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For efficient navigational search, 

humans require full physical movement but not a rich visual scene 

 

ABSTRACT 

During navigation, humans combine visual information from their surroundings with 

body-based information from the translational and rotational components of 

movement. Theories of navigation focus on the role of visual and rotational body-

based information, even though experimental evidence shows they are not sufficient 

for complex spatial tasks. To investigate the contribution of all three sources of 

information, we asked participants to search a computer generated “virtual” room for 

targets. Participants were provided with either only visual information, or visual 

supplemented with body-based information for all movement (walk group) or 

rotational movement (rotate group). The walk group performed the task with near-

perfect efficiency, irrespective of whether a rich or impoverished visual scene was 

provided. The visual-only and rotate groups were significantly less efficient, and 

frequently searched parts of the room at least twice. This suggests full physical 

movement plays a critical role in navigational search, but only moderate visual detail 

is required. 
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During navigation we update knowledge of our position and orientation 

(spatial updating) to prevent ourselves from becoming lost. This process involves 

combining body-based information about our translational and rotational movements 

with other sensory information, principally vision. Theories of navigation focus on the 

role of visual information and the rotational component of movement (e.g., Gopal, 

Klatzky, & Smith, 1989; Mou & McNamara, 2002), but experimental evidence 

highlights many unknowns and suggests translational body-based information is also 

critical. The objective of the present study was to determine the contribution all three 

sources of information make to our ability to efficiently perform a navigational search 

task1. 

The environments people navigate on an everyday basis contain visual cues 

that act as landmarks (Janzen & van Turennout, 2004) and provide optic flow (Warren, 

Kay, Zosh, Duchon, & Sahuc, 2001). Studies using virtual environments (VEs) show 

humans rely on landmarks when they are available (Foo, Warren, Duchon, & Tarr, 

2005) and, in rich visual scenes, basic spatial tasks such as path integration may be 

accurately performed even if no body-based information is provided (Riecke, van 

Veen, & Bülthoff, 2002). However, visual information alone is not sufficient for 

cognitively demanding tasks such as learning the layout of a building, as witnessed by 

the difficulty participants frequently have navigating VEs displayed on a desktop 

monitor (Ruddle, 2001). 

Previous research into the relative importance of translational versus rotational 

body-based information has been inconclusive. Studies conducted using basic spatial 

tasks imply that the rotational component of movement is critical, with examples 

coming from inter-object pointing, path integration and exhaustive search. 
                                                 
1 I.e., where a person has to travel through a space to search it. By contrast, visual search generally 
involves eye movements and a single display, and gaze-based search involves head and eye movements 
from a fixed position. 
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Participants pointed more accurately and quicker between objects in a room if 

they physically turned, rather than imagined they turned. However, there was no 

significant difference between physical and imagined translationary movements 

(Rieser, 1989; Presson & Montello, 1994; see also Mou, McNamara, Valiquette, & 

Rump, 2004). 

Path integration was performed accurately in an immersive VE2 that provided 

optic flow for all movement but body-based information only for rotational movement. 

By contrast, large errors were made when participants were provided with no body-

based information in a VE, only a verbal description, or observed someone else 

walking the path (Klatzky, Loomis, Beall, Chance, & Golledge, 1998; see also 

Avraamides, Klatzky, Loomis, & Golledge; 2004). 

Participants took substantially longer to exhaustively search a room from a 

fixed position (gaze-based search) if the direction of view was controlled by hand 

rather than head movements (Pausch, Proffitt, & Williams, 1997). The cause was 

attributed to parts of the room being searched more than once with hand movements. 

In everyday life the use of head musculature to look around is well practiced. 

In more complex spatial tasks, full (i.e., translational and rotational) body-

based information appears to hold advantages over rotational information on its own, 

with evidence coming from studies in which participants estimated the direction to 

targets along a route. In one study (Chance, Gaunet, Beall, & Loomis, 1998), 

participants were divided into three groups that all used an immersive VE but differed 

in terms of the body-based information that was provided: (i) none (visual-only), (ii) 

rotation (participants physically turned but controlled forward speed using a joystick), 

and (iii) rotation and translation (participants literally walked through the VE while 
                                                 
2 An immersive VE is one in which a participant has (almost) no view of the outside world. This is 
most commonly achieved by presenting the VE on a head-mounted display (HMD), which obscures the 
outside world and leaves the participant visually “immersed” in the VE. 
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physically situated in a large empty room). Participants who walked estimated 

directions significantly more accurately than the visual-only group. Rotation-only was 

not significantly different from either of the other groups. In another study 

participants either walked a route while viewing video images displayed on an HMD, 

or viewed recorded video while physically stationary in the laboratory (Waller, 

Loomis, & Haun, 2004). Again, participants who walked estimated directions 

significantly more accurately than those who were provided with no body-based 

information. 

