related literature. Model organisms are classically selected
as subjects for studying human disease based on their genotypic and phenotypic features.
A significant problem with model organism identification is the determination of character-
istic features related to biological processes that can provide insights into the mechanisms
underlying diseases. These insights could have a positive impact on the diagnosis and man-
agement of diseases and the development of therapeutic drugs. The increased availability
of biological data presents an opportunity to develop data mining methods that can address
these challenges and help scientists formulate and test data-driven hypotheses.

In this dissertation, data mining methods were developed to provide a quantitative ap-
proach for the identification of potential model organisms based on underlying features that
may be correlated with disease manifestation in humans. The work encompassed three ma-
jor types of contributions that aimed to address challenges related to inferring information
from biological data available from a range of sources. First, new statistical models and al-
gorithms for graph pattern mining were developed and tested on diverse genres of data (bi-
ological networks, drug chemical compounds, and text documents). Second, data mining
techniques were developed and shown to identify characteristic disease patterns (disease
fingerprints), predict potentially new genetic pathways, and facilitate the assessment of or-
ganisms as potential disease models. Third, a methodology was developed that combined
the application of graph-based models with information derived from natural language pro-
cessing methods to identify statistically significant patterns in biomedical text. Together,
the approaches developed for this dissertation show promise for summarizing the informa-
tion about biological processes and phenomena associated with organisms broadly and for
the potential assessment of their suitability to study human diseases.
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Chapter 1

Introduction

1.1 Motivation, Scientific Question, and Goals

The availability of large biological data and knowledge bases provides tremendous oppor-

tunities for gaining data-driven insights into complex biological systems, with a potential

impact on human health. A high level of noise and heterogeneity characterize biological

data (Myers and Troyanskaya 2007). Large volumes of biological data available in varying

forms (sequences, graphs, and texts) can pose certain challenges when seeking new

findings. First, large datasets present data management and curation problems such as data

organization, access, and interpretation. Second, the identification of relevant statistical

regularities and dependencies in high dimensional and diverse biological data resources

presents a major challenge. Finding frequent patterns, gaining insight into the structure of

data, and data summarization present problems related to large and high dimensional data.

These problems are beyond capabilities of direct data management methods (e.g., simple

1



CHAPTER 1. INTRODUCTION

search). To tackle this challenge, there is a need for data mining methods that can integrate

knowledge into predictive models that can utilize high dimensional data to test hypotheses

about biological systems.

This thesis is focused on the application of graph data mining methods for gathering

evidence from graph and text datasets pertaining to a specific challenge: the assessment of

organisms as potential disease models. Biological processes (or mechanisms) that underlie

diseases have biological entities (genes/proteins/molecules) that interact to accomplish a

certain function. The interaction of these entities leads to the emergence of interesting

patterns that differ according to the wiring (or linking) of entities as well as the function

(or biological role) of each entity. This thesis is built on the hypothesis that functional and

structural patterns of interactions between biological entities correlate with disease classes.

The use of graph mining techniques reveals a certain set of patterns, termed disease

fingerprints, which can be identified for a given disease class. It was also hypothesized that

the fingerprints of a given disease class might be more similar to patterns in a biological

interaction network for a given organism and less similar to other those of other organisms.

The primary goal of the thesis was thus to develop methods to match disease fingerprints

to interaction networks of organisms, with the aim to rank relevance of model organisms

for a particular disease class.

Biomedical literature provides documentation of knowledge in the medical and life

sciences (De Bruijn and Martin 2002). The development of biomedical literature databases

(e.g., MEDLINE) and advances in natural language processing methods provide a great

opportunity to process unstructured text to find meaningful relationships in literature.
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Of particular relevance to this thesis, biomedical literature describes information about

disease concepts as related to both humans and other organisms. One of the goals of the

thesis was therefore to gather evidence from biomedical literature to further contribute to

the assessment of potential disease organism models.

The methods developed throughout this work allow for the aggregation of data in

different forms (e.g., graph and text) from a diverse set of biological data and knowl-

edge bases to find meaningful patterns that are relevant to a given problem of interest.

Graph-based models provide a conceptual framework to represent complex relationships

in data (Campbell and Musen 1992, Lagoze et al. 2006, Zheleva and Getoor 2008).

Knowledge-rich mathematical models for graph pattern analysis were developed and

tested on diverse datasets with the aim to identify organism-dependent patterns. These

models were tested on four genres of data: (1) genetic pathways, (2) chemical compounds,

(3) molecular interaction networks, and (4) biomedical literature. Semantic hierarchies

of terms such as Gene Ontology (Ashburner et al. 2000) and Medical Subject Headings

(MeSH) (Lipscomb 2000) were used to annotate data to increase the generalization

capability of the models and to address data sparsity issues. Using the methods developed

in this thesis, evaluations were conducted to assess how a particular organism might be

suited as a potential model for a particular class of diseases.

In the next section, a description is provided about the biological data and knowledge

resources that were used in this study. An overview on related graph pattern mining meth-

ods is then presented. Concept graphs, as a means for graph-based representation for text,

are then introduced. The chapter concludes with a summary of the major contributions of
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this thesis and the subsequent chapters (which are based on accepted peer-review publica-

tions or on manuscripts in preparation) provide more details about each of the experiments

conducted. The concluding chapter then presents possible future directions of this work.

1.2 Background

1.2.1 Biological Data Resources

Biological Interaction Networks

Biological interaction networks refer to undirected graphs that have nodes that represent

entities in biological cells and links that represent interactions between these entities.

Entities and interactions can be of many types, each of which define a network class.

For instance, when physical interactions link molecular biology entities in a network,

this network is referred to as a molecular interaction network. There are subclasses of

molecular interaction networks depending on the types of nodes. For instance, when nodes

represent proteins, the network is referred to as a protein-protein interaction network.

Furthermore, if nodes represent regulatory proteins, transcription factors, and target genes,

the resulting network is referred to as a gene regulatory network. Metabolic networks have

nodes that represent enzymes and metabolites (chemical compounds). When interactions

between entities are genetic (e.g., when function of a gene is affected by mutations in

another gene), the network is referred to as a genetic interaction network.

Biological interaction networks (with physical and genetic interaction types) present a

major data resource in cell biology, molecular biology and biomedical research generally.

4



CHAPTER 1. INTRODUCTION

Efforts have been made to study potential interactions between genes, proteins, and

other molecules in cells (Cordell 2009, Marcotte et al. 1999, Sengupta et al. 1996).

These interactions can be studied empirically (e.g., using yeast two-hybrid screening

(Ito et al. 2001)) or can be predicted computationally (e.g., using comparative genomics

or text mining techniques (Ferrer et al. 2011)). Freely accessible databases provide

genetic/physical, experimental/predicted interactions for a wide range of model organisms.

Some databases are manually curated (e.g., BioGRID (Stark et al. 2006)), which means

no computational methods were used to predict interactions. Manually curated databases

pose a data sparsity problem when dealing with concepts that are not widely studied (e.g.,

non-traditional model organisms) (Baumgartner et al. 2007). To fill this gap, methods for

predicting interactions have been developed and used to build interaction networks for

organisms with less supporting experimental data. These methods (e.g., as in the PIPs

database (McDowall et al. 2009)) aggregate evidence from a variety of sources (e.g.,

those that catalogue gene co-expression or orthology [shared ancestry] information). For

instance, the level of orthology between genes/proteins can be used to infer interactions

in a potential model organism using pairs of interacting genes/proteins from a canoni-

cal model organism (Chautard et al. 2009). Text mining techniques can also be used to

predict interacting pairs of genes/proteins (e.g., as in IntAct database (Kerrien et al. 2007)).

Genetic Pathways

Biological cells respond to a variety of events that take place inside and outside their

perimeters. Chains of reactions within biological cells can start in response to certain

events (e.g., upon detection of a signaling molecule coming from the outside of the
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cell). Reactions inside biological cells can be described using conceptual models known

as genetic pathways. A genetic pathway can be defined as ”a linear sequence of gene

activities resulting from the functional interactions between different genes” (Faro et al.

2012). Genetic pathways are used to describe a wide range of mechanisms (e.g., biological

functions (Walhout and Vidal 2001) or disease-related processes (Zhernakova et al. 2009)).

In addition to genes, genetic pathways can contain other molecules such as gene products

(e.g., proteins) and chemical substances (e.g., Calcium). Genetic pathways can be modeled

as directed graphs with vertices representing molecules (e.g., genetic material, gene

product, chemical molecule) and edges representing interaction types (e.g., inhibition,

expression). In some cases, one vertex can represent a complex (a set of proteins that

interact together as a unit).

Genetic pathways can be categorized according to the biological functions or mech-

anisms that they describe. For instance, metabolic pathways describe a set of chemical

reactions related to metabolism inside cells (Schilling et al. 2000). Signaling pathways

are used to describe interactions related to gene expression and cell communication (Li

and Hristova 2006). Some disease mechanisms can be described using genetic pathways

that include genes with mutations or gene expression levels hypothesized to be correlated

with diseases (Vogelstein and Kinzler 2004). Genetic pathways that are related to diseases

emphasize the importance of system-level representation of interacting genes to describe

disease mechanisms by showing contexts (e.g., other reacting genes) of a mutant gene (Lin

et al. 2007). Thus, research efforts have been devoted to discovering pathways that provide

more understanding about cell mechanisms (Bomken et al. 2010). In addition to discov-

ery of pathways, there have been efforts to discover missing genes in previously described
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pathways (Osterman and Overbeek 2003). Discovery and analysis of disease pathways has

gained importance in therapeutic research, because they provide system-level perspectives

of complex diseases (in contrast to Mendelian disorders that are caused by single gene mu-

tations) (Butcher et al. 2004). Finally, analysis of disease pathways may be useful to find

candidate molecular targets for potential drugs (Hennessy et al. 2005).

Semantic Annotation of Biomedical Data

Ontologies, semantic networks, and controlled vocabularies are of great importance for the

development and evaluation of computational methods in biomedical contexts (Shatkay

and Feldman 2003). The mapping of raw data to terms or concepts in semantic hierarchies

is a basic function that can be performed manually by domain experts (e.g., as in the case

of determining the molecular function to a new gene sequence (Tweedie et al. 2009)) or

by automated software tools (e.g., semantic annotation tools (Erdmann et al. 2000)). Data

management methods for biological data can utilize ontologies and controlled vocabularies

resources to perform tasks such as indexing and query processing. For instance, the

PubMed interface for MEDLINE provides enhanced search capabilities when user queries

are associated with applied controlled terms (MeSH descriptors) (Chang et al. 2006).

In this thesis, terms from semantic hierarchies were used to annotate graph vertices that

allowed for data abstraction and improved the generalization capability of the machine

learning algorithms used. In particular, two semantic hierarchies were used for the studies

described as part of this thesis: (1) Gene Ontology and (2) Unified Medical Language

System (UMLS) Metathesaurus.
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The Gene Ontology (GO) is a project that has developed and maintains a collection of

ontologies, along with data processing tools for the applications of GO-based annotations

of genomic materials. GO consists of three domain ontologies that organize concepts

related to genes: (1) molecular function, (2) biological process, and (3) cellular compo-

nent. The molecular function domain describes molecular level activities (e.g., binding or

catalytic). The biological process domain describes processes (e.g., cell death) that may

be accomplished by sequences of molecular functions. The cellular component domain

describes locations (e.g., inner membrane) within cells. Using this set of ontologies, GO

annotations have been assigned to gene products for numerous organisms, including those

that serve as models for studying disease (Twigger et al. 2007). GO annotations can

be determined based on experimental evidence and expert review of published literature

(Conesa et al. 2005). Moreover, comparative genomics methods can be used to transfer

annotations from data of one organism to newly sequenced genomic material of other

organisms (Ferrer et al. 2011). The collection of GO annotations for a given organism are

available through databases such as FlyBase (Fruit Fly)(Tweedie et al. 2009), RGD (Rat)

(Dwinell et al. 2009), and MPact (Yeast)(Guldener et al. 2006).

The UMLS, developed at the United States National Library of Medicine (NLM), in-

cludes three biomedical knowledge resources (Bodenreider 2004): (1) Metathesaurus, (2)

Semantic Network, and (3) the SPECIALIST natural language processing tools (Browne

et al. 2003). Of relevance to this thesis, the Metathesaurus consists of concepts sources

from over 100 biomedical hierarchies (including MeSH). Concepts from UMLS Metathe-

saurus can be used to annotate biomedical text publications using tools such as MetaMap,

also developed at the NLM(Aronson 2001). MetaMap is available both as a stand-alone
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application or as an Application Programming Interface (API) component. Advanced text

processing features (e.g., Part-of-Speech (POS) tagging and syntactic parsing) are also

available as part of MetaMap. The studies in this thesis leveraged MetaMap annotations of

the MEDLINE corpus as available through the MetaMap Machine Output (MMO) - 2012

release. The MMO output files are available in text format with a defined structure. The

MMO release contains a collection of individual files, each of which covers a range of

citations referred to by unique PubMed Manuscript ID (PMID) identifiers. Each MMO

output file contains several morpho-syntactic annotations including: part-of-speech tags

for sentence words and phrase structures that determine the head of the phrase (e.g., im-

portant concept). In addition, MMO output files contain semantic annotations generated

by MetaMap. In this thesis, the morph-syntactic and semantic annotations were used to

construct concept graphs for mining biomedical literature.

1.2.2 Graph Pattern Mining Methods

Frequent Pattern Mining

A popular approach to feature extraction in graph data is the extraction of subgraphs (with

defined quantitative criteria) that represent candidate features (Ranu and Singh 2009).

Feature filtering techniques are commonly then used to select features whose distribution

correlate with the distribution of graph class labels (Yu and Liu 2004, Fei and Huan 2008).

A vector representation of subgraph features can be used by machine learning tools to solve

learning problems (e.g., classification and clustering (Kong et al. 2011, Vogelstein et al.

2011)) or data management problems (e.g., graph indexing (Yan et al. 2004, Wang et al.

2012)). Searching for informative features can be achieved using feature interestingness

measures. Examples of interestingness measures include mutual information, confidence,
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support, and information gain. Tan, et al. have described 21 measures that can be used to

identify and rank potentially interesting features (Tan et al. 2002).

Subgraph pattern mining methods have been used to address a range of graph data

learning problems. In clustering problems, informative subgraph patterns can be used as

features in vector space, and then clustering techniques can be applied to data represented in

this feature space (Kulis et al. 2009). In classification problems, using subgraph patterns in

feature vector representation of graphs can outperform graph embedding and kernel based

methods in terms of accuracy and efficiency. For example, the LEAP search algorithm for

significant pattern search combined with Support Vector Machines (SVM) can yield bet-

ter results compared to kernel-based methods (Yan et al. 2008). By contrast, the gBoost

classifier tightly combines a frequent subgraph pattern mining model with linear program-

ming for graph classification and performs better than the frequent substructure mining

approach because gBoost uses graph class labels in the search for subgraph features (Saigo

et al. 2009). GraphSig is another approach that uses a scalable subgraph feature selection

method to extract significant subgraphs using local patterns (i.e., paths) inside subgraphs

captured by random walks (Ranu and Singh 2009). GAIA is an evolutionary computation

algorithm for extraction of significant subgraphs in graph datasets and has been shown to

perform well at the task of mining in chemical compounds (Jin et al. 2010).

Graph Kernels

In machine learning, kernel based methods (e.g., support vector machines [SVMs]

and kernel principal component analysis [KPCA]) have been successfully applied to a

range of learning problems involving various data types (e.g., text, graphs, and genome
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sequences)(Hofmann et al. 2008). Graph kernels have been developed for the analysis

of graph and network data to address structural pattern analysis and graph classification

and clustering problems. Graph kernel methods have been applied in bioinformatics

(e.g., analysis biological networks (Aittokallio and Schwikowski 2006) and protein

function prediction (Borgwardt et al. 2005)), pattern recognition (e.g. image classification

(Harchaoui and Bach 2007)), and chemical informatics (e.g., molecular fingerprinting

(Ralaivola et al. 2005b)).

Graph kernel methods transform complex structured data (usually non-linearly

separable) into a feature space where the data, in the transformed representation, can be

separated approximately linearly (Hofmann et al. 2008). Then, the core computations of

the graph kernel methods can be performed via operations of matrix algebra. A graph

kernel is a function k(x, y) that measures the similarity between two graph objects x and

y. The similarity in this case can be based on common structural patterns (e.g., paths

or walks) that two graph objects share. Common subgraph structures include important

connectivity information (represented by the vertex adjacency lists), in addition to vertex

labels. Previous research has focused on the development of graph kernel methods that

are based on structural patterns that efficiently represent semantics embedded in graphs

(Vishwanathan et al. 2010). Examples of graph kernels include pattern diffusion (Kondor

and Lafferty 2002), graphlets (Shervashidze et al. 2009), subtrees (Shervashidze and

Borgwardt 2009), and cyclic patterns (Horv et al.2004). More details on graph kernel

models and algorithms can be found in (Vishwanathan et al. 2010).
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The structural pattern analysis model that is presented in this thesis can be compared

to a class of graph kernels known as Marginalized Graph Kernels in which the similarity

between two graphs is calculated by taking into account the amount of labeled sequences

of nodes or walks that the two graphs share (Kashima et al. 2003). The model can also be

compared to graph kernels based on graphlets (subgraphs). A summary of popular graph

kernel methods follows.

Random Walk Kernels

Random walk kernels (Borgwardt et al. 2006) construct a direct product graph for two

input graphs. A direct product of two graphs G and H is a graph I for which the vertex

set is the Cartesian product of the vertex sets of the input graphs (i.e., V (G)× V (H)) and

there exists an edge between two vertices x = (a, b) and y = (c, d) if and only if there

is an edge between a and c in graph G and there is an edge between b and d in graph

H . Then, every vertex in the direct product graph then represents a pair of nodes from

the original input graphs. Random walking on a direct product graph I is the process of

generating a vertex sequence such that every subsequent vertex is chosen according to the

last vertex in the sequence and a transition probability function defined on the adjacency

matrix. This probability function determines the next vertex to be picked given the

identity of last vertex chosen so far. A random walk on the direct product on two graphs

corresponds to a simultaneous random walk in the two original graphs. The number of

walks in the direct product of two graphs quantifies the similarity between these two graphs.

Subtree Kernels and Cyclic Pattern Kernels

Graph kernels that are based on subtrees and cyclic patterns can capture more semantic
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and structural information in a graph (compared to random walks). Subtree patterns within

graphs can be identified by designating a vertex as the tree root and then adding all vertices

that are reachable from root in a certain number of steps (these steps are called tree height)

(Shervashidze and Borgwardt 2009). This specification can be implemented by a variety

of techniques. For instance, a subtree graph kernel based on Weisfeiler-Lehman test of

isomorphism is a fast method that can scale to large graphs (Shervashidze and Borgwardt

2009). Kernels based on cyclic patterns (Horv et al.2004) count the number of cycles

shared by two graphs, limited to a predefined number of simple cycles, because computing

general cycles is NP-hard.

Shortest-paths Kernels

Kernels based on shortest paths within graphs (Borgwardt and Kriegel 2005) have a

computational advantage, since shortest paths can be identified in polynomial time

while they express the inherent semantics in graphs. A first step toward computation

of shortest-paths kernel is to transform original graphs into shortest-paths graphs using

Floyds algorithm (Floyd 1962). Then, the shortest-paths kernel can be defined on edges of

the Floyd transformed graphs.

Graphlet Kernels

Graphlets are subgraphs with a small number of vertices. For subgraphs of order k (i.e.,

of k vertices), vectors with components indicating frequency of a subgraph of order k are

used to measure the similarity of two input graphs (Shervashidze et al. 2009). Each graph is

represented by these count vectors and the kernel function is defined on this representation.

Graphlet kernels have a scalability advantage to process datasets of large graphs. This
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approach is similar to frequent pattern mining approaches to graph classification problem

(e.g., GraphSig (Ranu and Singh 2009)) where feature vectors of graphs indicate presence

or absence of significant subgraphs within a graph item in dataset.

1.2.3 Concept Graphs

The concept graphs (CGs) (Sowa 2008) formalism was defined by the linguist John F.

Sowa as a basis for database support to process natural language queries. These graphs

have two types of vertices: (1) concepts and (2) concept relations. A concept is an

undefined primitive that can represent entities such as objects, actions and places. These

entities do not have to be defined. Concept relations are used to connect concepts. Concept

graphs are bipartite: i.e., edges cannot link vertices of the same type. A CG may consist

of one vertex of a concept type. Concept relations vertices must have edges (cannot be

isolated in the graph).

Concept graphs have been used for data representation when attempting to solve

problems not necessarily related to database query processing. Natural language utterances

can be perceived as a surface form (obeying linguistic rules of grammar and style)

that embed interrelationship between concepts. As a formalism for graph-based data

representation, CGs can be used to map natural language text utterances into a graph

dataset. This mapping needs the syntactic relationships between words to be determined

by assigning syntactic semantic labels to words in an utterance.

Construction of CGs has four steps. The first step is the annotation of natural language

text to define its syntactic structure. Linguistic resources (e.g., lexicons, Part-of-Speech

14



CHAPTER 1. INTRODUCTION

(POS) taggers, and syntactic parsers) are necessary to compute syntactic structures of

utterances. In the second step, the semantic roles of constituents of a given sentence are

determined based on linguistic knowledge resources such as WordNet (Miller 1995) and

VerbNet (Kipper et al. 2006). A semantic role represents what a noun phrase plays with

respect to a verb in a given sentence. For instance, if a noun is determined as a subject

of a transitive verb, then the semantic role of the noun is agent. Several semantic roles

can be assigned to noun phrases including patient, recipient, and cause. The third step is

to generate a subgraph for each semantic role defined in an utterance. Finally, a concept

graph is generated by linking head vertices (i.e., main concepts) of subgraphs using

concept relations determined by transformation grammars.

1.3 Contributions

The goal of the thesis was to develop computational methods that could exploit large,

diverse, and high-dimensional datasets (e.g., as in graphs/networks and texts), in addition

to available ontology-based annotations, to evaluate organisms as candidate disease

models. The approach included developing mathematical models and algorithms to

integrate knowledge sources and datasets in a way that can: (1) address the data spar-

sity problem, and (2) increase the generalization capability (e.g., learning relationships

within one dataset so that these relationships can be useful in the analysis of other datasets).

The experiments carried out during this thesis were of four types. First, genetic

pathways of human diseases were analyzed using a graph pattern mining algorithm to

identify patterns that may correlate with a given disease type (e.g., cancer). Second, the
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graph pattern mining method developed for this thesis was benchmarked using chemical

compounds datasets, comparing the developed method to state-of-the-art graph kernels and

frequent pattern mining methods. Third, the previously identified human disease patterns

from genetic pathways were used to predict pathways in biological interaction networks

for a number of organisms, aiming to rank each organism according to the degree to

which its interaction network covers a given disease pattern. Finally, a fourth experiment

evaluated the potential to identify disease model organisms from biomedical literature

using a method that combined graph pattern mining with natural language processing

techniques. What follows is a summary of each experiment, each of which are detailed in

the subsequent chapters of this dissertation.

1.3.1 Analysis of Disease Patterns in Genetic Pathways

Current state-of-the-art models for graph pattern analysis and classification have some

limitations regarding the processing of sparse and high-dimensional datasets of genetic

pathways. Given that many genetic pathways may be unknown, it can be typical to

have a small number of genetic pathways in a given graph dataset. Each graph may

contain a set of vertices with a diverse set of labels (labels are drawn from a large space

of possible genes, substrates, and proteins), it can be challenging to extract subgraph

patterns that meet a given support value (e.g., frequency threshold). Genetic pathways

that contain genes with known mutations to cause disorders are of interest in biomedicine.

Disease pathways therefore offer a valuable resource to support a system-level study of

complex diseases (e.g., diseases believed to be caused by genetic interactions). Analysis

of graph datasets of disease pathways may highlight molecular mechanisms of diseases
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at a system-level through identification of significant patterns. Disease pathways can be

categorized according to disease types (e.g., immune versus infectious diseases). To test

the hypothesis that functional structural patterns of interacting biological entities (e.g.,

genes) correlate with disease classes, a graph classifier was developed for genetic pathways.

Approach

The developed graph pattern analysis method leveraged Gene Ontology (GO) annotations

to label graph vertices to indicate general molecular functions of genes/proteins. This

vertex labeling scheme addressed the data sparseness problem by mapping a set of

genes/proteins that shared the same molecular function to one label value. The labeling

scheme had three benefits. First, it increased the frequency of vertex labels in a given

graph dataset. Second, subgraph patterns were perceived as molecular functional patterns

within biological processes that enabled the analysis of genetic pathways at a functional

level. Third, functional subgraph patterns enabled a more generalized capability to allow

for the matching of identified patterns to other genetic pathways.

A statistical model was developed to provide a quantitative measure for evaluating

subgraph patterns. A mathematical function, termed graph partitioning, was defined based

on edge sets of a graph and used to map a given graph onto a set of edge-disjoint subgraphs,

each of which were assumed to represent a feature. Typically, there is a large space of

possible partitionings. The statistical model provided a means to score partitionings.

The Expectation-Maximization (EM) algorithm was used to estimate parameters of the

statistical model while searching for the most likely partitionings in a graph dataset. The
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set of best partitionings highlighted key functional subgraph patterns, termed disease

fingerprints, in disease pathways.

For the pathways classification task, a naı̈ve Bayes graph classifier was developed based

on the graph pattern analysis model. Training data were analyzed to identify the best graph

partitionings and estimate model parameters. Then, the graph classifier was used to ana-

lyze test data to search for most likely partitionings using model parameters estimated dur-

ing training. This naı̈ve Bayes classifier allowed for incorporation of external knowledge

source such as a priori distribution of graph class labels. This enabled the graph classifier

to process unbalanced datasets (i.e., when the distribution of class labels is highly skewed).

The classifier was tested on genetic disease pathway datasets from the Kyoto Encyclopedia

of Genes and Genomes (KEGG) database.

Contributions

The contributions of this study to this thesis are a method that:

• Addresses the data sparseness problem of disease pathway graph datasets through

annotation of genes/proteins with molecular function

• Provides a statistical model for graph pattern analysis

• Utilizes a search algorithm to explore large space of subgraph patterns

• Identifies disease fingerprints from disease genetic pathways

• Leverages a naı̈ve Bayes’ classifier for graphs that addressed the problem of genetic

pathway classification
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Major Results

The developed graph pattern analysis and classification model was evaluated on a dataset

of 56 disease genetic pathways from the KEGG database. The analysis revealed that dis-

ease fingerprints in genetic pathways of cancer disease and infectious diseases could be

identified with graph partitionings of disease pathways. High scoring fingerprints were ex-

tracted and made available for domain expert review. Based on a cross-validation of the

KEGG pathways dataset, the method achieved a Positive Predictive Value (Precision) of

0.77 for cancer type pathways and of 0.6 for infectious type pathways, as well as a Sen-

sitivity (Recall) of 0.83 and 0.75 for cancer type pathways and infectious type pathways,

respectively.

