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ABSTRACT

The single-crystal elastic moduli, Ci j, and their

pressure derivatives, dCij/dP, have been measured ultra­

sonically at 2SoC for body-centered-cubic Ti-V-Cr, Nb-Mo,

and Ta-W solid solutions. The rigid-band model for the

alloy electronic structure is known to work fairly well

for these metals in predicting the density of states at the

Fermi energy and related properties. The results of this

study show that changes in the composition dependence of

the C.. and, particularly, the dC .. /dP appear to be related
1J 1J

to topological changes in the Fermi surface which occur as

the electron population varies in the rigid-band model.

The relationship between the band structure and the C.. is
1J

discussed and a qualitative explanation is given for the

correlations between the moduli and the Fermi surface.

Sources of error in the ultrasonic measurements are

considered in detail. It is found that compression of the

pressure medium can cause significant errors in the dC .. /dP
1J

values under certain experimental conditions, and methods

for minimizing these errors are suggested.

The results are also compared to other ultrasonic

measurements and to X-ray and shock-wave compression exper-

iments. Possible sources of disagreement, where it exists,

are discussed.
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I. INTRODUCTION

The electronic band structures of transition metals are

characterized by the presence of narrow d-e1ectron conduc­

tion bands which cross and hybridize with a broader near1y­

free-electron (NFE) band. The d-e1ectron states may be

thought of as arising from a scattering resonance in the

conduction band or , equivalently, from a "virtual" bound

state which is not entirely destroyed by the overlap of

atomic potentials when the atoms are brought together to

form the solid [Ziman, 1971]. The d-e1ectron states are

intermediate in nature between NFE and tightly-bound states.

Because of this and because of the hybridization, it is dif­

ficult in practice, if not in principle, to calculate tran­

sition metal properties such as elastic shear moduli and

phonon dispersion relations. Calculations of such prop­

erties using rigorous "first-principles" techniques such as

the augmented-p1ane-wave method [Ziman, 1971], would be

laborious and expensive and would not necessarily yield a

great deal of physical insight into the problem. What is

needed is a simpler approximate method like the pseudopoten­

tial approach which has proved to be successful and effi­

cient in calculating a wide variety of properties in the

simple metals [Cohen and Heine, 1970; Heine and Weaire,

1970] .

This study is an experimental approach to the problem

of how transition metal elastic properties are related to
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the band structure. As such it may be regarded as comple-

mentary to recent theoretical efforts along these lines

[Peter et al., 1974; ali and Animalu, 1976].

The elastic moduli, C.. , and their pressure deriva­
1J

tives, dC .. /dP, have been measured at 2S oC for a total of 21
1J

single crystals in the Ti-V, V-Cr, Nb-Mo, and Ta-W alloy

systems. The compositions of these metals will be charac­

terized here by the average number of conduction electrons

per atom, e/a (e.g., e/a = 5 for Nb and 6 for Mo), and by

the type of d-electrons in the unfilled atomic shells, i.e.,

3~, 4~ and Sd for the three long periods of the periodic

table. The transition metals of Groups IVB-VIIB (and VIII

to some extent) form randomly disordered solid solutions

with each other which are stable or metastable in the body-

centered-cubic (bcc) structure over a very wide range of

compositions: 4.2 < e/a < 6.3 at room temperature. These

metals are particularly suitable for evaluating band struc­

ture effects because the rigid band model works fairly well

for them (this point is discussed in Chapter V). Thus by

changing the alloy composition the electron population can

be varied over a wide range within a slowly varying band

structure. In other words, differences in behavior of dif-

ferent electronic energy levels can be examined experimen­

tally over a wide energy range. The results of this study

should thus provide a good test for any theoretical models

devised to calculate the Ci j or dCij/dP: such a model should

be able to at least qualitatively reproduce the experimental
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results merely by varying the Fermi energy.

It has already been established that many of the elas­

tic properties of these metals are dominated by the d­

electrons [Fisher, 1975]. In the present work this conclu­

sion is extended to include the dC .. /dP where the influence
1)

of the band structure is found to be even more pronounced.

These points will be discussed in Chapter V which is devoted

to the relationship between the electronic band structure

and the elastic properties.

It is rather well known to workers in this field that

there is often substantial disagreement between ultrasonic

measurements made on the same material by different investi-

gators using different methods. Differences of several per-

cent in dC .. /dP values are not uncommon [Davies and
1)

O'Connell, 1977, Table 1]. Several instances of this sort

of discrepancy were encountered for the metals studied here.

This situation is far from satisfactory because modern

ultrasonic techniques are capable of much better precision.

An attempt was therefore made in this study to identify pos­

sible sources of errors. Chapters II and III and the appen­

dices accordingly present a detailed description of the ex­

perimental procedure, the reduction of the data, and the

error analysis used in this work. Then in Chapter IV the

results are compared to previous work and causes for dis­

agreement are discussed.

One aspect of ultrasonic measurements under pressure

that has previously been ignored is that the compression of
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the pressure medium can have significant effects on the

dCij/dP values. These effects arise in various ways which

are considered in Chapter IV and in Appendices A and C. The

discussion presented in Appendix A does not have much direct

bearing on the ultrasonic measurements made in this study,

but it is of potential practical importance because it sug­

gests a method of eliminating one of the most troublesome

sources of error in experiments of this kind.

A few remarks concerning the geophysical relevance of

this research are in order. The portions of the present

work which are directed toward identifying and eliminating

experimental errors have a direct bearing on geophysics

because ultrasonic techniques are in widespread use in geo-

physical studies. On a more fundamental level, this study

may be regarded as a preliminary effort toward understanding

the influence of d-electrons and alloying on the shear mod­

uli of transition metals. In this respect it may ultimately

be useful in understanding the properties of the earth's

inner core which is generally believed to be composed mainly

of solid iron--a transition metal.
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II. MATERIALS AND METHODS

A. General Considerations

The second-order adiabatic elastic moduli of a crystal

are directly related to its density and to its ultrasonic

velocities [e.g., see Truell et al., 1969]. The purpose of

this chapter is to describe the single crystal specimens and

the experimental procedures by which their densities and

velocities were determined.

In this study, velocities were measured for elastic

wave propagation along the [110] and [001] crystallographic

directions for which there are, respectively, three and two

distinct modes of propagation. These modes are shown in

Table 1 together with the relationships between the adiaba­

tic moduli and the quantities pvi
2, for cubic crystals where

P is the density and vi is the velocity for the ith mode.

For some of the samples to be described, measurements were

carried out only on modes 3, 4 and 5 for propagation along

[110]. However, a crystal with cubic symmetry has only

three independent elastic moduli, which are here taken to be

Cl l, C12 and C44 in the usual contracted matrix notation

(see Truell et al. [1969], p . 5). The three modes for [110]

propagation are thus sufficient by themselves for the deter­

mination of all three moduli.

B. Samples

The single crystal specimens used in this study are

listed in Table 2. These crystals were obtained from a



--------------~•..-.,---, .

Table l.--Elastic wave propagation modes. Modes 1 and 5 are longitudinal modes
and the others are shear modes. Mode 2 is degenerate because of the fourfold

rotation symmetry about [001] for cubic crystals.

Mode number Direction of Direction of
i wave propagation particle motion

1 [001] [001] 2 = CI IpV
1

2 [ 001] [ 001] 2pV 2 = C44

3 [110] [001] 3 = C44pV3

4 [110] [lTD] pv 4
2 = C' = (Cl l - C1 2) / 2

5 [110] [110] pvS
2 = CL = (Cl l + C1 2 + 2 C44) / 2

0\
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Table 2.--Composition, e/a, density, and lengths of the
specimens. Where two densities are listed for one crystal,
the second value was used in subsequent calculations.

Density Lengths (mm)

value error
Composition e/a (g/cm3) (%) [110] [001]

Ti-29.4%V 4.294 4.910 0.6 4.9001
4.929a 0.1

Ti-38.5%V 4.385 5.044 0.2 9.4113
Ti-53%V 4.53 5.328 0.3 6.9984 6.0056
Ti-73%V 4.73 5.640 0.5 5.2755 5.1795
V 5.000 6.102 0.18 7.7845 7.4938
V-17.5%Cr 5.175 6.35b 1.4 3.5155 4.0949

6.32
Nb 5.000 8.575 0.4 4.9175 5.0671

8.578 c
Nb-25%Mo 5.25 8.981 0.09 6.8031 7.4659
Nb-31%Mo 5.31 9.081 0.08 8.6927 7.8506
Nb-37%Mo 5.37 9.187 0.10 7.6519 6.8773
Nb-44%Mo 5.44 9.294 0.09 7.0518 7.4356
Nb-53%Mo 5.53 9.452 0.09 5.0412 5.0263
Nb-72%Mo 5.72 9.759 0.10 7.3632 8.5518
Mo 6.000 10.216 0.10 8.6815 7.8991
Ta 5.000 16.675

d
0.05 7.4148 8.5381

Ta-9.6%W 5.096 16.983d 20.2388
Ta-21.5%W 5.215 17.311d 9.7154
Ta-40.0%W 5.400 17.883 10.6839 4.4578
Ta-64%W 5.64 18.452d 0.2 6.3094 6.9476
Ta- 90. 4%W 5.904 19.023 12.2943
W 6.000 19.253 0.11 8.3678 9.1854

ale J. Graham, personal communication.

bE. S. Fisher, personal communication.

cMi ng and Manghnani [1977].

dG. W. Shannette, personal communication.
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number of different sources. The pure elements V, Nb, Ta

and Mo were acquired from Materials Research Corp. of

Orangeburg, New York. The Nb-Mo alloys and the Ta-64% W

alloy were purchased from Aremco Products, Inc., Ossining,

New York. The remaining Ta-W alloy crystals were borrowed

from G.W. Shannette of Michigan Technological University and

will be described in a future publication by M. L. Carpenter

and G. W. Shannette, who have investigated the temperature

dependence of the elastic moduli of these alloys. L. J.

Graham of Rockwell International Science Center, Thousand

Oaks, California, supplied the Ti-29.4% V and Ti-38.S% V

crystals. The Ti-S3% V, Ti-73% V, V-17.S% Cr and pure W

samples were provided by E. S. Fisher of Argonne National

Laboratory.

The purity of some of the samples is shown in Table 3.

The purity of the Nb-3S% Mo sample is probably typical of

all the Nb-Mo alloys since the same starting materials and

growth methods were used for all of these crystals.

The particular Nb-Mo sample listed in Table 3 was un­

fortunately found to be polycrystalline and was not used in

this study. Some of the other samples obtained from Aremco

Products, Inc. were also polycrystalline as was indicated by

the observation of grain boundaries after the sample sur­

faces were etched. In these cases, suitably large grains

were selected and the other grains were removed by cutting

or grinding.

In the course of this work sample surfaces were pre-



Table 3.--Purity of samples

9

Sample

V a

Nb a,b

Ta a

Mo a

Nb - 35% Mo c

Purity (wt%)

99.95

99.96

99.996

99.98

99.93

Major Impurities

C - 120 ppm

Si - 150 ppm

Ta - 200 ppm

w - SO ppm

Ta - 280 ppm

Hf - 70 ppm

W - 60 ppm

aAnalysis by Materials Research Corp. includes mass
spectrographic, vacuum fusion, and conductometric
techniques.

bNominal purity for "typical" crystal grown by
Materials Research Corp.

cMa s s spectrographic analysis only, by Aremco
Products, Inc.
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pared for ultrasonic measurements for the pure elements and

for the alloys obtained from Aremco Products, Inc. The

other crystals were already prepared as received except for

the Ta-40% W specimen which required the preparation of

(110) surfaces. Laue X-ray diffraction was used to orient

pairs of sample faces to within 10 of the desired crystallo­

graphic planes. The faces were ground and polished by

standard meta1lographic techniques. The final polishing

step was carried out with 1 ~m diamond abrasive which pro­

duced a finish suitable for optical observation of the flat­

ness. Some of the faces on the previously prepared samples

were also fine-polished in order to improve flatness or to

remove tarnish. Over the areas covered by the ultrasonic

transducers, the final surfaces were flat and parallel to

within about 1/2 ~m. Lengths and parallelism were measured

by means of a dial gage comparator and precision gage blocks

from Scherr-Tumico, St. James, Minn. Lengths are shown in

Table 2.

In the case of vanadium, interstitially dissolved

hydrogen was removed by heating the sample in a high vacuum.

This was generously done by E. S. Fisher at Argonne National

Laboratory.

