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ABSTRACT·

FraIl the standpoint of human.population genetics, one of the most

pertinent problems is to assess frequencies of individuaJ. phenotypes and

mating types in terms of gene frequencies and the inbreeding coef':f'1cient.

An assumption of randan mating is often made in order to estimate gene

frequencies and then genotype and mating type frequencies based on Ha.rd¥­

Weinberg binanial J.aw. However, there might be severaJ. genetic barriers

to prevent a randcm caDbination of genes.

The first part of the present thesis is devoted to a theoretical

investigation on genetic barriers 'Which has led, as an extension of

Wahlund·s.principle, to derivation· of mating type frequencies as a func­

tion of gene frequencies and the inbreeding coefficient, provided that

the inbreeding coefficient is not greater than the smaJ.1est gene fre­

quencies (which is true in almost all human polymOrphic syStems).. In

this connection, the effect of inbreeding on segregation anaJ.ySis is

also examined.

As a parameter describing genetic barriers, the most meaningful

interpretation of the inbreeding coef'f'icient is as a coefficient of cor­

relation between un1ting gametes in Wright' s sense. The posit~tve co]~­

relation 'Which measures effects of genetic barriers on caDbination of

genes consists of ascertained and unascertained consanguin1ty. The nega­

tive correlation which may be observed in a small population is also

included in the unascertained inbreeding coefficient. The total .

inbreeding coefficient is due to contributions from. both close and remote

consangu1nity.

In the second P8.rt, a method of JDRxhmun likelihood scoring is

developed to estimate simultaneously population gene frequencies and the
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inbreeding coefficient. from individual frequencies and from. mating type

frequencies b,- use of an electronic com,puter. It has been found that

the two allelic system with caDplete daDinance and the AB) blood group

s,-stem do not give errr inf'o:r:mation about the inbreeding coefficient 'When

individual d.8,t8 are USed.

The present theory' has been tested with 1068 tam:l.1ies from north­

eastern Brazil b,- em:plo,-:Lng sixteen ·polymorphic s,-stems. Pedigree

anaJ.ysis and bioassay reveaJ.edthat the remote inbreeding coefficient is

as great as the cJ.ose inbreeding coefficient that is ascertainable frail

pedigree anal.y'sis. Therefore the eli Drl nation rate for rare recessive

genes is greater than had been estimated prev:Lousl7. Racial endo~

contributes only' 22 per cent of the total inbreedirig coefficient for

polymorphisms, and less for rare genes (monanorphisms).
. -

To describe human population structure, the marital distance, defined

as distance between birth places ot mates, is the most pertinent measure.

An exponential. relation betlleen the inbreeding coefficient and the

marital distance. has been predicted b,- MaJ.ecot. . This is a good approxi­

mation in remote consanguinit,-, but deviation apparently due to prefer­

ential. mating of reJ.atiyeS is tound for close consanguinit,-. A tendenc,-

tor the inbreed:Lng coef'ticient to decrease b7 generation cannot be detec­

ted through ped:Lgree. stua¥ due to incc:mplete ascertainment, but is found

b,- the new methods of bioassa,- and st~ of migration functions.
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~. Introduction

Population genetics may be divided into two major fie~ds" either

stuc4r of populations in lr'hich gene frequencies are assumed to be constant"

or populations in 'Which gene frequencies vary in time. The main prob~em.

in the first branch is to des~ribe phenotype (or genot~) frequencies in
.,

teImS of gene frequencies and factors 'Which dePend on the strocture of

popuJ.a.tion. From. the standpoint of human popuJ.ation genetics" the perti-

nent prob~em is concerned ~th all those factorswb1ch detemine mating

preference.

!J!1e research in this ~e is still infant due either to lack of

reasonab~e theories or presence of severaJ. difficu1ties in fidd work.

For e:xam.P~e" the l{a.rdy-Weinberg binomiaJ. law (Hard1'" ~908; Weinberg" ~908.)
_. .

may be applied under the assumption of random. mating. In human populations"

however" the assumption of random. mating may be unrealistic" since there

exist eeveraJ. factors which cause departure from. the lJardy-Weinberg law.

Apart fran sdection" mutation and random genetic drift" there is iso~a­

tion due to geographical" raciaJ." religious" sociaJ." economic, profes­

sional" and other barriers. The e:f':f'ect of this iso~ationon the relation
. ,

between gene frequencies and genot";pe frequencies is evident in a popula-

tion with ~ocaJ. differentiation of gene frequencies. Furthemore, iso1a­

tion may result in assortative mating and consanguineous marriage.

Migration in subdivided popuJ.a.tions gives rise to racial mixture, clines"

and discontinuous gene distributions. Much research has been made on the

proportion of consanguineous marriages in man, but lltUe has been studied

in relation to isolation.



2.

It was Wahlund (~928). who worked out some mathematicaJ. consequences

inbreeding coefficient, F, as a measure of nonrandomness between uniting

game1ies. Later, MaJ.ecot (1948) estab1ished that the inbreeding coeffici­

ent could be underst.ood from the standpoint of probabi1ity thaor,y. 9le

most significant aPJ~ication of the inbreeding coefficient in population

genetics has been the ex;pression of genotype frequencies as a function

of gene frequencies and the inbreecHng coefficient.. .

It is not Sl1rI,rising therefore that Wright (1943, 1956, 1951) and

MaJ.ecot (1948, 1950, 1959) have made en attempt to adapt their mode1to

describe human ~ulation structure. Wright extended his theory' to in-

elude iso1ation by dis1iance, retajn1ng the notion of isoJ.a1ie size. He

derived the mean inbreeding coefficient in terms of sys1iematic pressure

on gene frequency and neighborhood size, defined for a normal migration

in two dimensions as the effective· number in a circ1e of radius twice the

atandard deviation of offspring in one cHrection. MaJ.ecot, on the other

hand, derived the inbreeding coefficient as a function of marital cHs-

tance, defined as the cHs1iance between birth pJ.aces of mates, fran a sto-

cbastic equation with an empirical. migration function. He suggested that

the rate of decreasing in inbreeding coefficient by distance was independ­

ent of neighborhood size.
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Both models have been appJ.ied to severaJ. human populations and have

encountered difficuJ.ty in estimating isolate or neighborhood size and dis­

tance between mates born within the same parish, village, or other

demographic 1m", 't.

Combining theory' with practice" it has 'been reaJ.ized that one of the

ma.1n probJ.ems in stu~ population structure in man is to ascertain the

inbreeding coefficient of a given population.

Recently" I have develOPed a model from Wa.hJ.und· s principle which

pemits us to evaluate mating type frequencies in nonrandaDly mating popu­

lations and to estimate the total inbreeding coefficient" including the

contribution due to remote consa.ngu:1nity.. AJ.so, I have generalized the

meaning of the inbreeding c.oeUicient for describing human population

structure. In this thesis, a .systems:ticdescription. of popul~tion struc­

ture in man wJ.ll be g1ven in the second chapter, some statisticaJ. methods

will be discussed in the third, end then the theory w:LU be appJ.ied to a

popula:tion from northeastern Brazil (Morton, 1964).
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2. TheoreticaJ. studies

2.1. Band.omly mating populations

A diplophase generation· begins when gametes from a gene pool are can­

bined pa.1rw:t.se into zygotes according to some rule; these zygotes experi­

ence migration, mutation, and differential mortaJ.ity and :fert1l1ty; and

the generation· terminates with the haplophase gene pool o:f the next gener­

ation. By pamn1 x:La or random. mating we mean that uniting gametes are

dralrn independently' :from. the gene pool, without restrictions due to :f1n1te

population s!~e, inbreeding, or assortative mating, and are enumerated

be:fore d1:f':f'erential selection bas acted. Accord,inglj', genotype :frequency

and mating type :frequency can be caJ.culated by the ~-Weinbergbinomial

law.

Confusions in de:finition o:f random. mating should be pointed out here,

since only an 1n:f'1n1te population aJJ.oW'S an inbreeding coefficient o:f

zero.

~us the binomial. caJ.culation o:f expected genotype :frequencies and

mating type :frequencies :from a gene a:rray' can be applied approx1mately' in

a :finite popula:tion, but this is not a Jrardy-Weinberg population unless

the popuJ.a.tion size is inde:f'1n1te1y' large. The term. "homoga.1Q''' has been

proposed (MaJ.ecot, 1948) :for random. mating by zygotes;· but in ilrl,s thesis,
- -

we w:Ul consider only' random. combination o:f genes as random mating.

2.2. The inbreeding coe:f':f'icient

Wright's inbreeding coefficient is the most meaning:f'ul quantity in

popuJ.e.tion genetics to describe departure :fran randomness between uniting

gametes. Consider a single locus with two alleles and their :frequencies

p and q (=l-p) in a given population. The probabilities that two gametes



2 2shou1d unite are p , 2pq and q under random mating. When a positive

correJ.ation between. un!ting gametes is observed, these frequencies change

in such a way that homozygosity increases and heterozygosity decreases,

with no' change in gene frequency. It is easily shom that the change in

genotype frequencies is pqF, where F is the correlation coefficient be­

tween uniting gametes, also called as Wright' s inbreeding coefficient

(Table 2.1). Having need of theoreticaJJ.y clear, bases for stu~ sys­t_ of 'mating' in ex;perim.entaJ. populations, MaJ.ecot (1948) ·has given
,- -

another important, in1ierpretation of Wright' s inbreeding coefficient from

the viewpoint of probability theory. SUppose that a given population 1s '

partitioned in two parts; in one fraction mating is random. and in tl1e

other combination of gametes is restricted to those which are identical

by descent. If f is taken as the latter proportion, that is aJ.so the

probability that two genes are identicaJ. by descent, then the increment

of each bomozygo1ie is given by pqf (Table 2.1). Thus F=f, and the two

def1nitiona are identicaJ..

When we consider severaJ. such popuJ.ations together in which gene

frequencies are the same but f may vary among populations, the ~uencies

of three genotypE!s in the totaJ. population 'Will be Ew'iP(p+qfi ),

Ew'i2pq(l-fi ) and 1Mi Q(qipf'i)' where Wi is thf~ relative size ot the 1~th
_... --

population whose fraction f
i

is the probability that two genes are iden-

t1caJ. by descent and summation takes over aJJ. popliLationa. Those propor­

tions IJI8.'Y' be wr1tten in terms of the mean inbreeding coefficient
,

a (=Ewifi ), that has been introduced !. priori bY'l3emstein (1930), (Table'

2.1). l3e~stein's coefficient of inbreeding JlIlaY' also be interp~te(iin
-

a population 'Whose inbreeding coefficient f is heterogeneous.
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. It is obvious" therefore" that the inbreeding coefficient can be
i

understood as a measure of non-randomness that aJ.so describes zygote fre-

quencies" the correlation between uniting gametes" and the probabilitY'

•that two genes are identicaJ. by descent. Besides these" it can measure

degree of differentiation in subdivided populations" and mating type fre-

quencies can be described by it.

Wright (1943) has proposed the inbreeding coefficient for populations
- -

with hierarchic structure. Defining the panmictic index as the comple-

.m.ent of the inbreeding coefficient" the panmictic index of indiv:LduaJ.s

relative to the totaJ. is equaJ. to the product of the hierarchicaJ. panmic-

tic indices. This is merely an approach to defining the inbreeding coef­

ficient between populations in his .stu~. Malecot (1950) has given a
-

recurrence relation of the inbreeding coefficient among populations.

(Detail of this w1ll be explained with discussion of distance since his

woms are less familiar so far.) This line of developn.ent of the coeffi-

cient of inbreeding" taking an arbitrary reference population w.Ul be

helpful when we consider a subdivided population.

In addition to the above general. definition of the inbreeding coef-

ficient" it is worthwhiJ.e to consider the number of coefficients for an

autosomal locus. Since the definition of the inbreeding coefficient is

concemed with onlY' one gene" if the number of aJ.leles is n" then the

number of inbreeding coefficients at the locus is aJ.so n. Consequently'"

there are n-l indSpendent inbreeding coefficients at a locus. The

inbreeding coefficient of the locus" f" is then"

'Where f i and Pi are the inbreeding coefficient of the i-th aJ.lele and its



frequencY'" respectiveJ.y. In a polymorphic sY'stem f i m.ay' be nearlY' f for

all i. Discussion on this point Will be given in chapter three. With

defin1tion of the inbreeding coefficient of an allele" it is of interest

how the heterozygote frequency sbaJ.1 be written in terms of gene frequen­

cies and the inbreeding coefficient of alleles. Suppose that three geno­

type frequencies" say' Pii" 2Pi.1" and P
.1.1

(i,&.1) are ex,pressed With respect

to two alleles frequencies Pi and. P
.1

(it :is not necessary that Pi+.P
.1

= 1)"

their inbreeding coefficient f i and f
.1

" and a decreasing prop0r:tiion of

heterozygote" f i.1

and

2
Pii = Pi + Pi(l-Pi)f~

2Pi.1 = 2piP.1(l-fi.1 )

2 ..
P

.1.1
= Pj + Pj(l-Pj)f

.1
•

Since the sum. of three genotypes should be expressed in form, B(l-F) +
2 . .. -

IF" where R = (pi+.pj ) , I = (Pi"'Pj ) and F = (Piff'1>.1fj)/(Pi+Pj)" then we
"

obtain

Namely'" the fraction in which hetl~roZY'gositY' is depressed can be calcu­

lated frem a simple average of th4~ inbreeding coe:f'f'1cients of the two

alleles.

2.3. Wablund•s principle

2.3.1. Discrete model

Suppose that a population is div:Lded into many endogamous pan­

mictic smaJ.ler populations ( "isolates") restricted by geographical" racial,

religious" social" or econanic\ barr1e~. Let Wi (1Mi =l) be the relative
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size of the i-th isolate. If a. genetic system consists of two aJ.1eles

! and ! with frequency Pi and.~ in the i~th isolate" respectively'" then

2
the mean frequency of gene ~ P" and its variance" f1 " in the total. popu-

J.ation are

and

P = ~i'Wi .

2 222
a = Z(Pi-P) Wi = ~iW'i - P "

(Wright" 1949).

respectively'" 'Where summation is over aJ.1 isolates. Since the frequencies

of~ ~ and !!. genotypes in the total. population are given by ~~Wi"
2' . .

~i~'Wi and D!1wi "the subdivision results in increasing homozygosity
.. 2

by an amount equal to the gene frequency variance" f1 (!!!able 2.1).
~. . ...

Wahl.und (1928) discovered this result and discussed it in the cases of
. -

dominance and co-dominance.

Oom,parison of heterozygous frequencies with Wright' s ~r MaJ.ecot· s

result leads to Wright' s formuJ.a.

a2 =p(J.-p)F
- - ........

All. of the a.bove arguments hold for an arbitrary' number of aJ.1eles" tor

each 01' which an inbreeding coefficient can be defined as in the last sec-

and this leads to an interesting tormuJ.a:
a 2
.PiF=E-.......
l-Pi

It should be borne in mind that an "artificial" subdivision 01' a
. .

population does not always resuJ..t in increasing haDozygosity. There 'WOuld

be no change observed whenever a given gene trequency was exactly. the same

for all isolates" i.e. gene frequency variance was zero. This suggests

an association between isolate size and p:robab1J.ity density of gene fre- .

quency which. Will be discussed in the succeeding section.
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2.3~2. The breakdown of isolates

Since the Wahlund' s principle has mainly' been employed to

expJ.a1n why the breakdown of isolates decreases homozygosityI there has

been no mathematicaJ. treatment of how the proportion of hOlllOzYgosi1iy

decreases by removing a single barrier. To visuaJ.ize the situationl the

folloWing discuss:l.on may be helpft:L1.

Suppose that a popuJ.ation consists of three isolates ~ g, and ~

whose relative sizes are Wl .1 w2 and w
3

(~i=l)1 and in which frequencies
, ..

of gene A are P11 P2 and P31 respect1vely. In this populationl the gene

2
frequency PIn and its variance alII are

and

respectively. Suppose that the barrier between the isolate g, and ~ is

removedl creating a new isolate in which mating ultimately goes on at

random.l (perhaps after a few generations in which a gene cline persists).

The relative size Wof this new panmictic isolate and its gene frequency

Pare

and

respectively.

The gene frequencyI PIland its variance ail of the total popuJ.ation

become I 'therefore j
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and

• More general. treatment is given in

or

Apart :from. mutation" selection and random genetic drift, the population

gene frequency does not change" whereas the gene frequency variance de-

creases in an emount that depends on the relative sizes and d:I.:f'ference of

gene frequencies of isolates whose ba:rr1ers are removed. As a corollary"

the change in the inbreeding coefficient is g1ven by using Wright' s

formula and PII = PIlI = p,

where F
B

is a contribution due to the breakdown. of isolates and, in our

2
- ·~2W3 J(P2-P3)

terminology" FB - .. .
2+w'3 p(l-p)

Appendix 1.

This elaboration of Wahlund' s results may be applied to human popula­

tions. For instance, the barrier that is removed may' be raciaJ. endogamy"

and the effect of this on the inbreeding coefficient is 1D1mediately ap­

parent. (See application to Brazilian data belov.) On the other hand,

when llew ba:rr1ers are created under a certain circumstance, it is clear

from the above discussion that the inbreeding coefficient increases with
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2.4. Extension of Ws.blund·s princip1e

WabJ.und·s principle described "the basic effects of partitioning a

population, but there still remain severaJ. aspects 'Which are vaJ.uable for

stu~ systems of mating in non-experimentaJ. populations.

2.4.1. Continuous model

Although it has been assumed that the ~ers are discrete,

an actual barrier is usuaJ.ly continuous, or we may' not !mOY what type of

barrier it is. One of 'the approaches to bridge the gap is, then, ex­

tension of Wablund' s model to continuous or mixed barriers • Since the

result from. Wablund's discussion is described in terms of mean and vari­

ance of population gene frequencies, sums can be replaced by integraJ.s.

In this continuous model each individuaJ. gene bas a "probability density"

to contribute to population gene, genotype, or mating type frequencies.

Therefore, gene frequency and its .variance in the population can be ex­

pressed by Lebesgue-Stielt.1es integraJ.· (Cramer, 1946),

and

p= IPydW

222
a = Ip dW - P ,w

/

where sums are taken for the .discrete model and integraJ.s for the con-

tinuous case. In the mixed case the barriers may be. separated into

discrete and continuous type. Thus, Wahlund' s princip1e· covers any type..
of heterogeneous population. For instance, the continuous model where a

population is divided by distance bas been studied by HoJ.gate (1964).
. .

Furthem.ore, in case of subdiVision by time or generation the probability

density, w, may correspond to the solution of the Fokker-Planck equation

in population genetics (Wright, 1946). The situation in man is so CaD.-

. -
plicated by factors such as time, space, population size, and human
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behavior that it may be ditficuJ.t to find, even approx1ma.teJ..y, the appro-

'". .. ~

priate pro~abUity' density function. It shoulCi. be em,pha.sized here,

however, that Wa.hJ.und's principJ.e holds even for an unkiiiolm density func­

tion, and this extension repJ.aces the concept of "isolate size" by a

"probabUity density of gene frequencies". A gen~tical interpretation of
. .

the probability density could be as a tendency of genes to canbine that

would be aff'ected by several genetic barriers.

2.4.2. Moments of a subdivided population

Since gene and genotype frequencies of a popul.ation are given'

by the first and the second moments with respect to possibJ.e isoJ.ates in

the population, it seems worthwhile to consider the biologicaJ. meen:Jngs

of the higher moments. The first manent gives the gene frequencies, and

the second IIIQIDent the genotype frequencies. The third and the fourth

moments gives the mating type frequencies at a sex-linked and an autosomaJ.

J.ocus, respectiveJ..y, since three and four genes are concemed With each

gene canbination. More generaJ.ly, 'Whenever we consider a set of genes,

the order of the manent corresponds to the number of gene invoJ.ved. These

higher moments appear in studies' of llnkage, illegitim.a.cy, poJ.n>l.oi~,

her!tabUity and so on, but we shall restrict attention to the fourth and

J.OlIer maDeD.ts that correspond to mating t~ frequency for st~.of popu­

J.ation structure in man, though the results are compJ.eteJ.y general.

Let us consider a J.ocus with two aJ.1eles ! and !? and their frequency

p and q(=l-p) in a. subdivided population nth the inbreeding coefficient
,- .

. a. Suppose that the difference betw-een gene frequency of an isolate Pw

and or the population p is 4>w whose k-th moment is expressed by D1t;
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'Where integraJ.s are in the sense of Lebesgue-St'tieltjes. For the first
..

end second moments1 the following relations hold precisely:

end

JI1. = 0"

~ = p(l-p)a.

For the population moment Ma"

M = JpadW = J(p~ ,adWa w w'
. .

= jJo(~)pa-r(4?w>rdW
_.

! (a) a-r
= r--or p mr "

or

In the above expression" if cubic end higher power of .6.pw are negligible"

it follows that·

:;,.

.. ~~... ~. I,

for exam;pJ.e"

and

M:L = P

2
~ =P + p(l-p)a

-;) -2-
~ ~ pJ + 3p (l-p)a

~ ~ p4 + 6p3(1-p).a.

(a = 0"1, 2,, ••• ).

Exact expression of the moments by gene end the inbreeding coefficient

may be made 'When a distribution function of iso1.a.tes is known. For

instance" one or two parameter probability functions such as binomiaJ."

Poisson" normaJ., exponential" gamma end beta distributions have been
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applied to this case, the beta probability being especiaJJ.y interesting

because it corresponds to a 'ste~ .state distribution of gene frequency

(Wright, 1931) (Appendix g,). All these cases indicate that the manent of
. -

population can be expressed as a polynaDiaJ. of a, wi'loh the quadratic and

higher order powers negligible wen a is not greater than· P or l-p.

However, it is extremely difficult to dete:rm:Lne the distribution of

isolate size in human popuJ.ations as stated previously. It is, therefore,

necessary' to approach this problem. without assuming a distribution. In

the above general. argument we assumed that higher than cubic moment of

4>w are negligible. This limiting fom is vaJ.i~ prov:lded,that all gene

frequencies exceed the inbreeding coefficient, as is certainJ.y the case

for the polymorphisms to which this model will be applied. Extensive

stu~ with Imown d!stributioll fo:tmS bas suggested -:that whenever isolate

size distributions are symmetricaJ.1 then ~ = 0 and D\ = o(ci). Even when
. " -

asymmetric functions such as gamma are assumed, the limiting form. holds

with Sufficient accuracy if' the sm.aJ.lest gene frequency is greater than

the inbreeding coefficient, which does not exceed two per cent in human

populations (Wright, 1950) •.
. -

The population moments as a function of gene frequencies and the

inbreeding coefficient can be obtained in case of' more than two alleles

at a given locus. Since aJ.gebraic argument will be given in AppendiX b

the results are simply reproduced here.

For the tri-allelic locus with 'frequencies p, q and r (p-tq+r=l), the

m.anent Ma,b in limiting f'om. is
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=paqb + [a{;-l)pa-l(l_p)qb + b<:-l) !,"q1>-l(l-q) _ abpaqb}

(alb =01 1 1 21 ••• ).

For more than three aJ.:Lelesl

abc d a ..l b ..l c ..l d-l[(a)() (b) ( )=p q r s + p q r s 2 l-p qrs + 2 P l-q rs +

d . [~(~)pq(l-r). + (2)pqr(1-.~ - (ab+ac+aCHbC+bdicd)pqr

(alb1c1d =01 11 2 ••• )1

where (~> = x(x-l)/2 and it is not necessary that p+q+r+s = 1.

The most generaJ. formula to be obtained for the moments of popula-

tion is as follows:

n ai n 8 i ..l [n ai
= i 1hpi .+ {i1!lPi > i~{2 )(l"Pi )(iJ.1Pi) -

(inlPi){i;.1ai a.1>]a

2.5. Mating type frequencies

As mentil)ned in the preceding sectionl mating type frequencies of a

given genetic system. can be obtained from the moments of population. It

is thus straightforward to evaluate the frequencies in the case of two

alleles at an la.utoSanaJ. and a sex-linked locus. To illustrate I let us

take the intercross ~ x ~ and its relative frequency fro In an
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fr = 14p;'(l-Pw>2dW

=~-&.I3+~4

= 4p2(J._p)2 + 4p(l-p)[1-6p(J.-p)]a
.... - _ ...

2 2=4p q +4pq(J.-6pq)a,
~ ~

where P+q = 1 and M denotes the population moments defined in section 2.1.

Mating type frequencies and the proportions of their possible ch1J.dren

in the l1m1ting form are shown in Table 2.5 .J.. for the autosomal locus

and in Table 2.5.2. for the sex':'liDked locus. In theJ.atter case, we

assumed that gene frequencies are the same in both sexes. Justification

of the moment method to describe mating type frequencies is 1.IDD1ediate when

2frequencies of possible offspring are evaluated as p +,pqa, 2pq(l-a) and
2 . ' - ~-

q +pqa for genotypes ~ ~ and !!J respectively, a10 the au1iosomaJ. locus

without dDminance as well as in the other cases. Ma10ing type frequencies

when a distribution is assumed are also given in 'Table 2.5.3. for the

autosomaJ. locus and in Table 2.5.4. for the sex-J.1nked locus. (Inciden­

'taJ.J.:y', both no1"DlBJ. and rectangular distributions give exactJ.y the same

frequencies for sex-linked mating types.) These results pe1'Dl1t us to ap-
~ .

ply' them to a higher level of inbreeding population, justifying the

distribution assumption. When a approaches unity, incross frequencies go

to corresponding gene frequencies. as happens also for genotyPe frequen­

cies nth be"ta and b1nom1al distributions. For the other distributions
r

eDJDined, a convergency of incross 'frequencies to the gene frequencies

failed when a ~ 1. As a ~ J." =the distribution condenses into 2 poles, at

0,1. This cannot be represented by one of these distributions •. Since
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our purpose is to describe human population structure, we are not going

to discuss further in th1iS line.

It ma;y' be worthwbiJ.e to note here that the correlation coefficient,

m, between mates is equal·to 2a/(1-ta) at an autosanai locus without

danjnance, which 'WaS first given by Wright (1921) and was discussed by

L.1. (1955). This indicates that if' there is no genetic correlation

between mates, then the inbreeding coef'ficient is zero and mating is ran­

dom (and~ versa).

))nmjna,nce does not create any dif'f'iculty 1lio obtain phenotypic mating

type frequencies since it requires siDqiLe a.ddi1:iions of terms of genotypic

mating type frequ.encies whose phenotypes are same (Table 2.5.1. and

2.5.2.).

The main effect of inbreeding on the frequencies of zygotes has

aJ.re~ been mentioned as a decrease of heterozygosity. In Figure 2.5.1

we demonstrated the amount of decreasing on zygote frequencies due to

inbreeding in case .of two aJ.leles. The abscissa denotes the frequencies

of gene !. and the ordinate stands for the coefficient of ex, or inbred

component of zygote' frequency, I. The effects of inbreeding are most

enhanced when both genes are in equaJ. frequency.

This presentation 'W1ll' extend to the mating type frequencies. Only

a two-allelic locus 'W1ll be dil3cussed here, since the essentiaJ. features

of the inbreeding effects can 'be observed in it. In the follow:Lng dis­

cussion, p and q stand for fregLuencies of gene!. and !:1 respectiveJ.y,

'Where gene !. ma;y' be dcm:i nant ~'er gene!. Mating type frequencies can be

written in the form., R+Iex in the neighborhood of ex = 0, where R is the

mating type frequency in randomly mating populations and I is the inbred
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component. In order to see the inbreeding effects we will exam1 ne I as

a function of p.

Autosome, Without dom.1 nance: Figure 2.5.2 gives us the generaJ. features

of the in~reed1ng ef'f'ects on the six different mating types. Both in­

crosses (M x AA and aa x aa) are aJ.'WB.Y'S increasing. Interestingly, both- - - -. .

backcrosses (~x~ and !!. :it~ decrease when the gene frequency is
,.

smaJ.l, and are compensatory' to all other types of mating if' p < .212 or

q < .212. It is cJ.ear that the inbreeding effect is more striking in

backcrosses than incrosses. As an extreme case, when p = .18, the I­

vaJ.ue for backcross!!. x ~ reaches a minjmUJIl, -.93. If we take ex =

.006, the decreasing frequency- due to inbreeding is .93 x .006 = .0056

which is .0056/.019 = .029 or about three per cent of the mating type

frequenCY' caJ.culated from. the ~-Weinberg law. Thus an assumption of

.random mating for the estimation of gene frequencies in man might be

justified as a first approximation.

Autosome with com;pJ.ete dominance: In Figure 2.5.3, !::. denotes the domi­

nant phenotype. The effect of inbreeding is greatest when the frequency­

of the dominant gene is nearly .25. The cross of both dominant pheno­

types (!::. x~) compensates the other· two matings if' p > .5TI•

Sex-linked W1thout dominance: GeneraJ. tendency- of ef'f'ects of inbreeding

is similar to the autosome without drnnj nance. The ef'f'ects are rather

weaker at the sex-J.ink.ed J.ocus than. the autosomal J.ocus. Figure 2.5.4
/

indicates the change of I by- gene A frequency-.

Sex-linked W1th complete dominance: The ef'f'ects of inbreeding baJ.ance
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each other when mating type frequencies in population are classified by

male (or hemizygote).
- -
In sUJDlD8.1"Y', the frequency of incrosses is always enhanced by in-

breeding, as homozygotes are. The effect on the other types of crosses
"

depends on the gene frequency• Roughly, the effects of inbreeding or

subdivision of population on mating type frequencies are enhanced when

gene frequency is nearly .25 (or .75 in co-dom1nan:t locus) instead of .5.
- -

These predictions can be immediately tested with mating- type frequencies

with such a locus as MN, Ss, P:OO, Secretor, and so forth.

When there are more than two alleles at a locus, the number of pos­

sible mating types becomes very large. For instance, with three alleJ.es

at an autosomal locus, the possible numbers of zygQtes and mating types

are six and t~ty-one, respectively, and with ten aJ.lelesthe corres­

ponding vaJ.ues become 55 and 1545. If a, g and m stand for the numbers

of aUeJ.es, genotypes and mating types, respectively, then m=g(g+l)/

2=a(a+l)(a2+a.+l)/8 for autosome and m.agaa2(a+l)/2 for sex-linked locUs.
- - ~ .....

In this large number of mating types, however, there are only seven

basic types of crosses at the autosomal locus and four at the sex­

linked locus. They are tentatively called "incross" (AA x AA), "back­

cross" (M x AB), "intercross" (AB x AB), "outcross" (AA x BB), "3­

w.ys-in-tercross i", (is x AC)~ ,i3-Ways-out~r6~s" (AA x· 00) and ""4-~s-
- " "

intercross" (AB x CD) for the autosomaJ. lOCUS, and "incross" (AA x A),

"outcross" (M x B),- ''backcross'' (AB x A) and "intercross" CAB x c) at
. ~ . _. -
the sex-linked locus, where A, B, C and D denote different alleles. Any

dominance relation between aJ.leles Will diminish the number of mating

types. These mating type frequencies are also derived fl'Oll1 the population

moments (~ble 2.5.5. and 2.5.6.).
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Ef'f'ect of subdivision on Snyder's ratio ~s~ and the~rt~on of

mating pairs which cannot segregate one phenotype (h~' <./

studies on modes of inheritance in man have received attention from

geneticists as well as pbysicians ever since biochemical individ.uaJ.ity

was, imtialJ.y reported by Garrod (J.902). One cJ.assical method that is
.... ..

still of importance" is pedigree anaJ.ysis or study of famiJ.iaJ. distribu-

tion of a character. PopuJ.ation geneticists are no J.onger behind in

this feature. Snyder (J.932) gave a test of the hnx>thesis of autosomal.

recessive inheritance in non-tasting of pheDyJ.thiocarbamide (P'l'C). Ac­

cordiDg to SrJyder" the expected frequencies of recessive chiJ.dren from
" ' 2

the mating ~ x b ~ x ~ and ~ x ~ are S : S : J." respectiveJ.y"

where ! is non-taster gene With frequency q" ~:is for taster gene and S

is the conditionaJ. frequency of ! gene among ~ persons" or Snyder's

ratio (Morton" J.965). S is expressed ,in terms of q; S = gJ(J.+q). Insig-
...... - '" .

nificant deviations of observed frequencies of non-taster chiJ.dren from

the ratio were taken for a decision that P.I!C tasting was dominant over

non-tasting. The underlying assumptions in this method are unit inherit-

ance" recessivity" random mating" complete penetrance" no extramarital'

chiJ.dren or cJ.ass1fieation errors" and no seJ.ection. Among these sim;pJ.i­

fieations" random mating bas a direct effect on frequencies of mating

t}rpes and of their offspring. In the popuJ.ations where, mating is not at

random but inbreeding is not high (sa.y" J.ess than 2 per cent)" 'We may

- -
examine the effect of inbree(,l1ng on Snyder's ratio. From Table 2.5.J.."

we obtsin two conditional probabUities S and R of recessive offspring

from matings, dam:J nAnt X recessive and dominant X dom1 Dant,
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2
S = q + 3q(1-2q)0: ~ q + 2 - 3q 0:

q(l+q)+(l-6q~)o: (l+q) (l+q)2
"

end
. 2 ' 2 2 2

R = i:(l-q) + q(l-6q0f6q )0: ~ (~) + q(1-3q-6c! ) a,
(1:q)(i+q)2:2q(1_3q2jCx -l+q- ' - (1+q)4 -,
"-

respectively.

2When mating is at random." 0: = 0 so that R = S , where S 'is Snyder's

,ratio defined in a rancloml.y'mating population. Expansions in series torm.

with respect to power ot 0: are permitte4 whenever q > ex < l-q" which is

the essential condition tor expressing population moments as a linear

function of 0:. In Figure 2.6.1" the constants ot the linear term of 0:

(Cl end C2) are plotted against the recessive gene trequency q. ~
- - .
ef'f'ectot subdivision or inbreeding is more pronounced on S than R when

the recessive gene is rare" and little ef'f'ect on R is observed tor any'

trequency ot recess:tve gene. Thus" Snyder's ratio is still usef'uJ. tor

polymorphic systems without, serious error from the assumption ot random

mating. (EspeciaJ.ly" it the recessive gene trequency lies about between

.3 and .7:)

In. this method" however" the more serious error due to heterogeneity
'0

in segregation trequencies among tam1l1es has been painted out. in the >:

usuaJ. chi-square test (Morton" ~965). No study will be made.here on this
-, .

topic except tor one ot parameters, h, the proportion ot parents 'Who can-

not segregate (Morton" 1959, 19(2) which was int~duced to avoid the pos-
. -

sible statistical errors in Snyder's ratio. This probability is directly'

related to inbreeding wb1J.e segregation frequencies do oo1i depend on

sys1iem. of ma1iing. Therefore i1i JII8Y' be worthwhile to exam"ne the effect
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ot inbreeding or of subd:1vision ot popuJ.ation on h-vaJ.ues.

