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ABSTRACT

The fluid flow and heat transfer characteristics in a pipe subjected to a

periodically oscillatory and reversing flow have been investigated numerically and

experimentally. An examination of the governing equations and boundary conditions

shows that the governing similarity parameters for the oscillatory flow in a pipe of

finite length are the kinetic Reynolds number, the dimensionless oscillation amplitude of

the fluid, and the length to diameter ratio of the pipe. An experimental study on the

onset of turbulence found that the changes in the sign of the pressure gradient are

directly responsible for the occurrence of instability in an oscillatory and reversing pipe

flow. Friction coefficients of a fully developed laminar oscillating and reversing pipe

flow were investigated analytically and experimentally. The numerical simulation of a

sinusoidally oscillatory and reversing flow in a pipe of finite length shows that, at any

instant oftime, there exist three flow regimes in the pipe: an entrance regime, a fully

developed regime, and an exit regime. Based on the numerical results, a correlation

equation of the space-cycle averaged friction coefficient was obtained. For forced heat

convection in an oscillatory flow, it was found that the Prandtl number is the additional

similarity parameter, besides the kinetic Reynolds number, the dimensionless oscillation

amplitude of the fluid, and the length to diameter ratio of the heated pipe. The

numerical results of the associated heat transfer problem reveal that annular effects also

exist in the temperature profiles of an oscillatory flow at high kinetic Reynolds numbers

near the entrance and exit locations of the pipe. The space-cycle averaged Nusselt

numbers of air oscillating in a pipe heated at constant temperature and uniform heat flux

were obtained based on either the numerical results or the experimental data. The

related problem of pressure drop in an oscillatory flow through a woven-screen packed

column has also been investigated experimentally.
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CHAPTER I

INTRODUCTION

1.1 Background

In recent years, a great deal of efforts have been devoted to the development of

Stirling-cycle machines such as Stirling engines and miniature pulse tube cryocoolers for

military and space applications. The Stirling engine is a prospective power source for

future space missions because it can be operated using solar energy. The miniature

pulse tube cryocooler is an ideal device for the cooling of infrared detectors in night

vision and missile guidance systems, as well as for infrared sensors aboard satellites;

this is owing to their high reliability and relatively free of vibration and noise as

discussed by Radebaugh (1991).

For an optimum design of Stirling-cycle machines, it is important to predict

accuratelyheat transfer and frictional loss in the heat exchangers (heater, regenerator and

cooler). Until recently, the flow frictional loss and heat transfer correlations used in the

design of these heat exchangers were based on unidirectional steady flow conditions,

which are unrealistic since Stirling machines operate under oscillatory flow conditions.

Thus, there is a need for more realistic predictions of the fluid flow and heat transfer

characteristicsof an oscillatory and reversing flow in a heated pipe. It should be noted

that the nomenclature of the oscillatory reversing flow in this study means a periodical

flow with zero mean velocity in one cycle while the nomenclature of the pulsating flow

refers to an unidirectional steady mean flow superimposed by a unsteady periodical

flow component. The present work will focus on the basic transport phenomena of an



oscillatory and reversing flow and the associated heat transfer characteristics in a pipe

and in a woven-screens packed column.

1.2 Review of Literature

In this section, the existing literature on oscillatory and reversing flow in a pipe

and associated heat transfer characteristics will be reviewed. Previous research efforts

concerning pressure drops through a packed column subjected to a periodically

reversing flow will also be discussed.

Laminar Oscillatory Flow in a Pipe

The problem of oscillatory flow in a pipe under the influence of periodical

pressure fluctuations has been studied by many researchers both analytically and

experimentally. Richardson and Tyler (1929) were among the first to measure the

velocity distribution in an oscillatory pipe flow, and discovered the so-called "annular

effect", i.e., the maximum axial velocity in a fast oscillatory flow occurs near the wall

rather than at the center of the pipe as in the case of unidirectional steady flow in a

pipe. Subsequently, Sexl (1930), Womersley (1955) and Uchida (1956) verified the

"annulareffect" by performing analyses of both sinusoidal and non-sinusoidal motions

of a fully-developed oscillatory flow in a pipe. Similar analyses were carried out by

Drake (1965) for an oscillatory flow in a rectangular channel, and by Siegel (1987) and

Gedeon (1986) for flow between parallel plates. Most recently, Akhaven et al. (1991)

experimentally verified Uchida's analytical solution (1956) by measuring velocity

profilesof an oscillating flow ofwater in a pipe.

2
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Relatively few papers have been reported on the study of a hydrodynamically

developing oscillatory flow in tubes of finite length. Peacock and Stairmand (1983)

hypothesized that the entrance length in a laminar oscillating flow would be shorter

than in a unidirectional steady flow. They speculated that the velocity profiles of an

oscillatory flow may not change much in the entrance region because the velocity

profiles of an oscillatory flow tend to be flatter than those of a steady flow.

Chayrreyon (1984), based on observations made by Golaberg (1958) about steady

flows, suggested that entrance length may vary over a cycle and proposed a time

dependent entrance length. Roach and Bell (1988) performed experiments on pressure

drop and heat transfer in both an empty tube and a packed tube under the imposed

conditions of a rapidly reversing flow. They reported higher friction factors but could

not find frequency dependence in their pressure drop and heat transfer data. Wu, et al.

(1990) obtained some data for the friction factor in a gap heat exchanger, and presented

their data graphically as a function of the Reynolds number. Taylor and Aghili (1984)

measured pressure drops in an oscillating flow of water in a pipe of a finite length at

relatively low frequencies. Their data indicate an increase of the friction coefficient over

that of unidirectional steady flow. However, they did not have sufficient data to

investigate the effects offrequency on the friction coefficient.

Onset of Turbulence

The onset of turbulence in an oscillatory flow has been given a considerable

amount of attention in the past. Hino et al. (1976) studied transition by means of hot

wire measurements. They found that there was a laminar-like flow during the

acceleration phase of the half cycle whereas a turbulent-like flow existed during the

deceleration phase. A correlation equation for predicting the transition to turbulence

3



was first given by Sergeev (1966), who used flow visualization to identify transition in

an oscillating pipe flow. Ohmi et al. (1982) performed experiments on forced

oscillations of a gas in a straight pipe. They found that velocity profiles during the

laminar phase of cycle agree well with the Uchida's analytical solution for a laminar

fully-developed oscillatory flow, and that the velocity profiles during the turbulent

flow regime agree well with the 1l7th-power law ofa steady turbulent pipe flow. They

determined a correlation equation for the prediction of transition based on whether the

observed velocity profiles are in agreement with the l/7th-power law. Park and Baird

(1970) reported transition flow during free oscillations of a liquid in an U-tube. Iguchi et

al. (1983) experimentally studied free oscillations in a U-tube and determined that

transition occurred when the velocity profile deviated from the Uchida-type laminar

profile. Using hot-wires, Seume (1988) experimentally studied the transition in an

oscillatory flow pipe with parameter ranges corresponding with the heat exchangers of

Stirlingengines and cryocoolers. Recently, Cooper et al (1993) presented a review of

literature on oscillating flows.

Turbulent Oscillatory Flow

In this section, we shall focus our attention upon the turbulence structure

characteristics of an oscillatory flow. In this regard, the most detailed work was given

by Hino et al. (1983). Using a laser-Doppler velocimeter and hot-wire anemometers,

Hino et al. (1983) experimentally investigated a reciprocating oscillatory turbulent flow

in a rectangular duct. They found that at large fluid displacements and frequencies, the

turbulence structure of the oscillating flow was substantially different from that of a

steady flow. In the accelerating phase, turbulence was triggered near the wall but was

suppressed and could not develop. On the other hand, with the beginning of flow

4



deceleration, turbulence grows explosively and violently and was maintained by the

bursting type of motion. They stated that the turbulence-energy production became

exceedingly high in the decelerating phase, but that also the turbulence is reduced to a

very low level at the end of the decelerating phase and in the accelerating stage of the

reversal flow. They pointed out that although there exists a great degree of difference

between the ensemble-averaged characteristics of the oscillatory flow and those of the

steady wall turbulence, its basic processes such as ejection, sweep and interactions

directed towards and away from the wall are the same as those of the steady flow near

the wall. Other studies on turbulence structure characteristics of pulsating flows can be

found in the work by Ramaprian et at. (1983), Mao and Hanratty (1986), and Gerrard

(1971).

Oscillatory Heat Transfer

The related problem of oscillatory heat transfer in a heated pipe subjected to a

periodically reversing flow has important applications to the design of heat exchangers

and pulse tubes in Stirling machines and cryocoolers. Simon and Seume (1988)

presented an excellent survey of literature on this subject, and pointed out important

differences in fluid flow and heat transfer between steady and oscillatory flows.

Iwabuchi and Kanzaka (1982) experimentally investigated heat transfer of an oscillatory

flow in a test facility which was designed to obtain data for a specific prototype engine;

they presented their heat transfer data in terms of the piston speed (rpm), mean

pressure and phase difference between the opposing pistons, but did not attempt to

correlate their heat transfer data of oscillatory heat transfer in terms of dimensionless

parameters. Hwang and Dybbs (1983) graphically presented their oscillatory heat

transfer data in terms of Nusselt number versus Reynolds number at selected oscillating

5



amplitudes. Kurzweg (1985) and Gedeon (1986) analyzed the enhancement of axial

heat transfer due to an oscillatory flow between two parallel plates. Siegel (1987)

obtained an analytical solution for heat transfer of a pulsating flow in a channel with

uniform heat flux; his analysis showed that the effect of flow oscillation is to reduce the

heat transfer coefficient. Roach and Bell (1988) designed and constructed a test facility

for the study of heat transfer in a packed tube under conditions of rapidly reversing

flows. Since their experimental results did not show frequency dependence in either

pressure drop or heat transfer, they correlated the cycle-averaged Nusselt number in

terms of the Reynolds number as in the case of a steady flow. Wu et al. (1990)

investigated oscillating flow resistance and heat transfer in a gap heat exchanger of a

cryocooler. They found that the value of the cycle-averaged Nusselt number is

constant at a value of about 9, and that it is independent of the oscillatory frequency

over a wide range of the Reynolds number. Cooper et al. (1994) experimentally

investigated convective heat transfer from a heated surface of a rectangular duct

subjected to a periodically reversing flow. They found that the heat transfer rate

increases with the increase of the oscillatory frequency and the tidal displacement.

Pressure Drops in a Packed Column

Abundant data have been obtained for the pressure drop in a packed column

consisting of a stack of screens under unidirectional steady flow conditions. For

example, Tong and London (1957) presented correlation equations for pressure drop in

a steady flow through screens which have been widely used for the design of

regenerators in Stirling machines. Walker and Vasishta (I 971) obtained experimental

data for pressure drop through dense-mesh wire screens. Later, Miyabe et al. (1982)

presentedfurther experimental data for flow through stacked screens. Chen and Griffin
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(1983) obtained an empirical equation based on the Tong and London (1957) data.

Until recently, the correlation equation of pressure drops used in the design of a

regenerator was simply based on the aforementioned unidirectional steady flow. It is

apparent that these steady correlations do not correctly predict the pressure drop in a

regerenator of Stirling-cycle machines, which operate under oscillatory and reversing

flow conditions. For example, it was found by Matini (1978) and Rix (1984) that good

agreement between simulated and measured pressure drops can be achieved only if the

friction coefficient provided by Tong and London (1957) is arbitrarily adjusted by a

constant that takes on a value ranging between 3 and 5. Thus, there is a need for

obtaining a more accurate correlation equation for the pressure drop in regenerators

under oscillatory and reversing flow conditions.

Relatively little research has been performed on the study of pressure drops in a

packed column subjected to an oscillatory and reversing flow. Roach and Bell (1988)

performed experiments on pressure drop and heat transfer in a packed tube under

rapidly reversing flow conditions. They reported higher friction factors but could not

determine frequency dependence in pressure drop. Tanaka et al. (1990) experimentally

investigated the fluid flow and heat transfer characteristics of a Stirling engine

regenerator packed with wire screens and sponge metals under oscillating flow

conditions. They successfully obtained a correlation equation of the friction factor in

terms of the Reynolds number as defined by the maximum flow velocity and the

hydraulic diameter. Unfortunately, their experiments were performed with a fixed fluid

displacement, and thus their data are not suitable for general use.
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From the preceeding review ofthe literature, it is evident that the studies of the

oscillatory flow and associated heat transfer in a pipe and in a packed column are still in

its infancy, and much work remains to be done.

1.3 Objectives of the Present Investigation

The objectives of the present study are:

1. To investigate the mechanism for transition to turbulence in an oscillatory flow.

The criterion for the onset of turbulence in an oscillatory and reversing flow will

be obtained.

2. To investigate the fluid flow characteristics of a laminar oscillatory flow in a

pipe of finite length.

3. To investigate frictional losses of both oscillatory laminar and turbulent pipe

flows.

4. To investigate the heat transfer characteristics in a pipe subjected to a

periodically oscillatory and reversing flow.

5. To investigate pressure drops through a woven-screen packed column subjected

to a periodically reversing flow.

Results obtained from the aforementioned investigations will enhance our

understanding of oscillatory flow and its associated heat transfer characteristics in a

pipe. The information will be useful for the design of heat exchangers in a Stirling engine

or a pulse-tube cryocooler. Both numerical and experimental investigations will be

carried out in the present work.
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This dissertation consistis of ten chapters: the problem statement and solution

techniques will be described in Chapter 1. In Chapter 2, the mathematical problem will

be formulated and the similarity parameters for fluid flow and heat transfer will be

identified. The numerical method for solving the hydrodynamically and thermally

developing pipe flow will also be described briefly. In Chapter 3, the experimental

apparatus and instrumentation for investigating the oscillatory flow and heat transfer

behaviors will be discussed. Chapter 4 reports on the results of experimental

investigation into transition mechanisms and presents a correlation equation for the

prediction of the onset of turbulence in an oscillatory and reversing flow. Chapter 5

presents an analytical expression of the friction coefficient of a laminar fully-developed

oscillatory pipe flow and a comparison against experimental data. The experimental

data on friction coefficients of a turbulent fully-developed oscillatory flow will also be

presented and compared against those for a laminar flow. In Chapter 6, a numerical

solution of a laminar hydrodynamically developing oscillatory pipe flow will be

presented. The difference in the fluid flow characteristics between an oscillatory flow

and an unidirectional steady flow will be discussed. The friction coefficient of the

oscillatoryflow in a pipe of finite length as determined from the numerical solution will

be also presented. Chapter 7 deals with a numerical solution of oscillatory laminar

forced convection in a pipe heated at constant wall temperature. The difference between

the temperature distribution of an oscillatory flow and that of steady flow will be

discussed. In Chapter 8, the results generated from the experimental data and the

numerical solution for oscillatory heat transfer in a pipe heated at uniform heat flux will

be examined. A correlation equation ofthe space-cycle averaged Nusselt number for air

in terms of appropriate similarity parameters will be obtained. Chapter 9 will present

the measurement of pressure drops across a woven-screen packed tube subjected to a

periodically reversing flow. Chapter 10 will summarize the important findings and
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conclusions of the present study. Suggestions for further research on oscillatory and

reversing flows in a pipe and a packed column will also be addressed.
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CHAPTER 2

GOVERNING EQUATIONS AND NUMERICAL METHOD USED

The mathematical problem of an oscillatory and reversing flow and associated

heat transfer characteristics in a pipe will be formulated in this chapter. The relevant

similarity parameters governing the fluid flow and heat transfer will be chosen and their

significance will be discussed. The numerical method employed in the present study

will also be briefly described.

