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ABSTRACT

From the standpoint of humen _pqpu_lation genetics, one of the most
pertinent problems 13 to assess frequencies ‘of individual phenotypes and
Amat:l.ng types in terms of gene frequencies and the inbreeding coefficient.
An assumption of random mating is often made in order to estimate gene
frequencies and then genotype and mating type frequencies based on Hardy-
Weinberg binomial law. However, there might be several genetic barriers
to prevent a random combination of genes.

The _firs'_t part of the present .thes:l.s is devoted to a theoretical
investigation on gene'biq barriers which has 1e6., as an extension 6f
Wahlund's principle, to derivation of mating type frequencies as a func-
tion of gene frequencies and the inbreeding coefficient, pfovided that
the inbreeding coefficient is not greater than the smallest gene fre-
quencies (which is true in almost all human 'polym'orphic' systems). In
this connéction, the effect of inbreeding on segregation ana.lysis is
elso examined.

As a parameter describing genetic barriers, the most meaningful
interpretation of the inbreeding coefficient 13 as a coefficient of cor-
relation between uniting gametes in Wright's sense. The positive cor-
relation which measures effects of ‘genetic barriers on combination of
genes consists of ascertained and unascertained consanguinity. The nega-
tive correlation which may be observed in a small population is also |
included in the unascertained inbreeding coefficient. The total
inbreeding coefficieﬁt is due to contributions from both close and remote
gonsanguinity.

In the second part, a method of maximum likelihood scoring is

developed to estimate simultesneously population gene frequencies and the



X
inbreeding coefficient from individual freq,uenéies and from ma.t;ng type
frequencies by use of an electronic computer. It has been found that

the two a.'.l.lelic‘ system with complete dominance and the ABO bléod group
system do not g:l.ve any information about the .inbreei'l.ng cbefficient when
individual data are used.

The present theory has been tested with 1068 femilies from north-
eastern Brazil by employing sixteen polymorphic systems. Péd:l.gree
a;na.'l.ysié and bioassay revealed »ﬁhat the remote inbreeding coei’ficient is
as great as the close 1nbreed:lng coefficlent that is ascertainable from
pedigree analysis. Therefore the elimiﬁa‘bion rate for rare recessive
genes is greater than had been estj.mated pmﬂously. Racial end.ogamar
contributes only 22 per cent of the totel inbreeding coefficient for
polymorphisms, end less for rare genes (monomorphisms). |

To describe humsn population structure, the maritel distance, defined
as distance be'bween birth plaqes of mates, is the most pertinent measure.
An exponential relation between the inbreeding coefficient and the |
marital distance has been predicted by' Maleco{'.. - This is a good approxi-
mation in remote consanguinity, but deviation apparently due to prefer-
entlal mating of relatives is found for close consa.ﬁguiﬁity. A tendency
for the inbréeding coefficient to decrease by generation cannot be detec-
ted through pedigree study due to incamplete ascei'tainment » but is found
by the new methods of bioassay and study of migration functions.



1.
l. Introduction

Population genetics may be divided into two major fields, either
study of populations in which gene frequencies are assumed to be constant,
or popula'bions‘ in vhich gene frequencies va.ry in time. The main‘ problem
in the first branch is to describe phenotype (or genotype) frequencies in
terms of gene frequencies and factors which dépend. on the structure of
populstion. From the standpoint of human population genetics, the perti-
nent problem is concerned with gll those factors which determine mating
preference.

The research in this line is still infant due either to lack of
reasonable theories or presénce of several difficulties in field work.
For example, the Hardy-Weinberg binomiel law (Hardy, 1908; Weinberg, 1908)
may be applied under the assumption of random mating. In humen populations,
-however, the assumption of random mating may be unrealistic s since there
exist several factors which cause departure from the Hardy-Weinberg law.
Apart from selection, mutation and random genetic d.rift » there is lsola-
tion due to geographical, racial, religious, social, economic, profes-
sional, and other barriers. The effect of 'Bhis isolation on the relation
between gene frequencies and genotype frequencies is evident in a popula-
tion with local differentiation ofl géne frequencies. Furthermore, isbla-
tlon mey result in assortative mating and consa.nguineor\is marriage.
Migration in subdivided populations gives rise to racial mixture, clines,
and discontinuous gene distributions. Much research has been made on the
proportion of consanguineous marriages in man, but little has been studied
in relation to isolation.



2.
It was Wahlund (1928) who worked out some maxhematicél consequences
' of & subdivided population to explein why the breskdown of isolates de-
cresses hamozygosity. The following year, Dahlberg (1929) formulated the
idea of "isolete size" by pointing out an important demographic concept
that the number of coﬁsagguineous marrisges was cldsely related to family
'size and population number. These results were, howevéf, not applied to
actual populations.

In the field of quentitative genetics, Wright (1921) introduced the
inbreeding coefficient, F, as a measure of nonrandomness‘between ﬁniting
gametes. Iater, Mslecot (1948) established that the inbreeding coeffici-
ent could be understood from the stendpoint of probability theory. The
most significant application of the inbreeding coefficlent in populaxio#’
genetics has been the expression of genotype frequencies as a function
of geﬁe freénencies and the iﬁbreed;ﬁg coefficient.. |

It is not surprising therefore that Wright (19%3, 1956, 1951) ahd
Malecot (1948, 1950, 1959) have made en attempt to adapt their model to
 describe human populstion structure. Wright extended his theory to in-
clude isclation by.distance, retaining the notion of isolate size. He
derived the mean inbreeding coefficient in terms of systematic pressure
on gene freguency and neighborhooi size, defined for a normal migration
in two dimensions as the effective number in a circle of radius twice the
standard deviation of offspring in one direction. Malecot, on the ofher
hand, derived the inbreeding coefficient as a function of marital dis-
tance, defined aé the distance between birth places of mates, from a sto-
chastic equation with an empirical migration function. ‘He suggested that
the rate of decreasing in inbreeding coefficient by distance wes independ-

ent of neighborhood size.
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Both models have been applied to several human populations and have
encountered difficulty in estimating isolate or neighborhood size and dis-
tance between mates born within the same parish, wvillage, or other
demographic uait. | |

" Combining theory with practice, it has been realized that one of the
main problems in studying populetion structure in man is to ascertain the
inbreeding coefficient of a glven population.

Recently, I have developed a model from Wahlund's principle which
permits us to evaluate mating type frequencies in nonrandomly mating popu-
lations and to estimate the total inbreeding coefficient, including the
contribution due to remote coﬁsa.nguinity. Also, I have generalized the
. meaning of the inbreeding coefficient for describing humsn population
structure. In this thesis, a systematic description of population struc-
ture in men will be given in the second chapter, some statistical methods
- will be d.'!.scussed. in the third, end then the theory will be applied to a
‘population from northeastern Brazil (Morton, 196L4).



2. Theoretical Studies
2.1. Randomly mating populations

A diplophase generation begins when gametes from a gene pool are com-
bined pairwise into zygotes according to some rule§ these zygotes experi- |
ence mig‘ration, mutetion, and differential mortality and :t’erbility; and
the generation terminates with the haplophase gene pool of the next gener-
ation. By pammixia or ra.ndom mating we mea.n that uniting ganmetes are
drewn independently from the gene pool, without restrictions due to finite
population size, inbreeding, or assortative maeting, and are gnumerated.
before differential selection has a.cted.’. Accordingly, genotype frequency
and mating type frequency can be calculated by the Hardy-Weinberg binomial
law. | | '

Confusions in definition of random mating showld be pointed out here,
since only an infinite population allows an inbreeding coefficient of
Zero. _ |

Thus the binomial celculation of expected genotype frequencies and
mating type frequencies from & gene arrsy can be applied approximstely in
a finite population, but this is not a nardy-weinberg populatioﬁ unless
the population size is indefinitely large. The term "homogamy” has been
proposed (Malecot, 1948) for rand.om mating by zygotes, but in this thesis,
we wj.l.'l. consider only rand.om combination of genes as random mating.

2.2. The inbreeding coefficient

Wright's inbreeding coefficient is the most meaningful quantity in
populetion genetics to describe departure from randomness between uniting
gametes. Consider a single locus with two alleles and their frequencies

p and q (=l-p) in a gifen population. The probabilities that two gametes
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should unite are p2, 2pq and o under random mating. When & positive
correlation between uniting gametes 1s observed, these frequencies change
in such a way that hdmozygosity‘increaséa end heterozygosity decreases,
with no change in gene frequency. It is easily shovﬁ that the change in
-genotype frequencies is pGF, where F‘ is the correlation coefficient be-
tween uniting gemetes, also called as Wright's inbreeding coefficient
(Table 2.1). Having need of theoretically clear bases for studying sys-
tems of miting in experimental populations, Malecot (1948) has given
another importent interpretation of Wright's inbreeding coefficient from
the viewpoint of probebility theory. Suppose that a given populaetion is .
paxrtitioned in two parts; in one fraction mating is random and in the
other combination of gametes is restricted to those which are identical
by descent. If f is taken as the la.ttér proportion, that is also the
probability that two gehes' are identicel by descent, then the increment
of each homozygote is given by paf (Teble 2.1). Thus F=f, and the two
definitions are identical. S

, When we consider several such populations together in which gene
frequencies are the same but f may vary among populetions, the frequencies
of three genotypes in the total population will be Zwip(p-!-qfi),
w,2pa(1-2,) and 2w a(qtpf,), where w, is the relative size of the isth

i
popula:l:.ion whose fra.c{'.ion fi‘. is the probability that two genes are iden-
tical by descent and summation tekes over all populations. Those propor-
tions mey be written in terms of the mean 1nbreeding coefPicient
o (=zw1fi), thet has been introduced a priori by Bemstein (1930), (Tsble
2.1). Bernstein's coefficlent of inbreeding msy also be interpreted in

a population whose inbreeding coefficient f is heterogeneocus.
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It is obvious, therefore, that the inbreeding coefficient can be
underé\‘topd as a measure of non-randomness that also describes zygote fre-
quencies, the correlation between uniting gainetes ’ a.ﬁd the probebility
that two genes are identical by descent. Besides these, 11’:' can measure
degree of differentiation in subdivided populations, and mating type fre-
quencies can be described by it. ' ‘

Wright (i9h-3) has proposed fhe inbreeding coefficient for populations
with hierarchic structure. Defining the panmictic index as the comple-
".ment of the inbreeding coefficient, the panmictic index of individuals
relative to the totél is equal to the product of the hierarchical panmic-
tic indices. This is merely an .appmach to defining the inbreeding coef-
ficient between populations in his study. Malecot (1950) has given a
recurrence relation of the inbreeding coefficient among i:opulations.
(Detail of this will be explained with discussion of distence since his
works are less familiar so far.) This line of develo;ment of the coeffi-
clent of inbreeding, taking an é,fbitrary reference population will be
helpful vwhen we consider a subdivided population.

In a@dition to the above general definition of the inbreeding coef-
ficient, it is worthwhile to consider the number of coefficients for an
autosomal locus. Since the definition of the inbreeding coefficient is
concerned with only one gene, if the number of alleles is n, then the
number of inbreeding coefficlents at the locus is also n. Consequently,
there are n-1 independent inbreeding coefficients at a locus. The
in‘bree@.‘l.ng coefficient of the locus, £, is then,

f = Zf‘ipi

vhere f; and p; are the inbreeding coefficient of the i-th allele and its
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freq,uency,’ respectively. In a polymorphic system f:l. may be nearly f for
all i. Discussion on this point will be given in chapter three. With
definition of the inbreeding coefficient of an allelé y 1t is of interest
how the heterozygote frequency shall be written in terms of gene frequen- |
cies and the inbreeding coefficient of alleles. Suppose that three geno-
type ffeq_uencies, say Py 2y 5 and P'j 3 (1#3) are expressed with respect
to two alleles frequencies Py and p 3 (it is not necessary that pi-l'p 3 =1),
their inbreeding coefficient £, and f 3 and a decreasing proportion of 4

i
heterozygote, fi 3
P,. = po + p, (1-p, )£
11 T Py T P\ Ay
and

ETRE R NCE AT

Since the sum of three genotypes should be expressed in form, R(1-F) +

IF, vhere R = (p,4p,)%, T = (p,#p,) and F = (py2,4p,%,)/(p,%p,), then we

obtain " ' ' ' " . ' |
£33 = (fi-l-:t‘d)/z’.

Nemely, the fraction in which heterozygosity is depressed can be calcu-

lated from a simple average of the 1n'bréeding coefficients of the two
alleles. |

2.3. Wahlund's principle
2.3.1. Discrete model
Supliose that a population is divided into many endogemous pen-
mictic smaller populations ("isolates") restricted by geographical, racial,
religious, social, or economic barriers. Iet wi(mi=l) be the relative
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size of the i-th isolate. If & genetic system consists of two alleles
A a.pd a with fréq,uency Dy and 9 in the i%-;bh isolate, respectively, then
the mean frequency of gene A, p, and its variance, 0'2, in the total popu-

letion are

and g = Z(pi-P) W, = EP?"’i -P,
respectively, where summation is over all isolates. Since the frequencies
of AA, Aa and aa genotypes in the total popuiat:!.on are given by Zpiwi 3
22piqiwi and Z'q:'wi s the subdivision results in increasing homozyéosity |
by an amount equal to the gene frequency variance, o> (Table 2.1). |
Wehlund (1928) discovered this result end discussed it in i:he'caées of
dominance and‘co-dmina.nce. | | |

Comparison of heterozygous frequencies with Wright's or Malecot'é

result leads to Wright's formula

o® = p(1-p)F (Wright, 1949).

All of the above arguments hold for an arbitrary mumber of alleles, for
each of which an inbreeding coefficient can be defined as in the last sec-

tidn, and this leads to an interesting formula:

g 2

D
F=p—=*

l-pi
It should be borne in mind that an "artificial" subdivision of a
populétion does not always result in inci'easing hombzygosi‘by. There woﬁld
be no chenge observed whenever a given gene frequency was exa.ctiy.,the same
for all isolates, i.e. gene frequency variance was zero. This suggests

an association between isolate size and probability densi'by' of gene fre- .
quency which will be discussed in the succeeding section.



2.3.2. The breekdown of isolates
Since the Wehlund's principle has mainly been employed to |
explain why the breakdown of isolates decreases homozygosity, there has
been no ma'bhema'bical treatment of how the proportion of homozygosity
decreases by remmring a single barrier. To visué.lize the situation, the
following discussion may be helpful. ‘
Suppoée that & population consists of three isolates 1, 2 and 3
whose relative sizes are W), W and v, (8wi=l) » and in which frequencies
of gene A are Pys Pp and p3, respectiveiy.- In this population, the gene

frequency Pryy and its variance 02 are

IiI

Prry = Pi¥p * DoV * Pg¥y

and

2 2 2 2. 2
Orrr T Pi¥y T Po¥p * P3¥3 - Prpp

| respectively. Suppose that the barrier between the isolate 2 and 3 is
removed, creating a new isolate in which mating ultimately goes on at
random, (perhaps after a few generations in which a gene c;ine persists).
The relative size W of this new panmictic isolate and its gene frequency

P are
W= v, + w3 )
and P = (v, + vyp )W,
respectively.
The gene frequency, p;; and its variance °§I of the total population
become, therefors, ‘
Prp TR TR

= plwl + pgwa + p3w3l = PIII’
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a o2 =
o 11 - 7%

o?n - [1’2"’2 +'p§w3 - (p2v2+1>3w3)2/ (Va"f"3)]

+P2'W ;pn

or

2 2 VoW 23 2

11 T °rmx ~ ( ) (pp-r5)"-
- Apert from mutation, selection and random genetic drift, the population
gene frequency does not change , whereas the gene frequency variance de-
' creases in an amount thet depends on the relative sizes and difference of
gene frequencles of isolates whose barriers are removed. As a corollary,
the change in the inbreeding coefficient is gilven by using Wright's

formula and PII = PIII = Py

Forp = Fppp - Fp

vhere F., is a contribution due to the breakdown of isolates and, in our

.B
AT p3)
terminology, FB = 3 « More general treatment is given in
p(l-p) '
™3
Appendix 1.

This elsboration of Wehlund's results may be applied to human popula-
tions. For insta.née > ‘the barrier that is removed may be racial en&ogamy,
and the effect of this on the inbreeding coefficient is immediately ap-

. parent. (See application to Brazilian data below.) On the other hand,
vhen new barriers are created under a certain circumstance s 1t is cléar
from thé. above discussion tha.t the inbréed.ing coefficient increases with

the amount FB.



2.4. Bxtension of Wehlund's principle

Wehlund's priﬁciple described the basic effects of partitioning a
population, but there still remain several aspects which are valuable for
studying systems of mating in non-experimental populations.

2.k.1. Continuous model

Although it has been assumed that the barriers are d;!.scret_e,
an actual barrier is usually continuous, or we may not know what type of
barrier it is. One of the approaches to bridge the gap ié, then, ex-
tension of Wahlund's model to continuous or mixed berriers. Since the
result from Wehlund's discussion is described in terms of mean and vari-
ance of population gene frequencies, sums cen be replaced by mtegra_.ls.
in this continuous model each individual gene has a "p:obability density"
to contribute to population gene, genotjpe » OT matiné type frequencies. '
Therefore, genebfrequency and its veaeriance in the population can l;e ex-
pressed by Lebesgue-Stieltjes integral - (Cramer, 1946),

D= fpde
and 6= = fpftdw - pa,

vwhere sums are teken for the discrete model and integrals for the con-
tinuous éasé. In the mixed case the barriers may be separated j.nto
d:l.gcrete and continuous type. Thus, IWahlund's principle covers a.ny type
of heterogenec;us :popula.tion.. For instance » the continuous model where a
population is divided by distance has been studied by Holgate (196k4).
Furthermore, in case of subdivision by time or generation the iirobaﬁility
density, w, may correspond to the solution of the Fokker-Pla.nck equation
in population genetics (Wright, 1946). The situation in man is so com-

plicated by factors .such as time, spé.ce, 4poyula.tion slze, and human
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behavior that it may be difficult to find, even approximately, the appro-
priate probsbility density function. It shoul be emphasized here,
howeirer, tha.t Wa.hlﬁnd’s principle holds even for an unkiaown density func-

: .t'ion, and this extension replaces the concept of "isolate size"i by a
"probability density of geme frequencies”. A genetical interpretation of
the probability density could be as a tendency of genes to combine that
would be affected by several genetlc barriers.

2.4.2. Moments of a subdivided population
Since gene and genotype frequencles of a population are given:

by the first and the second moments with respect to possible isolates in
the popula.fiqn, it seems worthwhile to consider the biological meanings
of the higher moments. The first moment glves the gene frequehcies s and
the second moment thé genotype frequencies. The thind and the fourth
_ moments gives the mating type frequencles at a sex-linked and an autosomal
locus, respectively, since three and fo{xr genes are conceméd with each
gene combina.tion; More genera.lly, vhenever we consider a set of genes‘,
the order of the moment corresponds to the number of gene involved. These
‘higher moments appear in studies of linkage, illegitimacy, polyploj.dy;,
heritability end so on, but we shall restrict attention to the fourth and
lower moments that correspond to mating type frequency for study of popu-
lation structure in man, though the results are completely general.

Let us consider a locus with two alleles A snd &, and their frequency
p and g(=l-p) in a subdivided population with the inbreeding coefficient
e Supi)ose that the diﬁerence betwaen gene. frequency o:f‘ an isolate Py

and of the population p is whose k-th moment is expressed by m ;
W T
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_ k k
m = f(ap )aw = [(p_-p) aw,
where integrals are in the sense of Lebesgue-Stieltjes. For the first
-and second nioments s the following relations hold precisely:

m =0,
end | m, = p(1-p)C.

For the population moment Ma’

M, = [plaw = [(p+op ) aw
= [ & G () aw
= rgo(:)pa'rmr,
or N
n, = o+ 282 220 e+ o).

In the above expression, if cubic and higher power of pr are negligible,

it follows thet:

Ma = pa + E‘gﬁ Pa-l(l.p)a (a: = 0,1’2,00'0).
for exemple,

M =p

M, = 1° + p(l-p)a

M, & 5>+ 3 (Lp)e
end M, = p' + 6p3(1-plen

Exact expression of the moments by gene and the inbreeding coefficient |
may be made when a distribution function of isolaf.es is known. For
instance, one or two parameter probability functions such as binomial »

Polsson, normal, exponential, gamma and beta distributions have been
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applied to this case » the beta probebility being espeéia:l.‘l.y interesting
) because it corresponds( to a steady state distribution of gene frequency
(wright, 1931) (Appeﬁdix 2). All these cases indicate that the moment of
i:opﬁlation can be expressed as a polynomial of &, with the quadratic and
‘ higher order powers negligible when & is not greater than p or 4l-p.
However, it is extremely .d.iﬁ'ictilt to determine the distribution of
isolate size in humen populations as stated previously. It is, Vtherefore )
necessary to e,pp;roach this problem without assuming a diétribution. In
the above general a.rginnent we assumed that higher than cubic moment of
pr are negligible. This limiting fom is valid provided that all gene
frequencies exceed the inbrgeding coefficient ,' as is certainly the case
for the polymorphisms to which this model will be applied. | Extensive
study with known distribution forms has suggested that whenever isolate
size distributions are symmetrical, then ng =0endm = 0(c®). Even when
a.syhmetric functions such as gemma are assumed, the lim:l.t:lng form holds
~ with sufficient accuracy if the sma.'!iest gene frequency is greater than
the inbreeding coefficient, which does not exceed two per cent. in human
- populations (Wright, 1950). - | | '
- The po;pﬁla.tion momeri{:s as a function of gene frequencies and the
:Lnbreéd:l.ng coefficient can be obtained in case of more than two alieles
at a given locus. Since algebralc argument will be given in Appendix 3,
the results are simply reproduced here.
For the tri-allelic locus with frequencies p, q and r (ptair=1), the
moment M, p in linmiting form is ' "
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b fP?.ﬂl'}d“

) A S TP
=% + [—‘——)-a:'l 2" (1-p)a® + b“'—l'znl‘ 3°g" " (1-q) - abpaqb]a

For more then three alleles, * '

Ma.,b,'c, q,wr sCaw

- %Pl 4 pa.-lq'b-lrc-lsd-l[

() (1-plars + (Q)p(1-a)rs +

(3)pa(1-r)s + (g‘)pqr(l_-s) - (Ab+ac+ad+b§ﬂa+ca)pq£

(e,b,c,d

0’1,2. .0 ),

where (;) = x(x-l)/2 and it is not necessery that piqirds = 1.

The most genera.‘l. formula to be obtained for the moments of popula-

tion is as follows.

% ®n
Ma‘l’ ceesB = fplw' * Ppy¥

n & n
1P, ¥ ‘1=1p1 [121(2 )(1 Pi)(i%l’i) -

n
(iglpi)(igjaiaj)]a (ai = 0,1,2,...F0r all 1).

2.5. Mating type frequencies

As mentioned in the preceding section, mating type frequencies of a
given genetic system can be obtained from the moments of popﬁla.tion.' It
is thus stralghtforward to evaluate the freguencies in the case of two
alleles at an autosomel and a sex-linked locus. To illustrate, let us

teke the intercross Aa x Aa and its relative frequency fr. In an



16.
1solete the proportion of this type is hps,(l-p )2aW so that

fr = ﬁ-l-p (l-pw) aw

lmg &4+th

= 4p? (l-p) + hp(l-p)[l-Gp(l-p) lo

p2q2 + hpq(l-6pq)a,

where ptq = 1 and M denotes the populat:l.on moments defined in section 2.1.

Ma.ting type frequencies and the proportions of their possible children
in the limiting form ere shown in Tsble 2.5.1. for the autosomal locus
and in Teble 2.5.2. for the sex-linked locus. In the latter case, we
assumed that gene frequencies are the same in bbth~sexes. Justification
of the moment method to d.escrj.bev mating type freq_uencies is 'imebdia.te when |
frequencies of possible offspring are evaluated as pzi*pq_a, 2pq(1-0) and
+pqoz for genotypes AA, Aa and res;péct:l.vely, at jhhe'autoséma.l'locus
without dominance as well as in the other cases. Mating type frequencies
when e distribution is assumed are also given in"l‘a.‘ble 2.5.3. for the
autosomal locus and in Teble 2.5.%. for the sex-linked locus. (Inciden-
tally, both nommal snd rectengular distributions give exactly the same
frequencies for sex-linked mating types.) These results permit us to ap-
ply them to & higher level of inbreeding population, justifying the
distribution assumption. When .a approaches unity, ingross frequencies go
to corresponding gene :freq_uenciés\ as happens also for genotype freg,uen-
cies with beta and binomisl dlstributions. For the other distributions
examined, a convergency of incross 'frequenciés 'bo_ the gene frequencies
feiled vhen @ - 1. As O —1; the distribution condenses into 2 poles, at

O,1. This cannot be rej:resented by one of these distributions.. Since
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our purpose is to describe human population strucf.ure » we are not going
té discuss further in 'bhi;s_ line.

It may be worthwhile to note here that the correlation coeﬁ’ic:!.‘ent,
m, between mates is equal to 20/(1+) at an autosomal locus without - |
dcmina.née , which was first given by Wright (1921) and was discussed by
Ii (1955). This indicates that if there is no genetic correlation
between rha.tes, then the inbreeding coefficient is zero and mating is ran-
dom (and vice m).

. ‘Dominance does not create any difficulty to obtain phenotypic mating
type frequencies since it requires simple additions of terms of genotypic
mating type fi’equencies whose phenotypes are same (Table 2.5.1. and
2.5.2.). '

The main effect of inbreeding on the frequenciés of zygotes has
alrea.dy been mentioned as a decrease of heterozygosity. In Figure 2.5.1
we demonstrated the amount of decreasing on zygote fregquencies d.ue to
inbreeding in case of two alleles. The ebscissa denotes the frequencies
of gené A and the ordinate stands for the coefficient of @, or inbred
component of zygote frequency, I. The effects of inbreeding are most
enhanced when both genes are in equal frequency.

This presentation will extend o the meting type frequencies. Only
a two-allelic 1ocd8 will be discussed here, since the essential features
of the inbreeding effects cen be observed in it. In the following dis-
cussion, p and q stand for frequencies of gene A and a, respectively,
where gene A may be dominant cver gene a. Mating type fregquencies can be
written in the form, R+IQ in the neighborhood of Q = O, where R is the

mating type frequency in randomly mating populations and I is the inbred
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component. In order to see the inbreeding effects we will examine I a8
a function of p.

Autosome, withou'b dominance: Figure 2.5.2 gives us the general features

of the in!greed:l.ng effects on the six different mating types. Both in-
crosses (AA x AA and sa x aa) are always increasing. Intere‘stiﬁgly, both
backerosses (AA x Ao and aa x As) decrease when the gene frequency is
small, and are compensatory to all other types of mating if p < .212 or
q < .212. It is clear that the inbreeding effect is more striking in
backcrosses than incrosses. As an extreme case, when p = .18, the I-;
value for backcross aa x Aa reaches a minimm, -.93. If we take @ =
.006, the decreasing frequency due to inbreeding is .93 x .006 = .0056
which is .0.056/ .01l9 = .029 or sbout three per cent of the mating type
frequency calculated from the Hardy-Weinberg law. Thus an assumption of
random mating for the estimation of gene frequencies in man might be
justified as a first approximation.

Autosome with complete dominance: 1In Figure 2.5.3, A~ denotes the domi-

nant phenotype. The effect of inbreeding is greatest when the frequency
of the dominant gene is nearly .25. The cross of both dominant pheno-

types (A- x A-) compensates the other two matings if p > .57TT7.

Sex-linked without dominance: General tendency of effects of inbreeding

is similer to the autosome without dominance. The effects are rather
weeker at the sex-linked locus than the autosomal locus. Figure 2.5.l

indicates the change of I by gene A fréq_uency.

Sex-linked with complete dominance: The effects of inbreeding balance
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each other when mating type frequencies in population are classified by
mele (or hemizygote).

In .Bunnnary, the frequency of incrosses 1s always enhanced by in-
breeding, as hﬁmozygotes are. The effect on the other types of crosses
depend.s on the gene freq,l;.ency. 'Roughly, the effects of inbreeding or
subdivision of population on mating type frequencies are enhanced when
gene frequency is nea.ily .25 (or .75 in co-dominant locus) instead of .5.
These predictions can be immeéiately tested. with mating' 'by:pe frequencies
with such & locus as MN, Ss, PTIC, Secretor, and so forth.

When there are more than two alleles at a locus, the number of pos-
sible mating types becomes very large. For 1nsta.nce, with three alleles
at an autosomal locus, the possible numbers of zygotes and mai:ing types
are six and twenty-one, respectively, and with ten alleles the corres-
ponding \falues become 55 and 1545, If a, g and m stend for the numbers
of alleles, genotypes and mating types, respectively, then m;g(g+1)/'
2=a(e.+1)(a2+a+l)/8 for autosome and m-agaaa(a.ﬂ) /2 for sex-linked locus.
In ‘Eh:l.s‘ia.rge number of mating types, howevér, there are only' seven
basic types of crosses at the autosomal locus and four at the sex-
11nked locus. They are tentatively called "incross" _(AA x AA), "back-
cross" (AA x AB), "intercross" (AB x AB), "6u1:c;mss“ (AA x BB), "3-
weys-intercross” (AB x Ac);, '}3-ﬁa&s-§utéroés" (AA x BC) and "b-ways-
intercross" (AB'x’CD) for the awtosomal locué, “and ".iné.:ross"‘(AA x A),
"outeross" (AA x B), "backcross" (AB x A) and "intercross" (AB x C) at
the sex-linked locus, where A, B, C end D demote different alleles. Any
dominance relation between alleles will diminish the number of mating
types. These mating type frequencies are also derived from the population

moments (Tuble 2.5.5. and 2.5.6.).
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2.6. Effect of subdivision on Snyder's ratio (S) and the jproportion of
mating palrs which cannot segregate one ;E:henotype (h:

Studies on modes of inheritance in man have received attention from
geneticists as well as physicians ever since biochemical individua,lity‘
was initielly reported by Gaerrod (1902). One classical method that is
still of importance, is pedigree analysis or study of familial distribu-
tion of a character. Popuia.tion geneticists are no longer behind in
this feature. Snyder (1932) gave a test of the hypothesis of autosomal
recessive inheritance in noﬁ-ta.stiﬁg of phenylthiocarbamide (PTC). Ac-
cordiné to Snyder, the expected frequencies of recessive children from

the mating T- x T-, T- x bt end tt x tt are S°

£t S:1, respéctively,
where tis non-taster gene with frequency q, ';L‘_ is for tester gene and S
is the conditional frequency of t gene among ?; persons, or Snyder's
ratio (Morton, 1965). S is expressed. in terms of a; S = a/(1+a). In_sig-.
nificant deviations of observed :t‘requenc:l.es‘of non-taster children from
the ratio were taken for a decision tha;t PTC tasting was dominant over
non-tasting. The underlying assumptions in this method are unit inherit-
ance, récessivity; random mating, complete pen'etrancé, no extramarital’
children or classification errors » and no selection. Among these simpli-
fications, random mating has a diréct effect on frequencies of mating
types a.nd_ of their offspring. In the populations where mating is not at
random but inbreeding is not high (say, less than 2 per cent), we may
examine the effect of inbreeding on Snyder's ratio. From Table. 2.5.1.,
we obtein two conditional probebilities S and R of recessive offspring

from matings, dominant x recessive and dominant x dominant,




s=q-2.+ _3_(1(1-2%)0 ._g._.-i-.a._‘ﬁ%a i
- a(ua)+{1-6d° )a (1+a) (1+)°

end .
2 = qa(lg) + g(1-6g+6a7)a (3_)2 , 2(1-30-60%)
(1-q)(1+q) -2q(1-3q )a g ()T
respectively ) )

When mating is at random, @ = O so that R = Sa, where S is Snyder's
ratio defined in a randomly ma.ting population. Expansions in .series form
with respect to power of & are permitted whénever g > @< l-q, which is
the essential condition fér expressing population mgniehts as a linear
function of €. In F.‘Lgure 2.6.1, the constants‘ of the linear term of O
(C and 02) are plotted ageinst the recessive gene frequency q. ']!ne
effect of subdiv:ls:!.on or inbreed:l.ng is more pronounced. on S than R when
the recessive gene is rare, and little effect on R is ‘observed for any
frequency of recessive gene. Thus, Snyder's ratio is st:l.ll useful for
 polymorphic systems without serious error from the assumption of random
mating. (Bspecially, if the recessive gene frequency lies sbout between
.3 and .7.) |

In this method, however, the more serious error due to _hetez;ogéneity
in segregation freq,uencies among families has been pginted out .in the
usual chi-square test (Morton, 1965). No study‘ﬁiu be made here on this
'b'o'pic éxcept for one of parameters, ‘h, the proportion of pa.rents.'ﬂho can-
not segregate (Morton, 1959, 1962) which was introduced to avoid the pos-
sible statistical errors in Snyder's ratio. ms; probebility is directly
related to inbreeding while segregation frequencies do not depend on
system of mating. Therefore it may be worthwhile to examine the effect



of inbreeding or of subdivision of population on h-values.