We usuaJ.ly' encounter three d1:f'f'erent tnes ot h for an autosomaJ.

locus: (1) the proportion ot homozygotes among the dominant phenotypeSI

deSigD.atea. -bY' h:t; (2) the proportion ot non-segregating couples among
- .

outcrosses wi:th respect to the dom:lnant and recessive phenotypeSI ~;

and (3) the proportion ot non-segregating coupJ.es among incrosses with

respect to the dom:f,nant phenotype, ~. Two more h-vaJ.ues are defined at

the sex-linked locu~ (h4 and h
5

tor outcross and incross I respectively),

relative to the probabilitY' that heterozygous temaJ.es w.Lll g1ve birth to

both tne of maJ.es regaraJ.ess ot phenotypes of their mate. For reter­

ence, let p(.) be the probabilitY' that an event.:. occurs. In this
- -

. term:l.noJ.ogyoI the five h-vaJ.ues are

h:t =' P(AA) ,
P(A-)

h =P(AA x aa) ,
2 P{A- x aa)

and

h = 1 _ p(Aa x Aa)

3 P(A- x A-)
for autosomal locus,

and

h =P(AA x a)
4 P(A- x a)

and h = E.,(AA x A)
5 P(A- x A)

tor sex-linked locus I ~re A and !:. are aJ.l.eles .with trequencies p and

q (p~=l)1 respectively, and A is dominant over a. Thus we obtain tran.
-

Table 2.5.1. and 2.5.2. (Whenever q > a < l-q =p, the expression in

linear torms is pel'Dlissibie except tor h4 where the add1tionaJ. restric­

tion lal < 2/3 must be posed for mathematicaJ. reasons.)

2
h- = P +,pqa
J. 2 .

P +2pq-t:Pq(1-2<X)

,;. L +

J.+q
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h

2
= 2;p q +2pq(1-6pq)~ J: ..L ~ 2(3q-2) a"

2pq2(1+q)+gpq(~_~2)a l+q q(1+q)2

2
h
4

= p q+pq(l-3P)a ~ -i- _ 2(1-q) a

pq(1+q)_3Pq2a l+q (i+q)2

and

3 2
h = P +3p qa ,; ..L + 4q a.
5

p2(1+q)+pq(2-3.P)a l+q (l+q)2

In rand.oJ:nly mating population where a = 0" aJJ. h converges to the same

vaJ.ue except h
3

• As we see in Figure 2.6~2" ~ for the zygote is little

affected by inbreeding. When the recessive gene frequency is lov" the

effect appears on h2 and h4 for outcrosses" while if the recessive gene,

frequency is high h
3

for incross will be affected. With the inbreeding

coefficient a = .006, for instance" if q =.1" h:L changes .001/.818 =

.001 or' .1 per cent increasing relative to random mating, ~ decreases

about 2 per cent" h
3

decreases .1 per cen~" h4 decreases about 9 per cent .

and ~ is enhanced about 2 per cent. While if q = .9" ~ increases about

6 per cent, ~ increases 4 per cent" h
3

increases about II per cent, and

h4 and h
5

havepracticaJ.J.y no effect. Thus it seems reasonable to adopt

the assum:ption of random. mating in segregation a.neJ.ysis" but when the

recessive gene frequency is high, the effect of inbreeding on h
3

with,.

respect to. intercross segregation ma.y not be negligible as well as on

h4 for outcross at the sex-J.inke~ locus when the recessive gene frequency

is low.
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2.1. Distance approa"ch to ascertain remote inbreecH.ngcoefficient

So far discussion on population structure was concerned with gene

frequencies and the inbreeding coefficient together. Since systems of

mating themseJ.ves do not alter frequencies of genes but of genotypes

(without selection on zygotes and no random genetic drift) I it is naturaJ.
" -
that studies of a structured population has been made w:Lth the inbreeding

coe:f':f'icient onJ.yl ~speciaUy by Wright and Malecot. Wright (191-3) intro-
"" "

duced the concept of distance as the relation between the effective

population number and the generation: the e:f':f'ective number of the

neighborhood size is direc~ proportionaJ. to the generation number in

the two d:l.m.ensioneJ. model and to the square root of generation number in

the one dimensioneJ. model. In his theory'I the migration between parents

and o:f':f'spring is the most iinportant tunction and normaJ. migration was

assumed. Although his results are very suggestiveI mazJystudies have

shown. the migration isleptokurtic1 with mode near zero (:aatemanl 1950;

ca.vallil 1958; Skellaml 1951). It is di:f':f'icult to estimate distance for

mates born w:Lthin the sameparishl village l or other demographic unitl "

except by arbitrarUy assign1 ng them. the value 0 1 as if the ~t were a

geometric point. Despite this I there is a tendency for migration to be

leptokurt1c.

b choice of migration function depended only on experience and

mathematical convenience. Howeverl " the inbreeding coef:f'icient as a fUnc­

tion of distance at a stationary state is more intricat.e. Since lepto-

kurtic relations 'between the inbreeding coefficient and distance between

two !DdividuaJ.s have been predicted bY' MaJ.ecot (1950) and the results

shall be appJ.ied to the Brazilian populationI a probabilistic approach to
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obtain the inbreeding coefficient shall be briefly' discussed here.

Before going on to the inbreeding coefficient, distance w:Lll be defined

as a measurable geograpb:l.caJ. length between birth places of mates in­

stead of parent-offspring" because" (1) genetic 1m;plications of the

inbree~. coefficient become more clear; for instance" the estimated

inbreeding coefficient from mating type frequencies gives the inbreeding

coefficient of offspring" end (2) estimation of distance is much easier

in field 'WOrk" in other words" only a single measure is necessary' for a

couple while~ parent-offspring distances might be possible for a

family and couJ.d not be independent to each other. In the following

discussion" distance w:I.ll be understood to be between birthplaces of

mates" though this is not a necessary' restriction.

Considerp isolates whose sizes are ~" 52"' ••• ~Bp. Let ~ be the

probability that a person who _s bom at the k-th isolate and repro­

duced at the i-th isolate. This ~ is caJ.J.ed the coefficient of migra­

tion. The coefficient of consangu.1nity of two individuals a.t the

generation n" denoted by fij(n)" who are taken at randan.". one from the

i-th isolate and the other from. the j-th isolate" is given by
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where u is mutation rate f1'OD1 the gene in question to its aJ.leles and

the sUbscripts i and' .1 .could be the same. In (2.7.J..) ,the-first S\1Dllll8.-

..... --
tion is the probab1J.ity that two homoJ.ogous genes came from the same

individual in the previous generation, the second is the probab1J.ity

tbat two genes were from different individuals who Uved in the same

isolate" and the thir-d is the probabiJ.ity that two genes were from. two

different isolates. It the popuJ.ation size l\: remains constant through­

out generations" the coefficient of consanguinity becomes the inbreeding

coefflcient and at a stationary state (fi .1(n) ,-+ f i .1 as n -+ co)

'Where cSim=0 if k~h and~=J. if k=h" and the higher powers of u are

ignored.

The generaJ. soJ.ution of this system of J.1near equations bas been

given by Malecot (J.950), using matrix algebra. Since we are only' inter-
- ,-

ested in soJ.utions which can be applied on data" some s1m;pJ.1tications

are necessary ~ The most acceptab1e modeJ. as a first approach is such a

homogeneous popui.a:tion structure that: (1) aJ.l isolates are the same

size; ~=N, (2) the coefficient of migra.tionis invariant throughout

generations" -and (3) the inbreeding coefficient w:Lthin an isolate is
-

constant for all isolates; f ii = fo. Under the conditions, the fo1-

1ow:Lng situations are useful:

Symm.ei;r1caJ. migration in one dimension: . Suppose that 1ntin1teJ.y 1arge

number of isolates are on a 1ine, with' equal distance between each

other (Figure 2.7.1). The coefficient of migration (li .1=l.1i in this
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case) is only dependen~ on the absolute value 1.1-i I which is tbe differ­

ence of indices of two corresponding isolates. From (2.1.2), a:fter

some caJ.culations,

2 +4N F(A) = 1 + 1
l-fO l-(l-u)G(A) l+(l-u)G(A)

where F(A) and G(A) are moment generating functions of f ij and 1i.1'

respectively. The mutation rate uis smaJ.l so that the largest solution

in absolute ~ue of the equation G{A).l/{l-u)~l+U, A:I., repres~~s to a

good approx:Lmation the decreasing rate of tM ~nbreeding coefficient with

distance (See Feller~ 1951; pp. 251-259). If each isolate receives

immigrants only from two neighbors (with proportion m/2) in each genera­

tion, then G{A>' =l-m + ~A + A-1) which is ~qual to l+U. Thus ~ =

1 + !!. - J~ + (U)2 so that, for small 11-.1 I, 4Nf
ij

(l-fo) ,; c/.~i-.1 1+1
m '" mm.

''Where c = ~tfu{u+2m.). ~refore

l~f [ J J1i
- .11

f = .0 1 + !!. _ (!!.)2 + ~
i.1. 4Nu{u+2m.) m' m. m

.. For near zero distance, f ii=to' we obtain f o '= l/[l+4»1U{U+2m)]. 9l1s

result can be campa.red with Wright's result f O = l/[l+4N(Uofm)] which

corresponds to immigration from an infinitely J.arge population. If d

denotes the distance between birthplaces of mates, we have apprmd me;tely

which can be fitted with data bY' the least squares method.
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If each isoJ.ate receives a proportion m of immigrants 'Who cane frail

not only the neighbors but aJ.so from some other groups, .then "'J. becaDes

approod.mat~ ~- .{2u./a2 ~ere ,lis 'the migration variance. Furthermore,

if a weak se~ection acts on the gene in question, the param.e'ter formuta­

tion m'te, u, may be replaced by u+s(=ul, where s is the selection coeffi­

cient. As a conclusion, in the ~tr1caJ. homogeneous migration in one

dimension, the inbreeding coefficient decreasesexponentiaJ.J.y With raote

constant .{2a, where a is the ratio of systematic pressures to migration

ra'te.

Symme'tricaJ. migration in two d1mensions: SUppose that a population con-

sists of an llnJjm:lted square net ofiso~ates, each of ~ch can be repre-.

sented by 'two indices (Figure; 2.7.2). It can be verified that (2.7.3.)

holds in two dimensions, ta1d.Dg A as a vector Vith two nuisance ~ements.

The coefficients of m:lgrati~ and. of inbreeding are aJ.so specified by two

indices, p and q, as l(P,q) and f(p,q), respectively. As a speciaJ. case,

if each isola.'te exchaDges oD1yindiv1dualsWith its four neighbors each

generation, or mathematicaJ.ly,

1(1,0) =~(-1,0) =m/2,

1(0,1} =l(O,-~) = m'/2,
. . ..

1(0,0) =~-m-m',

l(p,qj = 0 for otherwise,

then a ~eptokurtic distribution of two d1mensionaJ. variables, p and q, for

the inbreeding coefficient Vith distance has been given by Malecot (~950)

and Kimura and Weiss (~964). FixLng p=O, Malecot obtained that the
- -

marginaJ. distribution approaches the ex,ponentiaJ.tunction in a one c1:I.m.en-

sionaJ. model when distance q is hrge, whereas Kimura et aJ.. caJ.culated



the distribution of d = ../p2 + q2 ~ch beccmes asymptotically

exp(- ../4u/M d)/'fd for large distance.

When we consider a continuous modeJ." (2.7.2.) becaaes

f(q"r) =II(l-2u)f(p"m)l(p,q)l(m;r)dSpaSm

l(p"r)dS '1 '~( )
+ l(l-2u)l(p,q)dS. . ..• p. -~J),P

P d(p)dS 2'
P

Were d(P) is density at neighborhood of point p" l(P,q)dSp istheprob-
- . . .

ab1l1ty that an ind:l.v1duaJ. was born in a un1't area at the neighborhood

of point P and reproduced at the neighborhood. of point q, and f(q"r) is

the coef:f'icien't of consangu:Ln11iY between two individuals" one taken

randomly, from q and the other from r. ~ size of isolate (~) 'is

replaced by d(P)dSp ., ,

In the hcDOgeneousm.odel if dens:!.ty i~ eO:1stant (d(p)=d) throughout
- .

the population and themigra.tion coefficient depends only on the distance

between 'two points" (2.7.3.) holds in, bo'th dimensions. Particularly,

when migration is nolmaJ. in ':two dimensions" as Wright assumed,f(p"q)

