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ABSTRACf

A detailed numerical investigation has been performed for forced and

mixed convection in a vertical channel and a cylindrical tube filled with a fluid-saturated

porous medium, with particular emphasis on the developing region. The uniform wall

temperature boundary condition has been assumed. The full momentum equations

derived by Hsu and Cheng have been used, which accounts for variable porosity and

permeability as well as viscous and inertia effects. A modification has been proposed to

the dispersion conductivity model given by Hsu and Cheng, to take into account the

ratio of the particle diameter to the characteristic length of the problem.

An expression that accounts for the variation of porosity in the

streamwise and cross-stream directions has been introduced to take into account the

variation of porosity near the walls, entrance and the exit sections. The empirical

constants N, C1 and CPa, in the porosity function, and the Ergun constants A and B, in

the permeability expression, have been determined by a comparison of the numerical

and observed data for the pressure drop in a packed tube.

The predicted hydrodynamic entrance length has been found to be 10 to

20 particle diameters long for 0.024 s Ys 0.097 and 1 ~ Reds 103 (where yis the ratio

of the particle to the tube diameter and Redis the Reynolds number based on the particle

diameter, dp) , with the shorter length corresponding to the smaller particle size. For all
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practical purpose the entrance length can be considered to be about the size of the

diameter of the tube (or the plate separation distance).

The empirical constants Cd and CJ) in the proposed dispersion model have

been determined by comparing the predicted and observed heat flux data. The proposed

porosity function with the present dispersion model have been found to predict the

observed heat flux data of the air/glass sphere system to within 10% for 0.06::;; y::;; 0.12

and 103 ::;; Reo::;; 2 x 104 (where Reo is the Reynolds number based on the tube

diameter, D) for the packed tube. For the air/chrome steel sphere system (y =0.12 and

0.14, 103 ::;; ReD::;; 2 x 104) the agreement was within 19%. The higher error in this

case has been attributed to the large difference between the thermal conductivities of air

and chrome steel, in which case the thermal equilibrium assumption invoked in the

derivation of the energy equation may not be applicable. For the packed channel

geometry (y =0.06 and 0.12 for the Freon/glass sphere system and y =0.125 for the

3 4
Freon/chrome steel sphere system, 2 x 10 ::;; Reo::;;2 x 10 ) the agreement between the

observed and calculated heat flux was within 20%, the discrepancy being due to

improper experimentation and variable property effects of the fluid next to the heated

surface which was not taken into account in the numerical simulation. The volume

averaged method that is used to derive the governing equations has been found to be

applicable to problems in which y::;; 0.15.

The effect of using a fluid with a higher Prandlt number or a solid with a

larger thermal conductivity has been observed to enhance heat transfer at high and low

flow rates respectively. The exact values of the Reynolds number at which the above

iv



.. ...".-"'....-.....,",....... ~-...,. ..--.., ..~ ...... -- ". -_. --- "., ..

mentioned enhancement takes place was found to be dependent on the Prandlt number
' .."

of the saturating fluid.

Finally, it has been predicted in this study that the buoyancy force

would play an important role in the heat transfer process for the air/glass sphere system

with y =0.06, if Gro/ReD > 9 x 105 for the packed tube and GrHlReH > 9 x 104 for the

packed channel configuration.

v
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CHAPTER 1

INTRODUCTION

1.1 Importance of the Study:

The number of investigations on convective heat transfer through a

fluid-saturated porous media has been on the rise during the past decade. The need for

fundamental studies in porous media heat transfer stems from the fact that a better

understanding of the physical phenomena is required for a host of thermal engineering

applications in which porous materials are present. The accumulated impact of these

" , studies is twofold: first to improve the performance of existing porous-media-related

thermal systems, and second to generate new ideas and explore new avenues with

respect to the use of porous media in heat transfer applications. Some examples of

thermal engineering disciplines which stand to benefit from a better understanding of

heat and fluid flow processes through porous materials are - geothermal systems,

thermal insulations, grain storage and oil extraction. Many industrial operations in

chemical and metallurgical engineering involve the passage of a fluid stream through a

bed of solid particles to obtain extended solid fluid interfacial areas and good fluid

mixing, thereby enhancing heat transfer. Typical examples of applications involving

such systems include catalytic and chromatographic reactors [31,38,82,83], packed

absorption and distillation towers, ion exchange columns, packed filters, pebble-type

heat exchangers, etc. Packed bed systems have also found its way into the electronic

industry [33-37]. For example, Chu and Hwang [37] proposed the use of a bed of
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particles consisting of spherical plastic beads surrounding electronic components with a

dielectric coolant flowing through the bed as a means of cooling components. This

technique is called the direct liquid immersion cooling because it brings the coolant into

direct physical contact with the chips or packages to be cooled. The beads would in this

case act as turbulators for enhanced heat transfer.

The design of porous media systems that are used in chemical and

metallurgical industries and in electronic cooling, is decided by the pressure drop, fluid

flow and heat and mass transfer characteristics in the packed bed. Considerable

attention has been paid to the aforementioned aspects because of their direct influence

on the optimization and stability of the design of these systems. Thus, a need for a

thorough analysis of all the aspects of flow, heat and mass transfer in packed bed exists

in light of its usefulness in the design and operation of systems employing packed bed

units.

1.2 Natural and Forced Convection in Porous Media:

In some of the applications mentioned above, e.g. geothermal

reservoirs, the flow is unbounded and in the absence of an external pressure gradient,

heat transfer takes place primarily due to natural convection [46,47]. Whereas when the

flow is confined, e.g. in heat exchangers and in electronic cooling, where an external

pressure gradient exists, forced convection predominates. Needless to say that in most

of the above mentioned applications mixed mode of heat transfer exists. In geothermal

reservoirs, for example, the effects of forced convection may become important near a

well because of pressure gradients that are generated as a result of withdrawal or

reinjection of geothermal fluids. Other examples of a porous media systems in which
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mixed convection exists are in a saltless solar pond [49] and in building insulation

structure [48].

1.3 Early Mathematical Models for Heat Transfer in Porous Media:

Early studies on the transport phenomena in porous media are based on

Darcy's law as the momentum equation with the same energy equation as in the

classical laminar heat transfer problem. The Darcy law is an empirical equation which

states that the volumetric average velocity u in a packed column is proportional to the

pressure drop along the packed column, i.e.,

(1.1)

where k is the permeability, 1.1 is the viscosity of the fluid, Prrepresents the pressure

and x the direction of flow.

In 1901 Forchheimer [128] found experimentally that the Darcy law is

invalid at high flow velocities. Forchheimer added a velocity square term in the Darcy

law to account for the inertial effect which gives

1.1 u P f u2 dp-
-+--=--
k 1k dx

where f is the inertia coefficient and p is the density of the fluid.

(1.2)

To account for the shearing stress, Brinkman [12] added a shearing

stress term in the Darcy law to give

1.1 u P f u2
_ dp, 1.1 d'u-+-----+--

k VI( dx <p dy2
(1.3)
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where <p is the porosity of the medium and y is the cross-stream coordinate direction.

Applications of these early mathematical models to natural convection in geothermal

reservoirs have been given by Cheng [41].

1.4 Recent Mathematical Models for Convective Heat Transfer in Porous Media:

As mentioned in the previous section, early mathematical models on heat

transfer in porous media were based either on Darcy law, the Forchheimer model or the

Brinkman model as the momentum equation. In addition, the permeability and porosity

were assumed to be constant and the thermal dispersion effect was assumed to be

negligible. Recently, a comparison of experimental data with theoretical results based

on early models found that discrepancies between theory and experiments exist under

certain conditions: when the dimensionless particle diameter (i.e. the ratio of the

particle diameter to the characteristic length) is not vanishingly small, and when the

velocity is high. The former has been attributed to the variable porosity effect while the

latter to the thermal dispersion effect. These effects which have been neglected in early

models will be discussed in this section.

1.4.1 Variable porosity effects:

A porous media is characterized by its porosity q> which is defined as the

fraction of the void space in an elementary volume. For an unbounded medium

randomly packed with uniform size spheres, the porosity varies from 0.36 to 0.4. If an

impermeable surface is present, the porosity of the medium changes drastically from

nearly one near the surface to 0.36 - 0.4 in the core. The asymptotic value is reached

by a damped oscillating function. For ideal metal spheres, Benenati and Brosilow [7]
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and Roblee and Baird [115] measured the porosity as a function of distance from the

wall of a packed tube. Their measurements show a high porosity region close to the

external boundary. The damped oscillatory porosity data of Benenati and Brosilow [7]

was correlated by Martin [3] and is expressed as the following:

cP=
CPmin + (1 - CPmin) Z 2

CPa + (CPmin - <j>a}exp [- z/ 4] cos (1t Z / I)
(1.4)

where z = (2 Y/ dp - 1) with Yrepresenting the distance from the wall; <j>min = 0.23 and

CPa =0.39, I =f2T3 for D/d p~ 00, and I = 0.876 for D/dp =20.3, with D and dp

denoting the diameter of the tube and the solid particles respectively. It should be

pointed out that the values of I in Eq. (1.4) are available only for D/dp =20.3 and

D/dp ~ 00. A functional relationship of I and D/dp is not available in the literature at the

present time.

In view of the fact that the governing equations for porous media flow,

are volumetric average equations, the oscillation of porosity were neglected in most of

the theoretical studies [9-11,13-16,19-22,43,45,96,97,99,106,108,113], and the

variations of porosity were approximated by an exponential function of the form :

(1.5a)

where CPa is the asymptotic value of porosity and y is the transverse distance from the

wall. It should be noted that Eq. (1.5a) should be considered as a line averaged

porosity ofEq. (1.4) in the direction normal to the wall. Since Eq. (1.4) is a correlation

equation for the experimental data of Benenati and Brosilow [7] which gives the line
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average porosity parallel to the wall, Eq. (1.5a) is a good estimate of the volumetric

average porosity at any location in the packed bed.

In Eq. (1.5a) the porosity variation is considered only in the cross­

stream direction. However, in the real situation porosity would also vary in the

streamwise direction due to the presence of the surfaces (usually screens) which

confine the porous medium or when the system is partially filled with porous media. In

the present study (wherever applicable) therefore, the following form of the porosity

variation was assumed :

cP =CPa [ 1 + C1 exp (-N YI dp)] [ 1 + Cz exp (-(L - x)/ dp }]

cP =cpa [ 1 + Cl exp (-Ny I dp)] [ 1 + Cz exp (-x I dp)]

L/2::;;x:S;L (1.5b)

(1.5c)

A comparison of the fluid flow and heat transfer results with the assumption of porosity

distribution given by Eqs. (1.4) and (1.5) will be presented in Chapter 5. In Eq. (1.5)

the values of the empirical constants cpa, N, and C1 were determined in this study by a

comparison of the numerical solutions of the pressure drop and heat flux with available

experimental data while the value of Cz was calculated (see Chapter 5).

Due to the large-scale variation in porosity (and hence permeability)

close to an impermeable surface, a number of important effects such as flow

maldistribution and channeling takes place. Channeling, which refers to the occurrence

of a maximum velocity (or velocity overshoot) in a region close to an external

boundary, has been reported by a number of investigators such as Schwartz and

Smith [5], and Schertz and Bischoff [6]. Their velocity measurements in packed beds

show a maximum close to the boundary which results from larger porosity value near

the boundary. Chandrasekhara and Vortmeyer [20] used the measured porosity
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variations of Benenati and Brosilow [7] and calculated numerically the velocity

distribution in an isothermal packed bed. Chandrasekhara and Vortmeyer's results also

show a peak velocity near the wall. Due to the variation of porosity in the packed bed,

the effective thermal conductivity of the medium, which depends on the fluid and solid

conductivities and upon the porosity [118], will also vary. As a result of the flow

channeling, therefore, heat and mass transfer will also be affected. Thus, there is a need

to include the variable porosity effects on flow, heat and mass transfer in the vicinity of

an impermeable boundary.

1.4.2 Variable stagnant thermal conductivity effects:

The stagnant thermal conductivity of a porous media depends on the

thermal conductivity of the fluid phase kr, the thermal conductivity of the solid phase

kp, and the porosity of the medium <po Thus, the stagnant thermal conductivity is

nonuniform in a variable porosity medium.

The value of the stagnant thermal conductivity, ks, can be evaluated by

various methods [28,63,118,126,127] . By considering the influence of the particle

shape and the variable porosity effect, Zehner and Schlunder [28] have obtained a semi­

analytical expression for the stagnant thermal conductivity which is given by :

ks =[1- (l:(j)] + 2 fl=(j)[ (1 - A) S In(_1)JS + 1) _ (S - 1) ]
kf (I - AS) (1 _ AS) 2 A S 2 (1 - AS)

(1.6)

[
1 - <p]10/9

with S = Cfonn --q;- and A =kf / kp where S is called the deformation factor and
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Cronn (with a value of 1.25 for spherical particles) is the influence coefficient of

deformation factor for the conduction fraction determined from experimental data.

1.4.3 Thermal dispersion effects:

The presence of solid particles in the fluid introduces an additional

transport mechanism called dispersion which results from mixing of the fluid in the

pores. At high flow rates, dispersion overwhelms diffusion, thus dominating the

transport process. It should be emphasized that dispersion occurs even at low Reynolds

numbers where the flow is laminar. Dispersion in packed beds is similar to turbulent

eddy motion. However, their mechanisms are different in nature. Turbulent eddies arise

from the instability of the flow, whereas dispersion in packed-beds is due to the

existence of the solid matrix which forces the flow to go around it thus causing mixing

of the fluid in the pores. The dispersion conductivity, therefore, represents the transport

induced as the fluid is forced to follow a tortuous path around the solid particles. Thus,

the dispersion conductivity depends upon the fluid velocity and the size of the particles

around which the fluid travels. Experiments on forced convection in packed columns

[1,56,61,65,79] have shown that the average radial or transverse thermal dispersion

conductivity at high Reynolds numbers can be correlated as a linear function of

Reynolds number as follows:

(~)av / kr =C~ Pe (1.7)

where (~)av is the cross-sectional average of the transverse thermal dispersion

conductivity; kf the thermal conductivity of the fluid ; C~ =0.09 - 0.1 [65,79] ; Pe the

Peclet number defined as Pe =Red Pr =Uj dp/a (with Pr =vto. being the Prandtl
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number of the fluid and R~ being the Reynolds number based on the particle diameter

dp and the mean velocity u, and a being the thermal diffusivity of the fluid). Based on

the correlation given by Eq. (1.7), Cheng et al. [8-11,15,119,120] assumed that the

local transverse thermal dispersion conductivity ~ is

(1.8)

where the factor u / u, was introduced to account for the local velocity variation. In

Eq. (1.8), I is a dimensionless dispersive length (normalized with respect to the

particle diameter dp) . The dispersive length was represented by a two-layer model in the

earlier papers of Cheng et al. [8,9]. In a series of later papers Cheng et al.

[10,11,15,119,120] identify I as the Van Driest type of wall function [124] given by

1= 1 - exp [ - (ra - r) / (0 dp] (1.9)

where (0 is an empirical constant. Cheng et al. [8,15,29] found that without the wall

function in Eq. (1.8) the observed steep transverse temperature gradients from

experiments cannot be reproduced in theory. This implies that the channeling effect

alone is not responsible for the observed temperature gradient behavior. The empirical

constants C, (also called the dispersion coefficient) in Eq. (1.8) and (0 in Eq. (1.9)

were obtained by comparing the heat transfer characteristics with the available

experimental data.

Hsu and Cheng's dispersion model:

Carbonell & Whitaker [110] and Hsu & Cheng [45,98] show that

dispersion enters the volume-averaged energy equations by decomposing the
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convective term into the bulk convective flux and the interpore transport due to local

spatial variations in velocity and temperature. This additional transport resembles a

diffusive flux and thus is equated to the global temperature gradient and a dispersion

conductivity, k<I [110]. Hsu & Cheng [45,98] obtained a closure scheme for the

dispersion conductivity term and showed that it depends on the flow velocity and

particle size of the porous medium. This agrees with the empirical models from various

heat and mass transfer studies outlined in Wakao et al. [39] and Wen et aI. [114]. Hsu

& Cheng [45,98] obtained an expression for the dispersion conductivity tensor by

giving special consideration to creeping flow at low Reynolds numbers and boundary

layer flow and wakes at high Reynolds numbers. Accordingly at high Reynolds

numbers Redl » 10

k<I (l-CP)-=Cd -- Pel
kf cP

and forlow Reynolds numbers (Redl « 10)

(l.lOa)

(l.lOb)

where the Peclet number Pel = Redl Pr with Pr and Redl= u dp / v denoting the Prandtl

number and the local Reynolds number respectively.