We usually encounter three different types of h for an autosomal
locus: | (1) the proportion of homozygotes- among the dominent phenotypes ’
designated by hy; (2) the proportion of non-segregating couples among
outcrosses with respect to 'bhe dominent and recessive phenotypes, h2;
and (3) the proportion of non-segregating couples among :anros_ses with
resp,ecf to the dominent phenotype s h3. Two more h-values are defined at
the sex-linked locus (hl& and h5 for outcross and incross, respectively),
relative to the probability' that heterozygous females will give birth to
both type of males regardless of phenotypes of their mate. For refer-
eﬁce, let P(.) be the probebility thet an event - occurs. In this

,teminology; the five h-velues are

hl ='P_§AA2 , 2 Pg p.S aa.z end
P(A-) - P(A- x aa)
3 =1- M for antosom'a:l. locus,
P(A- x A-) : .
and ‘ |
hll- P(AA x & and. n =P§AAxAz

P(A- x a) > P(A- x A)

for sex-linked locus, where A and a are alleles with frequencies p and
q (ptg=1), respectively, end A is dominent over a. Thus we obtein from
Table 2.5.1. and 2.5.2. (Whenever q > ¢ < 1-@ = p, the expression in

linear forms is permissible except for by where the edditional restric-

tion |@| < 2/3 must be posed for mathematical reasons.)

n = PP 4pqa .2 ,_2a
pPiopaipa(1-20)  1+q  (1+)?



a23.

b = 2" sepa(i-6pa)e ; p , 2(3a-2) o
2pa®(11a)+zpa(i-60T)a 1 afw)®

h, = 2>(1439)-6p°a(1-30)a » p(it3a) , ba(6a+3-1) o

Plse)lep(-ade @)? ()t

by, = IM s 2. _2lg) o
pa(l+a)-3pacc 1+ (i+q)®
. - o
h, = ,—_—mﬁ Pa0: E .- Q.
pP(r)ipa(2-3p)e 1+ ()@

In randomly mating population where Q@ = O, all h converges to the same
value éxcept h3. As we see in Figure 2.6.2, h, for the zygote is little
affected by inbreeding. When the recessfre gene frequency is low, the
effect appears on h2 and hh for ou"bcrosses', wﬁile if the recessive gene
frgq_uency is high h3 for incross will be affected. With the inbreeding
coefficlent @ = .006, for instence, if ¢ = .1, h, chenges .001/.818 =
.O0L or .l per cent increasing relative to random mating, h2 decreases
about 2 per cent, h3 decreases .l per cent, hu decreases about 9 per cent
and hS is enhanced about 2 per cent. While if q = .9, hl increases about
6 per cent, h, increases I per cent, h_ increases about 11 per cent, and

3

hh- and h5 have practically no effect. Thus it seems reasonable to adopt

the assumption of random mating in segréga‘bion anelysis, but when the
fecessive gene frequency is high, the effect of.inbreedigg on h3 with
respect to intercross segregation may not be negligible as well as on

hh for outeross at the sex-~linked locus when the recessive geﬁe frequency

is low.
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2.7. Distance approach to ascertain remote inbreeding coefficient

So far discussion on population structure was concerned with gene
frequencies and the inbreeding coefficient together. Since systems of
meting themselves do nbt alter frequencies of genes but of genotypes
(without selection on zygotes and no random genetic drift), it is natural
that studies of a structured population has been made with the inbreeding
coeficient oniy, especially by Wright and Malecot. Wright (1943) intro-
duced the concept of distance as the relation between the effective
population number and the generation: the ‘effective number of the
néighborhood size is directly proportionel to the .genera.tion number in
the two dimensionel model end to the square root of generation mumber in
the one dimensional model. In his theory, the migration between parents
and offspring is the most important function and normal migration was
assumed. Although his results are very suggestive, many studies have
shown the migration is' leptolﬁzrbic, with mode near zero (Bateman, 1950; |
Cavalli, 1958; Skellam, 1951). Tt is difficult to estimate distance for
mates born within the same parish, village, or other demographic unit, '
except by arbitrarily assigning them the velue O, as if the unit were a
g'e_ometric‘ point. Despite this, there is a tendency for migration to be
1eptokurl::!.’¢.

The choice of migration function depended only on experience and
mathematical convenience. However, the inbreeding coefficient as a func-
tion of distance at a sta:bibnary state is more intricste. Since lepto-
kurtic _relations hetween the inbreeding coefficient and distance between
two individuals have been predicted by Malecot (1950) and the results

shall be applied to the Braziliasn population, a Probébilistic approach to
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obtain the inbreeding coefficient shall be briefly discussed here.
Before going on to the inbreeding coefficient, distance will be defined
as a measurable geographical length between birth places of mates in-
stead of parent-offspring, because, (1) genetic implications of the
ihbreed;.ng_ coefficient become more cleé.r; for instance, the estimé.’ted
inbreeding co,efficieni; from mating type frequencies gives the inbreeding
coefficient qf offspring, end (2) est_ima‘b:l.on of distance is much easier'
in ﬁel& work, in other words, ohly a single measure is necessary :E'oi' e
couple while many parent-offspring disténces might be possible for a
' femily and could not be independent to each other. In the following
discussion, distance will be understood to be between birthplaces of
mates, though 'bhis is not a necessary restriction.

Consider p isolates whose sizes are Nl’ N2,.... ,Np. Let lld. be the
probability that a person who was born at the k-th isolate and repro-
duced at the i-th isolate. This lki is called the coefficient of migra.-
tion. The coefficient of consanguinity of two individusls at the
generation n, denoted by £, 3 (n), who are taken at random, one from the

i-th isolate and the other from the J=th isolate, is given by

1 1 (n-2)

(n) = E(l-u) lkillq

+ E(l-u}%ulkj(l-i)fkk(n-l) |

(2.7.1.)

+ kih(l-u)a.l_kilhdfkh(n-l)
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vhere u is mutation rate from the gene in question to its alleles and
the subscripts i and j could be the seme. In (2.T.1.), the first suma-
tion is the probability that two homologous genes came from the same
individual in the previous generation, the second is the probebility
that two genes were from different ’individmls who lived in the seme
isolété » and the thirk is the pﬁobability that two genes were from two
different isolates. If the population size Nk remains cqnstant through-
out genera.tioné, the coefficient 6f consanguinity becomes the inbreeding :

coefficient end at a stationary state (fi 3 (n) -).fi jesn > )

l-fkk

(2.7.2) 215 = T (-2, (£, + i)
where § =0 if k#h and ékh=l if k=h, and the higher powers of u are
ignored. | ‘

The general solution of this system of linear equation; has been
given by Mecot (1950), using matrix algebra. Since we are only inter-
ested in solutions which cen be applied on data, some simplifications |
are ne‘cessary'.v The most acceptable model as & first approach is such a
homogeneous population structure that: (1) all isolates are the same
size; N =N, (2) the coefficient of migration is invariant throughout
generations, “and (3) the inbreeding coefficient within an isolate is
constant for ‘all isolates; £,, = £.. Under the conditions, the fol- -

ii 0
lowing situations are useful:

Symetrical migration in one dimension: Suppose that infinitely large

number of isolates are on a line, with equal distance between each

other (Figure 2.7.1). The coefficient of migration (1 in this

137551
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case) is only dependent on the absolute value lj-il which is the differ-
ence of indices of two corresponding isolates. From (2.7.2), after

some calculations )

(2.7.3) 2+ poy)=—=>t .1
1-£, 1-(1-u)e(n) 1+(1-uw)G(N)

where F(A) and G(A\) are moment generating :é'unctiong of £, 3 and 1, 5
respectively. The mutation rate u is small ‘so. that the largest solution
in absolute value of the equation G(A)=1/ (1-u)1+u, A represgnts to a
good approximation the decreasing rate of the inbreeding coefficient with
distance (See Fel.'l.er; 195T; pp. 257-259). If each isolate receives
immigrents only from two neighbors (with proportion m/2) in each genera-
tion, then G(A) = l-m + g(x + ™) vhich 1s equal to l+u. Thus A, =

1+ :-1 -A/-a;‘: + (E)2 S0 that, for mmall |i-j|, kmey, (1-£,) = e/;jl‘i"”*l
‘where ¢ = H/J;x(u-i-am). Therefore

Erh) g, = —0_|1 ,,.g_\/'%;a__‘__é]li-dl

i'j-—lmu(u+2m) m "B m

- For near zero distance, f,,=f,, we obtain £, = 1/[1rHiwu(uten)]. This
result can be compared with Wright's result £y = 1/ [l-i-hN(u*m)] which
corresponds to immigration from an infinitely large popuiatibn. Ifd

denotes the distance between birthplaces of metes, we have approximately
(2.7.ba.) £(a) = £(0) exp(-,,/a—u- a) (£, = £(0))
_ . - m _

which can be fitted with data by the least squares method.
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If each isolate receives a propox rtion m of immigrants who come from
not only the neighbors but also from some other groups, then )"J. becomes
approximately 1- Nz 21:./:12 where ca is the migration variance. Furthermore,
if a wea.k selection acts on the gene in 'question, the parameter for muta-
tion rate, u, may be replaced by u+s(¥=U)', where s 15 the selection coeffi-
cient. As & conclusion, in the symmetrical homogeneous migratior in one
dimension, the inbreeding coefficlient decreases e:ﬁponentia.lly with rate
constant ~/-2a, where ais the' ra.t:l.d of systematic pressures to migration
rate. |

- Symmetrical migration in two dimens:l.ohs: Suppcse that a popu.‘l.at:l.on con-

sists of an unlimited square net of isola.tes, each of which can be repre-.
sented by two indices (Figure: 2.7.2) It can be verified that (2.7.3.)
holds in two dimensions, ta.ld.ng A as a vector with two nulsance elements.
'.I.'he coefﬁcients of migration and of :Ln'breeding are also specif:l.ed. by two
:I.ndices, p and q, as 1(p,q) and f(p,q,) , respectively. As a special case,
if each isolate exchanges only individuals with its four neighbors each
genera.tion; or mathematically,

1(1,0) = 1(-1,0) = m/2,

1(0,1) =1(0,-1) = m'/2,

1(0,0) = 1-m-m!, (M=m-m?)

1(p,q) = 0 for otherwise, "
then a leptokurtic distribution of two dimensional variebles, p and q, for
the inbreeding coefficient with distance has been given by Ma.lécof (1950)
and Kimure and Weiss (196%4). Fixing p=0, Malecot obtained that the '
marginel distribution epproaches the exponentisl function in a one dimen-
sional model when distance q i.s 1&rée, whereas Kimura et al. calculated
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the distribution of 4 = ‘Jpz + q_’z which becomes asymptotically
exp( N /M d),:‘fd. for large distance.
" When we consider e continuous model, (2.7.2.) becames

£(a,7) = JI(1-20)2(p,m)1(p,2)2(m,)a5 A5

(2.7.5.) | S | .
S + [(1-2u)L(p,q)ds ].:_(..’ﬁd.sl . Jﬁ(h:’).
. , P (:p)dsp , 2 -

where d(p) is density at neighborhood of .po:lnt Ps 1(p,q)dsp is the prob-
ebility thet an individual vs born in a unit area at the neighborhood
of point p and reproduced at the nei_.ghbothood. of point q; and £(q,r) is
the coefficient of consanguinity between two individuals, che taken
‘randomly from q and the other from r. The size of isolate (Nk .
replaced by d(p)ds . '

~In the homogeneous model 1f denn is constant (a(p)=d) throughout
the population and the migra‘bion coefficlent depend.s only on the distance
between two points, (2.7.3.) holds in both d:_tmensiqps. Partimﬂ.arly,
vhen migration is normal in two d;fl.mensions, as Wright assumed, f(p,é_)
becomes | | | “

£(psa) = —O Pgl aw® { [—LLéL-x - Ll-g'n—-y 2;'/‘@}

S 81lax¢yd :

which gives the inbreeding coefficilent £ =f(p,p) in the neighborhood of
p (putting X=X and y = ) as f %l/[1+8ﬂc o d(-l/heu)] end, the asymp-

q
totic form of f(p,q) for large distance becomes

2(p,a) « exp(- V2u ;-)ﬁrd
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vhere (4/0)° = (ER )/a) ((yp-yq)/oy) (Melecot, 1959). This result
agrees with Kimura et a.'.L. “who s'lmd:l.ed. the correlation coefficient of
gene frequencies between two isolates in one, two and three dimensional
homogeneous stepping stone models without assuming any migraﬁion func-

- tion. Their result may be summsrized in a function:

£(d) « a exp(\/ = d)

for large distance, where n is the number of dimension (n = 1, 2, and
3), and m is the average migration rate per coordinate (m = mi/n).
Ai)parent].y, this agreement has not been recognized since Malecot himgself
stated in his discussion on the deci'ease of relationship with distance
(discussion in Kimura (1955)): "So thé coefficient of inbreeding £, is
ximciz :l.n_ﬂuenced by the number of dimensions; on the contrary, the de-
crease with distance -6:!;‘ the coefficient of relationship or of coxrrela-
| % x |

tion is approximately the same, e ? in all cases;...".

Before closing theoretical discussion on the relationship between
distance and the inbreeding coefficient, the signiﬁ;cance of £, should

0

be considered. The inbreeding coefficient £ itself is within an

isolate, including contributions from self-fertilization, brother-sister
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mating and so forth. Since no selfing occurs in manl and brother-sister
ma.rriages are prohibited by lé,w, the expectation of fo decreases. The
inbreeding function with distance becomes flat nesar zero if 'weremove
contributions from close consanguinity (Morton and Yasuda, 1962). There-
fore, there will be some error in estimating the systematic pressure
end the migration rete from the observed £, and the estimated decreasing
rg.te of 'inbreeding with disi:a.nce in human populations, although Lemotte

© (1951) has succeeded to 'estimate both parameters in natural populations

of Cei:aaea. nemoralis, by this distance approach. Furthermore, fhe
dependency of inbreeding function with distance on dimensioh is 'br’ouble-»
some when :l.ntefpreting data, since we do not know "dimenéion" with res-
pect to human migration, though it has been suggested that it varies
froﬁ 1 to 2 (cited :I.h Kimura et al., 1964). As an extreme case, a popu-
lation of oréa.nisms living along a river, “coastal liné or mountain ridge
may be described 'byv'bhe one dimensional model and the two dimensional
‘model mey cover & population on a plene. |

In summery leptokurtic relationships between the inbreeding co-

efficient and distence betwéen birthpleces of mates has been predicted

1 When we consider the distance between birthplaces of mates, d,

d=0 might be observed in such a case that after a boy was born in place
P, his family moved to a different place Q; and another family moved
into the place P and gave birth to a girl. If the boy and girl become
a couple, thgn d=0. Although we expeét such couples to be rare; no
informstion 1is available at present.
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theoretically, exponential in one dimension and more rapidly decreasing
‘than éxponentiél in two diniehsions. Howefer, _vthe decreasing constant is
invariant regardless of dimension of models. -

2.8. Discussion and problems in ascertaining the inbreeding coefficient

Tﬁe most common way to ascertain the inbreeding cdefﬁcient in
human population is to classify marriages into known 'd.egrees of inbreed-~
ing and to take their average weighted by the relative frequencies of
observed numbers. - This method is called pedigree analysis, i'equires a
camplete knowledge of pedigrees, and assumes the nominal coefficient of
consanguinity is equal to the inbreeding coefﬁcien‘b. Tracing genera-
tion paths and making loop(s) through common a'xicestor(s) the inbreeding
coefficient for a particxﬂ.a‘.rl‘marnage would be estimated by Wright"\s
fomu:l.a:_ |

re oz @™ X, wright (1921)
vhere £ and m are number of generations from father and mother respec-
tively to the common ancestor whose inbreeding coefficient is F'.
(usually, we essumed that F'=0) and sumation is teken over ell possible
loops. For instance, F=O for honéconsangtzineous marriages, F=1/8 for
uncle-niece, double first cousin,..., F=1/16 for first cousin, F=1/32
for second cousin, and so on. Some devices have beén made for unusually
complex pedigrees (Wright and Mcphee, 1925; Kudo, 1962). The average
inbreeding coefficient is obtained by @ = ZciFi, where—ci is the corres-
ponding proportion of marriage. However, this does not cover unrecog-

nized remote consanguinity. For ins'bé.nce, under favorable circumstances
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the ascertainment of consanguinity can -exbend several generation into
-the past. In some erea, records of Roman Catholic marriage dispensations
go back hundreds of years (Moroni, 1962). Under these conditions ascer-
tained consengiu:iity is 1ikely to account for a 1erge fre.ction of the
total inbreeding coefficient. Formally we may represenf the situation
as ‘

(2.8._1f) Q =0+a,
where A O and ar denote the inbreeding coef_ficient due to total con-
sanguinity, ascertained consanguinity and undetected, ;‘:emote consah-
. guinity, respectively. Unfortunstely, as we go backward in time the
proportion of ancesters who were migrants increases, so that ascerbain-'
ment of consanguini‘by wlll always be incomplete even for popula:bions
with extensive ma.rrlage records.

Although we ma.y hope 'bha.t a r/a is small, doubt, arises even in the
- most favorable cases. For e:mmple, 'b:l.rth records :I.n the Alpine v:I.J.la.ge
of Bosco-Gurin permit feconstrﬁction of pedigrees' for ten genefations
(Moor-Ja.nkowsk:l and Huser, 195T) ‘.’ There was liftle migration into the
ﬂ]la,ge. We'might expec’o that all importan‘b 'coﬁsanguinity had 'been
ascerbained. But in fact, history shows that the villagers migrated
into the area in the 'bhirbeen'bh and fourteenth centuriee from the Valais.
It is likely that inbrew.ing during the ages before the birth records
‘began had effects on'gene frequencies which are still appreciable a.ﬁd‘
contribute to the @, of Switzerland.

Since no system of records, however complete, can. ascertain the
total inbreeding coefficient, we mist look for other ways. There are

two epproaches to pursue the remote inbreeding coefficient: ‘use of a
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biological indicator (bioassa.&) and of migration functions. In both
methods, the remote inbreeding coefficient 1s calculated as the differ-
.ence of the total :I.n'breedj.ng and the close inbreeding ascertained by -
pedigree analysis. In this connection, we define remote consanguinity
as relation'ship‘ more distant than first cousins once removed (F < 1/32).

The inbreeding coefficient can be estimated from phenotype snd
mating type frequencies. Differential selection, illegitimacy, and
misclassification are the main sources to diéturb an accurate estimaté
of the inbreeding coefficient, and, generally speaking, they affect
i)henoty_pe frequencies more than mating type frequencies (see 2.5.).
Differential selection, especially against homozygotes;, .ﬁiight tend to
give smaller, or even a negative estimate of 'bhe inbreeding coeff:l.cient.
Illeg:l.timacy or misclassification has 1n a statistical sense the same
effects on the biological indicator as selection does. And ,genes whose
fiequenc:l.és are rela.’cifrely small are excluded from ‘the probability
models for meting types, end should be pooled with more common alleles
to meet the restriction p > F.

Sanghvi (1955) end Schull (1965) pointed out the insensitiveness
of phenotype freq_uéncie_s to estimate the inbreeding coefficient. Re-
gerdless of these difficulties which wi].‘l. be shown methemstically in the
next éhap‘ber, there is ‘no such trouble in estimating the inbreeding co-
efficient from mating type data. The statistical properties of the
biological indicator will be given in the succeeding section. |

Use of a migration function, m(x), defined as the probability among
all marrieges that the marital distance is x, requires determination of
a migration function and evaluation of the genetic correlation coeffici-

ent, £(x), of children waose parents had a marital distance x. If these
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two functions with distance are found, the total meen inbreeding
coefficient is calculated by

a= 6[ ® £(x)m(x)ax.

Since hea.rly all the information comes from rare homozygotes, whether
there is dominance or not and vhefher they are ascertained prospective-
ly, as a random sample of 'i:he-'p'opulation, or retrospecfi_vely a8 probands
for a rare homozygous condition, the conditional probability that the
parents of a rare homozygote had marital distence x leads to powerful
and informative results (Morton and Yasuda, 1962). As mentioned in 2.7.,
hman migration does not follow a normel distri‘bﬁﬁon expected for dis-
persion of genes by a dif_fusion :érocess (Cavalli, 1958). This is not
surprising 'beca.uée many of the barriers which 'g:enera;te-isoia.tes in
humen population. Thus et present a cholce of migration function is not
completely specified except (1) the function is leptokurtic, (2) the
proportion of near zero distance should be finite: m(O)- < 4w, and (3)
the function has better be a mathematicelly and stetistically simple
form. Under these conditions, the suggestive ﬁmctioﬁs are expohential,
square root exponential (cava.i.'l.i » 1958), log-normal, beta, double expo-
nential and so forth. A gemms function that includes en exponential
distribution as a special case (n=1) has been fitted to a northern Italian
populetion (Cavalli, 1962). The £1% is good but the estimate of the
'diétﬁbutioxi paremeter, n, a.re slweys less than one so that m(0) tends
to be infinite. This is unrealistic. It is expected, however, that no
distribution would fit well because of a practical difficulty to estimate

near zero distance frequency.
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The genetic correlation with distance, £(x), is more intricate.
This can be derived if a migration function is known (Malecot, ;9%8;
Kimira, 1963), but it seems that assumption of migration function is
not necessary (Malecot, 1950; Kimure et al., 1964). A difficulty in
practice here is the fact that £(x) depends on the dimension of mman
migration. Fortunately £(x) can be determined empirically as & genetic

correlation,

H(p,P) (245 2) (Malecot, 1955)
}.‘.(:pa'-l))2 o ‘

where the summation taking over locations & vhere gene frejuency is p .
The separation of the total inbreeding coefficlent into contribu-
tions due to ascertained and remote consenguinity involves an importent
concept of population structure; Wahlund's principle tells us that if
random meting is assumed within isolstes, the inbreeding coefficient
due 'bo‘ barriers is elways positive since the coefficient is defined with
régpect to gehé frequency variance. The more barriers there are,ja.. .h:l.gh-.
er value of vthe inbreeding coefficient 1; expected. Eowévef, all bar-
riers fmﬂ.d not be ascertained in pra.ctice, It F:L designates the
ascerﬁad.ned inbreeding coefficient by the i-th dégree procedure, for
instence, the first degree may be due to a;scertainment of close consan-
guinity less distant than second cousin, the second degree up to known

consanguinity and so forth, then the total inbreeding coefficient at can

be obtained from

However, the assumption of random mating within isolates may not be
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Justified in particular situations. For exa.n'iple, suppose an isolate
consists of two types of homozygotes, AA and aa, and. mating occurs only
between different genotypes. Obviously, the inbreeding coefficlent for
the isolete is not zero but minus one in the sense of a negative corre;

lation between uniting gametes. This leads to

(282) —'ZF"'.'r,

% ==
where r is the correlation coefficient due to non-random mating in
isoletes and the followlng relation holds:

.1§rSo§at§ZFi§i.
In other words, all positive correlations of uniting gametes are con-
sidered due to genetic barriers vhich night have been gener‘ated.by ran-
dom genetic drift, geographical, sociological and other factors. In
practice, however, the ascertainment of Z'.F is dependent on technique 80

that

= EF g * (Tz ‘*'r):

where E and TZA mean summations of ascertained inbreeding coefficient
with respect to the degree of procedure end of unascertained positive
correlation between uniting gemetes, respectively. This is equivalent l,
to (2.8.1.) if we put & = FF, for the ascertained inbreeding end a =
(Tg'l;Fi + r) for the remote .consa.nguinity. Q, can be negative if the
ﬁegative correlation in isolates is high. |

An alternative model hes been proposed by Wright (1943) for con-
sideration of breeds of cattle. If a population has hierarchic structure,

the total inbreeding coefficient, .FI'I" is related to the inbreeding
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coefficient within subpopulation, Fro, and due to subdivision, Fgp, in
the following manner: o |
(2.8.3.) 1 - Fop = (1= Fg)(d - Fyyp)
vhich can be extended into any degree of hierarchic structure, or
1-Fop= H (l-FSi). This relation can be. deduced from the moment theory
as a speclal case. Sup_pose that a population consists of isolates whose

size and a gene frequency are W ( l) and Py 5 respectively, a.nd
within which mating is at ra.nd.om 'l'hen the total frequency of a homo
zygote in the population is ﬁi AT p2 + p(l-p)FIT where p =

znpi 3¥13° On the other hand, when we consider barriers with respect to
i, within the i-th aggregate of isolates, the homozygote frequency then

is ?pfjwid = [pf*:pi(l-pi)Filwi, vhere p, = z'.pij / ?wid _and F,

is the inbreeding coefficlient of the i-th aggregate. The total homo-

2 2
‘zz.rgo_te frequency is therefore };f'[pi*‘pi(]"?i)Fi ],w:l = Ip, W, +

| ' 2 _ .2 2 .
izpi(l-pi)Fiwi, vwhere Zp,W, = p -Pp(l-p)FST, so that p + P(1-p)Fyy, =

. .
P + P(l-p)FS + Z'.pi(l pi)F w, or

ZF, p, (1-p, )W,

(2.8.4.) Frp=Fgp * 4 .

| p(1-p)
If the inbreeding coefficilents for all aggregates are same: F:I. = FIS for
all i, we obtain ;IT = Fgn + FIS(l-FST) which is equivalent to (2.8.3.).

The result can be proved with res_{:ect 4o heterozygote frequency.
It is obvious that an hierarchic pattern of barriers is specified
in (2.8.3.), whereas no such scheme is made in (2.8.2.). A genetic



| 39.
barrier is hard to recognize in human populetion, while it is rather easy.
‘to set up such a pattern in experimental populations like cattle. FS'.L‘

and F.. should be always positive with respect to ’gene_tic berriers and

IS
from a probablistic point of view, but Wright (1951) stated that F.

Is
could be hegative. This is true only when ma:bing is not random within
basic units of populé,t:l.on or 1so:‘l.ates.» In this situation FIS co:;-res-
. ponds to r, and whenever the F-value lbecomes negative, the independency
between system of mating and gene frequency bresks s:i.nce any homozygote
frequency cannot be less than zero. Therefore r mst be near zero :I.n
human populetions. This implies that the gene has potentia.]ly an equel
probability to unite with the neighbors in the sense of probability den-
éity. On the other hand, the id_entifica‘bion of isolates is almost im-
possible in man without knowledges of "original composition of
population". At present, we do not have any method to estimate r but
r=0 for humen. populetion. Further research is desirable.

The hierarchic déscription 15 a good approximation of population
structure Taking the logarithm of a general form of (2 8.3. ) , and

expanding in series s we obtain approximately

where F... is zero if mating in isolates is at random, otherwise

Is

-l = FIS < 0.



2.9. Sumary

A new theory for describing human population strticture has been
proposed by replacing thié concept of isolate size in Da.hlbefg's sense
or neighborhood size in Wright's sense by an idea of i)mbability density
for genes or a tendency that a gene shall c'omb:hie' with the neighbors in
order to form genotype, mating type, and other gene co:ﬁbina"bions'. These
genetic quantities can be described in tems of moments of popuiatién
whose order corresponds to a number of genes combined. The main results
when the inbreeding coefficient is not greater than the smallest gene
.:E“requency are that: (1) mating type frequencies are given as a function
of gene frequencies and the in‘breeding coefficient at autosoma.‘l: and.’ sex-
linked loei; (2) the effect of inbreeding or subdivision‘of.-population
on meting typé :é'req,uencies and on seéiegation a.nalysis has been exame
ined and no serious effects is foﬁnd.; and (3) the relation between the
inbreeding coefficient and marital distance describes genetic isolation
in populations is leptokurtic, including an exponential function.

A method. to estimate the total, ascertained and remote inbreeding
coefficient has been derived. The statistical procedm:e vﬂ.ll be 'given
in the next chapter. COmponenté of three kinds of 'the-inbreeding -coeffi-
cient were considered. Two components in describing system of mating
in terms of correlation coefficient ‘between uniting gametes ‘should be
distinguished: positive and nmegative correlations. All of the positive
correlations may be described with genetic barriers s While the negative
correlation is observed if the basic unit of population, or isolate, can-
not be ct;;lsidered as randomly mating group. The ascertained iﬁ'breeding

coefficient consists of positive correlations and the remote inbreeding
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may include both correlations. Comparison with Wﬁ.ght's hierarchic
structure of population is also made.
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3. Statistical Procedures |
3.1. Introduction

This chepter devotes itself to develop stetisticel methods for
utilization of theories which have beén discussed in the preceding chap-
ter. Since Fisher's maximum likelihood method (Fisher, 1922 and lster)
will be employed frequently, it is worthwhile to look at ome of its
developments, the scoring method that is powerful when likelihood equa-
tions are too complicated to obtain analytic solutions for parameters.
There are good sMes on this method (Rao, 1952; Morton, 1959; Bailey,
1961). To visualize, the description below is for a single parameter,
but its generality is not lost when the number of parameters is arbitrary.

Suppose that L denotes & likelihood with a single perameter © and
we define the score of 9 as the first deriirative of»hi'. with respect to 6;
i.e., ug = é1nt./ae. The amount of information for 6 is kg = E(ug) =
-E(G%:ri:./ae2 ), where E is an operétioﬁal notetion to take expectation.
With independent semples the scores and the amount of informations are
edditive so that the total score Uy and the infomation Ky are obtained
as

Ue=8ueandl(9=2ke,

vhere summation is ovvef all independent sampling units. Appiying ‘Ta.ylor's

series expansion to the likelihood with a tentative value e

oy the im-

proved estimate 6, will be

0, =0 +U, /K,
1~ % " Yo %,

" and its variance 02 = l/Ke o The discrepency between 90 and 61 are
) 1 .

tested by x2 = (91 - 90)21&9 with one degree of freedom. If x2 indicates



L3.
a significant difference, then we may repeat the above process until no
significance appears.’ The heterogeneity test between uni*bs is carried
out by * = Z'.ua/k - Ua/K with degree of freedom being number of independ-
ent units miﬁus one. Neture of convergency in itéra’cibn will be dis-
~ cussed in Appendix L. |

3.2. 'The ascertainment of inbreeding coefficient by pedigree study

In the general population, th'e.inbreeding coefficient £, has fre-

‘ i -
quencies wi(2w1=l) » mean @ = Zf W, and varlance o® = Z:f?_wi - 0P, The
‘unbia.s'ed. estimates are A- | |

Q= Ef ini/ n,

and
52 = [Zfini Q- n(l?]/(n-l),

where n and ni

number of individuals whose inbreeding coefficient is fi » respectively.

are the total number of ind:l.v:l.d\mls’ studied and the

Thus the variance of & is obtained by

2
Var(a) = ?__ .
n

The method is heavily dependent upon 'infomé.tion about pedigrees.

3.3. Bloassay of the inbreeding coefficient and gene frequencies

Since the inbreeding coefficient a.nd gene frequencies are fundamental
guantities to describe bhuman i)o:pulation structure, a statistically power-
ful and biologically meaningful method is required for estimating 'botﬁ
parameters. At hand, two types of models and data are availeble for this

purpose: individual phenotype frequencies and mating type frequencies.
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In the fo]iow:l.ng we shall use the inbreeding coefficient O to denote
either o, or.&, according as known consanguineous marriages are v‘omitted
or not. In both cases, the first tesk 1s to test a null hypothesis that
‘O:-O, or mating is panmictic. Under the assumption, gene frequencies are
estimated by the meximum likelihood method so that en estimate of thé
inbreeding coefficient in the neighborhood of zero can be obtained by
iteration process with respect to . To visuslize the method, mathemat-

icel descriptions for some simple éaseé are presented in what foilows.

3.3.1. Individual phenotype frequencies
Case 1. Two alleles without dominance: Let a,b,c be the observed

numbers o:'E'. genotypes g_\_A_, A__a._ and .g_a.;_ in- & random semple from the general
populetion, end p be the frequency of A. Assuming that the mdivm_ixélé
in the sample ‘are unrelated, tha:t mating is panmictic but for an inbred
component &, and that genoty:peé are emnnér&teﬁ before d.:l.:f‘_fe’rent:l.a.‘!_._ s"elec-l
tion has acted, we have | |
P(a8) = 5° + p(1-p)e

2p(as) = 2p(1-p)(1:0)

P(aa)= (1-p)° + p(1-p)er

The log likelihood is
L = (atb)inp + (b+chn(l-p) + ain(p+a-Gp) + bin(1-0) + cn(1-picp)

ahd. the maximum likelihood scores are

L]+e 18] A o] 2] - ‘b-[lf:%]

U, = ‘a.-!-b?[: p



45,

- l 1-c
Ua—a

0;7] - b[—l';] + c[—L—]
1-0-. 1-p+0p
The sbolutions are>

= (2a+b)/2(atbtc) a= (h-a.c-ba)/(aa-l-'b)(ac-l-b).

The variances of the scores are
| .
=all+ __39_. i-a |
o P Oir] " l—p) [1-p : l—v«%’] |
£ =alk ;][P-‘:Mp] L_l_ee__ [ n-:p].
Lol (1-p)(1-a) 1p Ll-prapl
[-P—WJ
o o __L] +b[ 1J2 v o2
+01-Ctp L. -

To test the null hvpothesis that G=0 we may evaluate the scores and their

variances when G=0. Then Kpa=0, and

= (a,-l-b-l-c) (ll-ac-b ) / (2a+c) (2¢c+b)
Koa = athic
Note that Uy/K, is exactly the meximm likelihood estimste of C. The
variance of this estimate in the neighborhood of the null hypothesis
is 1/Kw. |
When there are k alleles, the amount of information about & under
the null hypothesis that Q=0 is given by (k-1)N, where N is the total

number of individuals (Appendix 5).
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Case 2. Two alleles with complete dominance: Dominance creates the

difficulty that, with only two phenotypes, it is impossible to estimate
p and O simultaneously from phenotype frequencies alone. However, if
there is other informa:bioﬁ abéﬁt either parametér, for example from
segregation anelysis (Morboh, 1959) or marital distance, the information
from this can be combined to y:leld'both estimates.

Suppose that two phenotypes are aa, with frequency p(p+o-Cp), and
A- with frequency (1-p)(14+p-0p). ILet the observed numbers be a and b,
respectively. Theri the log likelihood is o

L = en p + bin{1-p) + aln(p-*a-ap) + 'dn(l*w-op)

and the scores for p and & are
- aE - b[ 1. _l-a
P pra-op?  l-p  14p

@ +a- laap

The variances of the scores are

sl
PP 1—p 14p

Xpo = a * Ll-p l )
l-p 1+p-0p l-m

Koa'_'a;L;f';] +bl_—P———

(=]
!

(=]
It

L
|
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When &=0, we obtain

ool ey

5 - om0
K, = (#0)(1-p)/(14p)
Kéa = 2$a+b?/$l+p?.
Note that tpg K-matrix is singular '(Kp'pxw = Kia), as expected, and
U-scores are not linearly independent (Ua» = k:El.li)),, indicsting that p and
' 2

O cannot be estimated simmlteneously from this materiasl slone.

Case 3. ABO and MNSsU blood group systems: More complications due to

dominence are discovered at the ABO locus and effects of linksge or
segregant factor pairs in the same system are also fouﬁd in MNSsU éystem.

With enti-A and -B, we are sble to classify human population into
four phenotypic groups: O, A, B aﬁd AB. Bernstein (1925, 1930) estab-
1ished that three genes A, B, and O at a single locus were responsible
for the phenotypes and gave conventional fon‘mla.e» to evaluate gene fre-
quencies which were biased estimates from individual sample of ;'andan
popﬁlation.v Iater, Stevens (1938) proved that Bernstein's formulae did
‘not exactly satisfy the maximum likelihood equations and pia+r#l, where
P,4,r were frequencies of gene A, B, 0, respectively.