1.3.2 Graph Pattern Analysis in Drug Chemical Compounds

Classification of chemical substances and compounds according to chemical activity in

anti-cancer screen experiments is a challenging problem. Given the large numbers of pos-

sible chemical compounds (tens of thousands), there is a need for automated tools for

prediction of chemical compounds activities. Chemical compounds can be modeled as

indirected graphs with vertices representing atoms and edges representing bonds linking

atoms. Unlike biological interaction networks that have a large number of genes/protein

names, the distribution of vertex labels in chemical compounds is highly skewed, with four

or five elements (including Hydrogen, Carbon, Nitrogen, and Oxygen) representing more

than 90 percent of vertex labels in a chemical compound graph dataset. This can be a chal-

lenging factor for machine learning algorithms to accommodate. For instance, a chemical

compound of 12 atoms may have only two unique labels (e.g., Benzene [C6H6]). This

necessitates the search for structural pattern features other than single vertex labels. These
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complex structural features are based on graph connectivity and can be represented by mi-

crostructures such as walks (maximal paths or cycles) and trees. Some graph pattern analy-

sis models utilize cycles within graphs (e.g., cyclic pattern graph kernels (Horv et al.2004)).

However, patterns with very similar vertex labels are of low discriminative power for a task

such as clustering and classification. For instance, many organic compounds consist of

rings of five or six carbons (e.g., Cyclopentane [C5H10] and Benzene [C6H6]). This char-

acteristic would make rings of carbon atoms of little discriminative power for task such as

classification.

Approach

A graph pattern analysis model was developed that put greater emphasis on graph connec-

tivity while searching for key subgraph patterns (e.g., trees, cycles, and any general pattern

with a subset of edges). This model provided a quantitative measure of feature quality that

was used by a heuristic search algorithm to explore a large space of subgraph patterns and

to identify discriminative features within items of a graph dataset. Walks were essential for

capturing graph semantics defined by the vertex connectivity and the function of heuristic

search algorithm required keeping track of walks inside subgraph patterns. A subgraph pat-

tern was then approximated by a set of walks, and the probability of observing a subgraph

pattern in a dataset was approximated as a function of probabilities of included walks. This

method may have a good generalization capability by being able to compute the probabil-

ity value of observing a new subgraph pattern (not in the training dataset) and making use

of the fact it might share many walks with other pattern previously found in the training

data. A second advantage of the proposed approach is that approximating a subgraph by
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walks avoids the computational overhead of testing whether one subgraph is isomorphic to

another.

Contributions

The contributions of this study to this thesis was a new method that:

• Estimated subgraph pattern frequency by approximating patterns by sets of walks

• Was empirically evaluated on seven datasets and compared to two state-of-the-art

methods of graph pattern analysis: graph kernels and frequent pattern mining

• Included the building of two graph classifier systems: (1) a naı̈ve Bayes classifier and

(2) a Support Vector Machines (SVM) classifier.

Major Results

The developed graph pattern analysis method was tested in the context of a graph classi-

fication task for seven chemical compounds datasets. The performance was compared to

four graph kernel methods and one frequent pattern mining method. In addition to classi-

fication accuracy, a t-test was used to ascertain if the best performing classifier for a given

analysis was significantly better than others. The frequent pattern mining classifier did

not achieve significant accuracy. Graph kernels provided significant performance on three

datasets, while the method developed for this thesis provided significant accuracy on three

other datasets. For one dataset there was no clear winner. It is important to note that two out

of four graph kernel methods were not able to complete computation for two out of seven

datasets. For these two datasets, the system developed for this thesis was able to com-
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plete its computation, indicating a computational tractability advantage for the developed

method.

1.3.3 Assessment of Organisms as Potential Disease Models

Model organisms are of great importance in biomedicine, providing systematic and con-

trolled environments to study and uncover the underlying mechanisms of diseases. Mice

(Mus musculus) and rats (Rattus norvegicus) are dominantly used as model organisms;

however, there may be other organisms that could be used as models for certain diseases.

For instance, McGary, et al. suggested a yeast model (Saccharomyces cerevisiae) for angio-

genesis disorders, a worm model (Caenorhabditis elegans) for breast cancer, a plant model

(Arabidopsis thaliana) for Waardenburg syndrome, and a mouse model for autism (Mc-

Gary et al. 2010). As the McGary, et al. study demonstrates, high throughput sequencing

techniques provide more genetic material data for organisms than ever before and recent

advancements in comparative genomics allow for prediction of putative gene functions and

also for predicting molecular interactions between pairs of genes. Thus, there may be an

opportunity to leverage automated approaches to provide in silico prediction of organisms

as potential disease models.

Approach

A method for automated analysis of biological interaction networks and human disease

genetic pathways was developed to assess organisms as potential disease models. The

approach leveraged knowledge about human diseases as present in genetic pathways, or-

ganism biological interaction networks, and gene molecular function annotations using the

Gene Ontology to rank potential model organisms for a given disease category. The ap-
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proach starts with learning of characteristic functional patterns of diseases within genetic

pathways. Then, the characteristic functional patterns were matched to subnetworks in

biological interaction networks. These subnetworks were hypothesized to be parts of (po-

tential new) genetic pathways and were compared to a set of reference disease pathways.

The quality of a candidate model organism was then determined by the degree to which its

biological interaction network covered patterns that were found to match reference disease

pathways.

Contributions

The contributions of this study to the thesis are:

• A molecular and graph-based methodology for evaluation of potential model organ-

isms

• A graph indexing and query processing method to allow efficient matching of query

subgraph patterns to large interaction networks

• Prediction of genetic pathways in biological interaction networks

Major Results

Two major findings were reported for this method. The first major finding pertained to the

effectiveness of using knowledge-based models of graph pattern analysis for increasing

the generalization capability of patterns. Generalized patterns had nodes with two types of

annotations: (1) gene/protein name and (2) molecular function. Using generalized patterns

that were identified within genetic pathways, the method was able to recover a number

of known pathways (already published in databases of organisms), with the potential of
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discovering unpublished pathways. The study revealed that one generalized pattern can be

successfully matched to subnetworks within biological networks of different organisms,

and these subnetworks share same structure (links) and molecular annotation of nodes,

but sets of gene/protein names in nodes might be different. A major finding was related

to the effectiveness of using predicted interactions between genes to increase the size

of interaction networks to cover more patterns. Some interaction networks can contain

hundreds of manually curated interactions. These small-sized networks cannot provide

the necessary coverage of generalized patterns and therefore it was necessary to utilize

predicted interactions (using comparative genomics and text mining methods) to increase

network sizes.

GO-annotated subgraph patterns (fingerprints) within genetic pathways of diseases

were matched to GO-annotated biological interaction networks of 14 organisms. The

assessment of each organism was based on coverage of biological networks to disease

fingerprints. Pattern coverage was calculated as the percentage of subgraph patterns that

successfully matched a subnetwork in an organism’s network such that the gene/protein

names within this subnetwork were found in a reference (known/published) pathway. For

each disease, organisms were ranked based on performance in terms of pattern coverage.

A number of organisms (besides mice or rats) were found to be highly ranked with regard

to coverage of disease patterns. For instance, the plant Arabidopsis thaliana (mouse-ear

cress) and bacterium Escherichia coli were found to be the best possible model organisms

for colorectal cancer and thyroid cancer, Sacchromyces cerevisiae (Bakers yeast) was

found to be a possible good model for Eppstein-Barr virus disease, and Danio rerio

(zebrafish) was found to be a possible good model organism for Renal cell carcinoma,
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Melanoma, and Pertussis.

The second major finding of this method was the empirical evaluation of the contribu-

tion of predicted interactions to successful prediction of new pathways. Some organisms

had few interactions with evidence that was experimentally supported. Using predicted in-

teractions inferred by genome-context methods such as gene fusion and gene-neighborhood

methods helped increase network size and hence increase the chance of a generalized pat-

tern to have match to a subnetwork. For instance, there were about 112 interactions for

Danio rerio (Zebrafish) in the manually curated database BioGRID. This network is very

small to cover patterns of genetic pathways and thus decreased the chance of predicting

new pathways. With predicted interactions imported from the meta-database STRING,

47,000 interactions were added to the network for Danio rerio. This had a positive impact

on performance of this organism as a potential model organism in terms of successfully

predicting new pathways.

1.3.4 Graph-based Mining in Biomedical Literature for Assessment

of Disease Model Organisms

One of the goals of biomedical research efforts is to discover genes and their functions in

addition to the related molecular mechanisms (or pathways) underlying cellular processes

in organisms. Methods of comparative genomics have been developed to predict gene func-

tions using information about similar genes of previously studied organisms. This has led

to an increasing number of research reports that describe newly discovered mechanisms

underlying biological phenomena, in particular, those related to disease etiology. Scientific

knowledge may be represented by relationships between domain scientific concepts men-
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tioned in literature. However, this knowledge cannot be easily accessed and summarized

to address various scientific questions, because it is generally embedded in free text. In

order to discover patterns in text data, raw text content need to be annotated with morpho-

syntactic and semantic information that describe the structures of sentences. Data mining

methods, coupled with natural language processing (NLP) methods, may thus provide a

means to identify significant patterns that summarize information embedded in biomedical

literature. The availability of biomedical knowledge in high-volume, freely available re-

sources (e.g., as citations indexed by MEDLINE) provides an opportunity to leverage data

mining methods to test data-driven hypothesis about biological phenomena.

Approach

A method was developed to generate graph-based representations of text sentences using

available morpho-syntactic information as well as semantic annotations. This graph-based

representation maintains a labeling scheme in which each vertex has multiple annotation

types, termed factors. A statistical pattern analysis model was developed to help identifi-

cation of significant patterns (termed fingerprints) in graphs. This pattern analysis model

combines annotation factors information stored in each vertex of the graph. Towards the

goal of assessment of potential model organisms, the methods used NLP annotations of

biomedical citations (MEDLINE) to generate a graph-based representation of sentences in

biomedical citations (MEDLINE), and then applied the graph pattern analysis model to

uncover significant subgraph patterns. The pattern model allowed for the incorporation

of ontology-based annotations from knowledge bases to address the data sparsity problem

(that is particularly common with textual data) and to increase the generalization capabil-

ity of subgraph patterns. Generalization of subgraph patterns in this context meant that
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vertices in patterns were annotated with terms from ontologies that enabled patterns to be

matched to other patterns within graphs whose vertices were also annotated with the same

ontological terms.

Contributions

The contributions of this study to the thesis are:

• A new graph-based method for text pattern analysis allowed for application of graph

pattern analysis model to uncover complex relationships in text

• A multi-factor vertex annotation scheme and a factored graph pattern analysis model

enabled utilization of rich annotations of text data to address the data sparsity prob-

lem that is common with textual data

• The method was applied to a significant problem, which is how to summarize content

of biomedical citations using statistically significant patterns. This method enabled

the analysis of large number of citations to extract patterns about biological phenom-

ena. These patterns were used to assess organisms as potential disease models

Major Results

The proposed methods allowed for the processing of a corpus of nine million sentences

that represents biomedical abstracts related to organisms and biological processes and

phenomena. A total of 82 organisms were evaluated as potential models for six disease

categories. For each organism, a set of significant patterns summarized evidence on how

this organism can serve as a disease model for particular disease categories. A total of six

significant pattern sets were generated for each organism. Each of the pattern sets of an
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organism was compared to the corresponding pattern set of humans. The proportion of

matching between an organisms pattern set and the humans pattern set gave an indication

on whether this organism can serve as a better disease model.

The experiments suggested that there are potentially good candidate organisms for some

diseases in addition to the widely used organisms in laboratories. For instance, in the case

of cardiovascular diseases, Oncorhynchus mykiss (trout) performed the best as a potential

model organism, along with Danio rerio (Zerbafish) and Drosophila melanogaster (fruit

fly). In addition, the Torpedo torpedo (Torpedo fish) and Gallus gallus (chicken) had the

best matches as potential models for immune system diseases. For nervous system dis-

eases, birds (especially G. gallus) had the best matches to human fingerprints. D. rerio still

performed the best as a potential model for Endocrine system diseases.

1.4 Thesis Organization

Chapter 2 through 5 are based on manuscripts that have been published or are in the pro-

cess of being peer-reviewed. In Chapter 2, the problem of mining disease patterns within

genetic pathways is formally defined. A mathematical model for pattern analysis and an

algorithm for parameter estimation are presented. In addition to finding disease patterns,

the problem of classification of genetic pathways is addressed using a naı̈ve Bayes classi-

fier based on the developed model. Chapter 3 presents a benchmarking of the developed

graph pattern analysis method through analysis of chemical compounds datasets (which

are larger in size, structurally different, and computationally harder to process than genetic

pathways). Performance of the developed method was compared to two different graph

analysis methods (graph kernels and frequent pattern analysis). Chapter 4 presents the
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problem of evaluation of organisms as disease models using biological interaction networks

and knowledge resources. A graph indexing and query processing method was developed

to provide knowledge-rich access to data. In Chapter 5, the problem of evaluation of model

organisms was addressed using an approach that combined natural language processing

with graph pattern mining through graph-based analysis of biomedical literature. Chapter

6 presents over-arching conclusions and presents a discussion on potential future work.
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Chapter 2

Mining Disease Fingerprints From

Within Genetic Pathways

Nabhan, A. R. and I. N. Sarkar (2012). Mining disease fingerprints from within

genetic pathways. In AMIA Annual Symposium Proceedings, Volume 2012,

pp. 1320. American Medical Informatics Association.

2.1 Abstract

Mining biological networks can be an effective means to uncover system level knowledge

out of micro level associations, such as encapsulated in genetic pathways. Analysis of hu-

man disease genetic pathways can lead to the identification of major mechanisms that may

underlie disorders at an abstract functional level. The focus of this study was to develop an

approach for structural pattern analysis and classification of genetic pathways of diseases.

A probabilistic model was developed to capture characteristic components (fingerprints)

of functionally annotated pathways. A probability estimation procedure of this model
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searched for fingerprints in each disease pathway while improving probability estimates

of model parameters. The approach was evaluated on data from the Kyoto Encyclopedia of

Genes and Genomes (consisting of 56 pathways across seven disease categories). Based on

the achieved average classification accuracy of up to 77%, the findings suggest that these

fingerprints may be used for classification and discovery of genetic pathways.

2.2 Introduction

Biological cells have sophisticated information processing systems with highly modular

architectures. The flow of information in and between cells can be achieved through a

series of biochemical interactions that are composed of a network with a fixed or changing

topology. Gaining insight into the operations of cells requires the analysis of components

(e.g., genetic material, chemical molecules, and compounds), identifying links (wiring)

that represent relations or interactions between components, and discovering information

pathways in these networks. Analysis of the structure and dynamics of biological networks

plays an important role in understanding architecture and function of biological systems.

To level the landscape for a system-based understanding of cellular processes, there has

been much previous work in the construction of biological network models, accompanying

databases, and development of identification (prediction) algorithms of genetic pathways

(Rual et al. 2005, Kanehisa et al. 2010, Stelzl et al. 2005, Franke et al. 2006, Caspi et al.

2008).

Network medicine (Barabasi et al. 2011) represents one application area where the

analysis of biological networks has a potentially direct impact on human health. In this

regard, the analysis of genetic pathways may advance knowledge towards an understanding
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of the molecular underpinnings of the disease process (Rudy et al. 2008, Karnovsky

et al. 2012, Novoyatleva et al. 2010, Liu and Olson 2010, Slattery et al. 2009, Cogswell

et al. 2008). Important questions about complex diseases, such as Alzheimer Disease

and Parkinson Disease, have been explored by investigating genetic pathways (Lambert

et al. 2010, Pan et al. 2008). Genetic pathways can also play an important role in drug

discovery. For example, targeting a specific step in a disease pathway with the aim of

identifying highly specific inhibitors can be used in drug development efforts (Pawson

and Linding 2008). Additionally, pathway analysis has also been shown to be useful for

analyzing groups of proteins in signaling or metabolic pathways with known functions to

find more effective drug targets (Arrell and Terzic 2010).

Functional pathway analysis can be broadly classified into over-representation analysis

(ORA), functional class scoring (FCS), or Pathway Topology (PT)-Based approaches

(Khatri et al. 2012). In contrast to ORA or FCS, PT analysis takes into consideration

structural and topological information about pathways, such as positions of genes in the

pathway diagram, types of reactions, and number of reactions. This approach can be

supported by knowledge within knowledge bases such as the Kyoto Encyclopedia of Genes

and Genomes (KEGG) (Kanehisa et al. 2010), MetaCyc(Karp et al. 2002), and Reactome

(Joshi-Tope et al. 2005). A potentially insightful aspect of pathway analysis includes the

study of structural patterns that might be embedded within directed graphs. Studying such

structural patterns could be used to identify major sub-processes that may be associated

with major biological functions (e.g., regulation).
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The structural analysis of genetic pathways lies at the intersection of biomedical

informatics, graph theory, and data mining (Maudsley et al. 2011, Huang et al. 2011, You

et al. 2009). Many research efforts have been directed to the prediction and identification

of pathway features of potential interest. You, et al. used graph substucture analysis to find

biologically meaningful substructures in KEGGs metabolic pathways (You et al. 2009).

Cakmak and Ozsoyoglu showed that functionality patterns in metabolic networks enriched

with functional annotation of enzymes could be used to discover unknown pathways

in organisms (Cakmak and Ozsoyoglu 2007). Battle, et al. used quantitative genetic

interaction measurements within a Bayesian learning framework to identify pathways

(Battle et al. 2010). Cerami, et al. combined an analysis of sequence mutations with a

network analysis of molecular interaction networks to identify core disease pathways in

Glioblastoma (Cerami et al. 2010). Chen, et al. used topological information of graphs

to find optimal set of features to answer the question whether a module of proteins forms

a meaningful pathway (Chen et al. 2010). Huang, et al. used feature set including graph

properties, biochemical and physicochemical properties for pathway classification (Huang

et al. 2011). Many of pathway analysis studies combine graph structure information,

knowledge about genes and proteins at functional and biochemical levels.

The focus of this study was on the structural pattern analysis of genetic pathways of

diseases. The particular goal of the study was to identify major components that may

characterize disease classes, focusing primarily on complex disorders (i.e., disorders that

involve multiple genes). For each disease category, distinctive functional and structural

characteristics (fingerprints) were identified based on the training of a classification model

using genetic pathways dataset.
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2.3 Methods

The overall goal of this study was to develop an approach to identify unique characteristics

(fingerprints) associated with a given disease class. The process started by annotating

elements within a training set of disease pathways with functional annotations. These

functionally annotated pathway graphs were then structurally analyzed to learn a proba-

bility model that accounted for both the graph structure and functional annotations. This

model was used in pathway classification to assess the effectiveness of learning disease

characteristics.

2.3.1 Functional Annotation of the KEGG Pathways Dataset

KEGG pathways are stored in files formatted according to the KEGG Markup Language

(KGML), used to model genetic pathways. The KGML files were parsed using the

BioRuby API (Goto et al. 2010) to extract nodes and edges that composed a directed

graph. Edges were annotated in the KGML files with relation labels such as activation,

phosphorylation, and expression. Nodes that represented genes were further annotated

with functional annotations using the Gene Ontology (GO), based on information extracted

from the Human Protein Reference Database (HPRD) (Prasad et al. 2009).

Each node in a KGML file can represent more than one gene. Furthermore, each gene

may match more than one GO term in HPRD annotated dataset. Thus, there can be a list of

GO terms for each entry in a given pathway. Because the proposed model for classification

can handle only one annotation per node or edge, a preprocessing step was developed that
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(a)

{GO1} {GO2,GO3}activation {GO4}expression

(b)

GO1

GO2activation

GO3

activation GO4
expression

expression

Figure 2.1: Node and edge replication. A node that has more than one GO annotation
in graph (a) has been replicated in graph (b). As a consequence, edges have also been
replicated in (b).

took nodes with more than one GO term and replicated them. Furthermore, each replicated

instance of a given node carried only one GO term. Whenever a node was replicated, its

incoming and outgoing edges were copied to link replicated nodes to their predecessor and

successor nodes. Figure 2.1 illustrates this process.

2.3.2 Graph Representation of Genetic Pathways

Disease pathways were modeled as labeled directed graphs where nodes represented genes

and edges represented relationships between genes. An example of a labeled graph is

shown in Figure 2.2. Node V3 has a label F3 and Node V4 has label F4. An edge (E4)

connecting this pair of nodes has the label activation. In addition to labeled nodes and

edges, each disease pathway was associated in KEGG with a class label categorizing the

nature of the disease. Examples of pathway class labels in the dataset include: cancer,

infectious, and immune.
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V1:F1

V2:F2

E1:activation

V3:F3

E2:activation

V4:F4

E3:expression

V5:F5

E5:activation

V6:F6

E6:expression

E4:activation

Figure 2.2: A labeled directed graph that represents a functionally annotated genetic path-
way.

2.3.3 Mathematical Model

A particular class of diseases was assumed to have specific characteristics that make it

distinct from other disease classes. The implemented model thus took into account asso-

ciations between a particular disease class and pathways structure and annotations. Every

graph instance, G, was considered as one of many possible examples that contained char-

acteristics of a disease class C. Every pair of disease class and graph (C,G) was assigned

a probability value P (G|C), which was interpreted as a quantification of the amount of

characteristics of disease class C contained in graph G. The system then aimed to find

disease class C, given an observed graph G. These relationships can be expressed using

Bayes theorem:
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P (C|G) =
P (C)P (G|C)

P (G)
(2.1)

Then, the goal of the classifier is to search for a disease class Ĉ for which P (C|G) was

the greatest, where

Ĉ = argmaxCP (C)P (G|C) (2.2)

This makes the assumption that the denominator of Eq. 2.1 was independent of C, thus

suggesting that finding Ĉ was the same as finding C so that the quantity P (C)P (G|C)

was as large as possible.

Incorporation of Graph Substructures

The calculation of probability value P (G|C) needed to take into account the possible struc-

tural patterns of G that could be considered characteristics of disease class C. A given

graph can be decomposed in many ways into subgraphs, each of which can be considered

a candidate characteristic of a disease class. The decomposition of a graph into its sub-

graphs was defined using the following definition for graph partitioning:

Definition 2.1 A partitioning Φ of graph G is a function Φ : E(G) → N , where E(G) is

the edge set of G and N is the set of natural numbers. A subset of edges {e1, e2 ... ek} is

said to be in the same subgraph if and only if Φ(e1) = Φ(e2)... = Φ(ek).

A partitioning of a given graph is a set of subgraphs that are edge-disjoint (i.e., an

edge belongs only to one subgraph). This partitioning can be represented by an array of

integers where positions points to edges and content indicate a subgraph to which the

edge in position belongs. To illustrate this definition, consider the following example.
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Let E(G) =< E1, E2, E3, E4, E5, E6 > be an ordered sequence of edges in a graph G.

A partitioning can be represented as an integer array of length equal to the |E(G)|. A

set of subgraphs S is created according to this partitioning. For each subgraph gi ∈ S,

edge set of gi is E(gi) = {e|Φ(e) = i}. An example of a partitioning Φ is the sequence

< 1, 2, 1, 2, 3, 3 >, which means that G can be divided into three subgraphs: g1 containing

edges E1, E3, g2 containing the edge E2, E4, and g3 containing the edges E5, E6. Figure

2.3 shows an example of this kind of partitioning.

V1:F1

V2:F2

E1:activation

V3:F3

E2:activation

V4:F4

E3:expression

V5:F5

E5:activation

V6:F6

E6:expression

E4:activation

!"#

!$#

!%#

Figure 2.3: A partitioning of graph G into three subgraphs g1, g2 and g3.

To incorporate structural patterns in the calculation of P (G|C), graph partitioning can

be introduced as a hidden variable Φ, and hence P (G|C) can be expanded as:
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P (G|C) =
∑

Φ

P (Φ, G|C) (2.3)

A partitioning function naturally divides a graph into a set of features that can be used

for classification. Since there might be many possible partitionings (some of them might

be equally probable), a sum over partitionings is used in the right hand side of Eq. 2.3. Let

S = {g1, g2...gn} be the set of subgraphs ofG according to a partitioning Φ. The likelihood

of an arbitrary partitioning Φ of graph G given a class C can be expressed as:

P (Φ, G|C) =
∏
g∈S

P (g|C) (2.4)

Where, S is the set of non-overlapping subgraphs of graph G according to partitioning

Φ: S = {gi | ∀e ∈ E(gi), E(gi) ⊆ E(G),Φ(e) = i}.

The product of P (g|C) terms used in Eq. 2.4 assumes that subgraphs or features are

orthogonal. The value P (g|C) represents the likelihood that g is a characteristic of class C.

To simplify calculation of P (g|C), a subgraph g can be approximated by a set of maximal

paths, A, inside g. Hence,

P (g|C) ≈
∏
A∈g

P (A|C) (2.5)

And then, one can combine Equations 2.4 and 2.5:

P (Φ, G|C) =
∏
g∈S

∏
A∈g

P (A|C) (2.6)

Where, A ∈ g denotes a maximal path A inside subgraph g. Finally, the probability of

a given partitioning Φ can be calculated using
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P (Φ|G,C) =
P (Φ, G|C)∑
j P (Φj, G|C)

(2.7)

Equations 2.3-2.7 suggest an approach to compute the conditional probability P (G|C)

in a tractable manner. To compute this probability, it was first required to generate parti-

tionings. Then, the likelihood of each partitioning was calculated based on a conditional

probability distribution of paths P (A|C). Thus, finding paths inside subgraphs was needed

to build and update P (A|C). Therefore, the training procedure was based on finding paths

inside subgraphs and utilizing the concept of partitioning to compute P (G|C) according to

Equation 2.3.

2.3.4 Model Training

The objective of probability estimation is to build the conditional distribution P (A|C).

This involves counting co-occurrence of pairs of path A and a class C. Since, for any given

graph, there can be many different ways to decompose it into subgraphs, a single path may

simultaneously belong to more than one possible subgraph. The question is how to count

the co-occurrence of the path-class pair in this case? A possible solution is to weigh each

occurrence of path-class pair by the probability of the partitioning Φ to which that path

belongs. This step is called collecting fraction counts, since each occurrence of path-class

pair is discounted by the probability of partitioning Φ. The idea of collecting fraction

counts has been successfully applied to machine learning problems such as statistical

machine translation (Brown et al. 1993).