2.1 Similarity Parameters for an Oscillatory and Reversing Flow

The schematic diagram of the flow geometry for the present experimental

investigation and numerical simulation of the problem of oscillatory and reversing flow

and associated heat transfer in a pipe (with diameter D) are shown in Fig. 2.1. It is

assumed that the fluid is incompressible with constant thermophysical properties, and

the oscillatory motion of the fluid is driven by a sinusoidal displacer which was

designed such that the fluid displacement xm varies according to

xx = ~(1- cos tot)
rn 2 (2.1)

where the fluid displacement x rn is defined by assuming the fluid moves as a plug flow

at a mean velocity urn' with the maximum fluid displacement Xmax being adjusted by

changing the stroke of an air pump which will be described shortly. In Eq. (2.1), (0 is
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the oscillation angular frequency and t is time. Differentiating Eq. (2.1) with respect to

time gives the cross-sectional mean velocity u,

(2.2)

where the maximum cross-sectional mean velocity Umax is related to the maximum fluid

displacement Xmax by

(2.3)

and the crank phase angle cj> is related to the dimensionless time :r by

't = rot =2x( i - 1) + cj>, with i being the number of cycles.

If the dimensionless coordinates, velocity, and pressure are defined as

(X,R)=(x/D,rlD), U=ulu max, V=v/um a x• P = pi pU~ax (where x, r, p, and u are the

corresponding dimensional quantities, p is the density), the governing dimensionless

conservation equations of mass and momentum for an incompressible periodically

reversing flow are given by

dV - - 2-
ReID - + Remax[(V'V)V + VP] = V V

d';

(2.4)

(2.5)

where ReID = 01)2 is the kinetic Reynolds number with v being the kinematic viscosity
v

of the fluid and Remax = umaxD is the Reynolds number. Thus, Seume (1988) used
v
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ReO} and Remax as the similarity parameters to characterize an oscillatory and reversing

flow in a pipe. Other investigators have used different similarity parameters. For

example, Hino et al. (1976) used the Reynolds number Remax and the Stokes number A

as the similarity variables, which is related to the kinetic Reynolds number by

(2.6)

Ohmi (1982) used the Reynolds number Remax and the pipe radius to viscous boundary

layer thickness ratio A (where A = R/ ()f with ()f = .J2v/ OJ being the Stokes layer

thickness) as the similarity parameters. It should be noted that the similarity

parameters ReO} (or A), Remax, and A are all dependent on the oscillatory frequency.

Although any two of these parameters can be used for the correlation of experimental

data to characterize the fluid dynamics aspect of an oscillatory and periodically

reversing flow, these choices of similarity parameters will not be able to isolate the

effect of the oscillatory frequency. Thus, another choice of parameters should be

attempted for the correlation of experimental data. To this end, we note that the

Reynolds number Remax, with the aid ofEq.(2.3), can be written as

(2.7)

Eq.(2.7) can be rewritten as

(2.8)
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where

A = X max

° D
(2.9)

is the dimensionless oscillation amplitude offluid. Substituting Eq. (2.8) into Eq.(2.5)

yields

av A - - 1 2­
-+_O[(V·V)V+VP]=-V V
a~ 2 Rew

(2.10)

Eq. (2.10) shows that for a given dimensionless oscillation amplitude of fluid Ao, the

kinetic Reynolds number Re.; in an oscillatory flow plays the same role as that of the

Reynolds number in a unidirectional flow. The kinetic Reynolds number Re.; in the

momentum equation given by Eq. (2.10) describes the relative importance of both the

inertial force and the frictional force. It can be speculated that at low Re., the frictional

force is more important and a parabolic velocity profilecould be formed. At high Re.,

however, the inertial force becomes more dominent and viscous effects are confined to a

thin oscillating boundary layer so that the central core behaves like a plug flow as

shown in Uchida's velocity solution.

Eqs. (2.4) and (2.10) show that Ao and ReO) are the two alternative similarity

parameters for an incompressible periodically reversing flow. Since the amplitude of

fluid displacement and the oscillatory frequency are independent of each other, this

choice of similarity parameters for the correlation of experimental data will be able to

demonstrate the effects of amplitude of fluid displacement and oscillatory frequency

separately.
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It should be recognized that for a pipe of finite length, the length ratio LID will

be an additional parameter which enters the mathematical problem through the inlet and

outlet boundary conditions as will be discussed in Chapters 7 and 8. Therefore, we can

conclude that the governing similarity parameters for the fluid flow in a pipe of finite

length subjected to a sinusoidally oscillatory flow are the kinetic Reynolds number

ReO), the dimensionless oscillation amplitude of fluid Ao, and the length to diameter

ratio of the pipe LID.

2.2 Similarity Parameters for Forced Heat Convection in an Oscillatory Flow

The energy equation in dimensionless form is

(2.11)

which can be written in term of the dimensionless fluid displacement to give

(2.12)

where Pr =~ is the Prandtl number with a being the thermal diffusivity of fluid and
a

T-T kTe= I (for the case heated at constant temperature Tw) or e=-- (for the case
r, -Ti qwD

heated at constant heat flux qw) with T, being the inlet fluid temperature. Thus, for the

problem of oscillatory heat transfer, the Prandtl number is the additional similarity

parameter. It foIlows from Eq. (2.12) that the kinetic Reynolds number ReO) together

with the Prandtl number Pr, controls the thickness of the thermal boundary layer. It
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can be also speculated that for a given fluid with a specific Prandtl number, the heat

transfer rate of an oscillatory flow increases with ReO) because the thermal boundary

layer becomes thinner with the increase of ReO) .

2.3 Numerical Method

Numerical solutions to the simultaneously developing oscillatory flow

mechanics and the associated heat transfer problems, described by Eqs. (2.4), (2.10) and

(2.12), subject to the corresponding boundary conditions specified for the individual

problems in the later chapters, will be obtained based on a control-volume method

detailed by Patankar (1980). In this procedure, the domain is discretized into a series of

control volumes. A typical control volume is shown in Fig. 2.2, where the dashed lines

denote the boundaries of the control volumes with a grid point (denoted by a dot)

located at the geometrical center of each control volume (shaded area), and the solid

linesbeing the grid lines. It can be seen that a given grid point communicates with the

four neighboring grid points through the four faces of the control volume. Although

most variables in the program are stored in the grid point locations, the velocity

components U or V normal to each interface is stored at the center of the interface (see

Fig. 2.2). The partial differential equations are expressed in an integral manner over the

control volume, and a power law variation (Patankar, 1980) is assumed in each

coordinate direction, leading to a system of algebraic equations that can be solved in an

iterative manner. Pressure-velocity interlinkages are handled by the SIMPLER

formulation as described by Patankar (1980).

Because of the extremely thin boundary layer encountered at high kinetic

Reynolds numbers and large velocity gradients in the inlet region of the tube, a non-
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uniform grid was deployed. A grid independent solutionfor each group of Re., Ac. and

LID will be established by reducing the grid size until a convergance criterion is

satisfied. Different criteria will be used for different problems to be solved in Chapters

5-8. The choice of 181 grid points in the axial direction and 51 points in the radial

direction was found to provide grid independence for the results reported in this work.

For each case, 180 time steps were used in one cycle and transient behaviors were

recorded until a steady periodic state was reached. Numerical computations were

carried out on a Sun SPARC 10 Workstation.

17



CHAPTER3

EXPERIMENTAL APPARATUS ANDINSTRUMENTATION

This chapter describes the experimental apparatus and instrumentation

employed for the measurements of the oscillatory fluid flow and the associated heat

transfer characteristics. The calibration procedures for the different sensors such as

hot-wire probes, pressure transducers and thermocouples are also explained.

3.1 Air Pump and Sinusoidal Motion Mechanism

In the present study, the sinusoidal oscillatoryand reversing motion of air in the

pipe was created by a double acting reciprocating piston pump connected to a crank

shaft and yoke sinusoidal mechanism designed by Tang (1992). The apparatus is

shown in the bottom of Figs. 3.1 and 3.2. The air pump (74 mm in diameter and 116

mm in length) driven by a 1 kW DC motor, was designed to create identical flow

conditions to either end of the test section. The stroke of the piston can be adjusted

from 0 to 70 mm, with a speed from 7 to 570 rpm, which is equivalent to 0.12 to 9.5

Hz.

3.2 Measurements of Fluid Flow Characteristics

Measurements of fluid flow characteristics were carried out in the horizontal

test rig shown in Fig. 3.1. The oscillating motion of flow was induced by the air pump

and its sinusoidal mechanism, as described in the previous section. The working fluid

(air)
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moved reversibly and periodically in the test section, which was made of a long copper

tube, 94.5 em in length and 1.35 em in diameter. At the two ends of the test section,

two velocity straightening chambers (made of fine screens) were connected to ensure

that a uniform flow was entering the test section. The test section was connected to the

two ends of the pump by flexible tubes.

A differential pressure transducer, (Validyne, Model DP 15), having a high

naturalfrequency (>5000 Hz), and a carrier demodulator (Validyne, Model CDI5) were

employed to measure pressure drops along the pipe. Since it was intended for

measuring pressure drops in the fully-developed flow region in this work, the pressure

transducer taps were installed at locations far removed from the entrance regions of the

pipe. As shown in Fig. 3.1, the two ends of the pressure transducer were separated at a

distance of L (L=68 em) in the central portion of the pipe. To study the onset of

turbulence of the oscillatory pipe flow, a miniature straight hot-film probe (TSI, Model

1260A-IO) with a manual traverse positioning mechanism was installed at the mid­

section of the pipe to measure the instantaneous axial velocities at different radial

positions. Another miniature hot-film probe was installed between the two velocity

straighteners at the left side of the test section (see Fig. 3.1) to measure the cross­

sectional mean velocity. These two hot-film probes were connected to a hot-wire

anemometer (TSI, IFA 100).

3.3 Measurements of Heat Transfer Characteristics

The above described experimental setup was modified to allow for the

measurements of oscillatory heat transfer characteristics. As shown in Fig. 3.2, a

heated test section, made of a long copper tube with 60.5 cm in length and 1.35 in
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diameter (i.e., LID =44.8), is located in the central part of the horizontal test rig. Each

end of the test section was connected by two mixing chambers, made of fine plastic

screens, to two identical coolers having the same inside diameter as the test section and

40 em in length. The test section was heated uniformly by a wrapped-around insulated

flexible heater (manufactured by Omega), which was connected to a filtered DC power

supply (Model PS-5, EPSCD). The two coolers were fabricated out of two concentric

tubes with tap water as the coolant. The other end of each cooler was connected to a

velocity straightener.

Because both the geometry and the imposed hydrodynamic and thermal

boundary conditions were symmetric with respect to the mid-section of the heated

tube, the sensors were installed only in the left-hand side of the test rig. Five foil T­

type thermocouples (manufactured by RdF) were used to measure wall temperatures,

two on the cooler wall and the other four were on the wall of the heated tube.

Centerline fluid temperatures inside the heated tube were measured by four mini-needle

T-type thermocouples (manufactured by Omega). To measure inlet and outlet fluid

temperatures in the heated tube, two fine thermocouples (0.001" in diameter) were

carefully installed inside the two mixing chambers.

3.4 Data Acquisition System

Analogto digital conversions were carried out by a Metrabyte DAS-20. ND

board, giving 100,000 samples per second with 12-bit precision. A 4-channel

simultaneous sample and hold front end for the AID board (SSH-4) was employed,

which was capable of securing the 4-channel signals to be sampled simultaneously. A

high speed data acquisition streaming-to-disk package (STREAMER, Metrabyte) was
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employed to collect and store signals, which allows NO conversions from the data

acquisitionboard to be directly stored on a hard disk at the maximum sample rate.

For the measurements of the fluid flow characteristics, the crank angle <p was

monitored by an optical shaft encoder (Lucas Ledex, Model LD23) with a half degree

resolution, which can also provide a top dead center (TOe) signal for data acquisition

purposes. A similar angle shaft encoder, but equipped with a two-degree resolution,

was used for the measurements of heat transfer characteristics.

3.5 Calibrations

In order to estimate and control the measurement system errors, calibrations

were carried out before the test. The AID converter board was calibrated first by using

a high accuracy standard voltage signal source followingthe manufacturer's instructions.

After calibration, the differences among the channels were identified.

Hot-film probes were calibrated by using a static calibrator ( Model 1125, TSI).

When makingcalibrations, a standard velocity was provided by this calibrator, and the

corresponded voltage ofa hot-film probe was sampled by the data acquisition system,

including the electric bridge, the signal conditioner and the AID converter board. Since

the velocities provided by the calibrator were nominal values at the standard conditions,

the velocities in the measurement applications were corrected based on the actual

conditions.

The differential pressure transducer was calibrated before the installation. The

transducer calibration was carried out using a pressure calibrator (DPI 601, Omega).
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In the test temperature range, all thermocouples were calibrated by a block

calibrator (CL 730, Omega) which is equipped with ±O.l °c resolution and ±O.4°C

accuracy. To accelerate the data reduction process, a tenth order curve was fitted for

the data given in the calibration run table.
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CHAPTER 4

THE ONSET OF TURBULENCE

This chapter presents an experimental study on the onset of turbulence in an

oscillatory and reversing flow of air in a pipe. A correlation equation in terms of the

appropriate similarity parameters for the prediction of the onset of turbulence will be

obtained in this chapter. The physical reason for the onset of periodically turbulent

bursts, followed by relaminarization in the same cycle, will be examined.

4.1 Introduction

The transition from laminar to turbulent oscillatory and reversing flow must be

understood and characterized before frictional losses and heat transfer can be

determined quantitatively. A considerable amount of work has been performed to

study transition to turbulence in an oscillatory flow as discussed by Sergeev (1966),

Park and Baird (1970), Hino et al. (1976), and Ohmi et al. (1982), etc. Past

measurements show that a laminar-like flow exists during the acceleration phase of the

half cycle whereas a turbulent-like flow exists during the deceleration phase. A number

of correlation equations for predicting the onset of turbulence in an oscillatory flow

have been proposed. However, due to inappropriate selections of similarity

parameters, the effect of oscillation frequency on the transition could not be identified.

Furthermore, little information is known about the physical reason for the onset of

turbulent bursts followed by relaminarization in the same cycle. In view of these facts,

it was decided first to conduct a series of experiments on transition from laminar to
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turbulent oscillatory pipe flow, which will be helpful for subsequent study of frictional

losses and the associated heat transfer in an oscillatory and reversing flow.

As discussed in Section 3.2, a hot-wire anemometer was employed to observe

the temporal axial velocity variations while a pressure transducer was used to measure

the temporal variations of pressure drop along the pipe. In contrast to previous work,

the similarity parameters chosen for the present study are the kinetic Reynolds number

Rem and the dimensionless oscillation amplitude of the fluid Ao. As in the previous

investigations, we found that transition to turbulence occurs only in the deceleration

period of the cycle and above certain values of Ao and Rem' A correlation equation in

terms of these two similarity parameters to predict transition to turbulence will be

obtained. The physical reason for the occurrence of turbulence in a periodically

reversing flow will be explained.

4.2 Results and Discussion

The experiment was performed with the test rig shown in Fig. 3.1, which was

described in the previous chapter. Variations of the instantaneous axial velocities at

different radial positions were sampled at the mid section of the pipe for different

values of the dimensionless oscillation amplitude of fluid Ao and the kinetic Reynolds

number Rem' Since the hot-wire anemometer cannot detect the direction of the fluid

flow, velocities are presented as absolute values. Typical velocity traces in the laminar

flow regime, transition, and turbulent flow regime are illustrated from Figs. 4.1 to 4.4.

