
This is a repository copy of Pyrolysis of latex gloves in the presence of y-zeolite.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/4970/

Article:

Hall, W.J., Williams, P.T. and Zakaria, N. (2009) Pyrolysis of latex gloves in the presence of
y-zeolite. Waste Management, 29 (2). pp. 797-803. ISSN 0956-053X 

https://doi.org/10.1016/j.wasman.2008.06.031

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

See Attached 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/


 1 

The final, definitive version of this article has been published in Waste Management, vol 29 (2), 2009, pg 797-
803. © Elsevier, 2008. doi:10.1016/j.wasman.2008.06.031   

 

PYROLYSIS OF LATEX GLOVES IN THE PRESENCE OF Y-ZEOLITE 

 
William J. Hall

a*
, Norasalwa Zakaria

b
, and Paul T. Williams

c
 

 

a:- Energy and Environmental Technology Applied Research Group, Coventry University, 

Coventry, UK, CV1 5FB 

b:- Malaysian Nuclear Agency, Bangi, 43000 Kajang, Selangor, Malaysia 

c:- Energy and Resources Research Institute, University of Leeds, Leeds, UK, LS2 9JT 

 

* corresponding author (e-mail: William.Hall@coventry.ac.uk, Tel: +44 24 7688 8928) 

 

ABSTRACT 

 

In this study we have investigated the possibility of processing waste rubber gloves using 

pyrolysis.  Y-zeolite catalyst was employed to upgrade the pyrolysis products to give higher 

yields of valuable aromatic compounds such as toluene and xylenes.  The composition of the 

pyrolysis products was determined using GC-MS, GC-FID, GC-TCD, and FT-IR.  It was 

found that when rubber gloves were pyrolysed in the absence of a catalyst, the pyrolysis oil 

consisted mainly of limonene and oligomers of polyisoprene.  When Y-zeolite was added to 

the reaction system, the yields of toluene, xylene, methylbenzenes, ethylbenzenes, and 

naphthalenes increased dramatically.  The Y-zeolite also catalysed the decomposition of 

limonene, which was absent from the catalytic pyrolysis products.  The presence of the Y-

zeolite catalyst also increased the yield of hydrocarbon gases.  The tests were carried out at 

both 380°C and 480°C and it was found that the higher reaction temperature led to increased 

yields of all the major compounds, both in the presence and absence of the Y-zeolite catalyst. 

 

KEYWORDS: rubber glove, medical waste, pyrolysis, thermal treatment 

 

 

1. INTRODUCTION 

 

In recent decades, increased awareness about infectious diseases such as HIV and hepatitis 

and increased levels of personal protection required in scientific and technological industries, 

has meant an increased demand for latex gloves.  As a consequence, the demand for natural 

rubber latex has risen from 159,000 tonnes in 1984 to 597,000 tonnes in 2003 (Rajan et al., 

2006).  In 2005, Malaysia, one of the worlds leading rubber glove manufacturers, consumed 

226,218 tonnes of natural rubber for glove production and exported 1,311 million pairs of 

medical gloves (MARGMA, 2006).  Rubber gloves (and medical waste in general) present 

several disposal problems, because they are a biological hazard and therefore must be 

disposed of in a manner which does not endanger public health.  The World Health 

Organisation (WHO) is opposed to landfilling or incineration of medical waste (WHO, 2000) 

and alternative methods of processing waste natural rubber appear to be limited in 

comparison with synthetic rubbers (Rajan et al., 2006).  In addition to waste post-consumer 

products, there is a large amount of waste natural rubber generated during the manufacturing 

process, as up to 15% of manufactured products do not meet the very strict specifications 

required (Rajan et al., 2006).  Therefore, a new technology that is both environmentally 



 2 

acceptable and biologically safe is required to process both post-consumer and feedstock 

natural rubber. 

 

Pyrolysis is a process whereby organic compounds are heated to high temperatures in the 

absence of oxygen until they decompose into char, oil, and gas.  The high temperatures used 

in pyrolysis mean that it would be an appropriate method for processing material that poses a 

biological hazard.  Processing of waste rubber by pyrolysis has been intensively investigated 

in recent years, particularly with regard to scrap tyres (Berrueco et al., 2005; Conesa et al., 

2004; Galvagno et al., 2007; Kyari et al., 2005; Li et al., 2005; Oledzka et al., 2006).  The 

pyrolysis of natural rubber has also been investigated (Groves and Lehrle, 1992; Groves et 

al., 1991; Seidelt et al., 2006) as has the pyrolysis of natural rubbers main constituent, 

polyisoprene (Chen and Qian, 2002; Chiantore et al., 1995; Chien and Kiang, 1979).  