Counting Class-Path Co-occurrences
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To collect counts of path-class pairs, the probability of possible partitionings needs to be

computed. In turn, computing probability of partitionings needs the conditional probability

P (A|C), which depends on counting co- occurrences of path-class pairs. This problem

can be solved by an iterative training procedure using the Expectation Maximization

(EM) algorithm (Dempster et al. 1977). The first step is seeding the partitionings: to

generate a number of random partitionings (maximum number of partitionings is an

adjustable parameter of the tool) for each graph. Instances of path-class pairs, (A,C),

are then identified within each subgraph according to each partitioning. The counts of

(A,C) pairs are used to create the conditional probability distribution P (A|C). Thus,

this iterative process has two phases: (1) E-Step: search for and compute the likelihood

of each partitioning using Eqs. 2.6 and 2.7; and (2) M-Step: fraction counts of (A,C)

pairs are collected, and better estimates of conditional probability P (A|C) is produced.

The number of training iterations is an adjustable parameter. Since the used graph dataset

was limited in the number of items, it was not possible to reserve a portion of the dataset

for parameter tuning. The number of EM iterations was thus adjusted empirically and

the experiments on a randomized version of the dataset have shown that three iterations

of EM training yields best results. The outline of this process is shown in Table 2.1 presents.

At the beginning of model training, the conditional probability table P (A|C) is

initialized with single-edge paths. There is a minimum probability value ε = P (A|C) for

paths that are not discovered yet in early iterations of EM algorithm. In the E-Step, new

paths are likely to be discovered when new partitionings (and probably larger subgraphs

having longer paths) are explored in Hill-Climbing search for partitionings. These newly

discovered paths are added to the conditional probability P (A|C) when collecting fraction
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Table 2.1: P (A|C) probability estimation algorithm

Input:
D: graph data set G1, ..., Gn

N : Number of iterations
Process
1: Create seed partitionings and Initialize P (A|C) table with uniform probability
value.
2: for i = 1 : N
E-Step
3: for each G ∈ D
4: Let C be the class label of G and let the set of graph partitionings G.Φs =
searchForPartitionings(G,C)
5: Use Eq. 2.6-2.7 to compute the likelihood of every partitioning Φ ∈ G.Φs
M-Step
6: for each G ∈ D
7: for each Φ ∈ G.Φs
8: for each g ∈ S = {gi | ∀e ∈ E(gi), E(gi) ⊆ E(G),Φ(e) = i}
9: for each maximal path A ∈ g
10: CountTable(A,C)+=Φ.probability
11: Normalize entries of CountTable(A,C) to obtain P (A|C)
Output: updated P (A|C), G.Φ∗ //return conditional probability and best partition-
ing

counts in the M-Step.

2.3.5 Predicting Class Labels

Given a conditional probability model P (A|C) for paths and class labels as well as a

prior probability distribution model P (C) for class labels (P (C) can be computed using

frequency of each disease class in the dataset), a new graph instance was classified as

follows. A search for best partitioning for the target graph was performed, using all
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possible candidate class labels. The evaluation of partitioning quality was measured using

P (A|C) according to Eqs. 2.4-2.7. The Hill-climbing search for set of best partitionings

was performed. The candidate class label that maximizes Eq.2.2 was reported as target

class label. Table 2.2 shows how classification was performed.

Table 2.2: Predicting a class label for a test graph instance

Input: Graph G, set of class labels C, paths conditional probability distribution
P (A|C) and prior class probability distribution P (C)
Process
1: For each class label ` ∈ C
2: Using the probability distribution P (A|C), Φs = searchForPartitionings(G,`)
3: Compute P (`)P (G|`) according to Eqs. 2.3-2.6 using the set of best parti-
tionings
Output: Class label with the highest P (`)P (G|`) value

Extracting Disease Fingerprints

Fingerprints were defined as subgraphs representing structural patterns and were extracted

from the best partitionings of graph instances. These sets of subgraphs were considered key

characteristics of disease classes and highlight major processes (e.g., chains of reactions)

inside a disease pathway. Fingerprints were extracted from the best partitionings that had

probability scores greater than a specified threshold value (δ > 0.1), which represents con-

fidence about partitioning quality. The choice of the threshold value depends on the size of

graphs (in terms of edges) and the number of graphs in the dataset. This threshold helps one

to choose only highly probable partitionings for manual inspection. High threshold values

tend to print low numbers of partitionings to disk files. If more partitionings need to be ex-

amined, a slightly lower threshold value can be used. To show the importance of structural

patterns in identifying macro-level view of each disease pathway, maps were generated to
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represent joint distributions of GO terms. The intensity in these maps reflected how often

two GO terms were linked together by an edge in the graph. Since edges can have an-

notations for a set of basic processes such as expression or phosphorylation, a map was

generated for each process type. Thus, maps were generated for expression, phosphoryla-

tion, activation, etc. The spatial patterns of these maps enabled a global view of GO terms

connectivity within the complete data set. Nodes of subgraph fingerprints were mapped

onto points in maps to see if nodes of subgraph fingerprints tended to cohere (found to be

near each other) in the map. The maps were developed to highlight the utility of structural

patterns in contrast with micro-level patterns that emerge from graph-theoretic properties

such as edge degree distribution.

2.3.6 Experimental Settings

Datasets

Pathway diagrams were downloaded from KEGG Pathway database (December 2011).

GO annotations were extracted from the Gene Ontology file of HPRD. This dataset was

composed of 56 KEGGs disease pathways. The numbers of pathways per each class

category as defined by KEGG are shown in Table 2.3.

Evaluation Metrics

A goal class label was defined as a specific disease category that the binary classifier

should report as positive example. For example, Cancer could be a goal class label, in

contrast to the NonCancer class label, which should be reported as negative example. True

positives (TP ) were defined as instances with goal class label and to which the classifier

assigned goal class labels. False negatives (FN ) were defined as instances with goal class
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label that were assigned non-goal class labels by the classifier. False positives (FP ) were

defined as instances with non-goal class labels to which the classifier assigned goal class

labels. In this study, accuracy was measured as the geometric mean of Positive Predictive

Value (PPV ) and Sensitivity (Sn), where PPV = TP
TP+FP

and Sn = TP
TP+FN

. Finally,

accuracy was defined as: Ag =
√
PPV xSn.

Table 2.3: KEGG disease pathway classes.

Disease Class Instances
Cancer 15
Infectious 22
Substance Dependence 1
Neurodegenerative 5
Immune 7
Cardiovascular 4
Metabolic 3

Experiments

Each pathway in the dataset was annotated with GO terms of the manually curated HPRD

database. By excluding the Substance Dependence pathway data, which had only one

instance, this dataset was used to test six binary classifiers, one for each disease class. For

each disease class, a two-label dataset was generated. For instance, a cancer dataset was

developed that contained pathways with labels cancer and non-cancer. Then, evaluation

of accuracy of each binary classifier was measured on these six datasets. A 3-fold cross

validation procedure was applied to each dataset. Given the small dataset, cross validation

procedure was run for 30 iterations and average accuracy was calculated.
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2.4 Results

2.4.1 Classification Accuracy

Average accuracy for each of the datasets is shown in Table 2.5 (based on 30 cross valida-

tion runs). For Metabolic, Cardiovascular, Neurodegenerative, and Substance Dependence

datasets, the system was not able to classify any positive classes correctly (TP value was

zero), due to the small number of instances of these classes in dataset. However, the total

number of instances of these classes was 20, therefore including them, as negative examples

of cancer and infectious disease, in training data was important.

Table 2.4: Average classification accuracy.

Disease
Class

Accuracy PPV Sn

Cancer 0.8 0.77 0.83
Infectious 0.67 0.6 0.75

2.4.2 Disease Fingerprints

As a by-product of the EM training process, the best partitioning of each pathway graph

was saved to output files. Each partitioning highlighted a set of subgraphs (features) inside

a pathway. Annotating nodes of pathways with functional annotations (e.g., GO terms)

yielded an abstract representation of pathways. Thus, the subgraphs identified inside each

pathway could be regarded as functional sub-units. Each category of disease was assumed

to have its characteristic functional units (fingerprints) inside pathways under that category.

Individual GO terms could be found equally in pathway graphs of two different disease
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classes. Correlation tests may not be able to find a strong association between a disease

class and a given GO annotation of genes in pathway graphs. However, the conditional

probability distribution of paths and disease classes suggested that some paths tend to be

found more frequently in a specific class of diseases and less frequently in other classes.

Table 2.5 shows a number of paths that tend to appear in cancer pathways and those that

tend to appear in non-cancer disease pathways.

Table 2.5: Paths associated with cancer/non-cancer.

Annotated Path Disease
Class

GO:0003924-activation-GO:0004674# Cancer
GO:0004713-inhibition-GO:0004713# Cancer
GO:0003924-activation-GO:0030159#-GO:0030159-
activation-GO:0004674#

Cancer

GO:0003924-activation-GO:0004674#-GO:0004674-
phosphorylation-GO:0004712#

Cancer

GO:0030528-dissociation-GO:0003700# Non-
Cancer

GO:0004713-phosphorylation-GO:0003700# Non-
Cancer

GO:0005509-binding/association-GO:0005200#-
GO:0005200-binding/association-GO:0005198#

Non-
Cancer

GO:0004930-activation-GO:0003924#-GO:0003924-
indirect effect-GO:0004620#

Non-
Cancer

The maps shown in Figure 2.4-(e) give macro view of the linkage of GO terms in an-

notated graphs and demonstrate that distribution of pairs of GO terms is sparse. In general,

this view does not suggest much about the structure of graphs. Instead, they reflect the

fact that although there are many edges connecting GO terms in the graph dataset, only

few GO term pairs are linked more frequently than other. However, structural patterns that
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are uncovered in graphs can be important to learn facts about key functional components

inside graphs. Figure 2.4 shows such structural patterns, which are linked to maps of basic

processes of expression, phosphorylation, and activation as shown in Figure 2.4-(e). The

mapping of edges of these structural patterns into maps in Figure 2.4 suggests that biolog-

ical meaningful patterns do not necessarily correspond to spatial patterns in maps. This

might be because functional similarity is not the only reason to link two genes in a given

disease pathway. Functionally dissimilar genes might be found linked in a pathway, and

thus it would be expected to find dissimilar (spatially distant) GO terms to be linked in

a disease fingerprint (subgraph), but found spatially scattered in the map. It should also

be mentioned that the method presented here allows for the inclusion of some edges in

a disease fingerprint (subgraph) even though these edges are not directly related to that

disease.
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2.5 Discussion

Extracting meaningful structural patterns (fingerprints) of disease categories is important

for many reasons. Meaningful patterns can illustrate interactions between proteins in

functional terms that would help better understanding of genetic pathways. This, in

turn, can help biomedical and pharmacological researchers indentify important biological

sub-processes that might take place inside cells. From a knowledge discovery perspective,

identifying sets of fingerprints of disease pathways can be important for mining tasks

such as discovery and classification of disease pathways. In this study, a probabilistic

model was developed to identify such important substructures (disease fingerprints) in

functionally annotated pathways. Identified disease fingerprints were used in classification

of test set of disease pathways into disease categories.

The synergy of different sources of biological knowledge bases and computational

models is important to uncover patterns of interest. Biochemical, physicochemical, graph

based properties are integrated in models of analysis of large biological networks. Using

network properties alone can help in studying of structure and general dynamics of

networks, while looking for useful and meaningful patterns would require incorporation

of knowledge sources. Functional annotations have been shown important for discovery,

analysis, and classification of genetic pathways based on biological functions (Cakmak

and Ozsoyoglu 2007, Cerami et al. 2010, Hu et al. 2005, Liu et al. 2009). In this study, GO

terms were used to enrich KEGGs disease pathway graphs with functional annotations,

which were essential to represent these graphs at an abstract level. The integration of

knowledge sources also requires specially designed computational models to make best
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Figure 4. Disease fingerprints for cancer pathways and the mapping of their nodes onto maps that represent 
GO terms associations in data. Directed graphs that represent fingerprints extracted from best partitionings of 
cancer pathways are shown in (a)-(d). Pairs of GO terms in (a)-(d) that were part of expression, 
phosphorylation, and activation processes are highlighted in the maps shown in (e).  

 

This study aimed to address a problem related to discovery of key structural patterns in graph datasets. These 
patterns were searched for in the training process of a graph classification model. The problem was cast as finding 
optimal substructure feature sets (‘fingerprints’). The concept of partitioning enabled searching for features in a 
coherent way that is effective in avoiding irrelevant or redundant structural patterns. The proposed mathematical 
model and EM algorithm used the concept of partitioning to get better estimates for the conditional probability 
distribution for graph paths given disease classes. This idea can be similar to maximum likelihood (ML) 
phylogenetic analysis34. In a sense, ML phylogenetic analysis uses nucleotide transition probability distribution to 
search for more likely phylogenetic trees (which can be perceived as a hierarchy). The ML training for phylogenetic 
analysis produces a best scoring phylogenetic tree for a set of genes while improving parameters values for 
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Figure 2.4: Disease fingerprints for cancer pathways and the mapping of their nodes onto
maps that represent GO terms associations in data. Directed graphs that represent finger-
prints extracted from best partitionings of cancer pathways are shown in (a)-(d). Pairs of
GO terms in (a)-(d) that were part of expression, phosphorylation, and activation processes
are highlighted in the maps shown in (e), with axes representing GO terms.
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use of these sources. For instance, in this study, functional annotations were incorporated

in a probabilistic model that took into account associations between sets of functional

annotations as represented in paths and subgraphs. In contrast, using separate functional

annotations as features could be less effective than expected. For instance, only small

set of GO terms was identified as optimal features and was encoded in feature vectors

for graph classifications of pathway diagrams (Huang et al. 2011). Knowledge-enriched

models that make use of associations between GO terms can be more effective (Felsenstein

2004).

This study aimed to address a problem related to discovery of key structural patterns

in graph datasets. These patterns were searched for in the training process of a graph

classification model. The problem was cast as finding optimal substructure feature sets

(fingerprints). The concept of partitioning enabled searching for features in a coherent way

that is effective in avoiding irrelevant or redundant structural patterns. The proposed math-

ematical model and EM algorithm used the concept of partitioning to get better estimates

for the conditional probability distribution for graph paths given disease classes. This idea

can be similar to maximum likelihood (ML) phylogenetic analysis (Felsenstein 2004). In

a sense, ML phylogenetic analysis uses nucleotide transition probability distribution to

search for more likely phylogenetic trees (which can be perceived as a hierarchy). The ML

training for phylogenetic analysis produces a best scoring phylogenetic tree for a set of

genes while improving parameters values for nucleotide transition probability distribution.

A similar practice was followed here: the study aimed to produce the best partitionings

while improving the conditional distribution of paths given classes.

51



CHAPTER 2. MINING DISEASE FINGERPRINTS FROM WITHIN GENETIC
PATHWAYS

Identifying optimal feature set for graph classification is an important problem in graph

data mining (Jin et al. 2009, Ranu and Singh 2009). One method for graph classifica-

tion is to use graph pattern mining to generate candidate features. Then, optimal feature

set for classification is identified using variety of measurements such as information gain.

However, graph classification techniques that use graph pattern mining for feature selection

have three major problems:

1. The search for features is local and sequential. Candidate subgraph features are

extracted and evaluated in isolation. The problem with this method is that features

can be redundant or less informative.

2. The criteria used for feature selection might not be optimal. For instance, subgraph

frequency can be used as criterion for selecting features (e.g., using gSpan (Yan and

Han 2002) to find candidate features). Frequent subgraphs may not necessarily be

discriminative. On the other hand, some information theoretic features may not be

effective. For instance, LEAP search utilized information gain to look for features.

This strategy may fail in the following scenario as noted by Jin, et al.(Jin et al. 2009):

When no individual pattern has high discrimination power, a group of patterns may

jointly have higher discrimination power. Since LEAP search finds patterns sequen-

tially, it is unlikely that it will find such groups of jointly high discriminative power.

3. It can be difficult to separate the searching and classification processes.Separating

the search for subgraph features and classification when using feature vectors can

prevent the classification algorithm from using prior information about the distribu-

tion of class labels among graph instances.
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To address the above problems in this study, the search for optimal feature set was inte-

grated into the training of a probabilistic model for graph classification. The concept of par-

titioning and the utility of the partitioning function provided a means that naturally divided

graphs into candidate features. Upon completion of model training, the best partitioning

of each pathway instance provided a list of subgraphs that were considered characteristic

components of a given pathway. The limited size of the design dataset and few number

of instances per some disease classes made it not possible to analyze fingerprints for some

disease classes. As more diseases have related processes identified in the future, it may

be possible to analyze their fingerprints. Disease pathways in databases other than KEGG

would be considered in a future work to overcome the limits of small dataset size. The

scalability of this method to larger networks can be obtained by adjusting the maximum

number of partitionings, which is an adjustable parameter of the tool as mentioned in the

Methods section. By keeping smaller number of partitionings per graph instance, larger

networks with increased annotations can be processed.

2.6 Conclusion

In this paper, an approach is presented for structural analysis and classification of genetic

pathways of human diseases. Experiments on real data show good performance in terms

of classification accuracy while identifying characteristic components inside each pathway

both in training and testing examples. The highlighting of characteristic functional compo-

nents (fingerprints) inside each pathway gives justification of classification decisions and

may help improve the understanding of how genetic pathways act at component level. The

proposed model may be generalized to many biological networks that are modeled as an-

notated directed graphs.
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Chapter 3

GPAM: Graph Pattern Analysis Model

Nabhan, A. R. and I. N. Sarkar (2013). GPAM: Graph Pattern Analysis Model.

In preparation.

3.1 Abstract

Structural pattern analysis of graph and network data is a core problem in graph data min-

ing tasks including exploratory data analysis (e.g., detecting significant patterns), learning

(e.g., clustering, classification), and data management (e.g., graph indexing and query).

State-of-the-art graph pattern analysis methods (e.g., significant pattern mining and graph

kernels) aim to map high dimensional graph data into low dimensional feature space. Key

limitations of these methods include: (1) the search for patterns is local and sequential,

and (2) selecting proper interestingness measure can affect performance. In this paper, a

graph pattern analysis model (GPAM) is presented. This model allows for simultaneous

and global pattern analysis of graphs in a dataset, taking into consideration the context of

a candidate pattern (i.e., neighboring subgraph patterns). The iterative algorithm for learn-
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ing model probabilities leads to emergence of significant patterns in the dataset. Efficacy

of GPAM is demonstrated by implementing two graph classification systems for graph

datasets of chemical compounds. Results show that the proposed model can be a viable

alternative to current kernel-based and graph mining methods.

Index Terms: Structural Pattern Analysis, Graph classification, Graph Partitioning

Function

3.2 Introduction

Learning from data of complex structures such as graphs has been a challenging task

for the inference of new knowledge. This is mostly because modeling dependencies in

complex data cannot trivially be performed at micro-level connections between nodes. For

example, graph data are mainly made to describe structured and complex relations among

a set of collective agents or objects. Basic attributes of graph elements (i.e., edge and

node labels) cannot solely characterize the semantics inherently in graphs. Macro-level

structural patterns (that are composed of combinations of basic graph elements) are

hence more useful and informative in representing key information embedded in graphs.

Meaningful dependencies should involve these macro-level patterns that graph capture

semantics.

The use of structural pattern analysis methods can help gaining insight into structure

of graph and network data. A range of methods related to graph data management

(e.g., indexing and querying) and learning (e.g., clustering, classification) can utilize

graph structural pattern analysis. Applications of structural pattern analysis of graphs

are found in many domains, including: chemical informatics, bioinformatics, and graph
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data stream analysis. In chemical informatics, analyzing graphs representing chemical

compounds has important applications including prediction of biochemical characteristics

using Quantitative Structural-Property Relationships (QSPRs) (Espinosa et al. 2000).

Computational prediction of compounds properties is an important way to reduce search

space of chemical compounds in drug design research (Brown et al. 2010). Target prop-

erties of chemical compounds can be defined using structural features. In bioinformatics,

structural pattern analysis of graph and network data has many applications in prediction

of protein functions using structural features in protein graphs, analysis and prediction of

biochemical pathways, and analysis protein interaction networks. Graph kernels and graph

pattern mining are two methods for analyzing graph data by mapping high dimensional

graph data into a feature space that is more suitable for the learning task. Graph kernels are

elegant mathematical models to map graphs into feature space by measuring the similarity

between pairs of graphs in the dataset. Quantifying the similarity between graphs can

utilize structural patterns such as subtree, cycles, and shortest paths. In graph mining,

structural patterns are extracted within graphs and weighted by different interestingness

measures such as information gain and entropy. Effective algorithms for pattern extractions

have been developed, including gSpan (Yan and Han 2002) and LEAP search (Yan et al.

2008).

Despite the success of graph kernels and graph pattern mining techniques in analyzing

graph data, there are a number of limitations related to both techniques. Graph kernels have

two major challenges (Li et al. 2011):

1. Finding computationally tractable kernel functions.
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2. For some graph kernels, it might be efficient to compute kernel functions, but at the

cost of leaving out good structural patterns that express graph semantics (Borgwardt

and Kriegel 2005).

On the other hand, extracting features using graph pattern mining has three major chal-

lenges:

1. The search for features is local and sequential. Candidate subgraph features are ex-

tracted and evaluated in isolation. This results in redundant or less informative fea-

tures. Techniques for handling redundancy could be used to address this challenge.

2. The criteria used for feature selection might not be optimal. For instance, subgraph

frequency can be used as criterion for selecting features (e.g., using gSpan algorithm,

which is frequency-based graph miner). Frequent subgraphs may not necessarily be

discriminative. On the other hand, some information theoretic features may not be

discriminative for classification. For instance, LEAP search algorithm utilizes infor-

mation gain to look for features. This strategy may fail in the following scenario,

according to Jin, et al. (Jin et al. 2009): When no individual pattern has high dis-

crimination power, a group of patterns may jointly have higher discrimination power.

Since LEAP search finds subgraph patterns sequentially, it is unlikely that it will find

such groups of jointly high discriminative power.

3. It can be suboptimal to separate the searching for features and the learning task.

In this paper, a new model for structural pattern analysis of graphs, the Graph Pat-

tern Analysis Model (GPAM), is presented. The model is based on the concept of graph

partitioning: a function that maps graphs into edge-disjoint subgraphs. A given partition-

ing of a graph instance highlights structural patterns related to a given class. Subgraphs
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are approximated by the sets of maximal paths found inside. Then, the class-conditional

distribution of graphs is expressed as class-conditional paths distributions. The proposed

model can be used to analyze a dataset of uncategorized graphs with the objective to find

a set of structural patterns or can be used in categorized datasets where the objective is

to highlight significant subgraph patterns within graph items that lie under each category.

The probability estimation procedure of the proposed model yields two outcomes: (1) the

set of partitionings of each graph that highlights key structural patterns; and (2) a condi-

tional probability model that quantifies the dependency between maximal paths and class

labels. As a benchmark for the new method, two graph classification systems were devel-

oped: (1) A Bayes classifier, and (2) A support vector machine (SVM)-based classifier. The

Bayes graph classifier, in addition to utilizing statistical dependencies between structural

patterns and class labels, can incorporate prior information about class label distribution in

the dataset and thus is able to handle both balanced and unbalanced dataset. The SVM-

based classifier runs on feature vector representations for the graph dataset using subgraph

patterns that are highlighted within graphs using GPAM model.

Contributions of this work are:

1. A proposed partitioning function that is defined on graphs to highlight key structural

patterns and give the probabilistic model an access to embedded patterns in each

graph;

2. A heuristic search function based on Estimation-Maximization (EM) algorithm is

developed for model probability estimation. At each iteration, the algorithm aims to

find better-scoring partitioning functions of each graph - according to the model prob-

ability estimates from the previous iteration, and then improves the model probability
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estimates using information from the new set of best partitionings. This iterative pro-

cess leads to emergence of global structural patterns across the dataset;

3. Elimination of the need for a required separate graph mining step a priori; and

4. A graph classifier that is built on this model and performance is compared to graph

kernels and frequent pattern-based classifiers. The proposed graph classifier can han-

dle balanced and imbalanced graph datasets.

This paper is organized as follows. In Section 3.3, a general overview of graph kernel

and graph mining approaches is given. Section 3.4 includes details about the proposed

mathematical model. In Section 3.5, experimental settings are stated and the results on

seven datasets are reported. Discussion and related work are given in Section 3.6. Finally,

conclusions and future work are presented in Section 3.7.

3.3 Related Work

3.3.1 The Graph Kernels Approach

Kernel based methods (e.g., support vector machines [SVMs] and kernel principal com-

ponent analysis [KPCA]) have been successfully applied to a range of learning problems

(e.g., classification and regression) including various data types (e.g., text, graphs, and

genome sequences) (Muller et al. 2001). Graph kernels have been developed to address

learning problems related to graph and network data, including structural pattern analysis

and graph classification and clustering. Applications of graph kernels include pattern

recognition (e.g., image classification (Harchaoui and Bach 2007)), chemical informatics

(e.g., molecular fingerprinting) (Ralaivola et al. 2005) , and bioinformatics (e.g., analysis
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biological networks (Borgwardt et al. 2007) and protein function prediction (Borgwardt

et al. 2005)). Graph kernels can be used to transform complex structured (usually

non-linearly separable) data into a feature space where transformed data can be separated

approximately linearly (Ralaivola et al. 2005). With a rigorous mathematical formulation,

core computations of graph kernels can be performed via operations of matrix algebra. A

graph kernel k(u, v) measures the similarity between two graph objects u and v. Similarity

measures can computed based on common structural patterns that graph objects share

considering topology and link information as well as node labels of pairs of graphs in

the dataset. There have been previous research efforts to develop graph kernels that can

accommodate various structural patterns that better represent semantics embedded in

graphs. Examples of graph kernels include subgraphs, subtrees, cyclic patterns, pattern

diffusion. Details on models, properties, and algorithms of graph kernels can be found in

(Muller et al. 2001) and (Vishwanathan et al. 2010).

The structural pattern analysis model presented in this paper (described in the next

section) can be compared to a class of graph kernels known as Marginalized Graph Kernels

in which the similarity between two graphs is calculated taking into account the amount of

labeled sequences of nodes or walks that the two graphs share (Tsuda et al. 2002). It can

also be compared to graph kernels based on subgraphs or graphlets. A summary of some

graph kernel methods are presented below.