becomes

f(Pjq) = l-fO A ~1-Up22g exp {-rp)t + 17:-~9lJt!>p}
~~~ x yo

which gives the inbreeding coef'1"1cien't fO=f'(p"p)in the neighborhood of

p (PUtt1ngXp=Xq and Yp=:l'q) as f o=l/[l+81Taxayd(:l!heu)] and" the asym,p-
, -

totic fom. of f(p,q) for large distance becomes

f(p,q) a: exp(- .[2u ~);rd. a
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where (d/a) = «Xp-xq)/a) +«Y'p"Y'q)/aY') (Malecot, 1959). This result
.. ~ .. .. - _. ~ .. - -

agrees With Kimura et aJ.. who studied the correlation coefficient of

gene frequencies between two isolates in one, two and three dimensionaJ.

homogeneous stepping stone models Without assuming any migration f'unc-

tion. '!'heir result may' be summarized in a f'unction:

for large distance,' where n is the number of dimension (n = 1, 2" and

3), and m is the average migration rate per coordinate (m = Imi/n).

Apparently, this agreement has not been recognized since Malecot himself'

stated in his discussion on the decrease of relationship with distance

(discussion in Kimura (1955»: "So the coefficient of inbreeding f O is

much iDf'luenced bY' the number of dimensions; on the contrary', the de­

crease with distance of the coefficient of re1ationship or of corre1a-

-~~x
tion is approximately the same, e a in all cases; ••• ".

Before. c10sing theoreticaJ. discussion on the relationship between

distance and the inbreeding coefficient, the significance of f O should

be considered. The inbreed:l.ng coefficient f O itself' is Within an

isolate, including contributions frau. seJ.f-fertillzation, brother-sister
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mating and s~ forth. Since no selting occurs in man1 and brother-sister

marriages are prohibited by 1awl the expectation of f O decreases. ~e

inbreeding function w:Lth distance bec<:iIles fiat near zero if we· remove

contributions from close consanguinity (Morton and Yasudal 1962). !rhere-
- -

fore I there w:Lll be some error in estimating the systematic pressure

and the migration rate from the observed f 0 and the estimated decreasing

rate of inbreeding w:Lth distance in human populations I aJ.though Lamotte
I .

(1951) has succeeded to estimate both parameters in natural· popuJ.ations
- -
of Cepa.ea .nemoralis, by this distance approach. Furthermo~1 the

dependency of inbreeding function w:I.th distance on dimension is troub1e­

some when interpreting datal since we do not lmow lId:tmension ll w:Lth res-
. .

pect to human migrationl though it has been suggested that it varies

from. 1 to 2 (cited in K:Lmura. et aJ.. 1 1964). As an extreme case I a popu-
.. -

lation of organisms livingaJ.ong a riverl coastaJ. J.ine or mountain ridge

may be dt~scribed by the one d:lmensionaJ. model. and the two dimensionaJ.

.model. may cover a population on a pJ.ane.

In sUDllD8.1"Y' 1eptokurtic relationships between the inbreeding co­

efficient and distance between birthpJ.aces of mates has been predicted

1 When we consider the distance between birthplaces of mates I dl

d=O might be observed in such a case that after a boy was bomin pJ.ace

PI his fam:iJ.y moved to a different pJ.ace Q; and another fam:Lly moved

into ~he place P and .gave birth to a gir1. If the boy ~d girl become

a couple, then d=O. Although we expect such couples to be rare, no

information is ava.:Uab1e at· present.
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theoretically, exponentiaJ. in one dimension and more rapidJ.y decreasing

than exponentiaJ. in two dimensions. However" the decreasing cODSt$lt is

invariant regardless of dimension of modeJ.s.

2.8. Discussion and problems in ascerta.iDing the inbreeding coefficient

The most common~ to ascertain the inbreeding coefficient in

human population is to classify marriages into know degrees of inbreed­

ing and to take their average 'Weighted bY' the relative frequencies of

observed numbers. . This method is caJ.led pedigree anaJ.ysis, requires a

ccmplete lmow1edge of pedigrees" and assumes the naninaJ. coefficient of

consanguinity is equal to the inbreeding coefficient. Tracing genera­

tion paths and making loop(s) through cOlllllOn ancestor(s) the· inbreeding
..

coefficient for a particular marriage would be estimated bY' Wrl.$ht' s
. ,

formula:

Wright (192l)

where f and m are number of generations from. father and mother respec­

tively to the COJlllDQt1 ancestor 'Whose inbreed:1ng coefficient is F'

(usuaJ.l.y', we assumed that F'=O) and summation is taken over all possible

loops. For instance, F=O for non-consanguineous marriages, F=1/8 for

uncle-niece, double first cousin" ••• ,' F=1/16 for first cousin, F=1/32

for second cousin" and so on. Some devices have been made for unusually

complex pedigrees (Wright and Mcphee" 1925; Kudo, 196~). The average

inbreeding coefficient is obtained bY' a = E.ciFi " where ci is the corres­

ponding proportion of marriage. However" this does not cover unrecog­

nized remote consanguinity. For instance" under favorable circumstances
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the ascertainment of consangu1n1ty can extend severaJ. generation into

.the past. In some area" records of RomanC8.tholic marriage dispensations

go back hundreds of ;,-ears (Moroni, ~962). Under these conditions ascer­

ta.:l.ned consanguirdty is ~ikeJ.Y to account for a J.arge fraction of· the

total inbreeding coefficient. F01'lD.BJ.ly' we may represent the situation

as

(2.8.~.) 0... =0+0,
" . r

where at' a and Or denote the inbreeding coefficient· due to total con­

sangu1n1ty, ascertained consanguinity and undetected" remoteconsan­

guinity, respectively'. Unfortunately" as we go backward in ·t1me the

proportion of ancestors who were migrants inC?reases" so that ascertain­

mentof consanguinity will aJ.ways be incomplete even for populations

with extensive marriage· records.

Although we may hope that a/a is small" doubt arises even in the

most favorabJ.e cases. For exampJ.e, birth records in the Alpine village

of Bosco-Gurin permit reconstruction of pedigrees· for ten generations

(Moor-JankOWBk1 and Huser, J.957). There was little migration into the
~ . _.

village. we might expect tha't all importantconsanguini'ty bad been

as~erte.ined. Bu.'t in fact, history shows that the vi] Jagers migrated

into the area in the thirteenth and fourteenth centuries from. 'the VaJ.ais.

It is likeJ.y' 'that inbreeding during the ages before the birth records

.began bad effects on gene frequencies 'Which are still appreciable and

contribute to 'the Qr of Switzerland.

Since no system of records" however complete" can ascertain 'the

totaJ. inbreeding coef'f'icient, we must l.ook for other ways. There are

'two approaches to pursue the remote inbreeding coef'ficient: use of a



biologicaJ. indicator (bioassay') and of migration functions. In both
- .

methods, the remote inbreeding coefficient is calculated as the differ-

.ence of the totaJ. inbreeding and the close inbreeding ascerta.ined bY'

pedigree anaJ.;ysis. In this connection, we de;f'ine remote consa.ngu1n1tY'

as relationship more distant than first cousins once removed (F < .1/32).

The inbreeding coefficient can be estimated frau. phenotn>e and

mating type frequencies. DifferentiaJ. selection, 1llegitimacY', and

misclassif1cation are the main sources to disturb an accurate estimate

of the 1D.breeding coefficient, and, generaJ.ly' speaking, theY' affect

phenotn>e frequencies more than mating type frequencies (see 2.5.).
_. .

DifferentiaJ. selection, especially" against homozY'gotes,might tend to

give smaJ.ler, or even a negative estimate of the inbreeding coefficient.

IllegitimacY' or misclassification has in a statisticaJ. sense the same

effects on the biological indicator as selection does. And .genes 'Whose

frequencies are relatively' sms.1.,lare excluded from the probabilitY'

models for mating types, and should be pooled w:Lth more common alleles

to meet the restriction p > F.

8anghvi (1955) and SchUll (1965) pointed out the insensitiveness
- ~ ". ~

of phenotn>e frequencies to estimate the inbreecllngcoeff1cient. Re-

gardless .of these difficulties which w:Lll be shown mathematicaJ.1y' in the

next chapter, there is no such trouble in estimating the inbreeding co­

efficient from mating type data. The statisticaJ: properties of the

biological indicator will be given in the succeecllng section.

Use of a migration function, m(x),defined as the probability among

all marriages that the mar!tal distance is x, requires determ:tna.tion of

a migration function and evaJ.uation of the genetic correlation: coeffici­

ent, r(x), of chUdren \JIilose parents had a marital distance x. If these
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two functions with distance are found, the total mean inbreeding

coefficient is caJ.culated by

a = If» f(x)m(x)dx.o .

Since nearly all the information comes from rare homozygotes, whether

there is dominance or not and whether they are ascerta1nedprospective-

ly', as a randall. sample of the pOpulation, or retrospectively' as probands

for a rare homozygous condition, the conditionaJ. probabillty that the

parents of a rare homozygote had mar1tal distance x leads to powerful

and informative results (Morton and Yasuda, 1962).. As mentioned·in 2.7.,
~ ~..

human. migration does not follow a no:rmaJ. distribution e:x:,pected for dis-

persion of genes by a d:1f'fusion process (Cavalli, 1958). This is not
. ,. .... .

surprising because many of the barriers which generate isolates in

human popuJ.ation. ~us at present~a choice of migration function is not

compJ.etely specified except (1) the function is leptokurtic, (2) the

proportion of near zero dis'bince s:oould be finite: m(0) < +co;' and (3)

the function has better be a mathema.ticaJ.J.y and statisticaJ.J.y simple

form. Under these conditions, the suggestive functions are eXllOnential,

square root exponential (Ca:vaJ..ll, 1958), log-normal, beta, double ex;po-
~ .

nential and so forth. A gsma function that includes an ex,ponentiaJ.

distribution as a special case (n=l) has been fitted to a northem ItaJ.1an

population (Cavalli, 1962). b fit is good but the estimate of the
. _..

. distribution parameter, n, are always less than one so that m(O) tends

to be inf1nite. This is unrealistic. It is ex;pected, however, that no

distribution would fit well because of a practical difficuJ:ty to estimate

near zero distance frequency.



The genetic correlation with dista.nce l f(x)1 is more intricate.

This ~an be derived if a migration function is known (Malecot I 1948;

K:t.mura.1 1963) I but it seems' that assumption of migration function is

not necessarY (Malecot l 19.50; K:Lmura. et aJ.. 1 1964). A d:Lf'f1cUJ.ty in

practice here is the fact that f(x) dePends on t~ dimension of human

migration. Fortunately f(x) can be dete:rm1nedempiricaJ.ly as a genetic

correla.tionl

E(Pa-p)(Px+a-p)
-, .-

2
E(Pa-P)

(MalecotI 1955)

where the sUlJlDlB,tiontaJd ng over locations ! where gene f:re;~uency is P •
'. a

':he separation of the totaJ. inbreeding coefficient into contribu-

tions due to ascerta.:lned and remote consaDguinity involves an 1m;portant

concept of population structure. W8blund' s principle tells us that if

random mating is assumed within isolates I the inbreeding coefficient

due to barriers is aJ.ways positive since the coefficient is defined with

respect to gene frequenCY' variance. The more barriers there &reI" a high­

er vaJ.ue of the inbreeding coefficient is expected. Howeverl aJ.l bar­

riers wuld not be ascerta.:lned in practice. If' Fi designates the

ascertained inbreeding coefficient by'the i-th degree procedurel for

instance l the first degree ~ be due to ascertainment of close consan­

guin1ty less distant than second cousinl the second degree up to known

consangu1n1tyand so forthl then the totaJ. inbreeding coefficient Qt can

be obtained fran

HoweverI the assumption of random mating within isolates may not be
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justified in pa.rlii~ar situations. For exam,pJ.e, suppose an isolate

consists 01' two tJPes 01' homozygotes I -!! and !:!J and mating occurs only

between dif'terent genot~s. Obv1ous~I the inbreeding coet:f'1c1ent tor

the isolate is not zero but minus one in the sense 01' a negative corre-

lation between un1ting gametes. ibis leads to

(2.8.2.)

where r is the correlation coef't1cient due to non-random mating in

isolates and the tollowing relation holds:

where f and ~A meaD. summations 01' ascertained inbreeding coef'ticient

with respect· to the degree 01' procedure and 01' unascertained positive

correlation between un1ting gametes I respectiv~. This is equiwJ.ent .

to (2.8.1.) it we put ex = P'i tor the ascerta.1ned inbreeding and exr =
... .

(~Fi + r) tor the :remote consanguinitY'. Or can be negative it the
- .
negative correlation in isolates is high.

An aJ.temative model has been proposed bY' Wright (1943) tor con-
- .

sideration 01' breeds 01' cattle•.It a population has hierarchic structure,

the totaJ. inbreeding coe:f'ticient, FIT' is related to the inbreeding
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coefficient 'Within sUbpopulation, FIS' and due to subdivision, FsT' in

the following manner:

which can be extended into aDy'degree of hierarchic structure, or

1 - FIT =II (l-Fs ). This reJ.a.tion can be deduced fran the moment theory
i

as a special case. Suppose that a population consists of isolates whose

size and a gene frequency are Wij(~ij=l) and Pij' respectively, and

w1thin which mating is at randcm. '!'hen the totaJ. frequency of a homo-

2 2
zygote in the population is ~ijWij = P + p(l-p)FIT where p = .
~ijWij • On the other hand, 'When we consider ba.rriers nth ·respect to

i, w1thin .the i-th aggregate of isolates, the hanozygote frequency then

is the inbreeding coef'f'icient of the i-th aggregate. The totaJ. homo-

2 2
zygote frequency is therefore t[Pi+Pi (l-Pi)Fi ]Wi = E:Pi wi +

i .

222
fPi(l-Pi)FiWi , where 2::Pi Wi = P +p(l-P)FsT, so that:p + p(l-p)FIT =

2
P + p(l-p)FST + J:pi(l-Pi)FiWi or

i

(2.8.4.)

If' "the inbreeding coefficients for all aggregates are same: Fi = FIS for

all 1, we obtain FIT = FST + FIS(l-FsT) which is equivalent to (2.8.3.).

The 1'\~sult can be proved with respect to heterozygote frequency.

It is obvious that an hierarchic pattern of barriers is specified

in (2.8.3.), whereas no· such scheme is made in (2.8.2.). A genetic

,' .. ',-
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b.B.rr1er is hard to recognize in human population, whUe it is rather easy

to set up such a pattern in exper:lmentaJ.·populations like. cattle. FS!r

and F
IS

should be always positive with res~ct to .genetic barriers and

from a probablistic point of view, but Wright (1951) statedtbat FIB
.. .

could be negative. ~s is true only' 'When mating is not random within

basic units of population or isolates. In this situation FIS corres­

ponds to r, end· 'Whenever the F-vaJ.ue becomes negative, the independency

between system of mating and gene frequency breaks since any homozygote

frequency cannot be less than zero. Therefore r must be near zero in

human populations. This 1m,plies that the gene has potentially an equaJ.

probability to unite with the neighbors in the sense of probability den­

sity. On the other hand, the identification of isolates is almost im­

possible in man without lmoldedges of "originaJ. composition of

population". At present, we do not have any method to estimate r but

r=O for human population. Further research is desirable.

The hierarchic description is a good approximation of population

structure. Taking the loganthm. of a generaJ. form of (2.8.3.), and

expanding in series, we obtain approx:lmately

where FIS is zero if mating in isolates is at randaD., otherwise
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A new theory for describing human population structure has been
i'

proposed bY' repJ.a.cing the concept of isolate size in Dahlberg's sense

or neighborhood size in Wright's sense bY' an idea of probability densit;y

for genes or a tendencY' that a gene shall canbine with the· neighbors in

order to f'orm. genotype" mating type" and other gene combinations. These

genetic quantities can be described in terms of moments of population

whose order corresponds to a number of genes combined. 1be main results.
. -

when the inbreeding coefficient is not greater than the smaJ..1est gene

frequenCY' are that: (1) mating type trequenciesare given as a function

of gene frequencies and the inbreeding coefficient at autosomaJ. and sex­

linked loci; (2) the effect of' inbreeding or subdivision ofpopuJ.ation

on mating type frequencies and on segregation anaJ.ysis has been exam­

ined and no serious effects is found; and (3) therela.tion between the

inbreeding coefficient and marital distance describes genetic isolation

in populations is leptokurtic" including an exponential function.

A method to estimate the totaJ." ascertained and remote inbreeding

coefficient has been derived. The statisticaJ. procedure w1ll be given

in the next chapter. Components of three kinds of the inbreeding coeffi­

cient were considered. Two components in describing system. of mating

in tems of correlation coettic1entbetween uniting gametes should be

distinguished: positive and negative correlations. A1J. of the positive

correlations ma;y be described with genetic barriers" while the negative

co~atiol1 :J.S observed if the basic unit of population, or isolate" can-
-

not be considered as randomly mating group. The ascertained inbreeding

coefficient consists of positive correlations and the remote inbreeding



may' incJ.ude both correJ.ations. Oomparison with Wright'shierarcbic

structure of population is aJ.so made.



3. Statistical Procedures

3.~. Introduction

This chapter devotes i tselt to deveJ.op statistical methods for

utUization of theories· which have been discussed in the preceding chap­

ter. Since Fisher's ma.x:Lmum likelihood method (Fisher" ~922 and ~ater)

-
v.U.l. be em:pJ.oyed frequen'bly" it is worthwhU~ to ~ook at one of its

developnents" the scoring method that is powerful when llk~ihood equa­

tions are too complicated to obtain auaJ.ytic so~utions for parameters.

There are good s~es on this method (Bao" ~952j Morton" ~959; BaUey"

~96~). To visusJ.1ze" the description b~ow is for a s~e parameter"

but its generality is not ~ost when the number of parameters is arbitrary'.

Suppose that L denotes a likelihood with a single parameter e and

we define the score of e as the first denvative of 1rJL .with respect to e;
. . 2

i.e." ue = 81r£/ae• The amount of info1'Ulation for e is k e = E(Ue) ~

-E(a~/ae2)" 'Where E is an ape~tiOnaJ. notation to ta.keexpe~tatiOn.
-

With indePendent sam;ples the scores and the amount of informations are

additive so· that the total score Ue and the information Ke are obtained

as

where summa.tion is over aJ.l independent sampling un!ts. Applying Ta;y~or's

series ex,pansion to the likelihood with a tentative value eO" the im­

proved estimate e~ wJ.ll be

e~ = eo + Ue IKe
o 0

2
and its variance a = liKe. The discrepancy between eo and e~ are

. 1

2 ~_ . 2
tested by X = (e~ - eo)Ae with one degree of freedcm. If X indicates
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a significant difference" then we may .repeat the above process until no

significance appears. ' ~ heterogeneity test between units is carried .
2 2 _-.2'

out by X = nl /k - U-/K with degree of ,freed9Dl being number of' independ-

ent units minus one. Nature 'of convergency in iteration will be dis­

cussed in Appendix 4.

3.2. The ascertainment of inbreeding coefficient by pedigree stud;r

In the general population" the inbreeding coefficient f i has fre­

quencies Vi (Zwi =1)" mean a = 2:1"iVi and variance a
2

= ~Wi - cl-. The
- ' .

unbiased estiEtes are

and

where n and ni are the totaJ. number of indiViduals studied and the

number of indiViduals whose inbreeding coefficient is f i " respectivel;y.

'!bus the var5.ance of a is obtained by

Var(a)
n

The method is heav:Ll;y dependent upon 'infomation about pedigrees.

3.3. Bioassay of the inbreeding coefficient and gene frequencies

Since the inbreeding coefficient and gene frequencies are fundamental.

quantities to describe human population structure" a statisticaJ.1y power­

ful and biologicaJ.ly meaningful method is required for estimating both

parameters 0 At hand" two types of models and data are available for this

purpose: individual phenotype frequencies and mating type frequencies.
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In 'the following we shall use·1ihe inbreeding ·coefficient ex 'to denote

either ext or JXr " according as known. consanguineous marriages are· omit'ted

or not. In both cases" the firs't task is to testa null hypo'thesis .that

a=o" or mating is panmictic. Under theassUlllp'tion" gene frequencies are

est1ma'ted by the ma.x:Lmum likelihood me'thod so that an estima'te of 'the

inbreeding coefficien't in the neighborhood of zero can be ob'tained by

i 1iera'tion process With respect to ex. To visualize 'the method" mathemat­

ical descriptions for some sim;ple cases are presented in 'What follows.

3.3.1. Individual pheno1;n>e frequencies

case 1. Two alle1esYithout dominaDce: Let a"b"c be 'the observed

numbers of genotypes ~ .!!. and !!. in a. randcm· samp1e from 'the general

popuJ.ation" and p be the frequency of!: Assuming that the individuals

in the sample are unre1ated" tha't ma'ting is panmictic but for. an inbred

component ex" and that genotypes are enumerated before differentiaJ. se1ec-.

tion has acted" we have

2
p(~ = P + p(1-p)ex

2P(~ = 2p(1-p) (1-a). 1
- - - 2'- -

p(!!.>= (l-p) + p(1-p)a

The 10g 1ikelihood is

L = (a+b)In p + (b+c)In(1-p) + aln(p+a-ap) + 1in(1-a) + c:ln(1-p-ta;p)

and the maximum likelihood scores 8..l.~



The solutions are

p = (2a+b)/2(a+b+C)
.. ...

The variances of the scores are

~ = a/± + 1-0:_1
2

+ bf_1-2p]2 + C[.1:.. + J.~.J2
~ ~apJ lp(l-p) l-p l-~

~ l-;J[;;-P;J b~ 1-2p. J [1 l-a;;]K =a-+ - -c-+·
po: . p+o:-. (l-p) (1-0:) i-p l-p

l~

Xa, =a~J +{~J + Cll~

To test the null hypothesis that a::o we may evaluate the scores and their

variances when Cl?O. Then ~=O, and

Uo: = (a+b+c)(4ac-b2)/(2a+C)(2c+b)
."

KQa = a+b+c

Note that uJ'Kax is exactly the maxiDDJm J,ikelihood estimate of a. The

variance of this estimate in the neighborhood of the null lJY.pothesis

is l/Kw,.

When there are k alleles, the amount of information about a under

the null hypothesis that a::o is given by (k-l)N, where N is the totaJ.

number of individuaJ.s (Appendix 5).
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Case 2. Two aJ.leles with cG!IE,PJ.ete dcm:1.nance: Dom1 Dance creates the

d1:f'ficuJ.tY' that, 'With only two phenotypes, it is impossible to estimate..
p and ex simuJ.taneously from. phenotype frequencies aJ.one. Howe't'"er, if

there is other information abOllt either parameter, for example from.

segregation analy'Sis (Morton, 1959) or maritaJ.d1stance, the information

from. this can be combined to yield both estimates.

Suppose that two phenotypes are !!!1 with frequencY' p(p-ta-a,p), and

!:. With frequenCY' (1-p)(1+p-Qj;l). Let the observed numbers be a and b,

respectivel.y'. Then the log llkellhood is

L = a1n p +'J:jn(l-p) + aln(pofa-ap) + 1:in(l+p-OP)

and the scores for p and a are

u = ar:!:. + 1:] -b[..L - JL:]
p ~ p-ta .. ~-p l-tp

The va.r:t.ances of the scores are

K .. = ar~ + l-a.~12 + b[l- JL~
pp lp p+a-a,pJ .. ~-p l-tp



When .a=o, we obtain

u .= af!l - b[~J,
P l:PJ :L-p

K = 4(a+b)/(~_p2)
pp

Kaa = (a+b)(l-p)/(l+p)

~pa =2(a+b)/(1+p).
,. ~.. .

Note that t~ ~-matrix is singular (KJ!Iloa. = ~, as expected, and
. .--

. J.
U-scores are not linearJ.y independent~Ua= ::;Up~' indicating that.p and

a cannot be estimated simultBDeousJ.y frau. this materiaJ: aJ.one.

case 3.AB') and .MNSsU blood group systems: More complications due to

dan1nance are discovered at the AB') ·J.ocus and effects of linkage or

segregant factor pairs in the same system are aJ.so found in MlSsU system.

With anti-A and -B, we are able to cl.assify'human population into

four phenotypic groups: 0, A, B and AB. Bemstein (1925, J.93O) estab-
- ~

llshed that three genes !I !? and 0 at a single J.ocus were responsibJ.e

for the phenotypes and gave conventionaJ. formuJ.ae to evaluate gene fre­

quencies which were biased estimates frau. individuaJ. sam:pJ.e of randan

population. Later, Stevens (J.938) proved that Bemstein' s formulae did

not e:mctJ.y satisfy' the maximnm likelihood equations and piq+rFl, where

p,q,r were frequencies of gene !J ~ Q, respectiveJ.y.

In populations with inbred proportion a, the phenotype frequencies

are given bY'
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2p(O) = r + r(l-r)a
-- 2 '. .

peA) =p + 2pr + [p(l-p) - 2pr]a
. - 2 --

PCB) = q + 2qr + [q(l-q) - 2qr]a

p(e) = 2pq - 2pqa
- .

The log likelihood is

2 . 2
L = O-ln[r +r(l-r)a] + A-ln[p +2pr + {p(l-p)-2pr)a]

2 _. .
+ Beln[q +2qr + (q(l-q)-2qr)a] + AB-1n(2pq-2pqa)

... . .

and the max11mmll1kel1hood scores under the null bn>othesis that a=o are

It is easily verified that

indicating that no 1n:f'omation about a is yielded from. this material alone_

This is surprising result from. viewpoints of statistics and genetics_

Statistically, we could expect to estimate simultaneously' three independ­

ent parameters (p, q and a) with three degrees of freedom. (since we have

four phenotnJes). It has been observed that simultaneous estimates of

gene frequencies and the inbreeding coefficient in the Am system. are

very unstable (Schull, 1965) _ We have just proved that no estimate for



the inbreeding coefficient can be ob~ined f'rom. the A:OO locus by t~s

Diethod" Schull!s estimates being based entirely on rounding error in

estimating a singular matr.Lx. This is not improved by subtyping of' A

into ~ and ~ with anti-A:t. and -A sera. U-scores in this case have a

relation

U =a

'Where Pl" P2 and Up]." U
P2

are frequencies of' A:t" ~ genes and their U­

scores, respectively (Appendix 6). Although· we now have 5 degrees of
- -

freedaD. (six phenotypes)" yet we can neither estimate simultaneously
- -

four independent parameters (Pl " 'P2" q and a)" nor test the null hypo-

thesis that ~.

Fran the standpoint of genetics" no reliable infomation about the

inbreeding coefficient would be expected even if' one and only one 2. gene

exists in the AD> ·locw:s"* whereas the com:pJ.ete absence of 0 genes

generates a codan1nant system with ~ and B genes and" as we know" that

system. gives infomation about a as. much as the total number of' observed

samples (case 1.). If' either ! or ! gene is absent or both genes are
- -

pooled" it becomes the system. vith two aJ.leles with complete dominance

and no infomation about a is expected (case 2.).
- -

This discovery' at the ABO locUs is very' discouraging. f'or studies in

human population structure because hundreds of thousands of' observations

a* This situation may be observed in the Du:f'fy' system. with anti-Fy and
~ . b
anti-Fy 'Where Fy gene is rare in Caucasians but is common in Negroes.
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on A:OO bJ.ood groups has been reported from around the worJ.d (ex. Mourant

et al. , J.958). However1 if we can specify' numericaJ.1y' the J.ocation of

popuJ.ation studied, f(Jr exam;pJ.e, With latitude and longitude I then the

empirical correlation method With distance may be applied to the Am

data.

An interesting reJ.ationship in MNSsU system between the ABO=type

dominance and segregating factor pairs in the same system should be men­

tioned here. At the MNSsU blood group System, the factors M and B ·forms

a codond nent· system whiJ.e the factor S,s and * (= U+u that is observed

in a phenotY,pe S(-)s(-)U(?) (Morton et al. , 1965» have the A:OO type

daninance relation. A question is what effect of the S-series would be

observed on the amount of information about the inbreeding coefficient,

compared to jibe information from. the MI ser.l,es alone. In the a.naJ.ysis of

the northeastem Brazilian popul.ation bY' ma.x:tmum likelihood scoring

method, deta:U of which Ylll. be found in Appendix 7, the amount of in­

formation about a with the MN factors alone is Ig = 2128 units l whereas

. it becomes ~SU = 4536 units with all factors~ or lEsu/ Ig = 2.13.

It is therefore concluded that no improvement in the information about

the inbreed1ug coefficient is expected by subtyping at Am-J.1ke systems1

whiJ.e segregating factor pairs in the same system increase the informa-

tion, compared to a codaninant system.

3.3.2. Mating type frequencies

Mating type frequencies give more reliable estimates of the

inbreeding coefficient and no difficuJ.ty d.ue to dominance is observedo

GeneraJ.ly' speaking" mating type frequencies yield more information about

the inbreed1ug coefficient wh1J.e the estimated gene frequencies and
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their variances from mating type are exactly same as from individuaJ.

phenotype frequencies.

case 1. Autosomal locus vith two codan:Jnant alleles: Suppose that the

observed numbers of mating types AA x M.t M x ~AB. x Aa, M x sa,

~ x !!:. and !!:. x !!:. are ~, ~I n3, n4' n5, and n6' reSPectively, where

A and !. are aJ.leles with frequencies l-q end q at a given locus.

Assmn:Jng that the coupJ.es in the sample are at random, and that the

coupJ.esare enumerated before dif'f'erential selection has acted, the mating

type frequencies in population whose inbred component is a are given bY':

P
l

= (1_q)4 + 6q(1_q)3a

P2 =4q(1~q)3 + i2q(i-q)2(2q-i)a
2 - 2 -..-

P
3

=4q(l-q) + 4q(1-q)[1-6q(1-q)]a
2' -2 .- ... ..

P4 = 2q (l-q) + 2q(1-q) [l-6q(l-q)]a

P
5

= 4q3(1_qj + 12q2(l-q)(1-2q)a .

4· 3 -
P6 = q + 6q (l-q)a.

The log likelihood is

and the ma.x1 Mum likelihood scores are

6. n
i

SP
iU = Z - (-)

q i=l P Sqi .

The variances of scores are

and
6 n SP

U = - t .J:. (---! )
a i=l P Sa

i
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Under the null hnlothesis that a=o" we maY' evaluate the scores and their

variances when a=o. Then

U = 1 [(2c +b)-2(a+b+c)q] = 0
q q(l-q) .. .

Ua = 3(a+b+C) [(ltac_b2) + ~a+b+c)(n -20. )]
(2a+b) (2c+b) . . 3 _.. 3 4.

and

Ie = 2(a+b+cl, Kna = 0, Kaa = 3(a+b+c)"
qq q{l-q)- ":I.

where a (=~+n2+n4)" b (=n2+2n3+n5) andc (=n4off15+2n6) correspond ~o the
.. -,. - - ...

observed numbers of genotype~ ~" and !!., respectively. The resuJ.ts

are remarkable: no im,provem.ent is obtained in information about genefre­

quencies" whereas the amount of information about the inbreeding coeff'i-

cient is three times as great from. mating type freq\lencies as~rcm

individual phenotypic data" indicating that mating types are Yielding

much information on population structure.

Case 2. Autosomal locus with two alleles ld.th com;plete dnmi nance: Let

~" n2" n3 be the observed numbers of mat~ types!:. x b. !:. x !!,
!!. x !!:. in a random sample from population and q be the frequency of the

recessive gene!.. Assuming that the couples in the sample are unrelated

except for an inbred component a" and that the couples are enumerated \

before differential selection. bas acted" the mating type frequencies are
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given by:

2 2 2
P1 = (1-q) - 2q(1-q)(1-3q )a

.. 2 - 2 '. ... ·'2
P2 = 2q (1-q ) + 2q(1-q)(1-6c! )a

P
3

= q4 +6q3(1_q)a

'Ele 10g likeJ.1hood 1s

and the maximum ] i ke11hood· scores are

1 aP1 1 aP1where U 1 = -=<-) and ual, = -=<-). The variances of the scores are
q P1 aq P

1
.aa.

3 2
K = Z n u

qq . 1=1 1 q1

To test the null hypothes1s that Ct=O, we may evaluate the scores and the1r

variances 'When Ct=O. Then

2 2
U = 2 [b-(a+b)q ] = 0

q q(1-q) .
. .

and the in:fo:rma.t1on matrix 1s given by

U = 8b
a (1+q)2



54.

(a=~of'D2, b=n2+2n3 are the observed number of !:. and !!. indiv1~s,

respectively. )

The cova.r:1.ence matrix is then

where

Ieqq = (l+7q2)(J._~2), tJ.a = _.(J.+q)2(J._q~, rfC' =' (J.!9.)22•
. 32(a+b)q . .. l6(a+b)q' 8{a+b)q

- -
The amount of information about a will be

1 q 2
Ie = - = 8(a+b)(-)
a JED' . . l+q

Again, no improvement is observed in estimating gene frequency. However,

it is possible with mating type frequencies to test the hypothesis that

a=o. and then to estimate the inbreeding coefficient. It is of interest

that the amount of information about a is proportional to the expected

:frequencY' of recessive ch1J.dren from dam:! nent x dom:!nant t~ matings in

randaDly' mating popuJ.ation.

Case 3. sex-linked J.ocus: Since 'We have 11ttle interest in the

inbreeding coefficient a at the sex-linked locus, no detailed discussion

will be given here, but results are listed in the Tab~e 3.1.
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Verification of foI"'DDua.e is immediate.

3.3.3. Factor union algebra

With increasing numbers of alleles, it becanes more cCD,Plicated