In populations with inbred proportion &, the phenotype frequencies

are given by



P(0) = ©* + r(l-r)a

P(A) = p° + 2pr + [p(1-p) - 2prlc

P(8) = a° + 2qr + [a(2-q) - 2arla

P(AB) = 2pq - 2pa@
The log 1ikelihood is

=0 ln[r +r(1-r)a] + A-n{p>+2pr + {p(1-p)-2pr}a]

+ Be ln[q_ +2qr + {a(1-q)-2arja} + AB.ln(2pq-2pqa)

and the maximum likeiihood. scores under the null hy:pothesis ‘that a:o are

oy o2 a2 e o2] ]
RE J*BL,@J*“L
o] + [ 22] o 22] s

It is easily verified that

Uy = o[-

Uy

=fup'§uq’

indicating that no information about @ is yielded from this material alone.
This is surprising result from viewpoints of statistics and genetic_s.'
Statistically, we could expect to estimate simulteneously three independ-
ent parameters (p, q and @) with three degrees of freedom (since we have
four phenotypes). It has been observed that simulteneous estimates of
gene frequenéies and: the inbreeding coefficient in the ABO system a.re

very unstsble (Schull, 1965). We have just proved that no estimate for
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the inbreeding coefficient can be obtained from the ABO locus by this
method,y Schuil‘’s 'estima.tgs being ba.séd entirely on rounding error in
eétimating e singuler matrix. This is not improved by subtyping of A
into A]: end A2 ;lith anti-Al and -A sera. U-scores in this case have a

relation

where Py Py and Upl, UP-2 are frequencies of Al’ A2 genes and their U-

scores, respectively (Appendix 6). Although we now"ha.ve 5 degrees of
freedom (six phenotypes), yet we-ca.n-lneither estimate simultaneously
four indép;ehdént par_ame{;ers (;pl, Ppy 4 8nd @), nor test the null hypo-
thesis that 0=0. ” ’

| From the standpoint of genetics, no relisble information about the
inbreeding coefficient would be expected even if one and only one O gene
‘exists in the ABO locus,* whereas the complete absence of O genes
generates a codominant s;stem with A and B genes and, as we know, that
system gives information about O as much as thé total number of observed
éam_ples (case 1.). If e:i_.the:r.f A or B gene is sbsent or both genes are
pooled, it becomes the system vithb two alleles with complete dominance
and no information about ¢ is expected (case 2.).

This discovery at the ABO locus islvery diécouraging--,for studles in

-. human'population etructure because hundreds of thousands of observations

% This situation may be observed in the Duffy system with anti-Fy~ and

anti-Fyb vwhere Fy gene is rare in Caucasians but is common in Negroes.
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on ABO blood groups has been reported from around the world (ex. Mourant
et al., 1958). However, if we can specify mumerically the location of
population s{;udied, for example, with latitude and longitude, then the
empirical correlation method with &istance may be applied to the ABO
data.

An interesting relationship in MNSsU system between the ABC-type
dominance and segregating fact;)r pairs in t!;e same system should be men-
tioned here. At the MNSSU blood group system, the factors M and N forms
& codominant system vhile the factor S, s and ¥ (= Uiu that is observed
in & phenotype S(-)s(-)U(?) (Morton et sl., 1965)) have the ABO type
dominance reletion. A question is what effect of the S-series would be
observed on the a;nount of information about the inbreeding coeﬁicient »

, | compared to the information from the MN series alone. In the a.na.lysis of
the northeastern Brazilisn popula.tion by maximm 1ikelihood scor:lng
method, deta.:l.l of which will be found. in Appendix T, the amount of in-
formation about O with the MN factors alone is Ly = 2128 units, wherea.s
| it becomes'IlmsBU = 4536 units with all factors, or Iis su/Iuﬁ = 2.13.

It is therefore concluded that no imbrorvement in the informetion about
the inbreeding coefficient is expected by subtyping at ABO-1ike systems,
while segregating factor pairs in the same system increase the informa-

tion, compared to a codominant system.

3.3.2. Mating type frequencies
Mating type frequencies give more reliable estimatesv of the
inbreeding cbeff:!.c:!.ent é.nd no @ifficulty dus to dominsnce is observed.
Generally speaking, mating type frequencies yield more informetion sbout

the inbreeding coefficient while the estimated gene frequencies and
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their variances from mating type are e;ca.ct]y same a8 from individual

phenotype frequencies.

Case 1. Autosomal locus with two codominant alleles: Suppose that the
observed numbers of mating types AA x AA, AA x As, As x As, AA X ss,

Aa x ga and a_g X ag are n,, n2,. n3, ny, ns, and g, respéct:!.vely, where

A and a are alleles with frequencies 1l-q and q at a given locus.

Assuming thet the couples in the semple are st random, and that the
couples are enumerated before differential selection has acted, the mating

type frequencies in population whose inbred component is & are given by:

= (l?t.:.)h + 6a(1-9)3
= hq(1-q)> + 129(1-a)%(2g-1)ct
Py = h?(1-q)? + ha(1-a)[1-69(1-a)1c
Pl, = 29°(1-0)% + 2a(1-a)[1-6a(1-a) 1o
lkl?’ (1-q) + 129 (1-t1)(1-2q)°¢ -
P = g + 6q3(1-t1)a-

The log likelihood is

6

L= ZnlnP
j=3 + 1

and the meximum likelihood scores are

6. n, 9P 6 n, 9P
U = Z _1. (__.j.'.) and 'Ua = X .2. —!‘. )
L 5 P, . 9. _ 1=1 P, . ba

The variances of scores are



W g1 p . oq 4 P, . 8q.. 80

Under the null hypothesis that @=0, we may evaluate the scores and their
vaiia.nces when OG=0. Then |

1
a(1-q)

Uy [(2¢c +b);2(a+b+c)q] =0

Uy = —2E50) [0 1) + Harvre) (n,-2n,)]

(2e40) (2¢+D)

and

2§a+b+c2 . - o d g
= K. =0, K, = 3{ath),
qq 2 qC o0

a(1-q) . )

vhere a (=2n1+n24n,+) s b (=n2+2n3+n5) and c (=nl‘_-l-n +2n6) correspond to the

p)
observed numbers of genotype Aa, A_ﬁ, and 2(, respectively. The results
are remarkable: no improvement is obtained in iﬁfoma.tion a‘boqt gene fre-
quencies, whereas the amount of information about the inbreeding coef'fi-'
cient is three times as great from mating type frequencies as from
individual phenotypic data, indicating that mating types are yielding

much information on population structure.

Case 2. Autosomal locus with two slleles with complete dominance: Iet

ny» By, ng be the observed mumbers of mating types A- x A-, A- X s,

as x aa in a random sample from population and q be the frequency of the
recessive gene a. Assuming that the couples in the sample are unrelated
except for an inbred component &; and that the couples are enumerated

\
before differential selection has acted, the me:b:tng type frequencies are
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glven by:
P = (1-0)? - 2002-0)(1-3¢)er
P, = 29°(1-9%) + 2Q(1-q)(l-6q )04
P, = ql’ + 603 (l-Q)a
The log likelihood is
| L ?: , P,
= n
4=1 + 1

and the maximum likelihood scores are

3 3
U = Znmu,, U,= Zn.u.,,
Q" 5 @ g i«

where u y = ——(——) and u,, ——(-—--) The veriances of the scores are

1_ ogq . i .a
= Zn
Kaa 7 20w
3
an 1-211 n,u qiuai
3 5,
Ko = ii 2% *

To test the null hypothesis that G=0, we may evaluate the scores and their
variances when G=0, Then

———5 [b- (a+b)q 1= U, =

a(1-%) (14q)?

end the information matrix is given by
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Kya Ko
K= .
Ko Koo
where "
_ _ : , 2
qu:%, Kq'a.-_-g!ibl, Kw=ﬁmil%(—q—l . ’
1-¢% 1+ - N

1)~ -

(a.=2n1+n2, 'b=na+2n3 are the observed number of A- and aa individuals,
respectively. ) |

The covariance matrix is then

g2e oy
-1
K
1% g™
where '
aq _ (1+47a°)(1-a%) a0 _ _ (+0)(1- _(+9)®
K = i——x-—%l’ Kg' = - _LEL-‘—%, Kw = 2.
- 32(a+b)q” - - 16(a+b)q” 8(at+b)q’

The amount of information about & will be
£ = L= s(am)(Ly?

. 1w
Again, no 1nq>rovanént is observed in estimating gene frequency. However,
it is :éossible w?l.th mating type frequencies to test the hypothes:lé that
=0 and then to estimate the inbreeding coefficient. It is of interest
that the smount of infoma.fion ebout ¢ is proportional to the expected
frequency of recessive children from dominant x dominant type matings in
randomly maeting population.'

Case 3. Sex-limked locus: Since we have little interest in the

inbreeding coefficient O at the sex-linked locus, no detailed discussion

will be given here, but results are listed in the Ta.blé 3.1.
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Verification of formulae is immediate.

3.3.3. Factor union aJ.gebra

With increasing numbers of alleles, it becomes more complicated
to obtain analytic form of _maxlmm_likelihood scores and their wvariances.
For estimation of gene frequency only, assuming random mating, the
method of gene counting (Ceppelini et al., 1955; Smith, 195T7) may be
useful provided thet individual phenotyple frequency dsta ave availsble.
For our purpose to estimate simultaneoﬁsly gene frequencies and the
inbreeding coefficient, however, the coun'tinyg' method is not satisfactory.’
Before going to develop & new method that is the most economical with
electronic computer, we will introduce a concept of fa.ctor union algebra
for grouping of genotypes whose phenotype is the seme.

Iet us take the A1A230 blood group systan for gxplanation 61’ fac_toz"
union algebra. There are four main élleles A Ay, B and 0 at this
loeus and A, 1s dominant to A, |
dominant with &1 and 1_\2. These alleles are detected by reactions with

and 03 A, to 0; B to O; but B is co-

corresponding sera: .5_1 by anti-Al end -A; 1_12 by anti-A; B by anti-B;
end O by no agglutination with either sera. If we assign 1 for positive
reaction and O for negative (this mmber will bé called a factor), then -
alleles at the locus are characterized by an e.mjr of factors which is
named as gene vector: »

A = (1, 1, 0)

A, = (0, 1, 0) .

§ = (0: 0, 1)

o = (o, 0, 0),
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Where the order of factors is conventional and is an'bi-Al, -A, and -B in
this case.
Since man is diploid so that two genes are responsible for phenotype
of individual, combinetion of gene vectors should be performed with

logical union of factors or factor union algebra (Cotterman, 1965):

0+0=0
O+1=1
1+0=1
1+1=1

The additional operator, "+", is actually union, one of the biﬁary
operations in Boolean algebra (Birkhoff and Maclane, 1965). The genotype )
vectors are then generated as A ' '
AA = (1, 1, 0) + (1, 1, 0)
= (141, 141, 040) '

= (1, 1, 0) ﬂ

51A2'= (1, 1, 0),

.00 = (0, 0, 0).

Six of ten genotype vectors have different phenotype vectors:

phenotype vector genotype

(1, 1, 0) AA, LA, A0
' (0, 1, 'o) A2A2) Aeo

(o, 0, 1) BB, BO
(1, 1, 1) A B
(0, 1, 1) AB

(0, 0, 0) 00.
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It is therefore clear that the probabllity and score of genotypes can be
summed. by phenotype through factor union algebra. ﬂoor-Ja.nkowsld. et al.
(196k+) suggested that a binary system for phenotypes might prove useful
for céding. Introduction of factor union algebra allows not only coding
of phenotypes but also of genes and genotypes, and besides these, it
characterizes a genetic system through logicel unions of factors. ! Foz_'
instance, if a particular genotyje shows only one phenotype (such as
genotype’Alo being Alféhenoty:pe) which excludes genetic systéms with in-
complete penetrance, then such a System has been ca.lled. "regular pheno-
type system”" (Cotterman, 1953). Whenever we appiy the factor union
algebra to genetic systems, it will be noted that the phenotypic vector
of homozygotes is‘ a.lwa.ys equal to the corresponding géne vector. This
imposes another restriction to the regular phenotype system: that is,
none ‘of homozygotes may show phenofy_pe of thé other homozygbtés. Thus
the factor union system is a épecia.], case of the regular phenotype‘ sys-
tem. Since it has been suggested that any genetic system cah be -des- d
cribed by Boolian algebra (Morton, 1965b) involving three binary
operations: union, intersection a.nd.' com;blementation, which correspond -
to dominence, recessivity, and taking the complementary alleles, respec-
tively, it is then no wonder that the factor union 'system is a subset of
the reguler system. However, tl;is subset covers almost all regular |
phenotype systems arising in genetics.
| To illustrate this, the haptoglobin system, one of serum protein
polymorphisms, will serve as a good example. This haemoglobin-binding
protein of serum was shown to vary in different individukls by starch gel
electrophoresis (Smii:hies s 1955), and a simple genetic hypothesis
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involving two autosomal alleles le and Hp2 has been proposed to account

- for the inheritance of the three haptoglobin types. Assigning 1 for the

presence of band(s) at a specific position on starch and O for the ab-

sence, gene vectors are then
- .

Ep" = (1, 0)
Ep” = (0, 1).
Therefore genotype or phenoty_be vectors are:
| | genotype phenotype binary
Hy'/HpT = Hpl-l = (1, 0)

B'/Ep° = Ep2-l = (1, 1)
H°/Bp" = Hp2-2 = (0, 1).

Further studies, subjecting purified haptoglobin to reductive
cleavége and starch gel electrophoresis revealed iscalleles 1F and 1S
from le (Connell et al., 1962). Arranging factors in order from the

Pastest m&ving band to the slowest » gene vectors now become:

15 |
H~ = (1, 0, 0)
BT = (0, 1, 0)
Hp~ = (0, 0, 1)

and six genotype or phenotype vectors are

',,_ genotype pﬁenotype binary
B /T =1F = (1,0, 0)
mp F/mpS = 1p-1s = (1, 1, 0)
¥ /m? -2ar = (1, 0, 1)
BB =18 = (o0, 1, 0)

Bp o /Hp- =2-18 = (0, 1, 1)

HPz/:ﬂzlif“a (0, 0, l) .

I
o
n
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In this oase even if one more factor for the le is added, the number of
phenotypes remains as above, indicating that bina.i'y express:l.on of gene
is not unique though the order of'factors 1is detexrmined.

Variants of Hp2 are also_studied (Giblett, 1959). One of them, the
aJ.ieie Hp that is responsible for the phenotype Hp2-1(Mod) showing
l:l.ghter and fewer slow moving bands than the common Hp2-l phenotype is
especially of interest since the gene Hp can be identiﬁed only in
. _heterozygous condition with Hp;' or leF or les. The homozygote
Epan/ﬂpan‘cannot be distinguished from the opher homozygotes which are
generated by several varients of Hpe. (for example, Hpa/npa)._ In our
terminology, a genetic system with three alleles I-Ip]', Hp2 and Hpam is a

reguler phenotypic but not factor union sysﬁem. By the vay, this is the
only exazﬁple of a regular system that is not a factor uh:l.on system so
' far observed among humen polymorphisms. Regardless of the above 1imi'ba.-
t:lon, the factor union algebra extremely simplifies grouping opera.t:l.ons
of genotypes by phenotype, particularly when an electronic computer is
available. | |

One more aspect of binary expression of genes shou.’l.d be mentioned
before closing this section. It is poseible to figure out the total
number of phenotypes in a factor union system. | For instance, at the
A A BO blood group system, the factors egainst anti-A, and anti-A gener-
ate three pﬁenotypes » while the factor again‘s’o anti-B produces two
phenotypes so that as a whole 2 x 3 = 6; six phenotypes are expected, es
it should be. The same logic does not always hold for the other cases,
but a principle is, first, to find "independent factors" in vector which

may form sub-vectors and, second, to figure out all possible phenotypes
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from each sub-vector and multiply them. Otherwise, it 1s necessary to
eva.‘.l.i:a.te all possible génotype vectors and to pick out'di‘ﬁ‘erent types
of vectors as poss:;ble phenotype vectors which can be performed easily
by use of computer. Examples of factor union §ystems which has been
used for studies of northeastern Brazilien population are given in Table
3.2. |

3.3.4. Generalized maximm likelihood scoring method for estimating
gene frequencies and the total inbreeding coefficient |
The method that will be disgussed here is primarily intended to
use an electronic computer to estimate éystemat:!.cally gehe frequencies
and the inbreeding coefficient. Hovever, the procedure itself is general
80 that there is no difficulty to follow it with desk celculator end a
sheet of paper. At hand, two -k:l.nds of data >are available; mating. type
frequencies and individual phenotype frequencies data. Since the second
kind of data can be prepared from the first kind, it is possible to
analyze seme date by different procedures in this case. Both methods
may be inéor:porated into & single program for ’computer, but discussion in
the following will be separated. The progrem for the estimation of gené
fré_q,uencies and the inbreeding coeﬁ’icient from individual frequency |
date is called G-TYPE vhile MATYPE is for mating type frequency date.
Maximm 1likelihood methods are of course employed. Tt has already ob-
served that contribution from genetic model to the maximm 1ikelihood
method is in U-scores. In other words, once we have obtained U-scores,
K—scores. then follow and the iteration process for improving the tenta~
'_bive values goes automatically. Therefore the evaluation of U-scores is

the most pertinent problem in both programs.
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Program G-TYPE: At the beginning, tentative values of gene frequené_ies

and the inbreeding coefficient must be found from any conventional
metﬁod.s or previous studies. For the inbreeding coefficient, assumption
of random mating suggests to take G=0 as a tentative value.

Iet B, be the observed nuinber of individuals of phenotype o, d.eter-
mined by & locus A with alleles Al’ ée, ceey Qk in frequencies Py> Doy
cees Py in a popu.lation with inbred component . Then the expected fre-
quency of ¢ is '

B(9) = Z P,
where .Pg is frequency of a zygote. It ghould. be called to attention that
contribution to U-sco:.;e from the phenotype ¢ is a ratio of a ﬁrét derive-

tive of phenotype frequency to phenotype frequency. Thus

- __(zl
5:l’(tp) ) 5
and
=5;('?5 .Eﬁi’).) o q’uqu’ (L=12, ..., k)

For a particuler genotype, we have -

S 2
Pg =p + pi(l-pi)a for homozygote
= 2p,p 3 (1-c) for heterozygote
and
[?fi)-] = -;pi(l-pi) for homozygote (1=l, «e., k)

= ;Qpipj for heterozygote (i#3)
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[-’L@-] =2p, + (1;2pi)a for homozygote (1=1)
op; - | -
=0 : for homozygote (1#1)

= 2p, (1'-a) for heterozygote (1§=1)

= 2p, (1-0) for heterozygote (1=j)

‘= o “ otherwise ‘ ‘

so that Pu E[ ] a.ndl' qu’ E

[—(2)-] « Since we have geno-

g

type vector generated; from gene vectors in binary code, grouping of the
same binary vectors makes it possible to pe:l.':f‘omi ope’ratiohs.' In other
words, genotypes whose vectors are seme can be sunmed. to obta.in 'both
probabilities and their scores. This process is easily perfomed in
computer. To illustrate the method, Gm factor of Inmen gemma globulin’
serves as a'good. exahple. When we ta.ke five factors a, b, x; c, and d
(which will be discussed in the next cha.pter), five genes are shown in
'bina.ry system as:

4 gene factors

am® = (1, 0, 0, 0, 0)
@*®  =(1, 1, 0, 0, 0)
@ = (1, 0, 1, 0, 0)
@™ = {1, 1, 0, 1, 0)
a®(1-2) - (0, 1, 0, 0, 1)

wnose tentative frequencles are Py Pps p3, D), and ps » respectively, and
0=0. (In the following the neme of the locus Gm is omitted.). The pos-
sible éenotypes s their vector which are generated by factor union algebra
end their derivative with respect to @ and one of five derivatives with



63.

respect to gene frequency, say of abg, Py, are as follows:

.genofy:pe _binary frequency d;fiv;ttijves witgfesgegt #9:
e ¥ Tene
afa 10000 B} p, (1-p,) 0
axfsb 11100 2Py -2y o
ax/abe 110 2r4my “2paly %3
ax/o(*2%) 1o 2p3Ps5 2rgPs °
axfax 10100 pg ) 0
ax/a 10100 2 Pg -Zblp3 ” 0
sb/ab 11000 vo po(l-p,) O
abfa 11000 20,9, -2§1p2. ] 0
sbe/abe 11010 pﬁ pu(l-pu)_ 2p),
abe/ab. 11010 2:921’1& -2p2p)+ 21)2
abe/a 11010 2plph —éplph | 2_91
se/p®)  mon 20,95 20,0, 20,
ab/p(1+2) 11001 20,0 -2p,; 0
yllfl’a? 11001 2Py Ps -2 Ps 0
Saa/ ea i T plp) 0

Thus ten phenotypes with freguencies and U-scores, by grouping the same

genotype vectors, are:



phenotype binary :Erequency (») P-udp P'uP;*‘P

a 10000 & | pl(l-pl) 0

abx 111%0 2_92193 -2p21)3 0
sbex  1LL0  2pgm, " | | 2p3
axbd 11101 2_[::3135 | -293p5 0

ax 1000 pgtepp P3(L-p;)-2R Py 0

ab 11000 pg+2plpa ' pafl-p25-2plpa 0

she 1000 meenmelem,  B(n)nmofnm, 28Ry,
sbed 11011  2ppc -2pl'_p5 | o,
abd 11001 21.\:|_1:'5+292p5 -2plp5-2p2p5 0

bd 01001 p§ ps(l-ps) o |

It should be that 6?((9) =1, 5(—-@-) = ZP(cp)u = 0 and gp(cp)u =2,
and which ma.y be used. for check of scores. U-scores are therefore ca.lcu-
‘la.ted by

U,=Znu
o = § g

v* =Znu .

By é ? 19
All the other U-score for gene :E'req,uenc:!:e’s are calculated in the same
menner. Imposing the restriction that p5 = 1‘P1'P2‘P3'P),,,: the independ-
ent U-scores with respect to gene fregquency become

U =u¥ -yu¥ i=1,2,3,4
B X ( “3’.)

Then the variances are given by
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_ 2
oo = § Pglap
KO@i = 5 nq’uomfupiw'upﬂ?

)(

) (i:J = 1:2:3:1*)

=2n (u _-u w
SR R W TUAL N e X

Thus improved estimates of parameters are obtained by

.P* =p + UK-l:

-~

vhere all gquantities are in matrix notation.-
Further improvement may be performed from beginning with value pk.

L4

Standa.rd errors of estimates are obtained from the square' root of cor:

! matrix. The estimate of the depend-

responding diegonal elements of K
ent pa.rameter,' in this case p5’ is calculated'from the relation
Py = l-pl-pa-p3-p,+ and its variance is the sum of all elements with

1

respect to gene frequency in K ~ matrix. Detail of program G-TYPE and

its instruction for user is presented in Appendix T.

Program MATYPE: General principle is the same as program G-TYPE.

Suppose that n‘p is the observed number of couples of phenotypic
mating type ¢, determined by a locus G with alleles A, B, C, D, ... in
fredquencles Ppr Pps P Ppy oo- in a population with inbred component

Q. Then the expected frequency of ¢ and i1ts U-scores are

-k
Ua=%%[ﬁ§%ﬂ
u = i[ﬁ:—l:-] (¢ = A,B,C,D;...)

RS ()



66.
whe oM oM , -
re PM’ - and —— are genotypic mating type frequency and its first
o 9p ' : .
_ G
derivative with respect to & and pG’ respectively. These are given in
the Table 2.5.5. for seven l'aasic' genotypic mating ty:pes-, where ﬁ is taken
as summetion over genotypic mating types whose phenotypic mating type 1is
same. It should be explained about the operation ﬁ in this case that it
is somevhat different from the G-TYPE method which ‘required only a
single comparison between two genbtypic vectors for grouping. The A1A230
- blood group system is again taken as an example to illustrate the proce-
dure. Ten genotypes and their vectors are generated through the factor
union algebre from four alleles with their binary vectors:

genotypes binary
Y 10
My 110
oB 1
40 110
AA, 010
AB o1l
0 010

BB 0oL
BO 001
00 000

- Then genotypic mating types, their binary, frequencies, and derivatives

are s for instance, as follows:
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mating type binary  frequency (P) derj.vafive' of P
o Pu Pu
0 pl
Mg xAA 10M0 Bl 6E(p) W .
AA xAA, 110,110  kpdp, 12p5p,(1-2p, ) o 12650, .-
s 2
AA xAB 110,111 hpip3 1ep§p3(1-2p1) 1255, ..
- | 2
ALlo x40 110,10 Sppm,  Spymam, 16p)P8), o
ABxAO 111,110 8plp31:h 8P1P3Pll- 16plp5pu ces
wx®  ow00 6p3(1-p) O

Where 2?=l, ZPaa = 0 and Z:Pap = 4 which niay serve for checking of scores.

1
Grouping is performed if two mating type vectors consist of the same

genotypic vectors; for example, both mating types &lé-l x ﬂl— and
A A, x A0 have binary (110,110) so that they are grouped in probability
and its derivative. How"vever, this does not cover all of casés. ii’or
instance, mating A/A) X A;B-and A B x A O have binary code (110,111) and
(111,110), respectively. Yet we have to have grouped both mating types
since we are not concerned ﬂi;bh sex. This is s:l.mplyl carried out by a
change of order in genotype vectors in one of mating type binary codes.
Thus we obtain the probabilities and their derivatives for each of
twenty-one phenotypic mating type. Calculation of K-scores and the
iteration process are now stmightfomﬁ. Instructions for ;progra.m

MATYPE and information about programming logic are discussed in Appendix
8.
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3.4. Fitting of migration function

In order to fit any function for describing humen migration, we -
shall use the probabili‘by-integialtra.ns:t‘oma:bion aé a méans of tra.ns-_“.
forming any known continuous distribution to the i-ecta.ngular distribution
‘ of intervel (0, 1) (Kendall end Stuart, 1961). The moment method to
obtain mean marital distance and its varience will be avoided because of
high frequency of zero distance class that :!.s_ unescapable :vlv._nb pra.ét:lce
.a.ﬁd of bias due to a few case With large distance. If we have 'asstﬁned

a simple migration function m(x) with distance x, then the variable
R(x) = fa(t)at
- - o - -
is distributed on (0, 1). Thus if we have a set of n observ:ations‘ X,
and transform them to a new set P by the probability-integral trans-

i
formation and use a function of the Pi to test the depa.rture of the'Pi '
from rectangularity, the ’distributién o:t‘"the tgst statistics will be
distribution-free, not merely asynrpfotica.]‘.‘l.y but for any number of obser-
vation. In other words, if the distribution date and probabilities are

given by:

class interval observed number probability

0-x n, ¥y
X - %X ny - P
xt-oo ' n‘b Pt

then the likelihood of observations becomes
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o n n
L~ — :" - R oril...ptt
noonlo '.ont- :
'wheremi=nand” '
gL
Py =xf n(t)at = P(xi +l) - P(x,).

It is obvious therefore that not only test of migration :ﬁmction can be
made, but the distribution parameters are also ‘estima.ted by the maximum
11kelihood scoring method and we mey calculate £rom then the mean marital
distence, its variance, the inbreeding coefficlent by marita.’l. distance,
and so forth.

The functions we have examined for humen populations are listed in
- the Table 3.3., including six single pé;rameter probability ﬁmctiogs s two
with two ﬁarameters and one of three pa.ram.et_ers. Thése functions have
met the conditions that we have discussed in 2.8. Results of fitting
will be given in the next chapter.v Te estimates by this method are
somevhat different from the ordinary ma:d.mm likelihood (ML) estimates
which might be obtained directly from migration function snd without
probability-integral fransformation. " In the latter ﬁethod., we ha:v'e ‘o
assume the observetion of individual distance with great accuracy. It
is practically impossible to measure distance "precisely". However, the
miltinomial ML estimstes which eve cbteined From probability-integral
transformation might give us sufficient infomations ebout migration
pattern without serious error due to & few biased observation. .The
miltinomial ML estimstes are, however, dependent upon the mumber of cless
intervals and the observed freq,uericies | in each class. There are recom-

mendations for x,2 test (Kendall et al. cited) for determination of the

y,

: \\“
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number of classes and choice of class interval. For our purpose, we have
chosen intervals exponentially, considering a lepfokurtotic migra‘bibn |
pattern.

To visualize the method, a log normal function will serve. The
function has a single parah:eter and its fomm is

a(x) = 2 7% 0"
CLoNmx
where a may be called. an attraction parameter. By the probability
integral transformation,

N2
B(x) = 2 e'f’”‘t? at [Note that P(0) =
2

= L oW2an) [vhere &(y) = [e 3 as]
2 ,. _ ~/'21r

so that

P i) - st

whose derivative with respect a is

Then the U-score and the variance are

Uy = ? Bi%ay Koo = ;{: Bi%ay

~

The improved estimates is obtained from:



o) =8+ U /K,
and xa-test for parameter is performed by

= i,

with one degree of freedom. Goodness of Fit may be made by X° = £iS=S
_ e
with k-2 degree of freedom, where k is the number of class intervals.

Thus the mean marital distance is

X = fmtm(t)dt
o ..
1
f“e'(m)adt = eze?
o - -

o

z,

n

and its variance is obtained from
- -2 6
Var(x) = x“/16a Ko

Given an inbreeding function with distance £(x), the inbreeding coeffi-

clent of populetion will be
[ -] .
(? = cj)' £(x)m(x)dx = Qif(xi)m(xi)Axi.
The discrete approximation may be used when "the integral is complicated
and Axi is class interval. xi may be taken as an average distance
weighted by the observed numbers in the intervel. In case of exponen-

tiel inbreeding and lognormal migration function, we have

: 2
-'bxi-‘-'(eka:i? ] ox,

x5
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The process of convergence to obtain the final estimate is usually
very slow, taken on the average sbout twenty iterations with an initial
value estimated by moment method. Consequently, the more parameters
are involved in migré.tion f‘unction,' the more iterations are expected,
or even fallure iri convergence. Expéflence‘wlth this method has told
us that the migration ‘ﬁmct:l,on examined would not carry more than three
parameters in spite of a biological interest in construcfing functions
such as a linear combination of three normal distributions (Cavalli-
sforza et al., 1965). The study of northeastern Brazilian population

will answer to the above problems in the next chapter.
3.5. Suinma.ry

The maximm likelihood Scoriné method is applied to estimate gene
freq_tiencies and the inbreeding coefficient, to test an assumption of_
random mating, end to fit migration function. From individual data, it
is found that the estimation of inbreeding coefficient and the test of
random matihg are statistically impossible at the ABO blood gréup system
and two allelic loci 'ﬁth complete dominance. Introduéing factor union
algebra which defines dominance relations 'betwéen alleles in binary
code, a highly convenient method with using an electronic computer is

devised. An efficient method of fitting migration functions is also

discussed.
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k. Practical surveys
k.1, Intrcdﬁction end material
k.,1.l. General feature of population

The dste to be analyzed here have been collected primerily
under the supervision of Dr. Newton E. Mort;on at the ES&‘M& de
Imigrantes in S3o Paulo, Brazil during the year beginning June 1962
(Morton, 1964), for determining the effects of various genetic factors
on mortality and morbidity in a rigorous environment. However, the study
was also made for an mfestigation of isoie,tion ‘by distance. The 1068
‘migrant i’amiliés from northeastern Brazil passed through _the Hbspedaria
de Imigrentes with government a:l.dlto the interior of the states §f Sao
Paulo and Parana. The Bahple was teken from e government reglstry
according to pre;egtabnshea_criteria of rural origin, wife under 50
years of age, presence of both husband end wife and long cohsbitation
time. The populstion wes characterized by mixture of three major races:
11, 30 and 59 percent of Indian, Negro and Cauc:sia.n, respectively
(Krieger et al., 1965). Each sempled family submitted to an interview
-and medical examination, during which blood and saliva specimens were
teken. For the sake of studying population structure, an interview was
also made with each parent sepa.rateiy for information about birthplaces,
merital distences end consanguinity in both parentel and grandparental
generations. Discrepancies were checked by confronting the two parents
and discussing the point at issue. The marital distances were also
checked on the map (IBGE, 1958) and coded in km. Because of low level of
literacy (Krieger et al., 1965) and of usage of a large unit of scale,
1égua (1 légua = 6 km.), on distance, the estimated distances were only
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an approximation. . The population density of birthplaces were calculated
from government official report (IBGE, 1961) by dividing rural population
from where individuel was drawn by area of the municf{pio, or county.
While the husband and wife were being interviewed, the children were
assigned numbers and proceeded through the data collection center, where
& nurse .determ:l.ned. phenylthiocarbamide sensibility _(mc) and anthropo-
metrics, and each subject contributed about 12 cc of blood and a saliva
sample. mpl:llcate laboratories using different antisers typed Al, A, B,
P, C, D, E, M, N, S, s, and K blood groups. Fy~ and c were tested in
duplicate with the same aﬁtisem. Le and ABH secretioﬁ a.nd. the Le?
blood group were tested only in one laboratory, and Di, Jsa', £, V, k, e, |
Iu® and Ieb blood groups were tested in part of the sample. Red cells
were collected in EDTA, stored at 4°C, and typed blind the next day in
two duplicate laboratories. Discrepancies between laboratories, paren-
tai exclusions, and seroiogica.l curiosities were retested using the same
and different antisera. Additional teéts were performed on prb'blem
families by Dr. R. E. Rosenfield in New York using glycerolized cells.
shipped in. dry ice from lérazil. A glycerolized red cell sample
(Crawford et al., 1954) was sent to R. E. Rosenfield for supplementary
tests, and a.nother. to W. Nance and O. Smithies for tests of serum pro- .
teins such as haptogiobin and transferrin, and to A. Steinberg for Gm
and Inv. All this material was kept in dry ice until receipt in the
United States 'wheré it was stored in different laboratories .at tempera_-

tures ranging from -20°¢ to -TOOC.

k.1.2. Description of genetic systems employed

Bioassay of the inbreeding coefficient uses genetic systems
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wﬁicﬁ are little affected by selection and technical errors, and are
polymorphic with complete pehetra.nce. Sixteen poiymdrphic systems were
employed for the blosssey: ABH secretion, Lewls, Lutheran, PIC, P,
Duffy, Inv, Diego, Heptoglobin, Hemoglobin, Transferrin, Kell, ABO, MNSs,
Gm, and Rh. Formal geneties of these systems is discussed in brief,

according to the Brazilian survey.