An instability diagram is presented in Fig. 4.5.
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Experiments were first conducted for an oscillatory flow at low dimensionless

oscillation amplitudes of the fluid and low kinetic Reynolds numbers. Figs. 4.1 a and

4.1b illustrate typical temporal velocity variations at different radial positions for Aa=

57.5 and Rew= 66.6 as well as for Aa=21.4 and Rew=302.2 respectively. It is shown

that at these small values of Aa and Re., the variations of the axial velocity are smooth,

indicating that the flow is laminar everywhere. It is noted that the axial velocity at

different radial positions varies sinusoidally with time; the axial velocity in the core

also has a slight phase delay with respect to that near the wall.

When the values of Ao and Re., were increased to certain values, periodic

turbulent bursts occurred near the wall. Figs. 4.2a and 4.2b show two examples of the

temporal axial velocity variations at the centerline of the pipe and near the wall at the

onset ofturbulence. It should be noted from these figures that the velocity fluctuations

near the wall are much stronger than in the centerline of the pipe. This finding implies

that the instabilities were generated near the wall and the radial momentum transfer

caused a lower level ofvelocity fluctuations along the centerline. This is because at high

kinetic Reynolds numbers the annular effect becomes pronounced and there exist

inflexion points in the velocity profile near the wall. Thus, if the kinetic Reynolds

number exceeds a critical value at a given dimensionless fluid displacement, the fluid

flow near the wall may first become unstable and eddies occur near the wall. These

eddies are transferred to the core flow which cause small fluctuations. As in previous

studies, we observed that the turbulence disappeared and the flow recovered to a

laminar-like flow in the accelerating period during the following half cycle.

Fig. 4.3 illustrates an example of a fully turbulent flow situation at Aa= 97.1 and

Re., = 302.2. It is shown that axial velocity fluctuations become much more significant
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both near the wall and in the core flow as well. It is interesting to compare Fig. 4.2a

with Fig. 4.3 where the dimensionless oscillation amplitude of fluid is fixed at Ao=97.1

and the kineticReynolds number is increased from Re., = 66.6 to 302.2. It is apparent

that velocity fluctuations near the wall at a high kinetic Reynolds number are much

larger than those at a lower kinetic Reynolds number. This is because the velocity

gradient becomes steeper with the increase of the kinetic Reynolds number. Similarly,

when comparing Figs. 4.2b and 4.3, where the kinetic Reynolds number is fixed at

Re., = 302 while the dimensionless oscillation amplitude is increased from Ao = 47.1 to

97.1, we found that velocity fluctuations become larger with the increase of Ao.

Figs. 4.4a and 4.4b show temporal variations of the pressure drop and the axial

velocity near the wall of the pipe at two different sets of Ao and Re w ' The axial

velocity and pressure signals were sampled simultaneously. It is shown that during the

acceleration period for which a favorable pressure gradient exists in the flow direction,

the flow is laminar. However, during the deceleration period for which an adverse

pressure gradient exists, the flow becomes turbulent. It is important to note that the

onset of the turbulence occurs whenever the pressure gradient changes signs from both

positiveto negative or from negative to positive. This finding has never be discussed in

the literature.

To identify the conditions for which onset of turbulence occurs, experiments

were first carried out for small dimensionless oscillation amplitudes and at low kinetic

Reynolds numbers. At a given dimensionless oscillation amplitude of fluid Ao, the

value of the kinetic Reynolds number Re., is gradually increased until velocity

fluctuations appear near the wall but not in the core, as observed on the screen of the

oscilloscope. A typical situation is presented in Figs. 4.4a and 4.4b as discussed earlier.
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We then recorded the critical value of the kinetic Reynolds number at each

dimensionless oscillation amplitude of fluid. It is found that the data for transition to

turbulence as represented by solid circles in Fig. 4.5 is fitted well by the following

algebraic expression:

or

( A ) _ 761
oeri-J(R i,e... en

.J2(Re6) . = AoA = Xmax r; = 761
en V-;

(4.1)

(4.2)

where (Re, )cri is the Reynolds number based on the Stokes layer thickness (). The

parameter Re, is the critical transition parameter identified by Sergreev (1966) and

Kurzweg et a\. (1989). Note that Eq. (4.1) was obtained based on experimental data in

the ranges of 8.05:s A o :s 121.1, and 23:s Re; :s540. There is experimental evidence

that the critical value of (Re.s)cri depends on ReO) at small values of Ao and ReO)

(Kurzweg et al., 1989). Eq. (4.2) is presented as a solid straight line in Fig. 4.5. where

laminar and turbulent flows exist below and above this line. It is shown that the onset

of turbulence in an oscillatory flow occurs at high dimensionless fluid displacements

and high kinetic Reynolds numbers; the critical value of Ao decreases with the increase

of ReO).

4.3 Summary

In this chapter, experiments were carried out for the study of the onset of

turbulence in a periodically reversing pipe flow. As in the previous investigations, it is

found that onset of turbulence occurs only in the deceleration period of the cycle. The
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change in the sign of the pressure gradient is found to be directly responsible for the

occurrence of instability in an oscillatory and reversing pipe flow. A correlation

equation in terms of the kinetic Reynolds number and the dimeneionless fluid

displacement for the onset of turbulence has been obtained.
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CHAPTERS

FULLY-DEVELOPED OSCILLATORY AND REVERSING FLOW

In this chapter, we shall first obtain an analytical expression for the friction

coefficient of a fully developed laminar oscillatory and reversing pipe flow. We then

compare this expression with experimental data in the laminar flow region. Experimental

results for the friction coefficient of a fully-developed turbulent oscillatory and

reversing flow in a long pipe will also be presented.

5.1 Introduction

The study of the frictional loss is one of the most important aspects of

oscillatory fluid mechanics. Uchida (1956) obtained an analytical solution for the axial

velocity distribution of a fully-developed laminar pulsating flow in a long straight pipe.

Both sinusoidal and non-sinusoidal motions of fluid were considered by Uchida (1956).

In the present study, an analytical expression for the friction coefficient of a laminar

fully developed oscillating and reversing pipe flow is derived based on Uchida's solution

(1956). Experiments were carried out to measure the pressure drop of laminar and

turbulent oscillatory flows downstream of a long pipe at various frequencies and fluid

displacements. Comparisons are made between the analytical solution and experimental

data for the time-resolved and the cycle-averaged friction coefficient of the laminar

fully-developed flow. It is shown that the analytical solution is in good agreement with

the measured data. Based on the measured data of pressure drops and cross-sectional

mean velocit'es, a correlation equation for the cycle-averaged friction coefficient of a

cyclically turbulent oscillatory flow is obtained in terms of the two similarity
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parameters: the kinetic Reynolds number Remand the dimensionless oscillation

amplitude of fluid Ao. Finally, a comparison of the cycle-averaged friction coefficient

data measured in the laminar and turbulent oscillatory flow regimes will be made.

5.2 Friction Coefficient of a Laminar Flow

5.2.1 Analytical Solution

Consider a hydrodynamically fully-developed oscillatory flow in a pipe with

diameter D. The dimensional governing conservation equations of mass and momentum

are

au = 0
ax

au I ap a2u 1 au
-=---+v(-+--)
at p ax or r or

(5.1)

(5.2)

We now assume the oscillating motion of the fluid is driven by a sinusoidally varying

pressure gradient given by

lOp A '-- = coswt
pax P

(5.3)

where A p and wt' are the oscillation amplitude and the phase angle of the externally

imposed pressure gradient. An exact solution for the axial velocity profile of a fully­

developed oscillatory and reversing flow can be obtained from a modification of

Uchida's analytical solution (1956) to give:
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A 0 2

U = P
2

[BCOSWt' +(1- A)sinrot']
4j.; v

where A and B are given respectively by

A = ber 'A. bei2'A.R + bei 'A. ber2AR.
ber 2'A. + bei? 'A.

B = ber'A. ber2AR. - bei 'A. bei2'A.R
ber" 'A. + bei? 'A.

(5.4)

(5.5)

(5.6)

with R = ~ being the dimensionless radial coordinate and 'A. being the Stokes number

defined inEq. (2.6). Integrating Eq. (5.4) over the cross section of the pipe yields the

cross-sectional mean velocity in the same form as given by Eq. (2.2). For the case

where the externally imposed pressure gradient is given by Eq.(5.3), it can be shown

that the maximum cross-sectional mean velocity Urnax is related to A p by

A 02a
u = ---,-P_-

max 32v

while the phase angle $ is related to rot' by

$ = ~(wt' - I")
2

where
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InEq. (5.8) , C, and C2 are given by

c = ber A. bei'A. - bei A. ber'A.
I ber ' A. + bei 2A.

c = ber A. ber' A. + bei A. bei'A.
2 ber? A. +bei2 A.

(5.8b)

(5.9a)

(5.9b)

d(ber A. ) . d(bei A.)
where ber'A. = dA. ' and bel' A. = d A. . It follows from Eqs. (5.4) and (5.7a)

that the dimensionless axial velocity for a fully-developed oscillatory flow is given by

u
U = - = f(R "t Re )

" Ulu max

(5.10)

Eq. (5.1 0) shows that the dimensionless axial velocity of a fully-developed flow, at a

given position and time, is a function of the kinetic Reynolds number only.

We now define the instantaneous friction coefficient Cf and the cycle-averaged

friction coefficient Cf as

'tw
cf = .1 2

2 pumax
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1 211: t:
Cf =-J -.}cfd't

2:Tt 0
(5.12)

where r., is the wall shearing stress and u is the viscosity of the fluid. Eq. (5.11) is a

function of time only for a fully-developed flow, but it depends on both position and

time for a developing flow which will be disussed in the next chapter. An exact solution

for the instantaneous and the cycle-averaged friction coefficients of a fully developed

laminar oscillatory flow (c(co and Cf,oo) can be obtained by differentiating Eq. (5.4) and

substituting into Eqs.(5.11) and (5.12) to yield

(5.13)

(5.14)

with

(5.15a)

(5.15b)

where Ao is given by Eq. (2.10), () is the phase angle difference between the cross­

sectional mean velocity Urngiven by Eq. (2.2) and the wall shearing stress. It should be

noted that both F; and () are functions of ReO) only. It is interesting to note that

although the velocity in a fully-developed oscillatory flow depends only on the kinetic
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Reynolds number, the friction coefficients of a fully-developed oscillatory flow depend

not only on the kinetic Reynolds number Re., , but also on the dimensionless

oscillation amplitude of the fluid A., as well. The instantaneous pressure coefficient can

be either positive or negative during a cycle. The positive sign ofthe friction coefficient

means that the fluid flow moves in the positive direction while the negative sign implies

that it moves in the negative direction.

The values of FO) and () versus ReO) given by Eqs.(5.15a) and (5.15b) are

presented in Fig. 5.1. Since these expressions are complicated functions of ReO)

simplified expressions for these quantities are needed. For this purpose, the values of

F0) and () computed from Eqs. (5 .15a) and (5 .I5b) are fitted by the following algebraic

expressions

F _ 0.16061
0) - (Re~548 _ 2.03946)

() = 0.647[1-1.015exp(-D.O I 9Re,..)]

(5.16a)

(5.l6b)

The values of Fwand () computed from the approximate expressions given by Eq.

(5.16) and the exact solution given by Eq. (5.15) are in good agreement in the range of

ReO) from 10.4 to 400. The standard deviations are 3.3% for FO) and 1.9% for () with

the maximum relative errors being 6.4% for FO) and 2.8% for ().

Substituting Eq. (5.16a) into Eq. (5.14) yields

_ 3.27192

cf,oo = Ao(Re~548 _ 2.03946)
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which shows that the cycle-averaged friction coefficient is inversely proportional to

both Rem and A".

5.2.2 Experimental Investigation

A differential pressure transducer was employed to measure the pressure drop

in a laminar oscillatory and reversing flow downstream of a long pipe while a hot-film

probe was used to measure the cross-sectional mean velocity. The details of the

experimental setup have been described in Chapter 3. Since pressure drops were

measured in the fully-developed flow region, the reduction of experimental data will be

based on a hydrodynamically fully-developed flow whose momentum equation is given

by Eq. (5.2). If Eq. (5.2) is first multiplied by 2:n;rdr and integrated over the cross

section of the tube and then integrated with respect to x from x=Oto x=L, it becomes

~p du., 4"tw-=p--+-
L dt D

(5.18)

where we have assumed ap to be a constant. Substituting Eq. (5.18) into Eq. (5.11)
ax

and solving for cr.expyields

c - 1 [f). D _ D dUm]
f.exp - 2pu~ax p L P dt (5.19)

where f).p and U m can be measured by a differential pressure transducer and a hot-wire

anemometer, respectively. These data were analyzed using an ensemble-averaged
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procedure. The ensemble-averaged pressure drop ~Ii and the axial cross-sectional mean

velocity Urn are defined as

N

urn (<p) =..!..~ um,i [<p+ 23t(i-1)]
N· 11-

(5.20a)

(5.20b)

where N is the total numbers of cycles to be ensemble averaged and was typically set to

be 100 in this study.

The measured cycle-averaged friction coefficient Cf,exp is defined as

I
N .

- '~
cf,exp = N ~ -v Cf,exp,j

i j-l
(5.21)

where N, is the total number sampling intervals in a cycle, and cf,exp,j is the measured

data from Eq. (5.19) atjth time interval.

5.2.3 Comparison of Theory and Experiments

In this section, we shall compare the analytical results of the instantaneous and

cycle-averaged friction coefficients given by Eq.(5.17) for a laminar oscillatory fully­

developed flow with experimental data on pressure drop downstream ofa long pipe for

Aos 26.42, and with values of Re., ranging from 23.1 to 395. In these ranges of

parameters, the flow is laminar as observed in Chapter 4.
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Fig 5.2 shows a comparison of the cross-sectional mean velocity Urn given by Eq.

(2.2) and the measured ensemble-averaged velocity at the inlet of the tube at Re., =

208.2 for Aa= 16.5 and 22.51. It is shown that for the smaller value of Aa (Aa =16.5)

the measured velocity is in good agreement with the assumed cross-sectional mean

velocity of the analytical solution. For higher values of A" (Ao =22.51 for example),

however, the measured velocities deviated slightly from the sinusoidal curve at certain

instances of time. Uncertainty in the ensemble-averaged velocity is about 2.5%. It is

worth mentioning that the velocity shown in the figure is the absolute value since the

hot-wire probe could not detect the flow direction.

Typical variations of the measured instantaneous pressure drop during a

complete cycle at Ao=26042 for Re.,=144.1 and Re(J) =324.3 are illustrated in Fig 5.3.

It is seenthat the pressure drop increases with the kinetic Reynolds number at a fixed

value of dimensionless oscillation amplitude of the fluid. There are two reasons for the

increaseof the pressure drop under these conditions. First, the increase of the kinetic

Reynolds number leads to more significant "annular effect", and thus the radial velocity

gradients adjacent to the pipe wall become steeper; consequently, the friction force

increases with the increase of the kinetic Reynolds number. Secondly, the inertia

component in the momentum balance increases with the increase of the kinetic

Reynolds number.