However, latex gloves present a special case because of the additives which are present, for 

example, calcium carbonate or cornstarch is used to powder the gloves.  Additionally, the 

amount of sulphur used in the vulcanisation of rubber gloves differs from other rubber 

products.  Therefore, the pyrolysis of rubber gloves is worthy of its own investigation to 

optimise the process conditions, which will ensure the maximum possible yield of valuable 

chemicals. 

 

It is well known that natural rubber decomposes to form oligomers of isoprene, ranging from 

the monomer unit up to hexamers.  The major compound is usually dipentene, also known as 

limonene, which represents the dimer, but isoprene can be the dominant pyrolysis product if 

the reaction temperature is sufficiently high.  Although the liquid pyrolysis products of 

natural rubber might have some value as a fuel and limonene has many uses in the chemical 

industry, it would be more economical to convert the isoprene oligomers into more valuable 

chemical products.  Several investigations have been carried out into catalytically upgrading 

pyrolysis products and one of the most promising types of catalysts are zeolites, which have 

been used to upgrade the pyrolysis products of a wide variety of materials (Bagri and 

Williams, 2002; Miskolczi et al., 2006; Olazar et al., 2000; Williams and Nugranad, 2000), 

including rubber tyres (Qu et al., 2006; Shen et al., 2007a; Shen et al., 2007b; Shen et al., 

2006; Williams and Brindle, 2002a, 2002b, 2003).   

 

In this work, we have investigated the pyrolysis of rubber gloves that were manufactured 

from natural rubber.  The samples were pyrolysed in a fixed bed reactor at either 380 or 

480°C and the pyrolysis products were analysed by gas chromatography and Fourier 

transform infra-red spectroscopy.  In some of the tests, the pyrolysis products were passed 

over Y-zeolite catalysts before they exited the reactor, with the aim of upgrading the 

pyrolysis products to more valuable compounds. 

 

2. EXPERIMENTAL 

 

2.1 MATERIALS 

 

Two different brands of commercial rubber gloves were used in this study. The first gloves 

were white in colour and were given the code Sample W and the second gloves were yellow 

in colour and were given the code Sample Y.  The elemental composition of the gloves was 

determined using a CE Instruments CHNS-O analyser and the results are shown in table 1.  

The ash content of the samples was determined by ashing in a furnace at 550°C. 
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The catalyst used in this study was Y-zeolite, with a SiO2/Al2O3 ratio of 80 and a surface area 

of 780m
2
/g supplied by Zeolyst International (USA).  The catalyst was used as received in its 

pellet form and was activated at 550
o
C for 2 hours and then left to cool to room temperature 

in a desicator prior to use. 

 

2.2 THERMOGRAVIMETRIC ANALYSIS 

 

Both rubber glove samples were analysed using a Shimadzu TGA-50H thermogravimetric 

analyser (TGA).  The sample size was 5mg and the reacting atmosphere was zero-grade 

nitrogen flowing at 50 mL min
-1

.  The TGA was programmed to ramp to 500°C at a heating 

rate of 10 °C min
-1

 and then held for 10 minutes to ensure that pyrolysis was complete.  

 

2.3 FIXED BED PYROLYSIS REACTOR 

 

The rubber gloves were pyrolysed in a fixed bed reactor (FBR) that measured 260mm in 

length by an internal diameter of 45 mm and was externally heated by a 1.5kW tube furnace 

(figure 1).  Before each experiment, 10g of sample Y and sample W in a 1:1 ratio were cut 

into pieces measuring 1cm
2
 and the two samples were mixed before being loaded into the 

reactor crucible.  If required, 10g of activated Y-zeolite was added to the reactor crucible 

giving a 1:1 catalyst to sample ratio.  The zeolite was supported on wire gauze above the 

rubber glove sample so that when the rubber pyrolysed the volatile pyrolysis gases passed 

over the catalyst.  The catalyst bed was at the same reaction temperature as the rubber 

sample. 