The sample densities, which are shown in Table 2, were

measured by the buoyancy (Archimedes') method. The sample

weights were measured in air and in freshly boiled distilled

water and the density was calculated according to



P =

11

(1)

where WA and WW' and PA and Pw are the sample weights in air

and water, and the densities of air and water respectively.

Ww was measured by submersing the sample while holding it in

a basket or a loop suspended from the balance by means of a

thin nickel-chromium alloy wire 0.14 mm in diameter. The

procedure may be thought of as a greatly simplified version

of the very high precision technique of Bowman and Schoon­

over [1967], who give an exhaustive discussion of error

sources. In the present case, most of the uncertainty arose

from the smallness of the samples and the limited accuracy,

~ ~O.2S mg, of the balance (Mettler model HID). Some as­

pects of the method of Bowman and Schoonover were thus

superfluous and were not followed. In particular, the sus­

pension wire ·was not specially. prepared, and dissolved

air was not as effectively kept out of the water because a

much smaller volume of water was used. However, their tech­

nique of boiling the samples to minimize surface grease and

bubbles was followed. For some samples, more accurate den­

sity values were available from other sources. These are

also listed in Table 2 and were used in subsequent calcula-

tions.

Following Hubbell and Brotzen [1972], the compositions

of the Nb-Mo alloys were calculated by assuming the density

to be a linear function of e/a within a given period. X-ray

diffraction data [Pearson, 1958, 1966] show this to be a
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fairly good assumption--the compositions are probably accu­

rate to within 3 atomic percent. The composition of the Ta­

64% W crystal was obtained by interpolating between the den­

sity-composition points of Carpenter and Shannette [to be

published]. It should be pointed out here that the densi­

ties of the Ta-W alloys shown in Table 2, except for the Ta­

64% W crystal, were measured by Carpenter and Shannette.

With the exception of the Ti-53% V, Ti-73% V, and V­

17.5% Cr samples, all of the alloy crystals used in this

study were grown by the electron-beam-zone refining tech­

nique, which produces cylindrical rod-shaped specimens.

Alloy crystals grown in this way tend to be somewhat inhomo­

geneous with composition varying along the rod axis. This

inhomogeneity produces effects which will be discussed in

Chapter III.

C. Ultrasonic Measurements

Virtually all of the ultrasonic measurements both at

atmospheric pressure and at high pressures were carried out

by the pulse superposition (PSP) technique of McSkimin

[1961]. In this method a single, thin, disc-like piezoelec­

tric transducer is attached by a thin bonding layer to one

of two accurately parallel faces of the specimen. When an

electrical pulse, in the form of a short RF sine-burst, is

applied to the transducer, an ultrasonic wave train is gen­

erated in the specimen and bounces back and forth between

the two faces. The diameter of the transducer is generally



13

much larger than the ultrasonic wavelength so that plane­

wave conditions are closely approximated. If a series of

pulses is applied such that the time interval between pulses,

T, is a multiple, p, of the ultrasonic delay time, 0, then

the echoes of each pulse will interfere constructively with

the echoes of the other pulses. This "in-phase" condition

is attained experimentally by adjusting T to achieve a maxi­

mum amplitude of the summed echoes. Maxima are observed not

only when T = po, but also when T differs from po by one or

more periods of the carrier frequency. More generally, the

"in-phase" delay time is given by

T = P (0 - 2$£) + T. ' (2)

where f is the carrier frequency of the pulses, n is an in­

teger equal to the number of cycles of mismatch, and ~ is a

small phase shift resulting from diffraction effects and

from reflection of waves from the transducer and bond. ~ is

discussed further in Chapter III and Appendix A. For the

moment it is sufficient to point out that ~ is usually very

small provided that f is equal to the transducer resonance

frequency or a harmonic. The objective of the measurement

is, of course, to determine 0 from which the velocity, v =

2~/8, follows directly.

Measurements are usually carried out at the "in-phase"

condition for which n = O. This can be determined by a

method described by McSkimin [1961] and McSkimin and

Andreatch [1962]. (A brief summary is also given in Appen-
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dix A.) This method can be ambiguous in certain cases and

it was usually checked by using other interferometric methods.

One such method was the phase comparison technique using a

buffer rod between sample and transducer as developed by

McSkimin [1953, 1957]. The pUlse-echo overlap (PEG) method

of May [1958] and Papadakis [1967] can easily be adapted for

use with a buffer rod and in this way was also used to ob­

tain unambiguous delay time measurements. In addition,

measvrements with either the PSP or PEO methods can be car­

ried out with different transducers, i.e., at different val­

ues of f in equation (2), in order to obtain the n=O condi­

tion. All of these techniques were used at one time or

another to determine n.

A schematic diagram of the PSP system is shown in Fig­

ure 1. The heart of the system is a PM Custom Electronics

Model 5B sine-burst generator (SBG). The SBG produces both

rf and trigger pulses at a repetition rate, FI = 1fT, deter­

mined by a stable oscillator. F' can be adjusted either

manually or by an external controlling voltage. In addi­

tion, by applying an external gating pulse the sine-bursts

(but not the trigger signal) can be suppressed so that the

decay pattern of the echoes can be observed without being

swamped by the pulses. The RF pulses from the SBG are at­

tenuated in order to avoid excessive amplifier overload, and

then applied to the transducer through an impedance matching

device. The echoes are picked up by the same transducer and

amplified and displayed on an oscilloscope. Adjustment of
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FI for maximum echo amplitude is accomplished either man­

ually while watching the oscilloscope, or by feeding the

rectified signal (in the p=O mode of operation with no gat­

ing) into an automatic frequency control (AFC) unit (also

from PM Custom Electronics) which monitors the echoes and

generates a control voltage for the SBG. The AFC unit has

been described by Mattaboni [1970] and is similar in princi­

ple to that of McSkimin [1965]. When the AFC unit was used,

FI could be determined with a precision of better than 1 ppm

as opposed to about 10 ppm by manual adjustment. The trig­

ger signal from the SBG is used to synchronize the AFC unit

and the oscilloscope, and it is also connected to a counter

which measures the repetition rate, Fl. The carrier fre­

quency of the sine-bursts is determined by beating the out­

put of an RF oscillator with the unrectified signal from the

SBG by using a dual input oscilloscope in its adding mode.

Although the rf oscillator and the sine-bursts are not co­

herent, it is possible to make out envelopes of the mixed

signals with the oscilloscope intensity turned up.

The configuration shown in Figure 1 was used in the

work on the 3d metals. Earlier measurements on the 4d and

5d metals and were carried out differently. No attempt was

made to accurately set the RF as described above and the AFC

unit was used only in a few cases. Readings were instead

taken manually with p=l and with the oscilloscope gate used

to suppress the pulses during the sweeptime of the oscillo­

scope. The observed echoes resulted from a series of from
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about 10 to over 100 pulses depending on the sample and the

propagation mode. The sine-bursts included from 20 to SO RF

cycles as opposed to SO to 100 cycles in the later work on

the Ti-V-Cr metals. As will be discussed in Chapter III,

these differences make the earlier results perhaps less re­

liable than the later measurements.

The PEO technique in the form developed by Papadakis

[1967] was also employed in a few experiments. In this

method the time between sine-bursts is adjusted to be a

large multiple (1000 in the present case) of the specimen

travel time, 0, so that the echoes of one pulse have died

out before the next pulse is applied. Any two echoes in the

echo train can be selected and the delay time between them

can be measured. This method was found in practice to be

somewhat less precise than the PSP method. It was found to

work better for samples with high attenuation--mainly be­

cause higher voltage pulses could be used. The PEO method

was particularly useful in cases where the later echoes were

of poor quality because of beam-spreading and reflection off

of the lateral sides of the sample. In these cases it is

possible to use the first few echoes whereas the PSP method

superposes a large number of echoes including those far out

in the echo train. The details of the present PEO system

are very similar to those of Papadakis [1967] and will not

be descri~ed here.

X-cut and Y-cut quartz discs were used as transducers

for longitudinal and shear waves respectively. The trans-
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ducer diameters were either 3.1 or 4.7 mm. The fundamental

resonance frequencies were chosen to be in the range of 20

to 60 MHz. Shear mode measurements were usually carried out

at 20 or 30 MHz and longitudinal measurements were generally

done at 40 or 60 MHz. Higher frequencies for the higher

longitudinal velocities and lower frequencies for the lower

shear velocities were used in order to make the ultrasonic

wavelengths similar.

The transducers were bonded to the samples with Nonaq

stopcock grease (Fisher Scientific Co.). In a few cases the

bonding material was a poly-a-methyl-styrene resin (Dow

Chemical resin 276-V9). The latter is a better coupling

agent for shear waves but it hardens rapidly with increasing

pressure causing the thinner transducers to crack because of

differential compression.

All measurements were carried out at 2S
oC with the sam­

ple in a pressure vessel which was immersed in a temperature­

regulated oil bath. Temperatures were monitored by means of

a chromel-alumel thermocouple placed within a few mm of the

specimen. The thermocouple cold junctions were kept at OoC

in an ice bath or in an ice-point cell (Omega Engineering,

Model TRC). The thermocouple emf was measured with a Leeds

and Northrup K-3 potentiometer. The measured temperatures

were probably accurate to within 1%. More importantly, the

temperature was kept constant within a range of a.loC or

better during a given pressure run.

High pressures were generated by a two-stage intensifi-
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cation system employing 1:1 and 16:1 intensifiers purchased

from Harwood Engineering Co. Pressures were measured to

within 0.2% by means of a manganin coil whose resistance,

which is a virtually linear function of pressure, was ob­

tained from a Carey-Foster bridge. The coil and bridge,

both from Harwood Engineering, were calibrated periodically

against a controlled-clearance piston gage (Harwood DWT-300).

High-purity nitrogen was used as the pressure medium.

Ultrasonic measurements under pressure were made at in­

tervals of about 0.28 kbar up to about 5 kbar. Occasionally

the maximum pressure was limited to 3 or 4 kbar because of

leaks in the pressure apparatus, or in order to avoid frac­

turing of the transducer when the Dow resin 276-V9 was used.

Most of the readings were taken with increasing pressure but

a few were made with decreasing pressure to check for hyster­

esis which, in fact, was never observed. Usually two or

three such pressure runs were carried out for each mode with

a newly prepared bond, and often with a different transducer,

for each run.

Measurements on the 3d metals were carried out with the

carrier frequency adjusted to be equal to the resonance fre­

quency, f r, of the transducer, or to an odd harmonic, The

variation of f r with pressure was calculated from the results

of McSkimin et al. [1965] for quartz. The term "resonance

frequency" is taken here to denote the frequency at which

the transducer thickness is 1/2 the ultrasonic wavelength.

In practice f could be set to the desired frequency to
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within a few parts in 104, i.e., to within a few percent of

the total change in f r over the 5 kbar pressure range. The

resonance frequency was not followed during pressure runs on

the 4d and Sd metals. The carrier frequency was instead

kept constant at a value only approximately equal to fro
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III. DISCUSSION OF ERRORS, DATA ANALYSIS AND RESULTS

This chapter describes the computation of the elastic

moduli and their pressure derivatives and discusses the

uncertainties in these quantities. Consideration of one

source of error--namely, guided wave effects-- is postponed

to the next chapter.

A. Uncertainty in the Density

As mentioned previously, the major source of error in

the density is due to the limited accuracy of the balance.

This uncertainty is shown in Table 2 and is discussed in

Appendix B. There are, in addition, other possible sources

of error which are difficult to evaluate such as surface

oxide layers and grease and bubbles adhering to the sample

during the weighings. These would tend to give systemati­

cally low density values. The magnitude of these errors

appears to be rather small, however, as shown by a compari­

son in Table 4 between t·he buoyancy measurements and densi­

ties obtained by Ming and Manghnani [1977] from X-ray dif­

fraction determinations of the lattice parameters of the

pure element samples. With the. exception of Mo, the hydro­

static-weighing densities are in each case lower than the X­

ray densities as expected. However, the differences are

within the standard deviations in the x-ray values which are

also shown in Table 4. Furthermore, the disagreement is

worse for Mo where the X-ray density is lower. The system-
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Table 4.--Comparison of hydrostatic-weighing densities of
the present study, X-ray diffraction densities of Ming and
Manghnani [1977] and the "typical" densities of Westlake

[1977] for the pure elements (in g/cm 3)

Element Hydrostatic p X-ray p "Typical" p

V 6.102 6.111 + .010 6.098

Nb 8.575 8.578 + .022 8.575

Ta 16.675 16.683 + .022 16.677

Mo 10.216 10.202 + .010

W 19.253 19.256 + .026

atic errors mentic·ned above are therefore not serious and

are probab'ly on the order of 0.1% or less.