Secretor system: Inhibition test of saliva used anti-A, ‘anti-B of human

sera and anti-H of saline exﬁra.cts‘ of the seed of Ulex eurocpaeus. | Aa,

B, and O red cells were used as indicators to provide classification of

individuals into secretor and non-secretor. The abllity to secrete the
A, B, or H antigen in the saliva is inherited as a Mendelian dominent

character. Two alleles, Se and se, are known at the locus. The system
is also known as the first emmplé in man of autosomal l:l.nkagé and auto-
somal crossing-over with the Lutheran blood group system (the recombina-

tion value is estimated as sbout fifteen percent).

Iewis system: According to inhibition test of salive with anti-LeZ,

individual phenotype was determined as either positive or negative. Thus,
this system is treated as two alleles, Ie and le, with complete' dominance
in bioassay. No attempt will be made to explain a current theory of
Grubb and of Ceppellini (Grubb, 1951; Ceppellini, 1955) on association
between the secretor sys{:em a.ﬁd the ‘I.ewis system, but the tﬁeory has been
used for confirmation of phenotype of Lewis and secretor systems in

saliva from that on red cellg.

- Litheran system: At least two alleles, Lu" and Lub, have been described

at this locus. We had tested, however, sbout two hundred couples with
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anti-Lua' alone in saline suspension of red cells. Therefore, the system
is considered as a J.ocusl with two alleles, l.u_a_ and Iu, with complete

dominance.

Phenylthiocarbamide sensitivity (PTC): There ere two alleles, T end t,

with complete dominance of the ability to taste PIC. A continuous anti-
mode distribution of sensory threshold by different dilutions of PTC
(Azevedo et al., 1965) makes it difficult to classify doubtful cases
into either- positive or not. In the Brazilian study, subjects 'ﬂere

' classified as non-tasters if they could not discriminate the solution 5,
which contains 81.25 mg PTC/litter. This criterion was derived from
pedigree studles of doubtful cases involved. Children sge eight years
or léss have been excluded because of multiple sorting exrors a.nd of
being significantly higher I;henotypic frequency’ of non-taster thén among
older peoples. |

P system: Three alleles, B,

relation’asﬁ, A_ and 0, in the ABO locus. Since we have used only

» B, and p, in this system have a simfler-

an'bi-Pl to detect the cold agglutinogen on red cells, the s’ysteni becomes

two alleles, P, and P,+p, with complete dominence.

Duffy system; Three alleles, Fy, Fy’ and Fy, with ABO type dominance

(Fy® corresponds to A, Fy" to B and Fy to 0) have been described with
ant1-Fy® and anti-Fy°. The high frequency of Fy(a-b-) individuals in
Negro but rare in Caucasian have offered an anthropolégical interest and
have led to study of dosage effect of Fy~ antigen on red cells (Race et

al., 1953). Again only enti-Fy~ wes availsble in the Brazilien study so
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that the system was considered as two elleles, Fy" and Fy’ + Fy, with
complete deminance.

Inv system: Three different genetic factors, Inv(a), Inv(b) end Inv(l)
have been described in szh globmns (195 7-globulins), ﬁ'aA-'-globulins
and Bence-Jones proteins by inhibition tests. Dr. A. G. Steinberg typed
Inv(a) and Inv(b) factors on Brazilien material. However, only the )
results of Inv(a.) factor was used in bloassay analysis because of unreli-
sble reactions with Inv(b) reagents (Steinberg, 1964). Thus the locus

consists of two alleles , inva and Inv ,(‘=Inv.D + Invl); with complete

dominance.

Diego system: The pi® antigen on red cells is essentially a Mongoliasn
gO_Bys -

character so that we had decided to investigate Brazilian materiel. About
two hundred couples and eighty-seven children whose one of parents was
positive were submitted in typing. The system is considered as two
alleles s _Dl._a_ and Di, with complete dominance.

Heptoglobin system: Some of aspects on the locus have been discussed :i.n
3.3.3. This, one of the serum protein wMomMm, is treated as three
alleles, gg_]f, I_Iﬁ and I_Iga_, without dominence (codominance). Incidental-
ly, a variant of le, cai'lsberg, and ashaptoglobulinemla subjects are
ignored from study.

Hemoglobin system: Hemoglobin, the oxygen carrying protein molecule,

consists of four polypeptide chains and a heme group attached to each
chain. The polypeptide chains are usually classified into two pairs of
identical chains, celled O-chain and P-chain, so that its structure can
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be written 012B2. While synthesis of each cha.in is controlled by genes
such as thalassasemia genes and regulators, the stmct\;re_ of amino acid
' sequence in each chain is also genetically controlled. Bes:l.d.es. the
normal hémoglobin, Hb-A, tﬁe genetic veriants at the sixth position from
the N-terminal in B-chain, Hb-S (glutemige -> veline) and Hb-C (glutamine
— 1lysin) are relatively common (clinically known s sickle cell anemia
mejJor and minor, acc;ord.ing to vhether all B chains are affected or only
one half) and, therefore, they are used in bioassay. The other variants
observed in the field work such as Hb-F and Hb-A, were not used for bio-
assay because of rare frequencies. The locus 1s thus considered as
three alleles, Hb, Hb- and HbC, without dominance. All parents ave typed,
whereas only children whose both parents are not H_bf/l_f_bf_ were gubmitte@
to test. |

Transferrin system: One of B-globulins is called transferrin of

siderophilin which transports plasmae iron to bone marrow and tissue
storage areas. Starch gel electrophoresis shows three major varients B,

C and D, in order of faster moving bands, vhich are genetically controlled
and are codominent to each other. It has been suggested that their dif-
ferent mobility rates may be due to alternatives in the number of sialic
acid residues.

Kell system: The recent discovery that the Sutter antigens J‘sa and J sb

on red cells are localized in the Kell system (Stroup et al., 1964;
Morton et al., 1965) gives three alleles, K, k and lﬁi' at this locus.
The other alleles, k° and k¥ were not distinguished from k in Brazilien

material, since we used anti-K2 (Cellano) only on Kell-positive cells and
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~ did not use anti-K3 (Penney). Thus the locus consists of three alleles,
K, k eand k°, without dominence between K and k or k° but with complete
dominance k° to k. In Brazil, all individusls were tested with anti-KL
(Kell), but only the last £ifth of the sample, beginning et family 855,

with anti-Kb. (Sutter).

ABO. system: Using the antisera, gnti-Al, anti-A and anti-B, all of which
are comonly found in sera of human beings who do not have the corres-
ponding a.ntig;n, six phehotypes can bev distinguished. Based on
Bernstein's multiple all.l.ele: hypothesis, Thomsen et a.l.b (1930) put for-
ward the four allele, A , Ay, B and O, theory of inheritence. The
dominance reletion ‘bétﬁeen_ alleles are so-called "ABO type dominance"
 which was explained in 3.3.3. - . |

MNSsU system: The segregating factor pairs in this locus, the MN-series

_and the Ss-series » are one of the most interesting blood group systems.
'i'he discovery of the MN-series was dependent upon making anti-M, injected
humen red cells into rabbits (heteroimmunization). This series alone
consists of two major alleles, M and N, without dominance if snti-M and
anti-N are used. In the Ss-series, however, the factors S and s are noﬁ
always complementai'y, especially in Negro populations. It has been in.-
terpreted as the ABO type dominence between three alleles, S, 5 and 8%,
using anti-S and anti-s. The st gene was proposed to explain a pheno-
type s(-)s(-). The discovéry of a third antibody, anti-U, has rendered
some complications. It has been observed so far that all S(+) and s(+)
red cells are U(+) (Wiener et al., 1953), but not all S(-)s(-) pheno{-,yi,e's

are U(-) (Francis‘ei_: al., clted by Race and Sanger, 196é, p 91).



80.
Ignoring the reaction with anti-U on red cells, Morton et al. (1965) have
suggested a notation * for S(-)s(-) reactions, 1nsteé.d of u or u. '
Combination of tWo series results in six alleles M5, Ms, M*, NS, Ns,

and ¥ at the locus.

~

Gm system: The Gm factors are determined by an intricate series of
alleles. Normal human sera may or may not inhibit agélutina.ting activi-
ties of rheumatoid sera (agglutinator) which agglutinate red cells coated
with incomplete anti-‘D.' ‘The ability of inhibition is genetically con-
trolled, and combination of anti-D and agglutinator détemines the gamma
globulin factors such as Gm(a), Gm(b), Gm(c), Gn(x) and Gm(b2). The
series of a.ritigens on the 7S-globulin (?é;globulin) molecules of man oc-
curs with different frequencies in différent populé.tions. For instance,
Gn(c) occurs only in Negroes who in turn do not have 'Gm(x) ; and only the
Caucasoids show variatioh in the frequencies of Gm(a). Among results in
Brazilien material, Gm(a), Gm(bl), Gm(c), Gm(x) and Gm(b2) Pactors are
employed for our purpoée; Since the agglutinator "Devis" was used to
type Gu(b2) (Steinberg et al., 1965), we simply designasted this factor
by "d" instead of b2 in binary code (see 3.3.3.). Thus, the system con-

sists of five alleles, Gm, Gnab(l) R -,mabc, Gm~ and Gmb(l’a): which

generate ten phenotypes.

Rh system: During the Brazilien study, enti-D, anti-C, anti-c and enti-E
were used in the routine work and E+ samples were typed with anti-e.
Only 354 families were tested with the sera, anti-f snd enti-V, in addi-

tion to the above antisera. In this locus, eight alleles, cde, cdE,

Cde, CdE, cDe, cDE, CDe, and CDE are currently accepted. When the
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relative frequencies of alleles such as CDE, cdE and CJE are rare, we
have ignored them. The last 354 families were used to analyze the 11

allele system: cde, cde”, Cde, Cde®, cdE, C4E, cDe, cDe®, CDe, cDE
and CDE, where enti-f and snti-V react with gene complex ce and ce®,
respectively. It has assumed that the allele, g_de;f, in Negroes reacts
with anti-c¢ (Rosenfield, 1964).
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4.2. Population gene frequencies

Population gene frequencies in northeastern Brazil have been
estimated by G-TYPE under the assumption of penmixia. It is confirmed
that MATYPE givés exactly the same results in sixteen pblymorphic sys-
tems, which was theoretically predicted for the special case of a twb‘
allelic locus (3.3.2.). Table 4.2.1 shows gene frequencies of the total
po:pula.tion. in the pe.réntal vgenera‘tj.on. '.L'h:l.s_ table also includes gene
frequencies where coujles are divided by their marital distance. On the
whole, differentiation in gene frequencies by maritel distance is hardly
observed in this population. When the coﬁples with close consanguinity'
(F & 1/32) are removed from the total population, the gené fzv'equencievs
are estimated (Table 4.2.2. ) to be practically the same as for the tota.l R
popula.tion. i

For the bioassay of the inbreeding coefficient, the calculation of
gene frequencieé was a.léo ‘made for the subpopulations defined by dis-
tance times the square root of density, in order to simmlete a populé.-
tion of uniform density (Taeble 4.2.3. and i&.a.h.). Bioassay was also
mede for unknown consenguinity (Table 4.2.5.) and for children ('I.‘able

4.2.5. ) to see breakdown of isolates by generation.

4.3. The inbreeding coefficient
. 4.3.1. Pedigree-study
In order to ascertain the inbreeding coefficient, the couples
are divided by the inbreeding coefficient (F) of their child, where F
can be expressed in term of power of 1/2: (1/2)°. Since it has been

necessary to have a code of consa.nguini’cjr for date collection, the
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negative of the logaritim of inbreeding coéﬁicient to the base 2,
¢ = -log,F, has been takeu as the code (Moromi, 1962) which mey cover an
, interval: [c-0.5, ¢40.5) where [ end ) mean “including the border value"
and "not including the border value", respectively. This cen then be
trensformed into F (Table 4.3.1.). This intervel classification of
consanguineous marriages is useful when a large body of data is avellable.

Table 4.3.2. sumarizes distributions of couples by the inbreeding
coefficient and the marital distance in northeastern Brazil, and the
mean inbreeding "coefficient and its stendard error were calculated. by
formulae given in 3.2. The total inbreeding coéfﬁ.cient is .0059 % .0066
in children and .0036 + .0004 in pavents. The lower level of the
inbreeding coefficient in parents then in children might be due to in-
complete ascertaimment of consanguinity in the pérental generation.
These values may be comparsble with G=.0050 which is obtained £rom
Catholic marriages in parental rural'popula:bions in northeastern Brazil
(Freire-Maié, 195T), which is also heterogeneous in time. Thus it séems
ressonable that our migrant families as representative of northeastern
Brazil with respect to the ascertained inbreeding coefficient.

It is also seen in Tsble 4.3.2. that close consanguinity up to the
second cousin mé.rriagé accounts for .0051/.0059 = .86 or 86 percent of

the total inbreeding coefficient ascertained by pedigree analysis.

Lk.3.2. The total inbreeding coefficient by bioassay
Two methods, G-TYPE with individual phenotype frequencies and
MATYPE with mating type frequencies, are applied to the total and the
remote populations. Since we did not find any significant difference in

gene frequencies between total and remote populations (Teble 4.2.1. and



4.2.2.), the frequencies in the total population will be used.

In the G-TYPE method, only eight systems could be submitted to
analyéis since a singularity at tﬁo ellelic locus with complete domi-
nance was well-estaialished in advance. The estimated inbreeding coeffi-~
cient in the totel and in the remote population are .0LTO * .0086 ;s.nd
.0L32 % .0089, respectively. The difference between them is .0038,
which may bé interpreted as due to close consanguinity in agreement with
the value .0036 obtained as the ascertained coefficient of inbreeding of
parents 'in the pedigree study. The heterogeneity of & among eight sys-
tems is highly significant in both popﬁlatidns (x.ar = 6(193)). ‘However,
we have met a peculiar property of the information about Ot." at the ABO
locus (Table 4.3.4.), which has in turn been explained mathematically as
mentioned in 3.3. The other three systems which show ~a‘ significant |
deviatibﬁ from the hypothesis that G=0 also give little information.

Taling away the four systems with very small amounts of information
(the ABO, hemoglobin, transferrin and Kell loci), the inbreeding coeffi-
 cients become .@21;6 + .0086 in the total population and .0208 + .0089 in
the remote populé,tion. The difference is .0038, in agreement with the
previous result. ﬁeterogeneity of & among the four remaining systems is
insignificant (x§ = 7.43 for the total end x§ =
populations). -

Although the insensitiveness of G-TYPE method has been discussed,

6.07 for the remote

rmultiple allelic systems w:lt_hout dominance, or even with little domi-
nance, seem to glve good information shout d. The number of iteration

for & with all eight systems was six in our material.
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The MATYPE method gives the coefficient of consanguinity of parents
or the‘ 1nbreeding coefficient of children. All eixﬁeeri polymorphic sys-
tems now contribute to information sbout Q. The estimated inbréeding
coei’_ficients are .0133 + .0035 in the toté.l and .0082 + .003k in the
remote population, the difference of .0051 corresponding to the close
inbreeding coefficient of children in pedigree analyeis. The hetero-
geneity test on O among systems is egain highly significant (x§5=o(102)).
When we remove the systems with very small emounts of information about
@, Secretor, Iutheran, Diego and Kell, the inbreeding coefficients be-
came .0160 # .0035 in the total and .0L06 * .0035 in the remote popula-
tions and the heterogeneity tests beceme nonsignificant ()(,12_1 = 11.25 and
x.?l = 11.12, respectively). Again, the difference, .0054, agrees well
with the estimate from pedigree study. ' | |

A word should be said sbout the four systems which have been removed
from the estimation of & in the above procedure. Three systems,
Iatheran, Diego .a.nd. Kell, have an e.ilele vwhose freq,uepcy 1s nearly the
same order as the estimated inbreeding coefficient, so there is a pos-
sible violation of the restriction that the smallest gene frequency be
grea.ter than the inbreeding coefficient. However, the ‘amount of informa-
tion provided by these systems is too small to Justify this speculation.

The superiority of the MATYPE method, comparing with G-TYPE, is
observed at the hemoglobin, Transferrin and ABO loci in the greatly in-
creased amount of information about Q.

The inbreeding coefficient of children may also be estimated from
individual frequencies of children by the G-TYPE method (Table 4.3.6.),

which gives .0121l for the total and -0073 for the remote.populations.'
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Although no standard error may be assigned because children are not
independent samples, the estimates agree well with .0133 * .0033 and
.0082 + .0034 respectively which were estimated by MATYPE. This means
there 18 no evidence of hetero_zygéte adventage for these polymorphisms.

The inbreeding coefficient for consanguineous marriages of unknown
degree 15 estimsted from mating type frequencies as .0086 & .0152
(Table 4.3.7.) which corresponds to the degree between second cousin and
secohd cousin once removed. In Tsble k.3.8., the total inbreeding co-
efficients estimated from the available systems are summarized for the
sake of comparison. The inbreeding coefficient decreases by genera.tion,
indiceting that the breakdown of isolates is occurring in gortheastern
Brazil. This is also supported by the study of migra'ﬁion functions
since mean maritel distence inereases by generation (see L.k.).

This study demonstrates that the MATYPE method gives more efficient
and stable estimate about Q then G-TYPE. And convergence with sixteen
systems required only six iterations starting from 0=0. In the follow-
ing, therefore, we will employ MATYPE for further bioessay anslysis of

population structure.

4.3.3. Components of the inbreeding coefficient
In northeastern Brazil, the total inbreeding coefficient con-
sists of contributions from: (1) close consanguinity (F & 1/32) ascer-
tained from pedigree analysis, (2) remote consanguinity (F < 1/32)
ascertained from pedigree analysis, (3) unascertained consanguinity with-
in a raciel group, and (4) racial endogemy. It has slready been shown

in the pedigree study that the first two components in parents are .0051
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and .0009 respectively. There would be a higher value for the ascertalned
inbreeding coef_ficient due to remote consé.nguinity if pedigrees of con-
sanguineous marrié,gés were intensively traced. Since the bioassay_
analysis indicates .0133 in the total inbreeding coefficlient, the ascer-
tained inbreeding coefficient from pedigree anelysis is only forty-four
percent of it. This points to an error in assessment of inbreeding
effects on the basis of the inbreeding coefficient estimated from pedi-
gree study, for the elimination rate for rare recessive genes is greater
then had been estimated previously.

Since the population consists of three main raciasl groups, Negro,
Indian, Iand. Caucasian, raclial endogamy contribuf;éa to the total ihbreeding
éoe:t‘fic:l,ént. Based on correlations for three racial. groups, Kr:l.eger“ et
al. (1965) estimeted the mean endogemy coefficient of the seme popula-
tion to be .030 and the equivalent inbreeding coeﬁ'iéiant for fixed loci -
in the ancestral poptﬂ.ations was estimated fo be .095 + .01l (Chung et
al., 1965), so that the inbreeding coefficient due to racial endogemy
ig .030 x .095 = .0029. This is twenty-two percent of the total inbreed-
ing coéfficient. The regression of tﬁe,estimated inbreeding coefficient
from the encestral population on p(l-p) within loci is .68 % .19, which

is highly significent (Fl = 12.54). There is no significant regres-

s12
sioh on gene frequency"p. Thus as the mean gene freq_uencyva.pproaches

.5 from either direction, the divergence among populations increases.
This can only mean that the polymorphisms are more subject to local
selection than are rare genes which mey be almost uniformly deleterious,
and therefore the _contri‘bution of racial endogemy must be less for mono-

morphi’sins. And the difference between the endogemy coefficlents in
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ancestral and in present populations, .095 - .003 = .092, indicetes how
much breakdown of racisl isolates have occurred in the present popula-
tion after their migration; | -

The last contribution ‘due 4o unascertalned consanguinity is as
importent as the ascertained inbreeding coefficient. Table 4.3.9 sun-

marlzés the above discﬁssion.

4.3.4. Relationship between the inbreeding coefficlent and marital
" distance _

When couples were grouped by marital distance, the inbreeding
coefficient might be given as a function of distance and dimension of
migration. For a large distance, if migrents move in one dimension, the
function is approximately reduced to a simple exponentia.l form: i’=a.e'bx,
vhere £ is the inbreediné coefficient at marital distance x, a is the
inbreeding coefficient at x=0, and b is a constant measuring decrease of
inbreeding with distance. If two d:l.mensional migration on a plane was
assumed,. the reletion would be fzae'bxﬂ;: for a large distance. A test
of this theory was performed with sixteen polymorphisms in northeastern |
‘Brazil, estimating the inbreeding coefficient for three distance groups:
© 0-3 km., 3-27 km. and 27-» km., by pedigree study and by bioassey with
mating type frequencies il_J_A;__T!_rE;).

Two bloassay methods were 'em;ployed. in order to see effects of varia-
tions in gene frequencies with distance on the inbreeding coefficient.
In bioassay A, gene frequencies are taken from the estimates of the total
population (ﬁble 4.2.1.), hence no differentiation in gene frequencies
vith distance is assumed. AOn the other hand, the estimated gene frequen-
cies for each distance group are used in bioasssy B. In Table %.3.10,

the close inbreeding coefficients for biocassay A and B are taken from
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the difference between the total and remote inbreeding coefficient
estﬁma:bed by the corresponding methods. Sirice the differences in the
two methods are within sampling error, the estimates from bioassay A
shell be taken in the following discussions. The smaller inbreeding
coefficients in 0-3 km. group than those in 3-27 lnh. population by bio-
assay mlght suggest pdssi‘blé avoldance of close consanguineous matings
in the shorter marital d.isf.a.nce which would lead to a negative cofrela.-
tion between uhiting gametes, or they might simply be due to sampling
efror. A possible selection is ruled out. in this case since no differ-
entiation in gene frequencies with distance has been observed. No such
réduct:!.on bf inbreeding for sma.'.L'l. distances was seen in pedigree study.

When one-dimensional theory wes epplied to the data by the least
square method, taking a distance weighted by the number of couples as a
representa.tive quantity in each population and weighting by the :Ln:foma.-
t:l.oh on the :I.n'breeding coefficient, the inbreeding coefficient at x=0
by bioessay A were .0212 % .0058, .OL4T + .0062 and .006L4 + .0056 in
total, remote and close population res,péctively (note that .0212 =
.014T + .006l4) and an exponential relation fits in total and close popu-
lations (Figure 4.3.1 - 3.). Deviation from the exponential in the -
remote population is due to the inbreeding coefficient 6f shorter mari-
tal distence where negative values of F are observed. This would mean
-that the ascertainment of consanguineous marriages was nearly compiete
when the marital distance was near zero. On the other hand, the pedigree
study showed the opposite result: only the remote population fits well
with the exponential hypothesis and the estimated inbreeding coefficient

at x=0 were .0085 * .00ll, .0OL8 # .0002 and .006k4 # .0010 in total,
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remote and close population respectively (again, note that .0085 = .0018
+ .0064). |

| 'J.'hése conclusions are not subés;:antia.uy altered where maritel dis-
tance is multiplied by the square root of population density so as to
simulate a population of uniform density. The units of subdivision of
populaetion are 0-29, 30-1T9, and 180-« which give sbout three hundred
couples in the first two sﬁ.bgroups. The goodness of fit in bioassay to
an éxponential function is improved by thils trea.ﬁent, and there is nb
significant deviation from the hypothesis in total, close and remote
conéanguiﬁity (Table h.3.11.). The inbreeding coefficients at zero dis-
tax.xce are su’bsﬁantia.‘l.ly the same in the total population by bioassay and
pedigree study and in the remote and close gi'qups in pedigree study, .
suggésting little effects of a heterogeneity'in population density on -
the :I.nbreeding coe:f:f'i_cien‘h of coup]_.es whose ma,ri‘bal distance is nearly
2€ero. Differeﬁt estimates in the remote populastion by 'b;l.oe.ssa.y might
come from different vgroupin'g intervals in 'Ehe diéta.nce and density-
corrected analyses.

Based on the estimates of a and b, tentative values of average sys-
tematic pressure, U, and average migration pressure, M, on sixteen poly-
morphisms are made 'by tmsfo:ﬁations (§ is population density):

oo 2
{ 1+M&V2u
b= V2

M
Solving for M and U, we obtain
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1 b(i-e)
U= 8a5 -

The variances of M and U are also calculated by

2

2
2 _ % . %ab %
. “m~7“2La2‘ 5t — t =5
S (1-a2)° 2a(l-a)b Ub

1

0'2 20 o.
2 _ u2 a ab b]
o.. = - - - b -
v | Lé(l-a)?' va(l-a) b0

The estimated mean population dénsity was 20 persons per square kilometer
in the rural population of northeastern Brazil. Table 4.3.12. gives
results from six methods where an exponential inbreeding relation with
distance was assumed. Since M is a standard deviation of migratién dis-
tance, it might be understood es & mean marital distance when an exponen-
tial migration was assumed. The most meaningful estimates among them
are by bioassay A on the total population. The estimates of M, 12.31
and 105.57, are comparable with 80 and 24k which are obtained from study
of migration function (Table h.5.2. end 4.5.4k.). Heterogeneity of den-
sity among popula.tionsﬁeans to reduce the :genétic effect of migration.
The systematic pressures estimated are due to mutation and weé.k
selection as a linear pressure on gene frequencies. The two 'estimates
of U, .00Ll1 * .0000 and .0068 + .0055, should be comparsble since mute-

tion rate is independent of population density.
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The estimate of M is highly dependent upon the parameters a and b in
the in‘breeding function while U depends mostly on a. Inaocuracy of
estimation is indicated by the large standard errors, but strong selec-
tive forces on these polymorphisms seem to be unlikely.

The discussion should be ex'bend.ed to two dimensional theory. Since
the approximate inbreeding function itself involves a difficulty in the
neighborhood of zero distance, the convergence process is poor. In the
distance study, only three cases; pedigree study in remote population and
bloassay A and B in close populations gave convergent estimates of a and
b, whereas the study of distance nﬁzltiplied A,by square root of population
density resulted in convergency of three a.na.lyse-s for remote population
a.nd.of bioassey A for close population. From the sﬁud& with two dimen-
sional model, the following ave suggested: (1) The one-dimensional
migration may hold for remote conoanguineous 'mé.ri'iages (F < 1/32), and
(2) significant differences in b-values between both dimension models
may 'be due to incorrect use of approximetions, that is, there must be
more exact forms which take account of avoidance of too close inbreeding,
such as selfing and brother-sister mating, especislly in the two dimen-
sional model. A‘b any rate, we may take the one dimensional model as a
first a.ppro::i.mation to descri'be the relation between the inbreeding co-
efficient and distance, although a study of migration function has sug-
gested that the migration in northeastern Brazil may have dimension 1.7
to 1.9, or nearly two dimensional migration (Table 4.5.1-k.).

As conclusions, an exponential relation ‘between the i'nbreeding co-
efficient and the marital distance may hold in the total and remote in-

breeding coefficients by biloassay and in the remote inbreeding
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‘coefficient by pedigree study. Deviation from the exponential ‘relation
for the inbreeding goefficiehts in pedigree study of the total and close
populations maey indicate preferential consanéuineous marriages at large
distances. B

k.3.5. The inbreeding coefficient for alleles

| So far the inbreeding coefficlent has been discussed as if only
one parameter eﬁsts per locus. As discussed in chapter 2, the concept
of aséigning en inbreeding coefficient to each allele ﬁight be ﬁelpful
1:; understanding population structure , since Wahlund's principle could
be applied to the gene in question and heterogeneity in the inbreeding
coefficient among alleles might indicate a consequence of random genetic
drift, muatation or selection on & particular geﬁe; | |

A possible statisti‘cal method to estimate ﬁhe inbreeding coeffici-
ent for alleles is to reduce a genetic system with miltiple alleles o
the case of two alleles, the one in guestion and the others pooled, and
then to lapply the M__l_g.'_!__PE__ method. The results of analysis for eight sys-
tems are shown in Ta.ble 4.3.13. The :l.nbreeding coefficients for a locus
ave calculated by & = 2, , vhere p, end O, are the frequency of the ith
allele (Table L4.2.1.) and its inbreeding coefficient, respectively. In
parentheses, the values which had been calculated directly (see Table
4.3.5.) are givenl for camparison. Both quantities are generally the
same oi'der, except in the Kell, MNSsU and RH systems. Discrepancies :I.n_
these systans might arise from the method itself;fb'eca.use no such couples
as k° x ¥°, X x K in the Kell system, N* x N¥ and M¥ x M¥ in the MNSs
system, and incrosses *.-?i‘bh respect to jpﬁenot&pes r'; rt ’Aa.nd. r s are ob-

served, giving a negative inbreeding coefficient for these alleles or
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even a singular metrix. The singularity in the Rh locus required that

D(-) alleles be pooled as one allele. Apparently, the lack of some
incrosses of homozygotes presents no problem in a codominant system such
‘a8 Haptoglobin, Hemoglobin and ‘I.'ransferﬁn- Apart from the negative
estima.tes' of the inbreeding coefficient, the prb'ba.‘bility to be identi-
cal by descent seems to vary among alleles even in polymorphic systems.
The likeliness may be also suggested by the end.ogazﬁy coefficients
estimated in the ancestral popula;tion of northeastern Brazil (Table
4.3.14) where the coef:f.‘iciénts mey represent a diveréity of allele fre-
quenciés between three ethnic gfouys. The causes of variaticn among the
~ inbreeding coefficients for allele might reflect random gerietic dri:f‘t,

mta:b_ion or selection, but no conclusion can be drawn et this stage.

k.h, Mating type frequencies and the related probabilities

Mating type: Mating type frequencies have offered e method of joint
estimation of gene frequencies and the total inbreeding coefficient which
are basic quantities to describe population structure. Thus ﬁhe ex_pected.
mating type frequencies as a function of gene frequencies and the in-
breeding coefficient must fit well with the obsgrved frequencies if devi-
ations due to selection or misclassification are small. Theoretical
discussion of two-sllelic loci was made in section 2.5. The observations
in northeastern Brazil provided autosomal cases for testing. Five co-
dominant sysf;ems » Sé and. MN blood group factors, Haptoglobin, Hemoglobin
" and Tra.nsferrin serum varliants, and eight dominant systems, Diégo,
Iutheran, Inv, nﬁfy, lewlis, ABH secretor, P and PIC polymorphisms serve
~ in this case. Six observed numbers of mating types and their expected

numbers under the hypotheses that HO: O=0 and Hj_: C=,0133 are given in
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Table 4.4.1 for five codominant loci in order to test whether the present

theory is satisfactory or not but' the improvement in .goodness of £it is
not striking. '

Non-segregating probability h: Although it has been demonstrated

theoretically that effects of inbreeding on segregation analysis are
nearly negligible, the tendency of deviation in the observed non-
segregating probability :I:‘roml the expected under the hypothesis that

Ho: a=0 should be tested with da_‘&a.. In a study of selection acting on
sixteen polymorphisms in Brazilisn material, Morton et al. (1966) have
found that the dibscrepa.ncies in b, end h, attributed to selection are
infrequent. Since the observed deviations are ranging from about .3 to
10 percen‘b except of h3 in A2 factor and since they are appeared to be
within .va.r:l.e:bioﬁs due to subdivision of poﬁﬂ.ation or inbreeding, it will
be worthwhile to compare them with the expected devistions in the popula-
t:!.bn ‘with the inbreeding coefficient & = .0133. Correlation coefficient
of the observed deviation, e = Uh/l(hh, end the expected, 4h = cQ, or a
linear term of @ in the expression of h as a function of gene frequencies
and the inbreeding coefficient, are caloulated (Teble 4.4.3.). The high
positive correlation means that the direction of discrepancies in the
observed h can be attributed to an effect of inbreeding. The simple cor-
relation coef_ficients are calculated weighting by the amount of informs-
tion Khh In our Brazilian mai;eria.l from that seventeen factors are
emined; the correlation coefﬂcients for incompatible ba.ckcrpss s com-
patible backcross and incross with respect to a dominant phenotype are

r = .35, .33 and .46, respectively. Although they are not significant
from the null hypothesis that r = 0 (P > .10), the figures suggest on
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effect of inbreeding.
The result again encourages us to Justify the moment method to des-

cribe human population structure.

k.5, Migration function

Studies on the distribution of marital distance have contributed to
human biology in two senses; to define the migration pattern in man and
to obtain the relation betweeﬁ the inbreeding coefficient and the dis-
ténce. Several probability density functions have been proposed to fit
date which showed ﬁnesca.pa'bly leptokurtotic patterns. In figure 4.5.1.,
relations among the proposed functions are summarized. In the fpllowing,
each distribution shall be examined one by one in accordence with its
relation to the others and goodness of £it with northeastern Brazilian
population where a measured marital distance and the distance multi-
pl:!.ed.sq,uare root of population density are studiéd in grandparental and
;pa.renta.l. generations. Poptﬂ.ations are subdivi-ded into eight classes
vhose representative distance was calculated as & mean weighted by the
number of couples in each group. In general, m(x;a); for example, stands
for a probebility density function at distance x vi‘i:h en attraction
- parameter a, and the mean marital distance and its standard error are
denoted by x and Ozs respectively.  From these, the total inbreeding co-
efficient is tenté.tively calculeted by the exponential relation between
the inbreeding coefficient and the distance: a;-'fok, vhere

® bx_
k = é e m(x;a)dx,

fo = ,0212 end b = .0038 in the distance study and £

.0011l for the distance multiplied by the square root of population density

= .0199 and b =
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so as to simulate a uniform density population. Whenever the integral

is complicated, a discrete a.ppro:dmation is made such that

-bx ..
k=Ze 1ni/n, where x., n, and n designate the representative value

R &
of distance in the i-th class, the expected number of couples in the 1-th
class and the total number of couples sa@led. As far as the Brazilian -
popula.tiori is concerned, errors due to the discrete appro:d.matioh are of
order lO“lL with respect to the inbreeding coefficient ¢, which may be
tolerable in the present analysis. The inbreeding coefficlient for the
empirical observation 1s thus obtained by the discrete approximation,

end the mean marital distance is estimated by the ordinai'y moment method.