to obtrnn anaJ.y1;ic fom. of .max1muDl.likellhood scores and their variances.

For est1mation of' gene frequency onl.y, assuming randall mating, the

method of' gene counting (ceppeJ.ini et aJ.., 1955; Smith, 1957) JIJ&7 be

useful provided that individual phenotypic frequency data are available.

For our purpose to estimate simultaneously gene frequencies and the

inbreeding coef'f'icient, however, the counting method is not satisfactory•.

Before going to develop a new method that is the most economicaJ. with

electronic cOllq)uter, we w:Ul introduce a concept of factor union aJ.gebra

for grouping of genotypes whose phenotype is the same.

Let us take the ~A.2PfJblood group system. for exp:Lanation of factor

union aJ.gebra. There are four main alleles ~, ~I ! and Q. at this.

locus. and ~ is daainant to ~ and Q.; ~ to Q.; ! to Q.; but ! is co­

dominant with ~ and~. These alleles are ~tected by .reactions with

corresponding sera: ~ bY' a.nti-~ and -A; ~. by anti-A; ! by anti-B;

and Q. by no agglutination with either sera. If' we assign ;h for positive

reaction and 0 for negative (this number 'Will be called a factor), then

alleles at the J.ocus are characterized by an array of factors which is

named as gene vector:

~ = (1, 1, 0)

~ = (0, 1, 0)

B = (0; 0, 1)

o =(0, 0, 0),
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Where the order of factors is conventionaJ. and is anti-A:L" -A" and -B in

this case.

Since man is dipJ.oid so that two genes are responsible for phenotype

of individual" combination of 'gene vectors should be performed with

10gical union of factors or factor union algebra (Cotterman" 1965):

0+0=0

0+1=1

1+0=1

1 + 1 = 1.

The additionaJ. operator" "+"" is actuaJJ.y' union" one of the binary

operations in Bo01eanalgebra (Birkhotf and MacLane" 1965). The genotype'

vectors are then generated as

~~ = (1"1,, 0) + (1" 1" 0)

= (1+1" 1+1" 0+0)

= (1" 1" 0)

~~ = (1" 1" 0)"

•••••••••••••••••

·00 = (0" 0" 0).
. .

Six of ten genotype vectors have different phenotype vectors:

phenotype vector genotype

(1" 1" 0) ~~,,~~,,~o

(0" 1,,0) ¥2' ~O
(0" 0" 1) BB,BO

(1" 1" 1) ~B

(0, 1, 1) ~B
~-!-

(0" 0, 0) "00.
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It is therefore cJ.ear that the probabillty and score of genotypes can be

summed by phenotype through factor union algebra. Moor-Jankowski et aJ..

(1964) suggested'that ab1n.ary system for phenotypes might prove useful
- .
for coding. Introduction of factor union aJ.gebraallows not only coding

of phenotypes but aJ.so of genes and genotypes" and besides these" it

characterizes a genetic system through 1ogicaJ. unions of factors. For

instance" if a particular genotype shows only one phenotype (such as

genotype A:t0 beirig A:L-phenotype) which excludes genetic systems with in­

comp1ete Penetrance" then such a system has been called "regu1arpheno­

type system" (Cotterman" 1953). Whenever we app1y' the factor union
, '

algebra to genetic systems" it will be noted that the phenotypic vector

of hamozygotes is aJ.ways equal. to the corresponding gene vector. 1'h1.s
. .

imposes another restriction to the regu1ar phenotype system: 'that is"

none of homozygotes may show phenotype of the other homozygotes • ~

the factor union system is a speciaJ. case of the reguJ.ar phenotypesys­

tem. Since it has been suggested that any genetic system can be des­

cribed by Boo1ian aJ.gebra (Morton" 1965b) invo1V1ng three b1n.ary
. -

operations: union" intersection and com,pJ.eJilentation" which correspond

to dominance" recessiv1ty" and taking the caJIp1ementa:r;y aJ.le1es" respec­

tive1y', it is then no' 'WOnder that the factor union system is a subset of

the regu1ar system. However, this subset covers aJ.most aJ.l regu1ar

phenotype s:vstems arJ.sing in genetics.

To illustrate this, the haptoglobin system, one of serum protein

po1ym.orphisms, w:lll serve as a good exampJ.e. This haemoglobin-b1DQ:.lng

protein of serum. was shown to vary in d1f'f'erent inc1:i.viduSJ.s by starch ge1

e1ectrophoresis (Smithies, 1955)" and a simple genetic ~thesis
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1 2invo1v:I.ng two autosomaJ. alleles Rp and Rp has been· proposed to account

. for the inheritance of the three haptoglobin types. Assigning! for the

presence of band(s) at a specific position on starch and 0 for the ab-

sence, gene vectors are then,. r

1Rp = (1, 0)
· 2 ., ­
Rp = (0, 1).

Therefore genotype or phenotype vectors are:

genotype .phenotype binary'

Rp1/Rp1 . = Rp1-1 = (1, 0)

Rp1/Rp2 = Rp2-1 = e1" 1)

Rp2/Hp2 = Rp2-2 =(0" 1).
. . .

Further studies" subjecting purified haptoglobin to reductive

cleavage and starch gel e1ectrophoresis revealed isoal1eles IF and 18
1· . .. ..

from lIP (Connell et aJ.., 1962). Arranging factors in order from the
-

fastest moving band to the s1owest" gene vectors now becane:

1FlIP = (1, 0, 0)
· 18' '. .
Rp = (0" 1, 0)
· 2 .
Rp = (0" 0, 1)

and six genotype or phenotype vectors are

..... genotype phenotype binary

RpJ:F/RplF = IF = (1" 0" 0)
Rp'J:E/Rp18 = IF-18 = e1" 1" 0)
Hp'J:E/Rp2 = 2-lF = (1" 0" 1)

HplS/IfplS = 18 = (0, 1" 0)
Rp18/Rp2 = 2-18 = (0" 1" 1)

Hp2/ip2 = 2 = (0" 0" 1).
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In this case even if cae more factor for the HpJ. is added" the number of

phenotypes remains as above" indicating that binar:f expression of gene

is not unique though the order of factors is deteDlined.

Variants of lIp2 are aJ.so,- studied (GibJ.ett" J.959). One of them" the

alleJ.e Hp2m that is responsibJ.e for the phenotype Hp2-J.(Mod) shoWing

J.1ghter and fewer sJ.ow moving bands than the cODlllOn Hp2-J. phenotype is
2m ..

especia.1J.y of interest since the gene IIp can be identified only in

.J. J.F J.Sheterozygous condition with Hp or Hp or lIP • !J!he homozygote
2m} 2m . .

IIp I Hp cannot be distinguished from the other hanozY8C?tes which are

generated by severaJ. variants of Hp2. (for exampJ.e" Ifp2/lfp2). In our

teminoJ.ogy'" a genetic system with three alleJ.es IfpJ." Jip2 and Hp2m is a

reguJ.ar phenotypic but not factor' union system. By the way" this is the

only eXBllI,Pl.e of a regular system that is not a factor union system. so

far observed among hume.n polymorphisms• RegardJ.ess of the above J.1mita­

tion" t~ factor union eJ.gebra eJCtremel.y simplifies grouping operations

of genotypes by ~notype" particuJ.arly when an eJ.ectronic computer is

avaUabJ.e.

One more aspect of binary ex,pression of genes should be mentioned

before cJ.osing this section. It is possible to figure out the totaJ.

number of phenotypes in a factor union system. For instance" at the

~~PJJ blood group system" the factors against anti-~ and anti-..\ gener­

ate three phenotypes" wb:Ue the factor agaiJist anti-B produces two

phenotypes so that as a whole 2 x 3 = 6; siX phenotypes are eJCj?ected" as

it should be. The same logic does not aJ.ways hold for the other cases"

but a principle is" first" to find "independent factors If in vector which

may form sub-vectors and, second, to figure out all possible phenotypes
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frail each sub-vector and multipl.y them. otherw:Lse, it is necessary to

evaJ.uate aJ.l possible genotype ve~tors and to pick out d1f:f'erent types

of vectors as possible phenotype vectors wb1ch can be per£omed easily

bY' use of caa;puter.Exam;pJ.es of f~tor union systemswh1ch has been

used for studies of northeastem Brazilian population are giVen in Table

3.3.4. GeneraJ.1zed ma xiJD1,un l1kel1hood scoring method for estimating

gene frequencies. and the totaJ. inbreeding coef'f'icient

The method that wlll be discussed here is pr.tmar1J.y' intended to, ..

use an' electronic computer to estimate systematicaJ.ly gene frequencies
,

and the inbreeding coef'f'icient. However; the procedure' itself is gene'raJ.

so that there is no dif'f'1culty to folloW' it With desk caJ.culator and a

sheet of paper. At hand, two ld"nds of data are available; mating. type

frequencies and indiv:l.ch1al phenotype frequencies data. Since the second

kind of data can be prepared from the first kind, it is possible to

anaJ.yze same data byd:lf:ferent procedures in this case. Both methods

JDa.Y' be incorporated into a single program for caa;puter" but discussion in

the following Will be separated. The program for the estimation of gene

frequencies and the 1i1breeding coef'f'icient trom. individual frequency

data is caJ.led G-'l'!PE while MA'mE is for mating type frequency data.

Maximum likelihood methods are of course employed. It has aJ.rea.d¥ ob-

served that contribution fran genetic model to the maxiDDlm likelihood

method is in U-scorea. In other words, once we have obtained U-scores,

K-scores then folloW' and the iteration process for 1m;proving the tenta-

tive vaJ.ues goes automaticaJ.ly. Therefore the evaluat~on of U-scores is

the most pertinent problem in both programs.
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Program G-!I!!P.I!l: At the beginning" tentative values of gene frequencies

and the inbreeding 'coefficient must be found from 8.11Y' conventionaJ.

methods or previous studies. For the inbreeding coefficient" assumption

of randao. mating suggests to take a=o as a tentative vaJ.ue.

Let ncp be the observed number of indiv:LduaJ.s of phenotype cp" deter­

mined by a locus ! 1d.th alleles !a' ~" ..."~ in frequencies P1" P2"

•••" l1t. in a population with inbred ccmponent a. Then the expected fre­

quency of cp is

where Pg is frequency .Of a zygote. It ~hould be caJJ.ed to attention that

contribution to U-score fran. the phenotype cp is a ratio of a first deriva­

tive of phenotype frequency to phenotype frequency. Thus

U = z ..3L (ap(cp» = 2: n u
0: cp peep) _ aa .. . cp cp ap

and

(1 = 1, ••• , k)

For a particular genotype" we have

and

[!1!l.1 ="p (l-p )
aa.Jg i i

for homozygote

for heterozygote

for homozygote (i=l, ••• , k)

for heterozygote (iFj)



r~J = 2p + (1-2p )exLan..: i i
-"'J. g _.

=0

= 2pj(l-a)

= 2pi(l-ex)

=0

for homozygote (1=1)

for homozygote (1,&1)

for heterozygote (l~)

for heterozygote (l=j j

otherwise
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so thatP u =z [~J and P u = Z [ap(ep)]. Since we have geno-
<p ap g aa ,. g cP Pl<P g apl' g

type· vector generated from. gene ·vectors in binary' code, grouping of the

same· b1.narT vectors makes it possible to pe~orm. i operations. In other

words, genotypes whose vectors are same can be summed. to obtain both

probabilities and their scores. This process is easily performed in

caJlPUter. To illustrate the method, GIll factor of human gamma globulin'

serves as a good exam;ple. When we take five factors a, b, x, c, and d

(which w:Lll be discussed in the next chapter) , five genes are shown in
.

biDary' system. as:

gene, factors
a b x c d

GIIla = (1, 0, 0, 0, 0)

GIIlab
= (1, 1, 0, 0, 0)

amax
= (1, 0, 1, 0, 0)

amabc = (1, 1, 0, 1,. 0)

amb (l,2) - .

= (0, 1,0, 0, 1)

'irilose tentative frequencies are P1' P2' P3, P4 and P5, respectively, and

a=Q. (In the following the name of the 10cUf,J GIll is omitted.). The pos-
. ..

sible genot,pes, their vector which are generated by factor union algebra

and their derivative with respect to ex and one of f'ive derivatives with
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respect to gene freqt\eJlCY, say of~ P4' are as follows:

.genotype binary' frequencY' der!vat1ves with respect to:
ex: PgUag P4: PU .

g P4g

!fa 10000 2
Pl(l-Pl ) 0Pl

~r£E. 11100 2p~3 -2p~3 0

r:=!abc lliJ.o 2p~4 -2p3P4 2p3

~r:..(1,2) 11101 ~P5 -2p3P5 0

~!!!:. 10100 2
. P3(1-P3) 0P3

~! 10100 2IJ.P3 -~P3 0

~r£E. 11000 2
P2(1-P2) 0P2

~r:.
•.

11000 ~P2 -2pl P2· 0
.;

abc!abc 11010 2
P4(1-P4) 2p4P4

abc!r£E. 11010 2p~4 -2p~4 2p2

abc!! 11010 2IJ.P4 ~2plP4 2pl

abc!'t2.(1,2) 11011 2p4P5 -2p4P5 2p5
~'t2.(i,2) 11001 2p~5 -2p~5 0

!/'t2.(1,2) 11001 2IJ.P5
-2pl P

5
0

't2.(1;2)!~(1,2) . 01001
2

P
5

(1-P
5

) 0P5- - ~

Thus 'ten phenotypes wi'th frequencies and ·U-scores, bY' grouping 'the same

genotype vectors, are:



64.

Phenotype binary' frequency (p)

o

o

o

o

2p3

o

Pl(l-Pl )

-2p2P3

-2p3!\

-2p3P5

P3(1-P3)-~P3

P2(1-P2)-2pl P2

P4(1-P4)-2plP4-2p~4

-2p4P5,

-2plP5-2p2P5

llllO

11001

11010

11011

11000

10100

11101

10000

abd

abcd

ax

axbd

ab

abx

abcx

a

abc

2
1'J.
2.P~3

2.P3P4

2.P3P5
2

P3+2.P1P3
2
P2+~P2

2
P4+2plP4+2p~4

2p4P5

~P5+2p2P5
2

bd 01001 P5 P5(1-P5) 0

It should be tbat~(q» "= 1, ,(a:~9:~) = ~(q»uap::: 0 and ~(q»up q> = 2,
" _ .. "" " " . _ It:

and which J:DaY be used for check of..scores. U-scores are therefore caJ.cu-

lated by

..
.All the other U-score for gene frequencies are caJ.culated in the same

manner. Imposing the restriction that P5 ::: l-Pl -P2-P3-P4' the independ­

ent U-scores nth respect to gene frequency beccme

Then the variances are g1Yen by



Thus 1m;proved estimates of parameters 8.l"e obtained by

where aJ.l quantities are in matrix notation.·

Farther improvement may be performed from beginDing w1th vaJ.ue p*.

standard errors of estimates are obtained from the square root of cor­

responding diagonaJ. e1ements of K-l matrix. !I!le estimate of the depend­

ent parameter, in this case P5' is caJ.culated ~raD. the relation

P5 = l-Pl-P2-P3-P4 and its variance is the sum of allelementsw1th

respect to gene frequency in x:-l matrix. Detail of program G-TIPE and

its instruction for user is presented in Appendix 7.

Program MATXiE: General principle is the same as ?rogram G-TIPE.

Suppose that ncp is the observed number of couples of phenotypic

mating t;vpecp, determined by a locus G with aJ.leles A, B, C, D, ••• in

frequencies PA' PB, PC' PI>' ••• in a population w1th inbred camponent

C¥. Then the expected frequency of q> and its U-scores are

(G =A,B,C,D, ••• )
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where PM' ~ and aM are genotypic mating 1in>e frequency- and its first
aa ap

G
.

deriva1iive Wi1ih respect to ex andp
G

, respectively. These are given in

the !'able 2.5.5. for seven basic genotypic ma1iing types, where *is 1iaJten

as summa1iion over genotypic mating 1iypes whose phenotypic mating type is

same. It should be explained about the operation lin this case tha1i it

is som.ewba.t different fran the G-TXPE method which required only a

. single campa.r:Lson between two genotypic vectors for grouping. The ~Aif!D

blood group system is again taken as an e~e to illustrate the proce­

dure. Ten genotypes and their vectors are generated through the factor·

union aJ.gebra from four aJ.leles With their binary' vectors:

genotypes binary

!:L!:L llO

!:L~ llO

!:L! 111

!:L~ llO

~ 010

~ Oll

~~ 010

DB 001-
:eo 001-
00 000

Then genotypic ma1iing types, their binary, frequencies, and derivatives

are, for instance, as follows:
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mating type

A:L~ x~~

~~x~~

A:LA:L x ~B

••••••••••

••••••••••

•••••••••

ooxOO-

67.

bin.a.ry frequency' (p) denvative of P
PIla PuPl.

llO,llO
4

6~(J.-p~) 4p3
~J. • ••J.

4pip2
2 - 2

llO,llO ~P2(J.-2pl) J.2pJ.P2 • ••

4pip3
2 - - 2

llO,ll.l. J.2pl.P3(l.-~) 12pJ.P3 •••

• • • • • • • • • •• • • • ••••••••••••• • ••••• • ••

llO,llO
2

8pl.P2P4 16pJ.P2P48pJ.P2P4. • ••

••••••• ••••••• ••••••••••••• • • •• • • • ••
2

8pl.P;f4 J.6PJ.P5P4l.l.J.,llO 8p1P;f4 •••

••••••• ••••••• • •••••••••••• •••• • • • ••

000,000 4 6p~(J.-P4) 0P4 • ••

Where I:P=J., 2:Pua = 0 and J:Pu = 4 which may serve for checking of scores.
. Pi

Grouping is per£ormed if two mating type vectors. consist of the same

genotypic vectors; for exam;pJ.e, both mating types ~~ x ~~ and

~~ x ~O have binary' (llO,llO) so that they are grouped in probabiJ.ity
.. ..

and its denvative. However, this does not cover all. of cases. For

instance, mating ~~ x ~! -and ~! x !aQ. have bina.ry code (1l0,l.ll) and
. ..

(lll,llO), respectivel.y'. Yet 'We have to have grouped both mating types
.. ..

since 'We are not concemed with sex. This is siDI,ply carried out bY' a
'>

change of order in genotype vectors in one of mating type binary' codes.

Thus we obtain the probabUities and their denvatives for each of

twenty-one phenotypic mating type. CaJ.cul.a.tion of X-scores and the

iteration process are now straightforward. Instructions for program

MATYP.E and infomation about programm1ng J.o81c are discussed in Appendix

8.
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3.4. Fitting of migration function

In order to fit ~ function for describing human migration, 'We

shall use the probabilitY'-integral· transformation as a means of trans-..

form:li1g ~ known continuous distribution to the rectangular distribution

of interval (0, 1) (KendaJJ and Stuart, 1961). The manent method to
.. ... .

obta1n mean maritaJ. distance and its variance Will be avoided because of

high frequency of zero distance class th8.t is unescapable in practice

and of bias due to a few case With large distance. If we have assumed

a simple migration function m(x) with distance x, then the· variable

p(x) = Ji(t)dt
o

is distributed on (0, 1). Thus if we have a set of n observations Xi
- -

and transform them. to a new set Pi bY' the probabilitY'-integral trans-

formation and use a function of the Pi to test the departure of the Pi

from rectaDgtiJ.a.r:LtY', the distribution of the test statistics .wJ.ll be

distribution-free, not merely as~toticaJJ.y'but for ~ number of obser­

vation. In other words, if the distribution data and probabilities are

given bY':

class intervaJ. observed number probability

o - ~ nO Po

X:L-~ ~ PJ.

••••••• • •

x - co nt Ptt

then the J.ikeJ.1hood of observations beccmes



where .D:1i = n and

It is obvious therefore that not only'test of migration function can be

made,but the distribution parameters are also est1.mated bY' the maximum

likelihood scoring method and 'We maY' calcula.te frail them. the mean mar1taJ.

distance, its variance, the inbreeding coefficient by' mar:l.taJ. distance,

and so forth.

The functions we have eXSD1ned for human populations'are listed in

. the Table 3.3., including six single parameter p~bab1l1tY' functions, "two

with two parameters and one of three parameters. These functions have

met the conditions tba:t 'We have discussed in 2.8. Results of fitting

will be given in the next chapter. 1he estimates by' this .method are

somewhat·different from the o~nary ma.x:I.mum likelihood (MI.) estimates
- ..

which might be obtained directly from. migration function and without

probab1l1tY'-integraJ. transf01'lD8tion. In the la.tter method, 'We bave to

assume the observation of incHvidnaJ.distance with great accuraCY'. It

is practicaJ.1Y' impossible "to measure dis"tance "precisely'''. However, the
. .

multinan1al ML estimates which are ob1;ained fram probab1l1tY'-integraJ.

transformation might gLve us sufficient informations about migration

pattern without serious error due to a few biased observation. The

multinomial ML estimates are, however, dependent upon the number of class

intervaJ.s and the observed frequencies in each class. There are recan.­

2
mendations for X test (Kendall et aJ. • cited) for detem1na.tion of the
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number of cJ.a.sses and choice of cl.ass intervaJ.. For our pur:pose, we· have

chosen intervaJ.s exponentiaJ.1y', considering a leptokurtotic .migration

pattern.

~ visuaJ.ize the method, a log nol'DJ!U function will serve. The

:f'unction has a single parameter and its form is

2 2
m(x) = ...!..- e-a (htG)
.,. ,[1f X' . ,

where a ma7 be caJ.led an attraction parameter. By' the probabilit7

integral transformation,

X 2
p(x) =1...!..- e-(alnt) dt
.. 0,[", t .,. .

so that

[Note that P(O) = 0]

27,t
[where t(y) =. ;; J e-~ dt]

_ _ 'l/21f-"

whose derivative with respect a i~

Then the U-score and the variance are

The improved estimates is obtained fran.:



a.. =a+U/K
.L a aa

2and X -test for parameter is performed by

"1..
2 =U:/Kaa

With one degree of freedom.. Goodness of f1t m.a.y be made by ,,2 = z{O-e)
2

- e

With k-2 degree of freedom." 'Where k is the number of class intervaJ.s.

Thus the mean mar:LtaJ. distance is

co

X = J tm.(t)dt
o

1
co (alnt)2 4e2

= ..!. J e - dt = e
-{'If 0 . -

and its variance is obtained from.

Given an inbreeding function with distance f(x)" the inbreeding coeffi-

cient of population will be

The discrete approxLmation may be used when the integraJ. is complicated

and ~i is class 1ntervaJ.. Xi may be taken as an. average distance

weighted by the observed numbers in the intervaJ.. In case of exponen­

tiaJ. inbreeding and 10gnormaJ. migration function" we have



72.

~ process of convergence to obtain the finaJ. estimate is usually

ver:r sJ.ow, taken on the average about twenty iterations 'W1th an initiaJ.

vaJ.ue estima.ted by manent method. Consequently; the more parameters

are involved in migration function, the more iterations are expected,

or even fa.:Llure in convergence. Experience· With this method has told

us that the migration':f'unction examined would not carry' more than three

parameters in spite of a biologicaJ. i!;lterest in constructing :f'unctions

such as a linear canbination of three normaJ. distribution;; (cavalli­

Sforza et aJ.., 1965). The stu~ of northeastem Brazilian poPulation

'W111 answer to the above problems in the next chapter.

3.5• Summar:r

The maximum. likelihood scoring method is applied to estimate gene

frequencies and the inbreeding coefficient, to test an assumption of

randaD.mating, and to fit migration :f'unction. From individuaJ. data, it

is found that the estimation of inbreeding coefficient and the test of

randall.· mating are statistically impossible at the .ABJ blood group system

and two aJ.le1ic loci 'W1th complete dan1Da.nce. Introducing factor union

algebra which defines daDinance relations between aJ.leles in binar:r

code, a highly convenient method With using an electronic· caD:pUter is

devised. An. efficient method of fitting migration functions is aJ.so

discussed.
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4. Practical. surveys

4.~. Introdtlction and material.

4.1.1. GeneraJ. feature of population

The data. to be anaJ.yzed here have been collected pr.l.ma.rily

under the supervision of Dr. Newton E. Morton at the Hospedarjl.a ~

Imigrantesin sao PauJ.o, Brazil during the year beginning June 1962

(Morton, 1964), for determ:f n:l ng the effects of various genetic factors
-

on mortaJ.ity and morbidity in a rigorous environment. However, the stuctr
, '.

was also made for an investigation of isolation by distance. The 1068

migrant families from northeastem BrazU passed through the Hospedaria

de Imigrantes with government aid to the interior of the ,states of sa.o

PauJ.o and Pa.rana.. The sample was taken fraIL a government regist17

according to pre-established, cnteria of rural origiD,w:l.fe under 50

years of age, presence of both husband and wife and long cohabitation

time. The population was chara.cter1zed by' mixture of three major races:

11, 30 and 59 percent of Indian, 'Negro and Caucasian, respectively

(Krieger et al.., 1965). Each sampledfam:Lly submitted to an interview
, .

'and medical. examination, during which blood and saJ.1va specimens 'Were

taken. For the sake of stu~ng population structure, an interview was

aJ.so made with each parent sepa.re.tely for information about birthplaces,

mar!tal. distances and consanguinity' in both'pa.rentaland grandparentaJ.

generations. DiSCrePancies were checked by confronting the two parents

and discussing the point a't issue. ibe ma.r:l.taJ. distances were aJ.so

checked on the map (DGE, 1958) and coded in km. Because of low level of

literacy (Krieger et al~, ~965) and of usage of a J.arge unit of scaJ.e,

~egua (~ legua. = 6 lan.), on distance, the estimated distances were only'



an approximation. The popuJ.ation density of birthplaces were crUcuJ.ated

fromgowrnment official report (IBGE, 1961) by di'Viding ruraJ. population

from where individual 'WaS drawn by area of the municipio, or county.

While the husband and wife were being interviewed, the children were

assigned numbers and proceeded through the .data collection center, where

a nurse determined pheny~thiocarbam1desensibility (Pre) and anthropo-

metrics, and each subject contributed about 12 cc of b~ood and a saliva

sample. Duplicate ~aboratories using· different antisera typed ~' A, B,

aP, 0, D, E, M, H, S, s, and Ie b~ood groups. F:i and c were tested in

adupl1catev.Lth the same antisera. Le and ABH secretion and the Le

ablood group were tested only. in one laboratory', and Di, Js , f, V, k, e,

I».a and Leb b~ood f31:oups were tested in part of the sampl.e. Red cells

were collected in ED'l!A, stored at 40 0, and typed blind the next day in

two dup~icate laboratories. Discrepancies between laboratories, paren­

tal exc~usions, and sero~og1cal curiosities were retested using the same

and different antisera. Additiona! tests were performed on prob~em

fam:Llles by Dr. R. E. Rosenfield in New York using glycerollzed cells

shipped in dry' ice from Brazi~. A glycerol1zed red cell sam.p1e

(Crawford et al., ~954) 'WaS sent to R. E. Rosenfield for supplementary'

tests, and another to W. Nance and o. Bmithies for tests of serum. pro-

teins such as haptoglobin and transferrin, and to A. Steinberg for Gm.

and Inv. All· this material 'Was kept in dry' ice until receipt in the

United States where it was stored in different laboratories at tempera­

tures ranging from _200 0 to -700 0.

4.1.2. Description of genetic systems employed

Bioassay of the inbreeding coefficient uses genetic systems
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wiuchare little affected by selection and technical errors" and are

polymorphic w:l.th complete PeDetrance. Sixteen poJ.ymorphic systems were

employed for the bioassay: AmI secretion" Lew:Ls"Lutheran" Pro" P"

Duffy'" Inv" Diego" Haptogiobin" Hemoglobin" Transferrin" Kell" A:OO" MNSs"

Gm." and mt. Formal genetics of these systems is discussed in brief"

according to the :Brazilian survey.

Secretor system.: Inhibition test of salJ.;va used anti-A" anti-B of human

sera and anti-H' of saline extracts of the see~ of~ europaeus.. A2"

B" and 0 red cells were used as indicators to provide classification of

individuals into secretor .and non-secretor. The ability' to secrete the

A" B" or H antigen in the saliva is inherited as a Mendelian dominant

character. Two alleles" ~ and !!I.are mown at the locus. The system.

is also mown as the first example in man of autosanal linkage and auto­

sanal crossing-over with the Lutheran blood group system (the recanbina­

tion vaJ.ue is estimated as about fifteen percent).

'. . a
Lew:Lsslstem.: According to inhibition test of saliva with anti-Le "

individual phenotype was determined as either positive or negative. Thus,

this system. is treated as two alle+es, !!. and~ with ccmplete. daninance

in bioassay. No attempt w:Lll be made to exp].ain a current theory' of

Grubb and of ceppell1nj (Grubb, 1951; Ceppellini" 1955) on association
-.

between the secretor system. and the Lewis system, but the theory' has been

used for confirmation of phenotype of LeWis and secretor systems in

saliva from. that on red cells.

LUtheran system: At least two alleles, JiJ.a and JiJ.b J have been described

at this locus. We had tested, however, about two hundred couples 'WitJ1
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anti-Lua aJ.one in saJ.ine suspension of red cells. Therefore, the system.

is considered as a locus with two alleles, J».a and~ YJ:th complete

dan1nance.

Phenylthiocarbamide sensitivity ~: There are two alleJ.es, T and ~

with complete dau:lnance of the abilitY to taste P.OO. A. continuous anti­

mode distribution of sensory threshold by different dilutions of PTe

(Azevedo et aJ.., 1965) makes it d:Lfficult to classify doubtful cases
-
into either positive or not. In. 'the Brazilian study, subjects were

classified as non-tasters if they could not discriminate the solution 5,

which con'taiDs 8J..25 JUg PTe/:Litter. This criterion was derived from

pedigree stud:ies 'of doubtful cases involved. Cbildren age eight years

or less have been excluded because of IIIUltiple sorting errors and of .

being significantly higher phenotypic frequenCY' of non-taster than among

older peoples.

P system: Three alleJ.es, ~, ~ and.b in this s~tem. have a s1m:Uar'

relation as ~, !e. and 21. in 'the ABO locus. Since. we have used only

anti-P1 to detect the cold agglutinogen on red cells, 'the system becaaes

'two alleles, ~l and ~"'iI With complete dan:fnance.

a b
Duff.'l system.: ~e alleles, !'l:.:1 ~ and !iI With ABO type dominance

(!L:. corresponds to !" ~ to B and !Z. to Q) have been described With
- s b -
anti-Fi and anti-liY. The high frequency of Fy(s-b-) individuals in

Negro but rare in caucasian have offered an anthropologicaJ. interest and

have led to stu~ of dosage effect of Fys antigen on red cells (Race et
. .

a -
aJ.., 1953). Again only anti-Fi was available in the Brazilian study so
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that the system. was considered as two aJ.leles" ri::.. and~ + !i:" 'with

compJ.ete &ainance.

Inv system.: Three different genetic factors" Inv(a)" Inv(b) and Inv(l)

have been described in f3~ globulins (198 1-globuitns) ,,' f32A~globulinS

and Bence-Jones proteins by inhibition tests. Dr. A. G. Steinberg ~d

Inv(a) and Inv(b) factors on Brazilian materiaJ.~ However" only'the

results of Inv(a) factor was used in bioassay' anaJ.ysis because of unreli­

able reactions with Inv(b) reagents (Steinberg" 1964). Thus the locus
, a b 1 .

consists of two alleles" !!!!... and !!!!(=~+ Inv ) , with complete

dan1nance.

Diego system: The Dia antigen on red cells is essentiaJ.ly a Mongolian

character so that we bad decided to investigate Brazilian materieJ.. About

two hundred couples and eighty-seven children whose one of parents was

positive were submitted in typing. The system is considered as two
aalleles" ' p!.. and !!J with comp].ete dominance.

Haptoglobin system.: SaDe of aspects on the locus have been discussed in

3.3.3. This" one of the serum protein poJ.3rmorphisms" is treated as three

alleles" !i:, Hpl.S and~ without daninance (codaDinance). Inc1dentaJ.­

ly'" a variant of Hpl" Carlsberg" and ahaptoglobulinemia subjects are

ignored from. st~.

Hemoglobin system: Hemoglobin" the oX¥8en carrying protein molecule"

consists of four Polypeptide chains and a heme group attached to each

chain. The polypeptide chains are usuaJ.ly classified into two pairs of

ideniiicaJ. chains"caJ.led a-chain and f3-chain" so that its structure can
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be written ~~2. WhUe synthesis of each chain is controlled by genes

such as thaJ.assaemia genes and regulators1 the structure of amino acid

sequence in each chain is aJ.so geneticaJ.ly' controlled. Besides the

normaJ. hemoglobin" lib-A, the genetic variants at the siXth position fraIL

the N-term:Jnal in ~-chain, lIb-S (glutamine -+ valine) and lIb-C (glutamine

-+ 1ysin) are reJ.atively camaon (cllnicaJ.ly' known as sickle cell anemia

major and minor, according to whether aJ.l ~ chains are affected or only'

one haJ.f) and" therefore1 they are used in bioassay. The other variants

observed in the field 'WOrk such asHb-F and lIb-~ were not used for bio­

assay because of rare frequencies. The locus is thus considered as

three aJ.leles" lIbA, HbS and Hbe, Without dominance. All parents are typed,

m,.AJ . A
whereas o~ chUdren 'Whose both parents are not mG mL were ~ubm1tted

to test.

Transferrin system: One of ~-globullns is caJ.led transferrin or

siderophilin 'Which transports pla.sma iron to bone marrow and tissue

storage areas. Starch gel electrophoresis. shows three major variants B,

C and D, in order of faster moving bands" which are genetically controlled

and are codaninant to each other. It has been suggested that their di:f'-

ferent mobiJ.1ty rates may be due to aJ.tematives in the number of siaJ.ic

acid residues.

a bKell system.: The recent discovery' that the Sutter antigens Js and Js

on red cells are localized in the Kell system (Stroup et aJ.." 1964;

Morton et aJ.. , 1965) gives three alleles" ~ !. and~ at this locus.

The other alleles, kO and JlJ were not distinguished ~rom k in Brazillan

ma;teriaJ., since we used anti-K2 (Cellano) only on Kell-positive cells and
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!£, !. and .~ without- daDinalJ.ce between ! aDd !. or ~ but with cau;pJ.ete

daninance kS to k. In Brazil, ail individuaJ.s were tested with anti-Kl- -
(Kell), but only theJ.ast fifth of the sample, beginning at family 855,

Withanti-K6, (Sutter) •

ABO system.: Using the antisera, anti-A:!.' anti-A and anti-B, all of llhich

are camnoniy found in sera of human beings who do not have the corres­

ponding antigp1, six phenotypes can be distinguished. Based on