Present dispersion model:

It has been reported by Kunii et al. [69] that the value of the coefficient

Cdin Eq. (1.8) depends on the ratio of the particle size to the characteristic length (also

refered to as the dimensionless particle diameter) of the packed bed. Preliminary
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numerical simulations, conducted in this research, using Eq. (1.10) as the dispersion

conductivity model verified this dependance of Cdon the dimensionless particle

diameter. In order to obtain a unique value of Cd(which is assumed to be a constant),

the inclusion of a Van Driest type of damping function [124] into Hsu & Cheng's

dispersion conductivity model is proposed in this study. This amounts to modifying

Eq. (1.10) and writing it as the following:

~ (1-<P)- =Cd -- [1 - exp {-(ro" r)/ rodp}] Pel
kf <p

Redl» 10

Redl« 10

(LIla)

(1. 11b)

with the values of Cd and co to be determined by comparing the numerical solution of

the heat flux with the available experimental data. The Van Driest type of wall function

not only damps the value of the dispersion conductivity at the wall but also takes into

account the diameters of the packed bed and the particle. The Van Driest wall function

[124] has been very successfully used in classical turbulent convective heat transfer

problems and is therefore reasonable to expect to be valid in porous media heat transfer

problems especially in the wall region where porosity is nearly unity. It should be

mentioned that because of the dependance of the dispersion thermal conductivity (e.g.

Eq. (1.10 or 1.11» on porosity the values of C, and ro depend on the porosity function

chosen.

Two other dispersion models that are available in the open literature

have also been considered in this study to evaluate their accuracy in predicting the heat

flux for forced convection in a packed bed. These dispersion models will be discussed

next.
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Kuo and Tien's dispersion model:

Kuo & Tien [121] proposed a theoretical model for the transverse

dispersion in packed-sphere beds that includes the core and the near wall region. In the

core region, the transverse dispersion process was depicted through the use of the

mixing-length concept and statistical averaging. Their results indicate that the dispersion

coefficient is independent of the porosity variation in this region. Near the bounding

wall, the perturbation concept was utilized to establish a theoretical expression for the

dispersion coefficient distribution. To a leading-order approximation the dispersion

coefficient was found to be proportional to the square of the dimensionless distance

from the wall (nondimensionalized with the sphere diameter). To match the wall and the

core regions, a damping function, like that of Van Driest [124], was introduced to

account for the reduction in the dispersion coefficient near the wall. The transverse

dispersion conductivity model ofKuo and Tien [121] can be written as follows:

(1.12)

where the value 0.075 in Eq. (1.12) is the dispersion coefficient.

Koch and Brady's dispersion model:

Another dispersion model which has been considered in this study was

proposed by Koch & Brady [122]. Koch and Brady obtained an ensemble averaged

energy equation by using the concept of the representative elementary volume. For

periodic structures, they were able to obtain closed form solution for the dispersion

coefficient. The following assumptions or simplifications were made in their analysis:
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a) dilute concentration of particles - referring to large porosity and thereby permeability,

b) single-particle velocity disturbance found as the solution of the Brinkman momentum

equation - i.e. inertial drag force term was neglected, and

c) slowly varying temperature field - equivalent to the thermal equilibrium assumption.

The transverse component of the dispersion conductivity, with the effect of particle

interaction taken into account, for high Peclet number flows (Pe» 1) is given in [122]

as the following:

~ =0.14 <P iT1 - <P) Pel (1.13)

where the value 0.14 in Eq. (1.13) was obtained analytically. Since Koch and Brady's

dispersion model was derived based on the assumption of constant porosity, it can only

be applied when the ratio of the particle diameter to the characteristic length of the

problem is small.

1.5 Studies on Forced Convection :

1.5.1 Experimental studies:

More than thirty experiments have been performed on forced convection

through cylindrical [1,6,17,32,52-78] annular [79-81] and rectangular [2,21,51,116]

packed columns. The purposes of the experiments were primarily to obtain correlation

equations of the effective radial thermal conductivity and the wall heat transfer rate for

the design of wall-cooled catalytic reactors. A rational design of this type of reactor is

essential in order to avoid disastrous runaway temperature, low conversion rate and

catalyst damages.
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1.5.2 Studies on hydrodynamically and thermally fully developed flows:

Cheng and Vortrneyer [8], Cheng and Zhu [11] and Cheng and Hsu [9]

investigated analytically the fully-developed forced convection problem in a packed

channel, packed circular tube and an annular packed bed respectively. A Van Driest

type of wall function was introduced to account for the thermal dispersion effects near

the walls in the cross stream direction. The method of matched asymptotic expansion

was employed to obtain an analytical solution for the velocity distribution in the packed

bed. The fully developed temperature profile was obtained numerically by integrating

the energy equation. Comparisons were made with the experimental results of the

temperature distribution and heat flux of Schroeder et al. [2] for the packed channel

(asymmetric heating), with Verschoor et al. [17] (constant wall temperature) and

Quinton et al. [61] (constant heat flux) for the circular tube configuration, and with

Yagi et al. [105] for the annular packed tube case.

1.5.3 Studies on hydrodynamically fully developed and thermally developing flows:

For the case of thermally developing flow in packed beds, Vafai and

Tien [13] and Vafai [14,99] investigated numerically the forced convective problem in

the vicinity of a heated flat plate embedded in a porous medium. Vafai [99] derived an

approximate solution for the thermally developing flow problem by integrating the

energy equation with the approximation of a second-order polynomial for the

temperature distribution. The resulting equation was solved numerically to obtain the

temperature profile. Cheng et al. [15] investigated numerically the forced convective

flow problem in the entrance region of a packed channel. Chowdhury et al. [16] and
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Poulikakos et aI. [50] reported their numerical results for forced convection in a packed

channel and a packed tube. But there exists a basic difference between these works.

Poulikakos et aI. [50] did not consider the thermal dispersion effect whereas Cheng et

aI. [15] and Chowdhury et al. [16] included it in their work. Cheng et al. [15] and

Chowdhury et al. [16] obtained numerical solutions for the hydrodynamically fully

developed and thermally developing forced convective flow problem by solving the set

of finite difference equations with the Tri-Diagonal Matrix Algorithm (TDMA).

Poulikakos et aI. [50] used the Keller Box method [100,101] for the discretization of

the energy equation and the block elimination method to obtain the solution. Hunt and

Tien [22] numerically analyzed the thermally developing flow problem in a packed tube

with the thermal dispersion conductivity taken into consideration in an approximate

manner. Hunt and Tien [22] found their numerical solution of the temperature profile to

be in good agreement with Plautz and Johnstone's [1] experimental data. The effects of

thermal dispersion on forced convection in high-porosity fibrous media was

investigated both numerically and experimentally by Hunt and Tien [108]. Their results

show that the porous medium enhances heat transfer from the surface as compared to

those for slug or laminar flow in an empty tube.

1.5.4 Studies on hydrodynamically and thermally developing flows:

Only a few papers discuss hydrodynamically and thermally developing

flow problems in packed beds. Kaviany [90] reported numerical results for laminar

flow through a porous channel bounded by isothermal parallel plates; the inertia term,

and variation in matrix porosity were not accounted for in this study. Low Reynolds

number heat transfer in a packed bed was studied numerically by Khader and Goodling
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[107]. Kaviany [102] obtained numerical solution for the hydrodynamically and

thermally developing forced convection problem in the vicinity of a semi-infinite flat

plate embedded in a porous media, through the application of (a) the Keller Box finite

difference method [100,101] which was solved by the Newton's iteration method, (b) a

third order expansion method and solved by the fourth-order Runge-Kutta-Gill method,

and (c) the integral method which was solved numerically.

1.6 Studies on Mixed Convection:

1.6.1 Experimental work:

Reda [93] conducted an experimental and numerical investigation of

mixed convection about a cylindrical heat source in a vertical annular region filled with

a fluid-saturated porous medium. To the authors' knowledge no other experimental

study has been reported on mixed convection in a packed sphere bed in a vertical

column at constant wall temperature boundary conditions.

1.6.2 Numerical work:

In the case of mixed convection in porous media, early numerical results

were reported by Cheng [84,85] and Cheng et al. [4], Ranganathan and Viskanta [86],

and Minkowycz et al. [87] for problems involving external flow. Islam and

Nandakumar [88] solved the problem of buoyancy-induced secondary flow in a

horizontal porous rectangular channel. Numerical studies of mixed convection in

horizontal porous layers have been presented by Haajizadeh and Tien [89],

Prasad et al. [91] and Lai et al. [104]. Lai et al. [94] reported numerical results for

mixed convection in a vertical porous layer for the case when a finite isothermal heat
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source is located on one vertical wall while the other wall is isothermally cooled.

However, their study is restricted to Darcy flow. Recently Hadim et al. [95] conducted

a numerical investigation for mixed convection in a packed channel. In solving the

mixed convection problem, Lai et al. [104] and Hadim et al. [95] used the control

volume based scheme [27] to discretize the governing equations. The resulting

discretized algebraic equations were solved using the Gauss-Seidel point iterative

method. To the authors' knowledge, no other studies exist for the problem of mixed

convection in a vertical packed column. In none of the studies discussed in this section

were the effects of thermal dispersion taken into account.

1.7 Scope of the Present Study:

In this study, a detailed numerical investigation for forced and mixed

convection in a vertical channel and a tube, filled with a fluid-saturated porous medium,

was performed with particular emphasis on the developing region. For the packed tube

configuration a uniform wall temperature, 4J, is maintained at the wall which is higher

than the uniform inlet temperature, ti, of the fluid such that, for the mixed convection

case, buoyancy effects are assisting the upward flow. For the packed channel case

temperatures of the two opposite walls are maintained at 4t and t, (th > tc) ' The fluid at

the inlet of the channel is isothermal at temperature li. The present investigation uses the

full momentum equations derived by Hsu & Cheng [45,98], which accounts for

variable porosity and permeability as well as viscous and inertia effects. A model that

accounts for the variation of porosity in the streamwise and cross-stream direction has

been introduced. In the energy equation the thermal dispersion effect has been taken

into account by using the closure scheme model given by Hsu & Cheng [45,98] and a
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Van Driest typeof dampingfunction [124] as in classicalturbulent heat transfer

problems.The Van Driest function damps the dispersion near the wall andalso takes

into accountthe effectof theratioof the particle diameter to the characteristic lengthof

the problem on dispersion.



CHAPTER 2

MATIIEMATICALFORMULATION

In the present study, forced and mixed convection in a vertical channel

and a tube filled with a fluid-saturated porous medium were investigated numerically.

The systems under investigation are shown schematically in Fig. 1. Figure 1a depicts a

vertical channel filled with a fluid saturated porous medium and bounded by two solid

walls, which are maintained at different temperatures !It and tc (!It > tc) ' The fluid at the

inlet of the channel is isothermal at temperature t;.. Figure 1b shows the conditions for a

packed tube heated at a constant wall temperature. In this case the tube inlet

temperature, t;., is less than the wall temperature, !It. In both cases, an external pressure

gradient is imposed and the inlet velocity is u., At the entrance region where the

relatively cold fluid enters, it is expected that the fluid buoyancy force would play an

important role in the heat transfer process. The buoyancy force becomes important

because the fluid next to the hot wall rises due to decrease in density and then flows

downstream. An intent of this study was to investigate both mixed and forced

convective flow and heat transfer characteristics in a vertical packed column.

2.1 Governing Equations:

The analysis of flow and heat transfer is usually based on the transport

equations resulting from the differential balance laws. To predict global effects such as

flow resistance or heat flux from a given object, requires detailed information of the
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surrounding velocity and temperature fields. This information is extracted from the

solution of the associated transport equations, subject to the pertinent boundary

conditions. When flow through a complex structure such as a porous medium is

involved, these equations are still valid inside the pores, but the geometric complexity

prevents general solutions of the detailed velocity and temperature fields. Instead, some

form of the 'macroscopic' balance equations based on the average over a small

volumetric element must be employed. A common practice is to replace the

'microscopic' momentum and energy equations by the corresponding 'macroscopic'

equations with the help of some closure schemes.

Flow parameters in porous media, such as velocity and temperature, are

often determined by averaging the local quantities over some representative volume

[109,110]. For higher flow rates, the velocity profile is often quite irregular and local

velocity measurements fluctuate from the average value, as indicated by the velocity

measurements by Lerou & Froment [111], Vortmeyer & Schuster [19]. To account for

these variations, the velocity is averaged over a small local volume. Slattery [109] and

Carbonell & Whitaker [110] showed that this local averaging incorporates both global

flow variations and local interpore transport. To insure that the average quantity is

meaningful, the overall geometry, such as the tube diameter (or channel height), must

be significantly large than the length corresponding to the particle or pore size.

Furthermore the averaging volume must be small enough to minimize any gradients

within the volume. Such a volume is often refered to as a Representative Elementary

Volume (REV) [103].

In the present study it has been assumed that the flow in the packed bed

is steady, incompressible and two-dimensional. The porous medium is considered to be
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saturated with a single phase fluid which is in thermal equilibrium with the solid matrix.

The thennophysical properties of the solid matrix and the fluid are assumed to be

constant except in the body force tenn (i.e. in the mixed convection problem) of the

momentum equations. The macroscopic continuity and momentum equations for a

variable porosity medium, from the work ofHsu & Cheng [45,98] are:

v . u=o (2.1)

(2.2)

where ii is the Darcy velocity vector which can be expressed in terms of the volume

average (macroscopic) velocity vectorj ii) as follows

u=cp(u)

In the momentum equation cp = 'itf / l} is the porosity, with 'itf denoting the volume

occupied by the fluid phase in the representative elementary volume 'it; p, Il and 13 are

the density, viscosity and thermal expansion coefficient of the fluid, p =cp (Pr - Pi),

where Pr is the volume averaged fluid pressure; g is the gravitational acceleration; tis

the temperature field and ti and Pi are the reference inlet temperature and pressure

respectively; and k and f are the permeability and inertia coefficients, which are

dependent on the porosity and particle diameter.

Equation (2.2) contains terms similar to those found in the Navier­

Stokes equation, along with the flow resistance terms inherent to porous media studies.

The first two terms on the right hand side represent respectively the pressure gradient

and the body force, while the third tenn is due to the viscous force caused by shear
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forces along the solid boundaries and is significant in the near wall region where

velocity gradient is steep [13]. The fourth term on the right hand side represents the

viscous drag caused by the solid particles [109,110] whereas the last term accounts for

high-flow-rate inertial pressure losses [23]. The last two terms on the right hand side

are referred to as the total drag force per unit volume by Hsu & Cheng. [45,98]. The

terms on the left hand side are the convective terms and are usually neglected except in

the entrance region of the flow. The permeability, k, and the inertia coefficient, f, are

given by the relations developed by Ergun [23] for flow in a packed-sphere bed as

follows:

and f= B
fA cp3/2

(2.3 a.b)

with A and B being the Ergun constants. In the present study these constants were

determined by a comparison of the numerical solution with the experimental results for

pressure drop.

The steady macroscopic energy equation for flow through porous media

in local thermal equilibrium, from the work of Carbonell & Whitaker [110], Hsu &

Cheng [45,98] is :

(2.4)

where Cp is the fluid heat capacity and k, =k, +~ is the effective thermal conductivity

with k, being the stagnant thermal conductivity given by Eq. (1.6) and kd being the

thermal dispersion conductivity given by Eq. (1.11).
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2.1.1 Hydrodynamically and thermally developing mixed convection:

For steady, mixed convection in a packed bed, the continuity (Eq. (2.1»,

momentum (Eq. (2.2» and energy (Eq. (2.4» equations for the two-dimensional flow

in the axisymetric coordinate system can be written as the following:

Continuity equation

Momentum equation: x - component

[
a () a (u)~ a cp (Pc - Pi) Il [a ( au) a ( aU)~p u - J!. + v - - =- -p g ~ (t - til cp + - - r - + - r-

ax cp ar cp ax r ax ax ar ar

_[Il cp + P f cp vuZ + vz1 u
k v'k J

Momentum equation : r - component

p [u i-(V) + v ~(Y)ll =_a (cp pc) + Il [~(r av) + ~(r av)~
ax q> ar q> ~ ar r ax ax ar ar ~

_[Il q> + P f cp vu Z+ vz1 v _Il v
k VIC J rZ

Energy equation :

[
a t at ] _ 1 [a ( at ) a ( at )11

p Cp u ax + v ar - r ax kea r ax + ar kct r ar ~

(2.5)

(2.6)

(2.7)

(2.8)

In these equations, x and r are the axial and radial Cylindrical coordinates; u and v are

the axial and radial velocities respectively; kea and ket are the effective thermal
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conductivities in the streamwise and cross-stream directions respectively; t is the

temperature field and the subscript i denotes conditions at the inlet. The axial and

transverse effective thermal conductivities were assumed to be equal in the numerical

solutions. Typical boundary conditions for the mixed convection problem are as

follows:

Dimensional boundary condition :

U =Uj v=O t = tj at x=O 0< r < ro

u=O v=O t = th at x~O r= ro

au =0 v=O at =0 at x~O r=O
ar ar

. au
v=O ae =0 0< r < ro-=0 at X-7 00

ax ax

where e = (1h - t) / (th- It,) with It,, the bulk temperature defined as

i
ra

_ a utrdr

tb -ira
a Urdr

Dimensionless variables can be formed according to the following :

(2.9)

u=JLUj v=..Y..Uj x=X
ro

R=L
ro

<P<I> =-
<pa

d
y=....E.