Westlake [1977] has recently reviewed the literature on

the densities of the Group VB elements. The last column of

Table 4 shows the density values he considers to be typical

of commercially-available high-purity single crystals. The

agreement among the three sets of values is very good. It

may therefore be concluded that the present density measure-

ments are essentially accurate although the values for some

of the smaller crystals are rather imprecise.

B. Velocities and Moduli

The primary data from the ultrasonic experiments are

the pulse repetition frequencies F' = l/T at the "in-phase"

conditions. The desired quantity is the reciprocal of the

sample delay time, F = 1/0, in terms of which the velocity
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is

v = 2R.F

In this notation, equation (2) can be written as

(3)

F = pF'
F' <I> rtF I

1 + PT 21T - .f

(4 )

The velocities were calculated by assuming <I> to be negligi­

ble and by using only values of F' corresponding to n=O.

Ignoring <I> results in errors of a few parts in 104

Because up to 5 independent propagation modes were

studied for a given sample, the three independent elastic

moduli were in general overdetermined. This was handled by

using a least-squares procedure [e.g., see Mathews and

Walker,1965]. The "best-fit" Ci j were determined by mini-

mizing the sum

(pvn
2) 2 2

N ( observed
- (pvn )

calculated ),X2 = L (5)
n=l an

where (pv 2) is computed from the "best-fit" mod-n calculated
uli according to the expressions in Table 1, and an is the

estimated uncertainty in (pvn
2) observed. Strictly speak­

ing, it would be more correct to minimize X2 with the di­

rectly observed velocities replacing the derived pv2 in

equation (5) as was done by McSkimin et al. [1965]. However,

it has been pointed out by E. R. Cohen [personal communica­

tion] that there is no significant difference in the results,
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and, furthermore, it is computationally much simpler to use

the pv2 since they are linear functions of the Ci j for the

propagation modes used here.

Another simplification introduced for computational

convenience was that the sum in equation (5) was taken over

each individual velocity measurement rather than over the

number of independent propagation modes. This was done even

in cases where only three modes were studied. The disadvan­

tage of this is that the measurements carried out on a single

mode are not independent but instead have in common the ef­

fects of length, crystal orientation, bond, and diffraction

errors. Modes for which a greater number of velocity deter-

minations have been made are thus given too large a weight

in the fitting procedure. Here again, since a roughly equal

number of measurements were generally made for each mode,

the "best-fit" values are not seriously affected.

The above simplifications can be seen to be even less

important when it is recognized that the estimates of an are

rather crude and somewhat subjective. Appendix C describes

the estimation of an in detail. In summary, rough approxi­

mations were made for bond and diffraction contributions to,

~ in equation (4). These two types of errors tend to cancel,

thus justifying in part the neglect of ~ in computing the

velocity. The bond and diffraction errors tend to be gener­

ally large for small samples and small for large samples.

These errors were then combined with the uncertainty in

length to obtain a. The uncertainty in the density wasn
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deliberately excluded since it is the same for all modes.

The results of the fitting procedure are shown in Table

5. In this table C' and CL are shear and longitudinal ef­

fective moduli for waves propagating along [110] as defined

in Table 1; Ks = (CI I + 2 CI 2)/3 = (ap/atnp) is the adia­

batic bulk modulus; and A = C44/Cl is the elastic shear ani­

sotropy ratio. Also shown in Table 5 is the ratio of error

measures, r, which is here defined by

(6)

For large N, and for normally distributed errors, there is a

50% probability that x2
< N - 3. Thus r can be thought of as

a crude measure of the goodness of the fit in terms of the

input an. A value of r in the neighborhood of 1 indicates

that the a are reasonable. When r is much smaller or muchn

larger than 1, then the internal consistency of the data is

much better or much worse, respectively, than is indicated

by the an. In the cases where r was greater than 1, each an

was multiplied by r in order to make X2 = N - 3. The result-

ing "renormalized" uncertainties in the "best-fit" moduli

are shown in Table 5. The original uncertainties can be

recovered simply by dividing by r. This applies only to the

samples for which r > 1. Where r is less than 1, the uncer­

tainties shown are those obtained from the original fit. In

these cases, it would be unwise to scale down the an since

they represent systematic errors to some extent. Since the

uncertainties in the velocities are approximately repre-



Table 5.--Adiabatic elastic moduli. Values and uncertainties are from least-
squares fits as described in the text. A = C44/C', and r are dimensionless. All

other quantities are in units of Mbar.

,
Sample CI I C12 C44 C C1 K A rs

3d Metals

Ti-29.4%V 1.4002 0.9949 0.3966 0.20263 1.5941 1.1300 1. 957 1.6
+.0009 +.0009 +.0003 +.00010 +.0005 +.0009 +.002

- -
Ti-38.5%V 1. 4896 1.0053 0.40945 0.24213 1.6569 1.1668 1. 9610

+.0006 +.0006 +.00017 +.00009 +.0006 +.0006 +.0010- - - - - -
Ti-53%V 1.6760 1. 0509 0.4129 0.3125 1.7763 1.2593 1.321 3.5

+.0009 +.0011 +.0004 +.0003 +.0010 +.0010 +.002- - - - -

Ti-73%V 1.9227 1.1106 0.41476 0.40602 1. 9314 1. 3813 1. 0215 0.7
+.0004 +.0005 +.00009 +.00016 +.0004 +.0004 +.0005- -

V 2.3092 1. 2001 0.43360 0.55454 2.1882 1.5698 0.7819 1.6
+.0005 +.0005 +.00011 +.00020 +.0005 +.0005 +.0004- -

V-17.5%Cr 2.5507 1.2036 0.43968 0.6735 2.3168 1.6526 0.6528 0.7
+.0008 +.0009 +.00013 +.0003 +.0009 +.0009 +.0004

N
0\



Table 5.--(Continued) Adiabatic elastic moduli. Values and uncertainties are
from least-squares fits as described in the text. A = C44/C', and r are dimen­

sionless. All other quantities are in units of Mbar.

,
Sample C11 C12 C44 C C1 K A rs

4a Metals-
Nb 2.4619 1.3294 0.28688 0.56627 2.1825 1. 7069 0.5066 0.9

+.0003 +.0004 +.00006 +.00017 +.0003 +.0003 +.0002- -
Nb-25%Mo 2.8433 1.4108 0.31935 0.71624 2.4464 1.8883 0.4459 0.3

+.0003 +.0004 +.00006 +.00020 +.0003 +.0003 +.0002- - - -
Nb-31%Mo 2.9569 1.4388 0.34612 0.7591 2.5439 1. 9448 0.4560 2.7

+.0011 +.0013 +.00019 +.0005 +.0011 +.0012 +.0004- - - - -
Nb-37%Mo 3.1316 1.4288 0.41078 0.8514 2.6910 1.9964 0.4825 1.8

+.0007 +.0008 +.00016 +.0004 +.0007 +.0007 +.0003- - - -
Nb-44%Mo 3.3630 1. 4178 0.5125 0.9726 2.9030 2.0662 0.5260 2.0

+.0010 +.0011 +.0002 +.0005 +.0009 +.0009 +.0004- - -
Nb-53%Mo 3.6751 1. 4188 0.65468 1.1281 3.0438 2.1709 0.5803 0.4

+.0007 +.0008 +.00018 +.0004 +.0007 +.0007 +.0003- - - - - -
Nb-72%Mo 4.1437 1.4657 0.8663 1. 3390 3.6710 2.3583 0.6470 2.6

+.0017 +.0022 +.004 +.0010 +.0016 +.0018 +.0006- - - - -
Mo 4.6479 1.6157 1.0894 1.5161 4.2212 2.6264 0.7186 1.6

+.0009 +.0019 +.0005 +.0010 +.0011 +.0013 +.0005- - - - -
N
-....J



Table s.--(Continued) Adiabatic elastic moduli. Values and uncertainties are
from least-squares fits as described in the text. A = C44/C', and r are dimen­

sionless. All other quantities are in units of Mbar.

Sample Cl l C12 C44
C' Cl Ks A r

5d Metals

Ta 2.6600 1. 6094 0.82473 0.52528 2.9594 1. 9596 1. 5701 0.4
+.0004 +.0004 +.00012 +.00012 +.0004 +.0004 +.0002- - - - - - -

Ta-9.6%W 2.8579 1. 6482 0.84269 0.60486 3.0957 2.0514 1. 3932 0.5
+.0006 +.0006 +.00014 +.00009 +.0006 +.0006 +.0003- - - - - - -

Ta-21. 5%W 3.1018 1. 7001 0.85269 0.70086 3.2537 2.1673 1.2166 0.8
+.0005 +.0005 +.00017 +.00012 +.0004 +.0005 +.0003- - - - -

Ta-40.0%W 3.5267 1.8053 0.86316 0.8607 3.5292 2.3791 1. 003 1.9
+.0017 +.0024 +.00024 +.0019 +.0009 +.0013 +.002- - -

Ta-64%W 4.240 1. 871 1. 0645 1.1846 4.120 2.661 0.899 10.4
+.007 +.007 +.0015 +.0022 +.007 +.007 +.002- -

Ta-90.4%W 4.9812 1.9745 1.4614 1.5033 4.9392 2.9767 0.9721 0.3
+.0012 +.0012 +.0003 +.0003 +.0011 +.0012 +.0003- - - - - -

W 5.2269 2.0456 1. 6060 1. 5907 5.2422 3.1060 1. 0096 0.2
+.0009 +.0011 +.0003 +.0004 +.0009 +.0010 +.0003- - -

N
00
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sented by cr , a large value of r in Table 5 indicates the
n

presence of additional errors due to the nature of the sample.

These errors include misorientation of specimen faces and in-

homogeneity in the crystal. It should also be emphasized that

only three propagation modes were used for those alloy samples

that have only one length listed in Table 2. The uncertain­

ties listed in Table 5 for those samples are therefore under-

estimates since they do not allow for misorientation or inho-

mogeneity.

At this point it is appropriate to recall that, except

for the Ti-53%V, Ti-73%V, and V-17.5%Cr compositions, all the

alloy crystals were grown by the floating-melt-zone technique.

In this method a narrow cross-sectional zone is melted in a

rod of the desired composition. The molten zone is gradually

moved through the rod, and favorably oriented crystal grains

will grow and predominate behind the zone at the expense of

other grains. By repeatedly passing the zone through the rod

(or by starting with a seed crystal at one end) a single cry­

stal can be obtained. When an alloy crystal is grown it is

difficult in general to obtain homogeneity because the melting

point is a function of composition and because the vapor pres-

sures of the components are different. The result is that the

chemical composition tends to vary along the rod axis. When

velocities are measured in a direction close to the rod axis,

the ultrasonic delay times will correspond to those expected

of a homogeneous sample with the average composition of the

inhomogeneous crystal. On the other hand, velocities along
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directions more nearly perpendicular to the rod axis will

depend on where the transducer is placed. This was actually

observed in velocity measurements on the Ta-40%W crystal in

the [110] direction which was perpendicular to the growth axis.

The velocities for mode 4, which shows the strongest composi­

tion dependence of all the modes, varied by about 0.3% across

the crystal, which corresponds to a diff~rence in composition

of perhaps o.s atomic % from end to end. In this case and for

other crystals as well, velocities were measured with the

transducer near the center of the specimen, and the internal

consistency was surprisingly good.

Inhomogeneity as described above was probably present to

some degree in all of the alloy samples. Aside from the ques­

tion of the composition of the volume sampled by the ultra­

sonic wave, there is also the problem caused by wedging of the

elastic properties. If the velocity varies across the area of

the transducer, the wave-fronts will distort and the situation

is equivalent to one in which a homogeneous sample has non­

parallel faces. This produces recognizable effects in the

echo train--i.e., there are oscillations superposed on the ex­

ponential decay pattern as discussed by Truell et al. [1969].

This was observed on all the samples, but it was difficult to

decide how much of it was due to inhomogeneity and how much

was due to actual nonparallelism and consequently no attempt

was made to allow for this in estimating the an. This effect

was particularly noticeable for the Ta-W alloys.