Fig 504a shows typical variations of the instantaneous friction coefficient c,

during a complete cycle at Ao=16.5 for Re(J)=64 and Re(J)=208.2 while Fig 504b shows

those at Re(J) =256.1 for Ao=16.5 and Ao=26042. The circlar symbols represent the

measured data cr.exp while the solid lines represent the analytical solutions cr."", given by
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Eq. (5.12a), at the same corresponding conditions. Generally, the temporal friction

coefficient varies sinusoidally with time and its amplitude decreases with either the

increaseof the kinetic Reynolds number at a fixed value of the dimensionless oscillation

amplitude of the fluid (shown in Fig. 5.4a), or the increase of the dimensionless

oscillation amplitude of the fluid at a fixed value of the kinetic Reynolds number

(shown in Fig, 5.4b). Comparing the analytical solution with the measured data, we can

see that the analytical solution is in a fairly good agreement with the experimental data.

A comparison of the cycle-averaged friction coefficient of the measured data

(f,exp and the analytical solution (f,oo given by Eq. (5.14) for Ao= 16.5, 22.51, and

26.42 is presented in Fig. 5.5. The symbols represent the measured data while the solid

line represents the analytical solution. It is shown that the analytical solution is in good

agreement with the experiment, with the maximum deviation from the analytical

solutionbeing 14.8%. The scatter of data may be attributed to the fact that fluctuations

occurred in the measurements of pressure drops and cross-sectional mean velocities as

shown in Figs. 5.2 and 5.3.

In order to assess the accuracy of Eq. (5.17) for the cycle-averaged friction

coefficient of a laminar fully-developed oscillatory flow, the measured data and the

values computed from Eq. (5.17) are presented in Fig 5.6. Any deviations of data from

the inclined straight line indicates the inaccuracy of the predication equation. As shown

in Fig. 5.6, Eq. (5.17) correlates the experimental data quite well, with the maximum

relative deviation being 15%. Therefore, we concluded that Eq. (5.17) is a good

correlation equation for the prediction of the cycle-averaged friction coefficient of

oscilIatory and reversing flow in a long pipe, and is valid in the present experimental

range, i.e.: Ao :s 26.42 and 23.1 :s Re, :s 395.
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5.3 Friction Coefficient of a Turbulent Flow

The friction coefficient of a cyclically turbulent oscillatory flow Cf,t was also

measured. The range of the dimensionless fluid displacement Ao and the kinetic

Reynolds number ReO) covered in this study is illustrated in Fig. 4.5. Forty-three

experimental runs, represented by the triangular symbols above the solid line in Fig. 4.5,

were performed to investigate the friction coefficient in the turbulent flow regime. The

measured data are shown in Fig. 5.7, where the cycle-averaged friction coefficient

multiplied by the dimensionless oscillation amplitude of the fluid Aa is plotted against

the kinetic Reynolds number ReO). It was found that the following algebraic equation

fits the measured data with a maximum relative error of 14.8%:

1 76.6cft = -(-12 +0.40624)
, Ao Re~

(5.22)

The correlation equations of the cycle-averaged friction coefficient for the laminar and

turbulent flow given by Eqs. (5.17) and (5.22) respectively are compared in Fig. 5.8. It

is evident that the value of cr(A o ) for the turbulent flow is significantly higher than that

of the laminarflow for the same given kinetic Reynolds number.

5.4 Summary

In this chapter, it was shown that a sinusoidally oscillatory and reversing flow

in a long pipe is governed by two similarity parameters: the dimensionless oscillation
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amplitude of fluid and the kinetic Reynolds number. Analytical expressions of the

instantaneous and cycle-averaged friction coefficients for a fully developed laminar

oscillating and reversing pipe flow have been obtained in terms of these two parameters.

These simple equations for the friction coefficients of a laminar oscillatory and

reversing flow are shown in good agreement with measured data. Based on the

measurement of pressure drops and cross-sectional mean velocities, a correlation

equation for the cycle-averaged friction coefficient of a cyclically turbulent flow has

also been obtained. A comparison of the cycle-average friction coefficients of the

turbulent flow and laminar flow has been made.
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CHAPTER 6

DEVELOPING LAMINAR OSCILLATORY FLOW

The preceding chapter is concerned with the friction coefficient at a location far

downstream from the pipe entrance region where a fully developed flow has been

established. However, an oscillatory flow in a pipe of finite length is more frequently

encountered in real situations where the entrance length cannot be ignored. In this

chapter, we shall obtain a numerical solution for a laminar hydrodynamically developing

oscillatory and reversing flow in a pipe with a finite length.

6.1 Introduction

A hydrodynamically developing oscillatory and reversing flow in a short pipe

occurs more frequently in engineering applications, such as in internal combustion

engines, Stirling engines, cryocoolers and other periodical processes in thermal and

chemical systems. In this chapter, we shall obtain a numerical simulation of an

incompressible, laminar, hydrodynamically developing flow, which oscillates

periodically and reversingly in a short pipe. The purposes of this study are to gain

insights into this complicated flow phenomena, and to develop a correlation equation

for the prediction of the friction coefficient of a laminar oscillating flow in a short pipe.

6.2 Formulation

Consider an incompressible, laminar, viscous fluid oscillates periodically and

reversibly in a pipe (with diameter D and a finite length L) which is connected between
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two large reservoirs as shown in Fig. 2.1. We assume that the fluid in the reservoir is

undergoing an oscillatory motion which is driven by a sinusoidal displacer. Under this

situation, the cross-sectional mean velocity u, in the pipe is given by Eq. (2.2); the

governing dimensionless conservation equations of mass and momentum for the

periodically reversing pipe flow are given by Eqs. (2.4) and (2.10).

Boundary conditions adopted in the present numerical analysis are those no-slip

occuring at that the tube wall and the axial velocity at the inlet (X=O) is as specified by

Eq. (2.2). Thus, the dimensionless axial velocity at the inlet of the pipe (X= 0) during

the first each half cycle is

U(O,R,,;) = sin «p (6.1)

The corresponding outflow condition at the outlet of the tube (X=LID) is given by

au (L/D,R, ,;) = 0
ax (6.2)

It is relevant to note that the inlet and outlet conditions change at each half-cycle as the

fluid flow reverses its direction periodically. Thus, for a oscillatory and periodically

reversing hydrodynamically developing flow, the similarity parameters are Ao" ReO)

and LID.

A numerical solution to Eqs. (2.4) and (2.10) subject to the boundary conditions

(6.1) and (6.2) was carried out based on a control-volume method detailed in Chapter 2.

A grid independence solution for each group of ReO), Ao and LID was established by

reducingthe grid size until the computed instantaneous friction coefficient in the fully
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developed region was within 1% of the analytical solution given by Eq. (5.13). The

choice of 181 grid points in the axial direction and 31 points in the radial direction was

found to provide grid independence for the results reported in this study. For each

case, 180 time steps were used in one cycle and transient behaviors were recorded until

a steady periodic state was reached.

6.3 Results and Discussion

Computations were carried out for pipes with LID=20 and 30, with values of Ao

rangingfrom 8 to 30, and Re., from 15 to 400. As shown in Chapter 4, the oscillatory

flow is laminar within these ranges of the parameters. The results of these

computations at steady periodic states are presented in Figs. 6.1-6.5.

6.3.1 Velocity Profiles

Typical transient velocity profiles during a cycle at different locations along the

pipe length for Ao=10 and Re., =100 are illustrated in Fig. 6.1. The fluid enters the

pipe as a plug flow from the left (X=O) during the first half cycle (0 s «p s1800), and a

viscous boundary layer caused by wall friction forms at the inlet and grows in thickness

downstream. Because ofviscous and inertial effects, velocity profiles downstream (X=

0.8) change from a rectangular shape to a parabola-like shape with velocity overshoot

occurringnear the walls, i.e., the so-called annular effect becomes pronounced. At the

instant when the cross-sectional mean velocity of fluid is zero (<<p = 0°), the velocity

near the wall is positive while the core flow remains in the negative x-direction due to

the inertia effect from the previous half cycle. During the second half cycle

(180° s «p s 360°), the fluid flow reverses its direction and repeats the behavior similar
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to those in the first half cycle. It should be added that unlike a unidirectional laminar

steady flow, the viscous layers in an oscillatory flow may not coalesce at the fully

developed region because velocity near the wall and in the core is out of phase due to

the inertial effect (at high Reo,)' Further downstream (at X=lO for this particular case)

the velocity profile ceases to change with the axial position which is defined to be

hydrodynamically fully developed. It is interesting to note that as the fluid moves

toward the exit (X=19.2), the shape of the velocity profile begins to change with the

axial location again. This can be seen by comparing the velocity profiles at X = 19.2

with the fully-developed velocity profiles at X = 10. The change of the velocity profile

with the axial location near the exit is caused by the fact that the flow reverses its

direction. We shall call this the "exit effect".

Fig. 6.2a shows that the effect of the kinetic Reynolds number on centerline

velocityvariations along the pipe at <p = 90° near the entrance (0 s Xs 10). For slow

oscillations (ReO) = 23 and 41), the centerline velocity increases asymptotically with

distance to the fully developed value, which is similar to that of a unidirectional steady

flow. For fast oscillations (ReO) = 64, 100, and 196), the centerline velocity increases

to a maximum value and then decreases before the fully developed region is reached.

This is owing to the fact that annular effects occur in a fast oscillatory flow.

Fig. 6.2b illustrates the variations of the centerline velocity along the pipe at

different phase angles <p for a fast oscillating flow (A,,=lO and Rew=lOO). This figure

clearly shows that there are three flow regions at any instants of time: an entrance

region where the centerline axial velocity either increases or decreases with the axial

location, a fully-developed region where the centerlineaxial velocity remains unchanged,
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and an exit region where the centerline velocity either increases or decreases with

distance.

As explained earlier, the entrance length reflects the development of the velocity

profile from a plug flow to a fully-developed shape due to wall friction and inertial

effects. It can also be seen from Fig. 6.2b that at some instants of time (such as <p = 45'

900 and 1350 during the first half cycle) the centerlinevelocity increases before the fully

developed region is reached. The plug flow at the inlet becomes parabolic at some

distance from the inlet, and the annular effect appears downstream (see Fig. 6.1).

To investigate the exit effect, we focus our attention to the centerline velocity

variations in the exit regime (near X= 20) at «1>= 1800 as shown in Fig. 6.2b. At this

instant of time, the centerline velocity near the exit begins to decrease from the fully­

developed value to zero at the exit due to the fluid flow reversing its direction.

However, at other instants of time, the centerlinevelocity near the exit is not zero and

may be in fact higher than the fully-developed value because of the inertial effect as

shown in Fig. 6.2b. This exit effect is clearly shown in Fig. 6.2c, where the axial

centerline velocities at both X = 18.4 and 20 may be higher or lower than the fully

developedvalue depending on the particular instant of time. It is relevant to point out

that the slope of the centerline velocity variation with time at the exit (X=20) is

discontinuous at «I> = 1800 as shown in Fig. 6.2c. This is because the axial centerline

velocity at the exit reverses its direction at «I> = 1800
.

6.3.2 Friction Coefficients

The instantaneous local friction coefficient cf(X,,;) has been defined in Eq.

(5.11). The cycle-averaged local friction coefficient cf can be defined as
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(6.3)

Fig. 6.3a shows a comparison of the numerical results of the instantaneous

friction coefficient at large X (i.e., a fully-developed flow) for A.,=8 at Re., =64 and 324

and the exact solution for a fully developed flow given by Eq. (5.12). The curves

indicate that the agreement between the numerical results and the analytical solution is

excellent.

The variations of the instantaneous friction coefficient along the pipe at

different phase angles <p for A o=30 and Rew=196 are illustrated in Fig. 6.3b. It is

shown that during the first half cycle (0 s <p s1800) as the fluid flowing through the

tube from the left to the right, the friction coefficientdecreases asymptotically from the

maximum value at the inlet of the pipe and practically becomes independent of the axial

positions downstream in the fully developed region. The drastic decrease of the

instantaneous friction coefficient in the entrance regime is owing to the change in the

velocity profile from rectangular to parabola-like shape. The variation of the

instantaneous friction coefficient is relatively small in the exit region (near X = 30) for

most of the time. But near the flow reversing period (<p = 1800
) the variation of the

friction coefficient becomes much more significant in the exit region. During the second

half cycle (180° s <p s 360°), the behavior is repeated in the reverse direction.

A typical variation of the cycle-averaged friction local coefficient cf along the

pipe is illustrated in Fig. 6.3c. It is seen that the cycle-averaged local friction coefficient
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is symmetrical with respect to the middle of the pipe. It should be noted that the

drastic increase in the value of the cycle-averaged local friction coefficient at either end

of the pipe is owing to the end effects (i.e., a combination of the entrance and the exit

effects) with the entrance effect being predominant. We shall henceforth call the length

from the inlet to the fully- developed flow regime (or from the fully-developed flow

regimeto the outlet) as the end length. The end effect and the end length are shown in

Fig.6.3c.

The variations of the cycle-averaged local friction coefficient cf along the left

hand side of the pipe (0 s X s 10) for different A" and Re, are presented in Fig. 6.3d.

For comparison purposes, the analytical values computed from Eq. (5.15) are

represented by half-solid circles in this figure. It is noted that the numerical solution in

the fully-developed region is in excellent agreement with the analytical solution as

discussed earlier.

End Length

The end length Le for an oscillatory and reversing flow is determined based on

the following criterion:

Cf(X)- cf 00
......:...;~-~'-= 0.01

cf,oo
(6.4)

Eq. (6.4) implies that the end length at the present work is a time-averaged value. Fig.

6.3d shows that the end length increases significantly with the increase of Ao but

remains relatively constant with the change of .p = 1800
. It was found that the change of
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the end length is less than 3% for the range of ReO) computed. Thus, we can conclude

that the end length is only sensitive to Ao. but not to ReO) for the range of the kinetic

Reynolds number considered. The results of numerical calculations of the end length as

a function of A" can be fitted by the following algebraic equation

t., / D = O.246Ao +1.22 (6.5)

A comparison ofEq. (6.5) with the results of the numerical solution is shown in Fig.

6.4.

Space-Cycle Averaged Friction Coefficient

The space-cycle averaged friction coefficient (Cf)m of a pipe with a length L is

(6.6)

Eq. (6.6) can be integrated over the two end regions and the fully developed region as

indicated in Fig. 6.3c to give

with

(
_ ) 2L e (_) L - 2L e _
cf m = - cf e m + cf 00

L' L'
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Eq. (6.7b) was computed for Ac= 8 to 30 and Re;=15 to 400 with L. given by Eq.

(6.5). The results of the computations are presented as a solid curve in Fig. 6.5, which

can be correlated by the following expression

c ) 3.774
cf,e m = A

o
(Re~543 _ 2.20863)

(6.8)

For comparison purposes, the value of Cf,lXl, given by Eq. (5.15) for a fully-developed

flow, is also plotted in Fig. 6.5 as dashed lines. It is shown that the spaced-cycle

average friction coefficient in the end region given by the solid line is higher than that in

the fully-developed flow region given by dashed lines.

6.4 Summary

In this chapter, the problem of a laminar incompressible periodically reversing

flow in a pipe with a finite length was investigated numerically. For a sinusoidally

oscillatory and reversing flow in a pipe with a finite length, it was shown that the three

governing similarity parameters of the problem are: the kinetic Reynolds number Re w ,

the dimensionless oscillation amplitude Ac and the length to diameter ratio of the pipe

LID. At any instant of time, there exists three flow regimes in the pipe: an entrance

regime, a fully developed regime, and an exit regime. The existence of the entrance

regime is owing to the velocity profile changes from a rectangular shape to a parabola­

like shape. The existence ofthe exit regime is because of the reversal of flow direction

at the end of each half cycle. This phenomena is unique for a periodically oscillatory

and reversing flow. Based on the numerical results, a correlation equation of the space-
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cycle averaged friction coefficient for an incompressible, laminar, hydrodynamically

developing oscillatory flow in a pipe with a finite length was obtained.
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CHAPTER 7

LAMINAR OSCILLATORY HEAT TRANSFER IN A PIPE
WITH CONSTANT WALL TEMPERATURE

In this chapter we shall obtain a numerical solution for the forced convection of

a laminar oscillatory flow in a heated pipe at constant wall temperature. The purpose

of this study is to gain physical insight on heat transfer characteristics in an oscillatory

and periodically reversing flow.