 

After the sample and catalyst had been loaded, the reactor was sealed and purged with 

nitrogen before being heated to either 380°C or 480°C at a rate of 10°C min
-1

.  A 200mL min
-

1
 flow of nitrogen was used throughout each pyrolysis experiment.  Once the required 

temperature had been reached, the reactor was held in thermal equilibrium for 45 minutes to 

ensure that pyrolysis was complete.  Upon pyrolysis of the rubber glove sample, the volatile 

pyrolysis products passed over the zeolite catalyst (if it was present) and then exited the 

reactor and were collected by a train of water-cooled and dry-ice cooled condensers.  Any 

H2S gas was collected by a bubbler system that was loaded with an alkaline solvent, the 

insoluble gases were collected in a Teflon gas bag and analysed off-line.  The yield of 

pyrolysis oil was determined by measuring the mass of the condenser train before and after 

each experiment while the mass of pyrolysis gas was determined using gas chromatography, 

which is described in the following section.  The reported results are an average of at least 

two repeatable tests. 

 

2.4 ANALYSIS OF THE PYROLYSIS PRODUCTS 

 

The gas was analyzed immediately after each run was completed. A Varian CP-3380 gas 

chromatograph equipped with a flame ionization detector (GC-FID) was used to determine 

the C1 – C4 hydrocarbons.   The compounds were separated using a glass column (2.0m x 

8mm) packed with n-octane Porasil C of 0-100 mesh size; the carrier gas was nitrogen. The 

oven was as held at 60
o
C for 3 minutes and then ramped to 100°C at 10°C min

-1
 and held for 

3 minutes before being ramped to 140°C at 20°C min
-1

 and held for 10 minutes. The injection 

temperature was 150
o
C and the detector temperature was 200

o
C. Standard alkane and alkene 

calibration gases were obtained from Scientific and Technical Gases Ltd (UK).  
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A second Varian CP-3380 gas chromatograph fitted with dual thermal conductivity detectors 

(TCD) was used to determine the permanent gases.  The first TCD detector was equipped 

with a steel column (2m x 2 mm) packed with 60-80 mesh molecular sieve and was used for 

analysing H2, O2, N2, and CO.  The GC oven was held isothermally at 40
o
C for 10 minutes.  

Carbon dioxide was analysed on the second TCD detector using a 2m x 2 mm diameter steel 

column packed with Haysep 80-100 mesh material, using a similar oven programme. Both 

injector temperatures were 120
o
C and both detector ovens operated at 120

o
C with a filament 

temperature of 160
o
C.  A standard calibration gas obtained from Scientific and Technical 

Gases Ltd was used for quantification of CO2, O2, CO, N2, and H2.  O2 was analysed in order 

to determine if any air dilution had occurred during sampling of the gases. 

 

The pyrolysis oils were analyzed using gas-chromatography with linked mass-spectrometery 

(GC-MS), gas chromatography with flame ionization detection (GC-FID) and Fourier 

Transform Infra –Red Spectrometry (FT-IR).  The GC-MS was used to identify the 

compounds present in each of the pyrolysis oils and the GC-FID was used to quantify the 

major compounds.  The FT-IR was used to determine the functional groups present in each 

pyrolysis oil. 

 

The GC-MS was a CE Instruments 2000 series GC fitted with a 30m RTX-5 column.  The 

injector temperature was 300°C and the oven was held at 40°C for 15 minutes, then ramped 

to 280°C at 5° C/min, and then held for 15 minutes.  The mass spectrometer electron energy 

was 70eV and the ion source and coupling temperatures were 220°C and 300°C respectively. 

The injector temperature was 285
o
C and was operated in split mode to prevent overloading of 

the GC column and the mass spectrometer.  The GC-FID was fitted with a 30m ZB-5 column 

and the oven programme was the same as for the GC-MS analysis.  The injector and FID 

temperatures were 300°C and a split ratio of 1:30 was used.  Standard solutions were used for 

calibration and quantification. 

 

Functional group compositional analysis of the oils was determined using a Nicolet Magna 

560IR FT-IR spectrometer equipped with a spectral library search facility. An aliquot of each 

pyrolysis oil was spread thinly over a potassium bromide disk and the spectrometer scanned 

the sample from 4000 to 400 cm
-1

.  The spectral peak heights were normalized to the largest 

spectral band and the FT-IR software was used to determine the functional groups present, 

although manual identification of the spectral bands was also required due to the complex 

nature of the spectra. 

 

Analysis of the pyrolysis chars and the spent catalysts was carried out using a Camscan 4 

scanning electron microscope (SEM) fitted with an energy dispersive X-ray (EDX) analyser.  