Inhomogeneity was probably the cause of the very poor
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internal consistency for the Ta-64%W crystal. In this case

reproducibility in the velocities was poor even though an

attempt was made to place the transducers in the same position

for each measurement. Another possible source of error was

that this sample was not a perfect crystal. The Laue patterns

showed a mosaic structure with subgrains spread in orientation

by 20 or 30
• However, this sample was fairly close to being

elastically isotropic (i.e., A ~ 1) so this sort of problem

should not have a large effect on the velocities.

In summary, the uncertainties in Table 5 crudely reflect

1) bond, diffraction and length errors, 2) reproducibility of

the ultrasonic measurements, and 3) internal consistency in

cases where more than 3 modes were studied.

For purposes of comparison to other measurements, maximum

errors excluding density errors are perhaps 2 or 3 times larger

than shown in Table 5 for the pure elements. The maximum errors for

the alloys may be considerably greater because of inhomogeneity.

C. Pressure Derivatives of the Moduli

A very useful review paper on the relation of ultrasonic

data to the pressure or strain derivatives of the moduli has

been written by Thurston [1965]. The following derivation has

been abstracted from Thurston's work. The treatment for cry­

stals of cubic symmetry is particularly simple since they

compress isotropically under hydrostatic pressure.

For a given propagation mode, the elastic wave velocity

is given by equation (3), and it follows that
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(7)

where the zero subscript denotes evaluation at zero pressure.

Differentiation of (7) yields

2 2
(pv2) , = (a (pv )) = p v 2 (_1_ (~) + 3Kl

T)ap TOO F 2 ap T
o

where the derivatives are evaluated at P = 0, and

( 8)

= (9)

is the isothermal bulk modulus. 2In equation (8), Povo and

F(P) are obtained as described in Chapter II. KT can be

obtained from the adiabatic bulk modulus by means of the

formula

=
K
..5

l+ayT (10)

where a is the volume coefficient of thermal expansion. The

Gruneisen parameter, y, is defined by

y =
aK

5

pCp
(11)

where Cp is the specific heat per unit mass at constant

pressure.

Once the derivatives of pv2 are calculated from equation

(8), the quantities (aC i j /ap)T follow directly by di.f f e r'err­

tiating the relations in the last column of Table 1. The

(aCi j /ap)T ar.ederivatives of the effective adiabatic elastic

coefficients as defined by Thurston and Brugger [1964]
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and are the quantities usually reported in the ultrasonic

literature. They should not be confused with derivatives of

other types of moduli such as the derivatives of the thermo­

dynamic elastic constants as defined by Brugger [1964]. Note

also that the derivatives are "mixed" in that the C.. are
1J

isentropic strain derivatives of the elastic energy while

the pressure derivatives are measured along an isotherm. For

the purposes of the discussion in Chapter V, the differ-

ences between adiabatic and isothermal derivatives is negli-

gible.

The difference should not be ignored, however, when the

ultrasonic data are extrapolated to very high pressures for

comparison with isothermal equations of state determined

by X-ray or shock compression experiments. For this pur-

pose, it is necessary to compute [Thurston, 1965]

,
(aKT) = ( (:~s) T - "YTg) / (l+"yT)

2
KT = ap T

where

2 ("is (:~s) p - Y) - 1 T (aa )g = - 3y a aT P

2 ayT (1 __1 (~) )aCp aT p

(12)

(13)

Consider now the more practical aspects of the calcula-

tions. As in the previous section, "best-fit" values of

(ac . ./ap)T were obtained by minimizing
1J 2 2 2

N ((PVn ) , (pv )'
X2 = 2:: observed n calculated)

n=l an
(14)
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where N is the number of experimental frequency-pressure

runs, and the prime denotes the isothermal pressure deriva-

tive. The (pv 2) I b d are determined through equationn 0 serve
2 I

(8) from the ultrasonic data and the (pvn ) calculated are
I

obtained from the "best-fit" C.· through the equations in
1J

Table 1.

The primary ultrasonic data from a pressure run are the

frequencies F'(P), and it is necessary to determine the de­

rivative of F(P) for use in equation (8). Differentation of

equation (4) followed by evaluation at zero pressure gives

( a:Q.nF ) =
ar T

(15 )

Now $/2TI and F /f are much less than one and are of theo 0

same order of magnitude. To first order in these quanti-

ties, and with n=O, equation (15) becomes

or

(16)

= 1 (aF IZ )
( F 1)2 ---aP

o T

(17)

Note that the change in FI over the 5 kbar pressure range

was very small--on the order of a few tenths of a percent.

In all cases, both F' and F'2 could be considered linear and
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the difference between

and

was negligible. In this study a linear least squares fit

was made to the F'2 versus P data and the resulting slopes

were used in the calculations. Now the contribution of the

diffraction phase shift to the second term in (16) is negli­

gible because the sample and transducer dimensions change

very slowly under pressure. When the transducer resonance

frequency is followed carefully, as was the case for the 3d

metals, the transducer-bond phase shifts are also virtually

independent of pressure as shown by McSkimin and Andreatch

[1962] and Davies and O'Connell [1977] (see also Appendix A).

Thus the second term is equation (16) was ignored for the

Ti-V-Cr solid solutions. The correction term is, at any

rate, difficult to estimate. For the purpose of the least­

squares analysis, the uncertainty in (a~nF2/ap)T arising

from ~ was assumed to be 0.01 Mb- 1 for the 3d metals. This

corresponds over the 5 kbar range to an uncertainty in ~ of

~1°, which is probably a reasonable figure (see Appendix A).

For the 3i metals, the above estimate was combined with the

uncertainty in the pressure scale (0.2%) and the standard

error in the 1east-~quares-fit slope (usually a few tenths
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of a percent) to obtain an for use in equation (14).

The earlier measurements on the 4d and Sd metals were

treated differently because the ultrasonic carrier frequency

was kept constant under pressure. McSkimin and Andreatch

[1962] have pointed out that this leads to errors in the

frequency slopes if no correction is applied. More recently,

Davies and O'Connell [1977] have pointed out that the errors

can be substantial if the carrier frequency is not fixed at

a value close to the resonance frequency at zero pressure.

The latter authors have, in addition, derived an approximate

correction term for the case in which f is fixed at a zero

pressure value f o. In the present notation this is

C(2~n) )
= (~~) (ff:J (an fr ) ( 18)

ap T ap T

Here Zl and Z3 are the acoustical impedance (pv) of the

transducer and sample respectively and f is f r at P = o.ro
Equation (17) can now be written as

1 ( ap2) , 2
;Z = 1 (aip ) + ~ap T '2

0 F
0 T

where

f::. = - 2 (~~ ) (~) c~n f r )
ap T

(19)

( 20)

In order to test the validity of this correction, a

number of observations were made on the 3d metals in which

slopes obtained by keeping f constant at f = fro wer e sub-
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tracted from slopes obtained with f = fro The results are

compared in Table 6 to values of ~ from equation (20). The

variation of f with pressure was obtained from the work of
r

McSkimin et al. [1965]. The observed values of ~ are prob-

ably good to only 20%. It is still significant, however,

that the observed values of ~ tend to be lower than the cal-

culated values. This is to be expected since bond effects,

which are neglected in equation (20), will give a negative

contribution to~. The magnitude of the bond contribution

should also be greater for shear waves than for longitudinal

waves because the ratio of the bond thickness to the wave-

length is greater for shear waves than for longitudinal

waves at the frequencies used here. This is generally borne

out in Table 6. Thus if the correction is applied, its mag­

nitude will be too large for shear waves and too small for

longitudinal waves. Nevertheless, the evidence in Table 6

indicates that more accurate values result from applying the

approximate correction than from ignoring it entirely.

The conditions under which the 4d and 5d metals were

studied are not strictly comparable to the later measure­

ments because no effort was made either to measure the

transducer frequency accurately or to set f close to fro

This could result in errors comparable to the magnitude of

the correction itself as pointed out by Davies and O'Connell

[1977], chiefly through amplification of bond effects. Fur-

thermore, shorter pulse widths were used for the earlier

measurements. The wider frequenc.y band-widths could affect
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Table 6.--Calculated and observed corrections to frequency
slopes

t:. (Mbar -1)
Sample Mode Zl / Z3 F/fr calculated observed

Ti-29%V 3 0.74 0.0096 0.052 0.036
5 0.54 0.0096 -0.016 -0.010

-.014

Ti-39%V 3 0.72 0.0051 0.027 0.021
4 0.93 0.0039 0.027 0.021
5 0.53 0.0049 -0.008 -0.011

Ti-53% 4 0.80 0.0068 0.040 0.036

V 3 0.63 0.0057 0.027 0.016
-0.018

4 0.56 0.0067 0.028 0.024
5 0.42 0.0066 -0.017 -0.012

V-18%Cr 2 0.62 0.0125 0.057 0.051
0.056

3 0.62 0.0107 0.049 0.037
4 0.50 0.0133 0.049 0.046
5 0.40 0.0122 -0.015 -0.022

Ti-73%V 1 0.46 0.028 -0.039 -0.03
5 0.46 0.028 -0.039 -0.06
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the measurements because both the diffraction and trans­

ducer-bond reflection phase shifts are frequency dependent,

and because the transducer-bond assembly acts to some extent

as a filter [Truel1 et al., 1969] whose response character­

istics change drastically as a function of pressure [Davies

and O'Connell, 1977].

It is possible to roughly evaluate these effects be-

cause a number of pressure runs were carried out for vana-

dium using the earlier technique. Table 7 shows values of

(a(pv2)/ap)T as measured by the earlier method with and

without the correction of equation (20). Also shown for

comparison are values obtained by the later technique which

is presumably more accurate. The results are rather mixed.

For the shear modes 3 and 4 the corrections are clearly of

the correct sign but areoverestim"ates as they were in

Table 6.

It is clearly impossible to draw any unequivocal con­

clusions from these results. Nevertheless, the corrections

of equation (20) were applied to the data on the 4d and Sd

metals for two reasons. First, in a negative sense, the

corrections do not seem to produce significant errors. Sec-

ond, the errors produced by the corrections appear for the

most part to be directly or indirectly related to bond ef­

fects which should be smaller in the 4d and Sd metals be-

cause of their relatively high acoustical impedances. In

other words, the corrections probably hold better for the

heavier metals than for vanadium. In view of the possible



Table 7.--Comparison of early values of (a(pv2)/ap)T for
vanadium obtained from uncorrected and corrected slopes
with later "accurate" values obtained by following the

transducer resonance.

40

2(a(pv )/ap)T

f r Resonance not followed resonance followed

Mode (MHz) uncorrected corrected "best-fit" value

1 60 5.63 5.61 5.65

3 20 0.184 0.202

20 0.181 0.199

30 0.166 0.178 0.185

30 0.179 0.191

4 20 1. 029 1. 052

30 1. 016 1. 031 1. 042

5 60 4.77 4.75 4.51

60 4.79 4.77

aKs 4.27 4.23 4.26(aP)
T



I

41

errors in the corrections, the corrections themselves were

used as uncertainties to obtain the on in equation (14) for

the fitting procedure.

Table 8 shows the "best-fit" derivatives of the moduli

and the resulting uncertainties. Here again, as in Table S,

r indicates the suitability of the input uncertainties and

the degree of internal consistency, and the uncertainties

have been scaled upwards whenever r > 1. To varying degrees

for different samples the uncertainties in Table 8 reflect

1) transducer-bond phase shift errors, 2) the reproducibil-

ity of the F' versus P slopes, and 3) internal inconsisten­

cies resulting from misorientation and inhomogeneity.

Table 9 exhibits KT and the thermal parameters used in

equation (10). For the 4d and Sd metals, a and the molar

heat capacity were assumed to be linear functions of e/a.

The thermal expansion and the molar heat capacity were as­

sumed to be constant and equal to the values for V for the

3~ alloys. These approximations may result in errors of a

few tenths of a percent in KT.
KT' and the additional parameters used to compute it

from equations (12) and (13) are shown in Table 10 for the,
pure elements. All things considered, these KT values are

probably good to within 2 or 3 percent although maximum

errors of S or 6% are conceivable for the 4d and Sd metals.

Note that the bottom row of Table 7 also compares uncor­

rected, corrected'and "accurate" Ks' values. The spread is

within 1% which indicates that transducer and bond effects
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Table 8.--Isothermal pressure derivatives of the adiabatic moduli. dA/dP is in units
of Mbar- l. All other quantities are dimensionless.