:Bernstein's multiple allele ~thesis, ThomSen et al. (1930) put for-
• ~. A •

ward the four allele l ~, ~, ! and Q, theory" of inheritance. The
, ,

daninance relation between alleles are so-called "ABO type dan1nance"

which was explained in 3.3.3.

MNSsU system.: The segregating factor pairs in this ~OCUSI the MN-seri~s

"and the Ss-series, are one of the most interesting blood group systems.

The discovery of the 1m-series was dependent upon making anti-M, injected

human red cells, into rabbits (heteroimmnn1zation). This series alone
. - ,

consists of two major alleles, M and !I without dominance if ~ti-M 'and

anti-N are used. In the Ss-series, however, the factors S and s are not

always complementary, especially in Negro populations. It bas been in­

terpreted as the .AB> type dau:!nsnce between three alleles, ~ !. and ~

uusing anti-S and anti-so The s gene was proposed to explain a pheno-

type 8(-)S(-). The discovery of a third antibody, anti-U, has rendered

scme cau;p1.1ca.tions. It bas been observed so far that all 8(+) and s(+)

red cells are U(+) (Wiener et al., ~953), but not all s(-)s(-) PhenotYPes
.

are U(-) (Francis et 'al., cited by Race and Sanger, 1962, p. 91).
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Ignoring the reaction with anti-U on red ceUs1 Morton et aJ.. (1965) have

sue;gested a notation! for S(- )s{-) reactions1 instead ~f ~ or !!..

canbination of two series results in six alleles ~ !!!I ~ ~ ~

and N* at the locus.-
am system: The Gm factors are determined by an intricate series of

alleles. Normal human sera. mayor mq not inhibit agglutinating activi­

ties of rheumatoid sera. (agglutinator) which agglutinate red cells coated

with incaD;pJ.ete anti-D. The ability of inhibition is geneticaJ.1y con-

trolled1 and canbination of anti-D andaggJ.utinator determines the gamma

globulin factors such as am(a), Gm(b)1 Gm(c), Gm(x) and am(b2). The

series of antigens on the 1S-glObul1D (72':'globulin) molecules' of man oc­

curs with different frequencies in d:Lff'erent popuJ.ations. For instance1

Gm(c) occurs only in Negroes who in turn do not have Gm(x); and only' the.

Caucasoids show variation in the frequencies of am(a). Among results in

BraZilian materiaJ., am(a)1 Gm(bl)1 Gm(C)1 am(x) and Gm{b2) factors are
.. ..-

employed for our purpose. Since the agglutinator "Davis" It'aS used to

type am(b2) (Steinberg et aJ.. 1 1965)1 we simply designated this factor

by "d" 1nste8.a. of b2 in binary code (see 3.3.3.). Thus, the system con­

sists .of five alleles ama amabel) "Gmabc amax and amb (112) which'=.J_' , __ 1

generate ten phenotypes.

1U:l system: During the BraZilian Stud¥1 anti-D1 anti-C1 anti-c and anti-E

were used in the routine work and E+ samples were typed w:f.th anti-e.

Only 354 fam1l1es were tested With the sera1 anti-f and anti-V, in addi-

tion to the above antisera. In this locus, eight alleles1 cde, caE,

Ode, OdE, cDe, cDE, CDe, and~ are currentJ.yaccepted. When the
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reJ.ative frequencies of aJ.le1es such as CDE, ~ and~ are rarel we

have ignored them. The last 354 fam11ies were used 1io anaJ.yze the 11
. s s . s

aJJ.e1e sY'S'tem.: cde, cde , cae, Ode , caE, caE, cDe, cDe , ODe, ~
... . . s

and CDE, 'Where anti-f and anti-V reac1i with gene c~ex s:!. and s:!...1

respec1iively. It has assl.1J:Ued tha1i the alle1e I caes, in Begroes reacts

with an1ii-c (RosenfieJ.dl 1964).
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4.2. PopuJ.ation gene frequencies

PopuJ.ation gene frequencies in northeastern Brazil have been

estimated by G-TIPE under the assumption of panmixia. It is confirmed
, ,

that MATIPE gives exactly' the same resuJ.ts in sixteen pol:ymorphic sY'S-

tems, wbich was theoreticaJ.ly' predicted for the speciaJ. case of a twO

allelic locus (3.3.2.). 'rable 4.2.1 shows gene frequencies of the. totaJ.
- -

popuJ.a.tion in the parental generation. This table· aJ.so includes gene

frequencies where coup1es are divided by their mar!tal distance. On the

whole, dif'f'erentiation in gene frequencies by mar.LtaJ. distance is hardJ.Y'

observed in this population. When the couples with close consanguinity

(F ~ 1/32) are removed from. the total popul8.tion, the gene frequencies

are 'estinBted ('rable 4.2.2.) to be practicaJ.ly' the same as for tiletotaJ.

popuJ.ation.

For the bioassay of the inbreeding coef'f'icient, the caJ.culation of

gene frequencies was aJ.so, made for the subpopulations defined by dis­

tance times the· square root of density, in order to simuJ.ate a. popula­

tion of uniform density ('rable 4.2.3. and 4.2.4.). Bioassay was aJ.so
- -

made for unknown consanguinity (Tab1.e 4.2.5.) and for children (Table

4.2.5.) to see breakdown of iso1.ates by generation.

4.3. ~ inbreeding coef'f'icient

4.3.1.. Pedigree·,stu~

In order to ascertain the inbreeding coef'f'icient, the couples

are divided by the inbreeding coef'f'icient (F) of their child, where F
, ., c

can be expressed in term of power of 1/2: {1./2}. Since it has been

necessary' to have a code of consanguinity for data collection, the



negative of the ~ogaritbm of inbreeding coefficient to the base 2,

c = -~ogr!' has been takeu as the code (Moroni, ~962) which may co~r an

intervaJ.: [c-O.5, c+O.5) where 1 and 1 mean "in~uding the border vaJ.ue"
. .'

and ''not· in~uding the border vaJ.ue", respectiveJ.y. This can then be
. .

transformed into F (~b~e 4.3.1.). This intervaJ. ~assificationof
..

consanguineous marriages is useful. when a ~arge bocq of data is available.

Table 4.3.2. summarizes distributions of coup].es by the inbreeding

c~fficient and the mar:l.tal distance in northeastern Brazil, and the

mean :i,nbreed1ng 'coefficient and its standard error were calculated by

fol'mU1ae given in 3.2. ~ totaJ. inbreeding coefficient is .0059:1: .0006

in children and .0036 :I: .0004 in parents. The lower level of the
. .

inbreeding coefficient in parents than in children might be ·due to in-

caa:p].ete ascertainment of consanguinity in the parental generation.

These values may be com:,parabie with a=.0050 which is obtained frail

Catholic marriages in parental rural populations in northeastern Brazil

(Freire-Maia, 1957), which is aJ.so heterogeneous in time. Thus it seems
-

reasonable that our migrant families as representative of northeastern

Brazil With respect to the ascertained inbreeding coefficient.

It is also seen in Table 4.3.2. that c~ose consanguinity up to the

second cousin marriage accounts for •oo5~/.0059 = .86 or 86 percent of

the total inbreeding coefficient ascertained by pedigree ana.l.y'sis.

4.3.2. The total inbreeding coefficient by bioassay

Two methods, G-TIPE with individuaJ. phenotype frequencies and

MATIPE with mating type frequencies, are applied to the total and the

remote populations • Since we did not find any' significant difference in

gene frequencies between total and remote populations (Table 4.2.~. and
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4.2.2.), the frequencies in the totaJ. popuJ.ation will be used.

In the G-TYPE method, only eight systems could be subm:Ltted to

an~is since a s1ngular:Ltyat two aJ.lellc locus with complete daDi­

Dance :was well-established in advance. The est1mated inbreeding coeffi­

cient in the totaJ. and in the remote population are .0110 :I: .0086 and

.0132 ± .0089, respective1y. ~ difference between them is .0038,

which may be interpreted as due to close consanguinity in agreement w:Lth

the 'V8J.ue .0036 obtained as the ,ascertained coefficient of inbreeding of

parents 'in the pedigree study. The heterogeneity of q among eight sys­

tems is higbJ.y significant in both populations (~ = 0(103». 'However,
- " ..

we have met a peculiar property' of the information about ex at the AB:>

locus (Table 4.3.4.), which has in turn been explained mathematicaJ.1Y' as
.' .

mentioned in 3.3. ~ other three systems which show a significant

deviation from the hypothesis that Ct=O aJ.so g1ve little information.

Taking away- the four systems with very smaJJ. amounts ot, information

(the ABO, hemoglobin, transferrin and Kell loci), the inbreeding coeffi­

~ients become .02116 ± .0086 in the totaJ. population ancl .0208 ± .0089 in

the remote population. ~ difference is .0038, iIi agreement with the

previous result. Heterogeneity of ex among the four rema'mng sY'Stems is

insigni1"icant (~ = 1.43 for the total and x~ = 6.01 for the remote

populations) •
.

Although the insensitiveness of G-TIPE method has been discussed,

multiple aJ.1ellc systems Without dominance, or even With little domi-

Dance, seem. to g1ve good information about a. The number ot iteration

for ex With aJ.1 eight sY'Stem.s was siX in our materiaJ..
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!rhe MATIPE method gives the coeff'icient of consa.nguinity of parents

or the inbreeding coeff'icient of children. All sixteen polymorphic sys­

tems now contribute to information about a. !rhe estimated inbreeding

coef:f'icients are .0133 :I: .0035 in the totaJ. and .0082 :I: .0034 in the

remote population1 the diff'erence of .0051 corresponding to the close

inbreediJig coef:f'icient of children in pedigree anaJ.ysis. !rhe hetero-
" 2 2

geneity test on ex among systems is again highly significant (":1.5=O{10 ».
When we remove the systems with ver:r smaJ.l amounts of information about

a, secretor, Lutheran, Diego and Kell, the inbreeding coeff'icients be-

cane .0160 :I: .0035 in the totaJ. and .0106 :I: .0035 in the remote popula-
. 2

tions and the heterogeneity tests becane nonsignificant ("J.l =1l.25 and
2 .

"J.l = 1l.12, respectively). Again, the diff'erence, .0054, agrees well

with the estimate from pedigree stud;y".

A word should be said about the four systems which have been removed

from the estimation of a in the above procedure. Three systems1

Lutheran, Diego and Kell, have an aJ.lele whose frequency is nearly the

same order as the estimated inbreeding coeff'icient, so there is a pos-

sible violation of the restriction that the smallest gene frequency be

greater than the inbreeding coeff'icient. However, the amount of informa-

tion provided by these system.sis too small to justify this speculation.

!rhe superior!ty of the M.A.TIPE method, comparing with G-TIPE, is

observed at the hemoglobin, Transferrin and Am loci in the greatly in­

creased amount of information about a.

!rhe inbreeding ~o~ff'icient of children may aJ.so be estimated fran.

individuaJ. frequencies of children by the G-TYPE method (Table 4.3.6.),

'Which gives .0121 for the total and .0013 for the remote populations.
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A1.though no standard error may be assigned because children al"'e not

independent samples, the estimates agree well With .0133 ± .0033 and

.0082 ± .0034 respectively which were estimated by MATIPE. This means

there is no evidence of heterozygote advantage for these polymorphisms.

The inbreeding coefficient for consanguineous marriages of unknown

degree is estimated from mating type frequencies as .0086 ± .0152

(Table 4.3.7.) which corresponds to the degree between second cousin and

s~ccmd cousin -once removed. In Table 4.3.8., the total inbreeding co~

efficients estimated from. the available systems are summarized for the

sake of ccmparison. The inbreeding coefficient decreases by generation,

indicating that the breakdown of isolates is occurring in northeastern

Brazil. This isaJ.so supported by the stu(br of migration functions

since mean maritaJ. distance increases by generation (see 4.4.).
- -

This stu(br demonstrates that theMATXPE method gives more efficient

and stable estimate about ex than G-TYPE. And convergence W1th sixteen

systems required only six iterations starting from. a=<>. In the follow­

ing, therefore, we w:Lll employ MATXPE for further bioassay analysis of

population structure.

4.3.3. Components of the inbreeding coefficient

In northeastern Brazil, the total inbreeding coefficient con­

sists of contributions from: (1) close consa.nguinity (F ~ 1/32) ascer­

tained from pedigree analysis, - (2) remote consa.nguin1tY (F < 1/32)
ascertained fran. pedigree analysis, (3) unascertained consanguinity With­

in a racial group, and (4) racial endoSemY-. It has alre~ been shown

in the pedigree stu(br that the first two components in parents are .0051
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and .0009 respectiveJ.y. . There would be a higher value for the ascertained

inbreeding coefficient due to remote consanguinity if pedigrees of con­

sanguineous marriages were intensiveJ.y traced. Since the bioassay

a.naJ.ysis indicates .0133 in the total inbreeding coefficient, the ascer­

tained inbreeding coefficient from. pedigree analYsis is on1y' forty-four

percent of it. This poiD.ts to an error in assessment of inbreeding

effects on the basis of the inbreeding coefficient estimateci from. pedi-

gree study, for the el1mination rate for rare recessive genes is greater

than had been estimated previously.

Since the population consists of three main racial groups, Negro,

Ind1an, and Caucasian, ~cial endo~ contributes to the total inbreed1ng

coefficient. Based on correlations for three, racial groups, Krieger et
..

ale (1965) estimated .the mean endo~ coefficient of the same popula-
- .

tion to be .030 and the equiValent inbreeding coefficient for fixed loci

in the ancestral populations 'WB.8 estimated to be .095 ± .011 (Chung et

a.l., 1965), so that the inbreeding coefficient due to racial endoga.Dly'
-

is .030 x .095 = .0029. This is twenty-two percent of the total inbreed-

1ng coefficient. The regression of the. estimated inbreeding coefficient

from the ancestral population on p(l-p) 'Within loci is .68 ±' .19, which

is highly significant (Fl ,12 = 12.54). There is no significant regres-
,- ..

sion on gene frequency p. Thus as the mean gene frequency approaches

.5 from. either direction, the divergence among populations increases.

This can only mean that "the polymorphisms are more subject "to local

selection than are rare genes which may be almost uniformi.y deleterious,

and therefore the contribution of racial endogamy must be less for mono­

morphisms. And the difference between the endogamy coefficients in
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ancestraJ. and in present populations, .095 - .003 • .092, indicates how

much breakdown of raciaJ. isolates have occurred in the present popula­

tion after 1:iheir migration.

The J.ast contribution due to unascerta1ned consanguinity is as

important as the ascertained inbreed1ngcoefficient. Table 4.3.9 sum.-

marizes the above discussion.

4.3.4. BeJ.ationship bet'Ween the inbreeding coefficient and maritaJ.

. distAnce

When coupJ.es were grouped bY' mari1iaJ. distance, the inbreeding

coefficient might be given as a function of distance and dimension of

migration. For a large c1:l.staDce, if migrants move in one cUmension, the

. . ~x
function is approx:lmately reduced to a simple exponential form.: f=ae ,

where f is the inbreeding coefficient at marltal distance x" ! is the

inbreed1ng coefficient at x=O" and b is a constant measuring decrease of

inbreeding With distance. If two dimensionaJ. migration on a plane was

-bxLl:assumed" the relation would be f:aae f"I x for a large distance • A test

of this theory wasperfo:rm.ed with sixteen polymorphisms in northeastem

BraZil" estimating the· inbreeding coefficient for three distance groups:

0-3 km.." 3-27 km.. and 27-00 km." bY' pedigree study and by bioassaY' With

mating type frequencies (MATIPE).

Two bioassay methods were employed in order to see effects of varia­

tions in gene frequencies with distance on the inbreeding coefficient.

In bioassaY' A" gene frequencies are taken from. the estimates of the total

population (TabJ.e 4.2.1.)" hence no differentiation in gene frequencies

with distance is assumed. On the other hand" the estimated gene frequen­

cies for each distance group are used in bioassay B. In Table 4.3.J.0,

the close inbreed1ng coefficients for bioassay' A and B are taken f'rcm
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the difference between the total and remote inbreed1ng coefficient

estimated by the corresponding methods. Since the differences in the

two methods are 'Within sampl1ng error, the estimates from bioass~ A

shall be taken in the follow:Lng discussions. The smaJJ.er inbreeding

coefficients in 0-3 km. group than those in 3-27 km.. population by bio­

assay m1ght suggest possible avoidance of close consanguineous mat:Lngs

in the shorter marital distance which vouJ.d lead to a negative correla­

tion between un!ting gametes, or they might s1m;ply be due to sam;pJ.1ng

error. A possible selection is ruJ.ed oUt in this case since no differ­

entiation in gene frequencies w:l.th distance bas been observed. No such

reduction of inbreeding for smaJ.l distances was seen in pedigree stu~.

When one-a:fmensionaJ. theory was applied to the data by the least

squaremethad, tak:fng a distance weighted by the number of coupJ.es as a

representative quantity in each population and weighting by the informa­

tion on the inbreeding coefficient, the inbreeding coefficient atx=O

by bioassay A were .0212 ± .0058, .0147:!: .0062 and .0064 ± .0056 in

total, remote and close population re$pectively (note that .0212 ~

.0147 + .0(64) and an exponential. relation fits in total and close popu­

lations (Figure 4.3.1 - 3.). Deviation from. the expon~tial. in the

remote population is due to the inbreeding coefficient of shorter marl­

taJ. distance where negative values of F are observed. This yOlll.d mean

that the ascertainment of consanguineous marriages was nearly com:pJ.ete

when the ms.r:l.taJ. distance was near zero. On the other hand, the pedigree

stu~ showed the opposite result: only the remote population fits well

w:l.th the exponential. hypothesis and the estimated inbreeding coefficient

at x=O were .0085 ± .oon, .0018 ± .0002 and .0064 ± .0010 in total,



90·

remote and close population respectively (again l note that .0085 ,; .0018

+ .00(4).
-

These conclusions are not su~stantiaJ.lyaltered where marital dis-
:$

tance is multiplied by the square root of" population density so as to

simulate a popula.tion of uniform density. The units of subdivision of

population are 0-291 30-1791 and 180-00 which "give about three hundred

couples in the first two subgroups. 'lhe goodness of fit in bioassay to

an ex,ponential function is improved by this treatmentI and there is no

significant deviation fran. the hypothesis in total l close and remote

consanguinity (Table 4.3.11.).The inbreeding coefficients at zero dis-
" -

tance are substantiaJ.ly the same in the total population by bioassay and

pedigree st~ and in" the remote and close grQl1ps in pedigree stu~I

suggesting little effects of a heterogeneity "in population density on

the inbreeding coefficient of couples whose marital distance is nearly

zero • Different estimates in the remote population by bioassay might

come fran different grouping intervals in the distance and density-

corrected analyses.

Based· on the. estimates of a and b I tentative values of average sys­

tematic pressurel UI and average migration pressure I MI on siXteen poly-

morphisms are made by transformations (S is population density):

J.a=
1+4M&-f2U{
-f2rJ

b =
M

Solv:Lng for M and UI we obtain
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K =; .J!~~
E.-(l-a)

U = SaS'

The variances of M and U are aJ.so calculated by

{
2 2

2 _ --~- GCJa _ 2aab CJb]
" - U- 2- 2 - +~.u (l-a) ba(l-a) b

The estimated mean population density 'WaS 20 persons -per square kilometer

in the rural population of northeastern Brazil. Table 4.3.~2. gives

results from six methods where an exponential. inbreeding reJ.ation With

distance 'Was assumed.- Since M is a standard deviation of migration dis­

tance, it might be understood as a mean maritaJ. distance when an exponen.;"

tial migration 'Was assumed. The most meen:! ngful estimates among them

are by bioassay A on the totaJ. population. The estimates of M,12.31

and ~05.57, are comparable With 80 and 244 which are obtained from study

of migration function (Table 4.5.2. and 4.5,,4.). Heterogeneity of den-
- .

sity among populations seems to reduce the genetic effect of migration.

The systematic pressures estimated are due to mutation and weak

selection as a ~ear pressure on gene frequencies. The two estimates

of U, .OOll ± ooסס. and .0068 ± .0055, should be cauparable since muta­

tion rate is independ/:mt of population density.



The, estimate of M is highly dependent upon the parameters a and b in

the inbreeding function .. while U depends mostl7 on a. Inaccuracy of

est1mati~n is indicated by' the large standard errors, but strong selec­

tive forces on these polymorphisms seem. to be unlikely.

The discussion should be extended to two dimensionaJ. theory. Since

the approximate inbreeding function itself involves a difficulty in the

neighborhood of zero distance, the convergence process is poor. In the

distance study, only three cases; pedigree st~ in remote population and

bioassay. A and B in close populations gave convergent estimates of a and
,

b, whereas the st~ of distance multiplied by square root of population

density resulted in convergency of threea.naJ.yses for remote population

and of bioassay A for close population. From the stu~ with two d1m.en':'

sional mode1, the following are suggested: (1) The one-dimensional

migration may hold for remote consanguineous'mS.rr:tages (F < 1/32h and
.. ..

(2) significant d:I.1":terences in b-vaJ.ues between both dimension models

DJaY' be due to incorrect use of approx:Lmations, that is, there must be

more exact forms which take account of avoidance of too close inbreeding,

such as self1ng and ·brother-sister mating, especiaJJ.y in the two d1men-

sional model. At 811Y rate, we may take the one dimensional model· as a

first approximation 'to describe the relation between the inbreeding co­

efficient and distance, aJ.tho~ a stu~ of migration function has sug­

gested that the" migration in"northeastem Brazil DJaY' have dimension 1.7

to 1.9, or' nearly tWo dimensional migration (Table 4.5.1-4.) •
•

As conclusions, an ex;ponential relation between the inbreeding co-

efficient and the marital distance may hold in the total and remote in­

breeding coefficients by' bioassay and in the remote inbreeding
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coefficient by pedigree stwtr. Devia.tion from the exponen~iaJ. relation

for the inbreeding ~oefficients in pedigree stu~ of the t~taJ. and close

populations may indicate preferentiaJ. consanguineousmarr1ages at large

distances.

4.3.5. The inbreeding coefficient for alleles

So far the inbreeding coefficient has been discussed as if' only

one parameter exists per locus. As discussed in chapter 2" the concept

of assign1 ng an inbreeding coefficient to each allele might be helpful

in understanding population structure,,' since Wahlund' s principle could

be applied to the gene in question and heterogeneity in the inbreeding

coefficient among aJ.leles might indicate a consequence of random. genetic

drift" mutation or selection on a. Particular gene.

A possible statistical method to estimate the inbreeding coeffici­

ent for alleles is to reduce a genetic system with multiple aJ.leles to

the case of two aJ.leJ.es" the one in question and the others P001ed" and

then to a.pply the MA~ method. The results of .analysis :tor eight sys­

tems are shown in Table 4.3.13. The inbreeding coefficients for a locus

are calcuJ.a.ted by ex = r.a:i.Pi " where Pi and (Xi are the frequency of the i th

allele (Table 4.2.1.) and its inbreeding coefficient" respectively. In

pa.rent~sesi the vaJ.Ues which had been caJ.culated directly (see Table
-

4.3.5.) are given for canparison. Both quantities are generaJ.ly the
-

same order" except in the Keli" MNSsU and RH systems. DiSCrePancies in

these systems might arise from. the method i tself ~ because no such coup1es

s s
as k :: k " K :: K in the Kell system" N* :: N* and M* :: M* in the MNSs

system" and incrosses with respect to phenotyPes r'; r' t ~and 'J!Y" are ob-

served" giving a negative inbreeding coefficient for these aJJ.eles or
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even .a singular matrix. The singular1ty in the Rh locus required that

D( -) alleles be pooled as one allele. Apparently, the lack of some

incrosses of homozygotes presents no problem in a codominant system such

"as Haptoglobin" Hemoglobin and ':rransferrin. Apart from. the negative

estimates of the inbreeding coefficient, the probability to be identi­

cal bY' descent seems to vary among alleles even in po~or,phic systems.

The likeliness maY' be also suggested by the endogamy coefficients

estimated in the ancestral population of northeastern. BrazU (Table

4.3.14) where the coefficients maY' represent a diversity of allele fre-
.

quencies between three ethnic groups. The causes of variation" among the

inbreeding coefficients for allele might reflect randan genetic drift,

mutation or selection, but no conclusion can be draw at this stage.

4.4.Ma.ting type frequencies and the related probabilities

Mating~: Mating type freqUencies have offered a method of joint

estimation of gene frequencies and the total inbreeding coefficient which

are basic quantities to describe population structure. Thus the expected

mating type frequencies as a function of gene frequencies and the in­

breeding coefficient must fit well with the obs~rved frequencies if devi­

ations due to selection Qr misclassification are smaJ.l. Theoretical

discussion of two-allelic loci was made in section 2.5. The observations

in northeastern. Brazil,prov1ded autosomaJ. cases for testing. Five co­

dominant systems, Ss and MN blood group factors, Haptoglobin, Hemoglobin

. and Transferrin serum variants, and eight dami nent systems, Diego,

Lutheran, Inv, ])]f:f'y, LewiS, ABH secretor, P and Pro polymorphisms serve

in this case. Six observed numbers of mating types and their expected

numbers under the hypotheses that Ha: a=o and lI:L: a=.0133 are given in
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Table 4.4.1 for five codaninant loci in order to test whether the present

theory is satisfactory or not but the improvement in goodness of fit is

not striking.

Non-segregating probability~: AJ.though it has been demonstrated

theoretic~ that effects of inbreeding on segregation analysis are

nearly negligible, the tendency of deviation in the observed non­

segregating probability from. the expected under the hypothesis that

Ha: a=o should be tested With data. In a study of selection acting on

sixteen polymorphisms in Brazilian materiaJ., Morton et aJ.. (1966) have

found that the discrepancies in h2 and h
3

attributed to selection are

infrequent., Since the observed deViations are ranging, from. about .3 to

10 percent except of h
3

in ~ factor and since they are appeared to be

within variations due to subdiVision of population or inbreeding, it Will

be worthwhile to com,pare them With the expected deviations in the popula­

tion 'With the inbreeding coefficient a = ~0133. CoITelation coefficient

of the observed deviation, e = Uh/l<hh' and the expected, &. = ca, or a

linear tem of a in the expression of h as a function of gene frequencies

and the inbreeding coefficient1 are calculated (Table 4.4.3.). 'rhe high
, .

positive correlation means that the direction of discrepancies in the

observed h can be attributed 1;0 an effect of inbreeding. The simple cor­

relation coefficients are caJ.culated weighting by the amount of informa­

tion Kim. In our Brazilian material fran that seventeen factors are

examined, the correlation coefficients for incootpatible backcross, com-

pa.tible backcross and incross lil. th respect to a dominant phenotype are

r = .35, .33 and .46, respectiVely. AJ.though they are not significant

fran the null hypothesis that r = 0 (p > .10), the figures suggest on
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effect of inbreeding.

The resuJ.t again encourages us to justify the mcment method to des­

cribe human popuJ.ation structure.

4.5. Migration functiqn

studies on the distribution of maritaJ. distance have contributed to

human biology' in two senses; to define the migration pattern in man and

to obtain the, relation between the inbreeding coefficient and the dis- '-

tance. SeveraJ. probability densitY' functions have been proposed to tit

data vhich showed unescapably leptokurtiotic patterns. In figure 4.5.1.,

relations among the proposed functions are summarized. In the folloWing,

each distribution shaJ.l be examined one by one in accordance with its

relation to the others and goodness of fit with northeastern Brazilian

population where a measured maritaJ. 'distance and the distance multi-

plied square root of popuJ.a.tion densitY' are studied in grandparentaJ. and

parentaJ. generations. Populations are subdivided into eight classes

whose representative distance was caJ.culated as a mean weighted bY' the

number of couples in each group. In generaJ.,m(x;a), for example, stands
-,

:for a probabilitY' density function at distance x With an attraction

parameter a, and the mean maritaJ. distance and its standard error are

denoted bY' i and ax' respectively•. Fran. these, the totaJ. inbreeding co­

efficient is tentatively caJ.culated bY' the exponentiaJ. relation between

the inbreeding coefficient and the distance: a=tok, where

ClO

k = J e-bXm(x;a)dx,o .

f O = .0212 and b = .0038 in the distance stud¥ and 1"0 = .0199 and b =

.0011 for the distance multiplied bY' the square root of population density
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so as to simulate a uniform densitY' population. Whenever the integral.

is complicated,a discrete approximation is made such that

-bx
k .:: 2: e 'ini/ n, where xi' ni and n designate the representative vaJ.ue

of distance in the i-th class, the expected number of coupJ.es in the i-th

class and the totaJ. number of couples sampled. As far as the Brazilian .

population is concemed, errors due to the discrete approximation are of

-4order 10 With respect to the inbreeding coefficient a, which maY' be

tolerable in the present anaJ.ysis. The inbreeding coefficient for the

em;pirical observation is thus obtained bY' the discrete approximation,

and the mean maritaJ. distance is estimated bY' the ordinary' moment method.

2
Normal distribution: m(x;a) = 2ae-(ax) f{'If, i = .5642/a and ai =

i/JK . Wright's studies on isolation bY' distance have suggested aaa .

normaJ. migration in man, which tumed out to be unrealistic in practice.

The function is also ruled out for the distribution of marital distance

in man (CavaJ.li, 1958). As a reference hypothesis, we examined normal

migration and found it not to fit ('!'able 4.5.1-4.). The .technique em-.

ployed here have also suggested that the nomaJ. function maY' not be

apPlied to a marital distance so large that the expected proportion of

couples is nearly zero. A grouping of the last large distance class was

thereforemad.e • Recently, Cavalli et ale (1965) have suggested a sum of
·2

normaJ. probabilities m(x; ai' = Ew'i2ai e-(8.tx) f{." (Ewi =1) in order to

save Wright's theory to cover possible leptokurtosis. However, this

meets two difficulties: first, experience tells us that functions With

more than ·two parameters often do not converge and second, the linear

combination of probabil1ties is onlY' an empirical description and 'WOUld

not be a plausible model of migration.
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Ex;ponential distribution: mexia) = 8.e-ax, i = l/al a- = x/a .[K
~.....--..---.- ------................... x aa

and k = a/(a+b) • A suggested empirical function which is l.eptokurtic

and has a mode -near zero is an exponential distribution (Sutter and Tran-
. , .

Ngoc-Toan, 1951). Because of its simplicity, the function has been used
, -

frequently in theory' and in practice. BrazUian populations do not fit
J

with it at all (Table 4.5.1-4.). This tempts us to generalize into two

directions. One is to use a gamma distributionl which incl.udes the

exponential distribution as a special case (CavaJ.li, 1962). The gamma
.-

distribution therefore bas two parameters1 .~ attraction parameter and

a dimension Parameter n: m(x;a1n) = anxn-le-ax/nl An unrealistic point

in this migration function is that it bas a leptokurtic form. only 'When

o < n < l.1 which leads m(x;a1n) to be infinite at x=O. Thereforel the

function 'Was not used.

Double ex;ponential function: m(x;a1bIP) = (l-p)ae-ax + pbe-bX,

i = (l.-p)/a+p/b. Another extension to save an e~nential migration is
-

to make a sum. of exponential probabUities. As stated in the normal

hypothesis, this approach is only for an empiricaJ. description of migra-