The solid samples were coated with a 5nm mixture of platinum and palladium prior to 

analysis. 

 

3. RESULTS AND DISCUSSION 

 

3.1 THERMOGRAVIMETRIC ANALYSIS 

 

TGA analysis of the two rubber glove samples was carried out to determine their 

decomposition profile. As shown in figure 2, under a nitrogen atmosphere both sample Y and 

sample W undergo one period of mass loss, this indicates that pyrolysis of both samples 

occurs in a single stage.  The mass loss due to pyrolysis of sample Y was found to be 98% 

while sample W only lost 84% of its mass during pyrolysis. The peak decomposition 
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temperature for both samples was 376°C and the pyrolysis was completed at 472
o
C and 

450
o
C for Y and W gloves respectively.  Previous authors have investigated the thermal 

decomposition of natural rubber (Bhowmick et al., 1987; Williams and Besler, 1995) and 

have reported similar decomposition temperatures to those reported here.   

 

3.2 FIXED BED REACTOR 

 

The two rubber glove samples were mixed together and pyrolysed in a fixed bed reactor.  The 

pyrolysis temperature was either 380°C or 480°C; these temperatures were chosen because 

they represent the temperature at which peak decomposition occurred and the temperature at 

which pyrolysis of both samples was completed according to the TGA results (figure 2).  The 

mixed rubber glove sample was tested at both temperatures with and without the Y-zeolite 

catalyst being present, to establish both the effects of temperature on the pyrolysis of rubber 

gloves and the effect of the catalyst. 

 

3.2.1 Mass Balance and Product Yield. – The mass balance was calculated by measuring 

the mass of the reactor, crucible, and condensers and analysing the pyrolysis gases by GC.  

Each reaction condition was tested at least twice and the average results are presented.  In the 

absence of a catalyst, it was found that temperature had a significant impact on the yield of 

liquid products increasing them from 57.9 to 79.8 wt% as the reaction temperature increased 

from 380°C to 480°C.  However, when the Y-zeolite catalyst was present, the mass of liquid 

products decreased to 35.5 wt% at 380°C and 46.1 wt% at 480°C.  The decreased yields of 

liquid products was balanced by increased gas yields of 7.4 wt% at 380°C and 11.7 wt% at 

480°C.  When no catalyst was present, the gas yields were around 1 wt%.  There was also a 

significant amount of coke formed on the surface of the catalyst, 19 wt% and 16 wt% at 380 

and 480°C respectively.  Other researchers have found that the yield of liquid products 

decreases when a zeolite catalyst is present during the pyrolysis of rubber (Shen et al., 2007a; 

Williams and Brindle, 2003) and it is assumed that this is due to coke formation on the 

surface of the catalyst. 

 

It is significant that the yield of volatile pyrolysis products increases with increasing 

temperature as this indicates that at the lower pyrolysis temperature (380°C) pyrolysis of the 

sample was not complete despite the sample being held at high temperature for 45 minutes.  

In fact, when the reactor crucible was examined after the low temperature tests, the residue 

consisted of dark grey material that melted when it was heated up.  The pyrolysis residue 

produced at 480°C was a black crumbly material, indicating that pyrolysis was complete at 

this temperature.  It would therefore appear that the higher temperature is required to 

complete the pyrolysis process and maximise the yield of valuable pyrolysis products. 

 

 3.2.2 Characterization of the volatile pyrolysis products. – Pyrolysis of the rubber glove 

samples resulted in the production of oil, gas, and residue/ char.  The oils produced by the 

non-catalytic pyrolysis of rubber gloves were dark brown or black in colour and had a 

medium viscosity. Once the Y-zeolite catalyst was introduced into the reactor, the pyrolysis 

oils transformed to a pale-yellow/brown colour and their viscosity decreased.  All of the oils 

were collected from the fixed bed reactor’s first condenser, which was water cooled. 