D

3
K=.K..= <I>

k, [ <j>a ( )F
1 + (1 _<Pa) 1 - <I> J



p ..... ,

F =.L=<1>-3/2
fa (J= ycp~~2

t- t·T=--I
th - ti
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Pr=JlCp
kf

where CPa is the asymptotic value of porosity and Uirepresents the velocity at the inlet

section. The corresponding dimensionless governing equations for the mixed

convection problem can then be written as the following:

Continuity equation:

a a-(R U)+-(R V)=Oax aR

Momentum equation : x - component

(2.10)

a (U) a (U) _ ap GrT 2 CPa [a ( au) a ( au)~Uax <I> +VaR <I> - - cpa ax + Ref <I> CPa +Rei R ax Rax +aR RaR ~
I

Momentum equation: r - component

Energy equation:

aT ar _ 1 [ a ( aT) a ( aT)~Uax +v aR - Rei Pr R ax Kea Rax +aR Ket RaR ~

(2.11)

(2.12)

(2.13)
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Indimensionless form the boundary conditions, Eq. (2.9) can be written as

U= 1 V=O T=O at X=O 0<R<1 (2.14)

U=O V=O T=1 at X~O R= 1

au =0 V=O aT =0 at X~O R=O
aR aR

au =0 v=o ~=O at X-7 00 0<R<1
ax ax

Momentum equations (2.11) and (2.12) and the energy equation (2.13) with the

boundary conditions Eq. (2.14) constitute the mixed convection problem in a

cylindrical packed tube. The relevant parameters for the mixed convection problem are

Gr, Pr, Rei, 'Y, and kr / ks. The governing equations and boundary conditions for the

hydrodynamically and thermally developing forced convection problem are the same as

in Eqs. (2.10-2.14) except that the body force term in Eq. (2.11) is neglected.

The governing equations were discretized using the control-volume

scheme and solved by the application of the SIMPLER algorithm [27] (Chapter 3) on a

non-uniform computational grid plane. Grids were clustered near the walls and also at

the inflow and outflow boundaries where changes in the dependent variables are

expected to be large. A complete description of the grid generation formulae are

presented in Chapter 3.

For the cylindrical packed tube at constant wall temperature the average

Nusselt number can be defined as

NUDL =LfNUD. dx (2.15a)
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(2.15b)

with qwx =-(lee aT / ar)x, r =fo which is the local heat flux at the wall and tb is the bulk­

mean temperature defined in Eq. (2.9).

For the Cartesian coordinate system the governing equations can be

developed in the same way and is not shown here for brevity. For a packed channel

heated asymmetrically at temperatures th and te, the average Nusselt number can be

defined as the following:

(2.16a)

(2. 16b)

with qwx =-(ke aT / ay)x, y = 0 being the local heat flux at the wall.

2.1.2 Hydrodynamically fully developed and thermally developing forced convection:

It has been shown theoretically that the velocity boundary layer growth

in porous media takes place over a short distance from the entrance [13]. Therefore, in

this section a hydrodynamically fully developed flow was assumed at the entrance of

the packed bed. With this approximation the governing equations and boundary

conditions in the axisymetric coordinate system in dimensionless form yields :

The momentum equation in the r direction

(2.17)



which is to be solved subject to boundary conditions:

u=o at R= 1 /2"(

au
-=0 at R=OaR

The energy equation with the boundary layer approximation is

which is to be solved subject to boundary conditions:

T = 0 at X = 0 and 0 < R < Ro

T =1 at X ~ 0 and R =Ro

dT t - t·_c =0 where Tc =__1 as X -7 00

dX th - tb

where tb is the bulk temperature defined as

i
ro

u t r dr Ro

tb = 0 = 2 1U t R dR

i
ro R2 Uo m 0

u rdr
o

i
ro

. Urn dp 2
with Urn =-- and Urn =_? U r dr

v 10 0
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(2.18)

(2.19)

(2.20)
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The dimensionless variables for the governing equations can be defined as follows:

U=udp

v
d

Y=....2..
D

Ro=.!!L =_1_
a, 2 Y

d2 3
k _ p <pa
a- A (I - <p.f

P
_ kadp---Pc

PV2
c - B

a- A(1 - <Pa)

2
Cb = <Pa

A(1 - <Paf
x=_X_

Pr d.,
t - t·T= __l

lh - tj

In equation (2.17) the porosity function was assumed as the following:

<I> =[1 + Cl exp {- N (Ro - R)}] (2.21)

Equations (2.17) and (2.19) with the boundary conditions Eqs. (2.18) and (2.20)

constitute the governing equations for the hydrodynamically fully developed and

thermally developing forced convection problem. It is evident that these equations are

not coupled unlike the mixed convection problem and can therefore be solved

independent of each other. Since the velocity field is required to solve the energy

equation, it is logical to solve the momentum equation first. This was achieved by first

discretizing the momentum equation with the use of a control-volume type of

differencing scheme. A coordinate transformation (see Chapter 3) was employed in the

cross-stream direction to clustered grids near the wall where velocity gradients are

expected to be steep. The resulting equations in the transformed coordinates were

solved on the uniformly spaced computational grid plane by the application of the

TDMA. Since the momentum equation has a non-linear term, it was first linearized by

expressing the product of the velocities as one between a known quantity from the
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previous iteration, and the unknown variable. The iterative process was terminated

when the difference in velocities of subsequent iterations did not change by a preset

small value (10-4).

The energy equation (2.19) was discretized using the control-volume

type of differencing scheme for the transverse derivatives and the upwind difference for

the srteamwise derivative (i.e. for the convective term). Grid transformations were used

in the streamwise and the cross-stream directions to investigate the temperature

gradients at the wall and the inlet/outlet sections respectively. The marching procedure

was used for the solution of the energy equation for the developing flow problem. The

discretized equations at each axial station were solved by the TDMA. The downstream

temperature profile was checked to ensure thermally fully developed condition as in Eq.

(2.20). The average Nusselt number was calculated according to Eq. (2.15).



CHAPTER 3

THE NUMERICAL METHOD &

GRID GENERATION

Most of the numerical studies on mixed or forced convection in packed

beds [95,102] are based on the "stream-function/vorticity method", i.e. using stream

function and vorticity as dependent variables in the computations. The stream­

function/vorticity method has some attractive features. The pressure makes no

appearance, and, instead of dealing with the continuity equation and two momentum

equations, only two equations need to be solved to obtain the stream function and the

vorticity. Some of the boundary conditions can be easily satisfied, e.g. when an

external irrotational flow lies adjacent to the calculation domain, the boundary vorticity

can conveniently be set to zero. There are, however, some major disadvantages to the

stream-function/vorticity method. The value of the vorticity at the wall is difficult to

specify and is often the cause of trouble in getting a converged solution. The pressure,

which has been so cleverly eliminated, frequently happens to be an important desired

result or even an intermediate outcome required for the calculation of density and other

fluid properties. Then, the effort of extracting pressure from vorticity offsets the

computational savings obtained otherwise. But, above all, the major shortcoming of the

method is that it cannot easily be extended to three-dimensional situations, for which a

stream function does not exist. Since most practical problems are three-dimensional, a

method that is intrinsically restricted to two dimensions suffers from a serious

limitation. For three dimensional problems, an approach based on vorticity uses six
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dependent variables, namely, the three components of the vorticity vector and the three

components of the velocity-potential vector [125]. Thus, the complexity is actually

greater than that of treating the three velocity components and pressure directly. Also,

the vorticity vector and the velocity-potential vector involve concepts that are harder to

visualize and interpret than the meanings of the velocity components and pressure. On

the other hand a physically meaningful approach can be adopted by using the so-called

primitive variables i.e. the velocity components and pressure. In this study therefore,

the primitive variable approach has been adopted with the hope that in the future it can

be extended to three-dimensional problems.

Patankar [27] developed an algorithm which is abbreviated SIMPLER

(Semi-Implicit Method for Pressure Linked Equations Revised) to solve the

conservation equations of momentum, energy, chemical species, etc. using the

primitive variables. In this study, a numerical code was written based on the SIMPLER

algorithm to solve the simultaneously developing mixed and forced convection

problems. The next section will include a brief description of the SIMPLER method.

3.1 Description of the Numerical Algorithm:

In the numerical algorithm, primitive or physical variables U, Y, P, and

T are used in a staggered grid system. The computational domain is divided into

rectangular control volumes with one grid point located at the center of the control

volume which forms the basic cell over which the governing equations are applied and

discretized. Figure 2 shows a portion of a two-dimensional grid. In the staggered grid,

the dependent variables are not all calculated at the same grid points. The velocity

components, U and Y, are given displaced or staggered locations. In Fig. 2, the
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locations of the two velocity components are indicated by short arrows in the direction

of the velocity component. All other variables, e.g. temperature, and pressure, are

calculated at the grid points shown by the dots. A consequence of this arrangement is

that the normal velocity components are directly available at the control-volume faces,

where they are needed for the calculation of the mass flow rates. In addition, the

pressure difference between two adjacent grid points can be used to "drive" the velocity

component located between them.

3.2 Discretized Continuity Equation:

The discretized continuity equation can be obtained by integrating

Eq. (2.10) over the control volume in Fig. 2 to give

(p U A}w - (p U A)e + (p V A}s - (p V Ak =0 (3.1)

where U and V denote the velocity components in the streamwise and cross-stream

directions respectively, and A is the product of the width of the control volume normal

to the flow and the radial distance. The mass flux through the control volume faces

(denoted by the subscripts) is represented by the quantity inside the parentheses in

Eq. (3.1).

3.3 Discretized Momentum Equations:

The staggered locations for the velocity components determine the

corresponding control volumes to be used for conservation of momentum. The faces of

these control volumes that are normal to the direction of the velocity component pass
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through the grid points. The appropriate control volumes for the velocity components U

and V ( in the streamwise and cross-stream directions, respectively) are shown in

Fig. 3. The two faces of the control volume around the velocity component Ue pass

through the grid points P and E. The corresponding discretized momentum equation for

U, can bewritten as:

(3.2)

where the term b includes the source terms other than the pressure gradient, e.g. the

drag force terms and the buoyancy term in the mixed convection problem. In Eq. (3.2)

the subscript "nb" denotes a neighbor, and the summation is to be taken over all four

neighbors. The pressure Pp and PE denote those at points P ant E respectively, while

Ae is the area or the width over which the pressure force act. The coefficient a's are

functions of conductive and convective fluxes and can easily be obtained from the

momentum equations like Eq. (2.11) and (2.12). The numerical values of the

coefficients depend on the kind of differencing schemes chosen (e.g. power-law,

hybrid or exponential schemes). A complete and detailed explanation of the differencing

scheme with examples of how to obtain the coefficients in Eq. (3.2) is given in [27].

The results presented in the later chapters all uses the power-law scheme.

Equations similar to (3.2) can bewritten for the other components of

velocity. For a given pressure field then, it is possible to solve the momentum

equations. If U* denotes the starred velocity field based on an estimated pressure field

p* then a starred momentum equation similar to Eq. (3.2) can be written as the

following:

(3.3)
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The guessed pressure field p* will yield an estimated velocity field U* and V*. In

general, this velocity field will not satisfy the continuity equation. The algorithm,

therefore, calls for the derivation of a pressure correction equation which will result a

correction to the velocity field that will ensure satisfactionof the continuity equation.

3.3.1 Pressure-correction equation:

If p' denotes the pressure correction and U· the corresponding

correction to the velocity component U* it follows that

p =p* +p'

U=U*+U'

(3.4a)

(3.4b)

Subtracting Eq. (3.3) from (3.2) and using the relationship given by Eq. (3.4) gives

(3.5)

Equation (3.5) is further simplified by assuming that the term It anb U~b is negligible,

thus yielding

U~ =de(p~ -p~) (3.6)

where de = Ae / a; Formulas for the velocity-correctioncan be obtained by substituting

Eq. (3.6) into Eq. (3.4b) to yield

* (' , )Ue =Ue + de Pp - PE

Similar formulas can be written for the other velocity components.

(3.7)
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The pressure correction equation is obtained by substituting the velocity­

correction formulas for Ue, Uw, Vn, and Vs (like Eq. (3.7» into the discretized form of

the continuity equation (3.1). The resulting equation is the pressure correction equation,

which can be written as

where aI =(p A d}, with I =E, W, N or S corresponding i =e, w, nor s

(3.8a)

(3.8b)

(3.8c)

(3.8d)

It may be noted that the term b as given by Eq. (3.8d) represents the residual in the

continuity equation when the starred velocity field is employed. The task of the

pressure correction is to remove this residual. This is the essence of the algorithm called

SIMPLE (Semi-Implicit Method for Pressure-Linked Equations).

Though the approximation introduced in the derivation of the p' equation

(3.8) (the omission of the term L anb U~b) does not influence the correctness of the

final solution, it may lead to rather exaggerated pressure corrections, and pressure

underrelaxation becomes essential. Since the influence of the neighbor-point velocity

corrections is removed from the velocity-correction formula (Eq. 3.7), the pressure

correction has the entire burden of correcting the velocities, and this results into a rather

poor convergence rate of the SIMPLE procedure. A revised version, SIMPLER

(SIMPLE-Revised) was therefore formulated by Patankar [27]. Since the pressure­

correction equation does a fairly good job of correcting the velocities, but a rather poor

job of correcting pressure, in SIMPLER, a separate equation is derived for evaluating

pressure.
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3.3.2 Pressure equation:

From Eq. (3.2) a pseudovelocity De can be defined as

(3.9)

The pseudovelocity De can be interpreted as the velocity that would prevail at point e of

the control volume in the absence of the pressure force. To calculate De, one does not

require the pressure field but does require the values of the neighbor velocities Unb.

Equation (3.2) can now bewritten in terms of the pseudovelocity as

(3.10)

where de is as defined earlier in Eq. (3.6). Just as the pressure-correction equation

(3.8) was derived from the continuity (Eq. (3.1» by the substitution of equations like

(3.7), the pressure equation can be similarly obtained by the use ofEq. (3.10) into the

continuity equation. The result is a pressure equation very similar in form and content

to the p' equation (3.8). The pressure equation is written as :

(3.11a)

where the coefficients aI'S and ap are given by Eq. (3.8b,c), and b is defined by

(3.11b)

Again, the term b in Eq. (3.llb) can be regarded as a "mass source" implied by the

pseudovelocity field D and V.
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3.4 Discretized Energy Equation :

A discretized form of the energy equation can be obtained by integrating

Eq. (2.13) over the control volume as shown in Fig. 2 to yield

(3.12)

where T is the temperature field and the coefficient a's depend on the differencing

scheme which has been discussed in [27] in detail.

3.5 Calculation Procedure:

In the calculation procedure it is assumed that two of the neighboring

values are known from their latest values. A tridiagonal matrix can then be formed from

the discretization equations for the grid points along a chosen line. The tridiagonal

matrix is solved by the Thomas Method. This solution procedure of updating values by

traversing each line in sequence is continued by alternating directions. The idea is to

bring information from the boundaries (like the heated wall) to the interior, faster.

The SIMPLER procedure can beoutlined in terms of the calculation

sequence as follows

1. Guess a velocity field U, V.

2. Calculate the coefficients (a's) in the momentum equations and hence obtain U and Y

from equations like (3.9).

3. Solve the pressure equation (3.11) for P.

4. Regarding this pressure field as p*, solve the momentum equations such as

Eq. (3.3) to obtain U* and Y*.

5. Solve the pressure correction equation (3.8) for P'.
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6. Correct the velocities via equations such as Eq. (3.7).