tion. Chi-squares for gooclness of fit are considerably improved compared
,

with previous analysis. searches for trial values for parameters arel

ho'Weverl tedious, especiaJ.l.y with p. The only suggestion 'Which 'Was help-

ful is to find estimates from. graph. And if 'We take the point values of

estimates, the couples consist of short migrant group (about 10 lone or

25 lone ..[density) and large migrant group (about 100 lon~ or 250 lane

.[density), where the short range proportion is 53 percent in grandparents

and 116 percent in parents. The mean mar!tal distance increased by genera­

tion and the estimated inbreeding coefficient decreased in the amount.
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.001 or .~ percent by generation" where a stationary state is assumed

with respect to the inbreeding function.

( ) 2 -~x/ - 6/ 2Square~ exponentiaJ. distribution: m x;a = a e 2" x = a

and a- a: 2i./J"K • This :f'unction was introduced by Cavalli (1958) tox aa .
describe migration in the northern ItaJ.ian population. Although the

function does not fit well near zero distance" among functions with a

single parameter it fits better than the normaJ. and ex;ponentiaJ. functions.

The present method of maxi mum likelihood tumed out to converge extra­

ordinar:l.1y' slowly'" usua.lly' taking more than sixty iteration starting

from a tentative vaJ.ue caJ.culated by the manent method. OccasionaJ.ly"

the goodness of fit with an intermediate estimate of parameter a was

better than that with the finaJ. converged estimate. The function fits

fairly' well the northeastern Brazi~ian population. A generalization of

the square root eJq)onentiaJ. function is to have a modified gamma dis-

. a;;./n·
tribution: m(x;a"n) = ane- In! The function in~udes a normaJ. dis-

tribution (n = ~/2) and an ex,ponentiaJ. distribution (n=l) as a speciaJ.

case. 133" transformation" y=xl/n" it reduced to a gamma distribution.

The attempt to fit to actuaJ. data remains a possibility.

2 .
Lognomal distribution: .m(x;a) =ae-(~) jJ"n x" x= eJq)(1/4a2)

and ax :II i/4aV"Kea•· By a simple transform" y =In x" the function re-
. '.

duces to a normaJ. probab1l1ty. This 1JIr.p11es that if human dispersion

can be described by a lognormal. function" then aJ.l of theories" which

are based on normaJ. migration" in isolation by distance will be saved.

The fit of a lognomal distribution is better if nearly half of the

sample faJ.ls in 0-1 un1t ~ass. Since northeastern Brazilian populations

did not meet this criterion" it is no wonder that chi-squares for
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goodness ot fit have rather large values. Populations such as northern

lteJ.y' (cavalli, 1962) and northern Japan (Hiraizumi, 1965) where nearly

haJ.t ot couples have marltaJ. distance less than one kin. class ot mar!taJ.

distance may be well described by the 10gno:rmaJ. distribution. This

will be discussed eJ.se'Where.

! Bessel distribution: meXia) = a2xKa(ax), i II: 1.5708/a and

(1- =i/rtlK . This function bas been suggested by K:I.mura (1963) frau.x aa
a purely theoreticaJ. point ot view. MathematicaJ. properties ot IQ(x)

may be tound in Lebedev (1965) but KQ(x) is more leptokurtotic than the

exponentiaJ. and KQ(X) ... ~, JCIO(X) -+ 0 as x -+ o. The goodness ot tit is

~rse than other single parameter distributions in BrazUian materiaJ.

(~ble 4.5.1-4.).

Skellam. distribution: mexia) =2ax/(1+x.2)a+1, i = ClO it a < 1.

When individuaJ. mobU1ty, or attraction parameter in our terminology,

tollows a gamma distribution, a normaJ. migration is replaced by the

Skellam distribution (SkeJlam., 1951). There are no finite mcments unless

a is greater than one. The tit ot this function is as good as the square

root exponent1aJ. distribution, and better tits are observed wi.th shorter

distance (~ble 4.5.1-4.). The meaning ot parameter a is not clear in

this case since no moments are am l ab1e with such small vaJ.ues of a as

.16, .12, .09 and .07 in four studies ot our materiaJ.. By a transforma.­
2tion, y=x , the distribution reduces to a beta probability.

! generaJ.1zed Skellam. distribution: m(x;a,b) = 2abx/(1+ax2)b+l,

i = ClO if b < .5. An. extension of Skellam. distribution was made to

separate the attraction and distribution parameters. However, this
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generalization gave little im,provement and the dif1"1culty in est1mat~

parameters is -.f'omidable. Convergence couJ.d not be obtained in the

. grandparent population. All b-values are about .2" indicating that no

manents can be derived f'rom. the distribution parameters. A transf'orma-
2 .

tion" y=x " again introduces a beta distribution.

/
b+l-

~~ distribution: m(xja"b)' = ab (l+ax) "x = co if' b < 1.

Cavalli (1962) has suggested this type of' function in the IgravitationaJ."

ccm,ponent of' migration in man where an exploration range will be propor-
. .

tionaJ. to the inverse of' sane powers of' distance. The parameters a. and

b may be caJ.led the attraction f'actor and dimensionaJ. index" where a is

a scaJ.e parameter and bis dependent upon the range of' exploration.

This is the best function among those tested (Figure 4.5.2). .. attrac­

tion f'actor is smaJ.ler in pa~tal generation than in grandparentaJ.

.generation (.0916 ± .0089 -. .0549 ±.•0063 in the distanceamiiysis and

.0381 ± .0034 -. .0236 ± .0028 in the distance multiplied by square root

of' population den~ity) while the dimension index did not aJ.ter appre­

ciably by generation (.8971 ± .0554 -. .8765 ± .0627 in distance analysis

and •m4' ± .03'P- -. .6667 ± .0458 in study of distance times square root

of' density). This result suggests that breakdown of isolates is occur­

ring in northeastern BrazU, the migrants exploring for mates With

dimension b+l :: 1.8" or essentiaJ.ly two dimensionaJ. migration (Table

4.5.1-4.).

Since migration in man presumably has a dimension between one and

two" the b-vaJ.ue wouJ.d not exceed one so that no moments of distribution

can be described in terms of a and b.

We thought f'rom the beginn1 ng that the mean mar!taJ. distance would
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be explained by a decrease of inbreeding coefficient by generation" and

that the' parameters of a distribution which fitted well nth data would

give an UIloiassed estimate of this decrease. The mean marital distance

varies considerably for different types of migration function" but the

estimated mean inbreeding coefficients do not var:r much" which supports

theoretical evidence that th~ inbreeding coefficient may be little
,

related to the fom. of the migration function. The difference of .001

in the estimated inbreeding coefficients by generation is also almost

constant. It is also observed that the mean inbreeding coefficient of

population is roughly' about eighty percent of that at zero distance for

a variety of migration functions.

As a sUJllllJa17" a beta probabUitY' function was found best to des­

cribe distribution of marital distance in northeastem BrazU. Break-

down of isolates and dimension of human migration maY' be studied from. the

basis of distribution parameters" but not from mean maritaJ. distance. A

double exponential probabUitY' was also f'itted fairly well. Several

other distribution functions which have been proposed were also examined.

4.6. Discussion

The bioassay method to ascertain the totaJ. inbreeding coefficient

has shown several advantages in studies of population fJtructure in

northeastern Brazil. First of aJ.1,,' it requires only one generation data.

Difficulties in tracing hUDISD. pedigrees are cODDD.On" so that the inbreed­

ing coefficient is often underestimated even in an intensive pedigree
. .

surveY'.· In bioassaY'" on the other band" if data are collected bY' couple

as a sampling unit" the investigator may estimate both the total
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coeffic,ient of consa.nguin1ty based on mating type f'requencies and the

total inbreeding coefficient of parents themselves treated as if they

were collected as a random. sample from the population. It is not neces­

sary' to study children, but they could serve as a confirmation of the

bioassay method by compa.r:l.ng the inbreeding coefficient of children

(G-TIPE) with the coefficient of consanguinity of parents (MATIPE). In
- ..
a.ddition, a comparison of two generations permits study of the breakdown

of isoJ.a.tes 'Which seems to be. occurring in northeastern Br'azU.

The toteJ. inbreeding coefficient thus obtained is due to all gene-

tic barriers, and incJ.udes effects of consanguineous marriages, random

genetic drift, mutation and selection. Effect of random. genetic drift

is theoreticaJ.ly mown to increase homozygote frequencies but its effect

is unknown in the present study. However, it might be small since our

sample was from a tri-racial mixed population whose endogamy' coefficient

was estimated to account for only 22 percent of the total inbreeding co-

efficient. Mutation may be omitted from discussion at the present stage

because of no mutation being observed in sixteen polymorphic systems.

Selection would be one of the seDSitive factors, but technical error

or misclassification often cannot be distinguished from it in statisti-

cal analYsis. As is well-known, if selection has acted against homozy­

gotes (ht;'!terosis), then the inbreeding coefficient estimated by bioassay

tends to be smaJ.1 or even to be negative. This was almost ruled out in

sixteen polymorphic systems from. northeastern. BrazU when positive values

of the coefficient of' consanguinity in parent and the inbreeding coeffi-

cient in children were obtained. A possibUity of heterozygote disadvan­

tage (negative heteroSis) may enhance the inbreeding coefficient by
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bioassay but no such evidences were found (Morton et aJ.., 1966). Appar­

ently', the effect of selection on the inbreeding coefficient is very

small.

In connection with a negative inbreeding coefficient~ the concept

of "isolate size" should be concretely stated at this moment. In a

finite population With size N, a co~tion coefficient of two samples

Without replacement is eJ.ways negative: r = -l/(N-l)(See, for example,

Wilks, 1962. P 217). When a finite p6pulation consisting of 2N
gametes or haploids is in question, then the correl.!.t:f,.~ coefficient of

uniting gametes beccmes -l/(2N-l). The derivation of the correlation

coefficient permits selfing and incest because of the assumption that no

genetic barriers exl.st in the population. Genetic barriers in a popula­

tion aJ:ways give a non-negative correlati?n of uniting gametes (fB)

which may depend upon the population size. Therefore, the toteJ. inbreed-
,

ing coefficient observed as a. net must be

which would be zero when N = (l+fB)/'2:fB and aJ.so when N -400 and f B = o.

The number NO = 2Nis ceJ.led the isolate size in the sense of the

probability density theory. In northeastern BraZil, f B ~ .0133 has been

observed (4.3.2.) as an amount of inbreeding and which gives NO :i 38,

assuming that f B is independent from population size, and all genetic

barriers are taken care in f B• Subpopulation of size greater than this

are expected to have positive inbreeding coefficients. This criticeJ.

vaJ.ue of 38 is much sma]Jer than Dahlberg's theory which is unsatisfac-

tory not so much because of its implausibility, as because it leads to
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no quantitative prediction of the reJ.ation between gene :f'requenciesand

genotype frequencies. The vaJ.ue NO means only that when the number of

individuaJ.s in population is equaJ. to it, the net inbreeding coefficient

becaD.es zero. If the popuJ.a.tion size 1"s smaller than NO' then a nega­

tive correlation between uniting gametes is expected.

The aJ.ternative possibility for a zero inbreeding coefficient is a

popula;tion in so-caJ.J.ed '~-Weinberg equilibrium." where the popuJ.a-

tion size is infinite and neither mutation, selection, nor migration

occurs. In an infinite population with genetic barriers, however, the

correlation coefficient 'WOuJ.d be positive. An. interesting problem. is

thus: what w:Ul be the inbreeding coefficient in practice when the

popuLation size becomes large? Three possibilities may be suggested:

(1) the inbreeding coefficient increases with the population size silice

genetic barriers increase, (2) the inbreeding coefficieIIt, will be con­

stant after a given population size and (3) the inbreeding coefficient

w:Ul approach to zero when. the size becomes infinite. 'Although the

second possibility is most plausible, it remains for further research.

Wright (1943) has estimated the long-term. inbreeding coefficient in

man fran his theory of isolation by distance as less than .02, which

corresponds to 200 couples without mutation, selection, or long range

migration. Although his approach assumed normalm1gration of Parent..;

offspring distance, a remarkable consistency with our results which gave

.017 in parent and .0133 in children reveaJ.ed his great insight. Had he

deVeloped his theor:r of isolation by distance with another migration

function such as an exponentiaJ. or a beta distribution, and had he

reached the same predicted estimate, this 'WOuld be one of evidences that
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migrs;tion f'unction seemed not to be related to the total inbreeding

coefficient of population. There are theoreticaJ. predictions on this bY'

MaJ.ecot (1950) and K:imura et aJ.. (1964) 1 and our Brazilian materiaJ.
.

where almost all inbreedingcoef1'1cients estimated from 9 d11'f'erent dis-

tributions of maritaJ. distance gave very similar values (Table 4.5.).

This is one of the most im;portant aspects in human population genetics

since the mar:LtaJ. distance serves not oDJ.Y' for stud¥ of migration and

thus to evaJ.uate 1;he totaJ. inbreeding coef':f'icient l but aJ.so for st~ of

inbreeding bY' distance. We have tri~d to test both one and two dimen-

sionaJ. models for the inbreeding f'unction 'With distance but approx1ma-

tion seemed to be crude,especiaJ.1y in two d:JmensionaJ. function. Further

researches are desirable.

In summary', the theory developed in chapter 2thas been applied

successtulJ.y to a population from northeastem Brazil.

5. SUIIIIIIarY'

A new theory' to describe human population structure was developed,

based on Wahlund's principle. The possible consequences from. the theory

.were tested bY' using a method of ma.x:l.JmiDl likelihood scoring with 1068

migrant families from .northeastem. Brazil.

The following facts were predicted in theory' and emerged from the

an.a1y'sis:

1. Mating type frequencies are given as a function of gene frequen­

cies and the inbreeding coefi'icient l Provided that the smallest gene fre­

quencies is not less than the inbreeding coefficient. As far .as autosacaJ.

loci ld.th two aJ.leles are concemedl this ga.ve a better fit to the

Brazilian population than the assumption of lIard\Y'-Weinberg mating type
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frequencies.

2. !L'he effect of inbreeding" or subdivision of population" on

segregation ~sis was eXEllDi ned theoreticaJ.17 and with 17 human poly­

morphic factors. No serious effects were found of assuming Hardy­

Weinberg equilibrium in segregation anaJ.ysis when the inbreeding coeffi­

cient is smaJ.ler thaD the smallest gene frequency.

3. The relation between the inbreeding coefficient and marital dis­

tance describing genetic isolation in populations was leptokurtiic and

approximately exponential for the total and remote inbreeding coef'f'ici­

ents and the remote coef'f'icient ascertained by pedigree stu~. The

deviation. from. exponential in the .ascertained inbreeding coefficient was

apparently due to preferential consanguineous mating at large distances.

4. Four alternative methods to estimate the inbreeding coef'f'icient.

were applied: pedigree stu~ which showed .0059" bioassays from indi­

vidual phenot;ype frequencies and mating t;ype frequencies" .0170 and .0133"

respectively, and use of migration functioJ:1" .018.

5• The breakdown of isolates was measured in term of the inbreed­

ing coef'f'icient f
B

= .095" taking ancestral ethnic populations as a

reference.

6. A method to estimate the inbreeding coefficient for alleles was

devised.

7. The.ABO blood group system does not g1ve any information about

the inbreeding coefficient by bioassay method with individual data.

The following results trere from the eneJ.ysis.

8. The pedigree stu~ of the inbreeding coefficient resulted in

higher estimate in of'f'spr:l.ng due to inccmplete ascerta.::t nment in the pre­

vious generation.
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9. Comparison of the inbreeding coefficients by pec11gree study and

by bioassay with sixteen polymorphic systems indicated that· the remote

inbreeding coefficient was as great as the close inbreeding coefficient.

10. No differentiation of gene frequencies with respect to-marital

distance· was observed.

11. Bacial endo~ contributed only 22 percent of the total in­

breeding coefficient for po~rphisms, and less for rare aJJ.eles or

monomorphisms •

12. A tendency for the inbreeding coefficient to decrease by genera­

tion could not be detected through pedigree anaJ.ysis, but ·is found by

the new methods of bioassay and distribution of marital distance.

Further researches. are needed in the following aspects.

13. Theoretical 'WOrks on the inbreeding function with marital dis­

tance, teJdng care to exclude self-fertilization and incest. .

14. An empirical correlation method With distance instead of bio­

assay for describing inbreeding functions.

15. ~ in other. human populations than Brazil should be conduc­

ted for bioassay of the inbreeding coefficient. On this occasion" an

accurate record of location (for example" the longitude and the latitude"

of birthplace of individual) must be made in order to extract more in­

formation on human population structure.

16. Some mathematical models might be checked with other species

in the laboratory. A homogeneous ~trical migration population struc­

ture, for instance; could be tested with Drosophila melenogaster.

'17. There are still severaJ. lmexplored possibilities to exam1n.e the

present theor,y. Mating type frequencies at sex-linked loci are wa1ting

for the applications and the moment theory itself may be applied to other
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aspects such as linkage" illegitimacy" polyploidy" heritability and so

on" which appear in genetic aspects of human biology•
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AppendiX 1. GeneraJ. discussion on the breakdown. of isolates

The concJ.usion in text is not aJ.tered when we consider more than

three isolates.Although severaJ. models may be developed, "We shaJJ.

discuss only' two of them.: (i) the breakdown. of isolates in a part of

the totaJ. popuJ.ation, and (:1i) hierarchic model of removing' of barriers.

(i). Suppose that a population consisted of n isolates and k of n
-

(k-i!iii n) isolates were grouped into a new panmictic isolate by removing

~f barrters so that the population consists of n-(k-l) isolates.
~ .

At the first phase, the popuJ.ation is cha.ra.cterizedby:

and

n
1: Wi =1,

i=l
n

% = i~lPiwi'

2 n 2 2
CJN = i:1PiVi - %'- ..

and

where Vi and Pi are the relative size and gene frequency of the i-th

2isolate, respectively,and aJ.so ~ and aN are a gene frequency and its

variance in the totaJ. population, respectively. Let us take the first

k isolates being grouped. The.present population is nov specified bY'

n
W+ 1: Vi = 1,

i=Ie+l
n

Pv Ie = PW + 1: Pivi'
.1.1- i=Ie+J.:

2 . _2__ n 2 2
a"'T Ie = FVl + 1: PiW'i - 'D- Ie'
~.1.1- i=l:+1 - ,.-

K K 2
where W=1~lvi' P =i~lPiVi/W and PH-K and aN_Ie stand for gene frequency

, -
and its variance in the present popuJ.a.tion, respectively'.
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Comparison of two phases results in

and

or

, .
The reJ.ation in the. inbreeding coefficient will be

(ii). Although the breakdown of isolates has occurred in severaJ. parts
- - -

of a population, some of barriers still rema.in so that the population

consists of a number of new isolates. Tak:fng the same notations of (i)

but X to be the number of new isolates I 'We can easily verify the rela­

tion in the inbreeding coefficient between two phases of the population:

FN_••• _X = FN-FB, where FN_-; •• _X stan~ for the inbreeding coefficient

at the second phase and

The first summation is taken for new isolates.



Exam;pJ.e•. The com;pa.r1son of the endo~ coefficient in three raciaJ.

ancestral. populations with the inbreeding coefficient fran a tn-mciaJ.

mixture population. SuP,POse that three racial groups are Indianl :Negro

and Caucasian whose reJ.ative sizes and gene A frequencies are II Ii and
. -

01 and Pil Pn and PCI respectively. Let FM and FE be the inbreeding

coefficient of the tn-mciaJ. m:l.xt;ure population and the endogam;y coef­

ficient in the ancestral. populations. We obtain

where

FM =FE - FBI

. 2 2 2
IO(Pi-Pc ) + CN(Pc-Pn ) + If.[{Pn-Pi)

FB = - '. - . . . -
p{J.-p)

- •.
since P = IPi + lip + Cp and I + :N + 0 = J... n c .

Consideration of several. genes will provide more information for

(In the above discussionl we assumed no mutationl seJ.ectionl and

accident by sampJ.1ng 'Which may resuJ.t in changing of the mean gene fre­

quency of popuJ.ation. Since it is aJ.ways diffieuJ.t to estimate gene

frequencies in ancestraJ. populations I FB may beI therefore I taken as the

first approx:lma.tion. Examining the mean gene frequency of population at

different stegesl we may justify this method if difference is not sig­

nificant fran zero.) .
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Appendix 2. Moments of a subdivided population given a distribution of

isoJ.ate size

. A generaJ. idea to obta.1n the moments" knowing a distribution func­

tion of· isolates" would be demonstrated by beta probabUity in a locus

with two alleles since this case represented a ste~ state distribution

of gene frequency under Wright's island model" where the PoPulation con­

.sisted of isolates of equaJ. size and each isolate eX~hanged constantly

individuals into the neighbors. Only' the third and fourth moments will

be given in other distributions for the sake of comparison. For the

higher moments1 a method of moment generating function 'W:ill be helpful.

(i). Beta distribution: Suppose that a density function is given by

dW = ·(atb-l)! a-l b-l
_ ~ Pw ~ dpw

(a-l)! (b-l)!
CPw + ~ = 1)"

- _.
'Where a and b are distribution parameters and Pw is the gene frequency

in the neighborhood of the point w. ~ moment of population will be

=

which gives

=. (a+b-l)!(a+k-l)!

(a-l)!(a+b+k-l)!
(k = 0" 1" 2". •• )

M:J. = a/(a+b} and ~ = ~(a+l)/(a+b+l).
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Since the first and second moments correspond to the population gene

2frequency p and an homozygous frequency p + pqa" where a is the

inbreeding coefficient" the parameters m.a.y be written in terms of gene

frequencies and the inbreeding coefficient" or

a/(a+b) =- P

(a+J.)/(a+b+J.) = p + qa

so that a = p(J.-a)/ciaDd b =-q(J.-a)/a. We obtain" therefore,

and

... . ...

pq(J.+q)(2+q)a'3],
- ... - -

or" if a is smaJJ (say'" J.ess than two per cent)"
- .

~. = p3 + 3p2qa _ pq(J.+3q)a2 + 2q(J.-2q)a'3 + •••

and

In the isJ.and model." a=4llmp and b=4Nmq, where Ii is the effective size ot

isolates and m is the migration rate" so that a = J./(J.+4Nm). (Wright"

1931).

The following resuJ.ts are straightforward. (The form ot distribu-
..

tion function may be found in Mood and Gra;yb111" J.963).

(ii). BLnamiaJ. distribution:

~ = p3 + 3p2qa _. pq(1-2q)cf

4 3' 2- -' ~ 2 ql\ = p + 6p qa - p q(4-11q)a- +pq(l-6qi6q )a-.
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(iii) • Poisson distribution:

~ = p3 + "SR2qa + pq2cl

M4 = p4 + 6p3qa + 7p
2q2

c:i + pq3c?

·(iv) • RectaguJ.ar distribution:

~ = p3 + "SR2
qa

M4 = P4 + 6p3qa + (9/5)p
2q2cl-.

(v). ":NormaJ. ,distribution:

~ = p3 + 3P2
qa

. M
4

= p4 + 6p3qa + -sp2q2c:i •

.
(vi). Gamma distribution: (p iri q)

3 2 "2 2
~ = P + 3P qa + 2pq ex-

M4 = P4 + 6p3qa + 11p2q2c/ + 6pq3a3.

Thus thE! square and higher powers of amay be ignored when Ial is not

greater than the sm.a.J;l.est gene frequency.
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Appendix 3.· Derivation of a generaJ. formuJ.a for the moment of population

WheIi the number of' aJJ.eJ.es increases beyond two1 the covariance

moments become of 1mport&nce l which are given in the Wahlund's principJ.e

as frequencies of heterozygotes. .

Let P and q be gene frequencies of population and Pw and Cly be of

an isolate (it is not required that p-fq=l and pw-k!w=l). Denoting dif-
- -.

ferences in gene frequencies between the isolate and the population by

q,w and~ th~ir covariance moment is given by

where E is an operationaJ. symbol denoting expectation. For example,

D1.0 = !Dol = 0,

~ = p(l-p)CX, mu = -pqcx, and m02 = q(l-q)CX,

where CX is the inbreeding coefficient. The moment of· population is now

-
M = E(panb\

a,b w.."
- -

= E(P+q,w>a(q+~b
." ;.

(a) (b) a-r b-s
=r~s r s p q mrs

a b a-l b a b-l (a) a-2 b
= P q + ap q DJ.o + bp q mol + 2 P q IIJa> +

a-l b-l(b) a b-2abp q mu + 2Pq !Do2+ •••••

Justification· to ignore the higher moments, m , is aJ.so seen in. ars

series of caJ.culations of moments assuming distribution functions.
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The sufficient cond:l.tion is again that the smallest gene frequency is

greater than the inbreeding coefficient.

Generalization is now straightforward. The moment of population is

[
n aiJM =E 1I:(p +6p \ ,

~, •••• ,an i=1_ i i~

Where Pi' is t~ frequency of i-th allele. By' ex,pansion of binomial

product terms and bY' repJ.acing~ in terms of gene frequencies and the

inbreed:l.ng coefficient, we obtain

n 81 n ai -1[ n· ~ n
M~,. ••• ,an = i!f1Pi + i llJf>i i~~2 ~~1-Pi~i!LjPj -

(ii1Pi )i~aia j }.

The assumptions for deriving the general formuJ.a are the same as the

previous arguments.



118.

Appendix 4. The application of Newton-Raphson method to so1ve maxLmum

likelihood equation (so caJ.1ed max:Lmum. likelihood scoring

method) and its convergencY'

Let L be a log-likelihood With a parameter 9, and take its first

derivative with respect to 9as u(9) = aria9. Furthermore 1et 90 denote

an approximate value of the true one, and e be the correction which must

be applied to 90 to give the exact vaJ.ue of the solution, so that

9 = 80 + e.

The JD8.'dJDlDD likelihood equation u(9) = 0 then becomes

U(80 + e) =O.

Ex,panding this in the series form. bY' TaY'lor' s theorem., we have

Hence
2

u(80) - e k(80) - !... k'(8 +&e) = 0
2 0 .

where k(80 ) = -(au/a8)9=9 •
o

(1)

Bow if e is relative1Y' small, we maY' neglect the term. containing

2e and get the simple relation

frail which

(2).

The improved value of the root is then
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The succeeding vaJ.ue ·of the root is

u(9
1

)
92 = 91 + e2 = 91 + . .

k(91.)

9
3

= 92 + u(92)/k(92)

•••••••••••••••••••••

9 = 9 1 + u(9 1)/k(9 1).n n- n- n-

Equation (3) is the fundamentaJ. formula in the m.ax:l.mum likelihood

scoring method.

It is evident from. this formula that the larger the k-score, the

smaJ.ler is the correction which must be applied to get the true vaJ.ue of

the estimate. This means that when the graph of likelihood equation is

nearly verticaJ. where it crosses the 9-a.x:Ls the correct vaJ.ue of the root

can be found w:Lth great rapidity and very litt1.e labor. If, on the

other lLAJld, the numericaJ. 'V8J.ue of the k-score should be small. in the

neighborhood of the root, the vaJ.ues of e given by' (2) wouJ.d be large and

the computation of the root by this method 'WOUld be a slow process or

might even fail aJ.together. This method should never be,'ufJed when the

graph of u(9) is nearly horizontaJ. where it crosses the 9-a.x:Ls. In such

cases, regula faJ.si interpolation might be useful (Ba.rra:l et aJ.., 1965).

The process Will evidently fail if k(9)=O at the neighborhood of the root

and such an example in bioassay has been seen at the AB> b1.00d group

system (see text 3.3.1.).
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2In the above process we neglected the term invol.ving e and got an

approx:Lmate vaJ.ue el. fran the equation u(80)=el.k(80 )0 Subtracting it

from (l.), we obtain

or

(4)

Now since e is the true vaJ.ue of the required correction, and e
l

is its

approx:Lmate vaJ.ue, it is plain that!l is the error in elo Let M be the

maxi mum vaJ.ue of k' ( 80) at the neighborhood of 80+el.' then

e~
e-e =-------l. 2k(8

0
)

so that

This is error in 810 In general. the error in 8n is therefore

If 1K/2k{8
nll ~ 1, as usual. in cases where the Newton-Baphson method can

.. -
be applied, we then have
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E ;i
n

This result is most important" for in finding the correction from (2)"

the division of u(60) by k(60) need to be carried out to only' one more
significant figure than number of zero between the decimaJ. point and

first significant figll1"e.
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Appendix 5. Maximum 1ike1ihood estimation of gene frequencies and the

inbreeding coefficient from individual frequency data: In

£!!!..~ k-alle1es Without. dam:! nance

k
Let Pi ( Z· Pi = 1) be the frequency of aJ.le1e Ai and n.. (=n .• ) be

i=l . :LJ • J:L.

the observed number of an ordered genotype AiAj (=AjAi ) whose frequency

is PiPj + Pi(~ij - Pj)a, 'Where &ij=l for i=.1 and 6ij=O· for i~j. The log

likelihood is

and the scores are

k-1
Imposing the restriction that ~ = 1 - & Pi' the maximum likelihood

i=l

scores are

The variances of U-scores are
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where

for 1=1, ••• , k-1, there should exist, therefore, a constant, C, such

that

Adding for 1,

for all i.



k
so that C =2[ E n11 + 1': n1j ](n1j=nj 1 ), and lIhich 1s equaJ. to

1=~ 1>.1

2En:11j=2N or the totaJ. number of genes. Therefore
1.1
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I<:.P a = 0 and lOa. = (k-~)N since
1

= N[ (~-p ) - 1': P ]
.. 1 jF1 .1

k
= N(~- 1: P ) = 0,

j=~ j.

and ..

k ~-P1 2.... 2
lOa = 1: (-) BP1 + !: P1Pj N

1=1 Pi .1F1
k 2

= N [ 1: (~-P1) + I: P1Pj ]
i=~. .1f1

2= N [!:{~-2pi-11;>1) + ~1Pj ]

k 2
= N [k-2 + .t P1 + !: P1P j ]

i=~· jfi

k 2
= N [k-2-+ ( Z P1) ] = N(k-~).

1=~



The im;proved estimate ot ~ is caJ.culated from.

The .i tera.t1on is then carried out until the estimate converges. It has

been observed that the tinaJ. estimate is aJ.WB.y'S obtained after three or

tour iterations.
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Appendix 6. Instability of est1ma.t.ing the inbreeding coefficient at

the A:J..~ blood group system

Let Pl" P2" q and r be frequencies of gene .A:tl ~I B and 0 1

respectively. Six phenotypes are observed so that their frequencies in

population w:Lth inbred proportion a are given by

P{o)

P(~)

P{~)

PCB)

2= r + r(l-r)a
2 . .

=Pl + 2pl P2.+ 2pl r + Pl (1-Pl -2p2-2r)a

2=P2 + 2p2r + P2(1-P2-2r)a

2= q + 2qr + q(1-q-2r)a

P(.A:tB) = 2plq - 2plqa

P(~B) = 2p2q - 2p2Qa •

The log likelihood is

2. 2
L = O·1n[r +r(l-r)a] + A:L·1n[Pl+2plP2+2pl~1 (1-Pl -2p2-2r)a] +

. 2-·'· 2·· -
~·1n[P2+2p2r+p2(1-P2-2r)a] + B·In(q +2qr+q(1-q-2r)a] +

.. ~ ,

A:LB·1n[2plq-2plqa] + ~B·1n[2p2q-2p2Qa]

and the maximum likelihood scores under the null hYPothesis that ~

are1 in vector foms 1
'-..J
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where nl. is a transpose vector of observation n such that;

n = (0, A:L, ~, B, ~B, y>.
It is easil.y verified that

Pl. P2 q
U =--u --u --u .

ex 2 Pl. 2 P2 2 q
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Appendix 7.
PROGRAM G-TIPE

I. Instruction for user

G-TIPE is written in FORTBAlf IV language for the IBl 7040 c~ter,

and is designated to estimate gene frequencies and the inbreeding coeffi-

cient fran phenotype data on a given genetic system. by the maximum.

likelihood scoring method. It mayhandJ.e· any genetic system. in which

gene-genotype relation can be expressed by factor union aJ.gebra and con­

sists of up to 24 aJ.leles, 10 factors and 300 phenotypes.

Card 5 This type of· card is used. for control of the

null hypOthesistbat CX=O.

Col. 1-5

6

7

8

55555

blank

1 only one iteration
e. otherwise

blank

Card 0

9 1 no estimation of gene frequency
o otherwise

This type of card is used for data description.

Col. 1-5 00000

6-10 blanks

11-70 description of data

Card I Col. 1-5 llJil

6-10 blanks

11-12 total. number of aJ.leles

13-14 totaJ. number of fac1;ors

. 15-17 total. number of phenotypes