Sample ac11/ap ac12/ap ac 44/a
p aC'/ap aCL/dp aK /ap aA/ap rs

3d Metals

Ti-29.4%V 4.49 3.56 0.466 0.467 4.49 3.87 -2.21 2.8
+.07 +.07 +.011 +.009 +.07 +.07 +.11- - - -

Ti-28.5%V 4.63 3.56 0.431 0.533 4.52 3.92 -1.94
+.03 +.03 +.005 +.004 +.03 +.03 +.04- - - -

Ti-53%V 4.89 3.56 0.350 0.668 4.58 4.00 -1.70 1.1
+.02 +.02 +.004 +.004 +.02 +.02 +.02- - -

Ti-73%V 5.34 3.62 0.238 0.858 4.72 4.19 -1. 57 2.0
+.06 +.06 +.007 +.014 +.06 +.06 +.04- - -

V 5.65 3.56 0.185 1. 042 4.79 4.26 -1.14 0.2
+.03 +.02 +.003 +.006 +.03 +.03 +.01- - - -

V-17.5%Cr 6.09 3.76 0.238 1.165 5.16 4.54 -0.776 0.7
+.03 +.03 +.003 +.008 +.03 +.03 +.009

.j::>.

N



Table 8.--(continued) Isothermal pressure derivatives of the adiabatic moduli. aA/ap
is in units of Mbar- l. All other quantities are dimensionless.

Sample acll/ap ac1 2/ap dC 44/dP dC'/ap aCL/dp dK /ap aA/ap rs

4d Metals

Nb 5.22 3.37 0.281 0.925 4.57 3.98 -0.332 0.6
+.03 +.03 +.006 +.013 +.03 +.03 +.016- - - -

Nb-25%Mo 5.35 3.24 0.580 1. 053 4.87 3.94 0.155. 0.8
+.02 +.02 +.005 +.011 +.02 +.02 +.010- -

Nb-31%Mo 5.58 3.25 0.724 1.166 5.14 4.03 0.254 0.7
+.02 +.02 +.004 +.009 +.02 +.02 +.008- - - - -

Nb-37%Mo 6.17 3.29 1.035 1.442 5.77 4.25 0.398 1.1
+.02 +.02 +.006 +.013 +.02 +.02 +.010- - - -

Nb-44%Mo 6.43 3.15 1.266 1. 641 6.06 4.25 0.413 0.9
+.02 +.03 +.007 +.012 +.02 +.02 +.010

Nb-53%Mo 6.50 3.37 1. 299 1. 564 6.24 4.42 0.347 0.6
+.05 +.05 +.012 +.021 +.05 +.05 +.015- - - -

Nb-72%Mo 6.39 3.32 1. 333 1. 538 6.19 4.34 0.252 1.3
+.04 +.04 +.010 +.018 +.04 +.04 +.011- - -

Mo 6.41 3.45 1. 396 1. 478 6.33 4.44 0.220 1.0
+.03 +.05 +.012 +.023 +.03 +.04 +.013- - - - -

+>-
(,N



Table 8.--(continued) Isothermal pressure derivatives of the adiabatic moduli. oA/oP
is in units of Mbar- l. All other quantities are dimensionless.

Sample oell/op oC1 2/oP oC 44/oP OC'/OP oCL/oP oKs/oP oA/oP r

5a Metals

Ta 5.079 3.110 1. 004 0.984 5.099 3.767 -1. 03 1.6
+.014 +.016 +.007 +.007 +.012 +.014 +.03

- - - - -

Ta-9.6%W 5.126 3.120 1. 051 1. 003 5.174 3.789 -0.572 1.2
+.007 +.007 +.003 +.002 +.006 +.007 +.006- - - -

Ta-21. 5%W 5.38 3.34 1.075 1. 022 5.43 4.02 -0.24 4.5
+.05 +.05 +.021 +.017 +.04 +.04 +.04- - -

Ta-40.0%W 5.468 3.38 1.139 1. 05 5.56 4.07 0.11 1.4
+.010 +.06 +.005 +.03 +.03 +.04 +.03- - - - - -

Ta-64%W 6.25 3.40 1. 514 1.425 6.340 4.35 0.20 2.1
+.02 +.04 +.018 +.021 +.014 +.03 +.02

Ta-90.4%W 6.207 3.302 1. 635 1. 435 6.390 4.270 0.149 0.4
+.014 +.014 +.006 +.006 +.011 +.013 +.005- -

W 6.169 3.357 1. 609 1. 406 6.439 4.294 0.119 0.8
+.009 +.015 +.008 +.008 +.008 +.011 +.007

+::­
..j:>.
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Table 9.--Volume coefficients of thermal expansion, specific
heats at constant pressure, GrUneisen parameters, and iso­

thermal bulk moduli of the samples.

Sample cx(10 6oC- 1) C (j/g-OC) Y KT(Mbar)p

Ti-29.4%V 23.4 0.512 1. 05 1.122

Ti-38.5%V 23.4 0.509 1. 06 1.158

Ti-53%V 23.4 0.505 1.10 1. 250

Ti-73%V 23.4 0.499 1.15 1.370

V 23.4a 0.490a 1. 23 1. 556

V-17.5%Cr 23.4 0.489 1.25 1. 638

Nb 21. 3a 0.266 a 1. 59 1. 690

Nb-25%Mo 19.8 0.261 1. 60 1. 871

Nb-31%Mo 19.4 0.260 1. 60 1.927

Nb-37%Mo 19.0 0.259 1. 59 1. 979

Nb-44%Mo 18.6 0.258 1.60 2.048

Nb-53%Mo 18.0 0.256 1. 61 2.152

Nb-72%Mo 16.8 0.253 1.60 2.339

No 15.0a 0.248 a 1.55 2.608

Ta 19.5a 0.140 a 1. 64 1.941

Ta- 9.6%W 18.9 0.139 1.64 2.033

Ta-21. 5%W 18.2 0.138 1.65 2.148

Ta-40.0%W 17.1 0.137 1.66 2.359

Ta-64%W 15.7 0.135 1. 68 2.661

Ta-90.4% 14.1 0.133 1.66 2.956

W 13.5a 0.132 a 1.65 3.086

aAmerican Institute of Physics Handbook.
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Table 10.--Temperature derivatives of a, Cp' and K , and pressure
derivatives of Ks and Kr. All quantities are dkensionless.

T (aa) a 1 CCp) a 1 eK
) Cat)T (;f)TElement ex aT P aCp aT p aKs aT- p

V O.Ob 33 -3.2c 4.26 4.27

Nb 0.21 18 _3.2d 3.98 4.02

Ta 0.08 16 -3.4e 3.77 3.80

Mo 0.12 45 -3.9f 4.44 4.46

W 0.13 49 -4.2g 4.29 4.32

aAmerican Institute of Physics Handbook, 3rd ed., edited by D. E.
Gray, McGraw-Hill, 1972.

bEstimated from the data of Bolef et al. [1971], and references
therein.

~olef et al. [1971].

dJones et al. [1969].

eLeisure et al. [1973].

fDavidson and Brotzen [1968].

gLowrie and Gonas [1967].
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are not large on the average. However, there is a 5% dif­

ference for mode 5 which demonstrates that these errors can

be larger on occasion. It should be emphasized once again,

however, that such errors should be smaller for the 4d and,

particularly, Sd metals than they are for V.
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IV. COMPARISON WITH PREVIOUS WORK

A. Elastic Moduli of the Pure Elements

The results of some recent ultrasonic measurements of

the elastic moduli of high-purity V, Nb, Ta, Mo and Ware

listed in Table 11 together with the present results. Ex-

perimental uncertainties in the present measurements arising

from misorientation and errors in densities, lengths, and

ultrasonic delay times have been discussed in Chapter III.

These uncertainties amount to 0.2-0.3% in the Ci j and are

generally similar to the uncertainties in previous studies.

In Table 11 there are many instances of disagreement outside

this range. The following discussionpr.esents possible

explanations for some of the differences in terms of impuri­

ties and in terms of inaccurate densities assumed by some

investigators.

Vanadium. Alers [1960] originally used a rather low

X-ray density value of 6.022 g/cm 3. The C.. values attrib-
1J

uted to Alers in Table 11 were recalculated using the more

likely value of 6.098 g/cm3 suggested by Westlake [1977].

Similarly, the density value of Magerl et a1. [1976] was

high (6.117 g/cm3) and their C.. were also recalculated,
1J .

although in this case the recalculation increased the dis-

agreement of their data with the other results. Le Huy

[1972] did not mention a density value. The results of

Le Huy were, however, very similar to those of Alers [1960],

and a recalculation was done here on the assumption that



Table ll.--Densities (in g/cm3) and elastic moduli (in Mbar) of the pure elements
at room temperature.

,
p Cl l C44 C CL K References

Vanadium

6.098 a 2.309 0.4311 0.5530 2.186 1. 571 A1gers [1960]

6.092 2.310 0.4378 0.5542 2.194 1. 571 Bo1ef et a1. [1971]

6.098 a 2.308 0.4320 0.5523 2.187 1.569 Le Huy [1972]

6.094 2.307 0.430 0.553 2.184 1.569 Fisher et al. [1975b]
6.098 a 2.303 0.4277 0.5512 2.179 1.568 Magerl et al. [1976]
6.102 2.309 0.4336 0.5545 2.188 1.570 This work

Niobium

8.578 2.465 0.2840 0.5661 2.183 1.710 Graham et al. [1968]
8.578 a 2.470 0.2811 0.5682 2.183 1. 711 Jones et al. [1969]
8.569 2.472 0.2823 0.5705 2.183 1. 711 Hubbell and Brotzen [1972]

2.453 0.2807 0.5636 2.170 1. 701 Le Huy [1972]

8.579 2.474 0.280 0.569 2.185 1.715 Fisher et a1. [1975b]

8.576 2.460 0.2792 0.5672 2.172 1.704 Mager1 et a1. [1976]
8.578 2.462 0.2869 0.5662 2.183 1. 707 This work

+:0-
co



Table ll.--(Continued) Densities (in g/cm3) and elastic moduli (in Mbar) of the
pure elements at room temperature.

,
p C11 C44 C CL K References

Tantalum

16.682a 2.660 0.8227 0.5253 2.958 1. 960 Mager1 et a1. [1976]

16.682a 2.659 0.8226 0.5253 2.956 1. 958 Stewart et a1. [1977]

16.682 2.660 0.8241 0.5236 2.960 1. 961 Fisher [1977]
16.682a 2.661 0.8251 0.5255 2.961 1.960 This work
16.675 2.660 0.8247 0.5253 2.959 1. 960 This work

Molybdenum
10.219 4.697 1.068 1.511 4.255 2.683 Bolef and de Klerk [1962]
10.225 4.409 1. 217 1. 342 4.283 2.619 Featherston and Neighbours

[1963]

4.63 1. 09 1. 51 4.21 2.62 Dickinson and Armstrong
[1967]

4.661 1. 095 1. 518 4.239 2.638 Davidson and Brotzen [1968]

4.657 1. 089 1. 527 4.219 2.621 Le Huy [1972]

10.216 4.648 1. 089 1. 516 4.221 2.626 This work

c.n
o



Table 11.--(Continued) Densities (in g/cm3) and elastic moduli (in Mbar) of the
pure elements at room temperature

p C11 C44

,
C CL Ks Reference

Tungsten.

19.266 5.225 1. 605 1. 603 5.227 3.088 Bo1ef and de K1erk [1962]

19.257 5.234 1. 607 1. 594 5.247 3.108 Featherston and Neighbours
[1963]

19.257

19.250 5.223 1. 606 1. 590 5.239 3.104 Lowrie and Gonas [1967]

19.3615 5.290 1. 619 1. 602 5.310 3.158 Ayres et a1. [1975]
19.253 5.227 1. 606 1. 591 5.242 3.106 This work

aDensities of Westlake [1977] have been used to recalculate the moduli.

U1.....
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they used the same density.

Note that the results of Alers [1960] and Fisher et al.

[1975b] are in .very good agreement with each other (and with

the original, but not the recalculated, values of Magerl et

al. [1976]), particularly when the density difference is

taken into account. If these are taken, tentatively, as the

best values for high purity vanadium, then it is possible to
,

account for some of the other values. The C44 and C of

Le Huy are respectively higher and lower than the "best"

values. This can be explained by assuming that a small

amount of interstitial hydrogen was dissolved in LeHuy's

sample. Westlake [1967] has pointed out that vanadium cry­

stals usually contain some hydrogen unless it is removed by

vacuum annealing, and Fisher et al. [1975b] and Magerl et al.