Further evidence concerning the minimal contribution made by rotational 

body-based information comes from studies in which participants learned the layout 

of a large-scale environment (Ruddle, Payne, & Jones, 1999; Ruddle, & Péruch, 

2004). Participants navigated one environment in an immersive VE (rotational body-

based information provided) and another in a desktop VE (visual-only), but there was 

no difference in route knowledge accuracy (distance traveled between specific targets), 

or any consistent difference across the studies for survey knowledge (estimates of 

direction and relative straight-line distance). 

To investigate the importance of visual information, and rotational and 

translational body-based information in complex spatial tasks we performed an 

experiment in which participants searched a room-sized space for eight targets that 

were randomly placed in 16 explicitly identified, possible locations. 

MAIN EXPERIMENT 

The experiment was conducted within a photorealistic virtual model of our laboratory. 

A between participants design was used, with each participant randomly assigned to 

one of three groups that differed in terms of the type of body-based information that 

was provided and the visual display (see Table 1). 
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Method 

Participants 

Thirty individuals (14 female) with a mean age of 24 years (SD = 3.4) took part. All 

gave informed consent and were paid an honorarium for their participation. The study 

was approved by the Ethics Committee, Institute of Psychological Sciences, 

University of Leeds. 

Materials 

The photorealistic VE model was constructed using measurements of the laboratory’s 

geometry (see Figure 1a) and photographs of the interior. Added to the model were 33 

identical cylinders and 16 identical boxes (see Figure 1b) that, in each trial, were 

placed on top of a cylinder chosen at random. Half of the boxes contained a red target 

and the others were decoys. In each trial, participants were asked to travel around the 

VE until they had found the eight targets, pressing either a button on a 3D mouse 

(walk and rotate groups) or a key on a keyboard (visual-only group) to raise/lower a 

box’s lid to see whether a target was inside. The VE software prevented more than 

one box lid from being raised at any given moment in time. Another button/key was 

pressed to indicate a target had been found, causing it to turn blue. The VE was 

rendered by an SGI Onyx4 graphics workstation at 60 frames/sec, with overall system 

latency of approximately 50 ms. 

Participants in the walk group physically walked around the laboratory while 

viewing the corresponding virtual model on an HMD (48º × 36º field of view; 100% 

binocular overlap; see Figure 1d). Participants in the rotate group stood in one place, 

viewed the VE on the HMD and achieved movement by physically rotating but 

holding down a button on the 3D mouse to translate. Thus, the setups of these two 
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groups were similar to Chance et al. (1998). Participants in the visual-only group 

viewed the VE on a 21-inch monitor and used the mouse and keyboard to change 

position and orientation. The graphical field of view (48º × 39º) was similar to the 

angle subtended by the monitor from a normal viewing distance (600mm). 

Procedure 

Each participant in the visual-only group performed four practice trials to allow 

familiarization with the interface controls and search task, and then performed four 

test trials. Participants in the walk and rotate groups did two practice trials using the 

same system as the visual-only group, and then two more practice trials and the four 

test trials using the type of movement relevant to their group (walk or rotate). This 

allowed participants’ initial familiarization with the task to take place while sitting in 

front of a monitor, rather than wearing an HMD that obscured the experimenter. 

Results and Discussion 

Our interest centered on the efficiency of participants’ searches, as defined by the 

amount of the environment that was visited twice (or more) before a trial was 

successfully completed. The dependent variable used to measure search efficiency 

was the number of target and decoy boxes that were checked more than once during a 

trial. A “perfect” search was one in which no boxes were re-checked.  

The rotate and visual-only groups performed 45% and 43%, respectively, of 

their trials perfectly, and in 10% of trials re-checked at least half of the boxes. The 

walk group performed 90% of trials perfectly, comparable to participants in an earlier 

study who performed a similar task in the real world with either a normal field of 

view (93% trials perfect) or wore goggles that limited field of view to 20º × 16º (87%) 

(Lessels & Ruddle, in press). 
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The distribution of the search efficiency data was normalized using a square 

root transformation. A 3 × 2 × 4 (movement × gender × trial) mixed factorial analysis 

of variance (ANOVA) showed a significant effect of movement on search efficiency, 

F(2, 24) = 9.74, p-rep = .99, ηp
2 = .45 (see Figure 2). Bonferroni post-hocs showed 

that participants who walked re-checked significantly fewer boxes than those in the 

rotate (p-rep = .97) and visual-only groups (p-rep = .99), these latter two groups being 

equivalent. The main effects of gender and trial were not significant, and there were 

no significant interactions. 

These results show that both translational and rotational body-based 

information were necessary for participants to efficiently search a room-sized space 

for targets. If translational information was not provided then performance was 

similar to when participants had to search using just visual information. 