7.1 Introduction

The problem of oscillatory heat transfer in a heated pipe subjected to a

periodically reversing flow has important applications to the design of heat exchangers

of Stirling-cycle machines. Most of the previous work is limited to analytical studies of

a thermally fully-developed flow. For example, Gedeon (1980) and Kurzweg (1989)

analyzed the enhancement of axial heat transfer in an oscillatory flow between two

parallel plates. Siegel (1987) obtained an analytical solution for the heat transfer of a

pulsating flow in a channel with uniform heat flux.

In this chapter, a numerical solution based on the control volume approach is

obtained for laminar forced convection ofa periodically reversing flow in a pipe heated

at constant temperature. The effects ofthe kinetic Reynolds number, the dimensionless

oscillation amplitude of fluid, and the length to diameter ratio of the pipe on both the

temperature profiles and Nusselt numbers for air are illustrated. It will be shown that

the annular effect also exists in temperature profiles at high kinetic Reynolds numbers

near the entrance and exit of the pipe. As far as the author is aware, this is the first time
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that annular effects in the temperature profiles of an oscillating flow are discussed. A

correlation equation of the space-cycle averaged Nusselt number for a periodically

reversing flow ofair will be obtained in terms of the three similarity parameters, Rem,

Ao and LID. This correlation equation can be used for the design of heat exchangers in

Stirling machinesand cryocoolers.

7.2 Formulation

The problem under consideration is shown in Fig. 2.1, where an incompressible,

laminar, viscous fluid oscillates in a heated pipe (with diameter D and a finite length L)

which is connected between two large reservoirs at a constant but lower temperature T i .

The wall of the pipe is heated at a constant temperature Tw. The inlet axial velocity

during the each half cycle is taken to be uniform over the cross section with periodical

variations as given by Eq. (2.2). The governing dimensionless conservation equations of

mass, momentum and energy for a periodically reversing pipe flow are given by Eqs.

(2.4), (2.10) and (2.12). The numerical solution for the velocity field has already been

presented in Chapter 6. The thermal boundary conditions for the problem under

consideration are

at X=O,

at X=LID,

at R=O,

Os R s 0.5:

OsRsO.5:

OsXsL/D:

S(O,R;t) = 0

S(LID,R;t) = 0

as
-=0
aR
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atR=0.5, O:s X:s LID: 8(X, 0.5;(;) = 8w = 1 (7.4)

Thus, we can conclude from the governing equations and the boundary conditions that

the similarity parameters for the problem of oscillatory heat transfer in a pipe subjected

a periodically reversing flow are Ao, ReO), LID, and Pro

Numerical solutions to Eqs. (2.4), (2.10) and (2.12), subject to boundary

conditions (6.1) to (6.2) and (7.1) to (7.4), were obtained by a control-volume-based

method detailed by Patankar [13]. Because of the extremely thin thermal boundary

layer at a high kinetic Reynolds number, a highly nonuniform grid was deployed.

Extensive computations were performed to ensure grid independent solutions for

different values of the kinetic Reynolds number. A grid independent solution for a

particular set of parameters was established by reducing the grid size until the change in

the space-cycle averaged Nusselt number Nu (see definition below) is smaller than

0.4%.

7.3 Results and Discussion

As mentioned earlier, the problem under consideration has four similarity

parameters: Ao, ReO), LID and Pro Most of the computations were carried out for a

laminar flow of air (Pr = 0.71) in a pipe with LID=40. The frequency of oscillations

were varied such that the range of ReO) is from 10 to 400 and the range ofdimensionless

oscillation amplitude of the fluid is from 5 to a value less than the critical Ao for the

onset of turbulence, which is given by Eq. (4.1). The results of the computations are

presented in Figs. 7.1-7. 11.
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7.3.1 Temperature Distribution

Figs. 7.1a and 7.1b illustrate typical temporal variations of temperature and axial

velocity of the fluid near the entrance of the pipe (X=6.2) for Ao =15 and ReO)=64 at

different radial positions during one cycle (0° s ep s 360°). As shown in Fig 7.1a, during

the first half cycle (0° s ep s 180°) the fluid temperature near the entrance changes

slowlywhen the phase angle is less than ep $ 45°, then it begins to drop rapidly due to

colder fluid entering the pipe from the reservoir. The fluid temperature near the

entrance starts to rise near the end of the first half cycle due to the warmer fluid exiting

from the pipe. Similar trends are observed for a higher kinetic Reynolds number

Re.,=250 (Fig. 7.2a), with peaks and valleys occuring at different phase angles because

the phase angles of the axial velocity change with ReO). From Figs. 7.1 and 7.2, it can

be observed that at the centerline of the pipe, the phase difference between the axial

velocity and temperature variations for Re.,= 64 is about 520 while those at ReO) = 250

is about 86°, At R = 0.47, the corresponding phase differences are 840 and 60°,

respectively. It can be concluded that the phase difference between the velocity and

temperature in the core flow region increases with the kinetic Reynolds number. But

the phase difference near the wall region decreases with the increase of the kinetic

Reynolds number. This is because the heat transfer rate is faster near the wall at higher

kinetic Reynolds numbers, and consequently, the temperture near the wall responds

more swiftly with respect to velocity variations.

Transient temperature profiles near the entrance of the pipe (X=4.5) for Ao= 15

at two different kinetic Reynolds numbers (Re., =64 and 250) are presented in Figs.

7.3a and 7.3b respectively. At these kinetic Reynolds numbers, annular effects exist in

the velocity profiles (not shown). It is interesting to note that annular effects also exist
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in the temperature profiles of an oscillatory flow as shown in Fig. 7.3. This annular

effect becomes more pronounced as the kinetic Reynolds number is increased. A

comparisonbetween Figs. 7.3a and 7.3b shows that temperature gradients near the wall

become steeper when the kinetic Reynolds number is increased.

Transient temperature profiles near the center of the heated pipe (X= 15) at a

fixed value of ReO) = 250 for two different dimensionless fluid displacements (Ao=15

and 25) are presented in Figs. 7.4a and 7.4b respectively. Fig. 7.4a shows that no

annular effect exists at positions near the mid-section of the pipe although annular

effect is clearly evident near the entrance of pipe (X= 4.5) as shown in Fig. 7.4b. In

comparison of Figs. 7.3b and 7.4a, the temperature profiles are flatter near the mid­

section of the heated pipe than near the entrance. These findings can be explained based

on Eq. (2.12) as follows. At a position near the mid-section of the pipe, axial

temperature gradients are small, as will be shown below shortly. Therefore, the second

term in Eq. (2.12) is small and the forced convection effect becomes less significant.

Thus, the transient development of temperature profiles near the mid-section of the

pipe depends mainly on the diffusion mechanism. However, if the kinetic Reynolds

number is fixed at 250 and the fluid displacement Ao is increased from 15 to 25, the

convection term in Eq. (2.12) will become larger and will have some effect on the

temperature profile. This point is illustrated in Fig. 7.4b where the variation of

temperature along the radial direction becomes more significant across any instant of

time.

Typical variations of the centerline temperature along the pipe at different

phase angles for Ao=15 and ReO)=180 are presented in Fig. 7.5. Because the pipe is

heated at a constant temperature 6w ' the centerline temperature of the fluid increases
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with the distance from the entrance or exit of the pipe with a maximum value occuring

near the mid-section of the pipe. The fact that the fluid temperature variation is almost

symmetric with respect to X suggests that heat conduction is predominant near the

mid-section of the pipe. However, the location at which the maximum value of the fluid

temperature occurs, depends on time and the dimensionless parameters Ao and ReO).

7.3.2 Heat Flux

The local instantaneous Nusselt number along the heated wall for an unsteady

flow is defined as

Nu = h(X, -r)D
k

where h is the local instantaneous heat transfer coefficient which is defined as

heX -r)= qw(X,-r) = -k(aTlar)r_0/2
, 8.T(X,-r) 8.T

(7.5)

(7.6)

where qw is the heat flux at the pipe wall and 8.T is a thermal potential for the heat flux.

For an unidirectional flow 8.T = Tw - Tb is the difference between the wall temperature

and the local instantaneous bulk temperature Tb( x, t) which is defined as

0/2

Iu(r, x, t)T(r, x, t)rdr
Tb(x,t) = .....lO~-0/-2----­

Iu(r,x,t)rdr
o
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The instantaneous bulk temperature given by Eq.(7.7) losts its physical significance in

an oscillating and reversing flow because the cross-sectional mean velocity becomes

zero twice in each cycle, which gives rise to an infinite value of the bulk temperature

twice in a cycle. This will cause anomalies in evaluating the local instantaneous Nusselt

number defined in Eqs. (7.6) and (7.7). For this reason, for a periodically reversing flow

we choose AT = Tw - T, which is the thermal potential for heat transfer from the

heated wall of the pipe to the cold fluid at the entrance and the exit of the pipe.

Substituting this temperature difference in Eq. (7.7) gives the following expression for

the local instantaneous Nusselt number

as
Nu = -( aR)R-O.5 (7.8)

It should be noted that the value of the local instantaneous Nusselt number is a function

ofthe axial location X and the time "t. The cycle-averaged local Nusselt number Nu x ,

the space-averaged instantaneous Nusselt number Nu-, and the space-cycle averaged

Nusselt number Nu are defined respectively as follows

and

- 1 21t
Nux =-j"Nu(X,l)h

2:n; 0

_ I LID

NUT = - j"Nu(X, "t}iX
LID 0

- 1 21t_ 1 LlL 1 21tLlD

Nu=-j"Nu"td"t=- fNuxdX= f j"Nu(X,"t}i-cdX
2:n; 0 LID 0 2:n;L/D 0 0
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The variations of the local instantaneous Nusselt number Nu along different

dimensionless axial locations of the pipe for Ao=15 at Rew=64 and Rew=250 across a

complete cycle are presented in Figs. 7.6a and 7.6b respectively. The solid lines

represent locations in the entrance region while the dashed lines represent locations in

the exit region. It should be noted that the phase difference between the entrance

location and the corresponding exit location is .p=180°. Let us focus our attention first

to the entrance region. Near the inlet at X=2 for example, the instantaneous Nusselt

number increases with .p until it reaches a maximum value around .p=90°. This is

because the colder fluid enters the entrance region with the cross-sectional mean

velocity according to Eq. (2.2) which has a maximum velocity around .p=90°. Since the

colder fluid enters with a decreasing velocity after .p >90°, the heat transfer rate begins

to decrease after .p>90°. The heat transfer rate continues to decrease as the velocity of

the entering fluid decreases to zero at about 180°. Subsequently, the fluid reverses its

direction and the warmer fluid passes through the location at X=2; consequently, the

heat transfer between the fluid and the pipe continues to decrease. The value of Nu

decreases as the value of X is increased from the inlet to the mid-section of the pipe

(X=20). Toward the middle of the pipe, the instantaneous Nusselt number becomes

vanishingly small. Its value is almost symmetric with respect to .p with the maximum

value occuring near «1>=1800 • A comparison of Figs. 7.6a and 7.6b shows that value of

the Nusselt number increases as the kinetic Reynolds number is increased.

The effects of~ and Re., on the cycle-averaged local Nusselt number Nux of

air along the axial location are presented in Fig. 7.7. Generally, the cycle-averaged local

Nusselt number Nu x is symmetrical with respect of the mid-section of the pipe

because of the symmetrical boundary conditions for both velocity and temperature for
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the problem under consideration. A comparison of Case 1 (Ao=20, ReO) =64) and Case

2 (Ao=20, ReO) =250), shows that the value of Nux increaseswith the increase of ReO)

at a fixed value of Ao' which implies that the heat transfer rate increases with the

increase offrequency at a given fixed oscillation amplitude of fluid. This is because the

thermal boundary thickness 5 t in an oscillatory flow is

(7.12)

which shows that the thermal boundary layer thickness becomes thinner with the

increase of ReO). Consequently, the heat transfer rate increases with the value of ReO).

Similarly, a comparison of ease 2 (~=20, ReO)=250) and Case 3 (~=35, ReO) =25 0)

shows that the value of Nu x increases with the increaseof~ for a fixed value of ReO),

which implies that the heat transfer rate increases with the increase of oscillation

amplitude of fluid at a given fixed value of frequency. This can be explained based on

the energy equation (2.12). With fixed values of ReO) and Pr, the convection term in

Eq. (2.12) becomes more significant with the increasing value of Ao ' Physically, a

higher value of~ means a larger amount of fluid is heated by the pipe during each

cycle. It can also be observed from Fig. 7.7 that the heat transfer rate becomes

vanishingly small at the middle of the heated pipe (X=20) for smaller ~, because most

of the fluid near the middle of the pipe never exits from the heated pipe.

The effects of~ and ReO) on the instantaneous space-averaged Nusselt number

Nu- for the three cases in Fig. 7.7 are illustrated in Fig. 7.8. Similarly, it is observed

that the space-averaged heat transfer rate increases with the increase of either the

dimensionless fluid displacement or the kinetic Reynolds number. It is interesting to
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compare the temporal variation of the instantaneous space-averaged Nusselt number

with the specified sinusoidal variation of the cross-sectional mean flow velocity given

by Eq. (2.2). It is found that the phase difference between the cross-sectional mean

velocity and the instantaneous space-averaged Nusselt number NU"t is about 18° for all

cases. This is due to the fact that the instantaneous local Nusselt number in the

entrance region predominates, as evidented in Figs 7.6a and 7.6b, which is out of phase

with the cross-sectional mean velocity by approximately 18°.

The effect of the length/diameter ratio LID ofthe pipe on the local heat transfer

rate for Ao=25 and Rem =180 is displayed in Fig. 7.9. As shown in this figure when LID

is increasedfrom 25 to 50, the value ofthe cycle-averaged local Nusselt number Nux in

the entrance region before X=5 remains the same while those in the middle region of the

pipe increases with the descrease of LID. Physically, the decrease of LID at a fixed

value of Ao means that the ratio of the fluid displacement to the length of the heated

pipe becomes larger, and therefore a larger amount of heat is advected away from the

heated pipe to the cooler reservoirs.

The cycle-space averaged Nusselt number Nu was computed according to Eq.

(7.11) for Ao= 10 to 35 and Rem = 10 to 400 at L/D=40. The results of these

computations are presented as a solid line in Fig. 7.10. It is found that the solid line can

be correlated by the following expression

(7.13)
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Computations were then carried out for different values of LID ranging from 10

to 120 for air (pr=O.7) at the following three different sets of Ao and Rew: (i) Ao= 20,

Rew=250, (ii) Ao= 25, Rew=I80, and (iii) Ao= 35, Rew=IOO. It is found that the

numerical results for the cycle-space averaged Nusselt number of air can be correlated

by the following expression

(7.14)

A comparison ofEq. (7.14) against the numerical results is presented in Fig. 7.11.