Random Walk Kernel

The basic idea of random walk kernels (Gärtner et al. 2003) is to construct a direct product

graph for two input graphs. Every node in the direct product graph then represents a pair
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of nodes from the original input graphs. An edge in the direct product graph exists if and

only if the corresponding nodes in the original graphs are connected. Random walking on

a graph G is the process of generating sequences of vertices that are chosen according to

a transition probability function on adjacency matrix. The probability function determines

the next vertex to be picked given the identity of vertices chosen so far. A random walk

on the direct product graph corresponds to a simultaneous random walk in the original

graphs. The number of walks that they share quantifies the similarity between the original

two graphs.

Subtree Kernels and Cyclic Pattern Kernels

Kernels based on subtrees and cyclic patterns have been defined to capture more semantic

and structural information in a graph than with random walks. Subtree patterns in

graphs are creating by setting a node as a root and then adding all nodes that can be

reached in a certain number of steps called tree height (Ramon and Gärtner 2003).

A subtree kernel based on Weisfeiler-Lehman test of isomorphism is a fast kernel

that can scale to larger graphs (Shervashidze and Borgwardt 2009). Kernels based on

cyclic patterns (Horv et al.2004) count the number of cycles shared by two graphs, lim-

ited to a predefined number of simple cycles, because computing general cycles is NP-hard.

Shortest-paths Kernels

Graph kernels based on shortest paths (Borgwardt and Kriegel 2005) have computational

advantage since shortest paths can be found in polynomial time and at the same time can
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express the inherit semantics in graphs. A first step toward shortest-paths kernel is to

transform original graphs into shortest-paths graphs using Floyds algorithm (Borgwardt

and Kriegel 2005, Horv et al.2004). Then the shortest-paths kernel can be defined on

edges of the Floyd transformed graphs.

Graphlet Kernels

Graphlets are subgraphs with a small number of nodes. For a subgraph order k, count

vectors of all possible connected subgraph of order k are used to measure the similarity of

two input graphs (Shervashidze et al. 2009). Graphlet kernels have a scalability advantage

to process large graphs while expressing similarity of graphs based on shared subgraphs.

This can be similar to pattern mining approaches to graph classification (e.g. GraphSig

(Ranu and Singh 2009)) where feature vectors of graphs represent significant subgraphs

within items in the graph dataset.

3.3.2 The Graph Pattern Mining Approach

A second popular approach to dimensionality reduction of graph data is to extract a

set of subgraphs (that meet certain criteria such as frequency threshold and statistical

significance) that represent candidate features and then use traditional feature filtering

techniques that aim at selecting individual features that their distribution correlates the

distribution of class labels (Hall 1999, Yu and Liu 2004). A vector representation of sub-

graph features is then used to solve learning problems (e.g., clustering and classification)

or data management problems (e.g., graph indexing.) Interestingness measures can be

used to guide the search for informative features. Examples of feature interestingness
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measures include mutual information, support, confidence, information gain, and Pearson

correlation. Tan et al. have described 21 interestingness measures that can be used for

searching for features (Tan et al. 2002).

There is a range of methods for managing and learning from graph data that perform

subgraph mining and create feature vectors indexed by subgraphs extracted from the graph

dataset. Various measures can be used to search for informative or significant subgraph

features. For graph data management problems, vectors of subgraph features can be used

to index graphs using R-trees (Shokoufandeh et al. 1999). gIndex is a graph indexing

method that relies basically on frequent substructures in graphs (Yan et al. 2004). Trees

and discriminative subgraph patterns were combined for effective graph indexing (Zhao

et al. 2007).

For learning problems of graph data, subgraph pattern mining methods have been

utilized. In graph clustering problems, informative subgraph patterns can be used as

features in vector space where clustering techniques can be applied in this feature space

(Seeland et al. 2010). In graph classification problems, classifiers that are built on

subgraph patterns as features can outperform graph embedding and kernel based methods

for graph classification in terms of accuracy and efficiency. The LEAP search algorithm

for finding significant pattern features combined with SVM yields better results than

kernel-based methods for graph classification (Yan et al. 2008). GraphSig is a scalable

feature selection algorithm for graphs that mines significant subgraphs using local patterns

inside subgraphs captured by random walks between nodes (Ranu and Singh 2009).

GAIA is an evolutionary computation algorithm for mining significant subgraphs in graph
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datasets. It should be mentioned that the importance of mining significant subgraphs goes

beyond learning problems to data management tasks such as graph indexing (Yan et al.

2004). The gBoost classifier employs a model that uses frequent subgraph pattern mining

and linear programming to solve the graph classification problem (Saigo et al. 2009).

3.4 Graph Pattern Analysis Model

The problem formulation of this paper is how to search for hidden structural patterns in

graphs. The hypothesis being formulated is that there is statistical dependency between

structural patterns in a graph and category of this graph. A new function called the

partitioning function maps a graph to a set of edge-disjoint subgraphs. This function

allows for the formulation of dependency between graphs and class labels through access

to structural subgraph patterns.

3.4.1 Preliminaries and Notations

A labeled graph is defined as G(V,E, LV , LE,
∑

V ,
∑

E), with set of vertices V , set of

vertex labels
∑

V , set of edges E and a set of edge labels
∑

E . A node labeling function

LV : V →
∑

V assigns labels from a node alphabet set
∑

V to nodes and an edge labeling

function LE : E →
∑

E assigns labels from an edge alphabet set
∑

E to edges. A labeled

subgraph g consists of a subset of nodes of G and edges that link them. A given graph

can be directed or undirected. Each graph instance in the design dataset is assigned a class
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label from a set C of class labels. Subgraphs are defined by subsets of vertex set and edge

set of a graph.

Definition 3.1 (Partitioning π) Let E(.) denote edge set of a graph G. A partitioning is

a function π : E(G) → Z that assigns an integer to every edge of G such that edges

with the same integer form a subgraph. The set of subgraphs Hπ highlighted by a specific

partitioning function π is defined as Hπ = {gi | ∀e ∈ E(gi), E(gi) ⊆ E(G), π(e) = i}.

Figure 3.1: A chemical compound graph and a partitioning function that maps its edges
into four subgraphs.

Figure 3.1 illustrates the concept of partitioning. According to the above definition, it

follows that an edge belongs to exactly one subgraph in any given partitioning function

(i.e., subgraphs resulting of a given partitioning function are edge-disjoint). There can be
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a large set of possible partitioning functions1, depending on the size of a graph’s edge set.

Searching for partitioning functions that highlight key features of a graph class was thus

one of the objectives of this study. Partitionings were represented by integer arrays where

indices represent edge identifiers and values points to subgraphs to which an edge belongs.

Based on the notion of partitioning functions, a mathematical model was developed to

systematically evaluate partitionings in order to identify highly probable partitionings that

highlight key subgraph patterns.

3.4.2 Mathematical Model

Items in the graph dataset were assumed to be independent and identically distributed data.

A probability value P (G|C) was used to quantify the relation between a graph and its

class label. Modeling the conditional probability model P (G|C) directly is hard because:

(1) graphs would have to be aligned with each other; (2) a dissimilarity metric would be

required to count instances of each graph; and (3) a data sparseness problem will arise

since there is a low probability of finding isomorphic instances of the same graph in a

given dataset. Graphs are therefore typically broken up into smaller subgraphs that tend to

occur frequently in the design set. The graph partitioning function is used to decompose

a graph into a set of (hypothesized) subgraph features. The fact that there can be a large

set of possible paritionings of a graph allowed for the systematic exploration of subgraph

feature space isn a coherent way that takes into account feature context (this is in contrast

with frequent pattern mining methods that extracts subgraph features separate of each

1The number of partitioning functions of a graph with an edge set of n elements is given by the Bell
number Bn (Aigner 1999).
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other).

Each class of graphs is assumed to have its characteristics that are represented by: (1)

labels of nodes and edges; and (2) a set of partitionings that structurally highlights various

topological patterns known to be associated with a given class. Since a partitioning is a

function of graphs, the search for the best class to assign to unlabeled graph instance is

equivalent to finding the best set of partitionings that best capture topological patterns in

this graph that are features of this best class. Let P (G, π|C) denote the probability of a

partitioning π of graph G given a class label C. Since there are many possible ways to

partition a single graph, the conditional probability P (G|C) is calculated as the sum of all

possible partitionings of a given graph G. Hence, partitionings are introduced as a hidden

parameter into the conditional probability model:

P (G|C) =
∑
π

P (G, π|C) (3.1)

For notational convenience, let Hπ be the set of subgraphs according to a partitioning

function π of graph G: Hπ = {gi | ∀e ∈ E(gi), E(gi) ⊆ E(G), π(e) = i}

Assuming that subgraphs resulting from a partitioning function are conditionally inde-

pendent, P (G, π|C) can be written as:

P (G, π|C) =
∏
g∈Hπ

P (g|C) (3.2)

The probability value P (g|C) quantifies the likelihood that subgraph g is a charac-

teristic or feature of class C. The conditional independence assumption made here can

be mathematically plausible, noting that: (1) subgraphs according to a given partitioning
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do not overlap (i.e., do not share common edges, according to Definition 1); and (2) this

assumption applies to subgraphs generated according to one partitioning function (i.e.,

it is local to a specific partitioning, not for all combinations of subgraphs.) Using the

set of partitionings, the space of possible features of a class in the graph dataset can be

explored simultaneously in a coherent way. The likelihood of each subgraph in the dataset

is calculated in a way that takes into account other subgraphs in partitionings of all graphs

in the dataset. The probability that a subgraph g is a feature of class C can be obtained

by tabulating the co-occurrences of subgraph g and class label C in the entire training set.

However, each of the counts of co-occurrences of (g, C) pairs should be proportionally

weighted by the probability of the partitioning to which they belong. It is assumed that

the higher the frequency of a given (g, C) pair in the data, the more likely that g is a

discriminant feature of class label C. The difference between this method of searching

for features and existing methods (which look for features sequentially and locally) is

that this method allows for searching for multiple features simultaneously and globally by

investigating existing partitioning sets of each graph across the dataset. Subgraph features

affect the likelihood of their neighboring features in the same partitioning and features

belonging to other partitionings for that graph instance. Hence, search for characteristic

patterns is performed taking pattern contexts into account.

Modeling P (g|C) directly by counting co-occurrences of subgraphs and class labels

can be, however, computationally expensive since subgraph enumeration is NP-hard (Kong

et al. 2011). To make the model computationally feasible, each subgraph is approximated

by a set of paths that link nodes inside that subgraphs. Using paths inside graphs has been

successfully applied to graph mining problems. Nijssen et al. used frequent paths as a first
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step in the search for frequent subgraph patterns (Nijssen and Kok 2004). Gudes et al. used

sets of disjoint paths to address the problem of mining frequent subgraph patterns (Gudes

et al. 2006). DePiero and Krout used length-r paths to approximate subgraph isomorphism

(DePiero and Krout 2003).

In this study, a similar technique was used to approximate the probability of a sub-

graph using labeled maximal paths that can be identified within the subgraph boundaries.

A maximal path is a path that is not a prefix of another path in a given subgraph. Each

maximal path represented a sequence of labels of nodes and edges that lay in that path. Us-

ing paths to approximate subgraphs can have many advantages. In directed graph datasets

(which usually represent processes with flow of information between nodes), using paths

can capture essential sequences (chains) of steps. Here, these labeled paths are the ba-

sic building blocks in the model. This is in contrast to using subgraphs as basic building

blocks (or smallest units) in classification tasks, which might hide internal (micro) inter-

actions between nodes and preventing the learning algorithm to utilize this information.

More importantly, data sparseness is minimized when using paths, which can yield better

probability estimates. Let a denote a labeled path inside a subgraph. Then,

P (g|C) =
∏
a∈g

P (a|C) (3.3)

With the aid of the partitioning concept, the conditional probability P (G|C) is reduced

to a conditional distribution of maximal paths given class labels. The likelihood of a parti-

tioning and a graph given a class label can thus be further expanded as
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P (G, π|C) =
∏
g∈Hπ

∏
a∈g

P (a|C) (3.4)

And the probability of a single partitioning π given a graph G and class label C is

represented as:

P (G|π,C) =
P (G, π|C)∑
π′ P (G, π′|C)

(3.5)

Finally, P (G|C) is expressed as

P (G|C) =
∑
π

∏
g∈Hπ

∏
a∈g

P (a|C) (3.6)

Equations 3.1-3.6 cast the problem of searching for structural pattern features as a

problem of estimating a conditional distribution of labeled maximal paths given graph

classes, while maintaining a set of best partitionings for each graph instance highlighting

features.

3.4.3 Iterative Procedure for Model Parameter Estimation

Estimation of the conditional probability P (a|C) is performed with the aid of partitioning

function. The objective of training is to search for partitionings of each graph in the

data that maximize the likelihood probability of a graph given a class that is, P (G|C),

according to 3.1-3.6. By making use of the fact that the equation is a linear combination

of P (G, π|C) probabilities, only a subset of best partitionings (in terms of probability)

can be considered. This does not significantly affect accuracy (since partitionings that are

not considered tend to have lower probability value), but does have a substantial effect
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on speed and memory. Better estimates of P (a|C) can be obtained by directing search

towards finding the set of best partitionings.

The conditional probability P (a|C) could be estimated in a straight forward way if

a set of partitionings of graphs are available a priori. In that case, for each partitioning,

paths inside subgraphs could be extracted, and co-occurrences of these paths and the class

label of the graph could be collected to estimate that conditional probability. The main

question here is how to count the co-occurrence of paths and classes when the path belongs

(simultaneously) to more than one subgraph according to different partitioning functions?

One solution is to weigh each path-class count by the probability of partitioning to which

that path belongs. This process is called collecting fraction counts, since each count of

path-class pairs is discounted by partitioning probability. The idea of collecting fraction

counts had been previously applied to machine learning problems such as statistical

machine translation (Brown et al. 1993).

Counting Class-Path Co-occurrences

Finding a way to calculate path-class pair counts by utilizing the idea of fraction counts

assumes that partitionings of graphs are known. Unfortunately, knowledge about possible

ways of partitioning a graph is not always available a priori, and partitionings must

be searched for and scored while estimating the conditional probability P (a|C). Now,

a circular argument is raised: to collect counts of path-class pairs, probabilities of

partitionings P (a|C) is needed to compute the probability of each partitioning of a graph,

and partitioning probabilities are needed to collect counts and weigh them. To overcome

this problem, an Estimation-Maximization (EM)-style algorithm was developed for this
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Figure 3.2: (a) A graph with six nodes and five edges with an initial partitioning mapping
each edge to form one subgraph. (b) A new partitioning is formed in by merging edges
e2 and e1 and edges e5 and e4. The resulting partitioning array contains values indicating
three subgraphs: g1, g3, and g4.

study. The algorithm starts with an initialization step where seed partitioning vectors are

randomly generated for each graph in the dataset. Counts of path-class pairs, (a, C), are

then identified within each subgraph according to each partitioning. The counts of (a, C)

pairs are normalized to create an initial conditional probability distribution P (a|C). The

next iteration of the algorithm starts with expanding existing partitionings of each graph

to create more partitionings. Existing and new partitionings are scored using conditional

probability P (a|C) according to (3.6). Thus, the iterative training process has two steps:

(1) E-Step: collecting fraction counts of (a, C) path-class pairs and computing (better)
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estimates of a new conditional probability model P (a|C); and (2) M-Step:searching for

good partitionings for each graph and computing the probability of partitionings per graph

using (3.4) and (3.5). For the dataset used in this study, three training iterations were run.

The outline of this process is shown in Table 3.1.

At the start of training process, the conditional probability table P (a|C) is initialized

with short, single-edge paths. There is a minimum probability value (ε) for paths that are

not discovered yet in early iterations of EM-style algorithm. In the M-Step, undiscovered

paths are likely to be found when new partitionings (and probably larger subgraphs are

likely to form and longer paths are found) are explored in the search for partitionings.

These newly discovered paths are added to the conditional probability P (a|C) when

collecting fraction counts in the M-Step.

Searching for Highly Probable Partitionings

During model training, fraction counts of path-class pairs are collected from highly proba-

ble partitionings of graphs, leading to better estimates of the real conditional distribution

P (a|C). Therefore, the training procedure of the graph classifier should always look for

and keep a set of best-scoring partitionings of each graph instance in the training datum

throughout the iterations of the training algorithm. There are a large number of possible

partitionings for a given graph instance, and it was therefore necessary for the system to

limit the search by considering only a subset of best scoring partitionings. A parameter

maxπ was used to set the limit of the number of partitioning to keep in memory.
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Each partitioning is represented as an array of integer numbers to map each edge

(implicitly identified by its array index) to one subgraph. For illustration, let K be an

array with length equal to the number of edges in a graph. Then, K[i] = j means that

edge number i in the edge set is mapped to subgraph j in the set of subgraphs of a given

partitioning. To find a set of highly probable partitionings, the search process starts with

a seed partitioning (with subgraphs containing only one edge) and then greedily expand

a subgraph by adding edges from neighboring subgraphs (two subgraphs are neighbors if

they share one or more vertices) to its set of edges. Starting with the integer array that

represents a graph partitioning, two edges are randomly chosen and tested to see if they

belong to different subgraphs. If this pair of edges is linked (share a vertex), then they

are made to belong to the same subgraphs, meaning that the first edge is assigned the

subgraph where the second edge resides. This step is repeated many times, resulting in the

growing of some subgraphs and shrinking of others. Figure 3.2 shows this operation. The

set of new partitionings is scored using (3.4) and (3.5). A priority queue was used to store

partitionings ordered by their likelihood.

GPAM Application to Graph Classification

To test the efficacy of the mathematical model for structural pattern analysis, two graph

classifiers were built: (1) a stand-alone Bayes classifier extending the mathematical model,

and (2) a support vector machine (SVM) classifier that was run on features extracted from

best partitionings. The graph classification problem is defined as, given a graph instanceG,

what is the best class that can be assigned toG from a model point of view. Mathematically,

the problem is to maximize the probability P (C|G). Using Bayes rule, P (C|G) can be

stated as
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Table 3.1: An algorithm for model parameter estimation

Input:
D: graph data set {G1, ..., Gn}
N: Number of iterations

Process
1: Create seed partitionings and Initialize P (A|C) table with uniform probability
value.
2: for i=1:N
E-Step
3: for each G ∈ D
4: for each π ∈ G.πs
5: for each g ∈ S = {gi | ∀e ∈ E(gi), E(gi) ⊆ E(G), π(e) = i}
6: for each maximal path A ∈ g
7: CountTable(A,C)+ = π.probability
M-Step
8: Normalize entries of CountTable(A,C) to obtain P (A|C)
9: for each G ∈ D
10: Let C be the class label of G.

Search for better graph partitionings: G.πs = searchForPartitionings(G,C)
10: Use Eqs. 3.2-3.5 to compute the likelihood of every partitioning π ∈ G.πs
Output: updated P (A|C), G.π∗ //return conditional probability and best partition-
ing

P (C|G) =
P (C)P (G|C)

P (G)
(3.7)

Since choosing the best class C does not depend on P(G), (3.7) can be approximated by

P (C|G) ∝ P (C)P (G|C) (3.8)

Equation 3.8 casts the problem of graph classification into computing two probabilities:

(1) P (G|C) that represents important structural patterns inG that are characteristic of class
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C; and (2) a prior knowledge about the distribution of class labels in the dataset. Having

the prior probability P (C) allows for handling unbalanced datasets.

Table 3.2: An algorithm for naı̈ve Bayes’ graph classification

Input: Graph G, set of class labels C, paths conditional probability distribution
P (A|C) and prior class probability distribution P (C)
Process
1: For each class label k ∈ C
2: Using the conditional probability distribution P (A|C), πs = searchForPar-
titionings(G,k)
3: Compute P (k)P (G|k) according to Eqs. 3.1-3.6 using the set of partition-
ings of G.
Output: Class label k∗with the maximum value of the product: P (k∗)P (G|k∗)

Given a conditional probability model P (a|C) for paths and class labels as well as a

prior probability distribution model P (C) for class labels, a new graph instance is assigned

a class label as follows. A search for best partitioning for the target graph is started using

positive and negative class labels. The evaluation of a partitioning quality is measured

using P (a|C) and P (C) in (3.2-3.6). The class label that maximizes (3.8 ) is made output.

The algorithm in Table 3.2 shows how classification is performed.

The SVM classifier operates on feature vectors consisting of subgraph patterns that

were highlighted in best partitionings after running GPAM algorithm. Best partitionings

were selected based on percentage of partitionings in the priority queue that the GPAM

training algorithm uses for probability estimation. Two input parameters were used to

control selection of subgraph features. The first parameter is the percentage of partitionings

that are used to select subgraph features. The second input parameter sets the minimum
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frequency of a subgraph pattern in order to include in the feature set.

3.5 Experiements And Results

3.5.1 Experimental Settings

GPAM was evaluated using two graph classification systems: (1) A Bayes graph classifier

based on Equation 3.8 and (2) A GPAM+SVM classifier running on feature vector

representations of graphs. The classification library libsvm (Chang and Lin 2011) was

used as SVM classifier. The default Radial Basis Function (RBF) kernel in LIBSVM was

used in all classification tasks in this study. Performance of the two systems was compared

to a linear optimization graph classifier based on subgraph pattern mining, gBoost (Saigo

et al. 2009), as well as graph kernel classifiers. Five graph kernel methods were used in

the evaluation experiments: (1) Graphlet (G) kernel; (2) Ramon-Gartner subTree (RGT)

kernel; (3) Weisfeiler-Lehman subTree (WLT) kernel; (4) fast geometric Random-walk

(RW) kernel; and (5) Shortest Path (SP) kernel. The GPAM model was implemented using

Java. MATLAB implementations (code and data for three of the datasets used in this study

are made publically provided by Nino Shervashidze ) were used for the graph kernels. The

adjustable parameters of graph kernel methods were set as suggested in (Li et al. 2011).

The classification library libsvm (Chang and Lin 2011) was used for learning from kernel

matrices computed by each kernel method. Experiments were conducted at a parallelized

computing facility using 56 processors (eight systems on seven datasets).
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The software implementation of GPAM has two application parameters that needed

to be set: (1) maximum subgraph size in each graph partitioning; and (2) the size of

priority queue that stores partitionings of each item in the graph dataset. For this study,

the maximum subgraph size was set to eight edges and the priority queue size was set to

100. For GPAM+SVM system, the proportion of partitionings that are used for feature

extraction was set to 0.2, which means, for instance, that in a priority queue of 100

partitionings, the first 20 partitionings are used to extract subgraphs for feature vector

representation of the dataset. For GPAM+SVM system, all graphs were treated as a single

training dataset for pattern analysis and feature extraction and then the cross validation

training and test sets were generated given the vector representation.

Following the evaluation methodology of paper by Li, et al. (Li et al. 2011), perfor-

mance assessment was reported as average accuracy based on 10-fold cross validation

run 10 times. While being faster and producing competitive accuracy compared to the

five graph kernels mentioned above, the GF classifier developed by Li, et al. did not use

structural features (e.g., trees or shortest paths in the graph). Therefore, the GF classifier

was not assessed for performance in this study. In addition to reporting average accuracy, a

two-sample t-test with equal variances at a 5% significance level was performed using 100

(10 fold run 10 times) data point of performance for GPAM and GPAM+SVM classifiers

against the best performing classifier from graph kernels and gBoost methods. The null

hypothesis (H0) was that the mean accuracies of a pair of classifiers are equal. The

alternative hypothesis (HA) was that the means were not equal. The statistical analysis

toolkit STATA was used to calculate accuracy results and performing analysis of variance
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tests.

3.5.2 Dataset Description

A dataset of chemical compounds was used in the experimental evaluation of graph

classification task. This dataset included Mutagenicity (MUTAG) of chemical compounds

(Debnath et al. 1991), Predictive Toxicology Challenge (PTC) (Helma et al. 2001), Na-

tional Cancer Institute (NCI) anti-cancer screening datasets: NCI1 and NCI109 (Wale and

Karypis 2006). This benchmark data has been used previously in graph kernel evaluations

(Li et al. 2011, Shervashidze et al. 2009). MUTAG is a dataset with class labels indicating

mutagenicity of a chemical compound on bacterium Salmonella typhimurium. The NCI

datasets are from National Cancer Institute and class labels of these two datasets indicate

whether a compound is active or inactive based on an anticancer screen. Four datasets

from the Predictive Toxicology Challenge (PTC) represent carcinogenicity of chemical

compounds for Female Mice (FM), Male Mice (MM), Female Rats (FR) and Male Rats

(MR). NCI1 and NCI109 data are balanced datasets (i.e., with roughly equal number of

positive and negative instances). All other datasets are unbalanced. These datasets are

undirected graphs with one label per node or edge.

3.5.3 Performance Evaluation

Table 2 shows the results of mean accuracy of the five graph kernels, gBoost and GPAM

and GPAM+SVM methods. Each cell represents mean and standard deviation of accuracy

for experiments of 10fold run 10 times. Results WL and RGT graph kernel methods for
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Table 3.3: A description of chemical compounds datasets.

Dataset
Identifier

No.
Items

No. Pos-
itive
Classes

No. Neg-
ative
Classes

Avg
Nodes
Per Item

Avg
Edges
Per Item

MUTAG 188 125 63 18 39
NCI1 4110 2057 2053 30 32
NCI109 4127 2079 2048 30 32
PTC(FM) 349 143 206 25 25
PTC(MM) 336 129 207 25 25
PTC(FR) 351 121 230 26 26
PTC(MR) 344 152 192 25 26

NCI datasets are not available because the MATLAB program failed to finish within 24

hours. As shown in Table 2, there is a roughly steady decrease in the mean accuracy for

all classifiers on data from the first dataset column (MUTAG) to the last dataset PTC MR.

This might suggest a decrease in feature richness going from MUTAG down to PTC

datasets. The average accuracy of WL Tree kernel on the NCI109 dataset was the highest

absolute average accuracy across all methods and datasets. The range of standard deviation

values is larger for all datasets (approximately 78%), except for NCI1 and NCI109, with

range of standard deviations 2.2.

On average, the MUTAG dataset has the highest standard deviation (and mean) value

for the seven classification systems. Referring to Table 3.3, MUTAG has a skewed

distribution of class labels (number of positive instances is roughly double that of negative

instances). It is not clear whether this skewness of class label distribution or the inherent

structural properties of MUTAG dataset that might be the cause of large standard deviation

of accuracy for classifiers used in this study. The same statement could apply to the NCI1

and NCI109 datasets for which low standard deviation might be related to balanced class
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distribution. To check the equal-variances assumption made for t-test statistical analysis,

classifiers accuracy histograms for MUTAG and NCI1 datasets are shown in Figures

3.3-3.4 respectively. For instance, the variance in classification accuracy among the tested

classifiers for the NCI dataset has roughly similar tight values as indicated by Figure 3.4.