 

Figure 3 shows the infrared spectra of the pyrolysis oil resulting from the four different 

reaction conditions studied.  It is obvious from figure 3, that the reaction temperature had 

little effect on the functional groups present in the liquid pyrolysis products, but the presence 

of the Y-zeolite catalyst had a significant effect. 
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When no catalyst was used, the most dominant liquid pyrolysis products were aliphatic, as 

indicated by the large methyl and methylene bands at 2956, 2923, and 2868 cm
-1

.  The bands 

at 1606 and 1495 cm
-1

 relate to stretching vibrations in aromatic rings, but these bands are 

very small, indicating that only low concentrations of aromatics were present.  The band at 

1644 cm
-1

 can be attributed to non-conjugated C=C stretching vibrations indicating the 

presence of alkenes in the pyrolysis oil.  The large bands around 1460 cm
-1

 can be attributed 

to methylene and asymmetrical methyl C-H deformation and the band at 1376 cm
-1

 can be 

attributed to symmetrical methyl deformation.  Seen as the band at 1376 cm
-1 

is significantly 

smaller than the band at 1460 cm
-1

,
 
it can be assumed that a large proportion of methylene 

groups are present in the pyrolysis oil.  The absence of a doublet at 1376 cm
-1 

indicates that 

there were probably no branched alkanes present in the oil.  However, there is evidence of 

branched alkenes being present, the band at 887 cm
-1

 can be attributed to out-of-plane 

deformation in R1R2C=CH2 groups while the band at 800 cm
-1

 can be attributed to 

R1R2C=CHR3 groups.  There is also some evidence of trans -CH=CH- bonds with the band at 

965 cm
-1

.  The =CH stretching vibrations are also present, although only the band at 3079 cm
-

1
 can be clearly distinguished with the 3019 cm

-1
 band being somewhat masked by the CH3 

band at 2956 cm
-1

. 

 

The presence of the Y-zeolite catalyst had a significant impact on the infra-red spectra of the 

pyrolysis oils (figure 3), most importantly, the bands at 1606 and 1495 cm
-1

 indicate the 

presence of aromatic compounds, as they can be assigned to ring stretching vibrations.  The 

bands at 2956, 2922, and 2868 cm
-1

 can be attributed to methyl and methylene C-H stretching 

and the bands at 1456 and 1378 cm
-1 

can be attributed to the matching C-H deformation, 

although aromatic compounds also show a band at 1456 cm
-1

.  The complexity of the spectra 

between 1000 – 650 cm
-1 

meant it was not possible to accurately determine the type of 

substitution present on the aromatic rings, but it did give an indication that a wide variety of 

different benzene-substitution patterns were present.  It was also notable that when the 

catalyst was present in the reaction system, the band at 887 cm
-1

, which relates to out-of-

plane deformation in R1R2C=CH2 groups was absent, as was the C=C stretching vibration at 

1644 cm
-1

, although this might be due to masking by the large band at 1606 cm
-1

. 

 

A more detailed characterization of the pyrolysis products was carried out using GC analysis.  

The pyrolysis gases were characterised by using GC-FID and GC-TCD, while the pyrolysis 

oils were characterised using GC-MS and GC-FID.  The yield of products is shown in table 2, 

where the results are presented in the form of mg/gsample, because this is the most accurate 

way of representing the changes in the pyrolysis products when the catalyst is used.  If the 

results were presented as the percentage composition of the pyrolysis oil they could be 

misleading, because the amount of pyrolysis oil produced altered depending on whether the 

catalyst was present or not.  For example, the mass of toluene produced during pyrolysis 

could remain the same no matter whether the catalyst is present or not, but its concentration 

in the pyrolysis oil might increase or decrease because the total mass of pyrolysis oil 

produced increases or decreases.   

 

An example of the GC analysis of the pyrolysis oils is shown in figure 4; the identification of 

the numbered peaks is given in table 2.  In non-catalytic pyrolysis, the oil consists of a 

number of compounds grouped into dimers, trimers, tetramers, pentramers and hexamers.  

Limonene (dimer) was the most abundant compound, with a yield of 108.8 and 120.5 

mg/gsample at 380 and 480°C respectively.  A similar oil composition has been noted by other 

authors during their investigations into the pyrolysis of natural rubber and polyisoprene 
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(Chen and Qian, 2002; Chien and Kiang, 1979).  The presence of oligomers confirms the FT-

IR analysis, which suggested that the non-catalytic pyrolysis oil mainly consisted of aliphatic 

material.  The FT-IR analysis also suggested the presence of R1R2C=CH2 and R1R2C=CHR3 

groups, which would tie in with the presence of oligomers and their variants that contain 

double bonds at various positions along the molecule chain.  Additionally, the R1R2C=CH2 

and R1R2C=CHR3 groups are both found in limonene. 