7.4 Summary

The problem of oscillatory heat transfer in a periodically reversing flow is

governed by four similarity parameters: the Prandtl number Pr, the kinetic Reynolds

number Re.,; the dimensionless oscillation amplitude of fluid Ao ' and the length to

diameter ratio of the heated tube LID. A numerical solution to the conservation

equations of mass, momemtum and energy has been obtained for an oscillatory and

reversing flow of air in a pipe at constant wall temperature. The computed results

reveal that annular effects also exist in temperature profiles of an oscillatory flow at

high kinetic Reynolds numbers near the entrance and exit locations of the tube. It is

found that for a fixed value of LID and a specific Prandtl number, the space-cycle

average heat transfer rate increases with both the parameters Ao and Rew' Although

the value ofLID has a small effect on the local heat transfer rate near the entrance and

exit of the pipe, its effect becomes significant on the space-cycle averaged heat transfer

rate. Based on the nuermical solution, a correlation equation ofthe space-cycle averaged

Nusselt number for air in terms of the three dimensionless parameters Ao, Rewand LID

has been obtained.
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CHAPTER 8

LAMINAR OSCILLATORY HEAT TRANSFER IN A PIPE
WITH CONSTANT HEAT FLUX

The preceding chapter is concerned with the numerical solution of laminar

oscillatory heat transfer characteristics in a pipe heated at constant temperature. This

chapter deals with laminar oscillatory transfer in a heated pipe with uniform heat flux,

which is connected to two coolers at both ends as shown in Fig. 3.2. A numerical

solution is carried out to study the heat transfer characteristics in the heated pipe. A

correlation equation for the cycle-space averaged Nusselt number in terms of the

appropriate similarity parameters is obtained. Experiments have been carried to verify

the numerical solution.

8.1 Introduction

In this chapter, both experimental and numerical studies will be carried out for

laminar oscillatory forced convection in a long pipe heated by uniform heat flux and

subjected to a periodically reversing flow of air. Transient fluid temperature variations

in the two mixing chambers adjacent to both ends of the heated pipe were measured and

used as the thermal boundary conditions for the numerical simulation. The finite

differenceschemebased on a control volume method by Patankar (1980) was used for

the numerical simulation of the hydrodynamically and thermally developing oscillatory

flow in the pipe. The time-resolved centerline temperature and cycle-averaged wall

temperature obtained from the numerical solution are presented and shown to be in

good agreement with the experimental data. A correlation equation based on
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experimental data is obtained for the cycle-averaged Nusselt number (in terms of the

kinetic Reynolds number ReO) and the dimensionless oscillation amplitude of fluid Ao)

for oscillatory heat transfer in a long pipe subjected to a periodically reversing flow.

8.2 Experimental Investigation

The experimental apparatus and instrumentation for this study have been

described in Chapter 3. Experiments were carried out for a laminar oscillatory flow of

air (pr = 0.71) in a heated pipe (with L/D=44.8) which is connected to two coolers at

both ends. Because both the geometry and the imposed thermal boundary conditions

were symmetric with respect to the mid-section of the heated pipe, the sensors were

installed only in the left-hand side of the test rig. Five foil thermocouples were used to

measure wall temperatures, two on the cooler wall and the other four were on the wall

of the heated tube. Centerline fluid temperatures inside the heated tube were measured

by four mini-needle T-type thermocouples. To measure inlet and outlet fluid

temperatures in the heated tube, two fine thermocouples (0.001" in diameter) were

carefully installed inside the two mixing chambers. The frequency and the stroke of

oscillations were varied such that the range of Re., was from 23.1 to 464.5 while the

range of dimensionless oscillation amplitude of the fluid Ao was from 8.54 to 34.9

which was less than the critical value of Aa for the onset of turbulence according to Eq.

(4.1).

8.3 Numerical Simulation

A numerical simulation of the experiments will now be carried out. The velocity

field is identical to those presented in Chapter 6 and will not be repeated here. The
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dimensionless energy equation is given by Eq.(2.12) with the dimensionless

temperature defined as as S = krT . The thermal boundary conditions for the problem
qwD

under consideration are

at X=O, °s R s 0.5: 0(0,R, 't) = Sm.. (8.1)

at X=LID, Os R s 0.5: S(LI D, R, 't) = 0m.r (8.2)

at R=O, Os x« LI D: ~=O (8.3)
aR

atR=0.5, Os Xs LI D: as = 1 (8.4)
aR

where Sm.• and 0m.r are the transient fluid temperatures measured in the left and right

mixing chambers. The similarity parameters for the present problem are the same as

those considered in Chapter 7, i.e.: the dimensionless oscillation amplitude of fluid
2

Ao = xmax
, the kinetic Reynolds number Re, = ooD , the Prandtl number Pr =~

D v a

and the length/diameter ratio LID.

The computer program, used in the preceeding chapter for an oscillatory flow in

a pipe at constant wall temperature with constant inlet and outlet fluid temperatures,

was modified for the numerical simulation of the present problem with boundary

conditions given by Eqs.(8.1 )-(8.4). Extensive computations were carried out to ensure

grid independent solutions for different values of the kinetic Reynolds number. A grid

independence solution for a particular set of parameters was established by reducing the
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grid size until the change in the wall temperature at the mid-section of the pipe is

smallerthan 0.4%.

8.4 Results and Discussion

8.4.1 Temperature Distributions

Figs. 8.1a and 8.1b illustrate typical temporal temperature variations measured

at the left and right mixing chambers during one cycle at the same oscillatory frequency

(Re., =120.1) for Ao= 34.9 and 15.3 respectively. These measurements were used as

the thermal boundary conditions given by Eqs. (8.1) and (8.2). For Ao=34.9, as the

piston moves from the left to right, the fluid temperature in the left mixing chamber

continues to drop until the piston reverses its direction at the end of the first half cycle.

For Ao=15.3, the fluid temperature in the left mixing chamber first starts to increase and

then decreases to a minimum before it increases again. For the convenience of further

discussion, the temperature history curves in the left mixing chamber and the

corresponding temporal cross-sectional mean velocity variations for these two cases are

presented in Fig. 8.2. The square symbols represent the case for Ao= 34.9 while the

circle symbols represent those for Ao= 15.3. For the case of Ao= 34.9, when the fluid

reverses its direction at the beginning of the cycle, the fluid temperature drops

immediately due to the cooling effect of the fluid in the cooler. For the case of Ao=15.3,

however, a different behavior occurs. In this case, the fluid temperature increases at the

beginning of the cycle and starts to drop at about 450 ofthe crank angle. The reason for

the different behaviors of temporal temperature variations between low and high values

of Ao can be explained as follows. Consider the inlet fluid temperature at the beginning

of the cycle as the fluid is reversing its direction. The fluid in the mixing chamber is
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cooled by convection through the fluid coming from the cooler while, at the same time,

it is heated by the fluid residing in the heated section by conduction. At a high value of

Ao (Ao=34.9 for example) where the maximum cross-sectional mean velocity is high (as

can be deduced from Eq. (2.2», forced convection effects predominate. Therefore, the

fluid temperature in the mixing chamber drops immediately when the fluid reverses its

direction as colder fluid enters. However, for Ao=15.3 where the fluid velocity is small

and axial heat conduction effect predominates at least initially, the fluid temperature at

first begins to increase. Later in the cycle when the fluid velocity is increased, the fluid

temperature starts to drop because the cooling effect of the fluid from the cooler begins

to be felt.

Typical temporal variations of the centerline fluid temperature 8c along

different axial locations during one cycle for Ao=15.3 and Rew=150.6 are presented in

Fig. 8.3. The triangle symbols represent the experimental data while the solid curves

represent numerical solution. It is seen that the numerical solution is in fairly good

agreement with the experimental data. Because both the geometry and imposed thermal

boundary conditions are symmetric with respect to the mid-section of the heated pipe,

only the behaviors of the temperature variations in the left-hand side of the test section

(X < 22.4) are presented. As shown in this plot, during the first half cycle the fluid

temperature near the left mixing chamber (X=1.4) begins to drop due to colder fluid

entering from the cooler. The fluid temperature starts to rise near the end of the first

half cycle due to warmer fluid exiting from the heater. The amplitude of the fluid

temperature variations is at a maximum near the heater-cooler interface (X=O) and

progressingly smaller as the mid-section of the heated tube (X = 22.4) is approached.

At the mid-section of the heated tube (X=22.4), temporal variations of the fluid

temperature are symmetric with respect to time.
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Fig. 8.4 is a comparison between experimental and numerical results for the

cycle-averaged wall temperature variations along the axial locations in the left side of the

test section (X < 22.4) for four different cases. Again, the numerical solution is in good

agreement with the experimental data. Generally, the cycle-averaged wall temperature

progressingly increases with the axial location, with the minimum value occurring at the

left mixing chamber and maximum value at the mid-section of the heated pipe. It can

also be observed that the cycle-averaged wall temperature decreases with the increase of

either the kinetic Reynolds number Rem or the dimensionless oscillation amplitude of

8.4.2 The Space-Cycle Averaged Nusselt Number.

The space-cycle averaged Nusselt number is defined as

I
(8.5)

where qw is the measured heat flux; Twand 8w are the dimensional and dimensionless

space-cycle averaged wall temperature of the heated tube, with 8w being computed

from

Np- l}:-8 =- 8 .w N W,l
P i-I

(8.6)

where 8w. i is the cycle-averaged local wall temperature and N, is the number of

positions in the test section at which the local wall temperatures were measured; Tm
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and 8m are the dimensional and dimensionless cycle-averaged temperatures of the fluid

measured in the left or right mixing chambers with 8m computed from

_ 1 231: 1 231:
e = - fA Id"t = - rn drm 2 J-m, 23t J - m,r

3t 0 0

(8.7)

The space-cycle averaged Nusselt number Nu was computed according to Eqs.

(8.5) to (8.7) based on the experimental data for Aa= 8.54 to 34.9 and Re, =23.1 to

464.5 at LID=44.8. The following correlation was obtained based on a least square fit

of 53 experimental runs:

(8.8)

Eq. (8.8) with experimental data is presented in Fig. 8.5. Note that Eq. (8.8) indicates

that the heat transfer rate increases with both the dimensionless oscillation amplitude of

fluid Aa and the kinetic Reynolds number Re",. The increase in heat transfer is more

sensitive to Aa than to Re, as indicated by the exponent of Aa being greater than that

of Re",. To assess the accuracy ofthe correlation equation (8.8), the experimental data

ofthe space-cycle averaged Nusselt number and the values computed according to Eq.

(8.8) are presented in Fig. 8.6. Any deviations of data from the inclined straight line

indicates the inaccuracy of the correlation equation. As shown in Fig. 8.6, Eq. (8.8)

correlates the experimental data quite well.
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8.5 Summary

In this chapter, experimental and numerical studies have been carried out for

laminar oscillatory forced convection in a long tube heated by uniform heat flux and

subjected to a periodically reversing flow of air. The numerical solutions for time­

resolved centerline temperature and cycle-averaged wall temperature are shown to be in

good agreement with the experimental data. Based on the experimental data, a

correlation equation for the space-cycle averaged Nusselt number in terms of

appropriate similarity parameters is obtained.
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CHAPTER 9

OSCILLATORY PRESSURE DROPS THROUGH
A WOVEN-SCREEN PACKED COLUMN

Previous chapters are concerned with the fluid flow and heat transfer

characteristics in a empty tube subjected to oscillatory and reversing flow. This

chapter deals with oscillatory pressure drop characteristics in packed columns

(composed of three different sizes of woven screens) under a periodically reversing

flow of air, which is of significance in the optimum design of regenerators of a Stirling

engine or a cryocooler.

9.1 Introduction

The ability to predict pressure drops and heat transfer rates accurately in a

regenerator is of crucial importance in the optimum design of a Stirling engine or a

cryocooler. The literature review in the Chapter 1 shows that, in the past, the

estimation of the pressure drop in a regenerator has been based on correlation equations

for an unidirectional steady flow through a stack of screens. For example, Miyabe et al.

(1982) obtained the following correlation equation for pressure drop of a steady flow

through a stack ofwoven-screens:

with

f
st

= 33.6 + 0.337
Ref!
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(9.3)

where Apst is the steady flow pressure drop, (ust)p is the cross-sectional mean flow

velocity in the packed column, n is the number of screens packed in the column, ~ is

the distance between meshes, and Ref} is the Reynolds number based on ~ and (ust)p'

Since Stirling-cycle machines are operating under periodically reversing flow

conditions, it is apparent that correlation equations based on a steady flow would not

be able to predict accurately the pressure drop in a regenerator. Matini (1978) and Rix

(1984), for example, found that good agreement between simulated and measured

pressure drops can be achieved only if the friction coefficient provided by Tong and

London (1957) is arbitrarily adjusted by a constant value of 3 to 5. Thus, there is a

need for obtaining more accurate correlation equations for the pressure drop in a

regenerator under cyclic flow conditions.

Relatively little research has been performed on the pressure drop in a packed

column subjected to an oscillatory and reversing flow. Roach and Bell (1988)

performed experiments on the pressure drop in a packed column under rapidly

reversingflow conditions. They reported higher friction factors in an oscillatory flow

but could not find frequency dependence in the pressure drop. Tanaka et al. (1990)

experimentally investigated the fluid flow characteristics ofa Stirling engine regenerator

(made of wire screens or sponge metals) under the condition of an oscillating flow.

They obtained the following correlation equation for the friction factor
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with

f = 198 1737max + .
(Remax)Dh

(9.4)

(9.5)

(9.6)

where dPmax is the maximum pressure drop in one cycle, (u max) is the maximum
p

cross-sectional mean flow velocity in the packed column, L is the length of the packed

column, and D, is the hydraulic diameter of the screens which is defined by Tanaka et

al.(I990) as

D = cpDw

h (l-cp)
(9.7)

with cp being the porosity of the screens which is defined by Miyabe et al. (1982) as

(9.8)

It is relevant to note that Eq. (4) was determined based on experimental data for a fixed

fluid displacement and is therefore not suitable for general use.
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The objectives of the present work are: (1) to experimentally investigate

pressure drops across a tube packed with stainless steel wire screens subjected to an

oscillatory and reversing flow, and (2) to obtain a correlation equation of the pressure

drop factor in terms of appropriate similarity parameters. In what follows, the

experimental apparatus and the geometrical parameters of woven screens will first be

described. The experimental data of pressure drops in a woven-screen packed column

under cyclic flow conditions will then be presented, and a correlation equation for the

fiiction factor will be obtained.

9.2 Experimental Details

Fig. 9.1 shows the test rig used to measure oscillatory pressure drops through a

packed column, which was modified from the test rig for studying the fluid flow and

heat transfer characteristics in an empty tube. The test section consisted of a packed

column (33.3 mm inside diameter and 40 mm in length) with each of its end connected

to a copper tube of the same diameter (33.3 mm in diameter and 150 rom in length), and

through a converging nozzle to another copper tube of smaller diameter (13.5 mm in

diameter). This test section was connected to the pump through a flexible tube. The

other equipment and instrumentation were the same as those used to measure the

pressure drop in a tube described in Chapter 3.

Packed Columns

The three packed columns, 33.3 mm in diameter and 40 mm in length, were

madeof stacks of stainless steel plainly-woven wire screens with three different mesh

sizes. Fig. 9.2a shows the plane view of the wire screens used in this study while Fig.

9.2b illustrates the detailed construction of a mesh unit of the screens. The wire

diameters Dw, pitch t ; the distance between meshes ~, porosity q>, the number of
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screens n, and hydraulic diameter D, for the three mesh sizes of the wire screens are

listed in Table 9.1. Wire diameter and pitch of the screens were provided by the

manufacturer (Jelliff Corp). The hydraulic diameter D, and the porosityqi of the

packed column were determined by Eqs.(9.7) and (9.8) respectively.