2
Normal distribution: m(x;a) = m-(u) NT, x = .5642/a and oz =

i/ew/i{aa. Wright's studies on is_ola."bion by distance have éuggested .a
normal migration in man, which turned out to bg unrealistic in practice.
The function is also ruled out for the distribution of marital distance
in man (Cavalli, 1958). As a reference hypothesis, we é:namined normal
migration and found it not to fit (Table L4.5.1-4.). The technigue em-
ployed hgre have also suggested that the normal function may not be
applied to a marital distance so large that the expected proportion of
couples is nearly zero. A grouping of the last large distance class was
therefore made. Recently, Cavalli et al. (1965) have suggested a sum of
normal probabilities m(x; a.i) = Ewi?.aié'(a'ix)zﬂ’ﬂ (z:w:l = 1) in order to
save Wright's theory to cover possible leptokurtosis. However, this
meets two difficulties: first, ex’j:erience tells us that functions with
more ‘chan two parameters oftten do not converge and second, the linear
combination of probabilities is only an empirical description and muld

not be a plausible model of migration.
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Exponential distribution: m(x;a) = se  , x = 1/a, oz = x/a Jkaa
and k = a/(a+b). A suggested empiricel function which is leptokurtic
and has. a mode near zero is an exponential distribution (Sufter and Tran-
Ngoc-Toan, 195T). Because of its simplicity, the function has been used
:t‘req,uéntly in tﬁeory and in practice. Brazilian populations do not fit
with it at a1l (Table 4.5.1-4.). This tempts us to génera.lize into two
directions. One is to use & gamma distribution, which .:I.ncludes the
exponential distribution as a special case (Cavélli s l1962). The ganma
aistribution therefore has two paremeters, an attraction parameter and
a dimension parameter n: m(x;a,n) = o Le" /n! An unrealistic point
in this migration function is that it has a 1e§tokurtic form only when

0 < n <1, vhich leads m(x;a,n) t§ be infinite at x=0. Therefore, the

function was not used.

Double _e_:_clponenﬁial function: m(x;a,b,p) = (1-plae * + pbe-bx,

x = (1-p)/atp/b. Another extension to save an exponential migration is
to make a sum of exponential probabilities. As stated in the normal
hypothesis, this approqch is only for an empirical description of migra-
tion. Chi-squa,rgs for goodness of fit are considerably improved compared
with previous analysis. Searches for trial values for parameters are,
howevei', ted:l.bus ,‘ especially with p. The only suggestion which was help;- .
ful is to find estimates from graph. vAnd. if we take the point values of
estimates, the couples consist of short migrant group (sbout 10 km. or

25 km. 'fdensity) and large migrent mp (about 100 km. or 250 km.
Ndensity), where the short range proportion is 53 percent in grandperents
and 46 pércent in parents. | The mean marital distance increased by genera-

tion and the estimated inbreeding coefficient decreésed. in the amount.
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001 or .1 percent by 'generation, where a stationary state is assumed
with respect to the inbreeding function.

Square root exponentisl distribution: m(x;a) = aae'afx/a, X = 6/:.=:,2

and o = 2%/ek__ . This function was introduced by Cavelli (1958) to
descx;ibe migration in the northern Italian population. Although the
function does not fit well near zero distance, among functions with a
single parameter it fits better than the normal and exponential functions.
The present method of meximum likelihood turﬁed out to converge eibfa,-
ordinarily slowly, usually ta.king‘ more than sixty iteration starting

from o tentative vaelue calculated by the moment method. Occasionally,

the goodness of»fit with an intermediate estimate of parameter & was
better than that with the fina.l. converged estimate. The funct:lén fits
fairly well the northeastern Brazilian populetion. A genera.l:!ization of

the square root exponential function is to have a modified gamma dis-

'axlln/ n!

tribution (n = 1/2) end en exponential distribution (n=l) as a special

tributions in(x;'a,n) = a"% The function includes a normal dis-

case. By transformetion, y==xl/ n, it reduced to a gamma distribution.
The attempt to fit to actual date remains & possibility.

. o .
Lognomal distribution: m(x;a) = ae'("!"‘) Nt x, & = exp(l/ll»aa)

and o = #/ba¥k_ . By a simple trensform, y = ln x, the function re-
duces to & nomal probebility. This implies that if human dispersion
can be described by a lognormal function, then all of theories, which
are based on normal migra.tion, in isolation by distance will be saved.
The £1t of a lognormal distribution is better if nearly half of the
semple falls in O-1 unit class. Since nortﬁeastern Brazilian populations

did not meet this criterion, it is no wonder that chi-squares for
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goodness of fit have rather large values.'l Populations such as noz_'thérn
Ttely (Cavalli, 1962) and nori-.hem Japan (Hiraizumi, 1965) where néarly
half of couples have marital distance less than one km. class of marital
.dista.nce may be well described by the lognormal distribution. This |
will be discussed elsewhere.

A Bessel distribution: m(x;a) = aaxxo(ax) s X = 1.5708/a and

oz = i/a\fKaa. This function has been suggested by Kimura (1963) from
a purely theoretical point of view. Matliqnatical properties of lco(x)
may be found in Lebedev (1965) but Ko(x) is more leptokurtotic than the
exponential and K (x) —w, XK,(x) »0 s x 0. The goodness of it is
worse than other single parameter distributions in Brazilian material
(Table 4.5.1-k.).

a+l

Skellem distribution: m(x;a) = 2ax/(14x°)%*, % = w 1f & < 1.

When individual mobility, or attraction pé.ramefer in our terminology,
follows a gamma distribution, a normal migi-ation is replaced by the
Skellam distribution (Skellam, 1951). There are no finite moments unless
a is greater than one. The fit of i:his function is as good ﬁs the square
root exponential distribution, and better fits are observed with shorter
distance (Teble 4.5.1-4.). The meening of parameter a is not clear in
this case since no moments are availsble with such small values of a as
.16, .12, .09 end .OT in four studies of our meterisl. By & transforma-
tion, y=x2, the distribution reduces to a beta probg.bility.

A generalized Skellam distribution: m(x;a,b) = 2abx/ (1+a.x2)b+l,

X = o if b < .5. An extension of Skellam distribution was made to

separate the attraction and distribution parameters. However, this
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generaliza.i;.ion gave little improvement and the difficulty in estimating
parameters is-formideble. Convergence could not be obtainedAin the
. grandparent population. All b-Mms are about «2, indlicating that no
moments cen be derived from the distribution pa.rametezfs. A transforma-
tion, y=x2, agein introduces a beta distribution. |

A beta distribution: m(x;a,b) = ab/(l+ax)™™, £ =w 1£Db < 1. .

Cavalli (1962) has suggested this type of f‘unction in 'bhe “gra.vita.tional"
com;:onent gf migration in man where an exploration range w:l.ll be propor-

tional to the inverse of some powers of d:l.sta.nce. The parsmeters a and
b may be called the attré.c‘bion factor and dimensional index, where a is
a .sca.'l.e parameter and b is de;benden’c upon the range of exploration.
This is the best function among fhose 'tested. (Figure 4.5.2). #B attrac-
tion factor is smaller in parental generation ‘than in grandparental
.generation (.0916 % .0089 - .65#9 t. .0063 in the distance analysis and
.0381 + .0034 — .6236.1 .0028 in the distance multiplied by ‘squa.re, root
of population dengity) vhile the dimension index did not alter appre-
ciably by genere.tion (.8971 % .Osslll - .8765 * .0627 in distance analysis
and .TAL4 % .O3TL — .666T % .Ok58 in study of distance times square root
of density). This result suggests that breakdown of isolates is occur-
ring in northesstern Brazil, the migrents exploring for mates with
dimension b+l = 1.8, or essentially two dimensional migration (Table
k.5.1-k.).

Since migration in man presumably has a dimension between one and

-two, the b-value would not exceed one so that no moments of distribution
can be described in terms of a and b.

We thought from the beginning that the mean maritsl distance would
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'be. explained by a decrease of ::.nbreeding coefficient by generation, and
that the parameters of & distribution which fitted well vith date would
glve an unbiassed estimate of this decrease. The mean marital distance
varies considerably for different types of migration function, but the
estimated mean inbréeding coefficients do not vary much, which supports
theoretical evidence that the inbreeding coefficient may be little
related to the hform of the migration function. The difference of .061
in the estimated inbreeding coefficlents by genei'e.tion is also almost
constent. It is also observed that the meen inbreeding coefficient of
popuia:bion is roughly about eighty percent of that at zero distance for
e variety of migration functions.

As & sumsry, a beta probability function was found best to des-
cribe distribution of marital distence in northeastern Braz:!.l.'v Break-
dowm of isolates and dimension of human migration mey be studied from the
basis of distribution parameters, but not from mean marital distence. A
double eprnential probability was also fitted fairly well. Several »

other distribution functions which have been proposed were also examined.

4.6. Discussion

The bioassay method to ascertain the total inbreeding coefficient
has shown several advantages in studies of population gtructﬁre in
northeastern Brazil. First of all, it requires only one generation data.
Difficulties in tracing humen pedigrees are common, so that the inbreed-
ing coefficient is often underestimated even in an inteheive pedigree
survey. In bioassay, on the other hand, if data are collected by coﬁple

as e sampling unit, the investigator may estimate both the total
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coefficient of consanguinity based on meting type frequencies and the
total inbreeding coefficient of parents themselves treated as if they
were collected as a random sample from the population. It is‘ not‘ necesg-
sary to study children, but they could serve as & confirmation of the
bioassay method by comparing the inbreeding coefficient of children
‘(G-T!'PE) ﬁith the coefficient of consanguinity of parents (MATYPE). In
addition, a c.omparison of two generations permits study of the breakdown
of isolates which seems to be occurring in northeastern Brazil.- |

The totael inbreeding coefficient thus obtained is due to all gene-
tic barriers, and includes effects of consanguineous marriasges, random
genetic drift, mutation and selection. Effect of random genetic drift
is theoretically kmown to increase homozygote frequenéies but its effect
'is unknown in the présent study. However, it might be smb.ll since our -
sample was from a tri-i'acia.l mixed poplﬂ.a.tiqn whose endogamy coefficient
was estimated to account for only 22 percent of the total i;zbreeding co-~
efficient. Mutation may be omitted from discussion at the present stage
because of no mutaticn being observed in sixteen polymorphic systems.

Selection would be one of the semsitive factors, but technical error
or misclassification often cannot be d:l.si';inguished from it in statisﬁié
cal asnalysis. As is well-known, if selection has acted against homozy-
gotes ‘(heterosis) » then the inbreeding coefficient estimated by bioassay
tends to be small or even to be negative. This was almost ruled out in
sixteen polymorphic systems from northeastern Brazil when positive values
of the coefficient of consanguinity in parent and the inbreeding coeffi-
cient in children were obtained. A possibility of heterozygote disadvan-

tage (negative heterosis) may enhance the inbreeding coefficient by
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bioassey but no such evidences were found (Morton et al., 1966). Appar-
ently, the effect of selection on the inbreeding coefficient is very
small.

In connection with a negative inbreeding coefficient, the concept
of "isolate s.:lze."- should be concretely stated at this moment. In a
Pinite populatiori with size N, a correlation coefficient of two samples
without replacement is always negative: r = -1/(N-1) (See, for example,
Wilks, 1962. p 217). ¥%hen a fihité population consisting of 2N
gametes or haploids is in question, then the correlation coefficient of
uniting gemetes becomes -1/(2N-1). The derivation of the correlation
coefficient permits selfing ‘and incest because of the assumption that no
genetic barriers exist in the population. Genetic barriers in a popula-
tion a.lwajs give a non-negative correlatiqn of uniting gametes (fﬁ)‘
vhich may depend upon the population size. Therefore, the total inbreed-
ing coefficient observed as a net must be |

1

I
Gp ey

which would be zero when N = (1+:fB)/2fB and elso when N »« and £ = 0.

The number NO = 2N is called the isolate size in the sense of the
probebility density theory. In northeastern Brazil, f_ & .OL33 has been

B
observed (%4.3.2.) as an amount of inbreeding and which gives N, s 38,

assuming tha.t' fB<is independent from population size, and all genetic

barriers are taken care in fB' Subpopulation of size greater than this
are expected to have positive inbreeding coefficients. This eritical
value of 38 is much smaller than Dehlberg's theory which is unsatisfac-

tory not so much because of its implausibility, as because it leads to
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no quantitative prediction of the relation between gene frequencies and
genotype frequencies. The v_:ﬁ.ue No means only that when the number_of
individusls in populstion is equal to it, the net inbreeding coefficient

s then a nega-

becomes zero. If the population size is smaller than N,

tive correlation between uniting gametes is expected.

The alternative possibility for a zero inbreeding coefficient is a
population in so-called "Hardy-Weinberg equilibrium" where the popula-
tion size is infinite and neither mutation, selectién, nor migration
occurs. In an infinite population with genetic barriers, however, the
correla:ﬁion coefficient would be positive. An interesting problem is
thus: what will be the inbreeding coefficient in practice when the
popuia.tion -8lze becomes large? Three possib:l.lities may be suggesteds
(l) the inbreeding coeffici_.ent' increases with the ﬁopula.tion s:l.zé since -
genetic barriers increase, (2) the inbreeding coefficiénb will be con-
stant efter a given population size end (3) the inbreeding coefficient
will approach to zero when the size becomes infinite. Although the
second possibility is most plausi'ble » it remains for further research.

Wright (1943) has estimated the long-term inbreeding coefficient in
man from his theoi-y of isoia:bion by distance as less than .02, which
corresponds to 200 couples without mutation, selection, or long range .
migration. Although his aepproach assumed normal migration of parent-
offspring distance, a remarksble consistency with our results which gave
.OLT in parent and .01l33 in children revealed his great insight. Had he
developed his theory of isolation by distance with another migration
function such as an exponentiasl or a beta distribution, and had he

reached the same predicted estimate, this would be one of evidences that
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migration function seemed not to be related to the total in'breeding
coefficient of population. There are theoretical predictions on this by
Malecot (1950) end Kimura et al. (196l4), and our Brazilien material
where almost all inbi'eeding coefficients estimated from 9 different dis-
tri'butions of marital .distance gave very similar velues (Table 4.5.}.
This is one of the most important aspects in humsn populetion genetics
" since the marital distance serves not only for study of migration and
thus to evealuate '_bhe total inbreeding coefficlent, but also for study of
inbreeding by distence. We have tried to test both one end two dimen-
sional models for the inbreeding function with distance but approxima-
tion seemed to be crude, »especiaily in two dimensional function. Further
researches are desii'ablé.

In Bmary, the theory developed in chapter 2 {has been applied
successfully to a population from northt_ea.stem Brazil.

5. Summary |

A new théory to describe human population structure was developed,
based on Wahlund's principle. The ;possibie consequences from the theory
‘were tested by using & method of maximum likelihood scoring with 1068.
migrant families from northeastern Brazil. _

The fé].‘l.owing facts weré predicfed in theory and emerged from the
analysis:

1. Mating type frequencies are given as a function of gene frequen-
cies and the inbreeding coefficient, provided that the sma.llést gene fre-
gquencies is not less than the inbreeding coefficient. As i’ar,aé autoscmal
loci with two a.lle]gs are concerned, this gave a better fit to the |
Brazilian population than the assumption of Hardy-Weinberg mating type
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frequencies.

2. The effect of inbreeding, or subdivision of population, on
segregation enalysis was examined theoretically and with 17 human poly-
morphic factors. No serious effects were found of assuming Hardy-s
Weinberg equilibrium in segregation analysis when the inbreeding coeffi-
cient is smaller than the 'sma.llest gene frequency.

3. ‘J.‘he relé,tion between the inbreeding coefficient and marital dis-
tance deséribing genetic isolation in popula.tions'was leptokurtic and
approximately exponential for the totai and remote inbreeding coeffici-
ents and the remote coefficient ascertained by pedigree study. The -
deviation from exponentiel in the ascertained inbreeding coefficient was
apparently due to prefei'ential coﬁéanguineous mating at large distances.

4. Four altemafive methods to estimate the inbreeding ‘coeffic_ient_
were applied: pedigree study which showed .0059, bioassays from indi-
vidual phenotype frequendies and mating type frequencies, .Oi;fo and .0133,
respectively, and use of migration mction, .018. |

5. The breakdown of isolates was measured in term of the inbreed-

ing coefficient f

B = .095, taking ancestral ethnic populations as a

reference.
| 6. A method to estimate the inbreeding coefficient for alleles was
devised.

7. The ABO blooﬁ. group éystem does not give any information sbout
the inbreeding coefficlient by bioassay method with individual dsta.

The following results were from the enalysis.
8. The pedigree study of the inbreeding coefficient resulted in
higher estimate in offspring due to inéomplete ascertainment in the pre-

vious generation.
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~ 9. Comparison of the inbreeding cogﬁ.’icients by pedigree study and
by bioassay with sixteen polymorphic systems indicated that the remote
inbreeding coefficienf was as greet as the close inbreeding coefficient.
10. No differentlation of géne freqtencies with respect tomarital
distance was observed. o
11l. Racial endogamy contributed only 22 percent of the total in-
breeding coefficient for polymorphisms, and less for rare alleles or
monomorphisms. |
12. A tendency for the inbreeding coefficient to decrease by genera-
“tion could not be detected through pedigree analysis, but is found by

the new methods of bioassay and distribution of marital distance.

Further researches are needed in the following aspects.

13. Theoretical works on the inbreeding function with maritel dis-
" tance, taking care to exclude self-fertilization and incest. |

14. An empirical correlation method with distance instead of bio-
assay for describing inbreeding functions.

15. Study in other human pqpu'l.ations than Brazil should be conduc-
ted for bioaésa.y of the inbreeding coefficient. On this occasion, an
accurate record §f location (for example, the longitude and the latitude,
of birthplace of individual) must be made in order to extract more in-
formatibn on human population structure. -

16. Some mathematical models might be checked with other species

in the laboratory. A homogeneous symmetrical migration population struc-

ture, for instance, could be tested with Drosophile melenogaster.

17. There are still several unexplored poséibilities to examine the
present théory. Mating type frequencies at sex-linked loci are waiting
for the applications and the moment theory itself may be applied to other
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aspects such as linkage, illegitimacy, polyploidy, heritability and so.

on, which appear in genetic aspects of human biology.
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Appendix 1; General discussion on the breakdown of isolates

The conclusion in text is not altered when we consider more then
three isolates. Although several models may be developed, we shall
discuss only two of them: (i) the breakdown of isolates in a part of
the total population, and (ii) hierarchic model of removing of barriers. |

(1). Suppose that a population consisted of n isolates and k of n
(k§ n) isolates were grouped into a new panmictic isolate by removing
of barriers so that the population consists of n-(k-1) isolates.

At the first phase, the population is characterized by:

n
Zw =1,
1= 1
n .
Py = 1 5P
and 02 = n 2
N Pi 1 PN’
~ where v, and p; are the relative size and geme frequency of the i-th
isolate, reépectively, and also Py and 0'1% are a gene frequency and its

varience in the totel population, respectively. Let us take the first

k isolates being grouped. The present population is now specified by

n
W+Z w =1
1=+
| n
pN-'-K =W +i§K 1Pi i’
2 2
and N-K = P + §K+11’1 1 " PR
K K o
where W = Z‘.lwi s B =y l /W and p X and GN g Stend for gene frequency

and its variance in the present population, respectively.



Comparison of two phases results in

Py " :uz»N_K(E p),

2
and = Pa" * §+1P1 1~ Pyx

=g

K K K
'12¢ [121 )‘1§1wa1_) - fiéipiwi?f]/ 15"

or

2 o K 2, K
ok = °N -18;"; %3 (p; -py) /1% -

The relation in the inbreeding coefficient will be

If'N-x = ?N‘? B
2
where Fp = 3% fw wl)_ (py p;L)_.

W p(l-p)

(i1). Although the breakdown of isolates has occurred in several parts
of a population, some of barriers still remain so that the population

consists of a number of new isolates. Taking the same notations of (i)
but X to be the number of new isolates, we can easily verify the rela-
tion in the inbreeding coefficient between two pheses of the population:
Feeeex = Fy ¥y
at the second phase and

where F,

NezeooX stands for the inbreeding coefficient

W.W '
B raleacii

The first summation is teken for new isolates.
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Example. The comparison of the endogamy coefficient in three racial
ancestral populations with the inbreeding coefficient from & tri-racial
mixture popula.tion. Suppose that three racial groups are India.n, Negro
and Caucasian whose relative slzes and gene A frequencies are I, N and
C, and p,, B, end p_, respectively. Let F, and Fy be the inbreeding
coefficient of the tri-racial mixbure.population'and the endogemy coef-
ficlent in the ancestrai populations. We obtain -

FM = FE - FB,

4 N2 2 2

Ic(p,-p.)" + cN(p -p_ )" + NI(p -p,)
where FB= _i ch ac n. wn jﬂ
r(1-p)
since p = Ip, + Np, + Cp, and I + N +C = 1.

Consideration of several genes will provide more information for

(In the above discussion, we assumed no mutation, selection, and
accident by sampling which may result in changing of the mean gene fre-
quency of population. Since it is always difficult to estimate gene
- frequencies in ancestral populations, FB may be, therefore, taken as the
Pirst approximation. Examining the mean gene frequency of population at
~ different steges, we may Justify this method if difference is not sig-

nificant from zero.):
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Appendix 2. Moments of a subdivided population given a distribution of

isolate size

. A general idea to obtain the moments, knowlng a distribution func-
tion of isolates, would be demonstrated by beta probability in a locus
wﬁ.th two alleles since this case re;oresénted a steady state distribution
of gene frequency under Wright's island model, vhere the population con-
sisted of :I.sola'beo of equal size and each isolate exchanged constantly
individuals into the_ neighbors. Only the third and fourth moments will
be given in other distributions for the sake of comparison. For the
higher moments, a method of ‘moment generating function will be helpf‘ul

(1). Beta distribution: Suppose that a d.eﬁs:l.ty function is given by

Rt l 2 S R T L)
(a-1)!(b1)! -

where a and b are distribution ﬁarameters and p _ 1s the gene frequency
W

in the neighborhood. of the point w. The moment of population will be
_ .k
M= Jp )

_ __(a#b-1)! ac-1 b-1
= — J;l P, (1-p)  dp.

(a:l) 1(b-1)! -

= ia.-l-b;li ! (a-;-k-l) !

(k =0, 1, 25e04)
(a-1) (a+b+k-1)! . i

- -~ -

which gives
M = a/(2+) end M, = M (e41)/(a¥b41).
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Since the first and second moments correspond to the population gene

frequency p and an homozygous frequency p2 + PaQy, where Q is the
inbreeding coefficient, the pafameters may be written in terms of gene
frequencies and the inbreeding coefficient, or
a/(atb) = p
(a#1)/(a#b41) = p + q@
so that a = p(1-&)/a”exid b =‘q(1-a)/a'. We obtain, therefore,

M, = a;)— [p° +p (1+2q)a + m(lw)agl

end
—_—
(1+2) (1+20)

M, = [pu + 3p5(L+a)o + po(246a+307)cP +

- pa(L+a)(2+)03],
or, if O is small (say, less than two per cent),

M, = p° + 3% - pa(30)f + 2a(1-2)0d ¥ ...
and , | ) ' ) T
M, = p + 6p% - p7a(8-199)7 + 2pa(1-2Ta1232%)0% + ...
In the island model, a-hmp and b—lmmq, vhere N is the effective size of
isolates a.nd m is the migration rate, so that @ = 1/(1+iNm). (Wright,
1931). | '
‘The following results are straightforward. (The form of distribu-

tion function mey be found in Mood and Graybill, i963).
(ii).’ Binomial distribution:

o My = > + 3p%a0 - pa(1-2q)o

W, = p + 6p%a0 - p2a(k-110)0? + pa(1-6a+6a2)c3.
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(iii). Poisson distribution:

My = 3> + 3p°90 + paoF

M, = pu + 6p3q_a + 7p2§_2a? + pq_3a3.

.

‘(iv). Récta@ﬂ.a.r distribution:
‘ %=§+$@
l 3 22
M, =p +6p°c+ (9/5)p°q

(v). Normal distribution:
| My = D3 + 3p°q0
My, = pl’ + 6p3qa + 3p2q_202.
(vi). Gemma distribution: (;p & q)
M, = p> + 3p°ax + 2pa°0F
M, = p* + 6p3qa + 11%%F + 6pacd.

Thus the square and higher powers of O may be ignored when |@| is not

gi'Gater than the smallest gene frequency. —
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Appendix 3.. Derivation of a general formuls for the moment of population

When the number of alleles increases beyond 'bwb, the covariance
moments become of importence, which are given in the Waehlund's prinéiple
as freq_uencieé of heterozygoﬁes. :

Iet p and q be gene frequencies of population and p v and o, be of
en isolate (it 1s not requived that pia=l end p#a.=1). Denoting dif-
ferences :I.n“gene frequencies between the isolate and the poplﬂ.ation by
Op end 4q , their ¢ova_r1ance moment is given by

- e (Aq,,ﬂaw B(p,) (Aq,,)J
where E is an operational symbol denoting expectation. Fbr example,

mo =Wy = O
myy = r(1-p)a, m, = -paQ, and yo = a(1-q9)a,

where C is the inbreeding coefficient. The moment of population is now

. Ay

(e},
= n(pw,,)a(mq,,)"
(r)( ) 8. r b 8 rs |
—paqb + ap* P o + bp%" T + (2 )pa %a"ny, +

lbl h-2
bp™" mu_+()paq, Myp + seeee

or, ignoring the higher tems of m _(r+s>2, ri#0 and s¥0),

4 1) _a- b-
M=% [a(: 1) 211 p)o® + B 2 1) 8y l(l q) 3 abPaqb]a.

Justification to ignore the higher moments » Mo is also seen in a

s‘eries of calculations of moments assuming distribution functions.
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The sufficient condition is agein that the smallest gene freguency is
greater than the inbreeding coefficient.
Generalization is now straightforward. The moment of popula.tion is

Mo seeense, ~ [1—1(1’1 * Apiu-) ]

where pi‘ is the frequency of i-th allele. By expansion of binomisl
product terms and by replacing m.. in terms of gene frequencies and the

inbreeding coefficient, we obtain

&, n
Mo seeensay 1’='J.I’1i 11’1 [1’11(2 )(1‘1’1?11&3%' -

n
(1’='1P1)1i;3133;|°'

The assumptions for deriving the general formule are the seme as the

brevious arguments.
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Appendix 4. The application of ‘Newton-Baphson method to solve maximum
1ikelihood 'eq,ua.tion (so called maximum likelihood scoring

method) and its convergency

Let L be a log-likelihood with a parameter 6, and take its first
derivative with respect to 6 as u(6) = 8L/06, Furthermore let 6, denote
an approximate value of the true one » end e be the correction which must

be applied to 90 to give the exact value of the solution, so that

The maximm likelihood equation u(@) = O then becomes
u(eo + e) = 0.

Expanding this in the series form by ‘l‘aylor'gtheorem, we have

. 2
w(6yte) = u(6) +e u'(8)) + “u"(9+ge) (05 § =1)
. i 2 . ,
Hence . ”
u(eo) -e kfeo) - Ea-k'(90+8e) =0 (1)

where k(6)) = -(au/89)9=90.
Now if e is relatively small,' we mey neglect the term containing

‘ e2 and get the simple relation

u.(.eo) = elk(eo) =0
from which | “
el = u(eo)/k(eo) (2)'

The improved value of the root is then
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(3).
The succeeding value of the root is

9=9+e=6+>,
2717 %2 7006

93 = 92 + u(ea)/k(ee)—

en = en-l + u(en-l)/ k(en-l) °

Equation (3) is the fundementel formule in the maximm likelihood
scoring method. | |

It is evident from thié formula that the larger the k-sc,oré, the
smaller is the correction which mist be applied to get the true value of
the estimate. This means that when the gra.ph of likelihdod' equaﬁidn is
nearly vertical where it crosses the 6-axis the correct value of the root
can be found with great rapidity a.nd'very little labor. If, on the
other hand, the numericel value of the k-score shouid. be small in the
neighborhood of the root, the vﬁlues of e given by (2) would be large and
the computation of the root by this method would be a slow process or
might even fail altogether. This method should never be.used when the
 graph of u(9) is nearly horizontal where it crosses the 6-axis. In such

cases, regula falsi interpolation might be useful (Barrai et al., 1965).

The process will evidently fail if k(6)=0 at the neighborhood of the root
a.nd_ such an example in bloassay has been seen at the ABO blood group
system (see text 3.3.1.). "
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In the above process we heglected the term involving e2 and got an

approximate value e, from the eq_ua.tion'u(eo)=elk( 90). Subtracting it

1
from (1), we obtein

(e-e;)x(6,) + ik'(eo +§e) =0

- (9,+5e)
k'(©0 +3e
2
e-el = -e ____0____ (= El) (l")
&(eo) . - . .
Now since e is the true value of the required correction, and e is its
approximate velue, it is plain that El is the error in e - Iet M be the
meximm value of k'(6,) at the neighborhood of O te, then |
M
e-e =-
21(9,)

or Me2 + 2k(9°)e. - 21:(90)e1 = 0. Solving it,

e = (-K(8) +[[x(6)1® + Au(6,) e, I

8o that
_ Mez |

2(8,)

B = |

This is error in 91. In general the error in 9n is therefore

Me2

n
B 5| —2—|.

ak(en-l)

If |H/2k(9n),| S 1, as usual in cases where the Newton-Raphson method can

be appl:l.éd,‘ve then have
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2

& .

E": e,

This result is most important, for in finding the correction from (2),

the division of u(Go) by k(9o) need to be carried out to only one more
significant figuré than number of zero between the decimal point and

Tfirst significent figure.
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Appendix 5. Maximum likelihood estimation of gene frequencies and the
inbreeding coefficient from individuel frequency deta: In

case of k-alleles without dominance

k . '
Let p; (iZipi = 1) be the frequency of allele A; and B, 5 (_=nji)_ be

the observed number of an ordered genotype A,A 3 (=A JA:I.) whose frequency

is pypy + ;pi(S:L1 - pj)a, where 81J=l for i=) and §, ,=0 for i#j. The log

iJ
likelihood 1s

L= fdmmm[pipj + Pi(‘ig‘l’a)“]

and the scores are

2p, + (1-2p,) .
v o=t 3 4L g ) (171, ..., k)
By > i1 5, J i3 31
k  (1-p,)
U;= z -—-.——1'-—-:111 -z (ni,j‘m,j:l.)
i=1 p;+(1-p, ) 1-a J#
k-1
Imposing the restriction that P~ l1-Zp 12 the maximum likelihood
i=1
scores are
u = U—* - U* g, = IJ*O
Py By P @ a
The variances of U-scores are
K = -K*¥_  -x*¥_ +g* 1, =1, eoey k-1
PPy K;ipj PiPe  ByPr B (9 =25 oees 21)

.Kpia = K;ia - K;ka
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Ko = Koo 2
where '
5 +(1-2p, )
K* -2-———1 £
ByPy (1 p,_) —f Ji‘i(ni" "1)

1
Sy " ) O

] L 1‘P1 1"(1“21’1 :] 1 )
gia 1"'-(-1‘1’1) 1.'?1(1-pi) ii Pi(l a) J#i IJ Ji'
2 2

e &g

Under the null hypothesis that =0, the estimates of gene frequencies

are obtained from the likelihood equations UP =0 for 1=1, ..., k-1:
. ’ i :
since

gy ¥ i‘;g" (o y4myy) _ My + Q’;"kfnkdm:)k?

Py P

for i=l, ..., k-1, there should exist, therefore, a constent, C, such
that

2n,. + Sn,, =p,C for all 1.
ii i i
sf

Adding for i,

+Zn] CZyp

k
E [en,
#l i=1

1=



. k
sothat C=2[ Zn
i=1

il

+Xn ]h =n
1>y 14 (g Ji)’

2X5n, .=2N or the total number of genes. Therefore

13 14

The variances of scores thus become

1 il
=oN| = +—],-Kp
P P
171 i Py %3

xpia = 0 and K, = (k-1)N since

l-p
* [ 1]1!2 1
= B, - = I Np,p
Yo = 7 o T

and -

i=1 pi
k

=8z @p)°+ zp0p,]
=1 1 gt

= ¥ [5(1-2p;42]) + 2p;p,]

k
2

=N [k-2+ Zp, +Zp,Pp,]

o 1 #113

k
= N [k-2'+ z%)]=Mbn
i=1

and which is equal to

=,
By

| 12k,
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The :hnproved estimate of @ is calculated from
% = % * UonfFeg (% = ©)
The iteration is then carried out until the estimate converges. It has

been obsérved that the final estimate is always obtained after three or

four iterations.
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Appendix 6. Instability of estimating the inbreeding coefficient at

| the A:LAEBO blood group system

let Py Py 2 and r be freq,ugnciesv of gene Al, AQ, B and 0O,
respectively. Six phenotypes are observed so that their frequencies in

population with inbred proportion @ are given by
#(0)
»a)

PAy) = :pg + 2p,r + pa(l-p2-2r)°¢

> + r(1-r)c

2 . .
P, *+ 2p Py *+ 2p T + b, (1-p, -2py-2r)a

B(z) q2 + 2ar + a(1-q-2r)a
P(AZB) = 21)2(1 292910 .
The log likelihood. is
L= 0‘1!)[1‘ -l-r(l-r)a] + Al'ln[P§+2plP2+2plml(l"Pl"2P2"2r )a] +
Ae MP2+2P2N?2(1'P2'21' )a] + B ln[q +2qr+Q.(l"(1"2r)a] +
AB ln[2pl¢1-2plqa] + ABn[2pa-2p00]
and the maximum likelihood scores under the nu:'L'L’ hypothesis that =0

are, in vector forms,

2pyter -2 2 1

2 1
Up = ("' R 2 ’ » O)n
1 . r pl+2plp2+2plr p2+2r q+2r Py
2 -2 1,1
U ""'("',0: 2z ’ ,0,-—-)n

Pa T p§+2p2r qi2r Py



., 2 -2 -2 2r 1 1,1
Uq = (- - 3 ’ T— g —y - )n
r pytepyt2r pyter q42ar q g .
1l-p,<2p.,-2r 1l-p,-2r
l-r 1l ~2 2 l-q-2 1

- >
. pl-l-e_pa-l-ar p2+2r q,-ij2r ‘

where nl is a transpose vector of observetion n such that;

n = (O, Al’ A2, B, AlB: AgB)

I‘b is easily verified that
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Appendix T. -
PROGRAM G-TYPE

I. Instruction for user

G-TYPE is written in FORTRAN IV lengusge for the IRM TOkO computer,
and is designated to estimate éene frequencies and the inbreeding coeffi-
clent from phenotype data on a 'given genetic system by the maximum
likelihood scoring methbd.. It may handle any genetic system in which
gene-genotype relation can be expressed by factor union algebra and con-

sists of up to 2k alleles, 10 factors and 300 phenotypes.