The t-statistic values (Table 3.4) show that five out of seven accuracy results were

found to be statistically significant. The WLT kernel achieved best results in three datasets;

SP kernel achieved best result in one dataset; and the GPAM+SVM achieved best results

in three datasets. It was noticed that Graphlet (G) kernel was the closest in performance to

GPAM methods of all other kernel methods as shown in Table 3.4.
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Figure 3.3: Classification accuracy histograms of MUTAG dataset.

3.6 Discussion

The proposed model for graph pattern analysis, GPAM, provides a way to search simul-

taneously for significant subgraphs by maintaining a set of best partitionings for each

graph across that dataset. The core idea is to incorporate partitioning functions into a

mathematical model that accounts for statistical dependency between a graph instance

and its class label. The statistical dependency was reduced explicitly to a conditional

probability model between maximal paths and class labels and implicitly by the set of

partitioning functions that are scored by the conditional probability model.

One way to compare GPAM to graph kernels is to look at how essential graph

semantics are captured during analysis. GPAM is similar to Shortest Path and Random
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Figure 3.4: Classification accuracy histograms of NCI1 dataset.

Walk kernels in the way sequences of labeled nodes (maximal paths) are used to represents

key structural patterns in graphs. One difference between GPAM and Random Walks and

Shortest Path kernels is that GPAM sets boundaries on the labeled sequences by defining

partitioning functions that map edges to subgraphs. A second difference is that similarity

measurement between graphs is explicit (pair wise values) in graph kernels and implicit

(graphs with similar partitionings have similar likelihood scores) in GPAM. For graph

kernels, analysis is pair wise, and only information embedded in pairs of graphs for which

the kernel is computed are relevant. Moreover, significant structural patterns in GPAM

are highlighted within each graph instance across the entire dataset, while no patterns

are identified in graph kernels. The search for key patterns using GPAM is performed

collectively on all graphs under the same class.
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Compared to graph mining-based approaches to map graphs into feature space, the

proposed method avoids the decoupling of feature generation (using pattern mining) and

feature filtering (using interestingness measures) by iterative improvement of probability

model of maximal paths while maintaining best set of features that are most explicable

by the model. Thus, GPAM provides a coherent framework for pattern searching. No

post-processing or feature filtering is required. This search strategy avoids local, sequential

pattern mining by taking into account neighbors of each subgraph features in the same

partitionings. Significant subgraph features emerge during repetitive steps of the EM-like

algorithm for probability estimation. The probability estimation algorithm considers

large set of partitionings of graphs when computing probability values. One advantage

of maintaining multiple partitionings per each graph is to allow for flexibility to consider

feature overlap. Approximating subgraph matching using maximal paths allows for model

flexibility to account for new graph instances in test dataset.

The GPAM method was benchmarked through the development of a Bayes graph

classifier and SVM-based classifier using feature vectors built from significant subgraphs

highlighted in best partitionings produced by training algorithm. Performance of these

two GPAM-based classifiers was compared to graph kernels and graph mining-based

classifiers. While Bayes classifier did not provide the overall best classification accuracy

for any dataset, GPAM boosted with SVM classifier achieved best results for three datasets.

Performance evaluation of the GPAM classifier shows that it can outperform graph kernels

and graph mining-based classifiers for some datasets. The GPAM+SVM system achieved

performance better than at least two graph kernels within each dataset. gBoost achieved

better performance than GPAM+SVM on NCI1 and NCI109 datasets, while GPAM+SVM
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outperformed gBoost on five datasets. The t-test statistic for two datasets (PTC FM and

PTC MR) did not show a significant difference in performance between WLT kernel

classifier and GPAM+SVM. It is also clear that, except for NCI1 and NCI109 datasets,

there was large variability in accuracy results in each fold, indicating some inhomogeneity

in distribution of significant features in the datasets.

There are a number of limitations of the proposed method. One limitation is in the

definition of the partitioning function to divide graphs into edge-disjoint subgraphs. On

the other hand, this edge-disjoining restriction allow for simple vector representation of

partitionings as integer array. This allowed for easy modification of an existing partitioning

by simple operations to change edge number (and hence, change the edge-to-subgraph

membership.) A second limitation is the approximation of subgraphs by using maximal

paths. However, this approximation has a computational advantage: there are polynomial-

time algorithms for extracting paths inside subgraph and comparing paths is much easier

than comparing subgraphs. The downside of this approximation is the inevitable partial

decrease of accuracy. A third limitation is that the analysis is performed local to the class

for which graphs are assigned. This makes it hard to discriminate very similar graphs of

different class labels since the proposed method is designed to find similarity between

graphs of the same class, not to maximize the distance between graphs of two different

classes.

The inclusion of a partitioning function, as a variable in the computation of statistical

dependency between a graph instance and its associated class label, is a new application of

a successful idea that was previously applied in domains ranging from Natural Language
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Processing (NLP) to evolutionary biology. In NLP, word alignment is a variable defined on

a pair of a sentence and its translation to another language. The concept of word alignment

allows for access to hidden structures in sentence pairs and is the main structure used by

methods for building bilingual word dictionaries and word reordering models in statistical

machine translation (Brown et al. 1993). The analogy here is that graph partitioning plays

the same role as word alignment and the conditional probability model for maximal paths

given classes is equivalent to the conditional probability of the word pairs in a bilingual

dictionary. The EM algorithm is applied in both applications. The same analogy can be

found in evolutionary biology when searching for the best phylogenetic tree for a set of

gene sequences. In that context, graph partitioning is similar to the phylogenetic tree and

the maximal paths probability model is analogous to the DNA base transition probability

model that accounts for evolutionary events like mutations (Felsenstein 2004).

The results of the GPAM method call for three improvements of the model as part

of future work. First, an investigation of other potential functions that allow access for

hidden graph features is one way to extend the current study. Second, an alternative idea

for approximating subgraphs by maximal paths is to use random walk inside subgraphs.

The set of random walks can capture useful semantic features of graph by utilizing

node and edge labels. Third, it may be useful to investigate searching techniques for

exploration of space of partitioning functions. For instance, evolutionary computation may

be useful methods to search for partitionings. The fitness function in this case would be

the partitioning probability function as defined in Eq. 3.2. The integer array representation

of partitionings can be used to represent individuals of populations and crossover and
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mutation operations can be defined on this representation.

3.7 Conclusions

GPAM is a new model for structural pattern analysis of graphs. The search for significant

subgraphs is performed globally across all graphs in the dataset under specific category

and simultaneously by taking into considering neighboring subgraphs within the same par-

titioning, resulting in significant subgraphs emerge during model training. The model is

also flexible with respect to the analysis of new data items, as the main data entity of the

learned model is a conditional probability distribution of maximal paths. GPAM shows

comparable performance when compared to previously described graph kernels and graph

mining-based classifiers. For some datasets, the GPAM classifier outperforms current graph

kernel methods and graph mining-based methods. The GPAM classifier reports the best

partitionings for graphs in test data, therefore better justifying classification decisions.
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Table 3.4: Mean accuracy ± standard deviation for each classifier on seven datasets (t-
statistic values in bold to indicate statistically significant results compared second best
classifier for the same dataset).
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Chapter 4

Structural Network Analysis of

Biological Networks for Assessment of

Potential Disease Model Organisms

Nabhan, A. R. and I. N. Sarkar (2013). Structural network analysis of biolog-

ical networks for assessment of potential disease model organisms. Journal of

Biomedical Informatics. In press.

4.1 Abstract

Model organisms provide opportunities to design research experiments focused on disease-

related processes (e.g., using genetically engineered populations that produce phenotypes

of interest). For some diseases, there may be non-obvious model organisms that can help

in the study of underlying disease factors. In this study, an approach is presented that

leverages knowledge about human diseases and associated biological interactions networks
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to identify potential model organisms for a given disease category. The approach starts

with the identification of functional and interaction patterns of diseases within genetic

pathways. Next, the characteristic patterns are matched to interaction networks of candi-

date model organisms to identify similar subsystems that have the disease characteristic

patterns. The quality of a candidate model organism is then determined by the degree to

which the identified subsystems match genetic pathways from validated knowledge. The

results of this study suggest that non-obvious model organisms may be identified through

the proposed approach.

4.2 Introduction

Complex diseases stem from an interplay of genetic and environmental factors. At the

genetic level, these diseases are often associated with the dysfunction of more than one

gene. This necessitates the study of complex diseases at a systems level, which includes

the modeling of cellular processes that underlie an observed disorder and may involve both

sequential and simultaneous molecular interactions between many agents (e.g., genes and

chemical compounds). This highlights the importance of curating molecular interaction

networks (e.g., gene/protein interaction networks, metabolic networks, and genetic

pathways). Data resources that catalogue these networks are increasing both in terms of

the number and size of networks as well as their coverage of organisms. Environmental

factors, on the other hand, complicate the study of human diseases, since it is difficult to

create a controlled environment that enables scientists to study environmental effects on

disease development. Hence, model organisms offer opportunities for detailed study of

features associated with complex diseases, because these organisms may be genetically
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engineered to produce desired phenotypes (e.g., associated with a particular disease of

interest) and can be studied more easily in a controlled environment.

Model organisms play a vital role in advancing knowledge about disease processes.

The sophisticated genetics of human diseases makes it important to study model or-

ganisms to uncover underlying mechanisms of diseases. Model organisms may not

necessarily be closely related to humans from an evolutionary perspective. For instance,

yeast are regularly used to model disease states (Aitman et al. 2011). Comparison

of different phenotypes that arise from a conserved set of genes can be important for

exploring model organisms for specific human disorders or diseases (Thomas et al.

2011, McGary et al. 2010). Analysis of model organism microarray data may also help

identify those that have disease-related genes differentially expressed (Thomas et al. 2011).

The house mouse (Mus musculus) has been a typical model organism in the study

of human disease processes (Bedell et al. 1997), as well as complex traits and social

behavior (Koteja et al. 1999). Mice have also been genetically engineered to provide

models for studying cancer and immune diseases (Haldar et al. 2007, Haldar et al. 2008).

However, mice may not always be suitable for the study of all categories of disease. In a

recent study of phenologs (phenotypes that are equivalent across organisms), McGary, et

al. suggested a worm model (Caenorhabditis elegans) for breast cancer, a mouse model

for autism, a plant model (Arabidopsis thaliana) for Waardenburg syndrome, and a yeast

model (Saccharomyces cerevisiae) for angiogenesis disorders (McGary et al. 2010). Thus,

there may be many potential choices for a suitable model organism relative to the spectrum

of phenomena associated with disease. An empirical approach may therefore facilitate the
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identification of organism(s) that might provide insights to human diseases.

Evaluation of candidate model organisms might be measured by the degree to which

gene/protein interaction networks include pathways that are structurally and functionally

similar to human disease-related biological processes. To this end, prediction of pathways

in candidate model organisms that are similar to disease-related pathways in humans can

be effective in evaluating model organisms. Pathway prediction can be performed by a

variety of techniques. A widely used technique involves mining gene or protein interaction

networks to extract dense subgraphs (highly connected components within the network)

and then calculating the statistical significance of the discovered subgraphs (Ferrer et al.

2011). Statistically significant subgraphs are then cast as predicted pathways. Tian, et al.

developed a method to discover statistically significant pathways from gene expression

data (Tian et al. 2005). Bebek and Yang annotated gene networks with GO annotations

and developed the PathFinder method to predict novel pathways (Bebek and Yang 2007).

Cakmak and Ozsoyoglu developed a method that used frequent functional patterns in a

known pathway to find organism-specific versions of that pathway in the gene networks

(Cakmak and Ozsoyoglu 2007). Finally, Senf and Chen developed a hidden Markov

model-based method to identify genes participating in genetic pathways (Senf and Chen

2009).

The present study proposes a computational method that attempts to provide a quan-

titative measure of how well a candidate model organism might be suited for the study

of a given disease type. The proposed quantitative measure is based on the proportion of

correctly predicted genetic pathways that can be identified in interaction networks for a
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given organism. The proposed approach makes use of three types of knowledge resources:

(1) Kyoto Encyclopedia of Gene and Genomes (KEGG) (Kanehisa et al. 2010) pathway

database, (2) The Biological General Repository for Interaction Datasets (BioGRID) and

Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) gene/protein in-

teraction databases (Stark et al. 2006), and (3) Gene Ontology (GO) (Ashburner et al.

2000) annotations that have been applied to genes or proteins in curated databases. The

main premise of this work was to leverage a machine learning method to extract signif-

icant functional and structural patterns, or fingerprints, (Nabhan and Sarkar 2012) from

functionally annotated KEGG disease pathways and match these patterns to functionally

annotated gene/protein interaction networks in major databases (e.g., BioGRID) as well as

meta-databases (e.g., STRING). Depending on an organisms interaction network coverage

of structural patterns for a given disease, it can be ranked in terms of model organism suit-

ability for that disease. Through the use of a statistical model, this study was able to quan-

tify the dependency of functional structural patterns in pathways and disease categories for

14 organisms. It was assumed that some species may be a better suitable model for one

disease category and thus less suitable for studying other diseases. This assumption was

motivated by the McGary, et al. study, where a range of model species were suggested for

complex diseases (McGary et al. 2010). The promising results suggest that the described

approach may be used to determine the potential for a given organism to serve as a model

for the study of a particular disease.

4.3 Materials and Methods

In this section, the five phases of the developed approach are described: (1) annotation of

gene/protein nodes in pathway graphs with molecular function annotations, (2) learning
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disease fingerprints within annotated pathways, (3) functional annotation and indexing of

gene/protein interaction networks, (4) prediction of novel subsystems within gene/protein

interaction networks using learned fingerprints, and (5) scoring discovered subsystems

using reference pathways. Figure 4.1 provides an overview of the approach.
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Figure 4.1: Overview of the five components of the method developed in this study.

4.3.1 Functional Annotation of KEGG Pathways

KEGG genetic pathways are modeled as directed graphs with a node set (V) representing

biochemical entities such as genes, chemical compounds, and protein complexes and an

edge set (E) representing interaction relations between entities such as general process type

(e.g., a gene expression [GErel] or protein interaction [PPrel] relation) and specific relation

types (e.g., activation, expression, and inhibition). For this study, only gene/protein nodes

were considered. To increase the generalization capability, gene nodes were enriched with
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molecular function annotations as defined in Gene Ontology (GO) (Ashburner et al. 2000).

These GO annotations were imported from Human Protein Reference Database (HPRD)

(Prasad et al. 2009) and overlaid on gene/protein nodes of pathway graphs. Gene/protein

nodes without a match to HPRD GO annotations were assigned a default NULL annotation.

Nodes could be associated with multiple GO term annotations and edges could also have

multiple labels. Thus, for each graph there was a shift of focus from what gene/protein

is in a given node? to what function does the node perform in a system that models a bi-

ological process? With knowledge-enriched annotations of genes/proteins, pathways were

represented at a functional level. Subsequently, functional structural patterns in these path-

ways graphs could be matched to sub-networks of large interaction networks with func-

tionally annotated nodes. In this study, the KEGG disease pathways dataset contained

63 disease pathways across seven human disease classes. KEGG disease pathways cover

many biological processes related to genetic information processing, metabolism, and cel-

lular processes. However, this study did not focus on a particular pathway category such

as metabolic pathways and cellular processes. Each graph instance in this design set was

associated with a class label from the seven disease classes in KEGG.

4.3.2 Learning Disease Fingerprints

The objective of the second module of the proposed method was to identify characteristic

biological functionality patterns, termed fingerprints, in annotated disease pathways. A

mathematical model and an algorithm were designed to accomplish this task. A disease

fingerprint was defined as a subgraph within a GO annotated disease pathway. Fingerprints

were assumed to represent functional sub-processes that could be characteristic of a

disease class such as immune, infectious, or neurodegenerative disease. Graphs in the
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design dataset were assumed to be independent and identically distributed (iid) data

observed from an unknown probability distribution P(G). The iid data assumption was

made to facilitate statistical inference and to make decision about properties (e.g., class

label) of a graph instance independent of other graph instances in the dataset. For a given

GO-annotated pathway graph, there can be a large number of possible GO functionality

subgraph patterns, which will be called subgraph patterns hereafter. A mathematical model

was proposed to allow for scoring of subgraph patterns. High scoring patterns were output

from the model as disease fingerprints.

Mining of key subgraph patterns in the dataset was performed so that a subgraph

pattern is evaluated within a context of its neighboring patterns in a graph. To formalize

the idea of neighbor context, a utility function termed graph partitioning function was used

to decompose a graph into a set of subgraphs. A partitioning function π : E(G) → Z

assigned an integer to every edge e of graph edge set E(G) such that edges with the same

integer formed a subgraph. The set of subgraphs H that were highlighted by a specific

partitioning function (π) was defined asHπ = {gi | ∀e ∈ E(gi), E(gi) ⊆ E(G), π(e) = i}.

Figure 4.2 illustrates the concept of partitioning.

Typically, there exists a large space of possible partitionings for a given graph.

Searching for the most likely partitionings in the dataset leads to the identification of key

subgraph patterns (fingerprints). Searching for best graph partitionings can be better than

searching for individual subgraph patterns (e.g. as in frequent pattern mining techniques

(Yan and Han 2002)). This is because a graph partitioning hypothetically decomposes a

system (represented by a graph) into a set of components (subgraphs), and partitioning
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Figure 4.2: An example graph is partitioned into smaller subgraphs using partitioning func-
tions p1, p2 and p3. The vector representation of each partitioning is presented under each
of the three example partitionings. For instance, partitioning p3 assigns edges 1, 2 to sub-
graph 1 and edges 3, 4 to subgraph 2. Additional possible partitionings are not shown.

quality reflects how good is a partitioning in identifying key components of that system

(pathway in this case).

The search for best partitionings therefore required a scoring function that could be

used to assign high score to a partitioning that highlights the most likely patterns. For a

pathway graph (G) of a disease class C and a partitioning π, P (G, π|C) was defined as

the probability of observing a pathway graph G and a partitioning given a disease class C.

The value of P (G, π|C) depended on how good that partitioning highlighted key subgraph

patterns. Recall that Hπ was defined as the set of subgraphs according to a partitioning

function π of graph G: Hπ = {gi | ∀e ∈ E(gi), E(gi) ⊆ E(G), π(e) = i}

The graph partitioning probability P (G, π|C) was then computed as a function of the

set of subgraphs g ∈ Hπ
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P (G, π|C) = P (g1, g2, ..., gn|C) (4.1)

where g1, g2, ..., gn ∈ Hπ. Assuming subgraphs resulting from a partitioning function

were conditionally independent, P (G, π|C) was written as

P (G, π|C) =
∏
g∈Hπ

P (g|C) (4.2)

The probability P (g|C) represented the degree to which a subgraph g was a fingerprint

of a disease class C. For the purpose of probability estimation, counting the number of

instances of a given subgraph in partitionings of all graphs in a direct way was deemed im-

practical. This was because deciding whether two subgraphs were the same would require

a test of subgraph isomorphism (Read and Corneil 1977). An indirect method was thus

used to approximate subgraph matching by representing each subgraph with a set of max-

imal paths connecting its nodes. A maximal path was defined as a path that could not be

extended by adding nodes to either end. The probability P (g|C) could then be expressed

in terms of probabilities of maximal paths given a class C. GO- annotated maximal paths

inside the subgraphs were used to approximate representation of subgraphs, and thus avoid

subgraph isomorphism test. Each maximal path represented a sequence of GO annotations

of nodes that lay in that maximal path. In the case where a node had more than one GO

annotation, multiple maximal paths were generated so that each maximal path had only one

GO annotation per node. Then, P (g|C) was calculated approximately as:

P (g|C) =
∏
a∈g

P (a|C) (4.3)
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where a denotes a GO-annotated maximal path that connected a subset of nodes inside

subgraph g. Using Equations 4.2-4.3, the likelihood of a partitioning and a graph instance

given a disease class label was written as

P (G, π|C) =
∏
g∈Hπ

∏
a∈g

P (a|C) (4.4)

Thus, Equation 4.4 represented a scoring function that was used in the search for best

partitionings that highlighted disease fingerprints within pathway graphs. The problem

was then that the probability distribution of maximal paths P (a|C) did not exist a priori

and needed to be estimated while searching for best partitionings. To solve this problem,

an iterative training algorithm was used (described in the next section).

Parameter Estimation

The proposed model had a set of parameters θ = {P (a|C)} composing entries of

the conditional probability table of maximal paths. The parameter set θ needed to be

estimated in order to score graph partitionings. The Expectation Maximization (EM)

(Dempster et al. 1977) algorithm was used to estimate model parameters according to

Equations 4.2-4.4 while identifying the set of best partitionings for each graph in the

pathway dataset. Initially, a set of random partitionings was generated and maximal

paths within these partitionings were collected and an initial distribution for P (a|C)

was created. The parameter estimation process for this study had two basic steps. The

first step was to search for highly scoring partitionings using the most recent probability

table P (a|C) obtained in the previous iteration of EM. Then, counts of maximal paths

were collected from subgraphs of the set of best partitionings obtained. Collected counts

were then normalized to produce a conditional probability model. During searching
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and scoring of partitionings, a small probability value was used as a value of P (a|C)

in the case where a maximal path had not been added yet to the probability table.

The EM algorithm was run for four iterations in this study. Additional details of the

mathematical model and EM parameter estimation procedure are presented in Appendix A.

The EM algorithm had two outputs: the conditional probability table P (a|C) and the

set of best partitionings of each pathway in the dataset. Disease fingerprints were extracted

from best partitionings of pathways. Using the model described above, the search for

disease fingerprints not only depended on an individual score of a subgraph (according to

Equation 4.3), but also based on the contributions of other subgraphs in the quality of a

graph partitionings (according to Equation 4.4). To test the model, a graph classifier was

built to classify pathways using probability table P (a|C) that was estimated during EM

run. This classification task served as benchmarking of the proposed model.

Benchmarking of the Fingerprint Mining Method

The efficacy of the structural pattern analysis method was demonstrated by implementing

a graph classifier for disease pathways that utilized the conditional probability model

estimated during model training. Given a test set of graphs, the task of the classifier was to

assign the most likely disease class to each graph in a test set.

Classification of pathways

This classification task was modeled mathematically by finding the value for C that maxi-

mized P (C|G), which represented the probability that C is a disease class of pathway G.

Using Bayes theorem:
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P (C|G) =
P (C)P (G|C)

P (G)
(4.5)

where P (C) quantified a priori knowledge about class label distribution, P (G|C) was

defined as the conditional probability of observing graph G given that its class label was

C, and P (G) was the probability distribution of graphs. The choice of class label did not

depend on P (G). Therefore, Equation 4.5 was expressed as

P (C|G) ∝ P (C)P (G|C) (4.6)

Modeling P (G|C) directly would have required counting number of instances of a

graph G. This approach had a practical challenge: Because each pathway was represented

only once in the dataset, P (G|C) would have followed a uniform distribution with prob-

ability equal to 1/(numberofpathwaysofclassC), and that would not have helped the

statistical inference process. An alternative approach to model P (G|C) that was used in

this study was to incorporate the subgraph patterns in G according to the set of partition-

ing. Subgraphs tended to be more frequent in the dataset than their super graphs. Since one

cannot be sure about which partitioning is the best, P (G|C) was expressed in this study as

the sum of best partitionings for graph G,

P (G|C) =
∑
π

∏
g∈Hπ

∏
a∈g

P (a|C) (4.7)

Hence, having a prior distribution P (C) and a conditional probability P (G|C) that was

calculated using partitionings and maximal paths conditional probability distribution, the

classification problem was to find a class label C∗ that maximized Equation 4.6:
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C∗ = argmaxCP (C)P (G|C) (4.8)

During classification process, the search for a set of best partitionings was performed

for each test graph instance (in the same way it was performed during probability

estimation). The classification process started with setting a hypothesized class label C0

for a test graph. Then, a search for the best partitioning set started with class label of test

graph fixed to C0. Equation 4.6 was used to evaluate P (C0|G). Then, another class label

was used as a value for C0, and a new set of partitionings was searched for and Equation

4.6 used to calculate P (C0|G). The class label that achieved the highest score was reported

as classifier output. After benchmarking the graph structural pattern analysis method, the

next module used the identified GO functionality patterns to predict subsystems in the

GO-annotated interaction networks for a set of 14 species. This pattern matching module

had two components, which are described in the following two subsections.

4.3.3 Functional Annotation and Indexing of Gene/Protein Interac-

tion Networks

For each species, a network of genetic and protein interactions was constructed by import-

ing interactions from two sources: BioGRID (Stark et al. 2006) and STRING (Szklarczyk

et al. 2011). BioGRID data contains curated interactions from high throughput datasets

and individual focused studies. In this study, only interactions within the same species

were included. For some species analyzed in this study, the number of interactions

was limited in BioGRID. To increase coverage of a species interaction network, more
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interactions were imported from STRING database (version 9.0). STRING provides

information about experimental and predicted interactions. Seven sources of information

about a given interaction are used in STRING, including: genome context methods, gene

co-expression, text mining, as well as associations known from other database resources

such as BioCyc (Caspi et al. 2008) and PDB (Berman et al. 2000). An interaction in

STRING database has a combined score that is computed using evidence scores from each

data source. In this study, for data imported from STRING database, only interactions with

combined score greater than or equal to 70% confidence were used in the construction of

networks. Since fingerprints consisted of only GO terms (i.e., not gene/protein names)

interaction networks of each species were GO- annotated in order to be suitable to match

disease fingerprints learned from GO-annotated disease pathways. Nodes of interaction

networks were annotated with molecular function annotations from the AmiGO Gene

Ontology database (Carbon et al. 2009).

In this study, an interaction network of a given species could have had as many as

12,000 nodes (genes/proteins) and as many as 50,000 edges (interactions). Network

indices were created for these large networks to enable efficient sub-network searches.

An index of an interaction network was built by generating a hash table with keys

composed of ordered pairs of GO terms with first component being the node identifier of

the node being indexed and second component denoting one of its neighbors. Values in the

index table are identifiers of nodes with label equal to the first component of the ordered

pair key. A value of a given key can be a single node identifier or a set of node identifiers.

The index table was constructed by traversing every node in a given interaction network
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and examining its neighboring nodes.

Figure 4.3: An example interaction network and an index with keys of GO annotations.

Figure 4.3 shows an example of GO-annotated interaction network and its index. In

this example, suppose node n1 is to be indexed. Its neighbor nodes are {n2, n3, n4}. For

the pair (n1, n2) the corresponding annotation pair is (GO3, GO1). A key of (GO3, GO1)

is inserted into the index with value {n1}. Similarly, the key (GO3, GO2)is inserted with

value {n1}. In case a key already exists, values are appended to ones that already exist.