[1976] have demonstrated that dissolved hydrogen increases
,

C44 and decreases C. The present sample probably did not

contain significant amounts of hydrogen, but it did have

relatively high concentrations of C and Si which might ac­

count for the high values of the shear modulus. Bolef et al.

have reported a moderate amount of Si and a large amount of

oxygen in their crystal. The oxygen would tend to raise the

moduli [Fisher et al., 1975b] in accord with the trends in

Table 11. However, Bo1ef et al. also found large amounts of

hydrogen which should produce a low value of C. Discussion

of the effects of impurities is complicated by the fact that

the impurities pin lattice dislocations. This leads in gen­

eral to an increase in the moduli. The magnitude of the
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increase depends on a number of factors including the con­

centration and nature of the impurity. The generally high

moduli of this study and of Bolef et al. may be related to

this phenomenon.

Niobium. The samples of Jones et al. [1969], Fisher et

al. [1975b] and Magerl et al. [1976] were annealed in vacuum

to remove interstitial impurities, although Fisher et al.

used lower temperatures and vacuums. These three sets of

elastic moduli are in fairly good agreement and should be

taken as the "best" values for high purity Nb. The values

of Magerl et al. are slightly low as was the case for their

V measurements. The present sample and that of Graham et al.

were obtained from the same source and were prepared by sim­

ilar procedures with no attempt being made to remove inter­

stitials. Not surprisingly, the Ci j values measured on
,

these two samples are comparable. Note that C is low and

C44 is high relative to the work on purer crystals. Fisher

[see Katahara et al., 1976] has pointed out that this is

probably due to ~ 1 atomic % hydrogen which could easily

have been introduced during the preparation of the speci­

mens. As is the case for the other Group VB elements, the
,

presence of dissolved hydrogen raises C44 and lowers C

[Fisher et aL.; 1975b; Magerl et al., 1976]. The values of

Hubbell and Brotzen are in fair agreement with the "best"

values. The results of Le Huy [1972] are generally low-­

probably due again to a different density. No recalculation
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was done, but note that Le Huy's C44 is relatively high

which implies that some hydrogen was present in this case

also.

Tantalum. Fisher [1977] has recently reviewed the

ultrasonic literature on the elastic moduli of tantalum in

view of Westlake's [1977] evaluation of the density data.

Fisher recalculated the Ci j of previous workers using p =

16.68Z g/cm 3 for ultra-high purity Ta as suggested by West-

lake. A similar recalculation shown in Table 11, has been

done here for some of the most recent data. A slight de-

parture from Fisher's procedure was made in that data from

all four of the crystals of Stewart et al. was used. This

does not affect Fisher's observation that the agreement is

good.

Molybdenum. The values of Featherston and Neighbours

[1963] are clearly unreasonable when compared with the other

data listed in Table 11 for Mo. The reason for this is un-

known. Their crystal did have rather large amounts of in­

terstitial impurities (930 ppm 0Z' 140 ppm NZ' and 10 ppm

HZ)' but it is unlikely that these could cause such large

changes in the moduli. The last 4 sets of values are in

generally good agreement. The differences are small enough

that impurities and different assumed densities can prob-

ably account for the differences. Unfortunately, chemical

analyses and density values are available only for the pres-

ent sample and that of Bolef and de Klerk [196Z].
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Tungsten. The results of this study are in excellent

agreement with Lowrie and Gonas [1967] who used two crystals

from the same source (Union Carbide). The values of Bolef

and de Klerk [1962] and Featherston and Neighbours [1963]

are also in fairly good agreement. The moduli of Ayres et

al., on the other hand, are uniformly high. This can be at­

tributed in part to their density value which is about half

a percent higher than the others. A recalculation with p =

19.25 g/cm 3 would eliminate most of the discrepancy in the

shear moduli, but the longitudinal moduli would still be

high by about 0.5%. Here again the differences are prob­

ably due to impurities and lattice dislocations.

B. Elastic Moduli of the Alloys

Figures 2, 3 and 4 show the elastic moduli of the 3d,

4~, and 5d alloys obtained in this work and in other studies.

Many of the alloy crystals have been studied both here and

in other laboratories. In these cases, the differences are

not large enough to be noticeable on these figures. It is

clear, however, that there is considerable scatter when

smooth curves are drawn through the data. The scatter is

not particularly disturbing for the 3d and 5d metals because

it is not systematic. It was pointed out in Chapter III

that substantial errors are possible because of inhomogen­

eity in the alloy crystals. The points of Carpenter and

Shannette [unpublished], shown in Figure 4, are from cry­

stals with particularly large amounts of chemical segrega-
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tion--up to 5% composition differences from end to end [G.W.

Shannette, personal communication]. Large errors are also

possible in some of the density and composition determina-

tions. The most troublesome differences occur for the Nb-Mo
,

alloys near e/a ~ 5.3 where the CI I and C values of Hubbell

and Brotzen are significantly higher than the results of this

study. This is difficult to explain because the CL and C44
moduli agree very well. It was thought at first that the

discrepancy might be due to hydrogen contamination as dis­

cussed in the previous section. (Hydrogen solubility is

known to decrease rapidly with e/a in these alloys [Jones et

al., 1960; Jones and Mcquillan, 1962]. However, E.S. Fisher

of Argonne National Laboratory extracted the hydrogen by

heating the present Nb-rich alloys in a vacuum and found

that insignificant amounts of hydrogen were present. The

cause of the discrepancy is therefore not known at this

time.

C. (aCij/ap)T for the Pure Elements

Table 12 presents the data currently available on the

pressure derivatives of the Ci j of the Group VB and VIB ele­

ments. Isbell et ale [1972], Voronov and Vereschagin [1961],

and Smith et a1~ [1966] studied po1ycrysta1line specimens so

only aKs/ap values are shown. In the following discussion

it should be kept in mind that the present acij/ap values are

probably good to 2 or 3%, but that maximum errors of up to



Table lz.--caCij/ap)T for the pure elements.

,
acll/ap aC44 / dP ac lap dCL/ap dKs/aP Reference

Vanadium

5.3 0.15 0.96 4.5 4.0 Le Huy [1972]

5.65 0.185 1. 042 4.79 4.26 This work

Niobium

8.05 0.279 0.952 7.38 6.78 Graham et a1. [1968]

4.9 0.28 0.75 4.4 3.9 Le Huy [1972]

5.22 0.281 0.925 4.57 3.98 This work

Tantalum
3.79 Isbell et al. [1972]

4.54 1.03 1. 01 4.56 3.19 Chechi1le [1967]
5.08 1. 004 0.984 5.10 3.77 This work

Molybdenum

4.4 Voronov and Vereshchagin [1961]

3.1 Smith et al. [1966]

7.2 1.1 1.4 6.9 5.3 Le Huy [1972]

6.41 1. 40 1. 48 6.33 4.44 This work

0\
o
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about 5% are possible. The exceptions to this are the de­

rivatives of C44 for V and Nb--these quantities are so small

that the percentage of errors in them are a little larger.

Le Huy [1972] has measured the aCij/ap of V, Nb and Mo.

(This work is available only as an unpublished thesis al­

though the results were also presented at a conference [Le

Huy et al., 1973].) The data were presented only in graphi­

cal form and the derivatives shown in Table 12 were obtained

by reading slopes direct ly off the C.. versus P plots. These
1J

values are thus uncertain by a few percent for this reason

alone. Le Huy's results are consistently lower than those

of the present study for V and Nb. In the case of V the

differences are a little too large and too consistent to be

acceptable. There would appear to be systematic errors in

one or both sets of measurements. The agreement between

this study and Le Huy's results are satisfactory for Nb ex­

cept for ac
44/ap.

Le Huy is probably in error in this case

since the derivatives of the shear moduli of Graham et al.

[1968] are in good agreement with the present results. There

are clearly unacceptable differences between this study and

Le Huy [1972] for ~o. In this case, Le Huy's data are in

poor agreement with shock compression measurements [McQueen

et al., 1970] which are discussed later in this chapter.

Thus the present results are probably more reliable for Mo

also.

As mentioned above, Graham et al. and this study are in
,

accord for aC44/ap and ac lap for Nb. There is, however,
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gross disagreement for the longitudinal moduli. A possible

explanation for this is given in the next section. The very

high dKs/dP value of Graham et al. leads to v~ry poor agree­

ment with the shock-wave data so the present values of

dC 11/dP and dCL/dP are to be preferre~.

The derivatives of the shear moduli obtained by

Chechille [1967] on· Ta agree well with the present values,

but again the longitudinal mode results differ appreciably.

There are three reasons for rejecting Chechille's values.

First, the results of this study are in better agreement

with shock-wave experiments. Second, there were serious er-

rors in Chechi1le's delay times. Chechille measured veloci-

ties 4% higher than were observed by Featherston and

Now the C.. values
1J

of Featherston and Neighbours were from 0.3 to nearly 2%

lower than those shown in Table 11 for Ta. Assuming that

Featherston and Neighbours were in error in their velocity

measurements, Chechi1le's velocities are still too high by

about 3%. There is therefore the possibility that

Chechi1le's pressure derivatives are also in error. A third

reason for preferring the results of this study is that

Chechil1e's sample was of relatively low purity. This might

have a small effect on the measured pressure derivatives.

Consider now the work carried out on polycrystalline

samples. Isbell et al. [1972] measured dKs/dP = 3.79 for Ta

in good agreement with the value obtained here. However,

their value for the derivative of the shear modulus was
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about 25% higher than the aC44/ap and ac lap values shown in

Table 12. Their results are thus not entirely reliable.
,

Similarly, Vo r onov and Vereshchagin [1961] also obtained a Ks

value for Mo close to that measured here, but their Ks value

itself was low by about 10%. Smith et al. [1966] measured a
, .

very low Ks on a sintered Mo sample. Such samples are known
,

to yield unreliable Ks values [Spetz1er et al. , 1972] . It is
,

not surprising therefore that the K value of Smith et al.s
does not agree as well with the shock-wave data as does the

value measured in this study.

It is possible to draw the following conclusions from

the foregoing discussion: (1) there is generally better

agreement for the pressure derivatives of the shear moduli

than there is for the derivatives of the longitudinal mod­

uli, and (2) with the possible exception of the data of Le

Huy [1972] on V and Nb, the results of this study are prob-

ably more accurate than the previous work.

D. Densification of the Pressure Medium and Related Errors

It was pointed out in section A of this chapter that

the Nb crystal used in this study was obtained from the same

source (Materials Research Corp.) as the crystal of Graham

et al. [1968]. Furthermore, the moduli measured at room

temperature and atmospheric pressure on these samples are in

good agreement. It was thus expected that good agreement

would also be found for the pressure derivatives. It is ob­

vious from Table 12 that this was not the case for the long-
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itudinal modes.

Before attempting to explain the discrepancy, it is

useful to note that the present results on Nb were obtained

only after an initial period in which the pressure measure­

ments could not be repeated. These early experiments

(chronologically the first carried out in this work) were

made with carrier frequencies of 20 or 30 MHz. Some of the

repetition frequency versus pressure results are shown in

Figure 5 for mode 5 of Nb. Also shown for comparison is an

extrapolation of the data of Graham et al. obtained at 16

MHz. Similar results were obtain~d on mode 1, the other

longitudinal mode. It can be seen in Figure 5 that the

F(P)/F(O) slopes tend to decrease and become more reproduci­

ble as the carrier frequency increases. The data of Graham

et al. appear to fall in with the trend toward higher slopes

at lower carrier frequencies, and it thus seems likely that

there is a single cause for all of the discrepancies shown

in Figure 5".

The effects seen in Figure 5 could not be caused by

variations in transducer and bond phase shifts as discussed

by McSkimin and Andreatch [1962], Davies and O'Connell U977]

or in Chapter III and Appendix A. For one thing, transducer

and bond effects appear to be much too small. For another,

they should cause higher slopes at higher frequencies--which

is just the opposite of what is observed. In addition, com­

pression of the bond should produce more noticeable errors

in the derivatives of shear moduli than in derivatives of
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Figure 5. Pulse repetition frequency ratio, F(P)/F(O) vs.
pressure for mode 5 for Nb. The shaded area represents
three 60 MHz runs, solid lines are 30 MHz runs, short­
dashed lines are 20 MHz runs, and long-dashed line is an
extrapolation of the 16 MHz results of Graham et a l . [1968] .
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longitudinal moduli because shear wave lengths are

shorter.

Another possible cause that can be ruled out is the

type of diffraction effect discussed at the end of Appendix

C. This kind of error should be present in PSP measurements

but not in PED measurements. However, PED experiments were

also carried out and showed the same kind of behavior seen

in Figure S.