CONTROL CARDS
 Ccard 5 This type of card is used for control of the
null hypothesis that 0=0.
Col. 1-5 55555
6 blank
T 1 only one iteration
© . otherwise
8 blank
9 1l no estimation of gene frequency
0 otherwise
Card O This type of card 1s used for date description.
Col; 1-5 00000
6-10 blanks
11-70 description of data
Card I Col. 1-5 1111
6-10 blanks
11-12 total number of alleles
13-14% +total number of factprs
. 15-17

total number of phenotypes
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Card II Tt is used for characterization of alleles, one
- card for each allele. Total number of cards must
be equal to the nuhber given on Card I, column
11-12. (The First allele is treated as dependent
varisble in the process.) \
Col. 1-5 22222 -
6-7 order of allele
8-10 blanks
11-15 common name of allele
16-25 ailele in binary code
26-30 trial value of gene frequency
31 iteration index

-

0 or blank: iteration is desired
l: in the first allele, the

biological indicator (&) is set
v ~ to zero (i.e., random -mating).
Card III This type of card(s) is used as input data, one
card for each pheﬁofype. Total number of cards
must be equal to the number given on Card I,
column 15-1T7; that is always less than 300.
Col. 1-5 33333
6-8 order of phenotype, if neéessa.ry
9-10 blanks
11-15 common nsme of phenotype
16-25 phenotype in binary code

26-35 observed phenotype frequency (in
observed number)
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Card IV This card, a trailer, is used only at. the end of

& job. For multiple-runs, card III should be
followed immediately by & new set of controls.
Col. 1-80 9

Output from the program includes the following:

1.

2.

u‘
5.
6,0

8.

Trial value of gene frequency (given)
i'henotype frequency ) )

a) observed number (given)

b) expected ) ‘

c) corresponding x2 value for goodness of fit and L-ratio.
Number of iteration cycles performed -
Final xa-v'alue for maximm likelihood estimation of pa.raiieters
Log-determinant of information metrix (be.se lO)
Information matrix (or K-matrix)

Covariance matrix (or inverse matrix)

Mexcioum likelihood estimate (M.L.E.)(error in 10',") , standard

* deviation and U-scores for each paréxﬁeter under. itération, the

amount of information and the chi-square for pa.rameter.

These quentities except M.L.E. are evaluated after convergence and the

maximum number of lteration is 99.

Estimated maximum time is about 1 minute for a system.
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A worked exsmple

An example is to test the null hypothesis that =0, having maximum

likelihood estimetes of gene frequencies, at the MNsSU .blood. group sys-

tem (In the following, b indicates a blank.).

III.

Input control cards

rcolumn 1l in a card

95555b1bbb0

0OOOObbbLLMNS$U SYSTEM, BRAZILIAN SEBOT!?E(’K)TAL)
11111 0604012
22222b1bbbMSbbb0110bbbbbb019TOL

22222 2 M$ 0101 03451
22202 3 Mk 0100 00091
22222 4 NS 1010 00762
. 222225 N$ 1001 03485
22222 6 N¥ 1000 00241, . = column 35
33333bbl M¥  OLOObbbbbbbbbbbbbbbl ,
33333 2 Ms 0110 93
33333 3 Ms$ oO111 ' 298
33333 4 M$ o101 ‘ 256
33333 5 MN* 1100 .0
33333 6 MNS 1110 68
33333 T MNS$ 1111 410
33333 8 MN$ 1101 572
33333 9 N* 1000 L
33333 10 NS 1010 22
33333 11 NS$ 1011 123
33333 12 N$ 1001 281

Notes for preparation of input control cards

1.

2.

$ stands for s since computer does not distinguish between
éapital and small letters.

Any error in control cards will be printed out in .the following
messages 11111, 22222 or 33333

ERROR IN CONTROL CARD __i_, EXECUTION DELETED.

And the program goes to the next Jjob if multiple-runs are made.

Otherwise, it will stop. However, error in binary codes is
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not always detected by machine so that a ca.reﬁl check is
important with output, especially the observed number.

3. When convergence fails, either a message;

}SINGUIAR MATRIX

is printed out and the program skips to the next job, or all
output is printed out with the iterstion mumber 99.

4. Order of genes and of phenotypes in the control cards y 22222
and 33333, is arbitrary. There is no dependence between cards
II and III. |

5. In the above example, if column T in the first card, 55555, is
punched in O or blank instead of 1 then ordinary iterations
will be continued until improved est.imates are obtained.

V. Output

MNS$U SYSTEM, BRAZILIAN SEROTYPE(TOTAL)

MS = .1970

- M$ = 3451

M¥ = 0091

NS = .0T62

N$ = .3485

N = ,0241
NO. PHENOTYPE  FREQ. OBS. EXP. CHI-2 L-~RATIO
1 MsS 0.04239 93. 90.22 0.09 5.65
2 MsS$ 0.13597 208. 289.3k 0.26 17.5T
3 MNS 0.0Lkog1 68. ~ 87.05 L,17 -33.58
I g% 0.18990 h;g. légg.n o.gz 11.86
5 N 0.12537 2 L 4 080 OO -21-.15
6 MN$ 0.26351 572, 560.75 0.23 22,72
T . 0.00008 1. 0.18 3.85 3.47
8 MNP 0.0004k 0. 0.93 0.93 0.00
9 NS. 0.00948 22. 20.17 0.17 3.82
10 Ns$ 0.05311 123. 113.02 0.88 20.81
11 N$ 0.13825 281. 294,20 0.59 -25.79
12 e 0.00058 b, 1.2 6.18 9.40
13 TOTAL  1.00000 2128. 2128.00 17.86 14.78
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ITERATION NO. = 2 CHI-SQUARE = 6.25

10G(10) DETERMINANT = .026303599E 02

K-MATRIX

INVERSE MATRIX

ESTIMATE ST.DEV. U-SCORE INFORMATION

ALPHA .03712 - .01485 169.8659 k536. 4402
‘MS .19700 .00698

M$ «34510 .01021 1.3815

M¥* .00910 .00803 4. 14823

NS .0T620 .00545 -0.1118

§$ .34850 00975 0.7303

)i 021110 .00T50 0.2939

VI. Notes for output

-l. L-ratio éhovs whether 'bhev' observed is larger or smaller than
the expected. If it is positive, the observéd is larger then
the expected and be it negative, then the observed is smallei'.
The sum of L-ratios converges to the chi-square value that is
obtainable from a goodness of fit test. In the program, I-0,
when no observation is in a class. A

2. The chi-square for goodness of fit is 17.86 in the example,
énd. 6.25 for parameters. |

3. In the example, gene MS was considered as a dependent variable
but one of the other might be taken.

4, In case of two allele with complete dominance, the value,

9.00000, will appear as an estimate of ALPHA, inbreeding coeffi-
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cient. No such provision was made for the ABO-type dominence.
5. When instruction for no iteration was punched on card, as in
the exammle; ITERATION NO. output is alweys set to 2. Other-

wise, it indicates correct number of iteration processes.
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Appendix 8.

PROGRAM MATYPE

I. Instruction for user

MATYPE ié a FORTRAN IV progrem, designed to estimate gene frequen-
cies and the inbreeding coefficient from mating type data on a given
genetic system by the maximum likelihood scoring method. It can handle
any genei;ic system in vhich gene-genotype relationé may be expressed by
factor union algebra and consists of up to 15 alleles, 10 factors and 36

phenotypes (corresponding to 666 phenotypic-mating types).

CONTROL CARDS
Card 5 Col. 1-5 55555
| 6-7 1 is no iteration
0 or blank, otherwise
11-21 Initial value of &
Caxd O | .‘l'h:l.s type of card is used for data description.
Ve Col. 1-5 00000 |
6-10 blanks
11-70  description of data
Card I Col. 1-5 11111

6-10 blanks

11-13 '.I.‘ota.l number of phenotypic mating
types observed (plus in-cross)

1%-15  Total number of alleles
16-17  Total number of factors
18-20 Total number of phenotypes

Card II It is used for characterization of alleles, one
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card for each allele. Total number of cards must
be equal to the number given on Card I, column
14-15. (The Ffirst allele is treated as dependent
varisble in the process).

Col. 1-5 22222 |
6-T Order of allele
8-10  blanks
11-15 Common neme of allele
16-25 Allele in binary code
26-30 Trial value of gene frequency
3 Tteration index

O or blank: iteration is desired
l: in the first allele, the

bilological indicator is set
to zero (i.e. random mating).
This type of card(s).is used as input data, one
card for each pheﬁo;mating ‘f.ype. Total humber of
cards must be equal to the mumber given on Card
I, column 11-13; that is always less than or
equal to 666.
Col. 1-5 33333
6-8 Order of pheno-mating type
9-10 blanks
11-15 If both mates are of the same pheno-
type (in-cross), give a neme for the

phenofype ’ otherwise blanks
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16-25 Phenotype of one of parents in binary
code
26-35 Phenotype of the other in binary code
 36-45  Observed mating frequency (in
observed number)

Card IV This caxrd, a trailer, is used only at the end of

a job. For multiple-runs, card III should be
followed immediately by a new set of controls.
COlo 1-80 9

Output from the program includes the following:

1.

2.

Trial value of gene frequency (given)

Pheno-mating type frequency ”

a. observed number (given)

b. expected |

¢. corresponding xa value for goodness of fit
Number of iteration cycles performed
Final ‘xa-va.lue for maximum likellhood estimation of parameters
Log-determinent of information matrix
Information matrix (or K-matrix)
Coverience matrix (or inverse matrix)
Meximm likelihood estimate (M.L.E.)(error in 10~%) standard

deviation and U-scores for each paranieter under iteration.

These quantities except M.L.E. are evaluated after convergence and

the maximm number of iteration is 20.

Estimated maximm time is about 1 to 2 minutes for a system.
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II. Note

The features of this program are the same as the program G-T!PE
except the prepai‘ation of control card III. Information on all in-
crosses should be punched on cards, regardlese of the observed number
- of couples. This is necessary for printing out . ‘common neme" of pheno-
type and for identification of the total mumber of hamozygotes or the
total number of génes. For the other éross_es » control cards may be
omitted if the observed number is zero. Deletion of these cards should

be considered in the columns 11l-13 in card I.
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Teble 2.1.

Expression of genotype-frequencies by different concepts.

Haxdy- ‘
GenotyPe yeinberg  Wright Wehlund. . Bernstein Malecot
(1908) (1921) (1.928) _(1930) (1.948)
Mmoo P D 4paF SR p(p+oq) 2 (1-)4pas
2 2pa Zm-2pF Zpe-20°  2pa(1-0)  2pa(i-F)
a8 o oP4paF Cro® a(atop)  aO(1-f)+pa
Totel  (p+a)®=1 1 1 1 1

Where p and q are frequency of gene A and a, respéctively, F is Wright's
.
inbreeding coefficient, i.e. correlation coefficient of uniting
gametes, £ probabllity that two genes are identical by descent y &

the mean inbreeding coefficient, and 02 gene frequency veriance.

Note that F = £ = & = o-/pa.



hble 2.5.1.

'Frequencies of mating types and their offspring.
(Two alleles at an autosomal locus).

(1) No dominence

Mating type Frequency Frequency of offspring
of _
mating type AA As aa

AA x AA Ph+6153‘1a | pu-l6p3qa - .
M x ha ungepaq(l-ep)a eg3g+6p2q(1-ap>a equﬁpeq(l-zp)a . --
Aaxhe  lp g +hq(1-bpe)o p q +pa(1-6pg)c 2p°q°+2pq (1-6pa ) p2aP4pq(1-6pa)
A\ x 88 2p7q“+2pa(1-6pa)e - 2p°a>+2pa (1-6pa)a -
Aa x as ‘*P‘l3"'129‘12(l-2<1)°‘ -- 29q3+6pq2(1-2q)a - 2pq346pq2(1-2q)a
82 X 88 ‘11**629‘130‘ - - | qu+6pq3a

Total. 1 pgat-l'pq_a _ 2pa-2paQ qa-!-pqa

‘et



Table 2.5.1. -- Continuved

(ii) Complete dominence

Mating type Frequency of mating type Frequency of offspring
A- a2
A x A- p°(140)2-2pa (1-30°)0 »°(1429)-3pa(1-20)c p°q #pa(1-6pa)a
A- x a8 2pa°(1+a)+2pa(1-6a") 2pa+2pa(l-30)a 2pq>+6pa° (1-29)0
a8 X as qu +-6pq_3a ' - qu+6pq3a .
| 2 2
Total 1 1-q"-paQ 9 paC

Where A and a are alleles with frequency p and q (p+q=l), respectiveély and O is the inbreeding coeffici-

ent. It is assumed that p,q > Q.

N
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Teble 2.5.2. |
Frequency of mating types and their offspring.
(Two alleles at a sex-linked locus).

(1) No dominance

Meting Frequency : Frequency of female offspring Frequency of male offspring
T iating type A ha 2 A e

A x A P3paC e -- | - p>+3p a0 -
fgaxA 2paep(l-dp)e Pasa(l-3)e pama(l-dle - parpa(l-3p)e  prarpa(i-3p)e
Mxs paipa(l-ip)e -- r°atpa(1-3p)o - p°a+pa(1-3p)ct -
faxa  2pa+2pa(i-3a)c pipa(l-3a)e  paPspa(i-3a)e  paHpa(i-3a)o  paspa(i-30)c
aax & . pipa(l-30)o - pafmpa(i-30)a - —~  pdPma(1-30)e
ea x a q3+3pq2d o -— = d313pca -- OHpaca

Totel 1 p%pad  2pa-2pa@  qodpao p q

Where A,a and P,a2(p+a=l) are alleles and their corresponding frequency, respectively.

*0ST



Table 2.5.2. -- Continued

(i1) Complete dominance

Mating type Frequency Frequency of female offspring Frequency of male offspring
of : : '
mating type A- ~ a8 A a
2 2 | 2 2 -
A-x A p(a)ipa(e-3p)a  pT(1ta)+pa(2-39)c -- p4pa®  p-aipa(l-3p)o
A-xs  pa(l+e)-3pa0 pa-pa®  pa+pa(l-30)¢  pa-pa®  pa4pa(l-3a)a
saxA  paipa(l-30)0 pa +pa(l-3q)o - -- pa +pa(l-3q)c
ea x a8 <13+3Pq2°‘ | -— q3+3pq2a - q_3+3pq2a
. 2 : 2 '
Total 1 1-q -pqC q +pqd . P q

In case of complete dominence, it is assumed that A is domiﬁant over a. O is the inbreeding coefficient.
It is also assumed that p,a > Q.

*TST
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‘Table 2.5.3
Mating type frequency at a two allelic autosomal locus without. dominance
when a distribution :!.é assumed. (p and q(p+a=l) are frequency of alleles
A and a respec"i'.ively, and ¢ is the inbreeding cbefficient).

-Bete distribution

(1) Exact expression -

Mating Frequency . .

_type (a=0) (o<a<1l) (a=1)
amp 3t ol pUapt(la)a + pP(2460+30%)0f + pa(lsa)(24)0) 1
Mixis bpda ol dpden2p®e®o - kpa(1-38°)0F - peP(av)ed) o
AMxas 2p°a° cl2p’a+2pa(i-3pa)e -  2pa(i-3pa)ef = 27%P1 o
paxas 4% clbp®a®ripa(1-3pa)a -  kpa(1-3pa)o? - 1pP%3] o
Aaxas ‘*pq3 el hpadH12p®a® - kpa(i-37)F - Mpfa(up)edl o
aaxas at el a"+303(1p)e + 2 (2+6p+307)0P + pa(14p) (240)3]  q
Total 1 1 - I - 1
Where ¢ = 1/(1+q)(1+2x).

(i1) Asymptotic expression in the neighborhood of G=0.

Mating : _ - Frequency
AAXAA ph+6p3qa - %a(8-19a)0F + 2pa(7-2Ta+23a%) + ...
AAxAs kplar12p°a(a-p)a + kpa(2-15p+19p°)0F - 8pa(6-250+23a7)0 + ...
AAxas 200 #epa(l-6pa)a - 2pa(h-l9pa)d” + kpa(5-pa)e® + ...
faxie  4°aPHipa(1-6pa)o - lpa(h-19pa)d” + épa(5-pa)’ + ...
fexga  4paS+12pa®(p-q)a + kpa(2-15a4190°)0F - 8pa(6-25p+23p°)e + ...
aaxea atepada - pa®(8-19p)c® + 2pa(7-2Tpre3R)ed + ...

Total 1
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Table 2.5.3. =~ Continued
Binomial distribution

Mating T Frequency

_type (0=0) (o<a<1) (c=1)
AAxAA p' phéplac + pa(7-lp)f + pa(i-bpa)ld  p
MaxAs bpdq  kpdomizpia(1-2p)a + MpPa(3-114)0F - lpa(i-6pa)e® o
axee 2°0° 2 4epa(l-6pa)a - 2pa(i-llpa)d + 2pa(i-6pa)03 O
paxpa 4p%e®  UpPdCHipa(l-6pa)a - lpa(l-llpa)dd + Mpa(1-6pa)c®  ©
Asxsa lpq3 kpa®#12pa®(1-20)a + hm2(3-11p)9? - lhpa(1-6pa)a® o
saxsa ¢  dM6pde + pa(7-110)0P +  pa{i-6pa)dd g
Totel 1 ! | | | o
Poisson distribution (p>a)

Mating ~ Frequency

AAxAA phepdaa Toea°0F  +  pgddd
Ahxhs ipdenzpfa(i-zpla +  kpaP(1-Tp)F - lpa¥ed
Axaa oPPiopa(i-bpa)d -  2pal(e-To)oP  +  2paded
Aaxha upPPeip(1-6pa)e - bpa(2-Tpidf  + pao’
Aaxss kpg32pa®(1-20)0  +  kp(3-To)f - lpg’ed
saxaa dhepde - pl(h-mp)? ¢ pad3
Total 1 |




15k.
Table 2.5.3. - Continued

Rectengular distribution

Mating type  Frequency
axan 3 + épPac  +  1.8p°%F

 Abxis apde o+ 12%C(-gp)e - T2
Adxes af®  +  opal-bpa)e + 3.6p°4°0F
Aaxha %® o+ bpalibpa)e  + TP
fexsa  Ma® o+ 120(-2a)e - T.2p%P
aaxas q_h + | 6pq3d + l.8p2q2a?
Total 1

. Normel distribution

Mating type Frequency

AAXAA p* - ép + 3p2q2,
Mxps  kp’q + 12p°%a{1-2p)e . - 12p%%F
Mxa 2%+ Zm(-bpa)e +  6pad
pama MPe® 4+ bpa(i-bpala + 12%d°
psxan . kpa®  + 1zpa®(i2q)a - 12977
sexas. + 6paa  + 370"




S

Table 2.5.3. - Continued

Gemma distribution (a>p)

155.

Mating type Frequency

AAAR p* + 6plac - pa(8-11a)f +  6pacd
AAxhs kpdy  + 12p°a(a-p)a +  bpta(6-lla)ef - 2ipded
Afxes 20’ + opa(l-6pa)a - 2ptg(h-llg)f +  12p7g0
haxhn bp”  + lpi(i-bpa)a - bpa(h-lig)of +  2kpled®
Aaxsa bpaS  + 12pa%(p-a)a  + lpog(2-1la)of -  2lpdeed
gaxas - a* * 6pada + 1p%%P + 6pdedd
Total 1




156.

| Table 2.5.k.
Mating type frequency at a two allelic sex-linked locus without dominance
when a distribution is assumed. (p and q,(p-lq=l) are frequency of alleles
A and & respectively, end @ is the inbreeding coefficient).

Beta distribution

(1) Exact expression

Meting o Frequency
type  (0=0) (0<a<1) (c=1)
M P el + p(wea)e + pa(k)dfl p
fexh 2% clafs + opale-p)e - 2paofl 0
M2 pa elra + pale-pe - pa°oF1 0
dexe  2pa® elzpd® + 2palp-a)e - 2pfadf) 0
gaxA  pa° elps® + pafp-dde - 7a0f) 0
saxa o ol + P(m)a +  pa(ip)ef] a
Totel 1 1 1

Where c=1/ (lfa)

(i1) Asymptotic expression in the neighborhood of Q=0.

Ma‘bing"by'pe _ Frequency
\ AAxA > + 3@+  2pa(e-p)o’B
hacxh 2p%a  +  2pa(i-gp)e - bpa(a-p)ofR
| Adxa pa o+ mpe - 2m(e-p)fe
faxa 2pa®  +  2pa(i-3a)e - kpa(p-a)ofB
saxA pa°  +  p(i-3a)e - 2pa(p-a)of
saxa o> + T3+ 2pafp-a)dfe
Total 1 o




Table 2.5.4. - Continued

Binomial distribution

157.

Mating type Frequency .
- (e=0) (o<a<l) (c=1)
ma PP P 4 spoa¢ +  pa(l-2p)of ?
aaxa 2% 2Pq + 2pa(i-3p)e - 2pa(l-ep)f 0
AAxa e r%a  + pa(-3p)e -  pa(i-2p)df 0
pexa  2pa®  2pa® 4 2pa(i-30)a - 2pa(i-2a)d 0
aaxA pa® ‘pa®  + pa@-3a)e - pa(i-20)f 0
saxa o @  +  3pde +  pa{a-2g)of a
Total 1 1 | 1
Poisson distribution
Mating type Frequency
rery > + paa  + e a
2 2 dg
Aexh 2pa +  2pa(i-3p) - 2pa
Adxs 2% + pa(l-3p)a - pa“cf
2 p . 26?
Asxn 2pq + 2pq(1-3a)o + 2pq
2 - : 2 02
aaxA pa + pa(1-3q)c + q
8%8 ' + 3pa¢ - paof
Total 1
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Tgble 2.5.4. - Continued

Gamme. distribution (p>a)

Mating type . A Frequency

AdxA > + 3p%a@  +  2pgdP
AaxA 2+  2pa(l-3p)d - kpadf
Adxa a4+ pa-mle - 2pdf
Aaxa 2 & opg(l-3a)d  +  hpgtd?
aaxA a° + pa(l-3a)  +  2pg°df
aaxa S 4 3 - 2pq=0”
Total 1




Table 2.5.5.

Frequency of basic mating type (Autosome) and their derivative.

Mating type - ___ Frequency (M)
incross AA x AA Pﬁ + 5Pz(1'PA)a N
backeross AA x AB l1-1’13112'3 + iapiP;B(l-?PA)a
outcross AA x BB E‘png + QPAPB(!;A"'PB-SPAPB)O‘
intercross AB x AB hpﬁpg + hpApB(pA'fPB-@ApBw
3-ways outcross  AA x BC ’*PEPBPC + I*PA.';’BPC(]--@A)G»
3-ways intercross AB X AC '8p§p'ch + GpApgpctl-@A)a
L-ways intercross AB x CD SPAPiBPch(l‘m) | |

*6ST



Table 2.5.5. - Continued

Mo M M oow M M _w

80, op, A o 'B op, e o, D
6r3(1-p,) kp3H6pE(3-hp, ) o 0 0
12082, (1-22,) 1ep§p3+éupApB{1-3pA)a g2z (1-2p, ) 0 0
2pApB(1;A*'pB-épApB) lLpAp 293(2PA+1>B l2pApB)a 41>Ap 2pA(p 2pB-12pApB)a 0 0
“PAPB(pA#PB-@ApQ 8PAPB (21>A+pB l2pApB)a 8PAPB"'4PA(PA*2P ‘-l2pApB)°‘ 0 0
hpApBec(i-GpA) h 8p, Ppp e (1-12p, ) kg2 pApc(l GPA)O‘ | hplpHs pApB(l 6pA)a 0
8pApocil-6pA) 16pAerc+8eré(l-l2pA)a 8PAPC+8PAPC(1-69A)°‘ | 8PAPB+3PAPB(1-6PA)“' 0.
-‘#SPApBéch | 8pgp Py (1-69) | 8o, 0B (1-60) | BPAPBPD(J--@) " 8p, PP (1-600)

A, By +eo and Pps» Ppy eve BTE alleles and the corresponding frequencies, respectively (pA-P_p teoe = 1) ais

the inbreeding coefficient. It is assumed tha:b Pys pB, see >0

|

009-[



Table 205.60

Frequency of basic mating types (Sex-linked) and their derivative.

Mating type Frequency (M) o M oM M
- 8a 9p, dpy Aap c
incross AA x A 3+3p2(:l.- )o 3 2(1- ) 3Pa+3 (2-3p, ) 0 0
=X BTRR PAVEPy ATPANE" 9P -

outcross AAx B
backeross AB x .5_

intercross AB x C

pﬁpB*pApB(l-'BpA)a

2p,PPo(1-3%)

-6, PrPy

20.9,(1-30)

ppy (1-3p,)0 0

2p,p(1-30) 2p, p(1-30)

4, B, C and Dp» Pp» P &Te alleles a.nd. the corresponding frequencies, respectively (pA"'PB cees = 1) o is

the 1nbreeding coefficient. It is assumed that Pp» P o-- > .

*ToT



162.

Teble 3.1l.

Maximum likelihood scores and variences at & sex-linked locus with two |
alleles under the hypothesis that C=0.

Model and : A
phenotype data ~__Score
No dominance
M E Am = [z +2f3+m2-(M+2F)<1]/q(l-q)

(M+F)(u £ f2)+(flm2-m1m2f2+f3ml)]
(ml-l-:f +2f. )(m2+:f‘ +2f )

safy, K= (M+2F)/q(1-q), Ko = © Kw =F
F M | |
c@lete '_dom:l.na.nce
A-f Am  u = (m2+2fa)/q-[( *ml)qmll/(l-q )
8a £, am, £,-f +[f ,-Fal/a(1-q)
F M Kyq = 4¥/(1-a%)/a(1-a), Kqa = 2F/(1+q},

Koy = P(i-0)/(14a)
. No dominance

MxA n Uy = [n23+2nh5+3n6-3N9.]/9.(1-9.)

faxh np ) _ 380 (3n; #m50) (m,5+30) - (a4 5) )
A_A xa n; @ (3ny#2n,m) o) (np #2n) o+30¢)
paxa m, T _
SIE Y meme R mew
ax2 Dy [:23 = n2*"‘3]

N -

45 = M5
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Table 3.l. - Continued

Model and '
phenotype data Score
c@plete dominance |
A-xA ny u, = [(2n2+h3+3nl,)-(hlm3)q-3m2]/q(l-q2)
8a x A n, u, = [3(“1*‘32)‘(91";332)Q]] (1;‘12)+(n3"‘3’11,_)/Q-3N
A-xa n, Kyq = F1950)/a(10%), K = 28/(14),
saxa m Koo = N(1+3a)/(1+a)

N

A, a and p, q are alleles and the corresponding frequency, respectively.
Q is the inbreeding coefficient. £, m;, and n, denote the observed

number.
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Table 3.2.
Brazilian serotypes ﬁ:l-th reference of their binary code.

Genetic

system Gene Phenotype_ Possible genotype

Secretor Se 1 Se 1 Se/se, Se/se
se 0 se 0 se/se

lewis le 1  Ie 1 t.e/x.e, Le/le
le 0 le 0 le/le

Lutheran Iun® 1 at 1 /1", w®/ia
In 0 a- 0 Iu/In

dm ) 10000 & 10000 a/a
ab 11000  abx 11100 ax/ab
ax 10100 abex 11110 ax/abe
abe 11010  axbd 11201 ax/p172)

v o001 ex 10000 ex/ex, ex/a
ab 11000 ab/ab, ab/a
sbc 11010 abc/abe, abc/ab, abe/a
gbed 11011  abe/b{1?)
sbd 11001 ab/b(102), opp(1s2)
ba  owor b2 p(Ls2)

Inv>/Inv®, Inv?/Inv

Inv Inv™ 1 at 1

Inv ) a~ 0 Inv/Inv
PIC s 1 T+ 1 ?/P, T/t

t 0 T- 0 t/t |
P P 1 P+ 1 P /P, By /P

P 0 P- ) P/P
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Table 3.2. - Continued

Genetic ‘ .
system Gene Phenotype Possible genotype
mo Lo A MO A/M, A /h, A0
A, 010 AB 111 A/B
B 00L A, 010 A,/Ass Ae'/o
0 000 AB 0L A,/B
B 0oL  B/B, B/O
0 000 o/o
Kell = X 100 K 100 K/X
k 010 Kk 110 K/k
x° 011 ® 11 KA®
k 010 k/k
x° o011 k/x%, x°/x°
Dufry  Fy® 1 et 1 wy°/8y°, BY°/Fy
Fy 0 a- 0 Fy/Fy
Diego pi® 1 a+ 1 pi%/pi%, Di%/pi
| DL 0 a- O DL/DL |
MNSSU  MS 1010 M 1000 | Me/Mx
Ms 1001 MS 1010  MS/MS, MS/M¥
M 1000  MSs 1011  MS/Ms i
NS 0110 Ms 1001 Ms/Ms, Ms/M*
Ns 0101 MN 1100  M*/N* -
N® 0100 MNS 1110  MS/NS, MS/N%, M*/NS

-~

MNSs 1111  MS/Ns, Ms/NS

MNs 1101  Ms/Ns, Ms/N%, M¥*/Ns

- ~
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Table 3.2. - Continued

- Genetic : . o
system - Gene Phenotype Possible genotype
N 0100 N /5%
NS  O0lI0  NS/NS, NS/
NSs Ol  NS/Ns
Ns 0101  Ns/Ns, Ns/N*
Rh cde(r) 0001l r 000l r/r )
cde(r') 00201 izlr 10111 Rl/i, R /Ry Ry/r's
cdE(r'?!) 01010 | (R, /r', B/r'™)

cag(r’) 01100 R 1000 R/R, R, /r'
cne(Ro) 10011 R, 10011 Ry/R,, Ro/r
e(R) 10101 Ry L0 Ry/r, Ry/R,, Ry/r'’
cma(nzj 11010 R, 11010 Ry/R,y Ry/r'"
cE(R®?) 11100 '3132 11 R /Ry, R /'Y, R,/R", Ry/r,
[cae®(r™) o00111] . R,/rt, B/r, (B%/r'™, By/r'™)
| o r! 00101 z'/r! - "
rr' 0Ol r/r', (x*®/r™®, rt/r'R,
| r/z'?)
R 110 R/R% R/F, R/
r'¥ 01101 /iy
r'r't 01011 r/r't
R® 11100 FR/R°, R°/7
RR° 1110 R,/R", Ry/r, R°/r'!
ol 01100 /v
rtt 01110 ¥ /r't

r'*  0l010 r!t/r'!



Table 3.2. - Continued

16T.

Genetic ‘
systen Gene Phenotype i Posslible genotype
e B 100 B 100 B/B
c 010 BC 10 B/C
D 001 BD 101  B/D
c 010 c/c
CD 011 c/p
D 061 D/D
Hemoglobin
A 100 AA 100 A/A
010  AS 110 A/s
c 00l AcC 01 A/c
88 010 s/s
8¢ 011 s/c
cc oo cfc
~ Haptoglobin , :
1F 100 1F 100 1F/iF
1S 010 1F-1S 110 1F/18
2 0OL 1F-2 101 1F/2
s 010 18/1s
1s-2 011 1s/2
001 2/2




Table 3.3. -

168.

Possible migration f‘unction, its probability and déz:!.vative.

Exponential

Normal

Lognormal.

Square root

- Exponential

n(x;a) = 2§e' (a.x)a/,f T

P= o(2a8) - o(W2a0)

UP =_2[Be.'(_aﬁ?2-oe‘§a"‘)2]/‘fﬂ

AN NPy
[Q(x? 5 __:{ e dt]
m(x;a) = ae'(m?a/x.'fﬂ

P = [o(2ap) - 0(V2am)1/2
0,2 = Dupe(8)" e (a0) Yy

[p(0) = 0]

m(x;a) = aae'a\/—x/a
P = (1+a~ra)e-a\ra-(l+&hrﬁ)e'JB
. olp oala

UP = ale™ -0 ]



169.

Bessel

Beta type

Génera’.’!.ized.
Skellem type

n(x;a) = 2a.x/ (l+x2)a'+l

P = 1/(2+0F)® - 1/(246%)®
UP = 1(148%)/148%)" - 1n{140P)/ (14P)®
] o
|22, i J
"ui('x;a.). = aaxxo(a#)
P~ afoi (a) - 6K, (o))

U P = a[%(aB) = ok (a0)]
[xl_%mcn(x)'-= n (n=o,1)]

n(x;a,b) = ab/ (l+ax)b+1

P = 1/(1480)" - 1/(1+ap)°

Ua,P = b[B /(l *_ap)b-l-l - d/(l 4-aa)b+l]

UP = In(14e8)/(1+a8)° - Inf1+80)/(1420)°
n(x;a,b) = 2abx/ (l+ax2)b+l

P = 1/(1+adf)? - 1/(1+a6%)°

UpP = b[ﬁz/(l-raﬂa)bfl - ol?/ (1+aa?)b+1]

UP = 1(1406%)/(14a8%)° - 1(1+007)/(1400")°



Teble 3.3. - Continued

Double
Exponential

UP;e

170.

m(x;8,b,p) = (L-p)ae ®*+ phe™>*

P"= (l_r)(e-aaue-aﬁ) + P(efba_e-bﬁ)
.ba_e;bB_ ('e-a,a -GB) .

: 2
UP = (1-p)(Be"%P-ce™2%)
uP = p(pe™Pce™)

Where m(x....) is migration function w:l.th distance x, and a, b and p are

parameters. P is defined as P= ,l'a m(x, ...)dx (ﬁ > a) and U is score.

See te:d;.



Table L4.2.1.