card II It is used for characterization of alleles, one

common name of allele

order of alleJ.e

trial vaJ.ue of gene frequency

iteration index

allele in bina.r;y' code

blanks

Col. 1-5

6-1

8-10

11-15

16-25

26-30

31

. card for each allele. Total number of cards must

be equaJ. to the number given on Card I, column

11-12. (The First alleJ.e is treated as dependent

variable in the process.)

22222

Card III

o or blank: iteration is desired

1: in the· first alleJ.e, the
biologicaJ. incl:J.cator (ex) is set
to zero (i.e. , random..ma;ting) •

This tn>e of card(s) is used as input data, one

card for each phenotype. TotaJ. number of cards

must be equal to the number given on Card I,

column 15-11; that is alW&y'S less than 300.

Col. 1-5 33333

6-8 order of phenotype, if necessary

9-10 blanks

11-15 cCllllllOn name of phenotn>e

16-25 phenotype in binary code

26-35 observed phenotype frequency (in
observed number)
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Card IV

130.

This card, a tra11er, is used onl.y at, the end of

a job. For mu1tip1e-runs, card III shoul.d be

folloWed 1mmediateJ.y by a new set of contro1s.

Co1. 1-80 9

Output from. the program inc1udes the folloWing:

1., TriaJ. value of gene frequency (given)'

2. Phenotype frequency

a) observed number (given)

b) expected
, 2

c) corresponding X value for goodness of fit and L-ratio.
-

3. Number of iteration cyc1es performed
2 . "

4. F1naJ. X -value for maximum like1ihood estimation of parameters

5. Log-detem:tnant of information matrix (base 10)

6. Information matrix (or K-mat~x)

7. Covariance matrix (or inverse matrix)

8.' Mex:Jmnm likelihood' estimate (M.L.E.)(error in 10-4), standard
.. -

deviation and U-scores for each parameter under iteration, the

amount of information and the chi-square f-or parameter.

These quantities except M.L.E. are evaluated after convergence and the

max:Jmnm number of iteration is 99.

Estimated ma.x:Lmmn time is about 1 minute for a system.
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II. A worked example

An example is to test the null hyp<;>thesis that a=o, having maximum

likelihood estimate!:! of gene frequencies, at the MNsSU blood group sys­

tem (In the following, b indicates a blank.).- .

III. Input control cards

r column 1 in a card

55555blbbbO
OOOOObbbbbMNS$U SYSTEK, BRAZILIAN SEBOTIPE(!OOTAL)
J11 11 0604012 . . .
22222blbbbMSbbbOllObbbbbb019101
22222 2 M$ 0101 03451
22222 3 M* 0100 00091
22222 4 NS 1010 00162
22222 5 N$ 1001 03485
22222 6 N* 1000 00241 - .r column 35
33333bbl Mt OlOObbbbbbbbbbbbbbbl
33333 2 MS 0110 93
33333 3 MS$ OlU 298
33333 4 M$. 0101 256
33333 5 MN* 1100 0
33333 6 MNS lUO . 68
33333 1 MNS$ llll 410
33333 8 MN$. 1101 572

.33333 9 N*. 1000 4
33333 10 NS 1010 22
33333 11 IS$ 1011 123
33333 12 N$. 1001 281

IV. Notes for preparation of input control cards

1. $ stands for s since canputer does not distinguish between

capitaJ. and smaJ.l letters.

2. Any error in control cards 'Will be prlnted out in the follo'Wing

JJJJ1, 22222 or 33333

ERROR m CONTROL CARD _L---J' EXECUTION DELETED.

And the program goes to the next job if multiple-runs are made.

otherwise, it Will stop. However, error in binary" codes is
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not aJ.ways detected by machine so that a carefuJ. check is

important with output, especiaJ.ly' the observed number.

3. When convergence tails, either a message,;

smGULAR MATRIX

is printed out and the program. skips to the next job, or all

output is printed out With the iteration number 99.

4. Order ot genes and ot phenotypes in the control cards, 22222

and 33333, is arbitrary. !L'here is no dependence between c.ards

II and III.

5. In the above example, it column 1 in the tirst card, 55555., is

punched in 0 or blank. instead ot 1 then ordinar;y iterations

will be continued until :1m,proved estimates are obtained.

v. Ou.tput

MNS$U stSTEK, BRAZILIAN SEROTIP.E(TOTAL)

MS = .1910
M$ = .3451
Mil" = .0091
NS= .0162
N$ = .3485
If* = .0241

NO. :PHEtlOTIfE FBmQ. OBS. EXP. 00-2 L-RATIO

1 MS 0.04239 93· 90.22 0.09 5.65
2 MS$ 0.13591 298. ,289.34 0.26 11·51
3 MNS 0.04091 68. . 81.05 4~11 -33·58
4 MNS$ 0.18990 410. 404.11 0.09 11.86
5 M$ 0.12531 256. 266.80 0.1J4 -21.15
6 MN$ 0.26351 512. 560.15 0.23 22.12
1 N*. 0.00008 1. 0.18 3.85 3.41
8 D* 0.00044 o. 0·93 0·93 0.00
9 HS~ 0.00948 22. 20.11 0.17 3.82

10 :NS$ O.O53ll 123· 113002 0088 20.81
11 N$ 0.13825 281. 294-.20 0.59 -25·19
12 N* 0.00058 4. 1.24 6.18 9·40
13 TOTAL 1.00000 2128. 2128.00 11.86 14.18



133·

ITERATION NO. = 2 CHI-SQUARE .. 6.25

LOG(io)~ ...0263035991 02

K-MATRIX

•••

•••

ESTIMATE·

.03712

.19700

.34510
·00910
.07620
.34850
.02410

S'l!.DEV.

.01485

.00698

.01021

.00803

.00545

.00975

.00750

U-SCORE

169.8659

1.3815
4.4823

-0.1ll8
0.7303
0.2939

VI. Notes for output

1. L-ratio shows whether the observed is larger or smaJ.ler than

the expected. If' it is positive, the observed is larger than

the expected and be i t negative, then the observed is BJDal ] er.

The· sum of L-ratios converges to the chi-square vaJ.ue that is

obtainable fran a goodness of fittest. In the program, L=O,

when no observation is in a clai:ls.

2. The chi-square for goodness of fit is 17.86 in the example,

and 6.25 for parameters.

3. In 1ihe example, gene MS was considered as a dependen1i variable

but one of the other might be taken.

4. In case of two aJ.lele with com,p1e1ie daainance, the vaJ.ue,

9 ..000001 Will appear as an estimate of.AIiPHA, inbreeding coe:f':f'i-
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cient. No such provision was made for the A:OO-type dominance.

5. When instruction for no iteration was punched on card, as in

the example, ITERATION NO. output is aJ.ways set to 2. other­

'Wise, it indicates correct number of iteration processes.
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Appendix 8.

PROGRAM~

I. Instruction for user

MAT!PE is a FORt'RAN IV program, designed to e~timate gene frequen­

cies and the inbreeding coefficient from. mating type data on a given

genetic system. bY' the maximnm likelihood scoring method. It can han<Ue

any genetic system in which gene-genotype relations maY' be expressed bY'

factor union aJ.gebra and consists of up to 15 alleles, 10 factors· and 36

phenotypes (corresponding to 666 phenotypic-mating types).

CONTROL CARDS

Card 5 Col. 1-5

6-7

11-230

55555

1 is no iteration
o or blank, otherwise

InitiaJ. vaJ.ue of a

Card 0

Card I

Card II

This type of card is used for data description.

Col. 1-5 ooסס0

6-10 blanks

11-70 description of data

Col. 1-5 l]Jll

6-10 blanks

11-13 TotaJ. number of phenotypic mating
types observed (plus in-cross)

14-15 TotaJ. number of alleles

16-17 TotaJ. number of factors

18-20 TotaJ. number of phenotypes

It is used for characterization of aJ.leles, one
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card for each aJ.lele. TotaJ.number of cards must

be equal to the number g:Lvan on Card I" column

14-15. (1'he first aJ.lele is trea.ted as dependent

variable in the process).

Col. 1-5

6-7

8-10

11-15

16-25

26-30

31

22222

Order of aJ.lele

blanks

COJmII.On name of aJ.lele

Allele in b1n.ar;y code

Trial vaJ.ue of gene frequency

Iteration index

Card III

o or 'blank: iteration is desired

1: in the first allele" the
biological indicator is set
to zero (i.e. randan mating).

This type of ca.rd(s) is used 'as input data" one

card for each pheno-mating type. TotaJ. number of

cards must be equal to the number given on Card

I" column 11-13; that is aJ.ways less than or

equal to 666.

Col. 1-5

6-8

9-10

11-15

33333

Order of pheno-mating type

blanks

If both mates are of the same pheno­

type (in-cross)" give a name for the

phenotype, otherwise blanks
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Phenotype of one of parents in binary

cOde

26-35

36-45

Phenotype of· the other in binary' code

Observed mating frequency (in .

observed number)

This card, a trailer, is used only at the end of

a job. For multipJ.e-runs, card III should be

followed immediately by a new set of controls ~

Col. 1-80 9

Output :from the program includes the following:

1. Trial vaJ.ue of gene frequency (given)

2. Pheno-mating type frequency

a. observed number (given)

b. expected

2
c. corresponding" vaJ.ue for goodness of fit

3. Number of iteration cycles perfom.ed

4. Final ,,2-vaJ.ue for:maxi.mum likelihood estimation of parameters

5. Log-deteminant of information matrix

6. Information matrix (or Ie-matrix)

7. Covariance matrix (or inverse matrix)

8. Maximum likelihood estimate (M.L.E.)(error in 10-4) standard

deviation and U-scores for each parameter under iteration.

These quantities except M.L.E. are evaJ.ua.ted after convergence and

the maximnm number of iteration is 20.

Estimated maximum. time is about 1 to 2 minutes for a system.
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II. Note

The features of this program. are the same as the program. G-TIPE

except the preparation of control card III. Information on all in­

crosses should be punched on cards, regardless of the observed number

. of coupies. This is necessary- :for printing out. lIcommon name ll of pheno­

type and for identification of the totBJ. number of hanozygotes or the

total number of genes. For the other crosses, control cards ma.y' be

om1tted if the observed number is zero. Deletion of these cards should

be considered in the columns 11-13 in card I.
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Table 2.1.

Expression of genotne-:frequencies bY' different concept~.

Ifardy-
Genotne Weinberg Wright W8.blund. Bernstein Malecot

(1908) ~ (1928) . (1930) (1948) ~

- " .-

2 p2+prf1 p
2+a2 p{p+CtJ.) 2

AA p P (l-f)~f-
Aa 2pq 2pq-2pqF

. 2
2.P<l(l-eX) 2pq(l-f)2pq-2a-

2 q2~ 2 2' q(q+qp)
2 ... ..

as. q q+a q (l-f)~f

Total 1 1

Where p and q are frequencY' of gene ! and !1 respectively', F is Wright' s
I

inbreeding coefficient, i.e. correlation coefficient of uniting

gametes, f probability that two genes are identical. by descent, a

2the mean inbreeding coefficient, and a gene frequency· variance.

Note that F = f = a = a
2
/pq.



Table 2.5.1.

Frequencies of mating types and their offspring.

(Two alleles at an autosomal lOcus).

(i) No daDinance

Mating· type

AAxAA- -
AAxAa- -
"As. x As.

~x!!

~x!!

aa x aa- -
TotaJ.

Frequency
of

mating type

p4+6p3qa
4p3+12p2q(1_2p)a
4p2q2+4pq(1_6pq)a
2p2q2+2pq{1_6pq)a
4pq3+l2pq2{1_2q)a
q4+6pq3a -

1

AA

p4+6p3qa
2p3q+6p2q{1_2p)a

2 2 .
P q +pq{1-6pq)a

2P +pqa

Frequency of offspring

As.

2p3q+6p2q(1_2p)a
2p2q2+2pq{1_6pq)a
2p2q2+2pq{1_6pq)a
2pq3+6pq2{1_2q)a

2pq-2pqa

aa

2 2P q -tpq{l-6pq)a

2pq3+6pq2{i_2q)a
q4+6pq3a ·

q2+pqa

~
•



Table 2.5.1. -- Continued

(ii) Canp1ete dan:fhance

Mating type Frequency of mating type

A-
Frequency ot offspring

aa

A:' x A-

A- x aa

aa x aa

TotaJ.

2 2 ·2P (1+q) .;2pq(1-3q )0:

2pq2(1+q)+gpq(1_6q2)0:

q4 +·6~3a

1

2
p (1+2q)-3,pq(1-2q)0:

2 -
2pq +2pq(1-3Q)0:

21-q -pqO:

p2q2-tpq(1_6pq)0:

2pq3-t6pq2(1._2q)0:

q4-t6pq3a

q2-tpq0:

Where!. and ! are aJ.1e1es with frequency p and q (P+q=1);, respectively and 0: is the inbreeding coeffici­

ent. It is assumed that p,q > 0:.

'"

$
•



(i) No dominance

Table 2.5.2.

Frequency of mating types and their offspring.

(1'Wo alleles ata sex-linked lOCUS).

Mating Frequency Frequency of femaJ.e offspring Frequency of maJ.e offspring
type of

mating type AA As. sa A a- - -.
Mx!

3 2 p~3P2qa p3+3P
2qap +3p qa -- --

2p2q+2pq(1_3p)a 2 2 2 2
As. x A p q-tpq(1-3p)a p q-tpq(l-3P)a -- p q-tpq(l-3P)a p Q-tpq(l-3P)a- - 2 . . 2 . . 2 .
M,X! p q+pq(l-3P)a -- p q+pq(l-3P)a -- p q-ttxl(l-3P)a

2pq2+2Pcl(1-3q)a
2 . .

pq2-tpq(1-3q)a
2 . 2As. x a -- pq +pq(1-3q)a pq -tpg,(1-3q)a pq +pq(1-3q)a

2 . . 2 - . 2 -
sa x A . pq +pq(1-3q)a -- pq -tpq(1-3q)a -- -- pq -tpq(1-3q)a

sa x a q3+3PCJ.2a -- -- q3+3PCJ.2a -- q3+3PCJ.2a

TotaJ. 1 p2+pqa 2pq-2pqa q2-tpqa p q

Where ~! and p,q(p+q=l) are alleles and their corresponding frequency, respectively. ...
V1
0
•



Table 2.5.2. -- Continued

(ii) Complete dominance

Mating type Frequency Frequency of femaJ.e offspring Frequency of maJ.e offspring
of

mating type A- as. A' a- -
A- x! p2(l+q)+pq(2-3P)a p2(1+q)+pq(2-3q)a p2+pqa 2-- P q+pq(l-3P)a

. - -2 2 2 . '.
A- x a pq(l+q)-3PCl a pq-pqa pq +pq(1-3q)a pq-pqa pq +pq(1-3q)a

2 . 2 2 . -
as. x A pq +pq(1-3q)a pq -t:P<l(1-3q)a -- . -- pq -t:P<l(1-3Q)a

as. x a q3+3pq2a -- q3+3pq2a -- q3+3pq2a

Total 1
2l-q -pqa' q2+pqa p q

In case of complete dominance, it is assumed that! is dominant over!. a is the inbreeding coefficient.

It is aJ.so assumed that p,q > a.

~
•
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Table 2.5.3

Mating type frequency at a two allelic autosomal locus Without daninance

when a distribution is assumed. (p and q(p+q=l) are frequency of alleles

! and !:. respectively" and a is the inbreeding coefficient).

·Beta distribution-
(i) Exact expression .

q

o

o

o

p

o

Mating Frequency
type (a=o)~ ~(o;...<..;...;;.;a_<.;,.;l;;,j)~ ~(a=;;..;l~)

MxAA p4 c[ p4+3P2(1+q)a +. p2(2+6q+3q2)c!- + pq(1+q)(2+q)a3]

~ 4p3q c[ 4p3q+12IJ2q2a _ 4pq(1_3q2)c!- _ 4pq2(1+q)a3]

MX!!. 2p2q2 c[2p2q2+2pq(1_3Pq)a _ 2pq(1-3Pq)c!-.. 2p2q2a3]
~ 4p2q2 c[4p2q2+4pq(1_3pqja _ 4pq(1-3pq)cP _ 4p2q2a3]

Aaxaa. 4pq3 c[ 4pq3+12IJ2q2a - 4pq(i-3P2)c!-- . 4p2q(l-1p)a3]

!!!ox!!. q4 c[ q4+3q3(l-1p)a + q2(2+6p+3P2jc!- + pq(l-1p)(2-1p)a3]

Total 1 1 1

Where c = 1/(1+a) (1+2a).

(ii) Asymptotic expression in the neighborhood of a=o.

Mating
type

Frequency

p4+6p3qa _ p2q(8_19q)cP + 2pq(7-27q+23q2)a3 + •••

4p3q+12p2q(q_p)a + 4pq(2-15P+19.P2j~ - ~(6-25q+23q2)a3 + •••

2p2q2+2pq(1_6pq)a - 2pq(4-19,pq)~ + 4pq(5-pq)a3 + •••

4p2q2+4pq(1_6pq)a - 4pq{4-19,pq)cP + 8pq(5-pq)a3 + •••

4pq3+12pq2(p_q)a + 4pq(2-15q+19q2)cP - ~(6-25P+23P2)a3 + •••

q4~pq3a _ pq2(8-19.P)cP + 2pq(7~27P+23P2)a3 + •••

Total 1



Table 2.5.3. - Continued

Binan1al.d1stribution

153.

Mating Frequency
type ~ (0 < a < 1) (a=l)

4 p4+6p3qa 2' J! pq{1-6pq)a3AAxAA P + p q(T-llp) + p--
AAxAa 4p3q 4p3q+12p2q(1_2p)a + 4p2q{3-nq)c/ - 4pq(1-6pq)a3 0--
AA;ssa 2:IJ2q2 2:IJ2q2+2pq{1_6pq)a - 2pq(l-llpqjJ! + 2pq(1-6pq)a'3 0--

4 22 2 2 ° 0

4pq{1-llpqjJ! 4pq(1-6pqja3AB:zAa pq 4p q ;.4pq{l-6pq)a - + 0-- o •

4pq3 2 . 2 ·0

4pq2(3-11P)r! 4pq(1-6pq)a3Aa.xaa 4pq +12pcl {1-2q)a + - 0--
q4 q4.tfJpq3a 2 oJ! pq(1-6pq)a3aaxaa. + pq (T-llq) + q--

1 1

Poisson distribution (p>q)

Mating Frequency
type

AAxAA p4+6p3qa + Tp2q2c/ + pq3a3--
AA:xAa 4p3q+12p2q(1_2p)a + 4pq2{1-1p)c/ 4pq3a3_0-
AAxaa 2p2q2+2pq{i_6pqja 2pq2(2_1Pjc/ + 2pq3a3-- 2 2 ° •

4pq2{2-1P)c/ 4pq3a3AaxAa 4p q;.4pq{1-6pq)a +--
Aaxaa 4pq3+l2:IJq2(1_2q)a + 4pq2{3-1pjc/ 4pq3a3--
sAxea q4-f6pq3a pq2(4_1pjJ! + pq3a3--
Total 1



J.54.

~bJ.e 2.5.3. - Continued

RectenguJ.ar distribution

Mating type Frequency

AAxAA
4 + 6p3qa + J..8p2q2~-- p

AAxAa 4p3q + 12p2q2(J._2p)a 7.2p2q2~.--
AAxaa. 2p2q2 + 2pq(J.-6pq)a + 3.6p2q2eP--
AB:xAa 4p2q2 + 4pq(J.-6pq)a + 7.2p2q2eP--
Aaxaa 4pq3 + 12p2q2(J._2q)a 7.2p2q2eP--
aax.aa q4 + 6pq3a + J..8p2q2eP--
TotaJ. J.

NomaJ. distribution

Mating type Frequency

~
4 + 6p3qa + 3P2q2cip

AAxAs. 4p3q 2, ) 12p2q2ci+ 12p qlJ.-2p a .--
.AAxaa 2p2q2 + 2pq(J.-6pq)a + 6p2q2ci

~ 4 22 4pq(J.-6pq)a 12p2q2ePpq + +

~
4pq3 + 12pq2(1.-2q)a 12p2q2eP
4 + 6pq3a + 3P2q2eP!!!..~ q

TotaJ. J.
-'.

"



Ta!>;Le 2.5.3. - Continued

Gamma d1stribut:tc~ (q>p)

155·

Mating type Frequency

~
4 + 6p3qa p2q(8_11q)cP + 6p3qa?p

4p3q 2 4p2q(6-Jiqjc/ 24p3qa3MxAa + 12p q(q-p)a + -
2p2q2 2pq(l-6pq)a 2 . .cP 12p3qa?~ + 2p q(4-11q) +

~ 4 22
+ 4pclCl-6pq)a 4p2q(4_11qjcP + 24p3qa3pq

4pq3. 2 4p2q(2_11q)cP 24p3qQ3~ + 12pq (p-q)a + -
4 + -6pq3a + "llp2q2cl- + 6p3qc2~X!!. q

(~,":oj'

TotaJ. '1



'l'able 2.5.4.

Ma'ting 'type frequency a't a 'two aJJ.ellc sex-linked locus Wi'thou't dominanCe

when a d1s'tribu't~on is assumed. (p and q{p+q=1) are frequency of aJJ.eJ.es

! and !. respectiveJ.y1 and a is 't~ inbreeding coefficient).

!::!?!. distribution

(i) Exact eJq>ression

Mating
(a=o) "

Frequency
'type (0 < a < 1) (ct=1).

'3 ""

c[p3 p2(1+2q)a pq{l+q)cil'46;xl P + + p

&PtA 2p2q c[2p2q + 2IXI{q-p)a "2pq2cil 0

2 2 pq(q-p)a pq2cl-l~ pq c[p q + 0

MX§. 2pq2 c[2pq2 + 2pq(p-q)a 2p
2qcil 0

MYA pq2 c[pq2 + pq{p-q)a p2qePl 0

~
q3 " c[q3 + q2(i+2pja + pq(l+P)cil q

TotaJ. 1 1 1

Where c=l/(l-ta)

(ii) Asym,ptotic eJq>ression in the neighborhood of a=o.

Mating 'type "" Frequency
"-

~ p3 + 3P2qa + 2pq(q-p)ePf3

As:xA 2p2q + 2pq(l-sp)a 4pq(q-p)ePf3 "

AA.xa
2 + pq(1-3p)a 2pq(q-p)ePf3pq

Aaxa 2pq2 + 2pq(l-3q}a 4pq(p-q)ePf3

2 - -
2pq(p-q)ePf3aaxA pq + pq{1-3q)a

a.a.xa. q3 + 3rJq2a + 2pq(p-q)cl-~

TotaJ. 1

Where f3 = k~ (_l)kr1



Poisson distribution

Mating type Freql.1ency

~ p3 + 3P2qa. + pq2eP

~ ~2q + 2pq(1-3P)a. ~2eP

~
2 + pq{1-3p)a. pq2ePpq

2pq2 - .
~2(}~ + 2pq(1-3q)a. +

pq2 - - pq2eP~ + pq(1-3q)a. +

q3 2- pq2eP
~ + 3p qa.

TotaJ. 1



Table 2.5.4. - Continued

Gamma distribution (p)q)

Mating type Frequency

AAxA p3 + 3P2qa + 2pq2c/--
AaxA 2p2q + 2pq(l-3P)a 4pq2ci
AAxa

2
+ . pq(l-3P)a 2pq2c/pq

Aaxa. 2pq2 + 2pq(1-3q)a + . 2c/If.pq

aaxA
2

+ pq(1-3q)a + 2pq2c/-- pq

aaxa q3 + 3Pq2a 2pq2cJ

TotaJ. 1

158.
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Table 2.5.5.

Frequency of basic mating type (Autosome) and their derivative.

Mating type ___ Frequency (M)

4 3incross AAxAA PA + 6PA(1-PA)a_. -
3· 2backcross AAxAB 4PAPB + 12pAPB(1-2pA)a

-
outcross AAxBB 2pi~ + 2pAPB(PA+PB-6PAPB)a

intercross ABxAB 4pipi + 4PAPB(PA+PB-6PAPB)a

3-ways outcross AAxBC 4pipBPc + 4PAPBPC(1-6PA)a

2 . .
3-ways intercross ~ x AC &PAPBPC + &PAPBPc(1-6PA)a

4-ways intercross ~ x~ &PAPBPePD(l-6a)

t;
\0.



Table 2.5.5. - Continued

aM == Muaaa
8M-==Mu
8PA PA

8M -Mu
-- P
8PB B

8M -Mu
-- P
8Pe e

8M-=Mu
8Pn PD

8p~PB+4PA(PA+2pB-l2pAPB)a00
- .

2 . 2
4PAPe+4PAPe(1-6PA}a 4PAPB+4PAPB(1-6PA}a 0

_. - -
2 2· .

8pAPe+8pAPe(1-6PA)a 8pAPB+8P.APB(1-6PA)a. 0

3 2
4PA~12pA(1-2pA)a 0

- . .

2
4PAPB+2pA(PA+2pB-l2pAPB}a 0

6pl(1-PA)
- .
2

19pAPB(l-2pA)

2pAPB(PAofpB-6PAPB)

4p~B(PA+PB -6PAPB)

4PAPBPe(1-6PA}

8PAPBPC(1-6PA)

-48p~:BPePD

3 2
4PA+6PA(3-4PA)a

2
12pAPB+24PAPB(1-3PA)a

4PAPi+2pB(2pA-t:PB-12pAPB)a

2
8p~B~PB(2pA-t:PB-l2pAPB)a

8pAPBPe+4PBPe(l-l2pA}a

16PAP:ePc+8P:ePe(l-l2pA)a

8pBPePn(l-6a)

o

8p~~D(l-6a)

o

8pAP:ePD(1-6a)

o

o

o

8pAP:ePC(l-6a)

~ Jb ••• and PA' PB' ••• are alleles and the corresponding frequencies, resPectively' (PAofpB+••• == 1). a is

the inbreeding coefficient. It is assumed that PA, P
B

, ••• > a.

~
•



Table 2.5.6.

Frequency of basic mating types (Sex-linked) and their derivative.

Mat~ type Frequency (M) 8M 8M 8M 8M- - -
8a 8PA SpB 8PC

AA xA 3 2 2·
3Pi+3PA(2-3PA)aincross PA+3PA(~-PA)a 3PA(1-PA) 0 0-

2 PAPB(1-3PA) 2pAPB+PB(1-6PA)a
2 .

outcross AA x B PAPB+PAPB(l-3PA)a PA+PA(l-3PA)a 0- - -
2

2pAPB(l-3PA) 4PAPB+2pB(1-6PA)a 2backcross AB x A 2:PAPB+2pAPB(1-3PA)a 2pA+2pA(1-3PA)a 0
-

intercross AB x C 2pAP'#C(1-3a) -6PAPJ/C 2pJ/C(l-3CX) 2pAPC(l-3CX) 2pAPB(1-3a)- -

!J ~ Q and PA' PB' Pc are aJ.1eles and the corresponding frequencies, respectively (PA+PB ••• = 1). a is

the inbreeding coefficient. It is assumed that PA" PB' ••• > a.

Iil.

~
•
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Table 3.1.

Max1mum likelihood scores and variances at Go sex-linked locus With two

aJ.leJ.es under the hypothesis that a=o.

Model and
phenotype data

No dminance

Score

Uq = [f2+2t3~-(M+2F)ql/q(1-q)

U = [(M+F)(4flf;-~)+{fl~-JI1:l.~2+f:ti)]
a - -- -.., -

(JI1:l.+f2+21"1)(~+f2+21'3)

Knn = (M+2F)/q(l-q), K = 0, K =F
~~ qa oa

Campletedanjnance

~ f l !. JI1:l. uq = (~+2f2)/q-[(2fl"'1IJ.)q"'1lJ.]/(1_q2)

!!. f 2 !.~ ua = fl -f2+[f2-Fq]/q(1-q)
- - 2 ..
F M Kqq = 4F/(1-q )-tK/q(l-q), Kqa = 2F/(l+q),

1Oa"= F(i-q)/(l+q)

Hodanjnance

6!xA ~

As. x A ~- -
~x !. n

3
As. x a n4- -
aa x A n

5- -
aa x a n6-

N

Uq = [n23+2n45+3n6-3Nq]/q(1-q)

2
3N[(~-.n23)(n45+3n6)-(n23-.n45) ]

ua = ' .. _- ...
(~+2n23of1l45)(n23+2n45+3n6)

Kqq = 3N/q(l-q), Kqa = 0, Kaa = 3N



Tab1e 3.1. - Continued

Hod.eJ. and
phenotype data

Cam:,p1ete c1aI:J nance

Score

&,x! ~

!!.x! n2

A- x!. n3

!!. x!. n4-
If

. 2 . 2
uq = [(2n2+n3+3D4)-(~+n3)q-3:Nq l/q(1-q )

. .. 2
Uex = [3(~+n2)-(~+3D2)ql/(1-q )+(n3+3n4)/q-3N

. .... 2 . .
Kqq =If(1+5q)/q(1-q), Kqex = 2N/(1+q),

~ =If(l+3q)/(l+q)

!J !. and p, q are alleJ.esaud the corresponding frequency, respectively.

ex is the inbreeding coefficient. fi'~' and nidenote the observed

number.



Table 3.2.

Brazilian. serotY,Pes with reference of their b1nary' code.

Genetic
sy-stem. Gene Phenotype Possible genotype

Secretor Se 1 Se 1 Se/Se, Selse

se 0 se 0 se/se.

Lewis Le 1 Le 1 Le/Le, Le/1e

1e 0 1e 0 1e/1e

Lutheran Lua 1 a+ 1 Lua/w.a, w.a/Lu

w. 0 a- 0 w./w.

Gm a 10000 a 10000 a/a

ab llOOO abx lllOO ax/ab

ax 10100 abex llllO ax/abc

abe llO10 axbd 11101 ax/b(1,2)

b(1,2) 01001 ax 10100 ax/ax, ax/a

ab llOOO ab/ab, ab/a

abe llO10 abc/abc, abc/ab, abc/a

abed llOll abc/b(1,2)

abd llOOl ab/b(i,2), a/b(1,2)

bd 01001 b(1,2)/b(1,2)
-

Inv J:n.va 1 a+ 1 'Ix1va/!xlva, !J:J.va/!xlv

!xlv 0 a- 0 !xlv/JIJ.v

PTe T 1 T+ 1 T/T, T/t

t 0 T- O tit

P P1 1 P+ 1 P1/P1, P1/P

P 0 P- O pIp

, 164.
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'!'able 3.3.

Possible migration function" its probabUity and derivative.

Exponential

NormaJ.

LognormaJ.

Square root
Exponential

meXia) = sa-ax
. 'aQ aPP = e- -e-

U p = ~-aP_ae-aa
a

. 2
mexia) = 2ae-(ax) ~w

p '= t(~2af3) - t(~2aa)
. , 2 - 2

U P = 2[~-(~) -ae-(aa) ];fw
a.. _

[
1 x t

2
/2 ]t(x) = - J e- dt

. ~2W-x

2
meXia) = sa-(abJlc) /x ~n

p'= [O(~2a1d3) -t(~2shal]/2

, 2'· ·2
U P = [1d3e-(~) ~-(abO:) J;fn

a . ,._

[p(o) = 0]



Table 3.3. - Continued

169·

Skellam type

Bessel.

Beta type

GeneraJized
SkeJ J em type

. 2
mexia} = 2ax/(1+.x )a+1

p= l/(l~)a _ 1/(1~2)a

UaP =IJ.1+(32)!(1~2}a -·IJ.l~}/(l~}a

.[ lD(1+x
2

) = oJ
~ClO (1+.x2)~

.. 2
m(x;a) ; a XKQ(ax)

p"= atOK1(aa) - ~(~)]

UaP =a[~~(~) - ~(aa)]

~!:i>~(x) .= n . (n=o,l)J

m(x;a,b) = ab/(1+ax)b+1

P= l/(i+aa)b ~ l/(i~)b

UaP =b[~/(i~)b+1 - a/(l+aa)b+l]

~P = In(l~)/(l~)b - In(l+aa)/(l+aa)b

~(x;a,b) = 2abX/(1+ax2)b+l

P =l/(l~)b _ 1/(1~2)b

,U P =b[~/(1~2)b+l _ ci/(l~)b+l]a .

~r =1rJ.1+ei32)/(1~2)b -JJ..1~)/(1~)b



Table 3.3. - Continued

Double
ExponentiaJ.

170.

( ) ( ) -ax. -bxm x;a,b,p = l-p ae + pbe

" - -sa -~ -ba -bpP = (l-p)(e .:(';: ) + pee -e )

- -ba '-b~ (-sa -~)u P =e -e - e -ep

U P = (l-p)(13e-~~ae-~a
~P = p(13e-b~_Qe-~

<

see text.

Where m(x: ••• ) is migration function With distance x, and a, b and p are

paramet~rs. P is defined asP = . f m(x; ••• )dx (~> a) and U is score.
a



Table 4.2.1.

Gene frequency at the sixteen polymorphic sY'Stems in northeastern Brazil.

(!lbtaJ. population in parent)

(p and a stand for gene frequency and its standard errorI respectively')

!!.rltaJ. distance (kin.) ... [O-GO) [0-3] (3-27] (21-GO)

Genetic Gene'
system. Name BLnary p ± a' pta p±a p±a

Secretor Se 1 .5531 ± .0091 .5414 ± .0220 .5619 ± .0171- .5552 ± .0141
se 0 .4463 ± .0091 .4526 ± .0220 .4381 ± .0171 .4448 ± .0141

Lewis Le 1 .5311 ± .0096 .5409 ± .0220 .5513 ± .0116 .5161 ± .0138
le 0 .4683 :f: .0096 .4591 ± .0220 .4421 ± .0116 .4839 ± .0138

'W,a .0321 ± .0061 .0451 ± .0180 .0294 ± .0103
\.

Lutheran 1, .0311 ± .0085
Lu 0 .9619 ± .0061 .9549 ± .0180 .9106 ± .0103 .9689 ± •0085

Pro T 1 .6250 ± .0101 .6331 ± .0230 .6336± .0183 .6193 :f: .0145
t 0 .3750 ± .0101 .3663 ± .0230 .3664 ± .0183 .3807 ± .0145

p p. 1 . .6270 ± .0101 .6143 ± .0228 .6117 ± .0181 .6355 ± .0146
~+p 0 .3730'± .0101 .3857 ± .0228 .3823 ± .0181 .3645 ± .0146

Du:f'fY' Fy~ 1 .2833 ± .0016 .2929 ± .0115 .2913 ± .0140 .3184 ± .0115
F:I 0 .1161 ±.0016 .1011 ± .0115 .1027 ± .0140 .6816 ± .0115

Inv Inva 1 .2099 ± .0061 .2131 ± .0153 .2009 ± .0119 .2131 ± .0098
Inv- 0 .1901 ± .0061 .1863 ± .0153 .1991 ± .0119 .1869 ± .0098

1:i



Table 4.2.1. - Continued

Genetic Gene
~ :I: asystem Name Binary p:l:a p:l:a p:l:a

Diego Dia 1 .0219 :I: .0051 .0158 :I: .Olll .0257 :I: .0096 .0223 :I: .0074
Di 0 .9781 :I: .0051 .9842 :I: .Olll .9743 :I: .0096 .9777 :I: .0074

Haptoglobin IF 100 .2159 :I: .0064 .2072 :I: .0152 .2222 :I: .013.4 .2500 :I: .0126
18 010 .2554 :I: .0068 .2513 :I: .0155 .2416 :I: .0124 .2633 :I: .0139
2 001 .5287 :I: .0079 .5414 :I: .0187 .5362 :I: .0142 .4867 :I: .0154

Hemoglobin A 100 .9731 :I: .002' .9813 :I: .0048 .9731 :I: .00116 .9689 :I: .0040
8 010 .0199 :1:.0022 .0149 :I: .0043 .0206 :I: .0040 .0221 :I: .0033
C 001 .0070 :I: .0013 .0037 :I: .0022 .0063 :I: .0022 .0090 :I: .002J.

Transferrin B 100 .0031 :I: .0009 .0100 :I: .0035* .0063 :I: ~ 0022 .0015 :I: .0009
D 001 .0132 :I: .0018 .oll8 :I: .0031 .0155 :I: .0028
c 010 .9837 :I: .0020 .9900 :I: .0035~ .9819 :I: .0038 .9830 :I: .0029

Kell K 100 .0257:1: .0055 .0286 :I: .0202 .0145 :I: .0073 .0354 :I: .0092
ks 010 .9447 :I: .0077 .9424 :I: .0286 .9523 :I: .0131 .9383 :I: .oll6
k· ~ Oll .0296· :I: .0059 .0290 ± .0202 .0332 :I: .0109 .0263 :I: .0078

AD)

~
llO .1566 :I: .0058 .1753 :I: .0136 .1616 ± .0107 .1477 :I: .0082
010 .0526 :I: .0038 .04ll :I: .0077 .0601 :I: .0073 .0529 :I: .0055

B 001 .0808 :I: .0043 .0670 :I: .0089 .0828 :I: .0078 .0857 :I: .0064
0 000 .7100 :I: .0074 .7166 :I: .0169 .6955 :I: .0137 .7137 :I: .0104

....
~
•



Table 4.2.1. - Continuecl

Genetic GenE!
system. Name Binary' p:l:a p:l:a p:l:a p:l:a

MNSsU MS 1010 ..1970 :I: .0068 .1914 :I: .0162 .2154 :I: .0123 .1855 :I: .0100
Ms 1001 .3451 :I: .0086 .3363 :I: .0250 .3331 :I: .0143 .3563 :I: .0124
M* 1000 .0091 :I: .0042 .0199 2 .0240 --- ** .0119 :I: .0055
NS 0110 .0162 :I: .0053 .0578 :I: .0108 , •o8l2 :I: .0086 __ .0895 :I: .0082
Ns 0101 .3485 :I: .0089 .3660 :I: .0210 .3103 :I: .0141 .3366 :I: .0125
Nit 0100 .0241 :I: .0050 .0286:1: .0119 --- ** .0202 :I: .0063

--am. a 10000 .2233 :I: .00911- .2144 :I: .0208 .2062 :I: .0169 .2426 :1:.0138
ab 11000 .2203 :I: .0092 .2245 :I: .0210 .2221 :I: .0166 .2123 :I: .0133
ax 10100 .0762 :l: .0042 .0746 :t .0095 .0828 :l: .0079 .0749 :I: .0006
abc 11010 .0643 :I: .0039 .0123 :I: .0094 .0569 :1: .•0066 .0649 :I: .0051
b(l,2) 01001 .4159 :I: .0015 .4142 :I: .0169 .4314 :I: .0135 .4053 :I: .0109

Rh ode r) 00011 .2810 :I: .0100 .2964 :I: .0228 .3011 :I: .0182 .2619 :I: .0145

Qle r'l 00l0l
. .0175 :I: .0037 .0256 :I: .0097 .0120 :I: .0054 .0157 :I: .0053

cdE r" 01010 .0025 :I: .0014. --- ** --- ** --- **OdE rY' 01100 .0007 :I: .0008 --- itt --- itt .~~- ff
cDe Be> 10011 .2213 :I: .0097 .2109 :I: .0216__ .2230 :I: •OJ.14__ .2361 :I: .0142__

CDe(li'> 10101 •3276 :I: .0078 .3041 :I: .0181. .3289 :I: .0137 •3444 :I: .0115
cDE(R.c) 11010 .1349 :I: .0054 .1630 :I: .0121 .1290 :I: .00911- .1359 :I: .0076
CDE(RZ ) llloo .0025 :I: .0014 --- ** --- ** --- **

E
•



Table 4.2.1. - Continued

Genetic
system

Rh

Gene
N8Dle BLDary'

cde r) 00011

oo.e r!I01001
caE r" 00110
CdE ~ 01100
cDe Be 10011

ODe(R:I'> 11001

cDE(~) 10110

CDE(RZ
) llloo

cde'(r!n)01011

p:l:a

.2852 :I: .0102

.0095 :I: .0113

.0025 :I: .0014

.0007 :I: .0008

.2261 :I: .0098

.3300 :I: .0086·

.1349 :I: .0054

.0026 :I: .0015

.•0085 :I: .0108

p:l:a p:l:a P :I: a

* Genes, B and D, are pooled because of low frequency.

H Since d:1tt1culty in ·iterations is o1;>served, the gene is dropped fran. the analysis.

I-'

~.



~b1e 4.2.2.

Gene frequency· at sixteen polymorphic systems in northeastem Brazil.

(Remote population in parent)

(p and a stand for gene frequency and its standard error, respectively)

MaritaJ. distance (km.) ~ [0,00) [0,3] (3,27] (27,00)

Genetic Gene
system Name Binary pta pta pta pta

Secretor Se 1 .5531 ± .0101 .5436 ± .0243 .5588 ± .0184 .5572 ± .0144
se 0 .41169 ± .0101 .4564 ± .0243 .4412 ± .0184 .4428 ± .0144

Lewis U: 1 .5264 ± .0100 .5325 ± .0242 .5539 ± .0183 .5116 :t.0141
1e 0 .4736 :t .0100 .4675 :t .0242 .41161 :t .0183 .4884 :t .0141

Lutheran w.a 1 .0313 :t .0062 .0386 :t .0169 .0286 :t .0107 .0321 :t .0088
Lu 0 .9687 ± .0062 .9614 :t .0169 .9714 :t .0107 .9679 :t .0088

Pro T 1 .6256 ± .0105 .5490:1: .0291 .6429 :I: .0191 .6185 :I: .0149
t 0 .3744 :I: .0105 .4510 :I: .0291 .3571 :I: .0191 .3815 :I: .0149

p ~ ~ .6286 ± ~0~05 .6066 ± •025~ .6230 ± .0~89 .6370 ± .0~50

P2+P 0 .3714 :I: .0105 .3934 :I: .0251 .3770 :1:.0189 .3630 :t .0150

Duffy
a 1 .2810 :I: .0079 .2908 :I: .0192 .2953 :t .0145 .2663 :I: .0109Fi_

Fy 0 .7190 :I: .0079 .7092 :t .0192 .7047 :I: .0145 .7337 :I: .0109

Inv Inva 1 .2054 :I: .0070 .4097 :I: .0222 .2031 :I: .0124 .2143 :I: .0101 ....
Inv- 0 .7946 :I: .0070 .5903 :I: .0222 .7969 :I: .0124 .7857 :I: .0101 vl.



Table 4.2.2. - Continued

Genetic Gene
system Name Binary p:l:a p:l:a p:l:a p:l:a

Diego Dia 1 .0205 :I: .0051 .0163 :I: .01l4 .0204 :I: .0090 .0230 :I: .0076
Di 0 •9'T95 :I: .0051 .9837 :I: .0114 •9796 :I: .0090 .9770 :I: .0076

Haptoglobin IF 100 .2168':1: .0068 .1964 :I: .0166 .2264 :I: .0l2O .2143 :I: .0096
18 010 .2536 :I: .0071 .2598 :I: .0171 .2382 :I: .0127 .2625 :I: .0103
2 001 .5296 :I: .0082 .5438 :I: .0207 .5355 :I: .0147 .5232 :I: .0117

Hemoglobin A 100 .9'130 :I: .0027 •9788 :I: .0057 .9707 :I: .0050 .9714 :I: .0039
s 010 .0197 :I: .0023 .0167 :I: .0050 .0224 :I: .0044 .0196 :I: .0032
C 001 .0073 ± .0014 .0045 :I: .0026 .0069 :I: .0024 .0090 ± .0022

Transferrin B 100 .0031 :I: .0009 ;0088 :I: .0044* .0060 :I: .0023 .0016 :I: .0009
D 001 .0139 :1:' .0019 .0128 ± .0033 .0158± .0029
c 010 .9830 ± .0021 .9912 ± .0044- .9812 :!: .00110 .9826 ± .0030

Ke11 K 100 .0258 ± .0057 .0151 :I: .0114 .0202 :I: .0090 .0340 ± .0091
k 010 •9442 ± •0079 .9542 ± .0160 .9470 ± .0146 .9390 ± .0117
k S 011 .0300 ± .0060 .0307 ± .0161 .0328 ± .0114 .0270 ± .0081

ABO A1 110 .1564 ± .0061 .1764 ± .0155 .1600 :I: .Olll .1502 :I: .0085
~ 010 .0514 ± .0039 .0295 ± .0073 .0632 :I: .0078 .0515 ± .0055
B 001 .0837 :I: .0045 .0678 ± .0099 .0857 ± .0083 .0889 ± .0067
0 000 .7085 :I: .0077 .7263 ± .0182 .6911 :I: .0143 .7094 ± .0108

.....a.



Table 4.2.2. - Continued

Genetic Gene
system Name Binary' pta p±a p±a pta
-

MNSsU MS 1010 .1958 ± .0072 .1951 ± .0179 .2127 ± .0127 .1839 ± .0103
Me 1001 .3428 ± .0091 .3149 ± .0282 .3334 ± .0147 .3549± .0128
M* 1000 .0109 ± .0048 .0347 ± .0281 --- ** .0136 ± .0062
NS 0110 .0775 ± .0055 .0535 ± .0124 .0813 ± .0092~ ~ .0916 ± .0084
Ns 0101 .3548 ± .0092 .3989 ± .0243 .3726 ± .0147 .3421 ± .0127
N* 0100 .0182 ± .0053 .0029 ± .0200 --- ** .0139 ± .0062

--
am a 10000 .2196 ± .0098 .2040 ± .0232 .1976 ± .0176 .2427 ± .0141

ab llOOO .2249 ± .0097 .2318 ± .0238 .2322 :I: .0176 .2137 :I: .0136
ax 10100 .0748 ± .0044 .0664:1: .0099 .0820 :I: .0082 .0757 :I: .0062
abc 11010 .0636 :I: .0040 .0668 :I: .0099 .0579 :I: .0069 .0652 ± .0058
b(1,2) 01001 .4171 ± .0078 .4310 :I: .0189 . .4303 ± .0141 •4027± .01l2

Rh cde 0001l .2862 :I: .0105 .2972 :I: .0251 .2985 ± .0192 .2707 :I: .0149
Cde 00101 .0182 :1:.0039 .0270 :I: .Olll .0132 :I: .0059 .0157 :I: .0053
cdE 01010 .0027 ± .0016 --- ** --- ** .0037 ± .0026
OdE 01100 .0001·:1: .0009 ** ** .~ ± .00ijcDe 10011 .2284 ± .0101 .2043 ± .0235 __ .2283 ± .0184 .2 ± .01
ODe 10101 .3255 ± .0082 .3053 ± .0200 .3300 ± .0192~- .3358 ± .01l8
cDE 11010 .135~ :I: .0057. .1662 :I: .0141 .1300 :I: .0098 .1342 ± .0081
CDE llloo .Q02 ± .0015 --- ** --- ** .0001 ± .0025

* Genes, B and D, are pooled because of low frequency.
*t The gene is omitted from the iteration process because of mathematical difficulty.

....
~
~
•



TabJ.e 4.2.3.

~78.

Gene frequency at sixteen polymorphic systems in northeastern Brazil.

(ToteJ. population in parent)

(p and a stand for gene frequency and 1ts standard error, respectiveJ.y)

Distance x ,[~nsity ... [0-30) [30-~80) [~80-oo)

Genetic Gene
system. Name BLnary p::l:a pta p::l:a

secretor Se ~ .5543 ::l: .0258 .5511J. :I: .0175 .5583 :I: .016~
se 0 .41J.57 :I: .0258 .41J.86 :I: .0176 .41J.~7 :I: .0161

Lewis) Le ~ .5376 :I: .0254 .5471J. :I: .0171J. •5~85 :I: •0~58
1e 0 .4621J. :I: .0254 .1J.526 :I: .0171J. .4815 :I: .0158

Lutheran
. a

~ .0531 :I: .0211 .0197 :I: .•0087 .•0347 :I: .0098Lu
Lu 0 •9469:1: .0211 .9803 ::l: .0087 .9653:1: .0098

T ~ •5861J. :I: .0261 .6530 :I: .0183 .6~74:1: .0~66
t 0 .4136 :I: •026~ .31J.70 :I: .0183 .3826 :I: .0i66

p p~ ~ .6039 :I: .0263 .6361J. :I: .0182 .6317 :I: .0167
P20f0]? 0 .3961 :I: .0263 .3636 :I: .0182 .3683 ::l: .0167

~
1 .2929 :I: .0202 .2812 :I: .0136 .2766 :I: .Oi21J.
0 .7071 :I: ·.0202 .. 7188 :I: .0136 •7234 :I: .0121J.

Inv Inva
~ .2063 ::l: .0176 .2018 ::l: .0119 .2198 ::l:.0111J.

Inv 0 .7937:1: .o~76 •7962 :I: .0119 .7802 ::l: .0111J.

Diego Di
a

~ .0087 ::l: .0086 .0241 ::l: .0097 .0268 :I: .0088
Di 0 .9913 ::l: .0086 .9759 :I: .0097 .9732 :I: .0088

Haptoglobin IF ~oo .~993 :I: .0~63 .2341 ::l: .0117 .2089 ::l: .0107
~S o~o .2692 ::l: .0181J. .2366 :I: .0122 .2734 :I: .0116
2 OO~ .5315 ± .0214 •5291J. :I: •0~1J.o .5~77 :I: .0132

Hemoglobin A ~o ·9747 ± .0065 .9727 ± •oo1J.6 •969~ :I: .0045
S+C 01 .0253 :I: .0065 .0273 ± .0046 .0309 :I: .0045

Transferrin B+D 10 .0~01 ::l: .0036 .0217 :I: .0041 .0~45 ± .0031
c 01 .9899 :I: .0036 .9783 ± .001J.1 .9855 ± .0031
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Table 4.2.3. - Continued

Genetic Gene