In previous research, participants pointed to targets along a route significantly 

more accurately when full body-based information was added to visual information 

(Chance et al., 1998; Waller et al., 2004). However, never before has experimental 

evidence demonstrated the importance of the translational component of body-based 

information, over and above rotational component. In doing so, our findings help 

explain why participants learned the layouts of buildings at a similar rate both with 

and without rotational body-based information (Ruddle et al., 1999; Ruddle, & Péruch, 

2004)  

The visual environment used in the current experiment contained a rather 

homogenous region of cylinders that was searched, together with many salient 

surrounding features (e.g., door, cupboards and computers; see Figure 1) that may 

have helped participants maintain their orientation and, therefore, identify the parts of 

the cylinder region that had (not) been searched. To investigate whether rich visual 
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information, as well as full body-based information, was required we conducted a 

supplementary experiment using an impoverished VE model. 

SUPPLEMENTARY EXPERIMENT 

For the supplementary experiment we replaced the photorealistic VE model 

with one that just contained the cylinders, boxes, targets and four gray walls (see 

Figure 1c). This impoverished environment contained far less visual information for a 

participant to use. Twenty new participants (12 female) with a mean age of 22 years 

(SD = 4.0) were recruited and randomly assigned to two groups. Half of these 

participants walked around the impoverished VE and the others moved using mouse 

and keyboard (visual-only). 

Once again, search efficiency was measured by counting the number of 

target/decoy boxes that were checked more than once during a trial, and the 

percentage of perfect trials was similar to the main experiment (45% for the visual-

only group; 90% for the walk group). The distribution of the search efficiency data 

was normalized using a square root transformation. A 2 × 2 × 4 (movement × gender 

× trial) ANOVA showed that the walk group re-checked significantly fewer boxes 

than the visual-only group, F(1, 16) = 15.66, p-rep = .99, ηp
2 = .49 (see Figure 2). A 

second ANOVA showed no difference between participants who used the walking 

interface in the impoverished and photorealistic environments, F(1, 16) < 0.01, p-rep 

= .50, ηp
2 < .01. No other main effects or interactions were significant in either 

analysis. 

This supplementary experiment showed that rich visual information was not 

required for efficient searching if full body-based information was provided. 
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GENERAL DISCUSSION 

Our results demonstrate the critical role that body-based information from full 

physical movement (translation and rotation) plays in navigational search. This is in 

marked contrast to basic spatial tasks, for which rotational body-based information is 

sufficient. 

A likely explanation is the cognitive demands of a task. In path integration, 

inter-object pointing and route following, participants were instructed to make 

particular movements, so they could devote their cognitive resources to updating their 

position relative to objects in the environment. Our task was a form of foraging with 

simultaneous target encounters (Stephens & Krebs, 1986). Participants had to plan 

where to travel, detect every target in their vicinity as they moved, and remember 

where they had been. Full physical movement allowed detection and position 

updating to be largely automated, so the information necessary for ongoing planning 

during a search (“embodied cognition”; see Wilson, 2002) was made available at 

minimal cognitive cost. 

Our results also show that if full body-based information is provided then a 

rich visual scene is not necessary for efficient searching. This extends to a more 

complex setting the findings from path integration (Kearns, Warren, Duchon, & Tarr, 

2002) and obstacle avoidance (Loomis, Beall, Macuga, Kelly, & Smith, in press). 

The present research raises important issues in three distinct areas. First, 

theoretical models of human navigation and spatial memory tend to focus on the 

rotational aspects of movement concentrating, for example, on the role of rotation in 

defining the frames of reference used to accomplish spatial tasks (e.g., Mou & 

McNamara, 2002). It is now clear that these theories also need to take account of the 

role of body translation in spatial updating. 
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Second, concerns have previously been raised that many VEs used to research 

navigation lack the visual complexity and richness of a real environment and, 

therefore, are not ecologically valid (Spiers & Maguire, 2004). However, we suggest a 

far greater concern is the widespread use of desktop environments to study navigation 

because these provide none of the body-based information that has been shown to be 

essential. 

Third, this study reports the most complex navigational task to date where 

performance in a VE was comparable to the real world. This represents a notable step 

toward the creation of a virtual “reality”, and highlights the need for renewed efforts 

to develop effective technologies that allow people to “walk” though large virtual 

spaces (e.g., Iwata, Yano, Fukushima, & Noma, 2005). Success would have 

widespread impact on applications in such as training (Farrell et al., 2003), as well as 

the use of VEs as simulators for studying navigation in realistic settings (e.g., Tarr & 

Warren, 2002). 
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TABLE 1 

Body-based and visual information provided to each group of participants 

Body-based informationGroup name 

Translation Rotation 

Visual information 

Walk yes yes Stereo HMD 

Rotate no yes Stereo HMD 

Visual-only no no Monitor (not stereo)
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Fig. 1. Experimental setup: (a) Plan view of the physical laboratory, showing location 

of the virtual cylinders, (b) Photorealistic VE used in the main experiment, (c) 

Visually impoverished VE used in the supplementary experiment, and (d) Person 

standing in the position used to generate views (b) and (c), wearing the HMD. 
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Fig. 2. Search efficiency, defined as mean of √(number of target and decoy boxes re-

checked in each trial). Error bars indicate the standard error. 
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