Table 9.1 Properties of Stainless Steel Wire Screens used in this experiment

Mesh Number WireDia Pitch Mesh Porosity Hydraulic
Size of screens Dw(mm) e (mm) distance cp Dia

n (3 (mm) Dh (mm)
100 194 0.102 0.254 0.152 0.662 0.199
150 300 0.066 0.170 0.104 0.673 0.136
200 341 0.058 0.127 0.069 0.602 0.089

Sinusoidal Motion of Air

The sinusoidal fluid displacement Xp in the packed column varies according to

(9.9)

which was obtained from the fluid displacement in an empty tube given by Eq. (2.1).

Thus the maximum fluid displacement in the empty tube Xmaxand in the packed column

(Xmaxh are related by

( )
X max

X max p =--
cp

(9.10)

Differentiating Eq. (9.6) with respect to time, we obtain the cross-sectional mean fluid

velocity (urn)
p
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(9.11)

where the maximum cross-sectional mean velocity (umax ) is related to the maximum
p

fluid displacement by

(9.12)

Similarity Parameters

When studying the friction coefficient of an osciIlatory flow in a empty pipe in

Chapter 5, we pointed out that the similarity parameters for an oscillatory flow in an

empty tube are the dimensionless fluid displacement and the kinetic Reynolds number,

and obtained a correlation of the friction coefficient in terms of these two similarity

parameters. In view of the similarity in the friction coefficients of a steady flow in a

bundle of tubes and in a packed column, it can be conjectured that the similarity

parameters for an oscillatory flow in a bundles of tubes and in a packed column are also

the same except that the diameter of the tube is replaced by the hydraulic diameter in

the similarity parameters. It follows that the similarity parameters of an oscillatory

flow in a packed column are the dimensionless fluid displacement and the kinetic

Reynolds number which are defined respectively by

(9.13)

(9.14)
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With the aid ofEq. (9.9), we note that the Reynolds number (Remax)Oh in Eq. (9.3) can

be expressed in terms of (AO)Oh and (ReW)Oh as

(9.15)

It follows that, if the Reynolds number (Remax)Oh is used as the parameter for the

correlation equation of fluid flow characteristics in a sinusoidally oscillatory and

reversing flow as was done by Tanaka et al. (1990), the effects of the fluid displacement

and frequency of oscillation can not be isolated. Thus, in this study we shall use

(Ao)Dh and (ReW)Dh defined in Eqs.(9.13) and (9.14) as the two independent

similarity parameters to correlate the pressure drop data of an oscillatory flow in a

packed column.

9.3 Results and Discussion

In this section, we shall present experimental results for the pressure drop

across woven-screen packed columns subjected to a periodically reversing flow.

Experiments were carried out for three different mesh numbers (100, 150, 200) of the

woven screens, three values of the fluid displacement Xmax (80.98 mm, 111.12 mm, and

150.61 mm) which was varied by changing the stroke of oscillations, and at various

kinetic Reynolds numbers (ReW)Oh ranging from 0.001 to 0.13. A total of nine test

cases with nine different values of (AO)Oh are tabulated in Table 9.2.
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Table 9.2: Experimental Conditions for the Tested Cases

( 0.001 ~ (Re"JD
h
s 0.13)

Case Mesh Size Xmax (mm) (AO)Oh

1 100 80.98 614.73
2 100 111.12 843.38
3 100 150.61 1143.25
4 150 80.98 879.99
5 150 111.12 1232.01
6 150 150.61 1645.54
7 200 80.98 1511.50
8 200 111.12 2073.71
9 200 150.61 2827.56

9.3.1 Temporal Variations of Pressure Drop

We now present the experimental data for the ensemble-averaged pressure drop

which is given by Eq. (5.20a). Typical variations of the ensemble-averaged pressure

drops across the tube packed with mesh 100 screens during a complete cycle at (Ao )D
h

= 843.38 for (Rew)Dh=0.01005, 0.03770 and 0.05529 are illustrated in Fig. 9.3. At a

fixed value of the dimensionless fluid displacement, it is seen that the pressure drop

increases with the increase of the kinetic Reynolds number during most of the cycle. It

is noted that for a small value of the kinetic Reynolds number, (ReW)Dh=0.01005, for

example, the pressure drop varies sinusoidally almost without phase lags with respect

to the cross-sectional mean fluid velocity as given by Eq. (9.11), with the maximum

value occurring at ep = 90°. But for higher values of the kinetic Reynolds number,

significant phase lags were observed. For example, the phase angle is delayed by 18°

at (ReW)Dh= 0.03770 and is delayed by 24° at (ReW>Oh = 0.05529.

Fig. 9.4 shows typical temporal variations of the ensemble-averaged pressure

drop across the tube packed with mesh 100 screens during a complete cycle at
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(ReW)Dh= 0.04524 for (AO)nh = 614.73, 843.38 and 1143.25. Again, it is apparent

that the pressure drop increases with the increase of the dimensionless fluid

displacement at a fixed value of the kinetic Reynolds number. However, it appears that

the temporal variations of pressure drop are almost in phase with one another for the

different three values of (A, )Dh . Therefore, we can conclude that the dimensionless

oscillation amplitude of the fluid has no effect on the phase lag of pressure drop

variations. From Figs. 9.3 and 9.4, we can conclude that the pressure drop in a packed

column subject to an oscillatory flow increase with both the dimensionless oscillation

amplitude of the fluid (AO)nh and the kinetic Reynolds number (ReW)Dh . The phase

lag of the pressure drop with respect to the mean velocity increases with the increase of

(ReW)Dh, but is relatively independent of (Ao)Dh .

9.3.2 Maximum Pressure Drop Factor

The maximum pressure drop factor f max was computed according to Eq. (9.5)

based on the experimental data for the nine test cases listed in Table 9.2 and with

(ReW)Dh ranging from 0.001 to 0.13. The following correlation was obtained based on

a least square fit of 92 experimental runs:

(9.16)

A comparison ofEq. (9.16) with the experimental data is presented in Fig. 9.5. The

maximum relative error between Eq.(9.16) and the experimental data is about 15.1%.

As mentioned earlier, Eq. (9.4) is the correlation equation for the maximum

pressure drop factor in an oscillatory flow through stacked screens, which was obtained
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by Tanaka et a1.( 1990) at a fixed value of the dimensionless fluid displacement of

(Ao)Dh= 829.4. A comparison of Eq.(9.16) and Eq. (9.4) for different values of

(Ao)Dh is presented in Fig. 9.6. It is shown that for the same value of (Ao)Dh =

829.4, Eq.(9.1) obtained by Tanaka et al. (1990) is about 10% lower than the present

results, which is within experimental errors. However, for the cases of (AO)oh = 614.7

and 2827.6, the present results are substantially higher or lower than those given by

Eq.(9.1). Therefore, Tanaka et al.'s correlation equation is only applicable to a specific

value of the dimensionless oscillation amplitude of the fluid (AO)oh ' i.e., for (Ao)Dh=

829.4.

9.3.3 Cycle-Averaged Pressure Drop Factor

We now define the cycle-averaged pressure drop factor f as follows:

f = ~POh

tp(umIDJ~L

where ~p is the cycle-averaged pressure drop which is determined from

N·A- 1 ~ JA -2up = - LJ UPj
N j j-l

(9.17)

(9.18)

with N; being the total number of sampling intervals in one cycle and ~PJ being the

ensemble-averaged data atjth interval. Based on the experimental data, the cycle­

averaged pressure drop factor f was computed accordingto Eq. (9.17) and presented in

Fig. 9.7. It is shown that the experimental data are well fitted by the following

correlationequation:
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(9.19)

Eq.(9.19) has a maximum relative error of 14% in comparison with experimental data.

Eq. (9.19) can be used to predict the cycle-averaged pressure drop in the design

of the regenerator of a Stirling engine or a cryocooler. We now compare the pressure

drops predicted by Eq. (9.1) for a steady flow and Eq. (9.19) for an oscillatory flow.

The pressure drop ratio is given by

(A- ) 2 D ('A"'}-(R 247/ + 1003.6)
p prc 3t ( w) 0 Dh coo~

(A ) = 2" D lli.+0.337Pst pre h RCf!

(9.20a)

where we have made use of the relation L = 2nD w • Eq. (9.20a) can be rewritten as

(9.20b)

. (Ao)l>J, P
SInce Ref! = (Reoo)Dh Eq. (9.20b) shows that the pressure ratio depends on

3tDh

the similarity parameters (Ao)Dh and (ReW)Oh as well as the geometry of the woven

screensp, DhandD w • The data for Cases 3, 5 and 7 in the Table 9.2 were used to

compute the pressure ratio given by Eq. (9.20b). The results are tabulated in Table 9.3,

which shows that the oscillatory pressure drop is four to six times higher than that of

the steady pressure drop at the same cross-sectional mean velocity. At small values of

(ReO,)Oh where the first term in both upstairs and downstairs are small in comparison

with the second term, Eq. (9.20b) reduces to
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(9.21)

which depends only on the geometry of the woven-screens and independent of the

similarity parameters (Ao Io, and (ReO)nh' The results of Eq. (9.21) for the three

mesh screens are also listed in Table 9.3.

9.4 Summary

Experimental results on oscillatory pressure drops across a woven-screen

packed column subjected to a periodically reversing flow have been reported in this

paper. It is shown that the appropriate similarity parameters for the problem under

investigation are the kinetic Reynolds number (Remax)nh and the dimensionless

oscillation amplitude of fluid (AO)nh' both of which are based on the hydraulic

diameter as the representative length. Correlation equations of both the maximum and

the cycle-averaged pressure drop factors in terms of these two similarity parameters

have been obtained. It was found that the values ofthe cycle-averaged pressure drop of

an oscillatoryflow in a packed column is several times higher than that of a steady flow

at the same Reynolds number based on the cross-sectional mean velocity.
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Table 9.3: Comparison ofthe pressure drop predicted by Eqs. (9.1) and (9.19)

Test Ref! (Re.,)Oh f given by fSI given (~j»"", 1(~PsI)"'" (Aj»"", I(APst)"",

cases Eq. (9.19) by Eq.(9.1) given by given by

ECI.f9.20b) EQ.(9.2l)

6.986 0.025 9.484 5.147 4.661

Case3 13.972 0.050 5.181 2.742 4.780 4.526

(AO)Oh =1143 20.958 0.075 3.747 1.940 4.885 for mesh 100

mesh100 27.944 0.101 3.029 1.539 4.978

34.930 0.126 2.599 1.299 5.061

3.521 0.012 17.908 9.879 4.342

Case5 7.043 0.023 9.361 5.180 4.389 4.290

(AO)Oh =1232 10.564 0.035 6.512 3.518 4.434 for mesh 150

mesh150 14.086 0.047 5.088 2.722 4.476

17.607 0.059 4.233 2.245 4.515

1.875 0.005 33.211 18.256 5.850

Case7 3.750 0.010 16.937 9.297 5.859 5.481

(AO)Oh =1511 5.625 0.015 11.513 6.310 5.868 for mesh 200

mesh200 7.500 0.020 8.801 4.817 5.876

9.376 0.025 7.173 3.921 5.884
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CHAPTER 10

CONCLUDING REMARKS

10.1 Summary and Conclusions

The present work is concerned with the fluid flow and heat transfer

characteristics in a pipe subjected to a periodically oscillatory and reversing flow. The

related problem of pressure drops in an oscillatory flow through a woven-screen packed

column has also been investigated experimentally. Various analytical, numerical and

experimental findings and conclusions reached during the course of this study have been

detailed in Chapters 4-9. Salient results are summarized below:

1. An examinationofthe governing equations and boundary conditions shows that

the governing similarity parameters for the fluid flow in a pipe of finite length

subjectedto sinusoidally osciIlatory flow are the kinetic Reynolds number ReO),

the dimensionless oscillation amplitude of fluid Ao, and the length to diameter

ratio of the pipe LID. For the corresponding heat transfer problem, the

governing parameters are the same with the Prandtl number being the additional

parameter.

2. The change in the sign of the pressure gradient is found to be directly

responsiblefor the occurrence of instability in an oscillatory and reversing pipe

flow. The criteria for the onset of turbulence in terms of two independent

similarity parameters, the kinetic Reynolds number and the dimensionless

oscillation amplitude of the fluid, has been obtained.
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3. Analytical expressions to the instantaneous and cycle-averaged friction

coefficients for a fully developed laminar oscillating and reversing pipe flow

have been obtained and confirmed by experimental data. A correlation equation

for the cycle-averaged friction coefficient of a cyclically turbulent flow has also

been obtained based on experimental data.

4. For a sinusoidally oscillatory and reversing flow in a finite pipe, it is shown that

at any instant of time, there exists three flow regimes in the pipe: an entrance

regime, a fully developed regime, and an exit regime. This phenomena is unique

for a periodically oscillatory and reversing flow. Based on the numerical results,

a correlation equation of the space-cycle averaged friction coefficient for an

incompressible, laminar, hydrodynamically developing oscillatory pipe flow has

been obtained.

5. The numerical results reveal that annular effects also exist in the temperature

profiles of an oscillatory flow at high kinetic Reynolds numbers near the

entrance and exit locations of the pipe. Based on the numerical results, an

expression for the space-cycle averaged Nusselt number of air (with Pr = 0.7) in

terms of the three dimensionless parameters (Ao, Re.,; and LID) has been

obtained for the laminar oscillatory heat convection in a pipe heated at constant

temperature.

6. Based on the experimental data, a correlation equation for the space-cycle

averaged Nusselt number in terms of Ao and Re.; has been obtained for

oscillatory heat transfer in a long pipe with uniform heat flux.
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7. A correlation equation for the pressure drop in an oscillatory flow through a

packed-screen column has been determined.

10.2 Future Work

The following recommendations are offered for future work:

1. Extend the present study of laminar oscillatory heat convection to the turbulent

flow regime.

2. Investigate the problem of heat transfer in a packed column and obtain the

interfacial heat transfer coefficient between solid and fluid.