For instance, when indexing node n8 that is annotated with GO3, a key (GO3, GO2)

already exists in the table with value being {n1}. Therefore, the value set is updated by

110



CHAPTER 4. STRUCTURAL NETWORK ANALYSIS OF BIOLOGICAL
NETWORKS

adding element n8 and the final key:value pair will be (GO3, GO2) : {n1, n8}.

4.3.4 Predicting Novel Subsystems using Disease Fingerprints

Disease fingerprints were identified using the method described in section 4.2.2 were

matched to the GO annotated interaction networks (with interactions imported from Bi-

oGRID and STRING databases) using a similarity search algorithm. This algorithm used a

network index to find subnetworks that matched an input disease fingerprint. Given a query

subgraph and using the network index, the algorithm went through three steps.

Figure 4.4: The process of matching a query subgraph (GO-annotated nodes) (b) to an
interaction network (a). The three steps process start with generating initial candidate set
of network nodes that match the GO terms of query subgraph nodes (c). The second step
([d] and [e]) refines candidate sets by removing network nodes that do not meet topological
constraints. The last step is to generate an output subnetwork as answer to a query subgraph
(f).
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In the first step, an initial set of matched node identifiers (the candidate matching set)

was retrieved for every node in the query subgraph. This was performed by using GO

terms of nodes of each edge in the fingerprint subgraph to search the index. The following

is an example to illustrate the pattern matching process (see Figure 4.4). Let v be a node

in a query subgraph. For simplicity of demonstration, presume that each node has only

one GO annotation. For every node u with an edge leading to v, an ordered pair of GO

terms ut and vt was used as a key to lookup the network index. As a result, sets of node

identifiers values of the corresponding key were retrieved from the table. For example, as

shown in Figure 4.4.c, three sets of network node identifiers that matched query node v3

(one set per neighbor). The first set resulted from the edge (v3, v1), with a key consisting

of (GO3, GO1). By looking the value up in the index table, the retrieved value was the set

{n1}. The second candidate set for query node v3 resulted from the edge (v3, v2), with a

key consisting of (GO3, GO2). By looking this value up in the index table, the retrieved

value of this key was the set {n1, n8}. Similarly, the third candidate set for query node v3

resulted from the edge (v3, v4), with a key consisting of (GO3, GO4), with {n1} as third

candidate set for query node v3 (see Figure 4.4.c). The process was repeated for every

node in the query subgraph.

The second step was to examine candidate node identifier sets for each query node

and to check topological constraints. A member in the candidate node set conforms to

topological constraints if it has link to a member of other candidate node sets of neighbor

nodes. Topological constraints were checked first by performing set intersection operation

of all candidates sets of a given query node. For example, the final candidate set for query

node v3 was {n1, n8} ∩ {n1} ∩ {n1} = {n1}. If the set intersection operation returned
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empty set, then it would mean failure to match the query subgraph to any subnetwork

in the interaction network, and hence the search was stopped. Node identifiers in the

candidate set were then removed if they did not have any links to any node in candidate

sets of other neighboring query nodes. For example, the node identifier n5 in the candidate

sets of v2 (see Figure 4.4.d-e) was removed from that candidate set, because it was not

connected to one item from candidate set of v3 (n5 was supposed to be connected to n1

according to the query subgraph structure, but in the interaction network there was no link

between node n1 and node n5). This step was repeated until all network node identifiers in

query subgraph candidate sets satisfied topological constraints.

The third and final step was the generation of a set of sub-networks from candidate

nodes sets of every query subgraph node. If there was only one node identifier for each

candidate sets of query nodes, then it meant there was only one subnetwork that matched

the input query subgraph. Otherwise, multiple subnetworks were returned as a matched set

of the query subgraph. Details of the subgraph matching method are provided in Algorithm

A.1 of Appendix A. The output of this algorithm was a set of subnetworks that served as

candidate subsystems that partially or completely matched known pathways available in

literature.

4.3.5 Scoring Candidate Subsystems

For each disease category, fingerprints were used to find subsystems in the interaction net-

work for each of the 14 species. To evaluate these candidate subsystems, a set of reference

pathways was used to determine the degree of matching between predicted subsystems and

known pathways. A candidate subsystem was considered as being predicted correctly if
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70% or more of its genes/proteins were found in a known pathway in a reference dataset.

The Wikipathways database (Pico et al. 2008) was used as reference dataset. As recom-

mended on the WikiPathways download page, only the analysis collection pathways were

used for evaluation. Schizosaccharomyces pombe, Escherichia coli and Sus Scrofa had

no WikiPathways analysis collection data. Also, since the pathways of Saccharomyces c.

S288c and Arabidopsis thaliana in WikiPathways data were mainly metabolic pathways,

they were not used to evaluate the predicted pathways. Predicted pathways of Escherichia

coli and Saccharomyces c. S288c were matched to reference pathways from BioCyc. Ref-

erence pathways for Arabidopsis thaliana were downloaded from AraPath database (Lai

et al. 2012). A further detailed evaluation for each species was reported for each disease of

cancer and infectious disease classes in the design set.

4.4 Results

Evaluation of the developed approach was done in two steps. The first step was to measure

the performance of the proposed mathematical model for structural pattern analysis as a

function of the accuracy of a graph classifier. The second step was to evaluate the predicted

subsystems that were discovered by the subgraph matching algorithm using a set of fin-

gerprints for each disease class, and then comparing the discovered subsystems to known

pathways published in the literature.

4.4.1 Datasets

The experiments were performed on disease pathways downloaded from KEGG pathway

database (in September 2012). The KEGG disease pathways consisted of 63 pathways
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distributed over seven disease classes. This dataset is summarized in Table 4.1. The

gene/protein nodes of the pathway dataset were annotated with GO molecular function

terms imported from HPRD database. Interaction networks for 14 species were down-

loaded from the BioGRID and STRING databases (in October 2012). All networks were

annotated with molecular function annotations from AmiGO database. The GO molecular

function hierarchy included a total of 10,286 GO concepts (as of July 2012). To determine

the overall accuracy of the approach presented here, the candidate subsystems identified in

the 14 interaction networks were compared to published pathways in WikiPathways and

BioCyc databases.

Table 4.1: KEGG disease pathway categories.

Disease category Number of instances
Cancer 17
Infectious disease 22
Substance Dependence 5
Neurodegenerative 5
Immune disease 7
Cardiovascular disease 4
Metabolic disease 3

4.4.2 Benchmarking of Structural Pattern Analysis Model

Given the set of 63 disease pathways analyzed for this study from KEGG, two binary

classifiers were developed: (1) a cancer classifier and (2) an infectious diseases classifier.

Cancer and infectious diseases had the largest number of instances in the design dataset (17

cancer pathways and 22 infectious diseases pathways, respectively). Two modified datasets

were created: (1) a cancer dataset where graph instances were labeled as either associated
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with cancer (positive case) or not associated with cancer (negative case; for this cancer

classifier dataset, all non-cancer pathways such as infectious diseases, immune diseases,

and neurodegenerative pathways were labeled negative); and, (2) an infectious disease

dataset where graph instances were labeled as either associated with infectious disease

(positive case) or not associated with infectious disease (negative case). A three-fold cross

validation experiment was performed. The results of classification performance in terms

of the geometric average of sensitivity and specificity are shown in Table 4.2. An overall

accuracy of 86% was achieved.

Table 4.2: Average classification accuracy.

Disease cate-
gory

Average
specificity

Average sensi-
tivity

Overall aver-
age accuracy

Cancer 0.75 1.0 0.87
Infectious 0.86 0.82 0.84

4.4.3 Assessment of Organisms as Molecular Models

Assessment of organisms as molecular models was performed by matching disease

fingerprints identified in disease pathways to interaction networks for 14 organisms to find

candidate subsystems. Evaluation results of predicted candidate subsystems for the 14

species analyzed in this study are shown in Table 3, including the proportions of known

reference pathways that were recovered by the pathway prediction method. For instance,

61% of Bos taurus pathways in Wikipathways were recovered. Table 4.3 contains the

number of interactions imported from BioGRID and STRING databases. As shown in

Table 4.3, interaction networks of Bos taurus, Mus musculus, Rattus norvegicus, Danio
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rerio, and Escherichia coli achieved the top five correctly predicted pathways among

the species included in this study. The number of individual and summative interactions

shown in Table 4.3 demonstrates the impact of importing data from STRING database

with regard to size of interaction network for the top five species in terms of proportion

of predicted subsystems nearly matching reference pathways dataset. Some species had

no data in the reference set of pathways imported from WikiPathways. In particular,

Schizosaccharomyces pombe and Sus scrofa had predicted subsystems that could not

be evaluated. For STRING data, zero imported interactions means that the specified

threshold of evidence score was not reached or there were already enough interactions

from BioGRID (e.g., Saccharomyces c. S288c has 234,870 BioGRID interactions and thus

no additional STRING interactions were imported). Sus scrofa did not have any reference

pathways in WikiPathways, so no prediction accuracy could be reported.

Tables 4.4 and 4.5 show detailed performance of each species with respect to individual

cancer and infectious diseases. Each column in Tables 4.4 and 4.5 shows the proportion

of correctly predicted pathways for each of the 14 species analyzed in this study based on

matching fingerprints between disease category specific and species interaction networks.

The numbers of correctly predicted pathways per species were normalized to give propor-

tions such that each species covered a set of fingerprints for a disease. As examples of

correctly predicted pathways using cancer disease fingerprints, the proposed method suc-

cessfully recovered 11 out of 16 genes in the androgen signaling pathway (PW:0000564),

five out of six genes of the altered canonical Wnt signaling pathway (PW:0000599) and

five out of six genes in tamoxifen pharmacodynamics pathway (PW:0000839) from the

published Rat Genome Database (RGD) (Dwinell et al. 2009).
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4.5 Discussion

In silico identification of potential model organisms may be a cost effective first step in the

study of human diseases. By annotating genetic pathways with GO terms, subgraph pat-

terns in genetic pathways can acquire greater generalization capability. This generalization

allows for matching with an organisms interaction network that was also annotated using

GO terms. The degree to which an interaction network of a given model organism covered

subgraph patterns of disease pathways was hypothesized to be a measure of the suitability

of this model organism to study biological processes related to human diseases. A signifi-

cant proportion of the interactions (genetic and physical) used in network construction were

predicted interactions (e.g., inferred by genome context methods or text mining). This al-

lowed for the evaluation of organisms as potential disease models even with limited curated

interaction data.

4.5.1 Main Findings

The statistics in Tables 4.3 - 4.5 show the range of disease model suitability for the 14

analyzed organisms in terms of pathways prediction accuracy. The interaction networks

of Arabidopsis thaliana (mouse-ear cress; a plant) and Escherichia coli (a bacterium)

performed better than hose of gallus(chicken), Canis lupus familiaris (dog), or Bos taurus

(cow) in predicting pathways using disease fingerprints of colorectal as well as thyroid

cancer (see Table 4.4). Additionally, interaction networks of Sacchromyces cerevisiae

(Bakers yeast) performed better than Mus musculus (mouse) or Rattus norvegicus (rat) in

predicting pathways using Eppstein- Barr virus disease fingerprints (see Table 4.5). These

types of findings are supported by McGary, et al., where organisms such as Sacchromyces
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cerevisiae and Caenorhabditis elegans (in contrast to Mus musculus or Rattus norvegicus)

were described as putative model organisms for human diseases (McGary et al. 2010).

This study was different from the approach of McGary, et al. in the way that it depends

on network structure of genetic pathways as well as Gene Ontology annotations. The work

of McGary, et al. was based on overlapping sets of orthologous genes, and a mathematical

formulation based on these sets was used to find model organisms. The work of McGary

et al. was based on molecular sequence information, without using network analysis to

rank model organisms based on predicted subsystems (although McGary, et al. studied

connectivity and modularity of the subsystems they discovered in cellular networks of

candidate organisms, but that was a further analysis step of the results and was not a core

part of their described method).

Based on the results shown in Tables 4.4 and 4.5, it was also observed that performance

of Mus musculus and Rattus norvegicus models was greatly different in the case of some

cancer diseases (e.g., Renal cell carcinoma and Melanoma) and infectious diseases (e.g.,

Pertussis and Epstein-Barr Virus). These results suggest that it may be worth exploring

Danio rerio (for Renal cell carcinoma, Melanoma, or Pertussis) or Saccharomyces

cerevisiae (for Epstein-Barr Virus) as better disease models for certain diseases. To

further support this finding, recent studies have proposed Danio rerio as a potential model

organism for cancer (Stoletov and Klemke 2008, Stern and Zon 2003, Feitsma and Cuppen

2008), infectious and immune diseases (Sullivan and Kim 2008), and in vivo drug discov-

ery (Zon and Peterson 2005). Furthermore, some genes of Saccharomyces cerevisiae have

shown similarity to Epstein-Barr virus DNA polymerase and be orthologous to human
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genes associated with Epstein-Barr virus (Morrison et al. 1989, Dheekollu and Lieberman

2011). However, it is important to note that the plausibility of alternative model organisms

might also require the consideration of other features such as phenotypic properties

of these specific diseases (e.g., do the organisms exhibit an observable disease state

phenotype that is alterable?) as well as other practical considerations (e.g., availability of

valid wild-types or appropriate inbred species).

4.5.2 Choice of Data Resources and Annotation Scheme

Combining micro-level, molecular function annotations of gene/protein nodes together

with information about semantics inherited in a graph structure can be a powerful approach

to derive new findings of relevance to biomedicine. Node annotations might not be

restricted to molecular function annotations of GO. Genes/proteins in pathways and

interaction networks with disease- specific annotation could be augmented from a variety

of knowledge sources. For example, it may be possible to leverage biobanking and pheno-

typic information from Electronic Health Records (EHR) (Jensen et al. 2012) and clinical

data resources to annotate disease genes/proteins. Indeed, we are currently exploring the

potential to do this in the future, with the goal to develop an EHR knowledge-enriched

model to study disease genes/proteins in the context of real clinical scenarios.

While GO annotations can be found in gene ontology annotations (GOA) files of the

Gene Ontology database, HPRD was chosen as a source of GO annotations because it is a

manually curated resource and GO-compatible database. HPRD initially started with data

from the Online Mendelian Inheritance in Man (OMIM) database (Hamosh et al. 2005)
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that focused on disease related genes (Peri et al. 2003). This level of curation met the

scope of this study to learn knowledge from disease- related genetic pathways.

This study only made use of GO molecular function terms. GO biological process

terms are more diverse (and more specific) in characterizing genes/proteins than molecular

function terms (there are nearly 2.5 times more biological process terms than molecular

function terms). For the purposes of this study, molecular function terms were able to

increase the model generalization (extracted patterns can be matched to GO-annotated

interaction networks), thus not requiring additional biological process terms. Even though

the GO biological process terms were not used in the model, the KEGG edge annotations

(e.g., general process type such as PPrel and specific relation types such as activation,

expression and inhibition) do capture semantics of the biological process that involved two

genes/proteins.

Using a major gene/protein interaction database such as BioGRID, which provides a

high number of unique interactions among other major databases (Lehne and Schlitt 2009),

can be a limiting factor for predicting subsystems in many species due to low number

interactions for some species in BioGRID database. The use of gene/protein interactions

drawn from meta-databases such as STRING enhanced the ability to recover known

subsystems by increasing the size of interaction networks. The number of interactions

(per species) imported from BioGRID and STRING databases highlights the importance

of aggregating evidence information about interactions from large number of sources.

For instance, the interaction network of Escherichia coli had only four interactions in

BioGRID database. About 50,000 interactions regarding Escherichia coli imported
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from STRING enabled the prediction of 23% of Wikipathways reference pathways of

Escherichia coli. For Danio rerio, the interaction network had only 112 interactions

imported from BioGRID. Importing 47,029 interactions from STRING allowed for 18%

prediction accuracy for cancer diseases class and 12% prediction accuracy of infectious

diseases class. The majority of interactions imported from STRING regarding Escherichia

coli and Danio rerio were largely supported by evidence scores from predicted interactions

(e.g., genome context and text mining).

The contribution of multiple methods for interaction prediction can be demonstrated

by the case of Danio rerio and Escherichia coli interaction networks constructed using

interactions imported from STRING. As shown in Figures 4.5 and 4.6, about 55% of the

interaction network constructed for the Danio rerio and about 80% of the interaction net-

work constructed for the Escherichia coli were derived from evidence from experimental,

gene expression, text mining, and gene neighborhood methods that collectively increased

the overall evidence score above 70%. As has been done by others (e.g., Ferrer, et al.

(Ferrer et al. 2011) used threshold of 50% for an adjusted rand index for determining

the correctness of a pathway), a threshold of 70% was mainly chosen to imply that more

than two thirds of the genes/proteins in a pathway are found. However, if the Danio

rerio and Escherichia coli networks were constructed only from data imported from

major databases, the networks would respectively be 45% and 20% of their potential size.

Table 4.6 shows statistics about the STRING interactions used in the construction of the

Danio rerio network. While 98% of Danio rerio network links had non-zero scores for

partial evidence derived from other databases, 55% these partial evidence scores would

not pass the 70% threshold and hence the Danio rerio networks would be 45% of its size.
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Partial evidence from experimental, gene expression, text mining, and gene neighborhood

methods thus boosted the size of Danio rerio network. The results shown in Table 4.4

also suggest that, for some species, very few known interactions (118 as in the Danio

rerio dataset) were available in BioGRID database. Including interactions from STRING

(mostly predicted interactions) allowed for a wider coverage of the interaction network.

The overall impact of including multiple sources resulted in an improvement of overall

prediction accuracy for 18% of subsystems discovered by cancer fingerprints and 12% for

infectious disease fingerprints.

Figure 4.5: Contribution of methods used to predict interactions for the construction of
interaction network of Danio rerio.

4.5.3 Summary of Study Contributions

There are four major contributions of the methodology developed in this study for eval-

uating potential model organisms. First, it was shown that a model-based method could

be used to search and extract functional structural patterns (disease fingerprints) in disease

pathway graphs. Second, a subgraph pattern matching algorithm, supported by a simple
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Figure 4.6: Contribution of methods used to predict interactions for the construction of
interaction network of Escherichia coli.

and memory-efficient indexing method was shown to be useful for identifying subsystems

in interaction networks using disease fingerprints. Third, this work leveraged rich knowl-

edge sources (KEGG pathways, BioGRID and STRING interactions databases that could

be annotated with GO) together with computational mining methods to infer potentially

new knowledge (e.g., novel subsystems of disease). The fourth, and perhaps most signifi-

cant, way that the methodology presented here is different from previous studies is that the

assessment of disease model potential was achieved at both the unit level (by considering

molecular function) and system level (by considering graph structure patterns in pathways).

Thus, this approach is different from related studies that used gene ortholog sets as the ba-

sis to assess how an organism was suitable as a model (e.g., most recently by McGary, et

al. (McGary et al. 2010)). The method used in this study complements these types of

approaches in two major ways: (1) the way gene molecular function is used to represent

similarity of genes in different organisms and (2) pathways are predicted using system-level

graph-based methods.
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4.5.4 Study Limitations

The methods presented here have a number of limitations related to decisions about the

computational methods, the data resources, and the assumptions made in this study. The

EM algorithm that was used for parameter estimation (see Appendix A) is known for not

guaranteeing optimum solutions. Graphs in the KEGG pathway datasets were assumed to

be independent and identically distributed data. While it is hard to confirm that a given pair

of pathways sharing a set of genes/proteins is totally independent, assuming independence

of graphs items was for the purpose of statistical analysis and to make the computation

of the model more tractable. There are a number of alternative resources that might have

been used, including Reactome pathways and molecular networks (Joshi-Tope et al. 2005),

species-specific databases such as Rat Genome Database (RGD) (Dwinell et al. 2009) and

WormBase(Harris et al. 2010).

Some limitations are inherent in the datasets chosen for this study and could have had

an impact on the results produced. For instance, significant proportions of the interactions

in STRING database are predicted interactions and thus there is always a possibility of

errors about predicting two genes/proteins being genetically or physically interacting.

There might be gene set overlap between pathway data from Wikipathways, BioCyc, and

AraPath databases with the KEGG human pathways that were used as design dataset.

However, this did not have a significant effect on quality of evaluation procedure for two

reasons. First, the method described in this study did not use any sequence similarity or

homology-based technique to predict pathways similar to those of humans in other species.

Second, the methodology used in this study relied on the molecular function of genes, not

the genes themselves and therefore, genes in predicted pathways did not necessarily have
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to be sequence-based homologs of human genes.

Evaluating candidate model organisms at the molecular level is only one facet for de-

termining the viability of a possible model organism. Other factors, such as cost and con-

trollability in a lab environment, also need to be considered. This study aimed to utilize

already available resources about potential model organism for systematic evaluation, with-

out particular consideration of cost or controllability. Nonetheless, the use of the approach

described in this study may be one factor that can be combined with cost and controllability

factors to help guide future research on human diseases.

4.6 Conclusion

This study proposed a method for the evaluation of species as models to study human

diseases. Disease-related genetic pathways were functionally and structurally analyzed to

uncover characteristic subgraph patterns. These patterns were then matched to molecular

interaction networks for 14 potential model organisms. The adequacy of a given species as

a potential disease model was hypothesized to be related to the degree to which interaction

networks cover disease patterns. The finding that proportions of correctly predicted subsys-

tems in Danio rerio (Zebrafish) and Saccharomyces cerevisiae (Baker’s yeast) interaction

networks were higher than those of two common model organisms Mus musculus (Mouse)

and Rattus norvegicus (Rat) suggests there might be unobvious molecular networks in al-

ternative model organisms that might be relevant to study disease-related processes. The

findings of this study suggest that a network, system-level approach can be an effective

means to find such unobvious networks. The promising results of this study suggest that

the disease fingerprint approach may be used to analyze pathways across multiple species
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and may thus be used to identify model organisms for the study of human disease related

processes.
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Table 4.3: Number of interactions and proportions of predicted pathways that correctly
matched reference pathways for a given species.
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Table 4.4: Detailed performance analysis of 14 Species on cancer diseases fingerprints.
Entries are the proportions of correctly predicted pathways for each of the 14 species.
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Table 4.5: Detailed performance analysis of 14 Species on infectious diseases fingerprints.
Entries are the proportions of correctly predicted pathways for each of the 14 species.
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Table 4.6: Interactions of Danio rerio interaction network with detailed sources of evi-
dence.

Evidence
Method/Source

Number of
STRING links
with non-zero score

Percentage of Net-
work links with
non-zero score

Neighborhood 4891 9.7
Fusion 299 0.6
Cooccurence 2219 4.4
Coexpression 22,319 44
Experimental 11,547 23
Other databases 49,103 98
Text Mining 15,149 30
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Chapter 5

Graph-based Mining in Biomedical

Literature for Assessment of Disease

Model Organisms

Nabhan, A. R. and I. N. Sarkar (2013). Graph-based Mining in Biomedical

Literature for Assessment of Disease Model Organisms. In preparation.

5.1 Abstract

Motivation: The identification of potential model organisms to study disease phenomena

is an important task in biomedicine. The potential to identify potential model organisms

based on evidence re-ported in biomedical literature may complement more traditional ge-

nomic and proteomic approaches. Natural language processing (NLP) methods enable the

analysis of large collections of biomedical literature, such as indexed by resources like

MEDLINE. This study aimed to leverage NLP-based annotations of MEDLINE to support
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a graph-based mining technique for the identification of potential dis-ease model organ-

isms.

Results: A graph-based mining method was developed that lever-aged syntactic and se-

mantic annotations provided by NLP-processing done by MetaMap, a publicly available

tool from the US National Library of Medicine. The approach was used to find seman-

tically equivalent graph patterns across citations that reported evidence about organisms.

These semantically equivalent patterns were then used to develop a quantitative assessment

of described organisms as potential disease models.

5.2 Introduction

Model organisms are often used to study the underlying mechanisms of disease, enabling

the study of genetically modified populations with phenotypes or traits of interest. Mice

and rats dominate as the chosen models to study human diseases, while there are a handful

of other organisms used for particular conditions (e.g., fruit fly and zebrafish). Recent

advancements in genome sequencing technologies alongside the generally improved

ability to acquire and catalogue biological information has led to an increased amount of

genomic and proteomic materials for organisms that may not have been previously studied

extensively. The availability of such resources provides the opportunity to evaluate the

potential of in silico methods to identify potential model organisms for supporting the

study and understanding of disease.

A common goal of biomedical research is to identify genes and their functions as

well as associated molecular mechanisms or pathways for various cellular processes

in sequenced organisms. Comparative genomics methods have been used to infer the
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function of genes using information about previously studied organisms (Sandelin et al.

2004, Wolf et al. 2001). This has led to an increasing number of reports describing newly

discovered mechanisms that underlie various phenomena, including those associated with

disease etiology (Glass et al. 2010, Whelan et al. 2010). Scientific knowledge may be

represented by relationships between domain concepts present in literature (Bodenreider

2004). However, this knowledge cannot be easily accessed and summarized to address

scientific questions because it is generally embedded in free text (Altman and Klein

2002, Rebholz-Schuhmann et al. 2012). Data mining methods, coupled with natural

language processing (NLP), may thus provide a means to uncover important patterns

that summarize information embedded in biomedical literature (Yoo et al. 2007). The

availability of biomedical knowledge in large, freely available resources (e.g. as citations

indexed by MEDLINE) provides an opportunity to leverage data mining methods to find

potential disease model organisms.

This study aimed to develop an approach to mine biomedical literature of a given or-

ganism to uncover patterns about phenomena and processes (e.g. molecular interactions,

phenotypic features, and experimental procedures) that can subsequently be used to char-

acterize a specific disease that the organism may be a suitable model for studying. These

methods applied a graph pattern analysis model to develop a graph-based representation of

sentences in biomedical citations (MEDLINE) in order to uncover significant subgraph pat-

terns. This model allowed for the incorporation of knowledge based annotations to address

the data sparsity problem (that is particularly common with textual data) and to increase the

generalization capability of subgraph patterns. Generalization of subgraph patterns in this

context meant that vertices of patterns were annotated with concepts from ontologies that
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enabled patterns to be matched to other graphs whose vertices were also annotated with the

same ontological concepts.

5.3 Materials and Methods

The method developed for this study used an annotated biomedical literature citation corpus

(MEDLINE) to generate a graph-based representation of sentences. A graph pattern mining

method was developed to highlight key patterns within the annotated corpus. The similarity

of patterns relative to citations associated with describe human disease patterns formed the

basis to suggest potential disease models.