 

Other components of the pyrolysis oil included toluene, xylenes, and alpha-methylstyrene, all 

of which increased in yield as the reaction temperature increased from 380 to 480°C (table 2).  

P-cymene was also a significant product of rubber glove pyrolysis and was presumably 

formed from limonene by dehydrogenation of the hexene ring and saturation of the 

methylene group.  Interestingly, the yield of p-cymene decreased as the pyrolysis temperature 

increased, suggesting the either p-cymene does not form or that it decomposes at the higher 

reaction temperature. 

 

Thermal degradation of cis-1,4-polyisoprene (or natural rubber) has been suggested to occur 

through a radical mechanism involving beta-scission of the original polymer to generate the 

monomer (isoprene) and the dimer (limonene).  The formation of aromatic species is 

explained by secondary reactions involving cyclisation, dehydrogenation, and aromatization 

of short chain olefins through the Diels-Alder mechanism (Chen and Qian, 2002; Chien and 

Kiang, 1979; Groves et al., 1991). 

 

When the Y-zeolite catalyst was added to the reaction system, the composition of the 

pyrolysis oil changed considerably, with limonene being almost eliminated and a large 

increase in the yield of single and multiple ring aromatics (table 2).  When the reaction 

temperature was 380°C, the yield of limonene fell from 108.8 to 0.9 mg/gsample and when the 

reaction temperature was 480°C, the yield of limonene fell from 120.5 to 2.2 mg/gsample, an 

almost 100% decrease in both cases.  While the introduction of the catalyst caused a large 

decrease in the yield of limonene, the yield of toluene, m/p-xylene, and styrene/o-xylene all 

increased.  For example, at a reaction temperature of 480°C, the yield of toluene increased 

from 11.8 to 74.3 mg/gsample and the yield of m/p-xylene increased from 5.8 to 80.5 mg/gsample, 

an increase of 530 and 1300 % respectively. 

 

In addition to the compounds mentioned above, the Y-zeolite catalyst also aided the 

formation of ethylbenzene, ethyltoluenes, trimethylbenzenes, and diethylbenzenes.  3-

ethyltoluene was the most abundant ethyltoluene, with yields of 18.5 and 18.9 mg/gsample 

when the reaction temperature was 380°C and 480°C respectively.  1,2-Diethylbenzene, the 

most abundant diethylbenzene,  was not detected when no catalyst was present in the reaction 

system, but in the presence of Y-zeolite, 6.1 and 6.4 mg/gsample was detected when the 

reaction temperature was 380 and 480°C respectively (table 2).  Although ethylbenzene, 

ethyltoluenes, and trimethylbenzenes were present when no catalyst was employed, their 

yields all increased dramatically once Y-zeolite was present in the reaction system.  For 

example, at a reaction temperature of 480°C, the yield of 3-ethyltoluene increased from 0.1 to 

18.9 mg/gsample when the catalyst was used.  The presence of Y-zeolite also catalysed the 

formation 1,2,4,5-tetramethylbenzene, which had a yield of 3.0 and 3.3 mg/gsample at a 

reaction temperature of 380 and 480°C respectively. 

 

In addition to increasing the formation of single ring aromatics, the presence of Y-zeolite also 

increased the formation of polyaromatic hydrocarbons (PAH).  The yield of naphthalene 

during catalytic pyrolysis was 1.5 and 3.6 mg/gsample at 380 and 480°C respectively.  The 
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most predominant PAH was 1,7-dimethylnaphthalene which had a yield of 9.9 and 15.0 

mg/gsample at the lower and higher reaction temperature respectively.  Other significant PAH’s 

present in the pyrolysis oil were methylnaphthalenes, ethylnaphthalenes, and 

dimethylnaphthalenes.   

 

Work by previous authors into the pyrolysis of rubber tires has shown that the presence of 

zeolite catalysts reduces the yield of limonene and increases the concentration of aromatics 

(Shen et al., 2007a).  Williams and Brindle (Williams and Brindle, 2002a, 2003) have 

reported that Y-zeolite increases the yield of benzene, toluene, xylenes, ethyltoluenes, 

trimethylbenzenes, and tetramethylbenzenes when scrap tires are pyrolysed, they also 

reported increased yields of naphthalene and substituted naphthalenes.  Some work has been 

published where zeolite catalysts were found to have little effect on the pyrolysis of tires (Qu 

et al., 2006). 