3. Study the problems of oscillatory fluid flow and heat transfer in a pipe with the

compression and expansion effects taken into consideration.
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Fig.4.1h Temporal axial velocity variations of a laminar flow
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Fig.4.2a Temporal axial velocity variations at the onset of transition to
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92



2.0 r--r--r--r--r--r--......-......-......-......- ......-~

1.5

36027018090
O.....-.........&-...L-...&...-'-.....a................IIII:...;;..&---I"--OL.....L...-.&..-........&-...L-...&""""il

o

0.5

::> 1.0

Fig.4.2b Temporal axial velocity variations at the onset of transition to

turbulence: A,,= 47.3 and ReO) =302.2

93



A.= 97.1. Re.= 302.2

36027018090
ODL...a...-L.....lL.....li..-JL......iL......lL......lL......l~U-L~--&.--.Lo--l---I-.-.....-.....-...._

o

1.5

0.5

::J 1.0

Fig.4.3 Temporal axial velocity variations of a turbulent flow for
Ao= 97.1 and ReO) =302.2

94



0.1

270180

-0.1

90
_L......lr.._..l.................I.......I.......I~~~=...iL......lr.._..l.................I_.r._.r._.r._.r.~ -0.2

360

1.0 I-------la:::-----------I----I 0 flp/(LlD}

1.5

0.5

u

Fig.4.4a Temporal variations ofaxial velocity and pressure drop at the onset of

transition to turbulence: Aa= 97.1 and Rem=66.6

95



0.1

0.2

1.0 1---------4r---------I---~ 0 flp/(LlD)

1.5

u

0.5
-0.1

-0.2

Fig.4.4b Temporal variations of axial velocity and pressure drop at the
onset of transition to turbulence: Ao= 47.3 and ReO) = 302.2

96



1000 r--__-_--r---r'"~T"'T"T'"T"'--_r____,r__~r_T"""T"""'I1"'"I'"1

o laminar
• transitional
v turbulent

v v v v vv vv
0 100

'vvv~'-c ¥

0

0 0

0
0

0 0

1000100
10 L-_........_-I-......,L,--L.o..&...~.w...__...L---I~.L-...I'--'-..&...I~

10

Re(ll

Fig.4.5 Correlation equation of the critical dimensionless oscillation
amplitude of fluid Ao and the kinetic Reynolds number ReO)

97



0.10 ---------- .....-.....-...--"T"'""'''T'''""'...--~~~..,..._,1.0

0.08

0.06

0.04

0.02

0.8

0.6

0.4

0.2

300200100
o L.....i1--.l1--.l1o....li.....J~Io....IIo....I'___I.......'___I---&.--'---L......L_.&.._.&..__'___'__' 0

o 400

Fig. 5.1 Fill and b versus the kinetic Reynolds number ReO)

98



2

,-..
CI)-g 0

e
:::J

-2

o
Um=umaxsin(~)
Measured

36027018090
-4 L...-L...-L...-L....II.-.JI.-.JI.-.JI.-.JI.-.JL...-L.-L...-L...-L-II.-.JI.-.JI.-.JI.-.JI.-.Jl---I

o

Fig. 5.2 Comparison ofthe ensemble-averaged traces of the cross-sectional
mean velocity at the inlet and the assumed sinusoidal inlet

mean velocity variation

99



36027018090

o

100

-100

-200 L-........L-....I--..--..--..--..--..--..--...-I.-II-...I.-I.-I.-I.-I---O---O---'

o

Fig.5.3 Typical variations of the ensemble-averaged pressure drops
for Reo> =144.1 and 324.3 at A,,=26.42

100



Re.=64

..-
o

0.03

o

-0.03

o Experimental
Analytical

36027018090
-0.06 L-I--L.....ll.....-l~~......&......&--Io--L--r..--r..--a..-a..--L-a..-i--i--i-.-I

o

Fig.5.4a Comparison of the instantaneous friction coefficient of the fully
developed flow between analytical and experimental results

for Re(O=64 and 208.2 at A,,=16.5

101



Ao=16.5 Re.=256.1

-o

0.0125

o

-0.0125

o Experimental
Analytical

36027018090
-0.0250 L-.a....-.a....-.a....-~I--JL.-..IL.-..I ........i--I---L---L--L--'---'---'---a...--'---a.........

o

Fig. 5.4b Comparison of the instantaneous friction coefficient of the fully
developed flow between analytical and experimental results

for "=16.5 and 26.42 at Re(J)=256.1

102



1.0

• Exp. Ao= 16.5
v Exp. Ao= 26.42

0.8 0 Exp. Ao= 22.51
Analytical

0.6
0

-c
x
~
10...-

0.4

0.2

100 200 300 400

Fig. 5.5 Comparison ofthe cycle-averaged friction coefficient between
analytical solution and experimental data

103



0.03

i
.IiI 0.02
~
10........

0.01

0.01 0.02 0.03 0.04

Fig. 5.6 The accuracy ofthe predication equationof
the cycle-averaged friction coefficient

104



1.5 r----r----r--__--r---.,--r---~-~___,

o
<C
x

1.0

0.5

Ott X AD= 76.6/Re:+0.40624

v

•
•
6

o

Ao=53.42
Ao=66.77
Ao=89.03
Ao=95.40
Ao=113.51

560400240
0"----'----1-----1.---'-----'-----1.--"---.......- ......
80

Fig. 5.7 Correlation equation of the cycle-averaged friction coefficient in

terms ofAo and ReO) for oscillatory turbulent flow

105



54045036027018090
OL............_-I..._...L..........IL--.&._...L-_...L..........IL-......._....L-.......a..--.I

o

1.0

1.5 r-r---r--r--r----r--.--.,----r--.--.,---T--.---.

0.5

Fig. 5. 8 Comparison of the correlation equations of the cycle-averaged friction
coefficient between the oscillatory laminar flow and turbulent flow

106



X-20

..-~~
I "~I' ,, : \' .
'),.,
~- 2"~•

X-l9.2

~

X-lO

...

~)

,{
! \
\ \
V

X-o.8XIC()

~,.-r......
\' ,'"\
: \,. I
iii" ,
I t I
, '\ 2M!.........~ ...._~~ ~

V~-o
-..J

Fig.6.1 Transient velocityprofiles at different locations along the pipe
for Ao=lO, Rero=100 and LID=20



2.0

Re.=23

1.8

41

1.6

0 64
=>

1.4
100

1.2
196

108642

1.0 L-.--&_-J._--I..._-L._...L-_...J--_"'--_l-..--I_--'

o

x

Fig.6.2a Effects of Re., on the centerline axial velocity variations

along axial location in the entrance region at «jF90°

108



()

::>

0.9

o

-0.9

2250

2015105
-1.8 I...-'l-o.oll-o.oll-o.oll---'I---'l-o.oll-...ll..o-l--L---L..-.&..--I..-"--"--"-.........-"-.........~

o

x

Fig.6.2b Variations of the centerline velocity along the tube at different
instants oftimes for A,,=1O, Rew=lOO and L/D=20

109



Ao=10, Re.=100

fully developed region

1.0

0.5

-1.0

-0.5

o Ofhfo----------------\-~--------__lI::J

36027018090
-1.5 I....-I--I--I...-.&.-.&-....I..-....I.-....I.-....I.-....I..-....I..-.&-.L.-.&.-.&.-I...-.&.-.L.-...........

o

Fig.6.2c Transient centerline axial velocity near the exit

for A.,=10, Rew=lOO, andL/D=20

110



Re.=64

..-
o

0.05

o

-0.05

Num. solu.
--- Anal. solu.

36027018090
-0.10 I--I......IL......I --I.. .......L.. .....L-....&--....&--....

o

Fig.6.3a Comparison of the instantaneous friction coefficient of the fully
developed flow between numerical and analytical solutions

111



0.015

o

-0.015

\
\
\ Ao= 30. Re.=196
\

\~--~~-----------
~-\-----~------~~

\ 900 0
0

......
----~-------------------

1350 315
0

~-----------------~-------------... _ 1800 ...............

- ..... - 1. ,2700 --- -- --- --- --- --- --- \,,1

... --"-- -- -- -- -- -- -- .........._~
---r-------~

225
0

\,
\
I

\
302010

-0.030 1....-..a.--.a..--.lI....-...L.---'-_.&...--'----L_.&...-"""'---a..--.lL...-..a.--.a..-.w

o

x

Fig.6.3b Variations of the friction coefficient along the tube
at different instants for Aa=30, Rew=196 and L/D=30

112



0.03

0- 0.02

End effect End effect

0.Q1

End length. LiDI Fully-developed region IEnd length. LiD

201510

X

5
O......L......IL-...IL-...II.-..JL.......iL.-...lL.-...lL-...l...............L--'--"---L......L......I---I-....&.......&........

o

Fig.6.3c The end effectand the end length

113



0.08

0.06

- 0.04
Ao= 8. Ra.=100

0.0382710

Ao=8. Ra.=196
0.02646

0.02 Ao=20. Ra.=100
0.01571

108642
0L..-.....lL....---J_--...I......--J'-.-......L....-_J-_.&...-_L.-.....lL....----I
o

x

Fig.6.3d Effects of Ao and ReO) on variations of the cycle-averaged friction
coefficient along the axial location in the leftend of the pipe

114



10 .--r-""T"""-r--.......-""T"""-or----r-'""T'""-r--.....,.-~-r__.......

c Re(D=64
8 0 Re(D=256

v Re(D= 324

6

Cl
"'lD
--J

4

2

O.......--'--a..--.L_......._.L.-......._ ......._a..-........_....&..._a..-...."

10 20 30

Fig. 6.4 Correlation equation for end length in terms of A..,

115



Ao=8
A =15o
A =20o
A =30o

V

A

D

oI
I
\
\

1.0 \

\
\
\
\
\
\
\

-,
'-,

7----------
Fully-developed flow -----

0.5

-10

o
-c
x

100 200 300 400

Fig.6.5 Correlationequationfor the space-cycle averaged
frictioncoefficient in the end region

116



360270

R-0.47

180

-------~---

90
I ~{ ~ I

00

:::t== ::::Ito =:== _
I

0.8

0.6

0.4

0.2 t>\-15,Re.-64,LJO-40

CI)

7.1a Temporal temperature variations at X=6.2 and at different

radial positions for Ao=15, Re., =64, and LID=40

........
~ 2, ,

-1 • Ao- 15, Re.-64, UO-40

::J 0 LO. 7
----~~~ ~ ~~~--- --- --- ..... --""'---- - - -- ..... ---

36027018090
-2 ' ,

o

•
7.1h Temporal velocity variations at X=6.2 and at different

radial positions for Ao=15, Re(t)=64, and L1D=40



0.8

360270180

R-0.47

-0

90
o' --- -=::: Io

0.4

0.2

0.6
CD

7.2a Temporal temperature variations at X=6.2 and at different
radial positions for A.o= 15, Re(J) =250, and LID=40

J
R. 0.47 »>

.- ~...,,""'"
-_.-~

----......- ............
......,-

Ao.15. Re.-250. UD·40

15 I I

0.5

-0.5

;:)

..­..­
00

36027018090
~I I

o

•
7.2b Temporal velocity variations at X=6.2 and at different

radial positions for A.,=15, Re(J)=250, and L1D=40



00

450

900

1350

1800

2250

2700

3150

~.... Ao=15. Rem= 64. LlD= 40 __

\\~'-"''''''_ X=4.5 __ ...,' =-===
0.8 \ \ ",... <, "" - ---

\ v > ------------' / ---

\\\ '\., ---"(' ------
0.6 \ \ \ >< ' r u

\\~y " ,/ ..../-/':
\ \ -\ -- / I,
\\ \ / "

\ ",
0.4 \\', / '/

\\ ......- --- / "\ , ...... I\- ......" /- - .............. ~ ,, ........ ~~ ,
" --- ,/

02 '- ... '. --------

CD

0.500.25o

R

-0.25
O&....",jl--l"'--ll.....L.....L.....L....&.--I.-I---I...................&.-..a..-..&-.&.-.&.-Lo..-L......I

-0.50

Fig.7.3a Development of temperature profiles at X=4.5
for Ac=15, ReO) =64, andLID=40

119



00

450

900

1350

1800

2250

2700

3150

X=4.5

0.2

~\
~\\ ,

0.8 \\ \,

\\\\(, "-
\\\ \ -, .... ""... ,
~, \ ' I

\

\ '....... --- -- "" I I "

\~c-::==~ /),-/-l
\\', <, ...__ ./' I i,
" --__- / I

, I,

~ \ / ;
'" ~ --- --- -'7- -\-- --- -- -," --- - ,\, ......_------_./ /

.... --- ----"------------------

0.6

0.4

CD

0.500.25o

R

-0.25
OL-.iL....l--.L-&.--L--L.--L.--'---.a..~............&...........L.-L.....II-&--a.-&.---I

-0.50

Fig.7.3b Development of temperature profiles at X=4.5
for 1\,=15, Rew=250, and LID=40

120

- -- ---------- -----



0.8

0.6

'~' ~~~~ ",
~ ~' .........---- -- -: .........""~'l

\ ~--------- ~~''-0.. .... , ,.,..,..,-~,

",.... ...~ ,"' '-........ --------- ",,' /,
'" , ... j ,

, " ...... - ........., j..... - ....... ,"' .............. ,.. ," ----_..... ,..........- _......,..---

00

-- - 450

-- 900

- --- 1350

---- 1800

--- 2250

--- 270 0

------ 3150

0.4

0.2

X=15

0.500.25o

R

-0.25
Ol.--l~---"'......&.......&.--'-.....L......L......&-""""""""""""'..L-..&......&.-I.--I~---L""'"

-0.50

Fig.7.4a Development of temperature profiles at X=15
for Ao=15, ReO) =250, and LID=40

121



00

1.0 -- - 450

Ao= 25. Rem= 250. L/D= 40 -- 900

- --- 1350

X=15 ---- 1800

0.8 --- 2250

--- 2700

------ 3150

0.6

CD

0.4 -......
_...-

0.2

0.500.25o

R

-0.25
0L.......l.........---L......L---L--L--L--&................................a-..........a.-..L..-.a..-..................1.-.I

-0.50

Fig.7.4b Development of temperature profiles at X=15
for A,,=35, Re Ol=250, and LID=40

122



1.0
~~ ... --~~,

'/ / " "
II " ~ \ \

O.B I I I \ \ \
I, " --- 60° \ \ \

, I I ---- 90° , \ \
I I : ---- 120° \ \ ,

0.6 ' I I 30° \ \ \
I I " \ \ ,

0
I I I , \ \

CD I I : \ \ ,
I I I , \ \

0.4 J I : \ \ \

I I I , \ \
I I : Ao=15. Re.=180. LlD=40 \ \ \

I I I , \ \
0.2 I I : \ \ \

I I I \ \ \I, : \ "'I I
o ' '--0 10 20 30 40

X

Fig. 7.5 Variations of the centerline temperature along the axial position at

different phase angles for A,,=15, Re., =180, and LID= 40

123



360

34----/
I

270

X=38,.... .......

I "I \
I \
I 36.8 \
I r:<,

I / -,
I I
I I

I

18090

2

6

Fig.7.6a Temporal variations of the local instantaneous Nusselt number
at different axial locations for Aa=15, ReO) =64, and LID=40

124



16
Ao=15. Re.=250. LlD=40

X=38
/-..

12 / \
I \
I \
I \

\
~

I 36.8 \
:::::J 8 I r>. \z I / <,

I I -,
I I

I
4

Fig.7.6b Temporal variations of the local instantaneous Nusselt number
at different axial locations for Aa=15, ReO) =250, and L/D=40

125



Fig.7.7 Effects of the dimensionless osciIlation amplitude of fluid Aa and the
kinetic Reynolds number ReO) on the cycle-averaged local

Nusselt number at LID=40
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APPENDIXB

MEASUREMENT UNCERTAINTIES

An uncertainty analysis based on the method described by Moffat 1988 was

performed. Uncertainty in the kinetic Reynolds number ReO) or (ReO)nh was

dominated by the measurement of oscillation frequencies, and was estimated at 2.3 %.

Uncertainty in the dimensionless oscillation amplitude of the fluid Ao or (Ao )Dh was

computed to be less than 0.5%, which was primarily influenced by errors in measuring

the stroke and the diameter of the air pump. The statistical uncertainty in the

ensemble-averaged velocity is estimated to be 2.5%, assuming uncorrelated, normally

distributed measurements with a 95% confidence level. Similarly, the statistical

uncertainty in the ensemble-averaged pressure drops varies from 6 to 9%. The main

source oferror in the reported results on the friction coefficient and the pressure drop

factor is statistical uncertainty in the ensemble-averaged quantities of velocities and

pressure drops. The largest uncertainties in the measurements the cycle-averaged

friction coefficient Cf,exp and the cycle-averaged pressure drop factor f were computed

to be about 11.5% and12.5%, respectively. The experimental errors associated with the

Nusselt numbers were limited primarily by the measurements of temperatures and

heat flux. The largest uncertainties in the space-cycle averaged Nusselt numbers Nu

were estimated to be about 9%.
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