5.3.1 Annotated Text Corpus

In order to generate concept graphs that represented sentences in a given MEDLINE

citation, concepts (vertices) and relationships (edges) had to be identified. The MetaMap

software tool, developed by the US National Library of Medicine (NLM), provides

morpho-syntactic and semantic annotations of natural language text (Bodenreider

2004, Browne et al. 2003). For a given sentence or utterance, MetaMap identifies words

and their part-of-speech tags, phrase structures, in addition to terms/concepts that can be

mapped to UMLS concepts. In this study, MetaMap annotations were used as input for

the later described method to generate concept graph representations for sentences from

MEDLINE. The annotations used for this study were based on the pre-computed MetaMap

Machine Output (MMO) repository (2012 release), which was the result of processing of

more than 20 million citations from the MEDLINE using MetaMap.
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Citations with Medical Subject Headings (MeSH) descriptors (Lipscomb 2000) related

to diseases or organisms groups that were the focus of this study were selected from the

MMO output for subsequent pattern mining steps. In addition to these scope restrictions,

citations were also filtered based on MeSH descriptors contained within the Phenomena

and Processes [G] MeSH tree hierarchy.

Table 5.1: Sample rules for mapping syntactic structures to concept graphs.

Phrase Structure Pattern Graph Creation Rules
modifier, modifier, head e1(2, attr, 0), e2(2, attr, 1)
preposition, modifier, head e1(0, rel, 2), e2(2, attr, 1)
pronoun, modifier ,modifier, head e1(0, rel, 3), e2(3, attr, 1), e3(3, attr, 2)
head, preposition, modifier e1(0, rel, 1), e2(1, rel, 2)

5.3.2 Transformation of Syntactic and Semantic Structures into Con-

cept Graphs

Syntactic structures in MMO annotations (e.g. part-of-speech tags, phrase structures, and

UMLS concept mappings) were used to construct concept graphs. For instance, a syntactic

annotation of a noun phrase can indicate the head of the noun phrase (main noun) and a set

of modifiers (e.g. adjectives). This annotation helped identify concepts (head of the phrase

and its modifiers) and relationships between concepts (has-attribute relationship between

the head and its modifiers). In concept graphs, each vertex has a type (e.g. concept, action)

and edges can be labeled with types (Leskovec et al. 2004). Each vertex has a set of factors

(or features) that describe the vertex such as label (e.g. inhibitory), part-of-speech tag (e.g.

adjective), and semantic type (e.g. molecular function). Labels of edges represent relations
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between two vertices. For instance, edge labels can be attr indicating that source vertex

(e.g. head or noun) has an attribute described by destination vertex (e.g. adjective).

A set of transformation rules was developed to transform MetaMap annotations of

sentences into concept graphs. Each rule described a phrase structure pattern and had an

action describing how the concept graph was to be generated. The action of a rule specified

the generation of a set of tuples describing edges of the concept graph. For instance, a

rule can be of the form: MODIFIER,HEAD => (1,attr,0). This rule consists of a pattern

of a simple Noun Phrase with a head (noun) and a modifier (adjective). The action is to

generate an edge with source vertex index 1 (referring to the second word in this noun

phrase), and edge label attr, and destination vertex index 0 (referring to the first word in

this noun phrase). All phrase structures (e.g. Noun Phrase, Preposition Phrase, and Verb

Phrase) had a set of transformation rules that were used to generate phrase concept graphs.

Then, concept graphs were generated by the merging smaller concept graphs of sen-

tences constituent phrases. A set of rules was used to generate sentence-level concept

graphs by linking the head or main vertex in one concept graph of a phrase to the head ver-

tex of a concept graph of another phrase. Sentence-level graph generation rules described

how smaller phrase-level graphs were to be merged. As an example of sentence-level graph

generation rule, NP,conj,NP => (head(0), conj, head(2)) describes a sentence with two

noun phrases linked by a conjunction (e.g. and). The action of this rule is to create an edge

between the head of first phrase and the head of the third phrase in the rule pattern, with

an edge label conj. A total of 230 transformation rules were written to generate concept

graphs. A sample of transformation rules is given in Table 5.1.
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Figure 5.1: A factored graph representation of a title of a citation (PubMed Identifier
[PMID] = 4429579). Each vertex has two factors: a lexical factor (concept name) and
a semantic type factor. Abbreviations: qlco (Qualitative Concept), sbst (Substance), orch
(Organic Chemical), moft (Molecular Function).

Graphs were categorized according to five major organism groups (invertebrates, birds,

fish, fungi and humans), which were based on categorizations from the MeSH hierarchy.

Within each group, graphs were labeled with a disease class label (e.g. Neoplasms,

Bacterial infections and Mycoses, and Immune System diseases). After generation of

concept graph representations for sentences, the next step was to apply a graph pattern

mining method to find significant patterns. Fig. 5.1 shows an example of a concept graph

generated for a sentence.

5.3.3 Graph Pattern Mining

A graph pattern analysis method was used to analyze concept graphs and extract subgraph

pattern features that correlated with diseases of interest. A statistical model measured the

quality of subgraph features in the graph datasets and a heuristic search algorithm used
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this model to explore and evaluate the space of subgraph patterns within the graph dataset.

This model was previously developed to analyze a graph dataset of human disease genetic

pathways (Nabhan and Sarkar 2012), and extended in this study to allow for inclusion of

multiple features per vertex in the concept graph datasets. The model used in this study

is termed the Factored Graph Pattern Analysis Model (FGPAM). The model assumed a

factored representation of vertices, with each vertex having a set of factors (e.g. label,

part-of-speech-tag, and UMLS semantic type). One of the parameters of the method is

a vector of weight values, one per factor, which represents the importance of the factor.

For instance, more weight can be assigned to the semantic type factor and less weight to

the part-of-speech factor. The parameters of the statistical model were estimated using the

Expectation Maximization (EM) algorithm.

Graph Partitioning

The notion of graph partitioning denotes a function that maps edges of a graph into a range

of subgraphs that can represent a candidate feature. These subgraphs are edge disjointed,

but can share vertices. The set of subgraphs that are defined by the function π on a graph

G is Hπ = {gi|∀e ∈ E(gi), π(e) = i}. There is a large space of possible partitionings and

there was a need to measure the quality of each partitioning to search for best partitionings

that highlighted key subgraph features in the graph datasets.

Each concept graph G was assigned a disease class label C. A set of possible parti-

tionings of G was sought and a probability value was used to measure the quality of each

partitioning. Partitioning quality was represented as a conditional probability (P (π,G|C))

of a partitioning π of a concept graph instance G given a class value C (Nabhan and Sarkar
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2012, Nabhan and Sarkar 2013). The value P (π,G|C) can be defined using the set of

subgraphs g ∈ Hπas:

P (π,G|C) = P (g1, g2, ..., gn|C) (5.1)

It was assumed that subgraphs given a partitioning function on a concept graph were

conditionally independent. Thus, it was possible to write P (π,G|C) as:

P (π,G|C) =
∏
g∈Hπ

P (g|C) (5.2)

The probability value P (g|C) represented the degree to which a subgraph g was a

feature of a class C. Subgraphs were approximated by a set of maximal paths connecting

its vertices, and then the probability of a subgraph was computed as a function of the set of

maximal paths. A maximal path was defined as a path that could not be extended by adding

vertices to either end. The probability P (g|C) was then expressed in terms of probabilities

of maximal paths given a class C:

P (g|C) = P (a1, a2, ..., ak ∈ g|C) (5.3)

To simplify the computation of Equation 5.3, maximal paths were assumed to be con-

ditionally independent:

P (g|C) =
∏
a∈g

P (a|C) (5.4)

The probability of a maximal path was computed as a function of annotations features

for every vertex that lied in the path. Thus, a maximal path was factored into a set of
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annotated sequences, each for an annotation factor. For instance, if there was a lexical factor

representing a word token and a semantic type factor of a UMLS concept, then a sequence

of tokens and a sequence of UMLS concepts were generated. Then, the probability P (a|C)

was represented as

P (a|C) = w1 × P (f1|C) + ...+ wm × P (fm|C) (5.5)

where f1...fm represented annotated factored sequences for vertices that lie on maximal

path a and w1wm are weights assigned to factors.

Using Equations 5.2 and 5.4, the likelihood of a partitioning π and a graph G instance

given a disease class label C was written as

P (π,G|C) =
∏
g∈Hπ

∏
a∈g

P (a|C) (5.6)

Equations 5.1-5.6 defined one way to measure the quality of key subgraph pattern fea-

tures in a coherent way that took into account neighborhood of subgraph (and hence quality

of a subgraph pattern was not computed in isolation) and also considered dependency on

class labels assigned to graphs. A heuristic search function used Equations 5.1-5.6 to ex-

plore the space of possible partitionings and to find good subgraph patterns. This function

was integrated into the EM algorithm during the process of estimating the parameters of

the statistical model.

Parameter Estimation

The statistical model had a set of parameters θ:
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θ = ∪mj=1{P (fj|C)} (5.7)

The parameters θ consisted of a set of conditional probability tables of factored an-

notation sequences. The parameter estimation procedure required counting the incidence

of a factored annotated sequence in subgraphs of generated partitionings of a graph.

Annotated sequences were weighted by the probability score of the graph partitioning

within which that sequence was found. At the same time, the partitioning probability

needed the conditional probability tables of the annotated sequences, which did not exist a

priori. To solve this problem, an iterative procedure was used to estimate model parameters

while searching for better partitionings. This iterative procedure had two steps. In the

first step, the most recent values of model parameters were used in the search for a better

partitioning. In the second step, weighted counts of annotated sequences were collected

and normalized to produce new conditional probability tables.

Model parameters were estimated according to Equations 5.2 and 5.4 using the EM

algorithm (Dempster et al. 1977). Initially, a set of random partitionings was generated

and the maximal paths within these partitionings were collected and an initial probability

distribution for P (fj|C) was created, where fj denoted an annotated sequence of factor

j. The parameter estimation process for this study had two basic steps. The first step

was to search for better partitionings using the most updated version of the probability

table P (fj|C) obtained in the previous iteration of EM. Factored maximal path parameters

counts are collected from within graph partitionings. The counts of a parameter in one

graph was thus calculated as follows:
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c(fj|C;G) =
∑
π

P (π|G,C)N(fj, G)
∑
j

δ(f, fj)δ(C,Cj) (5.8)

Here, N(fj, G) is the number of incidences a factored maximal path fj appeared in

G (in different subgraphs of G), and δ is the Kronecker’s delta function. Then, these

counts were normalized to obtain an updated conditional probability table. The probability

value P (π|G,C) is the normalized partitioning probability, and it was obtained by dividing

P (π,G|C) by the marginalized sum of probabilities other partitionings of G. In the sec-

ond step, counts of factored maximal path parameters c(fj|C;G) were normalized to get

P (fj|C).

Searching for Best Partitionings

At each iteration, the hill-climbing algorithm was used to search for better partitionings

of the EM algorithm. Partitionings were presented as integer arrays with indexes referring

to edges and entries referring to a subgraph that contains the edge indicated by the array

index. This representation allowed for generation of new partitionings that could be

evaluated using the most recent values of model parameters θ. Changing the entry value of

the integer array reflected the shrinking of a subgraph, the growth of another graph, and

could mean the split of a subgraph graph into two smaller subgraphs. For every pair of

edges, a connectivity test was performed to determine if these edges shared a vertex. If

two edges shared a vertex, then one of the edges propagated its subgraph id to the other.

There were two outcomes of the EM parameter estimation algorithm: (1) a set of

conditional probability tables for annotation factors (model parameters); and, (2) a set of

best partitionings of each concept graph in the dataset. A java-based tool was developed
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to estimate FGPAM model parameters and find the best set of partitionings (highlighting

significant patterns) for a given graph dataset. In addition to model parameters, a set of

application parameters enables configuration of the tool according to the graph datasets

(for instance, to determine whether edges are directed or undirected and to determine

number of EM iterations). After FGPAM parameter estimation, the set of best partitionings

were processed to extract significant subgraph patterns.

There might be thousands of partitionings for a given graph; each of which has been

assigned a probability score determined by Equation 5.6. In previous work (Nabhan and

Sarkar 2013), a defined threshold value was used to select high probable partitionings for

subgraph pattern extraction. One potential problem with using probability threshold to

select partitionings was that there was a wide-range variability of partitionings probability

according to graph size (partitionings of large graphs tend to have lower probability value

than those of smaller graphs). To solve this problem, partitionings were grouped by graph

size (number of edges). Then, within each group (bin), partitionings were ranked from

highest probability to lowest probability. Then, a threshold value t on rank can be set

to select top-t partitionings. These high-rank partitionings were then used to extract key

subgraph patterns. These patterns summarized information content regarding biological

processes related to diseases.

5.3.4 Assessment of Model Organisms

The assessment of potential model organisms was performed using key subgraph patterns

that were highlighted in the best partitionings of annotation-rich concept graphs of

text sentences. For each disease category, subgraph patterns in each graph dataset of
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a non-human organism group were matched to the corresponding disease patterns in

the human dataset. An approximate graph matching method was used to measure the

similarity between two subgraph patterns. The group organism with the highest subgraph

matching score was deemed the best-fit model organism for the given disease category.

The approximate subgraph matching method used information of vertex connectivity

and its semantic type factor. Given two subgraphs, vertices in the first subgraph were

mapped to vertices in the second subgraph so that link information was preserved. Then,

semantic annotations of vertices were matched. If the percentage of matching semantic

annotations was above a specified threshold parameter, the two subgraphs were reported as

similar.

5.4 Results

Concept graph representations of selected MEDLINE citations were constructed using a

set of transformation rules from MMO output, resulting in approximately nine million

concept graphs. The citations were selected based on organism groups, disease groups,

and Biological Phenomena and Processes MeSH descriptors. The FGPAM java tool was

then used to analyze the graph dataset to highlight significant patterns in concept graphs.

These patterns were used as a basis to compare organisms for suitability as potential disease

models.
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5.4.1 Datasets and FGPAM Software Tool Parameters

Approximately nine million sentences were processed to generate the concept graphs.

Sentences in this corpus were categorized into five organism groups as well as six disease

categories. Table 5.2 shows the distribution of concept graphs across organism and disease

groups.

Table 5.2: Number of concept graphs of each MeSH organism group distributed over six
MeSH disease groups.
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Humans 3.55M 2.68M 3.1M 536K 1.46M 1.16M
Birds 5K 10K 11K 31K 2.6K 26K
Fishes 2K 1.3K 5K 7.7K 2K 12K
Fungi 1K 5K 2K 1.3K 0. 9K 26K
Invertebrates 1.5K 8.3K 11K 11K 6K 15K

Parameter estimation of FGPAM was performed on each dataset (specified by an

organism group and a disease group). A set of application parameters of the FGPAM java

tool needed to be determined to achieve the best results. One of the parameters was the

vector of weight values of factored representation. To get better generalization capability

of the pattern, more weight was given to the semantic type factor. This gave the semantic

type factor an advantage when evaluating partitionings. Thus, subgraph patterns with

identical structures (link) and semantic type factors would look more similar, even if the

lexical factors (words) were different. The software implementation of FGPAM has a set

of application parameters that needs to be adjusted for training data. For instance, there
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are parameters to specify the maximum subgraph pattern size, the number of iterations of

the EM algorithm, and weights of factors. The set of application parameters is given in

Appendix B, Table B.1.

Given that the size of graph datasets can range from thousands to millions of con-

cept graph items, it was necessary to divide the data into tractable item sets of up to

10,000 items. The processing steps estimation of FGPAM parameters, ranking of graph

partitionings, and extraction of significant patterns from within partitionings were then

applied to the smaller item sets. It took an average running time of two hours to finish

the EM parameter estimation algorithm on a item sets containing 10,000 items. To

facilitate the speed of data processing, item set processing was distributed across multiple

processors at the Vermont Advanced Computing Core (VACC) facility. At the end of EM

parameter estimation procedure, subgraph patterns were extracted from within the set of

best partitionings of graphs. Numbers of extracted subgraph patterns (disease fingerprints)

per organism group across six disease groups are shown in Table 5.3.

Table 5.3: Number of extracted subgraph patterns (disease fingerprints) per organism group
across six disease groups analyzed for this study.
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Humans 0.14M 0.11M 0.14M 0.23M 0.05M 0.04M
Birds 2.5K 5.5K 5K 4.7K 1.2K 4K
Fish 0.7K 0. 5K 2.4K 3.5K 0.7K 4.8K
Fungi 0.3K 2K 0.6K 0.3K 0.2K 0.2K
Invertebrates 0.5K 4K 6K 5K 2.5K 7K
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Table 5.4: Proportions of human-matched subgraph patterns (disease fingerprints) per or-
ganism group across six disease groups analyzed for this study.
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Birds 0.0003 0.0027 0.0225 0.0 0.0014 0.0012
Fishes 0.0094 0.0140 0.0003 0.0005 0.0050 0.0011
Fungi 0.0008 0.0001 0.0 0.0 0.0006 0.0
Invertebrates 0.0070 0.0003 0.0001 0.0002 0.0 0.0007

5.4.2 Emergence of Patterns of Biological Phenomena

Subgraph patterns of each candidate organism group were matched to subgraph patterns

of the human dataset for each of the disease groups examined by this study. Two subgraph

patterns were considered a match if there was a one-to-one mapping between the vertices

of the two graphs such that vertex degrees and edges were completely matched, and

additionally, the proportion of matching between factored annotations of semantic type of

corresponding vertices was above 0.65. This matched procedure was repeated for each

organism group and disease group.

The factored graph representation that included semantic types improved pattern

generalization, as demonstrated by the matched subgraph patterns that did not agree much

on the lexical factor (first factor); however, the factored graph representation largely agreed

on the semantic factor (second factor). For instance, Figure 5.2 shows an example of

matched subgraph patterns for cardiovascular diseases. While there were slight differences
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between lexical factors of vertices, there were similarities between semantic factors.

5.4.3 Assessment of Model Organisms

For this study, a total of 82 potential model organisms were evaluated based on a similarity

score between pairs of subgraphs, computed as the proportion of vertex factors with the

same semantic type for two subgraphs. Only pairs of subgraph patterns with similarity

score above the specified threshold parameters were considered as matched. Assessment

of potential model organisms was based on the proportion of subgraph patterns in human

datasets with match to the given organism groups subgraph patterns. Table 5.4 shows

performance of each organism group relative to each disease group analyzed. Tables 5.A.

and 5.B. show detailed scores of the top three model organisms covered in the datasets

regarding cardiovascular and immune system diseases. Appendix A contains tables with

extended results for these two diseases as well as for nervous system, endocrine system,

bacterial and viral diseases.

For cardiovascular diseases, the trout fish performed the best as a potential model or-

ganism (Table 5.5.); the torpedo fish had the best number of matches for immune system

diseases (Table 5.6.). For nervous system diseases, chicken had the best number of matches

(Appendix Table B.4.). Overall, a fewer number of organism fingerprints matched the hu-

man fingerprints for viral diseases (Appendix Table B.4.) and bacterial diseases (Appendix

Table B.6.). Finally, zebrafish performed the best as a potential model for endocrine system

diseases (Appendix Table B.7.).
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Table 5.5: Detailed fingerprint matching scores of model organisms for Cardiovascular
Diseases.

Cardiovascular Diseases
MeSH Organism
Group

MeSH Organism Number of matched fingerprints
Fishes

Trout 861
Zebrafish 366
Salmon 74

Invertebrates
Diptera 634

Urochordata 167
Ticks 82

Birds
Parrot 11

Columbidae 10
Chicken 9

Fungi
Cryptococcus 92

Candida albicans 14
Polyporales 14

5.5 Discussion

A graph-based method of text pattern mining was developed for assessment of organisms

as disease models based on evidence found in biomedical literature. A first step in the

method was to generate a graph-based representation for text sentences using a set of

transformation rules with patterns that matched the syntactic structure of the sentences.

Rich syntactic and semantic annotation sets for biomedical citations were extracted from

available MetaMap machine output files and used to generate graph representations

for citations. A knowledge-rich annotation scheme was developed to assign vertices to
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Table 5.6: Detailed fingerprint matching scores of model organisms for Immune System
Diseases.

Immune System Diseases
MeSH Organism
Group

MeSH Organism Number of matched fingerprints
Fishes

Torpedo 1481
Zebrafish 20

Carps 18
Invertebrates

Nippostrongylus 13
Cockroaches 6

Anisakis 5
Birds

Chicken 284
Columbidae 4

Duck 3
Fungi

Spores, Fungal 10

multiple annotation types, termed factors. These annotation-rich concept graphs provided

an opportunity to apply graph pattern mining methods to information inferred from

biomedical literature. A statistical pattern analysis model was developed to provide a

quantitative measure of pattern quality. A heuristic search algorithm used this model to

find key patterns in graphs while estimating the parameters of the statistical models. This

method was applied to graph datasets with nine million items and was used to address

the problem of assessment of potential model organisms using evidence in biomedical

literature.
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Graph-based representation of biomedical texts allowed for using a graph pattern

analysis method to capture complex relationships between concepts in text sentences.

Subgraph patterns that are semantically similar (sharing similar semantic types assigned

to concepts) were used in this study to compare organisms to find better disease models.

Subgraph patterns in citations that describe biological phenomena and processes in

humans were used as a reference set for comparisons among organisms. Thus, the methods

developed in this study enabled a shift from lexical patterns (patterns of words) to ones

based on semantics (patterns of semantic types derived from a knowledge base such as an

ontology). This shift from lexical patterns to semantic patterns may help with dealing with

data sparsity issues, particularly as seen in textual data.

Knowledge-rich graph-based methods for analysis of patterns in text articles provide

tremendous opportunities for analysis of the content of biomedical literature. Using

multiple annotation types (factors) for graph vertices enabled the incorporation of relevant

domain knowledge. The statistical model presented here allowed for the utilization of

factored representation of graph vertices and the assignments of weights to factors based

on importance/relevance of the factor to the task. While only two factors were used in

the study (lexical and semantic annotation types), it might be useful to incorporate other

potentially relevant factors (e.g. part-of-speech tags) into the graph representation for

future studies. Subgraph patterns identified within graph representations of text sentences

can be useful for a number of purposes. For instance, these patterns may be used for

exploratory tasks, text categorization, and summarization of text content. In this study,

subgraph patterns were used for evaluation of potential model organisms.
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The organism that shared the highest number of patterns with a set of human disease

patterns was reported as the best possible model organism. The results from this study

suggest that traditional model organisms may not necessarily be the best models for some

disease categories. For instance, the results show that trout was predicted to be a better

model than more classical model organisms (e.g., zebrafish and fruit fly). Similarly, for

immune system diseases, the torpedo fish was predicted to be better model than zebrafish.

These results demonstrate the potential of using graph-based text mining techniques to

assess organisms as disease models.

Recent studies have addressed the question of finding better model organisms for

human diseases that expand beyond the classically used models (especially mouse and

rat). The notion of phenologs (phenotypes that are equivalent across organisms) has been

used to search for better model organisms. For instance, McGary el al. used a phenology

approach to suggest a worm model for breast cancer, a yeast model for angiogenesis

disorders, and a plant model for Waardenburg syndrome (McGary et al. 2010). In another

recent study, graph pattern mining of biological interaction networks demonstrated the

ability to evaluate candidate organisms that do not always suggest a classic model organism

(Nabhan and Sarkar 2013). Finally, Karathia et al. have developed a strategy for evaluation

of organisms using functional classification of proteins and proteome analysis (Karathia

et al. 2011).

Knowledge-rich models can address the data sparsity problem, especially in text data.

Using a multi-factor annotation scheme for graph vertices provided an opportunity to man-

age knowledge content of text in a more structured and visual-friendly way. A graph-based
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statistical model enabled the adjustment of vertex annotation factor weights according to

the problem domain of interest. This knowledge-rich model therefore made it possible for

two lexically different, but semantically equivalent subgraph patterns to be matched. Se-

mantically equivalent patterns formed the basis at which organisms were assessed for being

potential disease models.

5.6 Conclusion

In addition to direct biological information, such as molecular sequence, phenotype infor-

mation, pathways, biomedical literature resources provide a rich source of additional infor-

mation, including molecular, phenotypic and procedural information that can be correlated

to disease. Genomic and phenotypic materials have long been the focus when studying a

biological process in an organism. This study demonstrated the possibility to aggregate

information about biological processes and phenomena embedded in biomedical literature

and use it for assessment of organisms as disease models. To appreciate the full range of

possible model organisms that may be suitable for the study of a particular disease, it may

be of value to integrate literature based inferences and biological data for evaluating model

organism suitability.
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(a)

(b)

Figure 5.2: Two matched subgraph patterns of Cardiovascular Diseases. (a) a human sub-
graph pattern (PubMed Identifier [PMID]=14571638). (b) a Drosophila melanogaster sub-
graph pattern (PubMed Identifier [PMID] = 16432241).
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Chapter 6

Concluding Remarks

In this dissertation, four studies on methods for data mining of biological net-

works, chemical compounds and biomedical literature were presented. The

promising results of this research collectively have enhanced the state-of-the-

art for data mining methods and advanced our understanding for their potential

in biomedical research.

6.1 Summary and Conclusions

In Chapters 2 and 3, the research was focused on the development of a statistical graph

pattern analysis model that enabled simultaneous and coherent searches for key subgraph

patterns in graphs based on the notion of graph partitioning. The probability value of

observing a partitioning was computed as a function of the probability values of its

constituent subgraphs, emphasizing the importance of pattern context in the extraction

of key patterns from within graphs. A key property of the developed model is the use of

maximal paths to approximate subgraph patterns. This property of the model allowed for
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effective analysis of small datasets of sparse graphs. The Expectation Maximization (EM)

algorithm was used to estimate the model parameters. A heuristic search algorithm was

developed to use this model to explore a large space of possible partitionings of graph

items using a pattern growth technique.

It was shown, based on the overall promising performance in graph classification

tasks, that the developed method of simultaneous, context-aware search for patterns

can yield a performance that is: (1) superior to frequent pattern mining methods; and,

(2) competitive with graph kernel methods. The method demonstrated flexibility when

tested on different genres of data (directed and undirected graphs as well as balanced and

imbalanced datasets). The results of the performance evaluation suggest that simultaneous

and coherent search for patterns are imperative when analyzing sparse, limited size

datasets of complex structures such as graphs.

The developed method was applied to the problem of analyzing genetic pathways of

human diseases to identify potentially significant patterns (disease fingerprints), which is

a significant research problem in biomedical research. Genetic pathway graph datasets

generally have a limited number of items with a diverse set of vertex labels (i.e., the

alphabet of vertex labels may consist of thousands of gene names). Thus, the use of

maximal paths to approximate subgraphs were shown to be useful when analyzing sparse

and limited-size genetic pathways, since paths tended to be more frequent than subgraphs

in that case. This graph-based method may provide an effective means to analyze genetic

pathways in a way that enables a shift from single gene-based analysis to a system-level

analysis of disease genes. This method may thus be of particular relevance in the analysis
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of complex diseases or traits.