7. Calculate the coefficients in the energy equation and solve for the temperature field,

Eq.3.12.

8. Return to step 2 with the corrected velocity and temperature field and repeat the

procedure until a convergence criteria is satisfied.

The convergence criteria include checks on relative changes of the

dependent variables between consecutive iterations :

I(Tnew- Told) n.; Imax::;; El

I(Unew- Uold)/Unewl max::;; E2

where the subscript "max" denotes the maximum value over all the grid points, "new"

and "old" denote values in two consecutive iterations. The typical values for all the E' S

are 10-4 . If the correct U and V field is achieved i.e. the continuity equation is

satisfied, the residual in the pressure equation goes to zero. In the calculation this

criteria for the residual was set to 10-5 •

Underrelaxation parameters were used in different subroutines to control

the convergence of the solution field. Typical values for U and V are 0.7 and 0.8 for T,

while P was not underrelaxed. Computations were performed using a 162 x 66 variable

grid system in the streamwise and cross-stream directions respectively with the

boundary conditions set according to the experiments which were being simulated. For

example if the experiment had a packed inlet section the inflow velocity boundary

condition was taken as fully developed. The length of the tube (or channel) was set

equal to the length used in the experiments and an exit section (packed or empty) was
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added if the experimental setup had one. The University of Hawaii's VAX 8550

computer has been utilized for the computations.

3.6 Grid Generation:

In the case of flow through a porous medium, velocity and temperature

gradients are expected to be very large near a bounding surface because of the changes

in porosity there. Refinement of the computational mesh near a wall is therefore

mandatory, if the details of the flow and temperature fields are to be properly resolved.

Lauriat and Prasad [26] have used a one dimensional exponential stretching type of

coordinate transformation to distribute reasonably large number of grids near the wall.

In this study the clustered (unequally spaced) R-grid points for the packed cylindrical

tube case have been determined as a function of the equally divided transformed co-

ordinate (X) as follows:

(3.13)

where ~T > 1 is the grid concentration factor. Larger values of ~T results in more grids

near the walls. In Eq. (3.13) HR is the upper limit of R the value of which depends on

the definition of R. For example if R =r/dp then HR = 1/"1 whereas if R =rID then HR

=1. Note that for the Cartesian co-ordinate system the above equation can be easily

modified.

To solve the governing equations numerically, it is also convenient to

convert the semi-infinite streamwise domain (0 ~ X ~ 00) into a finite one by a

coordinate transformation. For this purpose the following coordinate transformation

[30] was used :
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1 11X=---
SX 1 -11

(3.14)

where Sx > 0 is a dimensionless constant which allows grid concentration near the

entrance region where changes in the relevant dependant variables are greater than those

in the downstream region. Larger values of Sx results in more grids in the inflow

region. In equation (3.14), 11 is the equally spaced transformed axial coordinate

whereas X is the clustered plane.

When the radial and axial porosity variations are assumed, grid

refinement is required at the inlet and the exit section. For such cases the following grid

transformation formulation has been adopted [92] :

(3.15)

where Z =(Sx + 1) / (Sx - 1). The grid stretching parameter Sx > I clusters more grids

near the boundaries as Sx approaches 1. In Eq. (3.15) the value of XL depends on the

length (L) of the packed bed and on the definition of X. For example if X =x/dp then

XL=Lldp•



CHAPTER 4

EFFECf OF THE EMPIRICAL CONSTANTS

As mentioned earlier, a prime objective of this research was to

determine, by a comparison with available experimental data, values of the empirical

constants N, Cb <j>a, A, B, Cdand eo, in the mathematical model for the prediction of

the transport phenomena in porous media. It is befitting, therefore, to devote some time

to study the effect of each of these constants on the fluid flow and heat transfer

characteristics. A complete understanding of how the empirical constants effect the heat

transfer and fluid flow characteristics would help in determining their values when

comparing the numerical solution of the pressure drop and the heat flux with the

available experimental data. In what follows, flow through a packed tube will be

considered. Similar effects of the empirical constants will prevail for flow in a packed

channel and therefore not presented to avoid repetition. A hydrodynamically fully

developed flow with a uniform temperature profile at the inlet was assumed. The axial

heat conduction has been neglected because it is expected to have negligible effect on

the temperature field.

4.1 Effects of N, Cj, & <j>a on Properties of the Porous Medium:

4.1.1 Porosity :

Different values of N, Cj, and <j>a in equation (1.5a) generate different

porosity variations from the wall as depicted in Fig. 4. Increasing Cl with Nand <j>a

fixed causes a higher porosity at the wall, (curves a & b) and increasing N for the same
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values of Cl and CPa causes the porosity to reach its asymptotic value within a shorter

distance from the wall, as shown in curves b and c. It is also observed that for N =2,

Cl =0.56 (curve a) for which <Pw =0.56, <Pw being the porosity at the wall, the

asymptotic value of the porosity is reached within 2 - 3 particle diameters from the

wall. On the other hand with N = 6, C1 = 1.4 (curve c), for which cpw =0.86, the

asymptotic value is reached within one particle diameter from the wall. Increasing the

value of CPa for fixed values of Nand Cl (curves c & d) not only increases the porosity

away from the wall but is also expected to increase the overall bed porosity.

4.1.2 Permeability :

Since permeability depends on porosity per Eq. (2.3a), its value also

depends on Nand Cj. In Fig. 5 the normalized permeability (k/ ka), where ka is the

asymptotic value of the permeability, is plotted as a function of the distance normal to

the wall. As seen before, for fixed values of N and CPa, increasing Cl results in higher

porosity near the boundary. The large values of porosity near the wall results in large

value of permeability (curves a & b) near the wall. On the other hand with Cl and CPa

held constant, increasing N which results in a sharp drop in porosity, causes the

permeability to reach its asymptotic value within a short distance from the boundary as

shown in curves band c. For a fixed value of Nand Cl (curves c & d) increasing the

asymptotic value CPa, for a fixed pair of Nand Cl values, increases the permeability

since the overall porosity in the bed increases. Fig. 5 does not demonstrate this increase

to a great extent because of the way the dependent variable is normalized.
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4.1.3 Inertia coefficient:

From Eq. (2.3b) it can be seen that the inertia coefficient, f, varies as the

inverse of porosity. In Fig. 6 the normalized inertia coefficient (f / fa), where fa is the

asymptotic value of the inertia coefficient, is plotted as a function of the radial

coordinate. For fixed values of Nand <Pa, a higher val ue of C1, which results in a

higher porosity at the wall yields a smaller value of the said coefficient (curves a & b).

On the other hand for the same values of C 1 and <P a, the value of the inertia coefficient

increases faster for a large value of N (curves b & c) since the porosity for the latter

decreases faster to its asymptotic value close to the boundary. The effect of a higher

value of<pa, for fixed values of Nand Cl, which increases the overall porosity in the

bed is expected to decrease the value of the inertia coefficient. When the normalized

inertia coefficient is plotted, this increase is not apparent (curve d which coincides with

curve c).

4.1.4 Stagnant thermal conductivity :

The variation of the normalized stagnant thermal conductivity, [k, / kr),

from Eq. (1.6), normalized with respect to the thermal conductivity of the fluid, kr, for

different combinations of N, C1, and <P a is plotted in Fig. 7. The effect of the empirical

constants on the normalized stagnant thermal conductivity, is observed to be similar in

nature to that of the normalized inertia coefficient.
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4.2 Effects of N, Cl and <f>a on Fluid Flow and Heat Transfer:

4.2.1 Velocity distribution:

The effect of N, Cl and <f>a in Eq. (1.5a) on the velocity distribution in a

packed cylindrical tube as a function of distance normal to the wall is shown in Fig. 8.

The velocity distributions presented in this figure are calculated for the same flow rate

and particle size. Since a higher value of Cl (with Nand <f>a fixed) results in large

porosities near the wall, the velocity peak is consequently higher (curve b) as compared

to a smaller value of Cl (curve a). For fixed values of C, and <f>a, increasing N

increases the rate of decay of porosity to its asymptotic value (see Fig. 4). The velocity

profile for larger N also depicts the same behavior (curves b & c) in which the core

value of velocity is reached within a short distance from the wall. Increasing <f>a for a

fixed pair ofN and Cl values, has little effect on the velocity profile (curves c & d) ­

only the peak is slightly reduced, due to larger porosity values near the wall, with

<f>w =0.96 instead of <f>w =0.86, where <t>w is the porosity at the wall.

4.2.2 Dimensionless pressure drop:

Fig. 9 depicts the effect of N, Cl and <f>a on the dimensionless pressure

drop parameter, fD, as a function of the Reynolds number. The dimensionless pressure

drop parameter is defined as fD =(11 Pr / L) / (p u?) where Lis the length of the packed

tube and Uiis the mean flow velocity, /)" Pr and p are the pressure drop and density of

the fluid respectively. A larger pressure gradient is expected for the same flow rate

through the bed if the average bed porosity decreases. This behavior is observed in

Fig. 9. The values of Nand Cj represented by curves a and c results in similar average

bed porosities for the same value of <f>a and are therefore almost identical. A decrease in
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the value ofN for a fixed pair of the values of Cl and CPa, decreases the required

pressure drop because of an increase in the average bed porosity (curves b & c) in this

case. A similar effect is observed when the asymptotic value of porosity, CPa, is

increased for a fixed pair of Nand Cl values (curves c & d). From Fig. 9 it can be

observed that for an increase in the value of Cl (with Nand <j>a fixed) from 0.56 to 1.4

(curves a & b), i.e. by a factor of 2.5, the value of the dimensionless pressure drop

parameter is lowered by 40%. Another important observation is the effect of the

asymptotic value of porosity, CPa, on the dimensionless pressure drop. An increase in

the value of CPa by 10% (0.36 to 0.4) represented by curves c and d, also seems to yield

the fD values that are 40% lower. The choice of the asymptotic value of porosity, CPa in

Eq. (1.5a) is therefore one of the most important among all the other empirical

constants that are considered in this study.

4.2.3 Temperature distribution:

The dimensionless temperature profiles (at Lira=2) for different values

of N, Ci and <j>a are plotted in Fig. 10 as a function of the distance from the wall for a

fixed Reynolds number, ReD=10, and particle to tube diameter ratio, y =0.035, (y is

referred to as the dimensionless particle diameter). The dimensionless temperature is

defined as follows: T =(r - th) / (ti - th) where ti and ~ refer to the inlet and hot wall

temperatures respectively. Smaller values of C1, which results in lower velocities near

the wall (see Fig. 8), results in slower changes in temperature (curve a) as compared to

the temperature profile for higher Cl value (curve b) for the same values of N and CPa.

The effect of increasing N for fixed values of Cl and <j>a (represented by curve c), has a

mean effect between the previous two profiles since the velocity also shows the same
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mean nature. Increasing the value of CPa, for the same values of Nand Cj, changes the

value of the thermal conductivity and consequently the temperature distribution of the

medium, as is reflected by curve d.

4.2.4 Dimensionless heat flux:

The effect of the empirical constants N, Cr and CPa on the Nusselt

number is presented in Fig. 11 as a function of the streamwise coordinate measured

from the inlet plane. The Reynolds number and the dimensionless particle diameter, "f,

are held constant in this calculation. The effects of these constants on the local Nusselt

number are similar to those on the temperature profiles. Comparing the curves a and b

represented by the dashed and the dotted lines respectively, it is seen that a smaller

value of Cl for a fixed pair of values of N and CPa, which results in a smaller slope in

the temperature profile also results in the smaller heat flux at the wall (curve a).

Increasing N (for constant Cl and CPa) results in the Nusselt number values (given by

curve c) near the wall that are within the curves represented by the dashed and the

dotted lines which also correspond to their respective temperature gradients (see

Fig. 10). This condition also yields lower average heat flux. For fixed values of Nand

Cj , increasing CPa decreases the peak velocity (see Fig. 8) thereby decreasing the heat

flux (curve d).

4.3 Effect of the Ergun Constants A and B on Fluid Flow and Heat Transfer:

Various investigators have reported different values of the Ergun

constants A and B. The value of A ranges from 150 to 215 while the value of B ranges

from 1.75 to 1.92. In this section, the effects of these constants on the fluid flow and
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heat transfer characteristics are investigated. In all of these computations, the values of

N = 6, Cl = 1.4 and CPa = 0.36 have been used. The results of these computations are

presented in Figs. 12-15.

4.3.1 Velocity distribution:

The effect of the Ergun constants A and B, on the velocity distribution

in a packed cylindrical tube is presented in Fig. 12. The values of A (ranging from 150

to 215) and B (ranging from 1.75 to 1.92) are observed to have small effects on the

velocity profiles. The peak velocity for A =150 and B =1.75 (curve a) is smaller than

the others because of increased inertial resistance and overall bed permeability. The

other set of values of A and B, depicted by curve b, c and d results in almost identical

velocity profiles. Therefore, it can be concluded that the Ergun constants A and B (for

the range of values considered) have negligible effect on the fluid velocity distribution

for forced convection in a packed tube.

4.3.2 Temperature distribution and heat flux:

The dimensionless temperature profiles (at Llro =2) for the different

values of A and B considered, do not show any marked difference as seen in Fig. 13.

Since the temperature profiles for the different values of A and B have almost the same

gradient at the wall the heat flux profiles are also similar as depicted in Fig. 14. It can

be concluded that the Ergun constants have negligible effect on the heat transfer

characteristics for forced convection in a packed tube.
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4.3.3 Dimensionless pressure drop:

As shown in Fig. 15 a smaller values of A (e.g. A =150), for the same

B value, which gives larger permeability values, results in a lower pressure drop for a

given flow rate (curves a & d). From the momentum equation (2.2) it can be seen that

the effect of changing A and B is expected in the lower and higher Reynolds numbers

respectively. This behavior can be observed by comparing the curves represented by a

and d for the effect of A and curves c and d for the effect of B. From Fig. 15 it can be

concluded that for the same value of B, decreasing A from 215 to 150 decreases the

values of the pressure drop parameter by 30-40% for Reo < 103• For Reo> 103 the

effect ofdecreasing A for a fixed value of B is observed to be of a lesser magnitude.

Also for a fixed value of A, if B is changed from 1.92 to 1.75 (a 10% decrease) the

value of the pressure drop parameter is lowered by 10% for Reo> 104• For Reo < 104

no effect can be observed on the values of the dimensionless pressure drop parameter if

the value of B is changed with the value of A kept constant. It can be concluded,

therefore, that the values of the Ergun constants A and B have a considerable effect on

the dimensionless pressure drop parameter, fo.

4.4 Effects ofY and Reo on Fluid Flow and Heat Transfer:

In convective flow through a packed bed, the velocity and temperature

distributions depend on the size of the particle and Reynolds number (or flow rate).

Consequently, the pressure drop and heat transfer also depend on these parameters. In

the following section the effect of these parameters will be examined qualitatively. In

the numerical computations the exponential porosity function given by Eq. (1.5a) with

N = 6, Cl = 1.4 and <Pa =0.36 and the Ergun constants A =215, B = 1.92 have been
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used. The present dispersion conductivity model, Eq. (1.11) (with Cd=0.15 and

co =3) was employed in the energy equation. The dimensionless temperatures is

defined as mentioned earlier in section 4.2.3.

4.4.1 Velocity distribution:

Fig. 16 shows the axial velocity as a function of the radial coordinate for

forced convective flow in a packed tube at different Reynolds number (ReD) and the

dimensionless particle diameter (y). For the same particle diameter (curves a & b)

increasing the Reynolds number from 200 to WOO, increases the peak velocity. On the

other hand for a fixed Reynolds number ReD =1000 increasing the dimensionless

particle diameter y =0.05 to 0.1 decreases the peak velocity (curves b & c). This is

caused due to an increase in bed porosity for the larger particle, and thereby

permeability. To observe the channeling effect (mentioned before) the velocity profiles

are replotted on a different dimensionless scale in Fig. 17. It can be seen that

channeling effect becomes more pronounced as the particle size increases for the same

Reynolds number (curves b & c). On the other hand for the same dimensionless particle

diameter y=0.05, channeling effect becomes less pronounced as the flow rate

increases from ReD =200 to 1000 (curves a & b).

4.4.2 Temperature distribution:

Fig. 18 shows the effect of ReD and Yon the dimensionless temperature

distribution as a function of the distance from the wall at a given downstream location.

For the same particle size (Y= 0.05) increasing the Reynolds number from 200 to 1000

yields a steeper temperature gradient at the wall (curves a & b) thereby increasing heat
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transfer. On the other hand for Reo =1000 a smaller particle seems to result in a steeper

temperature gradient at the wall (curves b & c). From this figure it can be observed that

the thermal entrance length increases with the flow rate.