 

In the absence of a catalyst, the pyrolysis gases consisted of alkanes and alkenes in addition 

to a small amount of hydrogen.  No CO2 or CO was present and no hydrogen sulphide was 

detected in the pyrolysis gas down to a detection limit of 0.01mg / gplastic.  The most abundant 

gas was butene / butadiene, which had a yield of 4.0 mg/gsample when the reaction temperature 

was 380°C (table 2).  The high yields of butene / butadiene might be due to the 

decomposition of isoprene to butadiene via the loss of the methyl group, or, butene could be 

formed by the decomposition of limonene.  Methane was the second most predominant gas 

during non-catalytic pyrolysis of rubber gloves followed by C2 and C3, which were evenly 

distributed between the alkanes and the alkenes. 

 

Once the Y-zeolite catalyst was introduced into the reactor, the composition of the gas 

changed significantly (table 2).  Again butene / butadiene was the most abundant gas, with 

yields of 33.5 and 40.3 mg/gsample at a reaction temperature of 380 and 480°C respectively.  

However, the yield of propane increased dramatically to give yields of 23.1 and 30.5 

mg/gsample at a reaction temperature of 380 and 480°C respectively.  We have noted the high 

yields of propane when pyrolysing polymers in the presence of Y-zeolite in our previous 

work (Hall and Williams, 2007).  At the higher reaction temperature, the yields of methane 

and ethane were also dramatically increased when the Y-zeolite catalyst was present in the 

reaction system (table 2). 

 

3.3 ANALYSIS OF THE SPENT CATALYSTS 

 

The spent catalyst was removed from the reactor crucible and examined by SEM-EDX.  No 

other analysis techniques were attempted because of the very heterogeneous nature of the 

sample.  The top half of the spent-catalyst bed was black in colour, presumably due to the 

formation of coke on the surface of the particles.  The bottom half of the spent-catalyst bed 

was white in colour, which was probably caused by deposition of filler material released 

during the pyrolysis of the rubber gloves. 

 

SEM-EDX analysis of the black particles (figure 5) showed that the only elements present 

were aluminium, silicon, sodium, and oxygen from the zeolite catalyst and carbon from the 

coke on the surface of the catalyst.  However, the white particles (figure 6), in addition to the 

above mentioned elements, also contained sulphur, chlorine, calcium, titanium, and zinc.  The 

sulphur obviously came from the vulcanised rubber, but it is likely that the other elements 

were all present in the glove samples in the form of fillers and additives. 
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When the catalyst was absent from the reaction system, there was a large amount of white 

powder coating the walls of the reactor crucible, which was identified as being calcium 

based.  Therefore, it can be concluded that calcium additives in the rubber glove sample were 

reaching the upper regions of the reactor during pyrolysis and that the additives found on the 

surface of the catalyst were due to material deposition rather than the catalytic action of the 

zeolites.  However, it is still possible that some of the sulphur and chlorine identified on the 

surface of the catalyst was organic in origin and that it had been removed from the pyrolysis 

oil by the catalytic action of the zeolites. 

 

4. CONCLUSIONS 

 

Two different rubber glove samples were mixed together and then pyrolysed in a fixed bed 

reactor at either 380 or 480°C. Some of the tests were carried out in the presence of Y-zeolite 

to upgrade the pyrolysis products to more valuable compounds.  When the rubber gloves 

were pyrolysed in the absence of a catalyst, the pyrolysis oil consisted of dimers, trimers, 

tetramers, pentamers, and hexamers, with limonene (dimer) being the most abundant 

compound.  Some aromatic compounds such as toluene, xylenes, and ethyltoluenes were also 

present in the pyrolysis oil.  At the higher reaction temperature, the yields of limonene and 

the aromatic compounds was increased. 

 

When the Y-zeolite catalyst was added to the reaction system, the composition of the 

pyrolysis products changed considerably.  More organic gases were produced during catalytic 

pyrolysis and the yields increased at the higher reaction temperature.  The Y-zeolite catalysed 

the formation of aromatic compounds such as toluene, xylenes, ethyltoluenes, and 

naphthalenes, including naphthalene itself.  The Y-zeolite also eliminated limonene and the 

polyisoprene oligomers that were present in the non-catalytic oil.  At the higher reaction 

temperature, the yields of aromatic compounds were increased. 