system Name B1.nar';y' p ± cs p ± cs p±cs

Kell K 100 .0431 ± .0197 .0078 ± .0055 .0398 ± .0107
k 010 .9219 ± .0231 .9725 ± .0103 .9285 ± .0136
k S 011 .0350 ± .0176 .0197 ± .0087 .0317 ± .0094

~
110 .1738 ± .0161 .1544 ± .0104 .1452 ± .0093
010 .0598 ± .0108 .0601 ± .0072 .0508 ± .0061

B 001 .0696 ± .0105· .0838 ± .0078 .0850 ± .0073
0 000 .6967 ± .0203 .701'r ± 10 0131 .7190 ± .0121

MNSs MS 1010 .1962 ± .0168 .2144 ± .0124 .1862 ± .0112
Me 1001 .3366 ± .0215 .3487 ± .0139 .3644 ± .6i34
NS 0110 .0858 ±.0136 .0819 ± .0088 .0933 ± .0090
Ns ·0101 .3814 ±".0225 .3550 ± .0137 ~ 3561 ± .0133

am a ooסס1 .2521 ±.•0246 .1890 ± .0176 .2512 ± .0158
ab 11000 .2074 ± .0228 .2390 ± .0175 .2057 ± .0151
ax 10100 .1075 ± .0131 •.0732 ± .0074 .0770 ±" .0070
abc "11010 .0674 ± .0105 .0599 ± ~0067 .0641 ±.0064
b(11 2) 01001 .3656 ± .0186 .4389 ± .0135 .4020 ± .0127

Rh cde 00011 .3088 ±.•0252 .2796 ± .0186 .2735 ± .0165
CDe 11001 .3352 ± .0196 .3404 ± .0140 .3381 ± .0132
cDe 10011 .2141 ± .0238 .2288 ± .0180 .2395 ± .0162
cDE 10110 .1307± .0137 .1361 ± .0095 .1330 ± .~7
Cde 01001 .0112 ± .0079 .0151 ± .0062 .0159 ± .0060
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Table 4.2.4.

Gene frequency at sixteen polym.o1j?h:Lc systems in northeastern Brazil.

(Remote p0puJ.8.tion in parent)

(p and a stand for gene frequency andits standard-error, respectively)

Distance x,[density -+ [0-30) [30-180) [180~)

Genetic Gene
system. Name BLnary p :t: a p :t: a p :t: a

Secretor Se 1 .5615 :t: .0279 .5506 :!: .0179 •,,80 :!: .0166
se 0 .4385 :!: .0279 .4494 :!: .0179 • 2O:!:.0166

,

Lewis Le 1 .5255 :!: .0272 .5155 :!: .0248 .5138 :!: .0162
1e 0 .4745 ± .0272 .4845 :!: .0248 .4862 ± .0162

bltheran wa 1 .0493 ± .0215 .0211 ± .0093 .0359 ± .0102
w o· .9507 ± .0215 •9789 ± •0093 .9641 :!: .0102

Pre T 1 .5949 ± .0282 .6598 ± .0189 .6141 ± .0171
t 0 .4051 ± .0282 .3402 ± .0189 .3859 ± .0171

p p 1 •5605± .0276 .6353 ± .0186 .6365 :!: .0172
~-t:P 0 .4395 ± .0276 .3647 ±.0186 .3635 :!: .0172

Fy:a 1 .2770 ± .0213 .2828 :!:.0140 .2758± .0127
Fy- 0 .7230 ± .0213 .7172 ± .0140 .7242 ± .0127

Inv a 1 .1986 ± .0186 .2004 ± .0122 .2125 ± .0115:mv
Inv 0 .8014 ± .0186 .7996 ± .0122 •7875 ± .0115

Diego Dia 1 .0000 .0214 ± .0095 .0278 ± .0092
D:L 0 1.0000 •9786 :!: •0095 •9722 ± •0092

Haptoglobin 1F 100 .1920 ± ;0175 ..2412 :!: .0121 .2097 ± .0112
18 010 .2720 ± .0196 .2332 :!: .0124 .2694 :!: .0119
2 001 .5360 ± .0226 .5256 :!: .0143 .5209 :!: .0136

Hemoglobin A 10 .9705 ± .0076 .9729 :!: .0047 .9716 :!: .00411-
S+C 01 .0295 ± .0076 .0271 :!: .0047 .0284 ± .0044

Transferrin B+D 10 .0136 ± .0051 .0230 ± .0043 .0152 ± .0033
C 01 .9864 ± .0051 .9770 ± .0043 .9848 :t: .0033
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~ble 4.2.4. - Continued

Genetic Gene
system. Name BIJ'!ary p:l:a p:l:a p :I:'a

Kell K 100 .0481 :I: .0219 .0083 :I: .0059 .0382 :I: .0106
k 010 .9128 :I: .0258 .9749 :I: .0J.02 .9289 ± .0138
k S 011 .0391 :I: .0196 .0168 :I: .0083 .0329 :I: .0098

~
110 .J.791 :I: .0116 .1512 :I: .0106 .1490 :I: .0097
010 .0551:1: .0112 .0622 :I: .0075 •0496 :I: .0063

B OOJ. .0729 :I: .0115 .0868 :I: .0082 .0885 :I: .0076
0 000 .6929 :I: .0219 .6998 ± .0134 .7129 :I: .0126

MNSs MS 1010 .J.870 ± .0175 .a45 :I: .0128 .1836 :I: .0115
Ms J.ool .3300 :I: .0225 .. 3488 ± ;0J.43 .3663 :I: .0138
:NS 0110 .0885 :I: .0153 .0844 :I: .009J. .0951 :I: .0093
Ns 0101 .3945 :I: .0245 .3523 :I: .0J.39 .3550 :I: .0137

am. a ooסס1 .2447 :I: .0264 .1872 :I: .OJ.79 .2504 :I: .0161
ab 11000 •22ll :1:.0253 .2390 :I: .01'78 .2072 :I: .0J.55 .
ax 10J.00 .J.018 :I: .0137 •0727:1: .0076 .0784 :I: .0073
abc 11010 .0672 :I: .0112 .0605, :I: .0070 .0640 :I: .0066
b{l,2) 01001 .3652 :I: .0203 .4406 :I: .0J.38 .4000 :I: .0131

Rh cde 00011 •2995 :I: .0273 .2795 :I: .0J.92 .2987 :I: .0194
CDe 11001 .3485 :I: .0217 .3346 :I:.0J.41I- .3420 :I: .0151
cDe J.ooll .2119 :I: .0258 .2302 :I: .0J.86 .1963 :!: .0185
cDE 10110 .J.269 :!: .0148 .1401:1: .0098 .1408 :I: .0093
cae 01001 .0132 :!: .0093 .0156 :!: .0064 .0222 :I: .0086

- !
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Table 4.2.5.

Gene frequency at sixteen polymor;ph:l.c systems in northeastem Brazil

(p and a stand for 'gene frequency and its ~tanJa.rd error, respectiveJ.y)

Genetic Gene Parents 'Whose· degree Children
system Name B:1nar,y of consanguinity

is unknown. Total Remote
pta .p p

secretor Se 1 .5296 ± .0400 .5456 .•5438
se 0 .4704 ± ".0400 .4544 .4562

Lewis. Le ~ .5565 ± .0406 .5216 .5175
1e 0 , .4435 ± .0406 .4784 .4825

LUtheran wa 1 .0253 ± .0250 .0319 .0329
w 0 .9747 ± .0250 .968l .9671

T 1 .5565 ± .0406 .6060 .6060
t 0 .4435 ± .0406 .3940 .3940

p
~+p

1 .6613 ± .0426 .6118 .6185
0 .3387 ± .0426 .3882 .3815

Duffy
. a

1 .3535 ± .0345 .2819 .3034Fi_
Fy' 0 .6lt65 ± .0345 .n81 .6966

..
Inv Inv.... 1 .1702 ± .0253 ·2J.53 .2112

Inv- 0 .8298 :I: .0253 .7847 . .7888

Diego ma 1 ** ·3135* .3118*
Di 0 ff •6865t' .6882t'

Haptoglobin IF 100 .2193 ± .0278 .2133 .2164
18 010 .2456 :I: .0266 .2546 .2492
2 001 .5351 ± .0324- ·5321 .53~ .-

Hemoglobin A 100 •9788 ± .0095 •755~ •7485Ji**
,-

S 010 .0212 ± .0095 .1802I1! .1835i&itt
c 001 ·.06~.~

-...- -... "
Transferrin B 100 ** .0026 .0026

D 001 .9877 :I: .0071... .0145 .0151
c 010 .0123 ± .0071 .9829 .9823
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, Table 4.2.5. - CorLtinued

Genetic Gene Parents whose degree Children
system Name Binary ot consangu1n1ty

is unknown Total Remote
p:l:a p p

Kell K 100 .0410 :I: .0130 .0273 .0283
ks 010 .9590 ± .0130 .9440 .9lt23
k Oll .0287 .0293

~
110 .1790 ± .0261 .1541 .1523
010 .0561 ± .0164 .0560 .0552

B 001 .0587 ± .0155 .0820 .086~
0 000 .7062 ± .0298' .7079 .7063

MNSs MS 1010 .2235 ± .0260 .2012 .1999
Ms 1001 .3339 :1:.0301 .3359 .3347
M* 1000 --- ** .0186 .0192
NS Ouo .0470 ± .0169" .0149 .0747
Ns ,0101 .3956 ± .0328 .3558 .3570
N* 0100 ** .0136 .0145

am a ooסס1 .2154 ± .0481 ' .2363 .2322
ab 11000 .1598 ± .03911- .2099 .2116
ax 10100 .0985 ± .0208 .0739 .0728
abc 11010 .0349 ± .0123 .0575 .0586
b(1, 2) 01001 .4914 ± .0336 .4224 .4248

Rh cde 00011 .3439 ± .0445 .2862 .2848
Ode 00101 .0440 ± .0201 .0~J"3 .0149
cdE 01010 ** .0023 .0025
caE OUOO ff .0012 .0013
cDe 10011 .1888 ± .0398" .2330 .2348
CDe 10101 .3044 ± .0355 ·3192 .3163
cDE 11010 .1189 ± .0198 .1424 .1448
ODE lllOO ** .0014 .0006

* ConditionaJ. probability that at lea.st one ot parents is Diego
positive.

**' Ignored because ot rare frequency.

*** ConditionaJ. probabUity that both Parents are not genotype ~.



Table 4.3.1.

Code of inbreeding.

Code

c

Inbreeding coefficient

F [a,b)

o
3
4
5
6
7
8
9

o
1/8
1/16
1/32­
1/64
1/128
1/256
F > 0

--
no known consanguinity
[.1768 - .0884
[.0884 - .0442
[.0442 - .0221
[ .0221. -.olio
[.OllO ~.0055

[.0055 -0.
o but degree unknown

Where c = -10&;1

a = -antilo~ (c-l/2)

and

b = -antilo~ (c+l/2) 0



Table 4.3..2.

Distribution ot couples by the coefficient ot consanguin1ty and the mar!tal distance.

(Parental generation)
- -

F = coefficient ot consanguinity,. a = estimated inbreeding coefficient, a = stanaard error ota.
g;

(i) Total Population
. -

Distance Degree
(lon. )" F -+0 1/8 1/16 1/32 1/64 1/128 1/256 unknown TotaJ. Q:l:a

(F > 0)
-

[0-.5) 20 1 5 2 3 1~ 206
.0157:1: .0055 .0131 ± .0018[.5-3!5) 113 2 25 4 10 4 2 15 .0127 :I: .0019

[3.5-9.5) 98 1 13 3 5 1 2 14 137 326 .0088 :I: .0018 .0061 :I: .0010[9.5-27.5) 155 2 4 3 5 2 1 17 189 .0042 :I: .0012
[27.5-81.5) 217 1 9 3 3 1 1 9 244 .0037 :I: .0009
[81.5-243.5) 161 7 3 1 3 175 510 .0031 :I: .0010 .0031 :I: .0006[243.5-729.5) 62 2 1 65 .0024 :I: .0014
[729.5~) 26 26 .0000
unknown _ 26 26

TotaJ. 878 7 65 17 25 9 6 61 1068 .0059 :I: .0006

Grand parental
generation 1462 5 "1'9 13 14 0 1 129 1703 .0036 1.: .0004

&
•



Table 4.302. - Continued
lii) Close Population (F ~ 1/32)

Distance
__(lone ) 1/8 1/16 1/32 0 TotaJ. a ± a

[0-.5) 1 5 25 31 .0141 :t .0056
[05-3.5) 2 254 144 175 .Olll :t .0019
[3.5-9.5) 1 13 3 120 137 .0075 :t .0018
[9.5-27.5) 2 4 3 180 189 .0031 :t .0012
[27.5-81.5) 1 9 3 231 244 .0032 :t .0009
[81.5-243.5) 7 3 165 175 .0030± .0010
[243.5-729.5) 2 1 62 65 .0024 :t .0014
[729.5- co) ooסס.2626
unknown 26 26

.0115 :t .0018

.0050 ± .0010

.0030 ± .0006

Total 7 65 17 979 1068 .0051 :t .0006

ill!) Remote Population· (F < 1/32)
Distance

(lono) a±a

[0-.5)
[.5-3.5)
[3.5-9.5)
[9.5-27.5)

. [27.5-81.5)
[81.5-243.5)
[243.5-729.5)
[729.5- co)

Total

.0020 ± .0009

.0020 ± .0003

.0015 ± .0003

.OOll ± .0002

.0005 ± .0001

.0002 :t .0001

ooסס.

ooסס.

.0009 :t .0001 .

.0020 :t .0003

.0012 ± .0002

.0003 ± .0001

~.



Table 4.3.3.

Distribution of coupJ.es by the coefficient of conSanguinity· and distance x -{density.

(Pa.rentaJ. generation)

(i) 'l'otaJ. Population

»,J:tance x . Degree
density F ~ 0 1/8 1/16 1/32 1/64 1/128 1/256 unlmown Total. Q±a

(F > 0)

[0·-~·5) 20 1 5 2 3 31 .0157 ± .0055
[ .5-3.5) 24 8 1 2 1 1 37 .0155 ± .0042
[3.5-905) 62 2 II 2 4 1 1 II 94 .0121 :I: .0027
[9.5-27.5) 101 16 4 7 3 2 13 146 .009? ± .0016
[27.5-81·5) 148 3 6 3 6 2 1 20 189 .0057 :I: .0014
[81.5-243.5) 184 9 1 3 1 1 10 209 .0034 ± .0009
[243.5-729.5) . 182 1 6 3 1 4 197 .0032 ±.0010
[729.5- 00) 124 4 2 130 .0024 :I: .0010
unlmown 33 1 1 35· .0013 ± .0010

Total 878 7 65 17 25 9 6 61 1068 .0059 :I: .0006

t-I
ex>
-~•



Table 4.3.3. - Continued

(i1) Close Population (F a 1/32) (iii) Remote Population (F < 1/32)

Distance x
.[density F ... 1/8 1/16 1/32 0 TotaJ. a±a a±C1

[0-.5) 1 5 25 31 .0141 ± .0056 .0020 ± .0009

[ .5-3-5) 8 1 28 37 .0144 :I: .0043 .0015 ± .0008

[3.5-9.5) 2 11 2 79 94 .0106 :I: .0027 , .0018 ± .0004

[9.5-2705) 16 4 126 146 .0077 :I: .0017 .0017 ± .0004
[27.5-81.5) 3 6 3 177 189 .0045 :I: .0014 .0013 ± .0003
[81.5-243.5) 9 1 199 209 .0028 ± .0009 .0006 ± .0002
[243.5-729.5) 1 6 3 187 197 .0030 :!: .0010 .0002 :I: .0001

[729.5- co) 4 2 124 130 .0024 ± .0010 ooסס.

unknown 1 34 35 .0009 ± .0003 .0005 :I: .0005

Total 7 65 17 979 1068 .0051:1:.0006 .0009 ± .0001

~.



Table 4.3.4.

Bioassay' of the inbreeding coefficient fran individuaJ. parental phenotn>e frequencies (G-TXPE).

Total ·PO tion - ii Remote·PoPuJ.a,tioni

- Genetic Inbreeding - Inbreeding
~..

system. coefficient Score Information . coefficient Score Information

a Ua Ka x2 a Ua Ka
y}

,

Haptoglobin .0421 100,,0718 3971.8275 2.50 .0385 93.0729 3666.8614 2·32
H~globin· -35.5618 -59.4975 1.6463 2150.24** -35·5632 -54.3034 1.5086 1954.68**
Transferrin -59.3274 -35.7096 .5932 2149.56ff -57.0635 -33.8968 .5878 1954~75ff
Kell -14.3742 -11.0863 .7505 163.76" -13.9683 -10.4429 ·7292 149..55"
A1~ -.5180 -6.6584 .0108 4087.5Off -4.3739 -4.6985 .0062 3532·55"
MNSsU .0262 -51.8931 36li.5645 .75~~ .0236 -29.9755 3423.1910 .26~~

am. .0480 52.3551 2181.0116 1.26 ~0414 44.1351 2008.2060 1.00
Rh -.0019 -105.9314 3893.2823 2·92 -.0112 -94·3918 3613.4341 2.49

With eight systems:

a = .0170 -118.3488 13666.6867 8558.49**
:1:.0086

a = .0132 -89.9009 12714.5243 7597.60**
:1:.0089

. Without four systems being significant with 1 percent level:

a = .0246 -5.3970 13663.6859 7.43 a = .0208 13.4407 12711.6925 6.07
:1:.0086 :1:.0089

** 1 percent level significant

....
&
•
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Table 4.3.5.

Bl.oassay of the inbreeding coef'f'icient from mating type :frequencies.

(MATDE)

(i) TotaJ. PopuJ.ation
-
Genetic

X
2system Ua xa

Secretor -.0930 -J.22,3843 J.085.8265 13.79**·
Lew:Ls .0267- 10.9124 1574.1185 .08~~

Lutheran -7.2940 -30;5751 4.0075 233.27**
Pl'C .0222 -2.9862 1067.7441 .01~~

P .0258 .437'8 J.072.2795 .00 .
Duf17 .0527 1ll.6582 294J.·3581 4.24*
Inv .0251 35.6936-, 3270~4829 .39~

Diego -J.o.8141 -20.J.01I6 1.7786 227.26**
Haptoglobin - .0205 85.3637 11843.341 .62~~
Hemoglobin .0088 -25.9538 5621.2518 .12
Transferrin .0237 83.2232 8143.9629 .85
Kell -3.1883 --63.6790 19·0722 212.61**
Am .0085 -48.2697 8976.2J,6J. .26~~

MRSsU .0124 -76.6036 l204J..649 .49
Gm .0209 90.9479 J.3688.338 .60
Rb -.0011 -174.5448 11749·369 2·59

ex = .0133 -1116.8643 83100.8263 697.18**
± .0035

Removed four systems (see text).

".0160 89.8787 8J.99O.14J.5 10.25
± .0035

* 5 percent level significant
-** J. percent level significant
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Table 4.3.5. - Continued

(ii) Remote Population

Genetic
X
2system a Ua Ka

secretor -.0850 -103.8535 1070.1724 10.o8H'
Lewis .0237 17.9954 .1542.5702 .21~~

Lutheran -7.5827 -27.4778 3·5230 214.32**
Pro .0150 -.1847 ~046.3972 .oo~~

p -.0~60 -28.4~40 909.234~ .89
])lffy .0405 85·3153 2716.~083 2.68
Inv .0183 28·9092 3014.0368 .28
Diego -11.7126 -~7.3511 1.4360 209.65**
Haptoglobin .0181 112·9659 11476.496 1.U......
Hemoglobin -.0014 -55.4074 5677.6502 .54
'rransferrin .0190 138.4814 ' 13258.250 ~.45
Ke11

..
-3.~781 '-58.9556 ~7·999~ ~93.U**

AB> .0057 -23.4637 83l1·910~ .07~ ...
MNSsU .0080 -46.2461 13.482.968 .19
am .0146 72.4727 12786.~32 .41
Rh -.0089 -189.2872 10901.084 3·29

a= .0082 -94·5012 84215.9674 '638.28H'
:I: .0034

Removed four systems. (see text).

.0~06 113.~368 83122.8369 11.12
:I: .0035

** 1 percent 1e~ significant



Table 4.3.6.

Bioassay of the inbreed:l.ng coefficient in children (G-T!P.E).

(i) TotaJ. Population (1i) Remote Population
- -

Genetic
X2

X2
system a Ua ICa a Ua .ICa

t
~

Haptoglobin .0435 265.8770 8494.8494 8.32** .oltoo 254.7923 7796.91163 8.33**
Transferrin .0175 29.7645 5946.5908 .15".... .0141 74.8080 11615.3595 .48"'~

Kell -15.7171 -27.3352 1.7075 437.61** -14.8998 -24.8450 1.6547 373.049-
Am 5.3686 -10.4590 .0122 ~ ,. 4.0736 -6.0841 .0043--
MDSsU .0148 -48.7718 10059·1870 .24 .0096 -25.5608 9751.3988 .07
Gm .0078 -42.4787 4718.7649 .38 .0081 -9·5117 4310.3675 .02
Rh -.0197 -293.5307 8736.9353 ;9.86*· -.0354 -341.9613 7799.5369 14.99**

~

a = .0121 -126.9339 37958.0471 a = .0073 -78.3626 41275.2680

Note the instability at the AB> locus.

The hemoglobin system is excl\lded from analysis because only children whose both parents are not ~ were typed.

* 5 percent level significant

** 1 percent level significant

~
•
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Table 4.3.7.

BLoasss.y of the inbreeding coefficient for consanguineous marriages

whose degree 'is unlmown.

(MATlPE)

Genetic
X2system. ex Ua Kex

Secretor .0006 -1.0749 91.0790 .01
Lewis -.0376 -3.15'78 74·5953 .19
Lutheran -9.4295 -1.09411- .1123 ' 10.67**
Pro -.0376 -3.15'78 74.5953 .19""
p, ' -7.7110 -8.1236 1.0236 64.41**
:Duffy -.0731 -12.1221 146.o1f68 1.01""
Inv -.0413 -9.5677 188.2109 .49
Haptoglobin .0458 39·3117 1060'·5684 1.1&6
Hemoglobin -7·5015 -8.0435 1.o1f61 61.85**
~sferrin ' -13.0526 -4.7883 .3580 64.03ft
Kell -3.8025 -16.3874 4.1999 63.9lf.ft
ABO .0643 48.6854 881·9926 2..69~~
MNSs .0167 5.1452 767~4288 .04
am .0267 10.1208 483.4427 .18
Rh -.0754 -39·4076 465·7609 3.33

a = .0086 -4.2020 4340.1&606 214.55**
:I: .0152

** 1 'percent level significant



Table 4.3.8.
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I
I
I

THE TOTAL INBREEDING COEFFICIENT IN NORTH-·
EASTERN' BRAZI L

~A PARENT CHILDREN'METHOD ION

PEDIGREE 0036t .O()()oCl .0059tpOO6

BIOASSAY .0170t .0086 .0121 UNKNOWN
GENCHYPE) CONSANGUI

BIOASSAY .0133:!: .OO3~ .OO86:!:.0152
~AiING TYPE

NIH
~



Table 4.3.9.

Components ot the totaJ. inbreeding coet:f'icient ot children

in northeastem Brazil.

195· .
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Table 4.3.10.

Inbreeding coefficient With maritaJ.distance.

[ -bx -bxLI:I. f:l: ae I II. f = ae r'x]

.(i) Total. PO,PUlation ~ Remote Population (iii) Close POJ)ulation

Distance Inbreeding coefficient
(km~ ) Bioas~ BioassB¥ Pedigree BioassB¥ BioassB¥ Pedigree BioassB¥ BioassB¥ Pedigree

1~ (B) Study! CA) CB) St~+ __u_u_~__ • (B) Stuc1y+ .

.0 -- -- .0151 -- -- .0020 -- -- •0141
1.1 .0150 .0103 -- -.0028 -.0113 -- .01'18 .0216
2.0 -- -- .0127 -- -- .0020 -- -- .0111
6.5 -- -- .0088 -- -- .0015 -- -- .0015

12.1 .0241 .0199 -- .0244 .0198 -- -.0003 .0001
16.1 -- -- .0042 -- -- .0011 -- -- .0031
49.9 -- -- .0031 -- -- .0005 -- -- .0032

134.2 -- -- .0032 -- -- .0002 -- -- .0030
161.2 .0110 .0082 -- .0043 .00l,4 -- .0061 .0038
408.5 -- -- .0024 -- -- -- -- -- .0024
-
I.

a .0212 .0169 .0085 .0141 .0016 .0018 .0064 .0086 .0064
± .0058 ± .0056 ± .0011 ± .0062 ± .0056 ± .0002 ± .0056 ± .0051 :I: .0010

b .0038 .0041' .0130 .0062 .0023 .0233 -.0000 .0064 .0<;>85
± .0033 ±, .0042 ± .0040 :I: .0066 ± .0011 ± .0051 ± .0072 ± .0114 :f: .0036

:

2
X for
goodnes's
of fit .80 ·91 19.41** 5.90* 8.55** . 2.20 2 ..66 3.85* 11.13**

(df=l) (df=l) (df=5)- (df=l) (elf=l) (elf=4) (elf=l) (elf=l) (d:f=5) I-'

~
•



Table 4.3.10. - Continued

·11.
a -- -- -- -- -- .0034 .0201 .0584

± .0004 .± .0138 ± .5604

b -- -- -- -- -- .0032 .0143 .4171
± .0031 ± .1203 ± 5.5374

X
2 -- -- -- -- -- 3·52 2·38 ·57

* 5 percent level significant
,..

** 1 percent level significant
--
+ Distance zero is omitted in stud¥ II.

.1-

~
•

_J



. ,

.0014 .0029 .0051
:!: .0115 :!: .0113 :!:.0007

.0059 .0060 .0067
:!: .1371 :!:.0652 :!: .0004

1.20 1.70 19.68**
(dt=l) (dt=l) (dt=6) ~

.0201 .0206 -- .0178 .0169
.0092 -- -- .0017
.0057 -- -- .0013

.0179 .0144 -- .0178 .0135
.0034 -- -- .0006
.0032 -- -- .0002

~0074 .0038 -- -.0010 -.0038
.0024

.0199 .0187 .0102 .0215 .0193 .0018
:!: .0061 :!: .0066 :!: .0013 :!: .0094 :!:.0119 :!: .0002

.0011 .0019 .0062 .0034 .0050 .0062
:!: .0010 :!: .0021 ± .0017 . :!: .0054 :!: .0096 :!: .0012

.00 .12 16.83** .26 ·51 .•85
(dt-l) (dt=l) (dt=6) (dt=l) (dt=l) (dt=5)

a

x2

b

I.

Table 4.3.11.

Inbreeding coefficient with marital distance x .[density.

[I. f I: ae-bX, II•. f = ae-bX;.fx]

W Total Population (ii) . Bemotepopulation (iii) Close Population

Distance JC Inbreeding coefficient

.[density Bioassay Bioassay Pedigree i Bioassay Bioassay Pedigree Bioassay Bioassay Pedigree
____..a;(A~)__....(__Bl Stua,+ CA) (B) Stud('" CAl CB)" stua,+

.0 -- -- .0157 -- -- .0020 -- -- .0141
2.2 -- -- .0155 -- -- .0015 -- --.0144
6.5 -- -- .0121 -- -- .0018 -- -- .0106

10.8
17.1
50.1
86.5

153.6
422.9
897.5

1939.4

~
•



Table 4.3.11. - Continued

II.
a

b

x2

** 1 percent level significant
~~

+ Zero class is omitted in study II.

,>

.0812 .0713 .0051 .0072
± .0308 ± .0338 ± .0007 ± .0397

.0004 .0014 .0003 .0052
± .0034 ± .0080 ± .0009 ± .1799

2.77 1.84 15.08** 1.19 --

~
\0
•



200.

Table 4.3.12.

Estimation of systematic and migration pressures fran inbreeding function.

One D1mensionaJ. lA'..odel

Migration pressure Systematic pressure

Distance stud1' ( I = 20)

~tal bioassay A

Remote pedigree

12.31 ± 4.01

1'r.40 ± 2.79

.0011 :I: .0000

.0824 ± .0140

Distance x ,[dJansity (I = 1)
,r -

~tal bioassay A 105.57 :I: 58.18 .0068 :I: .0055

Remote pedigree 150.62 :I: 22.19 .4313 ± .0689

Remote bioassay A 57.80 ± 55.42 .0194 :I: .0251

Clos~ bioassay A 174.69 ± 2638.30 .5280 :1:9.3326:.





Table 4.3.13. - Continued

202.

System

Rh

Gene ex

-.0224

.0011 4.1194

.0038 10.2876

.0128 47.9146
~151.6496 -7.0290

-.3828 (-.0011)

2608.2877

3860.8571
2696·4591
3757.4264

.0462

.00

.04

.61
··1068.92**

* 5 percent level significant
~** 1 percent level significant
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Table 4.3.14•.

Estimated tri-raciaJ. gene frequencies (Krieger et aJ.., 1965), With the
. - 2

equivaJ.ent inbreeding coefficient l' [ = a /p(l-p) l.

(The proportions of Negro, Indian and Caucasian are .301, .1l4 and .585,

respectivel:y) •

System .Gene Negro Indian· Caucasian mean l' 9.=Epf
p

Secretor Se .538 ·500 ·570 ·552 .0023 .0023
se .1162 ·500 .430 .448 .0023

LeWis Le .319 .545 .660 .544 .0932 .0932
le .681 .455 .340 .•456 ·0932

Lutheran Lu~ .964 1.000 ·964 ·968 .0042 .0042
Lu. .•036 .000 .036 .032 .0042

pre t .207 .207 .506 .382 .0920 .0920
T .793 .793 .494 .618 .0920

p P2"'P .246 .570 .458 .407 .0512 .0512
Pl .754 .430 ·542 ·593· .0512

:Dufi'y Fy~ 1.000 .318 .603 .691 .2301 .2301
Fy .000 .682 ·397 ·309 .2301

Inv InV~ .684 .693 ·900 .8ll .0723 .0723
Inv .316 ·307 .100 .189 .0723

Diego Di~ 1.000 .830 1.000 ·981 .1550 .1550
Di .000 .170 .000 .019 .1550

Haptoglobin 1 .624 .731 .384 .496 .0743 .1048HP2
HP2m .235 . .251 .616 .459 .1387
Hp .141 .•018 .000 .045 .0946

Hemoglobin A ·910 1.000 1.000 ·973 .o6hA- .0637,
S .066 .000 .000 .020 .0468
e - .024 .000 .007 .•0167.000

Transferrin e ·939 .996 .994 ·977 .0?94 .0295
B .000 ·.002 .006 .004 .0020
D .061 .002 .000 .019 .0422



204.

Table 4.3.14. - Continued

System. Gene Negro Indian Caucasian mean f a=Epf
p

ks .851 1.000 ·952 ' ·927 .0400 .0421
k .144 .000 .000 .043 .J.046
K .005 .000 .048 .030 .0167

~
.J.05 .000 .236 .170 .0505 .0538
.052 .000 .068 .055 .0085

B ·J.50 .000 .066 .084 .0230
0 .693 J..ooo .630 .69J. .0612

MNSsU MS .ll8 .236 .270 .220 .0269 .0148
Ms .358 .462 ·310 .342 .0J.03
MIE' .052 .000 .000 .016 .0368
NS .058 .J.07 .076 .074 .0030
!fs .336 ·J.95 .344 ·325 .0099
.N* .078 .000 .•000 .023 .0556

GIll a .000 ·775 .204 .207 .3028 .4469'
ax .000 .J.23 .092 .068 .0329
ab .786 .J.02 .000 .249 .6708

~t
.214 .000 .000 .065 .J.592

b ;2) .000 .000 .704 .4ll .4969

Rh r .ll3 .000 .1104 .270 ·J.330 .J.44o
v .075 .000 .000 .023 .0533r

r' .000 .000 .008 .005 .0033
'v .026 .000 .000 .008 .0J.81.r

r" .006 .000 .005 .005 .•0007
rY .000 .000 .001 .OOJ. .0004
Do .475 .0J.6 .053 .176 .266J.

~ ·J.50 .000 .000 .045 .J.092

~
.082 ·533 .4J.5 .327 .J.245
.073 .439 .llO .J.36 .J.026
.000 .012 .004 .004 .0033

G-6-P-D s .609 ·930 J..ooo .874 .2801 .2620

ia .221 .000 .000 .067 .J.61t6
.J.70 .067 .000 .059 .J.036





iBb1e 4.4.1. - Continued

206.

System 1!~t1ng type Observed Expected
0=.0133 a=o

Transferrin . CO x CC 980 978.87 977·58
(o=~98) CO xCB* 60 62.25 64.79
(BK"=B+D) CC x B*B* 0 .94 ·54

CB* xCB*~ 4 1.88 1."07
CBt x BJE'B* 0 .06 .02
BJE'B* x DtDt 0 .00 .00

TotaJ. 1044 2 3.47 2
X4 = X4 = 8·92
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Table 4.4.2.

Mating type :frequencY' at two allelic loci with complete dominance.

System. Mating type Observed Expected
a=.0133 a=o

Diego a x,a 0 .61 ·39
(Dia=.02) a x - 18 16.68 11·22

- x - 190 190·71 190·39

TotaJ. 208 ~= .12 ~= .43

Lutheran axa 0 1.17 .85
(Lua=.03) a x - 21 24.51 25·29

- x - 181 188.31 181.85

214 2
xi=TotaJ. Xi = 1.44 ·91

Inv axa 158 151.12 141.09
(Inva=.21) a x - 461 416.20 488.81

- x - 411 414.67 406.10

, TotaJ. 1042 xi= ·50 xi= 2.07

:Duffy axa 275 254.17 251.10
(Fya=.28) a x- 485 519.64 531.60

- x - 304 289·59 280.10

1064 2
xi= 8.18**TotaJ. Xi = 4.63*

,..
Lewis LexLe 652 643.65 646~oo

(Le=.53) Le x le 351 360.15 363.01
le x le 51 55.60 51.00

TotaJ. 1060 xi= .41 '2 1.16Xl=

8ecretor 8ex8e 668 678.26 681.11
(Se=.55) Se x se 365 331.44 338.16

sex se 29 46.31 42.12

1062 2
xi= 6.37*TotaJ. Xl = 8.87**

Pro, TxT 788 781.22 785.03
(T=.62) Txt 251 251·96 256.95

txt 24 23.82 21.03

TotaJ. 1063' xi= .25 xi= ·51



Table 4.4.2. - l;!ontinued

208.

System Mating type Observed Expected
a=.0133 a=o

P Pl x Pl 792 784.67 788.59
(Pl =·63)

P1 x P2 248 255.97 254.83

P2 x P2 24 23.36 20·59

Total 1064 xi= .33 xi= .'76

* 1 percent level significant
,..

H 5 percent level significant



Table 4.4.3

Effects of inbreeding (a=.0133) on h.

Factor Gene h2 & Incanpatib1e CalE,patib1e h
3 & Incross with

frequencY' 'backcross backcross respect to
p (a=o) Uh

1 (a=o) dominance
e=- ~ e ~ e I<1m

Kim

Se ·5537 .3828 -.0084 -.0700 -566 -.0427 ·571 .6191 .0083 .0031 1555
La .5317 .3621 -.0073 -.0283 554 -.0559 603 ·5931 .0092 .0134 1416
Gmx .0762 .0396 .0055 .-.0227 1473 -.0021 1295 .0776 .0247 .0135 68
Om

e .0643 .0332 .0057 .0254 1163 -.0465 1529 .0653 .0250 -.0925 40
Inva .2099 .ll73 .0031 .0097 J.346 -.0033 J.299 .2208 .0209 -.OllO 317
T .6250 .4545 -.0123 -.0931 245 .0504 264 .7024 .0054 -.0332 1225
~ .1566 .0850 .0042 -.0007 1685 .0236 1311 .1628 .0225 .0662 213

~ .0624 .0322 .0058 -.0283 714 .0451 994 .0634 .0251 ·5000 16
B .0808 .0421 .0055 -.0243 1454 -.0093 1677 .0824 .0246 -.0627 75
D .6923 .~224 -.0168 -.0054 701 -~~99 ~

.7785 .•0028 .0113 29'l1
*4t~ p 06270 • 567 -.0124 -.0660 379 -. 54 10 .7648 .0053 -.0109 2162.;

Fya 02833 .1650 ··.0014 .0374 1118 -.0163 1111 .3028 .0186 .1156 546
JJ:J.a .0321 .0163 .0062 .0150 160 -.0584 226
Dia .0219 .ow. .0064 -.0397 156 -.0221 190

"

~
•



,
Table 4.4.3. - Continued

Factor Gene h2 l:lh Incompa~ible Compatible h3 l:lh Incross with
frequency backcross backcross respect to

p (a=o) u (~) dominance
e =!l 11m e B1m e ~
~

f .5168 .34811- -.0061 -.0412 199 -.0251 183 .5154 .0098 .0216 456
V .0840 .0438 .0054 -.0618 418 -.0719 416 .0851 .0245 .0000 20

k
S .0296 .0150 .0062 .0498 261 -.0541 223

& = -.01l4 ± .0326 &1 = -.0158 ± .0323
e = .0013 ± .0068 e = .0013 ± .0066
r = .35 r = .33 .

& = the expected deviation due to inbreeding (0=.0133)
e = the observed deviation
Kim =weight of observation

r =correlation coefficient between & anel e

&1 = .0080 ± .0381
e = .0016 ± .0054
r = .46

~
•

""



Table 4.5.1.

Distribution. of couples with mar:LtaJ. distance in grandparent.

Observed Expected
Distance (kin.) x I II nI lV V VI VII VIn IX

.0 - .5 0 74 17.76 4.io 747.18 23.98 59.70 .28 67.07 -- 68.60
·5 - 3.5 2.04 385 102.72 24.79 297.80 114.83 516·78 8.64 308·98 -- 325.62

3·5 - 9·5 6.45 272 187.04 50·56 159·85 172.04 299·12 38.32 355·83 -- 363.97
9.5 - 27·5 16.13 348 438.63 158.18 155.34 336.66 . 237.55 189.29 420.34 -- 324.92

27.5 - 81.5 49.93 338 648.38 492·81 128.41 481.07 173.07 622.33 300.18 -- 258.29
81.5 - 243.5 134.24 200 298.14 874~01 92.65 409.19 123.10 741.67 149·57 -- 283.80

243.5 - 729.5 408.45 74 10.33 98.56 59.07 150.42 86·92 41.09 62.28 -- 77·02
729.5 - 00 850.08 12 .00 62.69 14.82 206.75 61.39 38.75 -- .78

Total . J.703 .J.703-.!00 . J.19.3.-.! QQ..}.703.00 J.1Q3.00 . J.1Q.3-.! 00 .J..193.00 ..J.703. ()O -- J.703.00

~
•



~b1e 4.501. - Continued

Observed Expected
I II III IV V VI VII VIII IX

2X for
goodness of fit -- 372016 8195 J.lt61 967 481 37797 94 -- 248

parameters
.0065 .2983 .0156 .0916 .1lt60estimated a -- .02J.0 .2517 .1599 --

:1:.0003 :1:.0000 :1:.0026 :1:.0007 :1:.0025 :1:.0001 :1:.0089 :1:.0177

b -- -- -- -- -- -- -- .6971 -- .0095
:1:.0554 :1:.0003

p -- -- -- -- -- -- -- -- -- .4596
:1:.0177

mean distance it 53.17 47.7:1:.6 66.2:1:.3 16.5:1:.4 94.7:1:.6 -- 100.9:1:.4 -- -- 52.2

inbreeding
coeff'ic:tent ex .0165* .0167 .0152 .019'2* .0168*' .0169* .0151* .0186* -- .0161

~ ~ ~

X = a point weighted by obserVed number of couples

I = ex,PonentiaJ.., II =nomal., III :i:: lognormaJ.., IV = square root exponentiaJ.., V =Skellam.,
.~~ = Bessel., VII = beta., VIII =generaJ.ized SkeJ Jam., and IX = doubleexponentiaJ.

* Discrete approximation (see text)

~.



Table 4.5.2.

DJ..sltribution of couples with maritaJ. distance in parent.

Observed Expected
DJ..stance (m.) I II III IV V VI VII VIII IX

.0 - ·5 31 6.49 2.16 ~.26 8.52 28.58 .17 24.44 5·79 27.25
·5 - 3·5 175 38.11 13·0r

{ 161.90 43.13 258.311- 5.19 124.33 167.63 137.77
3·5 - 9·5 137 72.07 26.59 87.78 69.43 161.41 23.06 171.97 254.58 179.68
9.5 - 27.5 189 186.44 82.137 88.20 150.89 137.63 114.19 256.12 230.65 208.43

27.5 - 81.5 244 362.68 260.85 " 77.23 258.13 108.14 377.76 230.311- 151.08 164.38
81.5 - 243.5 175 326·55 545.35 60.42 296·39 83.07 456.68 134.02 92.41 "213.19

243.5 - 729.5 65 49.54 111.11 42.74 176.92 63.37 33.51 60.62 55.77 106.66
729.5 - co 26 .11 59.48 38.59 201.45 31.45 40.16 84.08 4.63

TOtaJ. 1042 1042.00 1042.00 1042.00 "1042.00 1042.00 1042.00 1042.00 1042.00' 1042.00

P3
"W
•



Table 4.5.2. - Continued

Observed Expected
I II III IV V VI VII VIII IX

2
X for

goodness
6626 3242 1156 663 475 66 344 188of fit -- 12030

parameters.
.0074 .2663 •1890 .1246 .0154 .0549 .0974 . .1068estimated a -- .0125

:1:.0002 :1:.0001 :1:.0029 :1:.0011 :1:.0027 :1:.0001 :1:.0063 :1:.0122 :1:.0088

b -- -- -- -- -- -- -- .8765 .2319 .0066
±.0627 :1:.0134 ±.0003

p -- -- -- -- -- -- -- -- -- ·5325
±.0245

mean distance x86.90 8o.0±l.4 76.8:1:.5 34.0 167.9±2.1 -- 102.0:1:.6 -- -- 85·2

inbreeding
.di51*coefficient a .0175* .0163 .0142 .018701t .0153* .0153* .0175* .0173* .0167

I "" exponential" II =normaJ." III = lognormaJ." IV = square root exponential" V = Skellam"
VI = Bessel" VII = beta" VIII = generaJ.ized Skellam., and IX. = double exponential

* Discrete approximation (see text)

~
•



Table 4.5.3.

Distribution of couples with marital. distance weighted bY' square root of densitY' in grandparent.

Observed Expected
Distance JC x

.[densitY' I II III IV V VI VII VIII IX

.0- 05 0 74 5.26 2.69 764.48 7.70 33.69 .26 22.56 2·51 20.68

.5- 3·5 2.22 85 31.20 16.21 229.56 . 40.76 317.81 7·98 121.56 100.48 115.44
3·5- 9·5 6.51 204 60.68 32.85 125.28 69.45 213.. 91 35.62 189.56 295.26 192.07
9.5- 21'.5 17.09 313 169.00 101.69 129.51 164.08 195.49 177.72 341.73 418.87 362.20

27.5- 81.5 50.07 353 406.83 322.19 119.21 324.30 165.35 598.40 396.08 328.82 345.~o
" 4-

81.5..243.5 153.56 300 646.41 827.17 100.17 474.95 136.90 753.55 296.56 206.26 250.22
243.5..729.5 422.89 235 352.69 - 387.19 77.69 422.65 112.62 76.00 167.25 129.93296·81
729.'''00 1939.35 120 17.94 144.10 186.11 514.24 40.47 154.70 217.87 107.06

-
Total 1690 1.690.00 1690.00 1690.00 1690.00 1690.00 1690.00 1690.00 1690.00 1690.00

t;.



Table 4.5.3. - Continued

Observed Expected

I II III ·IV V VI VII VIII IX

2X for goodness }

169of fit -- 2336 3856 2202 1184 1123 23443 2262 179

parameters estimated a -- .0062 .0056 .2341 .1395 ·0902 .0149 .0381 .0280 .0438
±.OOOl ±.OOOl ±.oo16 ±.0011 ±.OO19 .±.OOOl ±.OO34 ±.oo26 ±.oo25

b -- -- -- ._- -- -- -- .7114 •2132 .0027 .
±.0371 :1:.0084 ±.OOOl

p -- -- -- -- -- -- -- -- -- .•4647
±.0183

- 238.3 160.5 95.8 308·3 182.mean distance x 100.2 -- 105·1 -- --
± 2.6 ± ·9 ± 3·0 ± 4.8 ± ·5

inbreeding coefficient
a .0167* .0169 .0175 .171* .0150* .0137* .0174* .0167* .0164* .0170

0.-

x = a point weighted by observed number of couples

I = exponential, II = nonnal., III = lognonnal., IV = square root exponential, V = Ske11am,
VI = Bessel, VII =beta, VIII = generalized Ske11am, and IX = double exponential

oJ~ Discrete approximation

~
•



"

Table 4.5.4.

Distribution of couples with maritaJ. <1:I.stance weighted by square root of density in parent.

Distance x Observed Expected

,[denSity; I II III IV V VI VII VIII IX

\

.0 - .5 31 2.11 1.36 473.08 3.37 17·09 .16 8.04 .71 9.42

.5 - 3·5 37 12.58 8.19 123.68 18.17 164.35 4.87 45.17 30·97 52.76

3·5 - 9·5 94 24.69 16.56 67.69 31.76 114.38 21.75 77.06 119.89 88.55

9·5 - 27.5 146 70·55 51.02 71.33 77·91 107.85 108.53 162.54 234.56 171.41

27.5 - 81.5 189 182.99 161.48 68.02 164.37 94.30 365.57 234.83 210.14 182.37

81.5 - 243.5 209 358.65 453.75 60.16 268.91 80.75 460.77 215·97 146.41 175.60

243.5 - 729.5 .197 329.21 49.87 287.58 68.73 48.01 140.15 97.81 240.2i (.>- r
340.66

729.5 - 00 130 52.22 119.16 180·94 385·56 ~3.35 14~~.25 192·50 112.66
-

TotaJ. 1033 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00 1033.00

~.



I =exponentiaJ., II =normal, III =lognormal, IV =square root exponentiaJ.; 'V =Skellam,
VI = Bessel, VII =beta, VIII ;:: generaJ.ized Skellam, and IX = double exponential

* D!screte approximation (see text).

,
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Figure 2.5.2.

Effect oflnb,..dlno on matlno
type (autalome). Two a lie lei.
A and a. without dominance.
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Figure 2.5.3.

Effect of Inbreeding on mating
type (autosome). Two allele., A
and 0, with complete dominance.
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Effect of inbreedi ng on matin
ty pefreque nc lea (sex-I inkedl
Two alle'lea, A and a, without
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Effect of inbreeding on mating
type frequencies (sex-linked).
Two aIIllel, A and a, with com-

.5 plete dominance.
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Effect of subdivision of
population on Snydtrll
ratio (S).
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Figure 2.6.2.
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Figure·~.7.l.

Anhomooenoul Iymmetrlcal
population .tructure In . one
dimension...

The arrows denote flow of migrants and J! is the relative propor­2 .
tion of migration to an isolate by each generation. The indices are

arbitraril¥ assigned far isolates. All distances between two isolates

are the same.
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An homogenous symmetrical population
structure In two dlm __ nslon

m m'The arrows denote flow of migrants and - and - are the relativa
2 2

proportion of migration to an isolate by each generation_ The- indices

are arbitrarily assigned for isolates - All distances between two· iso-

lates are the same-
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.10
INBREEDING BY DI STANCE
IN NORTHEASTERN BRAZIL
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Migration frlJD.ctions and their reJ.ation.

----------.

~----,----1-- ..1 . sum. of 1
.nomaJ. 11 - --__Ino1'm8J..

~ 1 Igamma. ,.,......----tlmodified gamma. 1
.;.. _ _ _ _ __ I l: _ _ _ _ _ .. __ ,I

'beta f'unctionl
1 (generaJ.) IL J

a Bessel
type

sum. of
ex;ponentiaJ.

~ogno1'm8J.

Studied in text.

i - - -1 Not studied in text.
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Figure 4.5.2•
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