4.4.3 Dimensionless heat flux :

Fig. 19 shows the local Nusselt number as a function of the axial

coordinate, for a given length of the packed bed (LIra =2), for different values of Reo

and y. The local Nusselt number follows the same trend as that of the temperature

gradient discussed above. In Fig. 19 it can be seen that the Nusselt number increases if

the Reynolds number increases from 200 to 1000 (curves a & b) for the same particle

size, y= 0.05. The Nusselt number is observed to decrease when the particle size

increases from 't> 0.05 to 0.1 (curves b & c) for the same Reynolds number.

4.5 Effects of Cd and co on Heat Transfer:

4.5.1 Temperature distribution:

The effect of the empirical constants Cd and ro in the present dispersion

model given by Eq. (1.11) on the dimensionless temperature distribution is presented in

Fig. 20 for Reo = 1000 and y= 0.06. The dimensionless temperatures are plotted as a

function of the radial coordinate for a fixed axial location (Lira =2). A comparison of

the profiles represented by curves a and c show that the temperature in the core of the

packed bed increases as the value of Cd decreases from 0.15 to 0.1 with ro remaining

constant. Similar trend is observed if the value of ro is increased from 3 to 4 for the

same value of Cd (curves a & b).



52

4.5.2 Dimensionless heat flux:

The average Nusselt number, defined by Eq. (2.15), was calculated for

different values of Cd and ro and are plotted in Fig. 21 as a function of ReDfor

'Y =0.06, L =0.3 m. From Fig. 21 it can be seen that at higher Reynolds numbers, for

a fixed value of Cd=0.15, increasing the value of co from 3 to 4 decreases the average

Nusselt number (curves a & b). The Nusselt number also seems to decrease (curves a

& c) if the value of Cdis decreased for a fixed value of roo
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CHAPTERS

RESULTS AND DISCUSSION

5.1 Values of the Empirical Constants N, C1, Cz, <j>a, A, B, Cd and co :

In the previous chapter, an analysis of the effects of the empirical

constants were presented. Values of the empirical constants have been determined by a

comparison of the numerical results of porosity, velocity, pressure drop and heat flux

with available experimental data. The comparison show that good agreement between

the numerical results and experiments can be achieved if the following values of

empirical constants are employed: N = 6, Cl = 1.4, <j>a = 0.36, A = 215, B = 1.92,

Cd =0.15 and co =3 when the present dispersion model given by Eq. (1.11) is

assumed, and the porosity function is assumed by the exponential function given by

Eq. (1.5a, or b & c). The first five empirical constants were determined by a

comparison of the porosity, velocity and the pressure drop data in a packed tube while

the later two empirical constants were determined by comparing the numerical and

observed heat flux data for forced convection in a packed tube and a channel.

When porosity is assumed to vary in the streamwise and the cross­

stream directions, the exponential porosity function given by Eq. (l.5b,c) was

employed as mentioned in Chapter 1. In this case the value of another constant, Cz, had

to determined. Fortunately, the value of Cz is limited by the maximum possible value of

porosity in the entire bed, which is unity. A simple calculation gives Cz =0.157. In the
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numerical computation in this study this value of C2 has been assumed when the

porosity variation was expressed by Eq. (1.5b,c).

Some authors [21,22,50,123] have used Eq. (1.5a) to represent the

porosity function with N = 2 - 6, Cl = 0.56 - 1, CPa = 0.4 and A = 150, B = 1.75 in

the momentum equation and found acceptable agreement of their computed heat flux

with experimental data. None of the authors mentioned above have compared their

numerical results of the pressure drop with experimental data. In the present study it

has been observed that the computed pressure drop and velocity based on the above set

of values donot agree with the data of Fand et al. [24,25] and Price [112]. If A =150,

B =1.75 and <j>a =0.4 are used and the exponential porosity function, Eq. (1.5a) is

assumed with N =2 to 6 and C1 =0.56 to 0.86, then the numerical result was found to

underpredict the pressure data. If the exponential porosity function, Eq. (1.5a), is to be

used to represent the porosity variation in the packed bed with N =2, which has been

used in many papers, the following values of the empirical constants have been found

in this study to yield the best match for the numerical results with the experimental data

of pressure drop [24,25] and velocity [112] : Cl = 0.56, <j>a = 0.36, A = 215,

B =1.92. With these empirical constants in Eq. (1.5a), ifEq. (1.11) is assumed as the

dispersion conductivity model, Cd =0.13 and co =4 have been found to give the best

possible match with the heat flux data.

In the following sections, the fluid flow and heat transfer results are also

presented when the decaying cosine function given by Eq. (1.4) is employed as the

porosity function and the dispersion conductivity model is represented by Eq. (1.11).

The empirical constants involved in this case are <j>a, A, B, C, and 00. The values of the

first three empirical constants were found to remain the same as mentioned above by a
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comparison of the fluid flow results, but the values of C, = 0.22 and co = 3 were found

to yield the best match for the heat flux data.

In order to facilitate the discussion in the sections that follow, the three

combinations of porosity function and the present dispersion model (Eq. (1.11)), that

are studied in this research, are classified as follows :

Case 1 : The exponential porosity variation, Eq. (1.5a or b and c) is assumed with

N = 6, Cl = 1.4.

Case 2 : The exponential porosity function, Eq. (1.5a, or b and c) is assumed with

N =2, Cl =0.56.

Case 3 : The decaying cosine function, Eq. (1.4) is used as the porosity function.

In all the cases mentioned above values of the Ergun constants A = 215 and B = 1.92

and the asymptotic value of porosity <Pa =0.36 were used. Also if the porosity function

is assumed by Eq. (1.5b,c) then the value of Cz=0.157 is used.

5.2 Comparison of Geometric Properties of the Porous media:

5.2.1 Porosity distribution:

A comparison of the exponential and oscillating porosity functions for a

packed tube and a channel are presented in Figs. 22 and 23 respectively. The

experimental data in these figures were obtained by Benenati and Brosilow [7]. The

measured porosities show that about five oscillations (or five particle diameters) are

required in order to reach the asymptotic porosity value, <Pa. In Figs. 22 and 23 curve c

represent the porosity distribution assumed by the decaying cosine function (Case 3),

Eq. (1.4). The dashed line (curve b) represents the exponentially decaying porosity

function, Eq. (1.5a), with N =2, Cl =0.56 (i.e. Case 2). These plots show that the
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assumed porosity distribution given by Eq.(1.5a) with N = 6, Cl = 1.4 (i.e. Case 1)

represented by curve a, predicts the higher porosity near the wall extremely well. The

oscillatory nature of the experimental porosity variations in the far field is predicted by

Eq.(1.5a) as an average of the high and low porosities. It can also be concluded from

Figs. 22 and 23 that though Eq. (1.5a) with Case 2 values (represented by curve b)

predicts the porosity variation far from the wall quite well, it fails to achieve the large

values of porosity near the boundary because of the smaller value of Ci (see Fig. 4 for

the effect of CIon porosity). Variation of any geometric property of the porous

medium, especially porosity, is crucial to the heat transfer process because of the

channeling effect as discussed in Chapter 1. It is therefore important to select a model

for the porosity variation in the packed bed, that closely represents the experimentally

obtained values. Choice of either the exponential function, Eq. (1.5a), with N =6,

Cl = 1.4 (Case 1) or the decaying cosine function (Case 3), Eq. (1.4), seems to be

promising. It is important to mention at this point that the values of the Ergun

constants, A and B, should also be taken into account when comparing the effects of

the different porosity functions on the pressure drop and velocity distribution in a

packed column in order to obtain the desired porosity function. It is for this reason that

an entire chapter (Chapter 4) has been devoted to study the effect of all the interacting

empirical constants on the heat transfer and fluid flow characteristics.

The decaying cosine function Eq. (1.4) for the packed tube

(D/dp =20.3) and the packed channel (D/dp ---7 00) is reported in Fig. 24 where dp and D

are the particle and tube diameters respectively. The only difference between these two

curves is the value of I in Eq. (1.4) which determines the phase of the oscillation. From
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Fig. 24 it can be concluded that the effect of Ion the porosity distribution is rather

small. Therefore Eq. (1.4) with 1=0.876 can safely be used even when D/dp if:. 20.3.

5.2.2 Average or overall bed porosity :

The overall porosity of the entire packed bed as a function of d,I D is

presented in Fig. 25 for the oscillatory and exponential porosity functions. The

computed values of the overall bed porosity was obtained by integrating the porosity

function over the cross-section of a packed bed as follows :

(5.1)

where rois the radius of the tube and r is the radial coordinate. The experimental data of

Fand [25], Yagi [67] and Reichelt [42] presented in Fig. 25 show some scatter but the

computed values (for Case 1,2 and 3) represent good estimates. The scatter in the

experimental data for the overall porosity value, is attributed to the method adopted in

their evaluation.

5.3 Fluid Flow Results:

The momentum equations (2.11) and (2.12) (with the body force term

neglected) with appropriate boundary conditions (depending on the experimental

condition), constitute the governing equations for the hydrodynamically developing

forced convection problem. On the other hand the governing momentum equation for

the hydrodynamically fully developed forced convection problem is given by

Eq. (2.17) with the boundary condition given by Eq. (2.18). Numerical solution for the
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hydrodynamically developing forced convection flow problem was obtained by the

application of the SIMPLER algorithm [27] on a non-uniform grid system. Grids were

clustered near the wall region and also at the inlet and exit sections where steep velocity

gradients are expected due to variations of porosity. The grids were generated as

explained in Chapter 3. The numerical solution for the hydrodynamically fully

developed forced convection problem was obtained by discretizing the governing

momentum equation using the control volume based finite difference scheme and

solving the resulting algebraic equations by the application of the Tri-Diagonal Matrix

Algorithm (TDMA) on a uniform grid system with coordinate transformation in the

cross-stream direction.

5.3.1 Velocity distribution:

Price [112] measured velocities at the exit section of a packed tube

(D =12 in.) for different flow rates (i.e. Reynolds number) of air flowing through the

bed with length L =9 in. (i.e. Llro =1.5). A pitot-static tube was placed at

approximately 1/16 in. downstream of the exit face of the packed section. Since the

velocity outside the packed section is expected to change with axial location [19], in the

present study the exact experimental condition of Price [112] was simulated by adding

an empty section (i.e without the solid matrix) at the exit of the packed section. The

measured normalized axial velocity (normalized with the mean velocity at inlet) of

Price [112] are presented in Fig. 26-28. The predicted velocity profile presented in

Figs. 26-27 represent those at the section where the measurements were taken by Price

(i.e. at x =L + 1/16 in. from the inlet) and also those at other downstream locations

from the bed exit (0.5 in. and 1 in.). Calculations were performed for Case 1 (N =6,
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C1 =1.4) with Cz =0.157 and <Pa =0.36 in the exponential porosity function,

Eq. (1.5), with the Ergun constants A =215, B= 1.92. An interesting observation from

Figs. 26-27 is that a significant decrease in the peak velocity value takes place over a

short axial distance just as the fluid leaves the packed bed. In Fig. 28 the predicted

velocity profiles at the plane of measurement is presented for Case 1 (curve a). In the

same figure curve b represents conditions for Case 2 (i.e, the exponential porosity

function, Eq. (1.5a), with N =2 and Cl =0.56) and curve c for Case 3 (i.e. with the

porosity function assumed by the decaying cosine porosity function, Eq. (1.4». When

the porosity function is assumed by the damped cosine function the velocity profile

(curve c) also exhibits an oscillatory nature as observed in Fig. 28. The measured

velocity profile of Price [112] is also presented in Fig. 28 for the purpose of

comparison. In Figs. 26-28 the exponential porosity function (i.e. Case 1 and 2) seem

to yield a better agreement between the calculated and measured velocity as compared to

the decaying cosine function (i.e. Case 3). A definite conclusion regarding the porosity

function that results in the best agreement in this case cannot be made because of the

fact that the velocity measurements of Price [112] are available at locations outside the

region (relative to the wall) in which most of the changes have already taken place.

Therefore, velocity measurements within one particle diameter of the containing walls

(where the velocity seems to change drastically) are needed before any conclusion can

be made on the porosity function and the empirical constants that gives the best match

between computed and measured axial velocity data.
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5.3.2 Hydrodynamic entrance length:

In order to obtain the hydrodynamic entrance length numerically, a

uniform velocity distribution was assumed at the inlet of the packed section. Hence the

boundary conditions given by Eq. (2.14) apply to the momentum equation. In this case

the exponential porosity function, Eq. (1.5b,c) was employed with N =6, Cl = 1.4

(i.e. Case I) with C2 = 0.157, CPa = 0.36 and A = 215, B = 1.92. The hydrodynamic

entrance length, Lhy (normalized with respect to the particle diameter) for the flow of air

in a packed tube was computed for different ratios of particle to tube diameter and for

different Reynolds numbers, Red (based on the particle diameter). A sufficiently long

packed section (L =0.5 m) was assumed in the numerical solution to ensure a

hydrodynamically fully developed condition at the exit. In the numerical solution a

hydrodynamically fully developed condition was assumed if the velocities at

consecutive axial locations at any given cross-section did not change by 0.01 percent.

The results of the predicted hydrodynamic entrance lengths for y =0.024, 0.035,

0.045,0.071 and 0.097 are presented in Table I, which shows that for

0.024 s Y~ 0.097 and 1 ~ Red ~ 250 the hydrodynamic entrance length decreases with

increasing Reynolds number and then attains a constant value. This type of behavior of

the entrance length is typical in classical turbulent flow in a tube. In the case of flow

through a packed bed, mixing of fluids in the pores take place even at very slow flow

rates resulting in the flow to become fully developed over a short distance from the inlet

section. This mixing phenomena in the pores increases as the flow rate increases

thereby decreasing the hydrodynamic entrance length up to a certain value beyond

which it remains constant. From Table I it can also be concluded that for larger

particles (i.e. large values of y) the entrance length is longer for a given Reynolds
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number (or flow rate). From the numerical results the hydrodynamic entrance length for

flow in a packed-sphere bed inside a tube, is observed to be about 20 particle diameters

long for 1 =0.024 and is about half as long for 1 =0.071, which is contrary to

assumptions of Lhy being of the order of one in most papers.

From Table 1 an interesting observation is the Reynolds number

independence regions of the hydrodynamic entrance length for Red < 4 (1 = 0.071 and

0.097). When the Reynolds number varies from 1 to 4 the inertial resistance increases

but the Darcian resistance decreases. Since these two resistances have opposite effects

on the flow, the velocity profiles in this Reynolds number range remain practically

unchanged resulting in little or no change in the hydrodynamic entrance length. At

smaller and higher flow rates the hydrodynamic entrance length can therefore be

assumed to be constant (but different). Caution is advised when using the predicted

hydrodynamic entrance length because it depends on the criteria that has been used to

determine it (in this study the criteria was 0.01% as mentioned in this section). A

different value for the criteria would result in a different value of Lhy• Therefore a

careful experimental investigation is required to substantiate the findings of the present

numerical computations for the hydrodynamic entrance length.

5.3.3 Pressure drop:

A considerable amount of experimental work has been performed on

pressure drop in packed tubes [24,25,106]. In particular Fand et aI. [24,25] have

measured pressure drop of water flowing through a packed tube having particle/tube

diameter ratio ranging from 0.024 to 0.71. Fig. 29 is a comparison of the predicted and

experimentally determined dimensionless pressure drop parameter fn as a function of
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Reo (both based on the tube diameter, D) in a packed tube for 'Y =0.024, 0.035, 0.045,

0.071 and 0.097 which correspond to Fand et al.'s experimental conditions [24,25].