A simple experiment was carried out which indicates

that the observed slope differences are caused mainly by

compression of the pressure medium and not by compression of

the bond. Longitudinal velocities were measured by the PSP

method, at atmospheric pressure and 2SoC, first in air and

then with the sample immersed in a liquid whose acoustical

impedance was equivalent to that of nitrogen gas at about 3

kbar. Temperature differences between the air and liquid

readings were limited to less than O.OSoC. Measurements

were made with different bonds and with variations in the

position of the transducer on the sample faces. At 20 MHz,

positive increments in the apparent velocity were observed

ranging from 14 to 45 parts in 105. At 60 MHz, the apparent

velocities increased by only 2 or 3 parts in 105. The mag­

nitude of these changes is sufficient to explain most of the

slope variations, and bond compression effects are thus rel­

atively minor.

It is possible to identify at least one type of effect

which might change appreciably with pressure and carrier
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frequency. This refers to wave-guide effects arising from

the diffraction of the ultrasonic waves and their subsequent

interaction with the lateral sides of the sample. Applica­

tion of pressure alters the boundary conditions on the spec­

imen surfaces and might thus produce spurious FI(P) slopes.

The lack of reproducibility at low carrier frequencies might

then be attributed to changes in transducer position and

perhaps partly to variations in bond thickness and uniform­

ity. Uneven thickness in the bond affects the distribution

of acoustic energy into the various wave-guide modes [Redwood

and Lamb, 1957], and this should also vary with pressure. An

increase in the carrier frequency decreases the wavelength

relative to the sample and transducer sizes and thus reduces

beam-spreading and waveguide effects.

A theoretical analysis of the subject of wave-guide

effects under pressure would be very complex and is beyond

the scope of this investigation. It would not be sufficient

to study the variation of the phase or group velocities of

the appropriate wave-guide modes as a function of the prop­

erties of the pressure medium. This would be a formidable

problem in itself even if the sample is assumed to be iso­

tropic and to have a simple geometry. But it would also be

necessary to study the propagation of the ultrasonic wave

train as a time dependent phenomenon since the relevant ex­

periments use pulse techniques rather than continuous waves.

Thus the pressure dependent distribution of energy into the

different modes (predominantly high order modes with phase
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velocities close to the free-space velocities) would have to

be considered and it would be necessary to calculate the

stress profile over the transducer area for each echo.

In the absence of a theoretical treatment, it is sug­

gested here that the measured apparent velocity increases

with pressure faster than the free-space velocity because the

rapid increase in velocity and density of the pressure medium

changes the wave-guide boundary conditions. There is empir­

ical support for this suggestion. For instance, McSkimin

and Andreatch [1964] have observed this kind of phenomenon

in ultrasonic measurements where uniaxial stresses were ap­

plied perpendicular to the wave propagation direction. In

the low stress region they observed anomalously rapid

changes in the delay times which they attribute to the

changing quality of the contact between the lateral surfaces

of the sample and the load platens; They also demonstrated

that this effect can be minimized by increasing the ultra­

sonic frequency.

There is other experimental evidence which is consist­

ent with wave-guide effects being the cause of the observed

slope variations. For instance, longitudinal mode measure­

ments were made on Ta at 30, 40, and 60 MHz without signifi­

cant changes in the F(P) slopes. One difference between the

Nb and Ta samples was that the dimensions of the Ta crystal

were twice as large, relative to the wavelength at a given

frequency, as those of the Nb specimen. Satisfactory re­

sults were in general obtained for the present samples when
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the specimen lengths exceeded about 50 wavelengths. An ad­

ditional factor here is that Ta has a higher acoustical im­

pedance than Nb and waves in Ta would thus be affected less

by densification of the pressure medium.

The dimensions relative to the wavelength of the Nb

crystals of Graham et al. were similar, at 16 MHz, to those

of the present sample at 20 MHz. Their samples, however,

were in the form of rectangular prisms whereas the specimen

used here had only two pairs of flat, polished faces. The

presence of more surfaces favorable for guided wave propaga­

tion may be the cause of the higher longitudinal mode slopes

of Graham et al. Unpublished work by the present author on

ruthenium crystals, which had only one pair of flat, pol­

ished faces, tends to support this view. The Ru results

were qualitatively similar to those shown in Figure 5, but

the differences in slope between 20 MHz and 60 MHz runs were

much smaller, even though the Ru sample dimension/wavelength

ratios were about half of that for Nb. The acoustical im­

pedance of Ru is about twice that of Nb and this would also

reduce the pressure dependence of the wave-guide effects.

It is somewhat more difficult to explain the curvature

in the FCP) data for some of the 20 and 30 MHz runs shown in

Figure 5. A possibly relevant observation is that the long­

itudinal mode signals grew weaker with pressure because of

transmission losses into the pressure medium. At high pres­

sures, these losses may be large enough that other wave­

guide modes having different propagation characteristics
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begin to be important. In any case, no curvature was seen

in the 60 MHz runs.

The preceding discussion of the discrepancy between

the present work and that of Graham et al. has a serious

flaw in that Graham et al. obtained excellent internal con­

sistency among different modes on two samples. According to

the present interpretation this consistency would have to be

fortuitous. It is also not clear why the 20 and 30 MHz runs

shown in Figure 5 exhibit good linearity up to 3 kbar since

the properties of the pressure medium change rapidly and in

a very nonlinear fashion in the low pressure region. Irre­

gardless of the source of the discrepancy, the Nb results of

this study might be considered more reliable for two reasons.

First, the pressure range covered here is 10 times larger

than theirs. Second, shock-wave compression data on Nb, as

discussed in the next section, tend to support the lower

pressure derivatives of the longitudinal moduli found here.

Before this section is concluded, one final point is

in order. Measurements of delay times with different exter­

nal media could prove to be of use in evaluating the possi­

ble effects of densification of the pressure medium. This

applies not only to wave-guide effects but also to the

transducer-bond and diffraction effects discussed in Appen­

dices A and C. It should be kept in mind, however, that

wave-guide effects at high pressure cannot easily be pre­

cisely simulated in this way because the wave-guide mode

velocities depend in general on both the density and veloc-
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ity of the surrounding medium and not simply on its imped-

ance.

E. Comparison with Shock-Wave Compression Experiments

It has been established [e.g., see Anderson, 1966]

that ultrasonic measurements, carried out to pressures of a

few kbar, can be used with fair success to predict compres­

sions at pressures of hundreds of kbar. Mcqueen et al.

[1970] have obtained shock-wave compression results on the

Group VB and VIB elements up to pressures comparable to the

bulk modulus. Figures 6-10 present comparisons of their

200C isotherms with extrapolations of the ultrasonic re­

sults. (The SoC temperature difference is negligible.) The

low pressure region, in which the agreement is generally

satisfactory, has been omitted from these figures. The

pressures have been normalized to the zero-pressure ultra­

sonic values of KT shown in Table 9.

The shock-wave results shown in the figures are of two

types. The Hugoniot points are the experimentally deter­

mined (P, V) loci of the shocked (hot) material. MCQueen et

al. [1970] have fit these points to a two-parameter equation

(the linear shock velocity-particle velocity relation). The

isotherms were then derived by making certain assumptions

about the specific heat and thermal expansion. Mcqueen et

al. used the Debye theory for the specific heat and assumed

that the Grlineisen parameter was a function only of volume

such that y/V is a constant. These assumptions are the ones
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usually made in shock-wave studies, and the basis for making

them is discussed by, among others, Rice et al. [1958] and

Mcqueen et al. [1970].

The extrapolation of the ultrasonic data has been car­

ried out by means of the Birch-Murnaghan equation [Birch,

1938, 1947] which has proved to be one of the more success­

ful formulas. In essence, the Birch-Murnaghan equation is

obtained by writing the free energy as a truncated Taylor

series in the Eulerian finite strain as defined by Murnaghan

[1937] . The result can be written

-5/3 N ((:J -2/3
n

P 3 (:0 ) 2: )KT
= 2 b - 1 (21)n ,

n=l

where

b1 = 1 (22)

I

b2 = 3/4 (KT - 4) (23)

I I "b 3 = 1/24 [143+ 9 KT (Kr - 7) + 9 KT KT ] , (24)

etc. The primes denote isothermal pressure derivatives. All

parameters, except P and V of course, are evaluated at P =

o. The number N + 1 will here be called the "order" of

equation (21) since this is the order at which the free

energy expansion is truncated. The Ultrasonic isotherms

shown in the figures were calculated with the third order

Birch-Murnaghan equation.

In Figure 6, Le Huy's [1972] curve for vanadium agrees

well with the shock isotherm, while the extrapolation of the
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present results predicts higher volumes and in fact tends to

even fall above the Hugoniot points which are at elevated

temperatures.

For Nb, Le Huy's extrapolation is again in better

agreement with the shock isotherm in Figure 7, but the dif­

ference between Le Huyls curve and that of the present study

is not very significant. The isotherm calculated from the

results of Graham et al. [1968] is clearly in error. In

this case significant differences are seen at pressures as

low as P = KT/10.
In Figure 8, the present ultrasonic isotherm for Ta

is in good agreement with the shock isotherm. Chechille's

[1967] curve falls well below the other two curves.

The extrapolation of the present results for Mo, shown

in Figure 9, falls above most of the Hugoniot points, and

the agreement with the shock isotherm cannot therefore be

said to be good. In this case Le Huy's results give worse

agreement and appear to be in significant error.

As was the case for Nb, the ultrasonic extrapolation

for W (Figure 10) falls on the Hugoniot rather than on the

shock isotherm.

It is interesting to note that, except for the Ta

results of Chechille [1967], the ultrasonic data uniformly

predict higher volumes than are found from the shock data.

Furthermore, the present ultrasonic curves tend to fallon

or above the Hugoniot in all cases except Ta. The differ­

ences can therefore not be ascribed to errors in deducing
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the isotherms from the Hugoniot unless the thermal expansion

is assumed to rapidly attain very small or negative, values

at high pressures.

The differences also cannot be attributed to differ-

ences in the samples. Table 13 compares the zero-pressure

densities and bulk moduli of this study and of Mcqueen et

ale The densities are in excellent agreement and the Ks
values agree satisfactorily. There is no systematic pattern

in these quantities which could explain why the ultrasonic

curves always predict higher volumes.

There are a number of other possible reasons for the

differences. For one, ultrasonic errors arising from densi-

fication of the pressure medium as discussed in the previous
,

section tend to give systematically high K values. Fur-

thermore, errors in setting the carrier frequency, as dis-

cussed by Davies and O'Connell [1977] and in Chapter III,
,

will also cause high K values to be measured. Corrections

for the latter effect have been applied for the 4d and Sd

metals, but the corrections may have been underestimated

somewhat if the carrier frequency was set much higher than

the transducer resonance frequency [Davies and O'Connell,

1977] .

Another possible explanation for the differences is

that the extrapolation formula could be inappropriate for

these materials. There is nothing sacred about the third­

order Birch-Murnaghan equation, and a number of other equa­

tions have been proposed and used [e.g., see Barsch and
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Table l3.--Comparison of ultrasonic and shock-wave sample
densities and bulk moduli

p (g/cm3) Ks (Mbar)

Element ultrasonic shock-wavea ultrasonic shock-wavea

V 6.102 6.100 1. 570 1. 57

Nb 8.578 8.586 1. 707 1.69

Ta 16.675 16.654 1. 960 1. 94

Mo 10.216 10.206 2.626 2.68

W 19.253 19.224 3.106 3.12

aMcQueen et al. [1970]

Chang, 1971; Thomsen and Anderson, 1971]. It is at any rate

probably unreasonable to expect any two-parameter extrapola­

tion formula to hold at pressures as high as KT.
It is interesting, however, to explore a little fur-

ther the nature of the differences between the shock and

ultrasonic isotherms. To this end, third- and fourth-order

Birch-Murnaghan equations were fit to the shock-wave curves.

This was done for the third-order equation by assuming the
,

present value of KT and adjusting KT to obtain a good fit.

Similarly, the fourth-order equation was determined by as-
,

suming the present ultrasonic values for KT and KT, and

"varying KT in equation (24). This is not the best proce-

dure to use because the isotherms of Mcqueen et al. [1970]

are not based on quite the same assumptions as equation (21)

and the functional forms are different. A better procedure

would be to construct Hugoniots starting with Birch-
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Murnaghan isotherms in the manner prescribed by Davies

[1973]. The floating parameter would then be fixed by re-

quiring a good fit to the original Hugoniot points. This

procedure is rather laborious and not really necessary in

the present case because only approximate agreement is

needed. The K; and K;' values will at any rate depend on

the type of equation of state that is used [Davies, 1973].