 

Although the presence of Y-zeolite significantly upgraded the pyrolysis oil, it also reduced 

the yield of oil.  Therefore, an evaluation of the benefits of upgrading the pyrolysis oil needs 

to be carried out, taking into account the increased value of the upgraded oils and the reduced 

yield.  Currently, it is unclear if the upgrading of rubber glove pyrolysis oils is economically 

viable. 
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Table 1 

Ultimate analysis of the rubber glove samples (wt%) 

 

 

 
Element 

 

 
Sample W 

 

 
Sample Y 

 

 
N 0.4 0.5 

C 71.3 83.5 

H 10.1 12.0 

S 0.8 0.8 

O 0.0 0.0 
Ash 

 
17.5 

 
3.2 
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Table 2 

Quantification of the major compounds when rubber gloves were pyrolysed in a fixed 

bed reactor (mg / gsample) 

 

 

 
no catalyst 

 
Y-zeolite 

 

 
 

RT 
(mins) 

 
 

Peak # 

 

 
380°C 

 
480°C 

 
380°C 

 
480°C 

 

 
H2 0.4  0.1 0.8   

Methane 1.9  3.1 17.0   

Ethene 0.6  3.5 6.7   

Ethane 0.6  3.0 10.1   

Propene 1.1  3.6 6.0   

Propane 1.3  23.1 30.5   

Butene / butadiene 4.0  33.5 40.3   

Butane 1.1  4.1 5.7   

toluene 8.7 11.8 68.0 74.3 2.3 1 

ethylbenzene 0.6 1.0 7.3 8.4 4.4  

m / p-xylene 4.2 5.8 72.0 80.5 4.6 2 

Styrene / o-xylene 0.7 1.4 22.1 25.0 5.4 3 

allylbenzene 0.5 1.8 0.1 n/d 8.3  

propylbenzene 1.6 1.4 0.9 0.9 8.8  

3-ethyltoluene n/d 0.1 18.5 18.9 9.5 4 

4-ethyltoluene 1.7 2.5 n/d n/d 9.7  

2-ethyltoluene n/d n/d 3.2 3.5 10.9  

alpha-methylstyrene 6.2 8.6 0.1 n/d 11.4  

1,2,4-Trimethylbenzene n/d 1.7 28.7 31.5 12.3 5 

p-methylstyrene n/d n/d n/d n/d 12.7  

1,2,3-Trimethylbenzene 1.1 0.7 4.8 5.5 15.3 6 

p-cymene 6.6 1.7 0.7 1.4 15.9  

limonene 108.8 120.5 0.9 2.2 16.4  

1,3-diethylbenzene n/d n/d 0.7 0.7 18.1  

1,4-diethylbenzene n/d n/d 1.3 1.6 18.5  

1,2-diethylbenzene n/d n/d 6.1 6.4 18.9 7 

1,2,4,5-tetramethylbenzene n/d n/d 3.0 3.3 21.9  

naphthalene n/d n/d 1.5 3.6 24.5 8 

2-methylnaphthalene n/d n/d 4.4 8.1 28.5 9 

1-methylnaphthalene n/d n/d 1.8 3.2 29.0  

2-ethylnaphthalene n/d n/d 0.7 0.9 31.6  

1-ethylnaphthalene n/d n/d n/d 0.1 31.6  

2,6-dimethylnaphthalene n/d n/d 3.1 4.7 31.9  

1,7-dimethylnaphthalene n/d n/d 9.9 15.0 32.2 10 

1,4-dimethylnaphthalene n/d n/d 1.1 1.5 32.8  

1,2-dimethylnaphthalene n/d n/d 0.5 0.7 33.2  

1-phenylnaphthalene n/d n/d 0.1 0.1 42.8  
1,3,5-triphenylbenzene 
 

n/d 
 

n/d 
 

0.2 
 

0.1 
 

61.0 
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Figure 1  Fixed bed reactor schematic 
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Figure 2  TGA analysis of the two rubber glove samples 
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Figure 3  FT-IR spectra of the oils produced by the pyrolysis of rubber gloves in the 

fixed bed reactor 
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Figure 4 Gas chromatography analysis of the rubber glove pyrolysis oil produced 

without a catalyst (top) and with Y-zeolite catalyst (bottom). The peak numbers are 

detailed in table 2. D = dimer (limonene), Tri = trimers, Te = tetramers, P = pentamers, 

H = hexamers. 
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Figure 5  EDX spectra of the black coloured spent catalyst 
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Figure 6  EDX spectra of the white coloured spent catalyst 

 