The dimensionless pressure drop parameter fo is defined as fo =(~ Pc I L) Dip Ui2

where L is the length of the packed tube and u, is the mean velocity at the inlet, ~Pc and

p are the pressure drop and density of the fluid respectively. The lines in Fig. 29

represent the predicted pressure drop with porosity approximated by the exponential

function, Eq.(1.5b,c), with N =6, Cl = 1.4 (i.e, Case 1) and C2 =0.157, <j>a = 0.36

and A =215, B = 1.92. From this plot it is observed that the predicted pressure drop

agrees very well with the experimental data if these empirical constants are used. It

should be mentioned at this point that the predicted pressure drop for the

hydrodynamically fully developed and the developing forced flow cases are almost

identical and are therefore not presented separately. Therefore, it can be concluded that

the hydrodynamic entrance length has little effect on the pressure drop. In Fig. 30 the

effect of using different porosity function relationship on the dimensionless pressure

drop, fo, as a function of the Reynolds number, Reo, is presented for 'Y =0.035 and

'Y =0.097. The solid lines (curve a) in Fig. 30 represent the fo values for Case I ; the

dashed lines (curve b) are for Case 2 (i.e. exponential porosity variation, Eq. (1.5b,c),

with N =2, C, =0.56) ; and the chain-dashed lines (curve c) represents fo values for

Case 3 (i.e, porosity assumed by the decaying cosine function, Eq. (1.4)). It can be

concluded from Fig. 30 that the porosity variations given by Eq. (1.4) and Eq. (1.5b,c)

are equally valid for predicting the pressure drop in a packed-sphere bed in a tube for

10 s Reo s 104•

In the absence of any reliable experimental pressure drop data for flow

in a packed channel, only numerical result of the dimensional pressure drop parameter,
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fH, as a function of the Reynolds number, ReH' (both based on the the height of the

channel or plate separation distance, H) are presented in Fig. 31 for y =0.06 and 0.12.

The dimensionless pressure drop parameter, fH, in the case of flow through a packed

channel is defined as fH=(8Pf / L) H / p u? where L is the length of the channel, H is

the plate separation distance, Uj is the mean fluid velocity at inlet, p and 8pf are the

densities and average pressure drop of the fluid respectively. From Fig. 31 it can be

observed that Cases 1 and 2 result in almost the same profiles of fHfor 10 ~ ReH ~ 104•

The decaying cosine function, (Case 3), on the other hand predicts a higher fHvalue for

ReH < 103 and lower values for ReH ~ 103• The sudden drop in the value offH around

ReH =500 is attributed to the sinusoidal nature of the porosity function.

A comparison of the predicted dimensionless pressure drop in a packed

tube and a channel for y =0.035 and 0.097 as a function of Reynolds number is

presented in Fig. 32 for the condition in Case 1. From this plot it can be observed that

for small r (r=0.035) at the same Reynolds number a greater pressure drop (about

6%) is required for flow through a packed channel than through a packed tube.

Whereas for r =0.097 an even greater pressure drop (about 20%) is required for flow

through a packed channel. This implies that the pressure drop does not dependent on

the geometry of the packed bed for small values of rwhereas for large r the geometry is

important.

5.4 Heat Transfer Results:

Having obtained the hydrodynamic field, the next step is to obtain the

temperature field by solving the energy equation. From the temperature distribution, the

heat flux and thereby the Nusselt number can becalculated. The Nusselt number and
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the heat flux for the packed tube and the packed channel are defined in Eqs. (2.15) and

(2.16) respectively. The governing energy equation for the simultaneously developing

forced convection problem is given by Eq. (2.13) with appropriate boundary condition

(depending on the experimental conditions). The numerical solution for the energy

equation for this problem was obtained by the application of the SIMPLER algorithm

on a non-uniform grid system as in the case of the momentum equation. For the

hydrodynamically fully developed and thermally developing forced convection problem

the governing energy equation (with the boundary layer approximation) is given by Eq.

(2.19) with the boundary conditions as in Eq. (2.20). The governing equation in this

case was discretized using the finite difference scheme with the convective term

expressed as an upwind difference. The resulting sets of algebraic equations were

solved with the TDMA. The marching technique was used to obtain the temperature

profiles at each axial location by traversing the solution procedure from inlet to the exit

section.

As mentioned earlier, the empirical constants Cd and co in Eq. (1.11)

have been determined by a comparison of the experimental and numerical values of the

Nusselt number (Nusselt number will also be referred to as the dimensionless heat

flux). Hence these results will be presented first followed by the temperature

distribution. Some comments need to be made at this point on the choice of the tube

diameter, D, or the plate separation distance, H, in the definition of the Nusselt number

and the Reynolds number in the case of the circular and flat (channel) geometries.

When comparison between two identities are made a common basis should be used.

For example, if the effect of the particle diameter on the velocity profile or the heat flux

is to be studied, the Reynolds number or the Nusselt number should not be calculated
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with the particle diameter as the characteristic length. To make a fair comparison it is

quite logical to use an independent parameter, e.g. the tube diameter or the plate

separation distance as the characteristic length. Another choice of the characteristic

length for the case in question is the length of the tube (or channel) which has been

suggested by Chrysler and Simons [33]. But the choice of permeability as the

characteristic length, also suggested by Chrysler and Simons [33], is not recommended

because of the dependence of the permeability on the particle diameter per Eq. (2.3a).

In this research it has been found that a dispersion coefficient C, =0.15

and the Van Driest damping factor ill =3 results in the best match between numerical

and experimental results of the heat transfer characteristics if the dispersion conductivity

given by Eq. (1.11) and the exponential porosity function, Eq. (1.5b,c) are considered

with N = 6, Ci = 1.4 (i.e, Case 1) with Cz = 0.157, <Pa = 0.36 and A = 215, B = 1.92.

On the other hand for Case 2 (i.e. if the values of N =2, Cl =0.556 are used in

Eq. (1.5) with the values of the other empirical constants as mentioned above), the best

match between the predicted and experimental heat flux data can be obtained if

C, = 0.13 and ill = 4 are used in the dispersion conductivity model given by Eq. (1.11).

If the decaying cosine porosity function, Case 3, was assumed (i.e. Eq. (1.4) then

Cd = 0.22 and ill = 3 have been found to be the appropriate values of the empirical

constants to be used in Eq. (1.11). Values of Cd and ill that were used in the numerical

computations for the different cases studied can be summarized as follows :

a) for Case 1 : Cd =0.15 and ill =3,

b) for Case 2: Cd = 0.13 and ill = 4 and

c) for Case 3: Cd = 0.22 and ill = 3.
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In evaluating the values of the empirical constants C, and 00,

comparison was made with the observed Nusselt number and not the measured

temperature distribution. The reason for this is that temperature measurements in a

porous medium is extremely difficult without affecting the flow (even by using small

diameter probes). Also it is not assured whether the fluid or the solid temperature is

being measured, keeping in mind that under non-thermal equilibrium conditions these

two temperatures will be different. Therefore, temperature measurements are not so

reliable for comparison purposes. On the other hand the observed heat flux is calculated

from measured power input to the heat source. If heat losses are minimized (or taken

into account) the heat flux measurements are usually of much greater accuracy than the

temperatures.

In the following sections results of the computed heat flux are also

presented when the dispersion conductivity models by Kuo and Tien [121] and Koch

and Brady [122] are used for Case 1 conditions. Since the latter model [122] was not

derived with the effect of variable porosity taken into account (as are most of the

dispersion models), it is expected to be valid for small y.

Before going into the presentation and discussion of the heat transfer

results, the reasons for choosing the experimental data of Verschoor and Schuit [17] for

comparison purposes is stated as follows. It is true that in the literature one can find

numerous data for the heat flux in the case of forced convection in a packed tube. The

question is which of these data are reliable and how complete are the information. For

example, many authors do not report the measured heat flux data, inlet and outlet bulk

mean temperatures. The inlet and outlet temperatures were not usually reported because

it was assumed that the flow is thermally fully developed. If the reported experimental
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data includes the inlet and outlet temperatures and the heat flux or the heat transfer

coefficient, it is possible to assess the reliability of the experimental data in question by

simple heat balance calculations. In the present study the experimental data of

Verschoor and Schuh [17] was found to be very reliable and complete, and therefore

was used for comparison with the numerical solution. It should be mentioned that a

good estimation of the empirical constants, in this case Cd and co in Eq. (1.11) can only

be made if the source of the experimental data is reliable. Conversely, if the reliability

of data cannot be assessed then a comparison with it would lead to inaccurate values of

the empirical constants.

An error analysis of the computed and experimental data for the Nusselt

number is reported in this section to quantify the difference between the observed and

calculated heat flux data for forced convection in a packed bed. The Root Mean Square

Error (RMSE) which is used as the criterion for the comparison in this analysis is

expressed as follows:

where, n refers to the number of data points and the error E, is defined as

E
. _ Xth - X cxp
1-

X exp

where Xth and Xexp are the theoretical and experimental values of the Nusselt number.

5.4.1 Thermally developing forced convection in a packed tube:

(A) Comparison with Verschoor and Schuit's as well as Leva's experimental data:

Experiments on forced convection in a packed tube at uniform wall

temperature were carried out by Verschoor and Schuh [17] and by Leva [52]. Although
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temperature distributions were not measured in these experiments, the dimensionless

heat flux data was reported and are presented in Figs. 33-37 for Verschoor and Schuit's

experiments [17] and Fig. 38 for Leva's experiments [52]. Since no packed calming

section was used at the inlet in Verschoor and Schuit's [17] or Leva's [52]

experiments, the numerical solution in the present study is based on a simultaneously

developing flow with a uniform velocity assumed at the inlet of the heated packed

column.

The experimental data of the Nusselt number as a function of Reynolds

number (both based on the tube diameter), for 'Y =0.06, 0.1, 0.101, 0.12 and 0.14

which correspond to the experimental conditions of Verschoor and Schuit [17] for

air/glass sphere and air/chrome steel sphere, are presented in Fig. 33. The lines in this

figure represent the computed Nusselt number corresponding to Verschoor and

Schuit's experimental conditions. For the purpose of comparison the numerical solution

of the energy equation without the dispersion term is also included in Fig. 33 for

'Y =0.1. From this plot it can be seen that dispersion plays an important role in the heat

transfer process for forced convection in a packed bed and therefore must be included

in the energy equation. From Table 2 it can be seen that for the air/glass sphere system

the Root Mean Square Error (RMSE) between the experiments of Verschoor and

Schuit [17] and the present numerical solution is less than 10%. The RMSE for the

air/chrome steel sphere system is within 16% for 'Y =0.12 and 19% for 'Y =0.14. Good

agreement between the experimental and computed values of the heat flux can be

concluded from Fig. 33. It should be mentioned here that the computed results are

based on the assumption of local thermal equilibrium. The thermal equilibrium

assumption is valid if the thermal conductivities of the solid and the fluid media are of
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the same order of magnitude. Therefore, if the thermal conductivity ratio of the fluid

and the solid, A. =krlkp is close to unity, the computed results are expected to closely

predict the temperature in the packed bed. For the air/glass system the thermal

conductivity ratio A. = 0.03, whereas for the air/chrome steel system A. = 0.0006.

Therefore, the numerical solution is expected to predict the Nusselt number better for

the air/glass sphere system than the air/chrome steel sphere system. This explains the

reason for the larger error between the numerical and experimental values of Nusselt

number for the air/chrome steel system as compared to the air/glass sphere system.

From Fig. 33 the effect of the ratio of the particle to the tube diameter, 1

(0.06 s 1 s 0.12) and the length of the heated tube, L, (0.21 m s L s 0.3 m) is

observed to be small on the dimensionless heat flux results (both predicted and

observed), for 103 ~ ReD ~ 104 when the solid particles are comprised of the glass

spheres. On the other hand for the air/chrome steel sphere system, 1 =0.12,

L =0.21 m and 1 =0.14, L =0.3 m, the predicted and observed results of the Nusselt

number is smaller for the larger particle for 103 ~ ReD ~ 104• Another observation from

the same figure is the tendency of the Nusselt number to collapse to one line (i.e.

independent of material of the solid particle) for ReD> 104 (in the case of the observed

and numerical data). From Fig. 33 the effect of L on the Nusselt number can be studied

by comparing the predicted values for y» 0.101, L =0.26 m (curve c) and 1= 0.1,

L =0.21 m (curve b). It can be observed that for similar particle size the effect of using

a heated tube that is 25% shorter increases the heat flux by about 10%. The observed

values for this case on the other hand show a 4% increase in the heat flux.

To examine the effect of 1 on the Nusselt number, Fig. 33 is replotted in

Figs. 34 for 1 =0.06 and 0.12 for L =0.3 m. From Fig. 34 it can be observed (both
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experimental data and numerical results) that for a given Reynolds number, ReD, the

particle size has little effect on the Nusselt number (not heat flux). From this figure the

predicted results of the Nusselt number for Y= 0.06 and 0.12, an increase of only 1-2

% can be observed for the range of 103 ~ Reo ~ 104• The effect of 'A. (the ratio of the

fluid to solid thermal conductivity) on the Nusselt number can be studied from Fig. 35

in which the dashed line (curve b) represents the predicted Nusselt number for Y=

0.12, L =0.21 m for air/chrome steel sphere system and the solid line (curve a) the

Nusselt number for y =0.12, L =0.3 m for the air/glass sphere system. Since the

effect of the length of the packed heated tube on the observed Nusselt number is seen to

be small, a comparison of the effect of 'A. on the Nusselt number can be made from this

figure. The experimental data of Verschoor and Schuit [17] which correspond to the

above mentioned predicted results are also included in the same graph as a comparison.

The effect of using metal spheres as compared to glass spheres is seen to increase the

Nusselt number at lower Reynolds number. On the other hand the effect of using metal

spheres seems to be small at higher flow rates. No definite conclusion can be made to

quantify the amount of increase in heat flux from this plot because the experiments (and

predictions) were not performed at identical boundary conditions of temperature for the

two sets of data. The effect of 'A. on the Nusselt number will be discussed later in which

the numerical simulations was performed for the same boundary values of temperature.

The effect of using the different porosity functions (Case 1, 2 and 3) on

the Nusselt number is presented here. In Figs. 36 and 37 the predicted and observed

data of the Nusselt number for y= 0.06 and 0.101 (air/glass sphere system) which

correspond to Verschoor and Schuit's experimental conditions is presented. From

Figs. 36 and 37 it can be observed that though Case 1,2 and 3 predict the Nusselt
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number for 'Y =0.06 quite well, for 'Y =0.12 Cases 2 and 3 underpredict the

dimensionless heat flux values, especially with increasing Reynolds numbers.

Therefore, Case 1 i.e. the exponential porosity variation, Eq. (1.5b,c) with N =6,

Cl = 1.4 along with the present dispersion model given by Eq. (1.11) with Cd =0.15

and co =3 offers the best solution in predicting the dimensionless heat flux in a packed

tube.

A comparison of the results based on the present dispersion model and

those ofKuo and Tien [121] and Koch and Brady [122] is presented in Fig. 38 where

the numerical solutions (for Case 1) were carried out corresponding to Verschoor and

Schuit's experimental condition [17]. The dispersion models proposed by Kuo and

Tien [121] and by Koch and Brady [122] is seen to underpredict the dimensionless heat

flux results and the deviation seem to increase with increasing Reynolds number. From

Fig. 38 it can be concluded that the present dispersion model given by Eq. (1.11) with

Cd =0.15 and ro =3, along with the exponential porosity function with N = 6,

Cl =1.4 (i.e. Case 1) with C2 =0.157, <j>a =0.36 and A =215, B = 1.92, results in

the best match between the computed and observed Nusselt number for forced

convection in a packed tube.

In Fig. 39 the experimental results of Leva [52] for 'Y = 0.086 and 0.11

are presented for the Nusselt number as a function of the Reynolds number. The

numerical solutions are also included in this plot for the purpose of comparison. In the

numerical simulation the exponential porosity function was assumed as in Case 1 with

Cd =0.15 and ro =3 in the present dispersion conductivity model, Eq. (1.11). The

discrepancy between the numerical results of Nusselt number and the experimental data

is attributed to large heat losses and difficulty in measuring the packed bed exit bulk
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mean temperature in Leva's experiments. This comment was also made by Verschoor

and Schuit [17], Hennecke and Schlunder [75], Quinton and Storrow [61] and others.

As observed in Fig. 39 the deviation between the experimental data and the numerical

solutions increases with decreasing Reynolds number. This happens particularly in

tubes that are very long as for example the one used by Leva [52]. As the outlet

temperature approaches equality with the wall temperature, small errors of exit

temperature measurement become magnified in the subsequent calculations, leading to

increasingly low values of the heat transfer coefficient with decreasing flow rates [61].

An error analysis for the experimental and predicted Nusselt number is presented in

Table 3 which shows that the Root mean square error is 15% for y=0.086 and 11%

for y =0.11.

In the present study agreement between computed and the

experimentally determined Nusselt number for forced convection in a packed tube is

found to be good for y < 0.15. For y;::: 0.15 especially at high Reynolds numbers, the

predicted Nusselt number (Case 1) appears to be lower than the experimental data as

shown in Fig. 40 for y =0.151 for air/glass sphere system corresponding to Verschoor

and Schuit's experiments [17]. The Root mean square error for this case is 25%. This

discrepancy may be attributed to the fact that the assumption of a continuum is

inaccurate for y;::: 0.15.