Gene frequency a.t the sixteen polymorphic systems in northeestern Brazil.

(p and ¢ stand for gene frequency and its standard error, respectively)

(Totel population in parent)

g

Morital distance (lm.) — [0-s) [0-3] (3-27] (27—)
Genetic Gene -~ : ' :
system Name Bﬂ.na.ry. p o pto pto pto

Secretor Se 1 +5537 £ .0097 ShTh £ .0220 +5619 * .OLTT- .5552 + .01kl
se 0 4463 = ,0097 U526 & .0220 4381 £ LOLTT A48 & 0141

Ievis Le 1 5317 * .0096 5409 + .0220 5573 % .OLT6 5161 % .0138
le 0 1683 £ .0096 A591 & .0220 JLli2T £ L0176 1839 + .0138

Iutheran I 1. .0321 + .0061 .0451. + ,0180 .0294 & ,0103 .0311 * .0085
, Iu 0 +96T9 + .0061 9549 + .0180 .9706 + .0103 .9689 + .0085
PIC iy 1 .6250 + .0101 6337 + .0230 .6336 + .0183 .6193 % .0145
. t 0 .3750 & .0101 +3663 *..0230 .366l & .0183 .36807 + OLY5
P P 1 6270 & L0101  .6143 + .0228  .6LTT % .OL8L  .6355 & .OLk6
Pé*? 0 +3730 ¢ .010L .3857 £ .0228 .3823 + .0181 .3645 + 0146

Duffy Fy> 1 .2833 ¢ .00T6 .2929 * .OLT5 .2973 + .0140 3184 # .0115
. Fy 0 «TL6T £ .0076 +TOTL £ .OLT5 7027 £ 0140 .6816 % .0115
Inv Inv® 1 +2099 0067 .2137 + .0153 .2009 * .0L19 .2131  .0098
_ 0 «T90L * .006T <0153 «T991 + .0119 .T869 + .0098

‘LT



Table 4.2.1.. - Continued

Genetic Gene
system Name Binary \pic pto pto pto
Diego pi® 1 .0219 + .0051 .0158 # 0111 .0257 % .0096 .0223 % 00Tk
Di 0 9761 % .0051 .98k2 & .0111 9743 £ .0096 9TTT & 00Tk
Haptoglobin  1F 100 .2159 + 006k .20T2 % .0152 2222 + 011k .2500 + .0126
is 010 .2554 + ,0068 «2513  .0155 2416 % 0124 «2633 + .0139
2 00l .5287 £ .00T9 Skl & ,0187 45362 & 0142 14867 + .0154
Hemoglobin A 100 .9731 % 0025 .9813 + .0048 .9T3L + 0046 «9689 % .00k0
S 010 .0199 + .0022 0149 + 0043 0206 + 0040 - .0221 * .0033
c 001 .00T0 % 0013 .0037 % .,0022 ,0063 £ .0022 . .0090 % ,002L
Trensferrin B 100 .003L % .0009 - .0063 ¢ .0022 .0015 % .0009
| D 001 .0132 % ,0018 -0100 + .0035% 5198 + 0031 .0155 + .0028
c 010 .9837 + .0020 +9900 % ,0035" .9819 + .0038 .9830 + .0029
Kell K 100 .0257 + .0055 .0286 + .0202 L0145 + .00T3 .0354 £ .0092
k 010 JOULT & LOOTT Oh2h & 0286 9523 & .0L31 .9383 ¢ .0116
k. .- 011 .0296 % 0059 .0290 * ,0202 .0332 + .0109 .0263 ¢ .00T8
ABO A - 110 .1566 % .0058 1753 £ .0136 1616 % .0107 JALTT £ .0082
A5 - 010 .0526 + .0038 Ol = .00TT 0601 * .00T3 .0529 + ,0055
B ool . .0808 & ,0043 0670 £ .0089 .0828 + .0078 .0857 + .0064
0 000 .TL00 % .0OTh .TL66 + 0169 +6955 % .0137 «T137 % .0L0k

*elt



Table 4.2.1. - Continued.

Genetic Gene: :
system Name Binary pto pto : pto pto
'MNSsU MS 1010 .1970 + 0068  .191h + .0162 2154 + .0123 .1855 % .0100
Ms 1001 .3451 + .0086 3363 & .0250 «3331L + .0143 .3563 + .0124
Mx 1000 0091 & .00k2 -~ .0199 2 .0240 - ** 0119 ¢ .0055
NS 0110 0762 £ .0053 .0578 + .0108 . .0812 £ .0086. . .0895 + .0082
Ns 0101 .3485 + .0089 .3660 + .0210 .3703 + .01kL «3366 % .0125
% 0100 .02kl + .0050 .0286 + .0119 =——- ¥  ,0202 + .0063
G a 10000 .2233 & 009k 2144 & .0208 2062 + .0169  .2426 % 0138
ab 11000 .2203 + .0092 2245 + ,0210 .2227 + 0166 2123 ¢ .0133
ax 10100 L0762 * .00k2 OTh6 % .0095 .0828 + .0079 .0Th9 * .0006
abe 11010 .0643 + .0039 .0T23 & 009k .0569 *. .0066 0649 £ .0057
b(l’z) 01001 1159 % .0075 Jik2 & ,0169 A3k & ,0135 .h053 + .0109
Fh cde(r) 00011 .2870 % .0100 2964 + ,0228 .30TL * .0182 2679 % 0145
: Cde(r') 00101 = .OL75 % .OO37 .0256 + .0097 .0120 + .005k4 0157 £ .0053
cdBE(r") 01010 .0025 & 001k - ok ——— *% ——— *h
CAE(xY) 01100 .000T % .0008 - *¥ - *% -—- **
cDe(R,) 10011 .2273 % .0097 2109 * .0216.. «2230 + OLTh. . 2361 + .01k2_ . .
CDe(Rl) 10101 «3276 * .00T8 .3041 + .0181 .3289 + .0137 3kl +.0115
CDE(R®) 11100  .0025 % .00Lk e R R

-~ - -~a

“€LT



Table k.2 le = Continued

Genetic Gene

systenm Name Binary pto pto Ppto pto

Rh cde(r) 00011 .2852 ¢ .‘0102 -—— '  ——— ———
cde(r') 01001 .0095 % .0113 A ——— - —
cdE(r") 00110 .0025 & 0004 S -— ' —
CcdE(xY) 01100 .0007  .0008 o : -——— -
cDe(R,) 10011 .2261 % .0098 - - —
CDe(R,) 11001 <3300 * .0086 - -— ——
cDE(Rz) 10110 1349 % 0054 -—- -—— -
CDE(RZ) 11100 0026 + .00L5 — o _—— —

cde®(r'®)o1011  .0085  .0108 ——— ——— —

% (Genes, B and D, are pooled because of low frequency.

*% Since difficulty in iterations is observed, the gene is dropped from the analysis.

-~

fﬂl.'[



Gene frequency at sixteen polymorphic systems in northeastern Brazil.

(p end o stand for gene freguency and its standard error, respectively)

Table k.2.2.

(Remote population in parent)

Maritel distance (km.) - [0,%) 0,31 (3,27] (27,%)
Genetic Gene - _ ' — —
systen Name Binary pto ptao Ppo pto

Secretor Se 1 5531 % 0101 5436 + .0243 .5588 + .0184% .5572 + .oiuu
se 0 k69 + L0101 L1564 & 0243 Al + .018% A28 = .01kh

Ievis 1e 1 526l + .0L00 .5325 + 0242 ' .5539 + .0183 5116 % .01k
le 0 U736 £ .0100 L4675 + .0242 J6l + .0183 188k & .01h41

Iutheran ® 1 .0313 * .0062 .0386 + .0169 .0286 * .0107 .0321 % .0088
I 0 9687 + .0062 9614 + .0169 9Tk + .010T 9679 % .0088

PIC T 1 6256 & ,0105 .5490 + 0291 6429 + 0191 6185 + L0149
_ t 0 3744 & .0L05 4510 + .0291 «35T1 + 0191 .3815 £ .0Lk9
P Py 1 .6286 + .0105 .6066 % .0251 .6230 + .0189 6370 £ .0150
Potp 0 .374 * .0105 .3934 0251 .3770 % .0189 .3630 * .0150

Duffy Fyf 1 .2810 * .0679 «2908 + .0L92 .2953 + 0145 <2663 £ .0109
Fy 0 .TL90 *+ .00T9 .T092 + .0192 TORT £ 0145 «T337 £ .0109

Inv Inv 1 .2054 + .00T0 4097 % 0222 +2031 * .012k 2143 + ,0101
Inv- 0 .T946 * .0070 5903 * .0222 .T969 + .01L24 .T857 *+ .010L

“GLT



Table 4.2.2. - Continued

Genetic Gene
system Name Binary pto pto pto pto

Diego n® 1 .0205 # .0051 .0163 % .011h .020k & .0090 .0230 £ .00T6

Di 0 9795 + .0051 9837 £ .OLL4 <9796 + .0090 <9TT0 £ .0076
Haptoglobin 1F 100 .2168 + .0068 <1964k + .0166 226k + .0120 2143 + .0096 -

18 010 .2536 + .00TL .2598 % .0lT1 .2382 + .0127 .2625 + .0103

2 001 .5296 + .0082 5438 £ .0207  .5355 & .OLKT .5232 & ,OLLT

Hemoglobin A 100 .9T30 * .0027 .9788 + .0057 9707 % .0050 9Tk £ .0039

S 010 .C197 * .0023 .0167 + .0050 0224 + .00hk4 .0196 % .0032

¢ 001 .0073 £ .001%4 .oolfs % .0026 .0069 + .0024 .0090 % .0022

Trensferrin B 100 .0031 % .0009 e ookl .0060 + .0023 .0016 + 0009

' D 001 .0139 * .0019 +0088 & . * .0128 + .0033 .0158 £ .0029
c 010 .9830 + .0021 <9912 + .00Lk" .9812 * .0040 .9826 + .0030

Kell K 100 .0258 % 0057 .0151 % .011h4 .0202 + .0090 .0340 + .0091L
k 010 Ouli2 + .0079 .9542 + .0160 OUTO % .0L46 .9390 % .OL1l7T -

k8 01l .0300 + .0060 .0307 + .0161 .0328 + .011k4 .0270 + .008L

ABO A 110 .1564 + 0061 1764 + .0155 .1600 % .0111 .1502 % .0085

A 010 .05l * .0039 .0295 % .0073 .0632 £ .00T8 .0515 & .0055

B 001 .0837 + 0045 +06T8 + .0099 .0857 + .0083 .0889 * .0067

0 .7085 & .00TT -T263 + .0182 6911 % 0143 .To9k * ,0108

*OLT



Table 4.2.2. - Continued

Genetic Gene :
system Name Binary pto pto pto pto

MNSsU MS 1010 .1958 ¥ 0072 .195L % .01T9 .2127 * .0127 .1839 * .0103
Ms 1001 .3428 * .0091 .3149 * .0282 <3334 % 0147 .3549 + .0128
M 1000 .0109 + .0048 0347 = .0281 - ok .0136 % .0062
NS 0110 OTT5 % .0055 .0535 % .0124 .0813 £ .0092. . .0916 + .0084
Ns 0101 .3548 + .0092 .3989 + .0243 3726 * 0147 3421 % .0127
N* 0100 00182 t .0053 00029 + 00200 V —— ¥ 00139 + -0062

Gm 8 10000 .2196 + .0098 .2040 * .0232 1976 & L0176 .24oT + .0LhL
eb 11000 2249 % .0097 .2318 *+ .0238 .2322 + 0176 .2137 %+ .0136
ax 10100 LOT48 + ook 0664 + .0099 .0820 + .0082 OT57 £ .0062
abe 11010 .0636 + .00k0 0668 £ .0099 .05T9 £ .0069 .0652 t .0058
»2) 001 4171 + .0078 4310 & .0189 . . 4303 & .01k 4027 + .0L12

Rh cde 00011 .2862 + .0105 .2972 & .0251 .2985 + .0192 2707 + 0149
Cde 00101 .0182 + .0039 .0270 * 0111 - .0132 £ .0059 .0157 % .0053
cdE 01010 .0027 * .0016 ——- ¥ ——— .0037 = .0026
C4E 01100 .0007 '+ .000 -— ——- % . .
cDe 10011 .2281 * .01o% .2043 + .0235 .2283 + .0184 _ .go i i .88
CDe 10101 .3255 + .0082 .3053 * .0200 «3300 * .0192 .3358 + .0118
cDE 11010 .1359 * .005T 21662 + 0141 .1300 + .0098 1342 * .0081
CDE - 11100 .Q024 % ,0015 - *% - *% .0025

L000L #

*% The gene is omitted from the iteration process because of mathematical difficulty.

-~

% Genes, B and D, are pooled because of low frequency.

*LLT



Table 4.2.3.

178 .

Gene frequency at sixteen polymorphic systems in northeastern Brazil.

(Totel popdla.ticn in parent)

(p end o stand for gene frequency and its standard error, respectively)

Distance x J—Qensity -

[0-30) [30-180) [186-«,)
Genetic Gene :

system Neme Binary pto pto pto
Secretor Se 1 5543 + .0258 .5514 + .017T5 .5583 & 0161
se 0 JHIST + .0258 4486 + JOLT6 JUM1T : L0161
Lewis, Ie 1 .5376 & .025% .54Th + .OLTh .5185 + .0158
le . 0 L62h + 0254 4526 + .OLThH L4815 + .0158
Lutheran  Lu® 1 .0531 # .0211 .OL9T # .0087 O34T & .0098
I 0 9469 + .0211 .9803 * .008T .9653 + .0098
PIC T 1 586k + .0261 .6530 + .0183 .61Th * .0166
t o] 4136 + 0261 3470 + .0183 .3826 + .0166
P Py 1 .6039 + .0263 .636k + .0182 .63LT + .0167
Duffy Fy? 1 +2929 + .0202 .2812 % .0136 .2766 + .012k
' Fy 0 oTOTL % .0202 .T188 % .0136 .723% + .012k
Inv Inv® 1 .2063 + .OLT6 .2018 # .0119 .2198 + .011k
Inv 0. -T937 # .0LT6 .T962 & .0119 .7802 % .OLLh
Diego ‘pi® 1 .008T # .0086 .024L + .0097 .0268 + .0088
. Di 0 .9913 * .0086 .9759 + .0097 .9732 + .0088
Haptoglobin 1F 100 .1993 + .0163 .2341 # .OL1T .2089 #+ .0LOT
: 1s 010 2692 + .0184 .2366 + .0122 .2734% % .0116
2 001 .5315 * .0214 .5294 + .014%0 .517T7 * .0132
Hemoglobin A 10 .9THT + .0065 .9T2T + .0046 .9691 * 0045
- S+C oL .0253 # .0065 .02T3 % .0046 .0309 * .0045
Transferrin B4+D 10 .010L + .0036 .0217 + .004L .0145 + .0031
C ol .9899 %+ .0036 .9783 * .00kl .9855 + .003L



Table l" . 2 . 3 . = Continued

179 .

Genetic

Gene
system Neme Binary pto pto pto
Kell K 100 .0431 + .0L9T .0078 % .0055 .0398 # .0107
k 010 .9219 * .023L .9725 % .0103 .9285 + .0136
k8 01l .0350 * .0OLT6 .019T * .0087 .03LT + .009L4
ABO A L0 1738 & .0L61 .15kh + .0l0k .1452 * .0093
A 010 .0598 & .0108 .0601 * .00T2 .0508 % .006L
B 001 0696 + .0105 .0838 * .007T8 .0850 + .00T3
0 000 6967 % .0203 .TOLT # .0131 .T190 * .0121
MNSs MS 1010  .1962 + .0168 .2Lhk * .012F .1862 % .OLL2
Ms 1001 3366 + .0215 .348T + .0139 .36k + .0L3k
NS 0110 .0858 +..0136 .0819 + .0088 .0933 * .0090
Ns © 0101 .36814 +°.0225 .3550 * .0137 .3561 #* .O133
Gn a 10000  .2521 % .0246 .1890 * .0LT6 .2512 + .0158
ab 11000 .207h + .0228 .2390 % .OLT5 .205T # .O151
ax 10100 1075 + 0131 .0T32 * .00T% .OT70 % .00T0
abe "11010 0674 + .0105 .0599 + .0067 .O64L # -.006L
b(l’a) 01001 .3656 * .0186 .4389 + .0135 .4020 + .0127
Rh cde 00011 .3088 * .0252 .2796 + .0186 .2735':: .0165
CDe 11001 .3352 £ .0196 .340k * .014O0 .3381 * .0132
cDe 10011 21 + .0238 .2288 + .0180 .2395 % .0162
cDE 10110 1307 + 0137 .1361 * .0095 .1330 % .008T
Cde 01001 .0112 + .0079 .0151 #* .0062 .0159 #*

0060




180.

Table L.2.k.

Gene frequency at sixteen polymorphic systems in northeastern Brazil.
(Remote population in parent)

(p and ¢ stend for gene frequmcy and its standerd error, respectively)

Distence x 'J_d.ensi'by - [O 30) ' [30-180) [l80-oo)
Genetic Gene v _
system Name Binary : P o pto p o
. Secretor Se 1 .5615 * .0279 .5506 * .OLT9 .5580 + .0166
se 0 4385 + 0279 .AMhol % .0LT9 U420 % .0166
lewls le 1, .5255 % .0272 .5155 # .0248 .5138 + .0162
Lutheran P 1 0493 % .0215 .0211 # .0093 .0359 % .0102
In 0 .9507 *+ .0215 .9789 % .0093 .9641 + .0102
PIC T 1 5049 + .0282 .6598 + .0189 .61h41 * .01TL
t 0 J4os51 % .0282 .3402 * .0189 .3859 % .OLTL
P P 1 .5605 * 0276 .6353 * .0186 .6365 * .OLT2
Fip O 1395 & .0276 .36KT + L0186 .3635 & .OLT2
Duffy Fy_ 1 <2770 #+ .0213 ,.2828 + 0140 .2758 + .0Ll27
Fy 0 .T230 + .0213 .TLT72 * .OL4O .T242 + .0127
Inv Inv’f"_" 1 .1986 % .0186 .200k + .0122 .2125 + .0115
, Inv o] 801& + ,0186 .7996 + .0122 .T875 + .0115
Diego pi® 1 .0000 .021h % .0095 .0278 % .0092
Di 0 1.0000 . .9786 £ .0095 .9722 % .0092
Haptoglobin 1F 100 1920 * 0175 .2412 # .0121 .2097 * .0112
. is 010 .2720 * .0196 .2332 + .0124 .2694 + .0l19
2 001 .5360 & .0226 .5256 *+ .0L43 .5209 * .0136
Hemoglobin A 10 L9705 + .00T6 .9729 + 0047 .9T716 + .O0Mk
. S+C ol .0295 + .00T6 .0271L % .0O4T .028k4 % .0O4L
Transferrin B+D 10 .0136 + .0051 .0230 * .0043 .0152 * .0033
c oL .9864 + .0051 .9TTO * .0OK3 .9848 % .0033



Eﬁble 4.2.4., - Continued

181.

Genetic

Gene )
system Neme  Binary ptg pto p o
Kell X 100 .0k81 * .0219 .0083 & .0059 .0382 % .0106
k 010 .9128 *+ .0258 .9749 * .0102 .9289 * .0L38
k8 o1l .0391 + .0196 .0168 + .0083 .0329 * .0098
ARO A 110 JA791 * L0LT6 1512 % .0106 1490 + .009T
A5 010 .0551 % .0112 .0622 % .00T5 .O496 + .0063
B 001 .0729 # .0115 .0868 % .0082 .0885 * .00T76
0 000 6929 + .0219 .6998 * .013% .T129 + .0126
MNSs MS 1010 1870 * .OLT5 .2145 % .0128 .1836 + .0115
Ms 1001 <3300 * .0225 .3488 + .01k3 .3663 + .0138
NS 0110 .0885 % .0153 .0844 + .0091 .0951  .0093
Ns 0101 .3945 & .0245 .3523 + .0139 .3550 % .0137
Go a 10000 L2447 & 0264 1872 & .0LT9 .2504 % .0L6L
ax 10100 .1018 % .0137 .0727 % .00T6 .OT84 + .00T3
abe 11010 0672 #+ .0L12 .0605 % .00TO .O64O * .0066
v¢2) o001 .3652 % .0203 406 & .0138 .4OOO # .OL3L
Rh cde 000Ll  .2995 % .0273 .2795 % .0192 .2987 & .OLO4
CDe 11001 .3485 * 0207 .3346 + 0144 .3420 £ 0151
cDe 10011 2119 + .0258 .2302 * .0186 .1963 * .0185
cDE 10119 .1269 + .0148 .1401 % .0098 .1408 % .0093
Cde 01001 .0l32 * .0093 .0156 * .006% .0222 + .0086




182.
Table Lk.2.5.

Gene frequency at sixteen polymorphic systems in northeastern Brazil

(p end ¢ stend for gene frequency and its standard error, respectively) ‘

Génetic Gene | Parents whose degree Child.ren
systenm ~ Nanme Binary of consanguinity -
: is unknown Total Remote
o P P
Secretor Se S +5296 * .0Lk0O 5456 .5438
‘se 0 Lok + 0400 L5kl L4562
Lewis . Ie 1 .5565 % .0k06 5216 L5175
. le 0 ' ‘ o)"'l"35 + .OII-OG oh‘?&" 01'825
Lutheran I 1 .0253 * .0250 L0319  .0329
Iu 0 .9THT + .0250 9681  .9BTL
PIC T 1 .5565 + .0406 6060  .6060
t 0 k35 1 .0k06 3940 - .3940
P P 1 .6613 + .0k26 6118 .6185
Ptp O .3387 & .0426 .3882 3815
Duffy K1 .3535 & .0345  .2819  .303k
Fy 0 B6U65 % .0345 LAB8L 6966
Inv Inv™ 1 1702 # .0253 .  .2153 .22
: Inv o} .8298 + .0253 T84T .T888
Diego pi? 1 R .3135%  .3118%
Di 0 - - ﬂ 06865* 06882'!'
Haptoglobin  1F 100 .2193 * .0278 2133 2164
is 010 2456 + .0266 .2546 2hg2
2 001 .5351 # .032k 5321 534k
Hemoglobin A 100 .9788 % .0095 .73(5)8*** .7{8;85“*' '
s 010 .1802%%% .1835%%x
c 0oL -0212 % .0095 .0BLOMEE .0680%%x
Transferrin B 100 e 0026 .0026 "
‘ D 001 © L98TT + 00Tk~ L0145  .0151
c

010 .0123 % .00TL .9829 .9823



Table 4.2.5. - Continued

183.

Genetic

Children

Gene Parents whose degree

system Neme Binary of consenguinity

, is unknown Total Remote
pto P P

Kell K 100 L0410 % .0130 .0273 .3323
k 010 . - 9440 .9k23
¥ ol +9590 & 0130 .0287  .0293
ABO A 110 1790 £+ .0261 .15k .1523
A, 010 .0561 + .0164 .0560 .0552
B 001 .0587 + .0155 .0820 .0862
0 000 ~ .T062 + .0298 .TOT9 .T063
MNSs MS 1010 2235 + .0260 L2012 .1999
’ Ms lool  «3339 £ .0301 +3359 <3347
M 1000 _ - *% .0186 .0192
NS 0110 LO4T0 = .0169. 0Th9 LOTAHT
Ns - 0101 .3956 * .0328 3558 3570
N* 0100 -—- - .0136 .0145
Gn a 10000 2154 + o481 ©.2363  .2322
ax 10100 .0985 + .0208 0739 .0T28
sbe 11010 .0349 % .0123 .0575 ~ .0586
(2 g100 9Lk £ .0336 o2k LL2k8
Rh ede  00OLL 3439 + .Ok45 .2862  .2848
Cde 00101 Ohl0 + .0201 .0143 .0149
cdB 01010 - X% .0023 .0025
(51 01100 - 31 .0012 .0013
cDe 10011 .1888 + .0398. .2330 .2348
CDe 10101 .304k £ .0355 .3192 .3163
cDE 11010 .1189 % .0198 2424 <1448
CDE 11100 -— *% .001k .0006

~

% Conditional probability that at ieast one of parents is Diego

-~

positive.

¥¥% Ignored because of rare freauency.

~e

X

-~~~

Conditionel probability that both parents are not genotype AA.
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Table 4.3.1.

' Code of inbreeding.

Code Inbreeding coefficient

c F [a,b)
0 o) | no known consanguini" . ty
3 1/8 [.1768 ~ .088L
L 1/16 [.0884 - .ohk42
5 1/32 [.obk2 - ,0221
6 1/64 [.0221 - .0110
T 1/128  [.0110 - .0055
8 1/256  [.0055 -O. ‘
9 P>0 .but dggree unknown
Where c = -logeF
a = -antilog, (e-1/2)
and - -

b = -antilog, (c1/2) -



Table k.3.2.

Distr:!.but:’_n.on of couples by the coefficient of consanguinity a.ndr the marital distance.

(Paxental generation)

F = coefficient of consanguinity, <@ = estimated inbreeding céefficient, ¢ = stendard error of <.

(i) Total Population

Distance Degree

(m.) F-o0 1/8 1/16 1/32 1/64 1/128 1/256 lzmknowt)l Total atg
) . ‘ F>0 .

- [0-.5) 20 1 5 2 3 3 .0157 & 0055 .. |
E-5-3,5)) ugg 2 25 4 10 L 2 12 175 206 .golgg " '0013 .0131 # .0018
3.5-9.5 1 13 3 5 1 2 1 137 . + .001 -
iomn &+ 7 3 1 ¢ 0031 & 10010

. )™ 3 . i -
[243.5-729.5) 62 2 1 65 90 ook & .oonk 003t  .0006
[729.5—&) - 26 26 .0000
unknown _ 26 26
Totel 878 T 65 1T 25 9 6 6L 1068 .0059 + .0006
Grand parental | §
generstion 1u462 5 19 13 14 0 1 129 1703 0036 % 000k

*G8T



Table l‘l‘o3020 - Continued.
(i1) Close Population (F & 1/32)

Distance :
(lom. ) 1/8  1/16 1/32 0 Total atg
[0-.5) 1 5 25 3 LO0L4l % .0056
E,5-3.5)) 2 25 L 144 175 0111 # .oo:.g -0L15 & .0018
3.5-9.5 1 13 3 120 137 .00T5 * .OOL
[9.5-27.5) 2 i 3 180 189 .003L # .0012 -0050 + .0010
g 1 o; j B OM O mim
[243.5-729.5) 2 1 62 65 w002k + ook  +0030 % .0006
[729.5- w) . : 26 2% .0000 '
unknown 26 26
Total T 65 17 979 1068 .0051 * .0006
(ii1i) Remote Population-(F <1/32)
Distance :
(xm. ) Qtqg -
[0-.5) .0020 % .0009 o
E.5-3.5)) .0020 + .0003 -0020 * .0003
3'5"905 » 00015 - 00003
~ [9.5-27.5) .0011 % .0002 -0012 £ .0002
‘Eg'r-s-ai.s)) .0005 £ .0001
1.5-243.5 .0002 & .000L '
[243.5-729.5) .0000 - +0003 £ .000L
- [729.5- «) .0000
Total .0009 % .000L

o%’[



Table 4.3.3.
D:Lstrj.‘bution of couples by the cqefficient of consanguinity'and distance x \/- density.

(Parental generation)
(1) Total Population » ' )

tance x

' . : Degree : :

density F o o 1/8 1/16 1/32 1/64 1/128 1/256(;n1;n8;m Total atg
[0.-.5) 20 1 5 | 2 '3 2 ~ .0157 # .0055
[.5-3.5) 24 8 1 2 1 1 37 .0155 + .00h2
[3.5-9.5) 2 2 1 2 & 1 1 n ol 0121 + ,0027
[9.5-27.5) : 101 16 L T 3 2 13 146 . .0092 % .0016
[27.5-81.5) w8 3 6 3 6 2 1 2 189 .0057 & .00k
[81.5-243,5) 184 9 1 3 1 1 10 209 0034 + .0009
[243.5-729.5) - 182 - 1 6 3 1 4 197 .0032 * .0010
[729.5- ©) - 124 y 2 130 .002h % ,0010
unknown 33 1 1 35 0013 + .0010

Total | 878 7 65 1T 25 9 6 6L 1068 .0059 + .0006

-19T



Table 4.3.3. - Continued

(11) Close Population (F & 1/32) | A (ii1) Remote Population (F < 1/32)
Distence x ‘ ‘

Ndensity F - 1/8 1/16 1/32 0 _ Total atg ; o ta
[0-.5) 1 5 25 3 .OLUL + .0056 | .obaq £ .0009
[.5-3.5) 8 1 28 37 +O1hh % .0043 .0015 + .0008
[3.5-9.5) 2 1 2 T9 9k 0106 & .0027 .0018 + .000k4
[9.5-27.5) 16 b 126 146 .00TT % .OOLT «001T + .000k
[27.5-81.5) 3 6 3 17T 189 .00k5 & .00L% .0013 % .0003
[81.5-243.5) 9 1 199 209 .0028 + .0009 .0006 + .0002
[243.5-729.5) 1 6 3 187 197 .0030 * .0010 .0002 % .000L
[729.5- «) L 2 124 130 -0024 + .0010 0000
unknown 1 3k 35 .0009 + .0003 ' +0005 + .0005

Total T 65 1T | 979 1068 | .0051 % .0006 .0009 + .0001

0881:



Table 4.3.4.
Bioageay of the inbreeding coefficient from indiv:l.dual parental phenotype frequencies ( )

(1) Total Population “(i1) Remote Population

- Genetilc Inbreeding — Inbreeding .
systen coefficient Score Information coefficient Score Information

o U, K, 8 o - Uy K, '
Haptoglobin .0k21  100.07L8  39TL.8275 2.50 0385  93.0729  3666.861k 2,32
Hemoglobin -35.5618  -59.4975 1.6463 2150.24%* -35.5632  -54.303k4 1.5086  195k.68%%
Transferrin  -59.327h  -35.7096 5932  21L49.56%% -57.0635 -33.8968 5878  195k.T5%%
Kell -1h.37h2  -11.0863 .T505 163, To%% -13.9683  -10.u4hi29 T202  149.55%%
A AxBO - -o5180  -6.6584 0108  408T.50%% -4.3739  -k.6985 ;0062  3532.55%%
MNSsU .0262 -51.8931 3611.5645 5" .0236 -29.9755 3423.1910 26"
Gm .0k80  52.3557 2187.0116 = 1.26 obik 44,7351  2008.2060 1.00
Rh -.0079 -105.9314 3893.2823 2.92 -.0112 -94.3918 3613.43L4L 2.9
With elght systems: _

o= ,0L7T0 -118.3488 13666.6867 8558.49%% o= .0132 -89.9009 1271k.5243 T59T.60%*

+.0086 ‘ ~— +.0089 -~
"Without four systems being significent with 1 percent level: o

+.00 - - .

+.0089
*¥% 1 percent level significant |

~n

*68T



Table 4.3.5.

190.

Biocassay of the inbreeding coefficient from mating type frequencies.

(MATYPE)

(i) Totsel Population

' Genetic o

system (0] Ua Ka X
Secretor -.0930 -122,3843 © 1085.8265 13.TO¥%.
Ievis 0267 . 10.9124 1574.1185 .08...
Lutheran -T.2940 -30.5751 - k.0075 233.27%%
m L4 0222 "2 . 9%2 1%7- TM]. v . 01» -
P : .0258 4378 - 1072.2795 .00
Duffy .0527 121.6582 2941.3587 b 2lx
Inv .0251 35.6936° 3270.4829 «39.
Diego -10.8141 -20.1046 1.T786 227.26%%
Haptoglobin - +0205 85.3637 ~ 11843.341 .62,
- Hemoglobin 0088 -25.9538 5621.2518 .12
Transferrin .0237 83.2232 8143.9629 .85
Kell -3.1883 . =63.6790 19.0722 212.61%%
Am‘ 0&85 ""l‘802697 8976-21"61 026-a
MNSsU 0124 -76.6036 12041.649 A9
Gm .0209  90.9479 13688.338 .60
m ~e 0011 "lTh' . 5‘“"‘8 u7h9 L4 369 2 & 59
o = .0133 -146.8643 83100.8263 697.18%
| + .0035 -~
Removed four systems (see text). o
“+0160 - 89.8787

81990.1415 10.25
* .0035 )

% 5 percent level significant

*% 1 percent level significant

~n



- Continued

191.

** ] percent level significant

~m

Teble 4.3.5.
(ii) Remote Population
Genetic ‘ 2
system Q » Ua ' Ka %X
Secretor -.0850 -103.8535 1070.1724 10.08%% "
Lewis .0237 17.9954 _15h2.5702 21,
PIC .0150 -.1847 1046.3972 +00...
P -.0160 -28.4140 909.2341 .89
Duffy .0k05 85.3153 2716.1083 2.68
Inv .0183 28.9092 . 301%.0368 .28
Diego S -11.T126 -17.3511 ~1.k4360 209.65%%
Haptoglobin .0181 112.9659 11.476.496 1.11..
Hemoglobin -.0014 =55.40Th 56TT.6502 5k
Transferrin . .0190 138.4814 13258.250 1.h5
Kell -3.1781 -58.9556 ©17.9991 193 .11.%%
ABO .0057 -23.4637 8311.9101 0T
MNSsU .0080 -46.2461 11.482.968 .19
Gn 0146 T2.4727 12786.132 A1
Rh e 0089 "'189‘ 2872 10901 L] 08’"' 3 029‘
o= ,0082 94,5012 84215.96Th 638.28%%
+ .0034 ' ~
Removed four systems (see text).
1,006 . 113.1368 83122.8369 11.12
+ .0035



Ta.'ble !".3060 )
Bloassay of the inbreeding coefficient in children (G-TYPE).