In Chapter 4, the developed pattern analysis method was applied to the biomedical

research problem of searching for the best organism to be used as a potential disease

model. Genetic pathways, which describe biological processes and gene interactions

related to human diseases, were analyzed with the aim to identify functional and structural

patterns (disease fingerprints). A knowledge-based annotation scheme was applied to

pathway graph data for annotating genes/proteins vertices with molecular function annota-

tions that were imported from the Gene Ontology (GO) annotation knowledge base. The

resulting subgraph patterns were thus patterns of molecular functions (i.e., not gene/protein

names). These abstract GO-annotated patterns therefore enabled the summarization of the

molecular ingredients of biological processes related to diseases.

The identified disease fingerprints were used to predict genetic pathways in large

biological interaction networks for a number of organisms. Nodes of each interaction net-

work were annotated with molecular function annotations from GO, and therefore enabled

the matching of genetic pathway disease fingerprints to subnetworks within organism

interaction networks. A graph indexing and query processing method was developed to

allow for efficient search in the interaction networks. The accuracy of predicting new

pathways within interaction networks was assessed using a set of reference (published)

pathways for each organism analyzed in the study. The pathway prediction accuracy

measurement presented an objective assessment of organisms as potential disease models

based on the human disease fingerprints. The results suggest that using knowledge-rich

graph-based models for searching for model organisms may be an effective means that
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may complement traditional orthology-based methods.

Finally, an annotation-rich graph-based method for the analysis of text patterns in

biomedical literature was developed and evaluated in Chapter 5. Sentences were mapped

into graphs using text annotations obtained from an existing Natural Language Processing

(NLP) tool (MetaMap). The morpho-syntactic and semantic information generated

for sentences enabled a feature-rich annotation set for graph vertices. These vertex

annotation types (factors) allowed for the incorporation of multiple knowledge sources to

get better pattern quality. The graph pattern analysis model was enhanced to allow for a

factored-based analysis of subgraph patterns. This combined NLP-graph-based method

had the advantage of handling data sparsity issues (particularly of text data) and enabled

identification of semantically similar, lexically different subgraph patterns. This set of

semantic patterns summarized information content in text.

The problem of assessing potential disease model organisms was revisited through the

application of the graph-based text analysis method to biomedical literature data. The or-

ganism assessment was based on evidence collected from biomedical abstracts (as indexed

and available from MEDLINE). Semantic patterns were identified in biomedical abstracts

that focused on disease biological processes and phenomena in humans as well as 82 non-

human organisms. These organisms were evaluated as disease models based on similarity

of their semantic patterns to semantic patterns identified in biomedical abstracts about hu-

man diseases. Based on the results, graph-based methods for the analysis of textual data

may be a promising knowledge-rich approach for corpus linguistics and text mining tasks.
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These methods might be integrated with comparative genomics methods to possibly enable

better understanding of disease-related biological processes.

6.2 Future Work

The dissertation was primarily focused on the investigation of methods to enable an

important problem in the biomedical research: the assessment of disease model organisms.

Graph-based analysis methods were applied to analyze diverse genres of data of varying

complexities (biological networks, chemical compounds, and textual data). Graphs are

powerful data models that can to represent complex relationships in for a given problem

domain. Semantics inherent in graph data can be captured based on the notion of vertex

connectivity. The analysis of graph patterns faces major challenges including : the high

dimensional feature space and data sparsity. These challenges open future directions for

some interesting future work.

First, there is a growing need to develop graph analysis methods to process large

amounts of graph items available in (possibly unbounded) graph data streams, in which

graph edges are received and updated in a sequential manner in the form of a stream.

These graph streams are abundant in dynamic applications of social networks and the

World Wide Web. A key characteristic of a graph stream is its continuous update and

the high speed of incoming edges. This poses a computational challenge to graph

pattern analysis methods. A n interesting future research problem is may be the design of

efficient methods that can incorporate knowledge bases for data mining over graph streams.
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Second, while the graph pattern analysis models in this dissertation were developed to

analyze graph datasets (of thousands of graph items), a more general approach is to modify

these models to for analyzing data that are is present in the form of a single large graph

item (having tens or hundreds of thousands of vertices). It would be interesting to redefine

graph partitioning in that case. Given the prohibitively large number of potential subgraph

patterns in a large single graph item, the strategy of simultaneous search for patterns needs

to be modified significantly. To this end, graph clustering and graph modularity methods

may can be used as a pre-processing step to find a startup, initial graph partitioning at low

computational cost. Then, the method can be modified in that case so that the basic unit in

the models would be graphlets or motifs (small subgraphs), in contrast to using edges as

basic units.

Third, the breadth of the developed methods in this dissertation can may be extended

through the application of these methods to study new problems in other domains. These

The developed methods could can be applied to: (1) finding meaningful patterns in textual

content of social networks (e.g., Facebook and Twitter), (2) to identifying online search

patterns in users search logs, (3) to identifying patterns of user preferences for use in rec-

ommendation systems, and (4) to identifying malicious software patterns in system call

diagrams in computers operating systems. Finding appropriate domain knowledge sources

to annotate graph vertices can may be a critical issue in the success of these methods to

highlight meaningful patterns in data.
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Appendix A: Model and Algorithm De-

tails

A.1 Preliminaries and Notations

A graph G consists of a set of vertices V and a set of edges E in which each edge e ∈ E,

denoted by e(u, v), links two vertices u, v ∈ V . A subgraph consists of a set of nodes

V ⊆ V together with a set of edges E ⊆ E that links its nodes. In this study, genetic

pathways were modeled as a set of labeled directed graphs.

Definition A.1 Labeled Graph. A labeled graph G(V,E, LV , LE,
∑

V ,
∑

E) has a node

labeling function LV : V →
∑

V that assigns labels from a node alphabet set
∑

V to nodes

and an edge labeling function LE : E →
∑

E that assigns labels from an edge alphabet

set
∑

E to edges. A labeled subgraph g consists of a subset of nodes of G and edges that

link them. Labels of nodes and edges of a subgraph g are the same as its super graph G.

The node alphabet set
∑

V contained GO terms. The edge alphabet set
∑

E contained

relation types in KEGG disease pathway dataset. The basic definition of a labeled graph

was extended in two ways. First, a NULL label ε was assigned to gene nodes with no GO
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terms associated. Second, an entity could be mapped to more than one label. Also, edges

in a given pathway could be labeled with more than one relation type.

Disease fingerprints are subgraphs of GO annotated disease pathways graphs that were

are assumed to represent functional sub-processes that could be characteristics of a disease

class such as immune, infectious, or neurodegenerative disease. Disease fingerprints are

therefore functional structural patterns in GO annotated graphs. To quantify the degree to

which a fingerprint was related to each disease class, a first step was to use a utility function

to highlight a set of subgraphs (fingerprints) in a given pathway graph. This utility function

was termed a partitioning function.

Definition A.2 Partitioning function π. Let E(.) denote edge set of a graph G. A parti-

tioning function π : E(G) → Z assigns an integer to every edge of G such that edges

with the same integer form a subgraph. The set of subgraphs H highlighted by a specific

partitioning function π is defined as Hπ = {gi | ∀e ∈ E(gi), E(gi) ⊆ E(G), π(e) = i}.

Figure 4.2 illustrates the concept of partitioning. From the above definition, it follows

that every edge must be covered by only one subgraph (i.e., subgraphs of a given partition-

ing are edge-disjoint). There is a big space of partitioning functions for each graph in the

dataset and this space is not known a priori. Searching for good partitioning functions was

thus one of the objectives of this study. Preventing subgraph overlapping has a useful im-

pact on speed and memory during search for partitioning for each graph. For instance, the

probability estimation algorithm (presented in the next section) does not have to minimize

overlapping of subgraphs while searching for partitionings. To accommodate side effects of

this restriction, the process of identifying disease fingerprints takes into account informa-

tion from many hypothesized partitioning functions for every graph in the dataset. In this

study, partitionings were represented by integer arrays where indices represent edge identi-
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fiers and values represent subgraphs to which an edge belongs. This compact representation

allowed for easy extension of partitionings by modifying edge-to-subgraph assignments

of an existing partitioning in order to generate new ones. This array representation was

also helpful in detecting similarity between partitionings (which was useful in minimizing

memory requirements of the tool by keeping only one copy of a partitioning among several

equi-probable partitionings).

A.2 Mathematical Model

Graphs in the design dataset were assumed to be independent and identically distributed

(iid) data observed from an unknown probability distribution P (G). The iid data assump-

tion was made for the purpose of facilitating statistical inference and to make decision

about properties (e.g., class label) of a graph instance independent of other graph instances

in the dataset. For each pair of graphG and disease class C, a probability value was used to

quantify the relation between a graph and its class label. Let the probability value P (G|C)

quantify the characteristics of class C that is observed in graph G. Modeling this probabil-

ity value directly can be hard, mainly because: (1) it is a computationally non-trivial task

to determine if two graph instances are equal using the graph isomorphism test (Read and

Corneil 1977, Shang et al. 2008); and (2) due to the data sparseness problem (it is usually

hard to find more than one isomorphic instance of the same graph in a given dataset). An

indirect way to model P (G|C) was used to provide the model with access to GO functional

annotations as well as hidden structural patterns (collectively referred to as fingerprints) in

a given graph. Using the utility of partitioning function, a more useful probability value

P (G, π|C) would involve a graph instance G, a class label C, and a graph partitioning that

dividesG into a set of fingerprints. P (G, π|C) quantifies the probability of observing struc-
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tural patterns of class C in graph instance G. There are many possible partitionings for the

same graph instance, and to take into account all possible structural patterns represented in

these partitionings, the probability value P (G|C) can be expressed as

P (G|C) =
∑
π

P (G, π|C) (A.1)

Let Hπ be the set of subgraphs according to a partitioning function π of graph G:

Hπ = {gi | ∀e ∈ E(gi), E(gi) ⊆ E(G), π(e) = i}

Assuming that subgraphs resulting from a partitioning function are conditionally inde-

pendent, P (G, π|C) can be written as

P (G, π|C) =
∏
g∈Hπ

P (g|C) (A.2)

The probability value P (g|C) represents the likelihood that subgraph g is a charac-

teristic structural pattern of class C. Here, it should be pointed out that the conditional

independence assumption made here is mathematically plausible considering that: (1) sub-

graphs in one partitioning do not overlap (i.e., do not share common edges, according to

definition of π); and (2) this assumption is made for subgraphs within the same partitioning

(i.e., it is local to a specific partitioning, not for all combinations of subgraphs.) For the

purpose of probability estimation, counting the number of instances of a subgraph in all

partitionings of graph dataset is impractical, since it re-introduces the problem of subgraph

isomorphism (Read and Corneil 1977). In this study, GO- annotated maximal paths inside

the subgraphs were used to approximate representation of subgraphs. Each maximal path

represented a sequence of GO annotations of nodes that lay in that maximal path. In case

a node has more than one GO annotation, multiple maximal paths are generated so that
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each maximal path has only one GO annotation per node. Then, P (g|C) was calculated

approximately as

P (g|C) =
∏
a∈g

P (a|C) (A.3)

where a denotes a GO-annotated maximal path that connect a subset of nodes inside

subgraph g. Using Equation A.3, the likelihood of a partitioning and a graph instance

given a disease class label can be written as

P (G, π|C) =
∏
g∈Hπ

∏
a∈g

P (a|C) (A.4)

and, finally, P (G|C) can be expressed as

P (G|C) =
∑
π

∏
g∈Hπ

∏
a∈g

P (a|C) (A.5)

Thus, Equations 2-5 casts the problem of searching for disease fingerprints as estimat-

ing a conditional distribution of GO annotated maximal paths given disease classes, while

maintaining a set of best partitionings for each graph instance highlighting disease finger-

prints.

A.3 Probability Estimation and Searching for Best Parti-

tionings

For a given pathway design dataset, two data entities need to be generated: (1) the best

scoring partitioning set (that contains disease fingerprints within each pathway); and (2) the
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conditional probability table P (a|C). The generation of each of these two entities requires

the existence of the other, but neither of them exists with the graph data at the beginning of

probability estimation process. Therefore, both entities must be generated initially at the

same time, albeit with low likelihood, and probability estimate of P (a|C) and partitionings

likelihood values can be improved iteratively. Here, the estimation of model parameters θ is

performed following a maximum likelihood approach using the Expectation-Maximization

(EM) (Dempster et al. 1977, Moon 1996) algorithm. Model parameters consisted of the

probability distribution of maximal paths given class labels:

θ = {P (a|C)} (A.6)

There can be a large space of possible values of the parameters θ and the search for best

parameter values can be based on maximizing the likelihood on the graph dataset:

θ∗ = argmaxθ{
N∏
n=1

[Pθ(Gn|Cn)]} = argmaxθ{
N∏
n=1

[
∑
π

Pθ(Gn, π|Cn)]} (A.7)

where N is the number of graphs in the dataset and P?(Gn, —Cn) is computed by Equa-

tion A.4 and the probability distribution Pθ(a|C). Pθ(G, π|C) represents the probability of

a partitioning of a graph given a class label using a given set of values of parameters θ. The

EM algorithm aims at maximizing the likelihood function in Equation A.7 while identifying

best graph partitionings that highlight key patterns. Because it was computationally expen-

sive to consider all possible partitionings for graphs in the probability estimation algorithm,

a priority queue of a limited number of highly probable partitionings was maintained. In

each iteration, searching for new partitionings extends the set of best partitionings of each
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graph. These partitionings are evaluated using Equation A.4 and the parameter values θ

obtained in the previous iteration. An initial set of random partitionings is generated for

each graph in the dataset. Annotated maximal paths were extracted from each subgraph of

a given partitioning and the parameters θ are initialized with uniform probability values.

The EM algorithm consisted of repeated iterations of E-Step and M- Step. In the E-Step

of the algorithm, and for each graph, maximal path parameter counts are collected from

within partitionings. The count of a parameter in one graph is calculated using:

c(a|C;G) =
∑
π

P (π|G,C)N(a,G)
∑
j

δ(a, aj)δ(C,Cj) (A.8)

Here, N(a,G) is the number of times a maximal path a appeared in G (in different

subgraphs of G), and δ is the Kronecker’s delta function. The probability value P (π|G,C)

is the normalized partitioning probability conditioned on a graph and a class and is given

by:

P (π|G,C) =
P (G, π|C)∑
π′ P (G, π′|C)

(A.9)

where P (G, π′|C) is given by Equation A.4. The summation in Equation A.10 is

over the set of best partitionings that is generated for graph G. Since this set is limited

in size, Equation A.10 is only an approximation of partitioning quality. Multiplying the

path-class counts δ(a, aj)δ(C,Cj) by partitioning probability P (G, π|C) in Equation A.8

aimed at weighing each parameter count according to partitionings quality represented by

P (G, π|C). In the M-step, the maximal path parameters are computed by normalizing the

counts:

172



APPENDIX A. MODEL AND ALGORITHM DETAILS

P (a|C) =

∑
n c(a|C;Gn)∑
n,a P (a|C;Gn)

(A.10)

For each iteration of the model training algorithm, a search for best partitionings is per-

formed using the best parameters θ estimated so far. Generating new partitionings from

existing partitionings can be achieved moving edges from one subgraph to another sub-

graph. This way some subgraph patterns can grow while others can diminish. Figure A.1

illustrates the process of generating a new partitioning from an existing one. Both existing

and newly generated partitionings were evaluated using Equation A.4 based on the most

recent parameter values θ. In this study, the parameter estimation algorithm was run four

iterations.

In summary, the model training procedure aimed to estimate the probability distribu-

tion P (a|C). As a by-product of this procedure, a set of best partitionings of each graph

highlighted the key subgraph patterns in the dataset. The pattern analysis model described

above was used to find best partitionings in disease pathways with nodes annotated with

molecular functions. Key patterns were extracted from best partitionings of pathways to be

matched to sub-networks in gene/protein interaction network of a species.

A.4 An Algorithm for Matching Query Subgraphs to In-

teraction Networks

The following algorithm (shown in Table A.1) shows the three steps of matching a query

subgraph (disease fingerprint) to an interaction network using a network index.
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Figure A.1: A labeled directed graph that represents a functionally annotated genetic path-
way.
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Table A.1: An algorithm for matching query subgraphs to interaction networks

Input: Network index: index, network adjacency matrix; subgraph pattern: g, V(g)
vertex set of g
Process
Step 1:Initialization
1: for each node v ∈ V (g)
2: initialCandidateMatchingSet(v) =
3: for each neighbor node u of v
4: mSet =
5: let k ← (Lv(v), Lv(u))
6: vals = index.get(k)
7: for each x ∈ vals
8: mSet.insert(x)
9: initialCandidateMatchingSet(v).insert(mSet)
Step 2: Applying topological constraints
10: for each node v ∈ V (g)
11: let candidateMatchingSet(v) be intersection of all sets in
initialCandidateMatchingSet(v)
12: for each node v ∈ V (g)
13: let S = candidateMatchingSet(v)
14: remove every item i ∈ S if i is not linked to any item of candidate sets of
neighbors of node v
15: return if S is empty
16: repeat 15-17 until no item can be removed from candidate sets
Step 3: Generate subnetworks by finding edges between nodes in final candi-
dateMatchingSet
17: matchedSubNetworks = Array(|V (g)|)
18: let S be the array of all nodes in V (g)
19: matchedSubNetworks (S[1]) =
20: for each network node identifier u in candidateMatchingSet of node S[1]
21: matchedSubNetworks (S[1]).append(u)
22: for i = 2 to |S| // |S| denotes size of set S
23: partialnetworks = matchednetworks(S[i− 1])
24: for each partial network h in partialnetworks
25: for each network node identifier u in candidateMatchingSet of node S[i]
26: if ∃ node w ∈ h such that u is linked to w in the interaction network
27: matchednetworks(S[i]).append(u ∪ h )
Output: matchedSubNetworks[|S|] // output last element in the array matchedSub-
Networks
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Appendix B: Supplementary Materials

on Results and Software

Tool Parameters

B.1 FGPAM Java tool parameters

Table B.1: FGPAM Java Tool Parameters.

Parameter Parameter Description Value
dataset name Graph data file name filename prefix

f Number of factors 2
w Weights of factors [0.3, 0.7]

directed Are edges directed? True
maxedges Max subgraph size 20
maxpathlen Max number of vertices in a path 7

prank Partitionings rank threshold 30
minfeaturesize Min pattern size to report in results 4

n Number of EM iterations 3
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B.2 Detailed Result Tables of Model Organism Evaluation

Table B.2: Detailed fingerprints matching scores of organisms for cardiovascular diseases.

Cardiovascular Diseases
MeSH Organism
Group

MeSH Organism Number of matched fingerprints
Fishes
Oncorhynchus mykiss 861

Zebrafish 366
Salmon 74
Shark 18

Dogfish 5
Lamprey 2

Invertebrates
Diptera 634

Urochordata 167
Ticks 82

Strongyloidea 60
Cockroaches 21

Acanthocephala 18
Bivalvia 6

Birds
Parrot 11

Columbidae 10
Chicken 9
Coturnix 9
Turkey 5
Geese 1

Fungi
Cryptococcus 92

Candida albicans 14
Polyporales 14
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Table B.3: Detailed fingerprints matching scores of organisms for immune system diseases.

Immune System Diseases
MeSH Organism
Group

MeSH Organism Number of matched fingerprints
Fishes

Torpedo 1481
Zebrafish 20

Carps 18
Electrophorus 9

Tilapia 7
Oryzias 5
Salmon 3

Invertebrates
Nippostrongylus 13

Cockroaches 6
Anisakis 5

Spodoptera 4
Ascaris 2

Pyroglyphidae 1
Mites 1

Ceratopogonidae 1
Birds

Chicken 284
Columbidae 4

Duck 3
Turkey 2
Quail 2
Parrot 2
Geese 1

Fungi
Spores, Fungal 10
Blastomyces 1
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Table B.4: Detailed fingerprints matching scores of organisms for nervous system diseases.

Nervous System Diseases
MeSH Organism
Group

MeSH Organism Number of matched fingerprints
Fishes

Carps 15
Batrachoidiformes 10

Goldfish 9
Zebrafish 4

Invertebrates
Culicidae 19
Diptera 1

Ixodidae 1
Birds

Chicken 2407
Coturnix 320

Columbidae 135
Duck 104

Turkey 67
Geese 31

Sparrow 20
Parrots 17

Strigiformes 12
Finches 10
Parakeet 3

Spheniscidae 3
Fungi

None
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Table B.5: Detailed fingerprints matching scores of organisms for viral diseases.

Viral Diseases
MeSH Organism
Group

MeSH Organism Number of matched fingerprints
Fishes

Carps 60
Salmo salar 23

Cypriniformes 22
Oncorhynchus mykiss 20

Zebrafish 4
Salmonidae 2

Invertebrates
Moths 27

Culicidae 13
Ticks 3

Ceratopogonidae 2
Phthiraptera 2

Birds
Chickens 12

Ducks 1
Fungi

Candida 3
Aspergillus fumigatus 1
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Table B.6: Detailed fingerprints matching scores of organisms for bacterial diseases.

Bacterial Diseases
MeSH Organism
Group

MeSH Organism Number of matched fingerprints
Fishes

Salmo salar 10
Oncorhynchus mykiss 6

Salmon 5
Cyprinidae 4
Flatfishes 3
Zebrafish 2
Tilapia 2

Gadiformes 2
Sea Bream 2
Goldfish 2

Ictaluridae 1
Invertebrates

Ostreidae 8
Angiostrongylus 4

Ticks 2
Aedes 1

Anopheles gambiae 1
Siphonaptera 1

Birds
Chickens 37
Turkeys 12
Ducks 1

Fungi
None
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Table B.7: Detailed fingerprints matching scores of organisms for endocrine system dis-
eases.

Endocrine System Diseases
MeSH Organism
Group

MeSH Organism Number of matched fingerprints
Fishes

Zebrafish 177
Torpedo 19

Oncorhynchus mykiss 16
Salmon 13
Tilapia 12
Oryzias 8

Flounder 3
Catfishes 2

Invertebrates
Butterflies 1

Birds
Chickens 67
Coturnix 3

Fungi
Basidiomycota 31

Candida albicans 3
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Bomken, S., K. Fišer, O. Heidenreich, and J. Vormoor (2010). Understanding the cancer
stem cell. British journal of cancer 103(4), 439–445.

183



BIBLIOGRAPHY

Borgwardt, K. and H. Kriegel (2005). Shortest-path kernels on graphs. In Data Mining,
Fifth IEEE International Conference on, pp. 8 pp. IEEE.

Borgwardt, K., H. Kriegel, S. Vishwanathan, and N. Schraudolph (2007). Graph kernels
for disease outcome prediction from protein-protein interaction networks. In Proc. of
Pacific Symposium on Biocomputing (PSB), Volume 12, pp. 4–15.

Borgwardt, K., C. Ong, S. Schnauer, S. Vishwanathan, A. Smola, and H. Kriegel (2005).
Protein function prediction via graph kernels. Bioinformatics 21(suppl 1), i47–i56.

Borgwardt, K. M., C. S. Ong, S. Schönauer, S. Vishwanathan, A. J. Smola, and H.-P.
Kriegel (2005). Protein function prediction via graph kernels. Bioinformatics 21(suppl
1), i47–i56.

Borgwardt, K. M., N. N. Schraudolph, and S. Viswanathan (2006). Fast computation of
graph kernels. In Advances in neural information processing systems, pp. 1449–1456.

Brown, J., T. URATA, T. TAMURA, A. MIDORI, T. KAWABATA, and T. AKUTSU
(2010). Compound analysis via graph kernels incorporating chirality. Journal of Bioin-
formatics and Computational Biology 8(supp01), 63–81.

Brown, P. F., V. J. D. Pietra, S. A. D. Pietra, and R. L. Mercer (1993). The mathematics
of statistical machine translation: Parameter estimation. 19.

Browne, A. C., G. Divita, A. R. Aronson, and A. T. McCray (2003). Umls language
and vocabulary tools: Amia 2003 open source expo. In AMIA Annual Symposium
Proceedings, Volume 2003, pp. 798. American Medical Informatics Association.

Butcher, E. C., E. L. Berg, and E. J. Kunkel (2004). Systems biology in drug discovery.
Nature biotechnology 22(10), 1253–1259.

Cakmak, A. and G. Ozsoyoglu (2007). Mining biological networks for unknown path-
ways. Bioinformatics 23(20), 2775.

Campbell, K. E. and M. A. Musen (1992). Representation of clinical data using snomed
iii and conceptual graphs. In Proceedings of the Annual Symposium on Computer Ap-
plication in Medical Care, pp. 354. American Medical Informatics Association.

Carbon, S., A. Ireland, C. Mungall, S. Shu, B. Marshall, and S. Lewis (2009). Amigo:
online access to ontology and annotation data. Bioinformatics 25(2), 288–289.

Caspi, R., H. Foerster, C. Fulcher, P. Kaipa, M. Krummenacker, M. Latendresse, S. Paley,
S. Rhee, A. Shearer, and C. Tissier (2008). The metacyc database of metabolic path-
ways and enzymes and the biocyc collection of pathway/genome databases. Nucleic
acids research 36(suppl 1), D623–D631.

Cerami, E., E. Demir, N. Schultz, B. Taylor, and C. Sander (2010). Automated network
analysis identifies core pathways in glioblastoma. PLoS One 5(2), e8918.

184



BIBLIOGRAPHY

Chang, A. A., K. M. Heskett, and T. M. Davidson (2006). Searching the literature using
medical subject headings versus text word with pubmed. The Laryngoscope 116(2),
336–340.

Chang, C. and C. Lin (2011). Libsvm: a library for support vector machines. ACM Trans-
actions on Intelligent Systems and Technology (TIST) 2(3), 27.

Chautard, E., N. Thierry-Mieg, and S. Ricard-Blum (2009). Interaction networks: from
protein functions to drug discovery. a review. Pathologie Biologie 57(4), 324–333.

Chen, L., T. Huang, X. Shi, Y. Cai, and K. Chou (2010). Analysis of protein pathway
networks using hybrid properties. Molecules 15(11), 8177–8192.

Cogswell, J., J. Ward, I. Taylor, M. Waters, Y. Shi, B. Cannon, K. Kelnar, J. Kemppainen,
D. Brown, and C. Chen (2008). Identification of mirna changes in alzheimer’s disease
brain and csf yields putative biomarkers and insights into disease pathways. Journal
of Alzheimer’s disease 14(1), 27–41.
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