(B) Comparison with Plautz and Johnstone's experimental data:

Plautz and Johnstone [1] have carried out an experiment on forced

convection of air in a cylindrical tube at uniform wall temperature packed with glass

spheres. Since a packed calming inlet section was used in the experiment, numerical
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solutions to simulate this flow condition have been performed using a fully developed

velocity profile as the inlet velocity distribution. Plautz and Johnstone's experimental

data [1] for dimensionless temperature distribution T =[t - th) / (tj -lh) (with lhand ti

denoting the wall and inlet temperatures respectively) at different downstream location

for 'Y =0.088 and Reo =1.1 x 10
3

(Reynolds number based on the tube diameter) is

presented in Figs. 41-45. Results of the numerical solution for the dimensionless

temperature distribution are also plotted in the same graph for comparison purposes for

Case 1,2 and 3 and for two other dispersion models by Kuo and Tien [121] and by

Koch and Brady [122]. In Fig. 41 the computed results are based on Case 1 and the

present dispersion conductivity model given by Eq. (1.11) with Cd =0.15 and co =3.

As shown in the figure the calculated temperature profiles are in fair agreement with

Plautz and Johnstone's experimental data [1]. It should be noted that the calculated

temperatures are volumetric averaged quantities while the experimental data are

microscopic fluid temperature measurements and thus a perfect agreement is not

expected.

Numerical results of the temperature distribution were also obtained for

Case 2 (i.e. the exponential porosity function, Eq. (1.5b,c) with N =2, Cl =0.56) and

the present dispersion model with C, =0.13 and co =4. As mentioned earlier the values

of C, and co were obtained by comparing the numerical results and the observed data

for the dimensionless heat flux. The predicted and observed temperature distribution is

presented in Fig. 42. From Fig. 42 it can be concluded that the predicted temperature

distribution for Case 2 is of the same nature as obtained for Case 1 (i.e. the exponential

porosity function with N =6, Cl =1.4). In Fig. 43 a comparison of the predicted and

observed temperature profiles corresponding to Plautz and Johnstone's [1]
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experiments, is presented for the decaying cosine porosity function i.e. Case 3, and the

present dispersion model, Eq. (1.11) with Cd=0.22 and co =3. The agreement

between the observed and numerical results of temperature for this case seems to be

worse.

As mentioned earlier two other dispersion models by Kuo and

Tien [121] and by Koch and Brady [122] are analyzed in this study to ascertain their

accuracies. Using the dispersion model ofKuo and Tien [121] Eq. (1.12) with the

exponential porosity function, i.e. Case 1, the experimental conditions of Plautz &

Johnstone [1] was numerically simulated. A comparison of the numerical solution and

experimental data of the temperature distribution is presented in Fig. 44. The

temperature profile with Kuo and Tien's dispersion model [121] seems to overpredict

the bed temperatures. Fig. 45 is a comparison of temperature data obtained by Plautz

and Johnstone [1] with computed temperature profiles based on Koch and Brady's

[122] dispersion model, Eq. (1.13) (also under Case 1 conditions). Similar over­

prediction of the bed temperature is observed when Koch and Brady's dispersion

model [122] was employed in the numerical solution of the energy equation. From the

predicted temperature profiles presented in Figs. 41-45, it can be seen that none of the

porosity functions or dispersion models that has been assumed in this study, is able to

predict the temperature distribution of the experiments of Plautz and Johnstone [1] well.

The closest prediction is seen to be for Case 1 (Fig. 41) with the present dispersion

conductivity model given by Eq. (1.11) with C, =0.15 and co =3.
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5.4.2 Thermally developing forced convection in a packed channel:

Cai [116] conducted an experimental investigation on forced convection

of Freon (referred to as R-I13 in this study) in a packed channel of 0.46 m in length,

maintained at temperatures th - 38°C and l:c - 23°C, referring to the hot and cold wall

temperatures, and separated by a distance H (which will be referred to as the plate

separation distance from hereon). Temperature distribution in the packed channel at five

downstream locations i.e. at x =6.35, 92.1, 181.0, 270.0, and 451.0 mm from the

inlet section were measured using J-type thermocouple probes (0.81 mm in diameter).

Two types of spherical balls - glass (3, 5 and 6 mm in diameter) and chrome steel (6.35

mm in diameter) were used as the porous matrix and the measured temperature and heat

flux were reported [116].

A numerical simulation of Cai's experiments was carried out in this

study with the inlet velocity distribution taken as fully-developed (because of the

presence of a packed calming inlet section). Figure 46 depicts the variation of the

Nusselt number, NUH (defined in Eq. (2.16), in a packed channel as a function of the

Reynolds number, Ren, for y=0.06 and 0.12 for the R-113/glass sphere system and

the R-I13/chrome steel sphere system. The lines in Fig. 46 represent the numerical

solutions corresponding to Cai's experiments [116]. It appears that as the Reynolds

number increases the agreement between the numerical and experimental results [116]

of the Nusselt number become worse for the R-I13/glass sphere system. On the other

hand good agreement is observed for the R-I13/chrome steel sphere system (curve c).

This is contrary to what is expected and also observed in the case of forced convection

in a packed tube presented earlier. The value of the thermal conductivity ratio, A, for the

R-I13/glass sphere system is 0.071 whereas for the R-I13/chrome steel system
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Iv = 0.0017. Therefore under the assumption of thermal equilibrium as discussed earlier

(in section 5.4.1) the R-113/glass sphere system is expected to yield better agreement

with the computed Nusselt number. One of the important reasons for the discrepancy in

the computed and observed Nusselt number data of Cai [116] could have resulted from

loose packing of the glass spheres in the test section in his experiments. A large void

space was observed in the inlet section at higher flow rates. This may have caused the

velocity profile to become distorted in the test section resulting in a problem that was

not numerically simulated. Also poor measurement techniques and instrumentation used

in the measurement of the hot and cold wall temperatures may have been a contributing

factor. An error analysis of the computed and experimental data for the Nusselt number

for forced convection of R-113 in a packed channel for the glass and chrome steel

sphere systems is presented in Table 4.

The effect of using the different porosity functions (Case 1,2 and 3) on

the computed Nusselt number for forced convection in a packed channel are presented

in Figs. 47 and 48 fory= 0.06 and 0.12 (air/glass sphere system) respectively, which

correspond to Cai's experimental conditions. From Figs. 47 and 48 it can be observed

that Case 1 and 2 predict the Nusselt number data quite well for y = 0.06 and 0.12.

Computed results of the Nusselt number for Cases 3 assumption is seen to underpredict

the dimensionless heat flux values, especially with increasing Reynolds numbers.

Therefore, Case 1 and 2, i.e. the exponential porosity variation, along with the present

dispersion model given by Eq. (1.11) offers the best solution in predicting the

dimensionless heat flux in a packed channel.

A comparison of the computed (for Case 1) Nusselt number based on

the present dispersion model and those of Kuo and Tien [121] and Koch and Brady
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[122] with the experimental data is presented in Fig. 49. The dispersion model

proposed by Kuo and Tien [121] is seen to underpredict the dimensionless heat flux. At

higher Reynolds numbers the discrepancy is greater. The dispersion model of Koch

and Brady [122] is seen to overpredict the dimensionless heat flux results for any given

Reynolds number. From Fig. 49 it can be concluded that the present dispersion model

given by Eq. (1.11) with Cd = 0.15 and 0) = 3, along with the exponential porosity

function with N = 6, Cl = 1.4 (i.e. Case 1) with C2 =0.157, CPa =0.36 and A =215,

B = 1.92, results in the best match between the computed and observed Nusselt

number.

A comparison of Cai's temperature data for R-l13/glass sphere system

(y = 0.06) with predicted temperature distribution for Case 1 and Cd =0.15 and 0) = 3

in Eq. (1.11) at ReH =4161 and 16685 are presented in Figs. 50 and 51 respectively.

In Figs. 52-54 similar comparisons of the observed and computed temperature

distribution (based on Case 1) for'Y= 0.12 at ReH = 2407,8228 and 16613 for the

R-l13/glass sphere system are plotted. In Figs. 55-57 the observed and predicted

temperature profiles for R-113/chrome steel system at ReH = 2148,8301 and 16571 are

presented. From Figs. 50-57 the predicted temperatures are seen to be less than the

measured values near the heated wall, especially at distances far from the entrance

section. The discrepancy seem to become worse as Reynolds number increases

(compare Figs. 50 and 51 for example). It can also be observed that the differences in

the predicted and observed temperatures are smaller on the cold side but larger on the

hot side of the channel. This is because the observed temperatures are not anti­

symmetric about the centerline of the channel which should have been obtained in an

asymmetric heating condition at steady state. Some of the reasons for the poor
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agreement between the observed and the predicted temperatures are as follows:

a) the flow has not attained steady state,

b) variable property effect may be more important near the hot wall, ,-

c) in porous media problems, temperature measurements using probes is not the best

method to be used because the size of the probes may influence the flow thereby

changing the temperature field. Moreover, no guarantee can be given as to the location

of the measurements.

In order to compare the effect of the remaining two porosity functions

(i.e. Cases 2 and 3) on the temperature distribution, a numerical computation was

conducted. A comparison of Cai's temperature data for the R-1l3/glass sphere system

("1= 0.06) with the computed temperatures at ReH = 4161 is presented in Fig. 58 for

Case 2 (i.e. exponential porosity function, Eq. (1.5b,c) with N = 2, Cl = 0.556). The

agreement between the numerical and observed temperature is still not so good. Similar

trends are observed for "I= 0.12 and ReH = 8228 (R-113/glass sphere system) as

shown in Fig. 59. In Fig. 60-61 the temperature distribution for Case 3 (decaying

cosine function, Eq. (1.4)) are presented fory= 0.06, ReH = 4161 and "1=0.12,

ReH = 8228 respectively for the R-113/glass sphere system. Similar underprediction of

the temperatures on the hot side of the channel is observed from this plot.

Using the dispersion model of Kuo and Tien [121] as given by

Eq. (1.12) with the exponential porosity function given by Case 1, the experimental

conditions of Cai [116] was numerically simulated at ReH = 2407 andy = 0.12 for the

air/glass sphere system. Comparison of the numerical solution and experimental data of

the temperature distribution is presented in Fig. 62. The temperature profile with Kuo

and Tien's dispersion model [121] seems to predict the bed temperatures quite well. In
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Fig. 63 Cai's experimental data [116] are compared with computed temperature profiles

based on Koch and Brady's [122] dispersion model, Eq. (1.13) (also under Case I

conditions) for the air/glass sphere system at ReI{ =2407 and y =0.12. The

temperature profiles for this model for the channel and the tube geometries are of

similar nature, i.e. the observed temperatures are below the corresponding predicted

values. From the predicted temperature profiles presented in Figs. 50-63, it is seen that

none of the porosity functions or dispersion models that have been assumed in this

study, is able to predict the temperature distribution of the experiments of Cai [116]

well. The closest prediction is obtained with the dispersion model of Kuo and

Tien [121] under Case I assumptions and for the present dispersion model with

C, = 0.13, ro = 4 for the Case 2 conditions.

5.4.3 Thermal entrance length:

The thermal entrance length, ~, (normalized with respect to the particle

diameter) for the flow of R-113 in a packed tube and a packed channel was computed

for different dimensionless particle diameters, and for different Reynolds numbers, Red

(based on the particle diameter). In the numerical solution a thermally fully developed

condition was assumed if the local Nusselt number at a consecutive axial location did

not change by 0.0 I percent. The results of the predicted thermal entrance length for

y =0.06 and 0.12 are presented in Table 5 for R-I13/glass sphere system for forced

convection in a packed channel. From Tables 5 it can be observed that the thermal

entrance length increases with the Reynolds number. This can also beconcluded from

Cai's experimental data for the temperature distribution presented in Fig. 52

(ReB= 2407) and Fig. 56 (ReI{ = 16613). It can be seen that when the Reynolds
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number is increased the thermal boundary layer becomes thinner which would mean

longer thermal entrance length. On the other hand from the same Table it can be

observed that for the larger particles the thermal entrance length seems to be shorter. If

the comparison is made for a particular Reynolds number which means that for the

larger particle the velocity is less, then, on the basis of what has been conclude

(decrease of 4 with Red) the trend of the thermal entrance length with an increase in 'Y

can be explained. For Red> 100 the thermal entrance length seems to be almost

independent of the Reynolds number.

For a packed tube the thermal entrance length was also calculated for

R-113/glass sphere system and for 'Y =0.06 and 0.12 . The predicted results of the

thermal entrance length are presented in Table 5 and are similar in nature as for the

channel configuration.

5.4.4 Effect of Pr and Aon heat flux in a packed tube and a packed channel :

A numerical investigation was conducted for forced convection in a

packed tube to study the effect ofPrandlt number, Pr, and the ratio of the fluid to solid

thermal conductivity, A. The computed results are presented in Fig. 64 for 'Y =0.06, in

which case the present dispersion model was used with Case 1 assumption. In Fig. 64

the predicted results of the Nusselt number are represented by the solid line (curve a)

for the R-113/g1ass sphere system; the dashed line (curve b) for the air/glass sphere

system; the chain-dashed line (curve c) for the air/chrome steel sphere system; and the

chain-dot line (curve d) for the R-l13/chrome steel sphere system. It should be

mentioned that the effect of the Prandlt number alone cannot be examined because it
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R-l13/chrome steel

ReD< 10

10 < ReD < 2 x 103

Reo> 2 x 103

also changes the value of the thermal conductivity ratio A. The curves plotted in Fig. 64

show three distinct regions :

a) the conduction dominated region in which the heat flux is independent of the

Reynolds number,

b) the transition region in which conduction and forced convection heat transfer are of

comparable magnitude, and

c) the forced convection region in which the heat flux has an exponential relationship

with the Reynolds number.

The Reynolds number that correspond to these regions seems to depend on the

continuous phase in the porous media. The following conclusions can be made on the

three regions mentioned above for air and R-113 :

Air/chrome steel

Reo < 100

100 < Reo < 103

Reo> 103

Conduction region :

Transition region :

Forced convection region :

It is evident from Fig. 64 that the Prandlt number has a pronounced

effect on the heat flux in a packed-sphere bed beyond a critical Reynolds number which

is in the transition region. The value of the critical Reynolds number seems to depend

on the type of solid and fluid in the system. When the porous matrix is composed of

glass-spheres and the fluid medium is either air or R-I13 the critical Reynolds number

is about 20. On the other hand for the air/chrome steel and R-I13/chrome steel sphere

system this is around 30. The increase in the heat flux for the air/glass and R-I13/glass

system is about five times for Reo> 103, i.e. in the forced convection region. This is
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also true for the air/chrome steel and R-113/chrome steel sphere system for
3

ReD> 2 x 10 . The effect of Prandlt number on the heat flux becomes small as the

conduction dominated region is approached for a given type of the solid medium.

From Fig. 64 the effect of the thermal conductivity ratio of the fluid and

solid medium on the dimensionless heat flux in a packed tube can also be studied. The

effect of the thermal property of the solid medium is seen to be small at large values of

Reynolds number. But in the conduction region the thermal conductivity ratio has a

pronounced effect on the heat transfer. For the air/glass system, A. =0.03 (curve b),

and the air/chrome steel sphere system, A. =0.0006 (curve c), the heat flux increases in

the latter by a factor of two in the conduction region. Similar conclusions can be made

for the R-113/glass sphere system, A. =0.071 (curve a), and the R-l13/chrome steel

sphere system, A. =0.0017 (curve d). From Fig. 64 it can also be concluded that a fluid

with a greater Prandlt number enhances heat transfer if the flow is in the convection

dominated region. On the other hand if the heat transfer is conduction dominated (i.e. at

slower flows) more heat can be removed by using a solid material with a higher thermal

conductivity.

A similar numerical study on the effect of Prandlt number and the

thermal conductivity ratio of the fluid and the solid for forced convection in a packed

channel was also carried out. The value of y=0.06 was used in the computation. The

same combinations of the fluid and solid were used as in the case of the packed tube.

The numerical results for the Nusselt number as a function of the Reynolds number is

presented in Fig. 65. It is found that the same conclusions as in the case of a packed

tube are also valid for a packed channel.
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5.5 Mixed Convection in a Packed Tube and a Packed Channel:

Since no experimental data could be obtained in the open literature for

mixed convection in a packed tube or a channel for the constant wall temperature

boundary condition, a qualitative analysis is presented below for these flow conditions.

The effect of buoyancy force on forced flow was obtained by decreasing the Reynolds

number for a fixed value of the Grashofs number, Gro. The Nusselt numbers for this

were compared with the forced convection situation to determine if the buoyancy term

had any effect.