(1) Totel Population. (11) Remote Population
) éenétic ‘ o ’ - ' o
system . o Uy, Koz X ' Q | Uy Ka X
Haptoglobin 0435  265.8T70  Bugh.Bhgh  B.32%k 0400  250.7923  TT96.9463 8.33%*
Transferrin O175  29.7645  59U46.5908 157" 041 7h.8080 11615.3595 A48~
Kell ~ =15.TATL -27.3352 1.707T5 A437.61%% -14.8998  -24.8u450 1.65!&7 © 373.0L%%
ABO 5.3686  -10.4590 .0122 - - ko136 -6.084 .00l43 -
MNSsU .0148  -4B.TTL8  10059.18T0 .2k .0096 -25.5608  9751.3988 .07
Gm -0078 42,4787  4T18.7649 .38 008l  -9.5117  4310.3675 .02
Rh -.0197 -293.5307 8736.9353 ‘9.86%# -.0354 -341.9613 T799.5369 1k.99%%
¢ = .0121 -126.9339 37958.04TL ¢ = .0073 -T78.3626 41275.2680

Note the instebility at the ABO locus.
The hemoglobin system is excluded from ana.lysis because only children vhose both perents are not AA were typed.

* 5 percent level significant
*%® 1 percent level significant

~n

*36T




Table 4.3.7T.

193.

Bioassay of the inbreeding coefficient for consangulneous marriages

whose degree is unknown.

¥% 1 percent level significant

-~~~

MATYPE)

Genetic >

system a Ua Ka b4

Secretor .0006 <1.0749 91.0790 .01

Iewis . -.0376 -3.7578 ™h.5953 .19
ILutheran -9.4295 -1.094%4 1123 10.6T7%%
PIC -.0376 -3.7578 Th.5953 <19
P. . "70m° "801236 1002% 6""01*7**
Duffy -.0T31 -12.1221 146.0468 1.0L..

Inv -.0413 T =9.56TT 188.2109 A9

Haptoglobin 058 - 39.3TAT 1060.5684 1.46
Hemoglobin -T.5015 -8.0435 1.0461 61.85%%
Transferrin - =13.0526 -l. 7883 .3580 64 .03%¥
Kel]- "3 L] 8025 -16 L] 387h . 1999 63 L] 9""**
ABO .0643 48.6854 881.9926 2.69..

MNSs 0167 5.7452 767.4288 .0k

0267 10.1208 483.4427 .18

il -.0T54% -39.4076 465.7609 3.33
= L,0086 = -4.2020 4340.4606 274 . 55%%
i 00152 ' ~ -



Table 4.3.8.

: ; |
THE TOTAL INBREEDING COEFFICIENT IN NORTH=-.
EASTERN BRAZIL . ’

fyomgenssa PARENT [cHILDREN

s

'| PEDIGREE |0036¢.0004)0059¢0006]

BIOASSAY 0170t0086] .0121  |unknown
KGENOTYPE) | . - CONSANGUINITY

BlOASSAY| — .o|332.0035I.ooas:;0152 |
ImaTinG TYPE) . ‘




Table 4.3.9.

195. '

Components of the total inbreeding coefficient of children

in northeastern Brazil.

Contribution to @

Source
%
Close conssnguinity F & 1/32 .0051 38
(From Pedigree Study)
Remote consanguinity F < 1/32 .0009 6
(From Pedigree S'budy)
Recial endogamy .0029 22
Other .0045 3k
Total |
.0133 100

(From Bioassay)



(1) Total Population

Table 4.3.10.

Inbreeding coefficient with maritel distance.

[I. £=8e%, II. £ =ae " Ak]

(i1) Remote Population

(i1i) Close Population

Distance Inbreeding coefficient : . ,
(km. ) Bioassey Bloassay Pedigree Bioassay Bioassay Pedigree Bioassay Bioassay Pedigree
_ (2) (B) Study* (a) (B)  study” (a) (B) Study™*
.0 hadad - 00157 haiad bt .0020 - - V 001)'"1
l . 7 . 0150 . 0103 - = 0028 -e 0]13 - [ 0178 . 0216 -
200 - - 00127 indad ‘ kniad omao hndnd - .Ol]l
6.5 - - .0088 - - .0015 - - 0075
12.1 .02l +0199 -- -024k .0198 -- -.0003 0001 --
1601 - - om - - omn - - -0031
l|'909 - - Ow37 ~ - ) omos - - .0032
134.2 - - .0032 - - +0002 - - «0030
16702 00110 00082 - omll'3 om,'l"" - -(X)67 00038 . hadind
408.5 -- - .002k - -- -- -- - .002}4
I. .
a 0212 .0169 .0085 L0147 .0076 .0018 . 0064 .0086 .0064
+ .0058 + 0056 + .0011 + .0062 + .0056 + .0002 + .0056 + .0057 + .0010
b .0038 .00kl .0130 .0062 .0023 .0233 -.0000 0064 .0085
+ .0033 % .0042 % .004O + .0066 % .00TT + .0051 £ .0072 % .,011%  * ,0036
xa for
goodness ’ ,
of fit .80 .91 19, lLwe 5.90% 8.55%% 2,20 2.66 " 3.85% 17.73%*
(af=1)  (af=5)- (ar=1) (ar=h) (af=1) (af=1) (af=5) |

(af=1)

(a£=1)

&



Table %.3.10. - Continued

II.

¥ 5 percent level significant
*% 1 percent level significant

+ Distance zero is omitted in study II.

0034 -
+ 000k

.0032
+ .0031

3.52

.0201
+ .0138

0143
i 01203

2.38

.058% -
+ 5604

A1 -
£ 5.537h

57 -

*L6T



Table 4.3.11.
Inbreeding coefficient with marital distance x J-density.

[I. £=80"% II. £ =ae P*Nx]
(i) ‘Total Population (i1) Remote Population (i1i) Close Population

- Distance x Inbreeding coefficient :
J—dens:l.ty Bioassay Bioassay Pedigree ilii.omsaar Bioassay Pedigree Bioassay Bioassay Pedigree

(a) (B) Study+ (a) (B) Study*+ (8) (B) Study*.
.0 - .- .0157 -- - .0020 -- -- 0141
2.2 - - .0155 - - .0015 - -- ~OLMh
6.5 - - .0121 -- - .0018 - - .0106
10.8 0201 .0206 -- 0178 .0169 - .0023 .0038 -
17.1 - - .0092 -- - .001T - -- <00TT
5001 hndd - 00057 - : nded 00013 hade - .00’-!-5
86.5 +0LT9 +OLlkt -- .0178 .0135 - 0001 0009 -
15306 - - .003‘!- - - -0006 - haded 00028
l|'2209 - i 00032 hadd - o0002 - - 00030
897.5 00Tk .0038 - -.0010 -.0038 - +006L4 .0076 --
1939.4 -- - .002k - -- - - - 0021
I.
8 .0199 .0187 .0102 .0215 .0193 .0018 .001L% 0029  .0051
+ 0061 %+ .0066 + .0013 + 0094 + .0119 + .0002 + ,0115 + .0113 + .000T
b 0011 .0019 .0062 .003k .0050 .0062 .0059 .0060 0067
+ .0010 #* .0021 + .0017 & .0054 % .0096 + .0012 + 1371 + .0652 4+ .000k
xa <00 .12 16.83%% .26 .51 .85 1.20 1.70  19.68%*
(af=1) (af=1) (ar=6) (a£=1) (af=1) (a£=5) (a£=1) (a£=1)  (ag=6).

s
&



Table 4.3.11. - Continued . |
0072 —— -

II.
a -— -- - L0812 0713 ~ .0051
, + ,0308 *.0338 .000T + .0397
b - - -- 0004 .OOLL .0003 .0052 -- -
, + .003% +.0080 £ .0009 £ 1799
2,77 1.8 15.08%* 1.19 - --

%% 1 percent level significant

"+ Zero class is omitted in study II.

*66T



Table 4.3.12.

Estimation of systematic and migration pressures from inbreeding function.

One Dimensionsal Model

Migration pressure Systematic pressure

Distance study ( & = 20)
Total blosssay A 12.31 # 401 .00LL % .0000

Remote pedigree 17.40 % 2.79 .0824 * .0140

Distance x Ndensity (€ = 1)

’-

Total bioassay A 105.57 + 58.18 .0068 * .0055
Remote pedigree  150.62 & 22,19  .k313 # .0689
Remote bioassay A  57.80 £ 55.42  .0194 * .0251

Close bioassay A 174.69 * 2638.30 .5280 %9.3326"




Table 4.3.13.

Inbreeding cqefficient for alleles.

(mm method)

201.

(.0209)

System . Gene o Ua Ka xe'
Haptoglobin Hpg .o3ih 2026620 T0L02.4668 6.98%x%
Hp, 0094 . 62.2098 - 6620.1251 .58...
Hp .0122 72.9228 - 59T3.TLT3 .89
| .0080 (.0088)
Hemoglobin A .008L -  56.5935  7029.8098 - A6
. S .0039 26.5355  6783.7T092 .10
c .0055 100.T670 18195.993 .56
.0156 (.0205)
. Trensferrin C 0119 - 146.015%  12286.561 1.74
. B .0040 302.8376 T6261.795 1.20
D .0103 147.2000 1k248.070 1.52
.0118 (.0237)
Kell k .0268 - h.7334 176.4688. .13
| kB -8.1823 -26.1477 3.196k 3.90%%
K -6.3182 -33.870k 5.3608 214 . 00%%
| . -.3793 (-3.1883) ""
ABO A .020%  75.0759 3674. 7279 1.53
A .0008 - 3.2667 k122.3860 .00
B~ .0051 20.6541 4046 .0060 A1
0 .0079 23.1313 2935.2961 .18
| 0093 (.0085) -
MNSs Ms .0251 - 52.6489 2096.2T16 1.32
: MsS -.0010 -3.1271 3217.1407 .00
M* -1151.6108 -1.1153 .0008 1550.82%%
NS -00030 - 1005522 35360305)4' 003».,-
Ns -.0038 -8.905k 2341.1535 . .03
N* -266.7327 -4.0305 .0150 1086 .26%%
- "16090)'"9 (0012)‘") ke
Gm a .0522 - 91.0640 1743. 7084 h.76%
ax -.0085 -30.3458 3563.4585 .26..
abe L0157 T0.6034 4511.5305 1.10
b .0311 73.0562 2349.6991 2.27



Table 4.3.13. - Continued

202.

System  Geme =« Uy K, x°
Rh r _
| §
;',». -.0224 -58.3296 = 2608.28TT 1.30
o~ |
R, 0011 h.1igk  3860.85T1 .00
.0038 10.2876 2696.4591 ol
% .0128 hr.9146  375T.4264 - W61
R® -151.6496 ~7.0290 Ol62  .1068.92%%

-.3828 (-.0011)

~ -

* 5 percent level significant

~n

e 1 percent level significant



Table L.3.1k4.

203 .

. Estimated tri-racial gene frequencies (Krieger et al., 1965), with the

equivalent inbreeding coefficient £ [ = 0'2/p(l-p) ].

.0k22

(The proportions of Negro, Indien and Caucasian are .30L, 114 and .585,
respectively) '
System .Gene Negro Indian Caucasian mean £ Q=Tpf
_ 5 '
Secretor Se 538 .500 .570 .552  .0023  .0023
se JA62 +500 1430 A8 L0023
Iewis Ie 319 545 .660 .54k L0932 .0932
le . .681 455 .340 456  .0932 '
Lutheran Iu] .96k 1.000 .96k .968  .00k2  .0042
I~ .036  .000 . .036 .032 .00k2 -
PIC t 20T .207 .506 .382  .0920  .0920
. T <793 .T93 lgh 618 .0920
P Pytp 246 570 458 o7 L0512  .0512
Duffy Fy, 1.000 .318 .603 691  .2300  .2301
- Fy .000 .682 .397 .309 .2301
Inv Inv, .68k .693 .900 811 .0T23  .0723
Inv 316 .307 .100 .189 .0723
Diego DiT  1.000  .830 1.000  .98L .1550  .1550
| ‘ Di 000 170 .000 .019 .1550 -
Haptoglobin  Hpy 62h 731 .38% ko6 .OTH3 1048
. Hpoy 235 .251 .616 459 .1387
Hp Al - .018 .000 o5 .0946
Hemoglobin A .910  1.000  1.000 973 .06k .0637
* s 066 .000 .000 .020  .0468
c .02k .000 .000 .007 .0167 |
Transferrin  C .939 .996 994 97T .029%  .0295
B .000 L,002  .006 004  .0020
D .%1 0002 .Om '019



20k.

O=Zpf

System Gene Negro Indian Caucasian mean £
D p
Kell X, 851  1.000 .952 °  .92T .OhOO  .ok21 -
k <14k .000 .000 O3 L1046 ’
K .005 .000 .0h8 .030 .0167
ABO A .105 .000 .236 70 .0505 .0538
A5 .052 .000 .068 .055  .0085
B 150 .000 .066 . .0230
0 693  1.000 .630 691  .0612
MNSsU MS .118 .236 .270 .220 .0269  .0L48
Ms .358 J62 .310 342 .0103
Mx .052 .000 000 .06 .0368
NS .058 .107 .0T6 .OTh  .0030
Ns .336 .195 <34k .325  .0099
g .078 .000  .000 .023  .0556
Gn a 000 TT5 .20k  .207T .3028 k69
ax . 000 [ 123 . 092 . 068 . 0329
ab J86 - 1020 .000 249 L6708
8.25:' 021)'" 000 .OOO 0%5 01592
bp{1;2)  .o00 .000 (N R
Rh »r .13 .000 .ok .270  .1330  .1hk4o
r .0T5 .000 .000 .023  .0533
r' .000 .000 .008 .005 .0033
r'Y 026  .000 .000  .008 .0L81
it .006 .000 .005 .005 . .000T
v .000 .000 .001 .00l .O00k
R, JHT5 .016 .053 JAT76 2661
Rg 150  .000  .000  .045  .1092
.082 .533 1415 .327 .1245
% .073 A39 .110 136 .102
R’ .000 ".012 .00k .00k .0033
G-6-P-D S .609 .930  1.000 BT L2801 .2620
F 221 .000 .000 06T  .1646
¥ .170 067 .000 .059

+1036




Table l"cll‘olo ’

205.

Mating type frequency at two allelic loci without dominence.

Mating type Observed

Systen Expected _
0=.0133 0=0

Ss SS x S8 10 8.03 6.69
, . SS x ss o8 85.60 86.79
Ss x Ss 165 171.21 173.59 .
Ss x 88 433 431.39 - 442,19
88 X s8 288 290.43 281.60
Total 1059 xﬁ - 3.28 X = 3.99
Heptoglobin 1-1 x 1-1 51 57.36 52.73
_ (Hpl=.18) 1-1 x 1-2 248 233.76 232.81
1-1 x 2-2 123 125.09 128.50
1-2 x 1-2 22 250.19 256.99
1-2 x 2-2 286 282.6k 283.69
2-2 x 2-2 83 83.96 78.29
Total 1033 X =1.98 o = 2.7
MN MM x MM 98 10k.57 98.21
(M=.55) MM x MN 3% 317.56 319.88
\ ) MM x NN 126 123.h2 130.23
MN x MN 258 257.06 260.45
MN x R 208 213.96 212,06
NN x NN 48 Wr.de 43.17
Totel 106k xﬁ = .65 xﬁ = .90
Hemoglobin AL xAA 935 935.49 933.43
(A=.97) AA  x AS* 100 99.21 103.21
(S*=5+C) AA  x S¥g% 0 2.03 1.43
. AS*® x AS¥* 6 4.08 2.85
AS¥ x S¥gS* 0 .19 .08
SkS*% x SKSK 0 .00 .00
potal 10k xﬁ = 3.13 xﬁ = 5.99



Table 4.4.1. - Continued

System Mating type Observed Expected
| 0=.0133 Q=0

Transferrin cC  x CC 980 978.87 977.58
(C=.98) CC x CB¥ 60 62.25 64.79
(B%=B+D) CC X BXB¥ 0 9k o5k
. CB* x CB¥. 4 1.88 1.07
CBX¥ x B¥P¥ 0 .06 .02
B*B¥* x B¥B¥ o " .00 .00
“motel 104k xﬁ = 3.7 xﬁ: 8.92




Table 4.4.2.

™~

207.

Ma.ting' type frequency at two allelic loci with complete dominance.

System Mating type Observed Expected
- , Q=.0133 0=0
Diego axa g 62% ‘ .39
- ax - L 16. 17.22
fm "°2? -x - 190 190.71 190.39
Total 208 xi = .72 xi = 3
Iutheran axa 0 il;.l’r .85
a_ 8 x 27 - 25,29
(Tu"=.03) % 187 188.31 187.85
Total 214 xf = 1.4k )&2 = .97
Inv axea igB :ll.l.5l.l2 %.89
a_ . S ax T T6.20 81
(Tov'=.21) -x uaT 41k.67 - 406.10
Total 1042 xf = .50 xf = 2.07
Duffy axa Egs 25&.21 251.;(0
a_ ax 5 519. 531.60
(Fy=.28) - x 30k 289.59 280.70
Total 1064 ' = b.63 xf = 8.18%%
Levis Ie x Ie 652 643.65 | 646.00
(1e=.53) Ie x le 351 360.75 363.01
_ ) le x le 57 55.60 51.00
Toteal 1060 x,i = . xf = 1.16
Secretor Se x Se 668 6T78.26 681.11
(Se=.55) Se x se 365 337.44 338.76
] ) se X se 29 46.31 42,12
Total 1062 xi = 8.87%% xf = 6.37*
PIC Tx T 788 T81.22 785.03
(P=.62) Txt 251 257.96 256.95
A : txt ol 23.82 21.03
Total 1063 5= 25 L= .57



208.

System Mating type Observed Expected
@=.0133 . a0
P P xP 792 T84h.67 788.59
; P, x B, 248 255.97 | 254.83
P, x P, 2 23.36 20.59
Total 106! =33 L= .16

* 1 percent level significant

%% 5 percent level significant

-~



Table 4.L.3

 Effects of inbreeding (0=.0133) on h.

Compatible

Factor Gene h2 Lh Incompatible h3 bLh " Incross with
frequency backeross backeross ‘ respect to
P (0=0) .Uh K, ! o (c=0) dominance
. e = S * ey
Khh | |
Se <5537 .3828 -.008k -.0T00 566 -.0827 5T 6191 .0083 0031 1555
Ie 5317 3621  -.0073 -.0283 554 -.0559 603 .5931 .0092 OL3k 116
Go™ L0762 .03% ,0055 -.0227 1473  -.0021 1295 OTT6 .oew7 .0L35 68
an” L0643  .0332 0057 .025% 1163  -.065 1529 L0653  .0250  -.0925 ko
Inv® .2099 <1173 0031 L0097 1346 -.0033 1299 .2208 .0209 -.0110 37
T .6250 545 -.0123 -.0931L - 245 .0504 264 .To2h .005k -.0332 1225
A 1566  .0850 O00k2  -.000T 1685 0236 1311 .1628  .0225 0662 213
A, 0624  .0322 .0058 -.0283 Tk +Ooh51 99k - .063%  .0251 5000 16
B c6)808 ok21 0055 -.oaui sk -,0093 1677  .082F 0246  -.062T 75
D 923 - «-.0168  -.005 oL 272 .T185  .0028 O0l13 2
P 6270 3567 -.012%  -.0660 379 02 1026 048 .0053  -.0109 219%%
e 2833  .1650  -.00Lk 037+ 1118  -;0163 1111 .3028  .0186 JA156 546
w® 0321  .0163 .0062 .0150 160  -.058k 226 - - -- --
®  .0229 .01 .006%  -.0397 156  -.0221 190 -- - -- --

®

*602



Table 4.4.3% - Continued

Fector (Gene h Oh Incompatible Compatible h

o 3 Oh Incross with

frequency backeross backeross . . respect to

P (o=0) Uy : (@=0) dominance

: e=— K e Kmn - e Kin
f 5168 348k -,0067 -.0WL2 199 -.0257 183 <575k .0098 .0276 456
v 0840 .0ls38 0054 -.06T8 478 -.0719 W6 .0857 0245 +0000 20
K° 0296  .0L50 .0062 0498 261 -.0547 . 223 - -- -- -
Ah = -.011% + .0326 Zh = -.0158 & .0323 Ah = .0080 + .0361

€ = .0013 * .0068 e = .0013 % .0066 e = .0076 + .0054

r=.35 r=.33" r=h6

Oh = the expected deviation due to inbreeding (Ot= .0133)
e = the observed deviation
Koy = welght of dbservation

r = correlation coefficient between Ah anG e

oo-[a



Table L.5.1.

Distribution of couples'with marital distence in grandparent.

Observed A Expected
Distence (km.) x I II III vV Vi VII VIII IX
O- 5 0 Th 17.76 410 TH7.18  23.98 59,70 28  67.07 --  68.60
5 - 3.5 2.0k 385 1102.72 24,79 297.80 114.83 516.78 8.6k 308.98 -~ 325,62
3.5 = 9.5 6.45 272 187.0k4 50.56 159.85 1T72.04 299.12 38.32 355.83 -- 363.97
9.5 - 27.5 16.13 348 438.63  158.18 155.3% 336.66 ~ 237.55 189.29 420.3% -- 324,92
27.5 - 81.5 149.93 338 648.38 h92.81 128.k1 L4B1.0T 173.07 622.33 300.18 -- 258.29
81.5 - 243.5 134.2% 200 298.1% 87h.0L  92.65 1409.19 123.10 T4L.6T 149.5T -- 283.80
243.5 - 729.5 L408.45 Th 10.33 98.56 59.07 150.k2 86.92 L41.09 62.28 --  TT.02
729.5 - o 850.08 12 .00 : 62.69 - 14.82 206.75 6L.39 38.75 -- .78
Total 1703 11703.00 1703.00 ’17g§.oo 1703.00 1703.00 1703.00 1703.00 -- 1703.00



Table 4.5.1. - Continued

Observed ' Expected

I II III. IV v VI VI VIII IX
Xa for . . _ :
goodness of ﬁt - 372018 8195 161 98T 481 37797 9k -- 248
paraneters
estimated a -- .0210 0085 «2983 .2517 .1599  .0156 0916  -- 1460
+#.0003  +.0000 +.0028 #.000T #£.0025 +.000L  +.0089 +.0LTT
b - -- _— a- -- -- -- 8971 -- .0095
: £.055U +.0003
? -- -- -- - - -- -- - = 5%
+.0LTT
mean distance X 53.17  UT.T2.6  66.2+.3 16.5t.h 9h.T.6 -  100.9t% .- -- 52,2
inbreeding .. o ,
coefficlent O -0185% .0187 0L52  .0192% = ,0168% .0169% .0151% .0186% -~ -0181
x = a point weighted by observed number of couples
I = exponential, II = normal, IIT = lognomal; IV = square root exponential, V = Skellenm,

VI = Bessel, VII = beta, VIII = generalized Skellem, and IX = double ex_ponential
#* Discrete e.ppro:d.mation (see text)

~



Table %4.5.2. '
Distribution of couples with marital distance in parent.

Observed ’ Expected -
Distance (lam. ) I I III v v vi____ Vil VIII X
O0- 5 31 6.h9 216 U6k.26  8.52  28.58 17 bbbk 579 21.25

5- 35 175 38.11 13.07 161.90  43.13 258.3% 5.19 12k.33 167.63 137.77
3.5 - 9.5 137 T2.07 %6.59 87.78 69.43 161.41  23.06 17L.97 254.58 179.68
9.5 - 27.5 189 186.4k 82.87 88.20 150.89 137.63 11k.19 256.12 230.65 208.43

27,5 - 81.5 2ik 362,68  260.85 - T7.23 258.13 108.1k 377.76 230.3% 151.08 164.38
 81.5 - 243.5 175 326.55 545.35 60.k2 296.39  83.07 L456.68 134.02 92.41 - 213.19
2k3.5 - 729.5 65  h9.5h 111, ¥+ 176.92  63.37  33.51  60.62  55.TT  106.66
729.5 - o 26 Jd1 59.48 38.59 201.45 31.h5 ho.16 84.08 k.63

Total 10k2 1042.00 1042.00 1042.00 1042.00 1042.00 1042.00 1042.00 1042.00 -1042.00

‘€T



Table 4.5.2. - Continued

Observed | . | Expected - '
I II  III IV A VI VII VIII IX
)(2 for
goodness '
of fit -- 6626 3242 1156 663 k75 12030 66 344 188
paremeters .

estimated a -- .0125 LO00Th - .2663  .1890 1246 .0154 .0549 097k .1068
+.0002 +,0001 +.0029 #.0011 #.0027 £.0001L #.0063 #.0122 .0088

b - _— - - - - - 8765 2319  .0066
£,0627 +.0134  £.0003

N - - -- -- - - -- -~ .5325
+.0245

mean distance X 86.90 80.0il.k T6.8£.5 34.0 167.9#2.1  -- 102.0%.6 - -- 85.2

inbreeding ' : ‘
coefficient @ .OL7T5% .0163 .01h2 .0L87% .0153% .0153% .0l51% .OL75% .OLT3*  .O167

~ ~ -~ -~ ~ - ~

I = exponential, II = normal, III = lognormal, IV = square root exponential, V = Skellem,
VI = Bessel, VII = beta, VIII = generalized Skellam, end IX = double exponential

¥ Discrete approximation (éee text)

~

s



Teble 4.5.3.

Distribution of couples with marital distance weighted by squa.fe root of density in grandparent.

Observed Expected

Distance x X » . .

Naensity I II IIT v v VI VII VIII  IX
O0- o5 0 Th 5.26 2.69 T6k.48 7.70  33.69 26 22.56 2.51 20.68
5= 3.5 2.22 85 31.20 16.21 229.56- L40.76 317.81 7.98 121.56 100.48 115.4k
3.5~ 9.5 6.51 204  60.68 32,85 125.28 69.45 213.91 35.62 189.56 295.26 192.07
9.5- 27.5  1T.09 313 169.00 10L.69 129.51 = 164.08 195.k9 1T7.72 341.T73 418.87 362.20
27.5- 81.5 50.07 353 L406.83 322.19 119.21 ;32u.3o 165.35 598.40 396.08 318.82 345.50
81.5-243.5 153.56 300 646.41  827.17 100.17 L4TH.95 136.90 T53.55 296.56 206.26 250.22
243.5-7129.5 L422.89 235 352.69 - 387.19 T7.69 k22,65 112.62 T6.00 167.25 129.93 296.81
729.5-0 1939.35 120  17.9% lbh.10  186.11 S51h.2k - hOJWT  15k.TO 217.8T7  107.06
Total 1690 1690.00 1690.00 1690.00 1690.00 1690.00 1690.00 1690.00 1690.00 1690.00

*Gte



Table 4.5.3. - Continued

Observed Expected v
I II IIT IV v VI VII VIII X
x2 for goodness N _
of fit , - 2336 3856 2202 1184 1123 23443 169 2262 179
parameters estimated a -- .0062 .0056 .2341 .1395 .0902 .01k9 .0381 .0280 .0438
+.0001 #.000L +.0016 #.0011 #.0019 . #.0001L *.003% %.0026 +.0025
b -- - -- —— -- -- - .k L2132 .0027
A +.037TL  £.008%  +.0001
p -~ -- - - - -- . - -- --  JhehT
, - +.0183
mean distance x 238.3 160.5 100.2 95.8 -308.3 - 105.1. - -- 182.
+ 2.6 £ .9 +3.0 *4.8 % .5
inbreeding coefficient
a - .016T* .0169 LOLT5 AT1% .0150%  .0137* . .OLTH* .016T* .016h%  .01T0

~

X = a point weighted by observed number of couples

I = exponential, II = normal, III = lognormal, IV = square root exponential, V = Skellam,
VI = Bessel, VII = beta, VIII = generalized Skellam, and IX = double exponential

* Discrete approximetion

09-[3



Teble 4.5.4.

Distribution of couples with marital distance weighted by square root of density in parent.

Distance x Observed Expected

Naensity I II TII v v VI VII VIII  IX
0~ .5 3 2,11 1.36 - 473.08  3.37  1T.09 .16 8.0k T 9k
5. 35 37 1258 8.9 123.68 1817 16k.35 W87  W5.AT  30.97  52.76
3.5 = 9.5 9k 2h.69 16.56  67.69  31.76 114k.38 21.75  T1.06 119.89  88.55
9.5 - 27.5 146 70.55  51.02 Ti.33  T7.91 107.85 108.53 162.54 23k.56 1TL.M
27.5 - 81.5 189 182.99 161.48  68.02 164.37  94.30 365.57 234.83 210.14 182.37
81.5 - 243.5 =~ 209  358.65 L453.T5 60.16 268.91  80.75 U60.TT < 215.97 146.1  175.60
243.5 - 729.5 197  329.21 240.66 49.87 287.58  68.73 h3.01 140.15  97.81 2&9,21
729.5 - o 130 52,22 119.16 180.9%  385.56 23.35 1h49.25 192.50 112.66

Total 1033  1033.00 1033.00 1033.00 1033.00 1033.00 1033.00

1033.00 1033.00

1033.00

AT

-



Table 4.5.4. - Continued

Observed Expected
I II II1 v v VI VI VIII IX
x2 for goodness : B | ‘
of fit -~ . 950 1425 1581 4,38 835 T631 107 7T 76
parameters :
estimated a -- .004L 00T .2073 JA17 .OTH8 .01k49 .0236 .0148 .0h22
+.0001 +,000L +.0017 +.0016 *.0023 #.000L +.0028 %.0018 +.0038
b - - -- - - - ~ 6667 A873 .0023
+.0458 +.0094  +.0001
P - == - - -- -- -- -- L—- 6045
| A ; ‘ +.0232
mean distance x 356.0 24k4.5 121.1 5TL.L 435.5 - 102.2 - - 267
+6.0 +1.8 +26.1 1.5 t .5
inbreeding - ’ '
coefficient @ .0154* .0157 .0170 .OLT2% ,0138% .0125% ,0LTh* .0l54% ,0152% ,0158

-~

I = exponential, II = nomal; III = lognommal, IV = square root exponential, V = Skellam,
VI = Bessel, VII = beta, VIII = generalized Skellam, and IX = double exponential

* Discrete approximation (see text).

‘gTe .
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on zygote
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Frequency of A
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Figure 2.5.2.

Effect of inbreeding on mofin§
type (autosome), Two alleles,
" A and o, without dominance.

————

Frequency of A
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Figure 2:.5.3.

Effect of inbreeding on mating
type (autosome). Two alieles, A
and a, with complete. dominance.

Frequency of A
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Figure 2.5.k.

Effect of inbreeding on mating
type frequencies (sex-linked)

Two alleles, A and a, without
dominance. ]

Frequency of A
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Coefficient of

Figure 26545

"Effect éf. inbreedinvg‘.on mating
type frequencies (sex-linked).
J_Tw_o alleles, Aand a, with com-

plete dominance.’ - ]

Frequency of A
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Figure 206. 1.

Effect of subdivision of
population on Snyders
ratio (S).

Coefficient of




Figure 2.6.2.

(cs')

‘Coefficient of o

Effect of subdivision on the
proportion of pairs who can-

not segregate (h)
-IDL- N Frequency "of
‘@/ recessive gens (q)
/ |
-zpf 3, h.-ﬁ- 4+C,& for zygote
S/ autosomal 1- ‘
tocus hz=4|+q +Cod  for backcross
1+3q) .
-3.0 h ET T +Cys for incross
-——-— he=lZ9 + C,&  for outcross
-4, sex-linked MR ‘
focus Mgl 4 Cgd for i '
a’l__"_'&' “+ Cg or incross.
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The arrows denote flow of migrants and

tion of migration to an isolate by each generation.

Figure 2.7.1.

An .homogenous symmetrical
population structure in one

2

1_3 is the relative propor-

The indices are

arbitrarily assigned for isolates. All distances between two isolates

are the same.
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Figwre 2.7.2.

An homogenous symmetrical populotion'
structure in two dimension

S U
The arrows denote flow of migrants and 2 and n are the relative
2 2
proportion of migration to an isolate by each generation. The._indices
are arbitrarily assigned for isolates. AllA distances between two-iso-

lates are the same.
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Figure 4.3.1.

INBREEDING BY DISTANCE ~
IN NORTHEASTERN BRAZIL (TOTAL)
" f$eqe-d :
-— BIOASSAY EXPECTED

o BIOASSAY OBSERVED
. as.021 ¥ 006
 b*.004 £ 003
X% 80 (dt=l)

- = PEDIGREE EXPECTED
e PEDIGREE OBSERVED
a=.008 * .00l
b= 013 ¢ .004

Xt = 19.41 (d.£=5)

706" 306 300

MARITAL DISTANCE x (KM)
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Figure %.3.2.

INBREEDING B8Y DISTANCE
IN NORTHEASTERN BRAZIL (REMOTE)
f sge=br ‘
- BIOASSAY EXPECTED
o BIOASSAY OBSERVED
as.018 + 006

S o b=.00e * 007
- X% . 5.90 (dt.21)
E 4
w
[ 2]
i
[’
§ ool >
o \
b

\
g \
2 ™
W i N .®
- \
m.0001 \
z \

—e PEDIGREE EXPECTED
* PEDIGREE OBSERVED
0as.002 ¥ o000
b=.023 + .008 -
X2 = 2.20 (df.«4)
— -

. —L
100 200 300
MARITAL DISTANCE x (KM)
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Figure l|'03'¢3o

COEFFICIENT (1)

"T INBREEDING BY DISTANCE
IN NORTHEASTERN BRAZIL
(CLOSE)
f = ge-bx
-~ BIOASSAY EXPECTED .
L * BIOASSAY OBSERVED
"a =009t 0608
b b=006% Ol X’s385(dt=l)
.OIF- -== PEDIGREE EXPECTED

e PEDIGREE OBSERVED

a=.,008 * 001 e

b= .009 * .004 X%«17.74(d1s5)
~
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- Figure 4.5.1.
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Migration functions and their relation.

sunm of 1

exponentiall . _ gamma

a8 Bessel

type

lEgnomal

o g:_@onential

normal .

a beta type

1 |
H—_-'
, @odified gamsa,

(special)

fbeta functioni
! (general) |

Studled in text.

771 Not studied in text.




Figure 4.5.2.

DISTRIBUTION OF MARITAL DISTANCE
IN NORTHEASTERN BRAZIL

N «-ab_
OBSERVED EXPECTED mix)=rdioy,)

| GRANDPARENTS (i703 COUPLES) PARENTS
: 50 (1042 COUPLES)

a=.092 * 009
b= .897 * 005
X2 £94.06 (df.= 5)

0= .055 t 006
b= .877 ¢ .063
X2 =65.76 (df.= 5)

FREQUENCY

PER CENT

T : 100-“300 300 400
DISTANGE, (KM) DISTANCE, (KM)
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