5.5.1 Mixed convection in a packed tube:

The numerical results of the local heat flux Nuox as a function of the

axial distance is presented in Fig. 66 for y =0.06 (air/glass sphere system) at

Gro / Reo =5 x lOS, 9 x 10s,2 X 106• From Fig. 66 it can be observed that the effect

of the buoyancy force is to decrease the thermal entrance length. Similar results can also

be observed in classical heat transfer problems [117,]. In Fig. 67 the average Nusselt

number is plotted as a function of Gro / Reo for y =0.06 and 0.12 for the air/glass

sphere system. The horizontal dashed lines in this figure represents the predicted

asymptotes for forced convection. From Fig. 67 it can be seen that the effect of

buoyancy force on forced convection become important when Gro / Reo> 9 x lOs for

y= 0.06 and for values of GrD / ReD> 4 x 104 for y = 0.12.

5.5.2 Mixed convection in a packed channel:

A similar numerical analysis was performed for mixed convection in a

packed channel for the air/glass sphere system for y=0.06 and 0.12. The numerical
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results of the local Nusselt number, NUH, as a function of distance from the inlet of the

channel for 'Y = 0.06 is presented in Fig. 68 for GrH/ ReH= 9 x 104, 2 x 105, 5 x 105•

The thermal entrance length is also seen to decrease due to the effect of buoyancy force

on the induced flow in a channel. In Fig. 69 the average Nusselt number is plotted as a

function of GrH/ ReHfor 'Y =0.06 and 0.12 for the air/glass sphere system. The

horizontal dashed lines in this figure represents the predicted asymptotes for forced

convection. From Fig. 69 it can be observed that for 'Y =0.06 and GrH / ReH > 9 x 104

the effect of the buoyancy forces become important. From the same figure for 'Y =0.12

it can be seen that buoyancy forces are important to consider for values of GrH/ ReH >

4 x 103•
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CHAPTER 6

CONCLUSIONS AND REMARKS

The present study has been motivated by the need for a better

understanding of the fluid flow and heat transfer characteristics for an induced flow in a

fluid-saturated packed bed that is contained in a cylindrical tube and in a channel. The

outstanding features of this study are :

a) the use of the full momentum and energy equation, i.e. without the boundary layer

approximation in the two-dimensional flow problem

b) the inclusion of the effect of the dimensionless particle diameter in the dispersion

conductivity model of Hsu and Cheng [45,98], and

c) the use of a porosity function that accounts for both streamwise and cross-stream

porosity variations.

6.1 Conclusions:

The mathematical formulation of convective heat transfer in porous

media with variable porosity and thermal dispersion taken into consideration contains

seven empirical constants. Three of these constants N, CI and {j>a appear in the

exponential porosity function, Eq. (1.5a), the two Ergun constants A and B in

Eq. (2.3) and two constants C, and co in the proposed dispersion conductivity model,

Eq. (1.11). The asymptotic value of porosity, {j>a, and the Ergun constants A and B

have been found to have a significant effect on the pressure drop in a packed bed
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system. With all other empirical constants held fixed a 10% increase in the value of <i>a

(from 0.36 to 0.4) results in the pressure drop to be underpredicted by 40%. The effect

of the Ergun constant A for Reo < 1()3 on the pressure drop has been found to be

almost proportional, i.e. a 1% decrease in the value of A, results in the pressure drop to

be underpredicted by 1%. The effect of the Ergun constant B for Reo> 104 follows the

same trend. The values of the Ergun constants A (150 s A s 226) and B (1.75 s B s

1.92) have negligible effect on the heat transfer characteristics.

The values of the seven empirical constants which yield the best match

for the numerical and observed fluid flow and heat transfer results have been found to

be as follows: N =6, C1 = 1.4, <i>a =0.36, A =215, B = 1.92, Cd =0.15 and co =3.

The first five empirical constants were determined by a comparison of the porosity,

velocity and pressure drop data in a packed tube, while the latter two empirical

constants were determined by a comparison of the available heat flux data for forced

convection in a packed tube and a channel.

The predicted hydrodynamic entrance length has been found to be about

10 to 20 particle diameters long for 0.024 s Y~ 0.097 and 1 ~ Red ~ 103• Based on the

dimensional length, the hydrodynamic entrance length was found to be shorter for the

smaller particles. For all practical purposes the entrance length can be considered to be

equal to the size of the tube diameter, D (or the plate separation distance, H).

The predicted heat flux results for flow in a packed tube were found to

be within 10% of the observed values for 0.06 ~ Y~ 0.12 (air/glass sphere system) and

103 ~ Reo ~ 104• For the air/chrome steel sphere system the agreement was within 19%

for y =0.12 and 0.14 and 103 ~ ReD::; 104• The large difference in the observed and

predicted heat flux results for the air/chrome steel spheres has been attributed to the
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small value of the fluid to solid thermal conductivity ratio, A, in which case there is a

temperature gradient between the fluid and the solid, thereby invalidating the thermal

equilibrium assumption used in the derivation of the energy equation. For the packed

channel geometry the numerical values of the heat flux has been found to be within

20% of the observed values (0.06 s 'Y s 0.125, 103 s Reo s 104) , the discrepancy in

this case being attributed to improper experimentation and variable property effects of

the fluid next to the heated surface which is not taken into account in the numerical

solution.

The effects of the Prandlt number, Pr, and the fluid to solid thermal

conductivity ratio, A, on the heat flux was observed to depend on the type of flow.

Accordingly, the following regions have been identified in this study for air and Freon

(referred to as R-113 in this study) based on the heat transfer mechanism:

Conduction region

Transition region

Forced convection region

Air

Reo < 100

100 s Reo ~ 103

Reo> 103

R-I13

Reo < 10
3

10 s Reo::;; 2 x 10

3
Reo> 2 x 10

The effect of the Prandlt number on the heat flux becomes significant only in the forced

convection region. The effect of using a fluid with a Prandlt number that is 10 times

larger (for a given type of solid particle) has been seen to increase the heat flux by a

factor of five in the forced convection region. The effect of using chrome steel spheres

instead of glass spheres (thermal conductivity of chrome steel being about 40 times

greater) was found to increase the heat flux by a factor of two in the conduction region.
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For the packed cylindrical tube the effect of increasing the length of the

heated tube, for the same particle size was observed to decrease the predicted Nusselt

number. On the other hand, in the case of the air/glass sphere system, for the same

length of the heated tube the effect of using larger size particles was seen to have no

effect on the Nusselt. The chrome steel spheres have been found to enhance the heat

transfer more than the glass spheres for forced convection in a packed tube.

In the case of forced convection in a packed channel, increasing the size

of the particles was observed to decrease the predicted Nusselt number for the same

length of the channel. This characteristic is also observed in the experimental results.

The numerical solution for the heat flux in the case of the chrome steel spheres showed

a higher heat flux than the steel spheres (for the same channel length and almost the

same particle diameter) whereas the experimental data show no such effect. A higher

heat transfer is expected when the solid matrix is comprised of chrome steel spheres as

compared to the glass spheres owing to the large thermal conductivity value of the

former.

The numerical solution has been seen to underpredict the heat flux

results for 'Y > 0.15 (air/glass system). The discrepancy has been attributed to the fact

that the volume averaging method used in the derivation of the governing equations

may not be valid for such large size particles.

Finally, for the mixed convection problem, the buoyancy force was

found to play an important role in the heat transfer process (for 'Y =0.06) if

GrdReD > 9 x 105 for the packed tube and GrHlReH > 9 x 104 for the packed channel

configuration.
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6.2 Recommendations for Future Research:

The following topics are suggested to furtherthe researchin mixedand

forced convection in a packedbed :

a) experiments are neededto reconfirmheatflux data already obtainedfor forced

convection in a packedchannel

b) experiments are neededto obtain heat flux data for ReH < 1()3 and ReH > 2 x 104 for

convective flowin a packedchannel

c) experiments are neededto obtainheat fluxdata for ReD < 1()3 and ReD> 2 x 104 for

convective flow in a packed tube

d) experiments are neededto obtain pressuredrop data for forcedconvection in a

packed channel

e) experiments are neededto obtainheat fluxdata for mixedconvection in a packed

channel and a packedtube for uniformwall temperature and uniformheat flux

boundary conditions

f) experiments are neededto measurevelocity distribution in a packedchanneland in a

packed cylindrical tube

g) numerical solutions are needed to determine the 3-D effectsin mixedand forced

convective flow in a packed tube and a channel.



Table 1
Computed hydrodynamic entrance length,4 y' for a packed tube

Lhy =L/ dp

a) Y= 0.024

Red ReD L hv UD
1.0 41.7 21.81 0.52
4.0 166.7 20.76 0.49

10.0 416.7 19.74 0.47
15.0 625.0 18.72 0.44
20.0 833.3 17.73 0.43
35.0 1458.3 16.75 0.40
60.0 2500.0 15.78 0.38

125.0 5208.3 14.83 0.36
250.0 10416.7 13.89 0.33
450.0 18750.0 13.89 0.33
750.0 31250.0 13.89 0.33

1000.0 41666.7 13.89 0.33

b) Y= 0.035

Red ReD L hv UD
1.0 28.6 16.96 0.59
4.0 114.3 16.22 0.57

10.0 285.7 15.49 0.54
15.0 428.6 14.77 0.52
20.0 571.4 14.06 0.49
35.0 1000.0 13.02 0.46
60.0 1714.3 12.68 0.44

125.0 3571.4 11.67 0.41
250.0 7142.9 11.34 0.39
450.0 12857.1 10.69 0.37
750.0 21428.6 10.69 0.37

1000.0 28571.4 10.69 0.37
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Table 1 (Continued)

Computed hydrodynamic entrance length, 4 y' for a packed tube

c) Y= 0.045

Red ReD Lhv lID
1.0 22.2 14.09 0.63
4.0 88.9 13.51 0.61

10.0 222.2 12.93 0.58
15.0 333.3 12.37 0.56
20.0 444.4 11.53 0.52
35.0 777.8 11.26 0.51
60.0 1333.3 10.45 0.47

125.0 2777.8 9.92 0.45
250.0 5555.6 9.15 0.41
450.0 10000.0 9.15 0.41
750.0 16666.7 9.15 0.41

1000.0 22222.2 9.15 0.41

d) Y=0.071

Red ReD L hv lID
1.0 14.1 11.92 0.85
4.0 56.3 11.92 0.85

10.0 140.8 10.75 0.76
15.0 211.3 10.17 0.72
45.0 633.8 9.59 0.68

150.0 2112.7 9.03 0.64
250.0 3521.1 8.46 0.60
450.0 6338.0 8.46 0.60
750.0 10563.4 8.46 0.60

1000.0 14084.5 8.46 0.60
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Table 1 (Continued)

Computed hydrodynamic entrance length, 4 y, for a packed tube

e) Y= 0.097

Red ReD L hv lID
1.0 10.3 9.08 0.88
4.0 41.2 9.08 0.88

20.0 206.2 8.19 0.79
60.0 618.6 7.75 0.75

100.0 1030.9 7.31 0.71
250.0 2577.3 7.31 0.71
450.0 4639.2 7.31 0.71
750.0 7731.9 7.31 0.71

1000.0 10309.3 7.31 0.71
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Table 2

Error statistic for Verschoor & Schuit's experimental data of the

Nusselt number

Numerical simulation based on : Present dispersion model and Case 1 assumption.

'Y L(m) System Root Mean

Square Error

0.06 0.3 Air/glass 0.0460

0.1 0.21 " 0.0662

0.101 0.26 " 0.0813

0.12 0.3 " 0.0773

0.12 0.21 Air/chrome 0.1588

steel

0.14 0.3 " 0.1824

0.151 0.21 Air/glass 0.2453

Table 3

Error statistic for Leva's experimental data of the Nusselt number

Numerical simulation based on: Present dispersion model and Case 1 assumption.

L=0.9 m

'Y System Root Mean

Square Error

0.086 Air/glass 0.152

0.11 " 0.109

93



Table 4

Error statistic for Cai's experimental data of the Nusselt number

Numerical simulation based on : Present dispersion model and Case 1 assumption.

L =0.45 m

'Y System Root Mean

Square Error

0.06 R-113/glass 0.1764

0.12 R-113/glass 0.1938

0.125 R-113/chrome 0.0836

steel
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Table 5

Computed thermal entrance length, L th, for a packed tube & a packed channel

Lth=L/dp

A) Packed tube

a) 'Y =0.06

Red Reo L th lID
1.6 25.8 27.34 1.64
3.2 53.2 41.52 2.49
6.3 104.3 85.70 5.14
8.7 145.0 99.57 5.97

11.0 183.3 105.40 6.32
18.1 301.7 115.10 6.91
23.9 398.3 120.80 7.25
29.7 495.0 126.50 7.59
46.8 780.0 133.10 7.99
58.2 970.0 136.10 8.17
80.9 1348.3 137.80 8.27

114.8 1913.3 140.40 8.42
171.4 2856.7 143.30 8.60
455.4 7590.0 144.70 8.68
683.4 11390.0 144.80 8.69
999.8 16663.3 144.80 8.69
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Table 5 (Continued)

Computed thermal entrance length, Lth, for a packed tube & a packed channel

b) 'Y =0.12

Red ReD L th lID
1.1 9.25 6.35 0.76
3.1 25.8 13.95 1.67
6.0 50.3 21.68 2.60
8.9 74.0 26.10 3.13

11.7 97.3 29.07 3.49
14.4 120.0 32.49 3.89
21.1 175.8 35.17 4.22
27.7 230.6 38.62 4.63
40.6 338.3 42.13 5.06
66.0 550.0 45.66 5.48
91.2 760.3 46.18 5.54

200.0 1666.7 46.20 5.54
400.0 3333.3 46.21 5.55
800.0 6666.6 46.22 5.55

1000.0 8333.3 46.23 5.55
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Table 5 (Continued)

Computed thermal entrance length, L th, for a packed tube & a packed channel

B) Packed channel-

a) y = 0.06

Red Reo L th lID
1.2 19.2 25.2 1.51
3.4 56.8 51.6 3.09
6.4 106.7 73.5 4.41

10.0 167.3 90.4 5.42
16.6 276.7 103.0 6.18
21.9 365.0 109.5 6.57
27.4 456.7 117.5 7.05
54.1 901.7 121.7 7.30

100.0 1666.7 122.0 7.32
200.0 3333.3 122.2 7.33
400.0 6666.6 122.3 7.34
700.0 11666.6 122.5 7.35

1000.0 16666.6 122.8 7.37

b)y=0.12

Red Reo L th lID
1.3 10.6 8.83 1.06
3.2 26.6 18.78 2.25
6.3 52.3 30.01 3.60

12.3 102.3 38.20 4.58
18.2 151.5 41.50 4.98
29.7 247.7 48.56 5.83
46.9 390.7 50.50 6.06
80.9 674.4 55.58 6.67

103.6 863.3 58.30 6.99
200.0 1666.6 58.50 7.02
400.0 3333.3 58.70 7.04
800.0 6666.6 58.90 7.07

1000.0 8333.3 59.00 7.08
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Figure 4. Effects of N, C1 and <jla on the exponential porosity distribution
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Figure 5. Effects of N, C1 and <j>a on permeability
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Figure 6. Effects of N, Cl and CPa on the inertia coefficient
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Figure 7. Effects of N, Cl and CPa on the stagnant thermal conductivity
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Figure 8. Effects of N, C1 and <J>a on the axial velocity distribution for flow

in a packed tube
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flow in a packed tube
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Figure 10. Effects of N, C1 and <pa on the dimensionless temperature

distribution for forced convection in a packed tube
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Figure 11. Effects of N, Cl and <Pa on the local Nusselt number for forced

convection in a packed tube
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Figure 12. Effects of A and B on the axial velocity distribution for flow in a

packed tube
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Figure 13. Effects of A and B on the dimensionless temperature distribution

for forced convection in a packed tube
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Figure 15. Effects of A and B on the dimensionless pressure drop for flow

in a packed tube



113

25.,.-------------------
Curve ReD y

a 200 0.05
b . 1000 0.05
c 1000 0.1

20

/ .
b···..

'"
'" '" ....

. .

------------------------- ---

'.

r>, /aI ...
I ......

I ... ...
I ...

I
I
I

5

15

10

<.c
;:l

O+----.,----r--------,.--------'
1.00 0.98 0.96 0.94 0.92 0.90

Figure 16. Effects of y and Reo on the axial velocity distribution for flow

in a packed tube
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