Only the trends in these parameters and their approximate
".~

values are required here. The Birch-Murnaghan equations

that were obtained agreed with the shock isotherms to within

about 3% in the density over the entire pressure range shown

in the figures.

The parameters resulting from the fits are given in

Table 14. Note that the difference between the ultrasonic

and shock-wave K; values decreases with increasing period

within a given column of the periodic table and increases in

going from Group VB to Group VIB in a given period. It can­

not be ruled out that there is some sort of undiscovered

ultrasonic experimental error which varies with the sample

properties in this way. It is just as likely, however, that

these differences are caused by higher order terms in the

"equation of state. The KT KT values in Table 14 are not

unreasonable. Values for the cesium halides have been meas-

ured between -7 and -9 [Barsch and Chang, 1971]. Davies and

Dziewonski [1975] have deduced values ranging from -3 to -7

for the earth's lower mantle and outer core (although these

values are not well established). It is therefore possible
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Table l4.--Values of KT and KT KT from the shock compression
data of McQueen et al. [1970]

K'
T

"Element Ultrasonic Shock-wave % Difference KT KT

V 4.27 3.77 12 -8

Nb 4.02 3.72 7 -6

Ta 3.80 3.65 4 -5

Mo 4.46 3.94 12 -8

W 4.32 3.90 10 -7

"to speculate that the KT KT values of the bcc transition

elements might vary from period to period and from group to

group in a manner similar to that shown in Table 14.

F. Comparison with X-ray Data

L. C. Ming [personal communication] has carried out

X-ray diffraction measurements of the lattice parameters of

the pure elements under hydrostatic pressures up to 100

kbar. The general conclusion that can be drawn is that the

X-ray compression data are in satisfactory agreement with

the extrapolations of the ultrasonic results using equation

(21). The X-ray measurements do not extend to pressures

high enough and are not precise enough to allow a judgment
,

to be made as to the accuracy of the ultrasonic KT values

determined in this study. A detailed comparison will there­

fore not be made here.
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V. THE BAND STRUCTURE AND THE ELASTIC PROPERTIES

A. The Rigid-Band Model

The relationship between the elastic properties and the

electronic band structure will be discussed in this chapter

in the context of the rigid-band model. This model assumes

that the band structure and density of states curve of a

metal remain constant when another element is alloyed with

it. It is now well known [e.g., see Ehrenreich and Schwartz,

1976, for a discussion and references] that this model is

not generally valid. However, it does seem to work for the

bcc transition metals considered here. Specifically, there

is good agreement between experimentally determined alloy

densities of states at the Fermi energy and the correspond­

ing densities of states predicted from theoretical elec­

tronic structure calculations by means of the rigid-band

assumption [McMillan, 1968; Mattheiss, 1972; Pickett and

Allen, 1974]. Furthermore, Powell et al. [1968] have iden­

tified Kohn anomalies in the phonon dispersion curves of Nb­

Mo alloys. These anomalies occur at wavevectors which change

qualitatively with composition as expected from a rigid-band

model. Freeman et ale [1975] have also used what is essen­

tially a rigid-band model to predict the instability of the

bcc structure in Zr-Nb alloys rich in Zr. It is neverthe­

less fair to say that the evidence in favor of the rigid­

band model is not entirely convincing. It would be desir­

able to obtain more definitive information such as photo-
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emission spectra for the alloys which would provide knowl-

edge of the density of states over the entire conduction

band rather than just at the Fermi energy.

It is not expected, of course, that the rigid-band

model will work exactly. As e/a increases, the d-bands be-

come wider and tend to move down in energy with respect to

the nearly-free-electron band [Friedel, 1969; Evans et al.,

1973]. It will be assumed here that, upon alloying, the ef­

fects of volume changes and charge transfer between the two

types of atomic sites conspire to produce a slowly varying

band structure.

It is not assumed that the shape of the bands remains

unchanged under a lattice deformation. An assumption very

much like this is the basis of Leigh's [1951] model for the

shear moduli of simple polyvalent metals, which has also

been applied to transition metals by other workers [Rayne,

1960; MacFarlane and Rayne, 1965; Bernstein, 1963]. This

model assumes that during shear the unfilled bands move

rigidly with the Brillouin zone boundaries, and only the en­

ergies and not the band shapes change with strain. This kind

of assumption now appears to be in general disfavor because

the band structure does change significantly and non-rigidly

as the lattice is deformed [Harrison, 1966; p. 195; Suzuki,

1971; Posternak et al., 1975]. In the following it will

only be assumed that the bands, and the nature of their

variation with strain, do not change very much as an element

is alloyed with neighboring elements in the periodic table.
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Interperiodic alloys, and alloys between elements not adja­

cent in the periodic table will be almost entirely excluded

from consideration because the rigid-band model is not ex­

pected to work as well when elements of widely different

atomic size or valence are alloyed.

B. d-Bands Under Strain and the Fermi Surface

The results of this study, together with zero-pressure

data from other studies are summarized in Figures 11-15. The

general trends for the moduli and the anisotropy have been

pointed out and discussed by others [see the review by

Fisher, 1975] . The interesting features of the curves in
,

Figures 11 and 14 are as follows: (1) The C curves, re-

markably, fall virtually on top of each other for all three
,

periods (note the Cr points at e./a = 6). C increases

fairly smoothly up to e/a = 6 and then decreases. (2) The

C44 curves are very similar from period to period even

though they do not coincide. For all three periods C44 re­

mains virtually independent of composition at low e/a but

increases rapidly with e/a in the alloys rich in Group VIB

elements. (3) The anisotropy ratio in Figure 14 decreases

rapidly with e/a and reaches a minimum in the region 5 < e/a

< 6 after which it again increases.

There is general agreement that these trends are re­

lated to the electronic structure and to the d-band elec­

trons in particular. Fisher [1975] has analyzed the data by

taking as his point of departure the model of Fuchs [1935,
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1936a, 1936b]. In this model the elastic strain energy is

composed of three terms: (1) the electrostatic energy of

point ions embedded at the lattice sites in a free-electron-

gas background, (2) a short-range central potential term

arising from the overlap of neighboring ion cores, and (3)

the energy of the conduction electrons in a nearly-free­

electron (NFE) approximation. (Isenberg [1951] has general-

ized this model to include transition metals by considering

the d-electrons to be part of the ion-cores.) Such models

predict values of A much greater than one for bcc metals.

Fisher [1975] therefore concluded that the deep minima in A

seen in Figure 14 were due to large band-structure effects

(i.e., to a departure from NFE conditions) which could not

be adequately represented by Fuchs' model. This conclusion

is corroborated by the fact that, at about the same e/a val­

ues, the ~-electron contributions to the cohesive energy

reach a maximum [Wigner and Seitz, 1955; Freidel, 1969;

Pettifor, 1970].

Very little more than this ca~ be said regarding the

composition dependence of the Ci j in Fuchs' model. Isenberg

[1951] and others [Bolef, 1961; Featherston and Neighbours,

1963] hypothesized that the overlap forces in Fuch's model

were different for nearest and next-nearest neighbors. This

would account for the small observed A values since overlap

forces between nearest-neighbors contribute primarily to C44,
while C is influenced more by next-nearest-neighbor forces

[e.g., see Fisher, 1975]. But it is now known from neutron-
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scattering experiments [Woods, 1972] that the interatomic

forces in these metals are of long range and cannot be ex-

plained by interactions between near neighbors. Further­

more, it has also been established that the d-electrons are

. not very well localized and should not be regarded as parts

of the ion cores.

Another sort of conjecture was made by Brotzen and his

co-workers [Davidson and Brotzen, 1968; Hubbell and Brotzen,

1972; Hayes and Brotzen, 1974]. They tentatively suggested,
,

from a tight-binding viewpoint, that the increase of C with

e/a is due to the filling of a subband of antibonding states

directed along [100] (the antibonding subband of e symmetry
g,

[Goodenough, 1963]). The decrease in C for e/a > 6 would

then indicate that the subband has been filled. This is

contrary to the results of actual calculations [Freidel,

1969, pp. 350-355] which indicate that the anti-bonding sub­

band should be filled at much higher values of e/a.

The approach that will be taken here is due to Peter

and co-workers [Peter, 1973,1974; Peter et al., 1974] who

have developed a perturbation formalism for the electronic

contributions to the shear moduli. A summary of their

treatment is given in Appendix D. The result of interest

here is their expression for any shear modulus [Peter et al.,

1974, equation (52)]:

+

2

C:~) ) (25)
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where the summation runs over all eigenstates of the one­

electron Hamiltonian, the En are the corresponding eigen­

values, E is a parameter giving the magnitude of the appro­

priate shear strain, and f(En) is the Fermi-Dirac distribu­

tion function:

(26)

with ~ = chemical potential. In the limit of vanishing tem­

perature, ~ approaches the Fermi energy, EF, and f(En) be­

comes a uni t step function and its dertva t Ive becomes a; negative

delta function. When the sums in '(25) are _convent.ed to.recipro­

cal-space Irrt eg r aLs in the usua l way [2 Iman, 1972; Kittel, .

1971] ,the shear modulus at T = 00 K becomes

G =

. (27)

2

3 (27f) 3

dS
TVEr

Here Eo is the bottom of the conduction band and SeE) is the

reciprocal-space surface of constant energy E.

The first term on the right in equation (27), or equa­

tion (25), is simply the sum over the occupied states of the

second strain derivatives of the energies. This term is to

be expected from the definition of the elastic moduli as the

second derivatives of the crystal energy with respect to
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strain. The second term in equation (27) is a surface inte­

gral over all sheets of the Fermi surface. It arises be­

cause states near the Fermi energy are displaced in energy

as the strain is applied. Some initially empty states be­

come occupied and vica versa depending on whether the ener­

gies decrease or increase. This term thus gives the contri-

bution of the transfer of electrons between different states.

This kind of transfer term was first considered by Leigh

[1951] in constructing the model mentioned earlier in this

chapter. Leigh's model has recently been generalized and

improved by Fischer et a1. [1969] who have also derived an

equation very similar to (25).

The second term in (27) is of particular interest for

reasons that will become apparent. In order to relate this

quantity to other physical parameters, it is convenient to

define an "average deformation potential," D, at the Fermi

energy:

2V
-.-3
( 21f)

2V
(21T)3

f (aE ) 2 dS
S (E F) aE TVET

(28)

The second term in (27) then becomes

= - (29)

where N(EF) is the density of states at EF, and N(EF) is

equal to the denominator in (28) [Kittel, 1971, p. 249].

There are a number of physical quantities that depend
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directly on N(EF) including in particular the paramagnetic

susceptibility X. Although equations (27) - (29) have been

evaluated at T = 0 for simplicity, it is possible to start

with equation (25) and derive an expression for arbitrary

temperatures which relates the shear modulus to the effec­

tive density of states and thus to X [Peter et al., 1974]:

= (30)

where ~B is the Bohr magneton. Correlations between transi­

tion metal shear moduli and susceptibilities, and their re­

spective temperatureder_ivatives,have been noted and dis-

cussed by Fischer et a1. [1969], Weinmann and Steinemann

[1974], and Peter [1974] among others. These studies indi­

cate that G2 can be a large term depending on the particular

metal and modulus. In fact dG 2/dT can sometimes be the dom­

inant term in the dCij/dT. Hubbell and Brotzen [1972] meas­

ured dCij/dT for Nb-Mo alloys, and found anomalous (posi­

tive) values of dC44/dT in the Nb-rich alloys. This is sim­

ilar to the behavior of dX/dT found by Jones and Mcquillan

[1962] for these alloys.

For the purposes of the following discussion the point

to be kept in mind is that the electronic contributions to

the shear moduli can be large? especially for C44, and are

related to the Fermi surface through the second term in

equation (27).
,

Figure 12 shows that dC44/dP and dC IdP, like C44 and



96
,

C , vary strongly with composition. Note that there is a

very sharp change in behavior at e/a ~ 5.4 for the Nb-Mo

alloys. There is a similar break for the 5d metals at e/a ~

5.7. The 3d data do not extend into this composition region,

but note that dC 44/dP reaches a minimum at e/a ~ 5.0. These

trends are accentuated in Figure 13 which shows ~44 = d tn
, ,

C44/d tn V and ~ = d ~n C /d ~n V plotted against e/a, and

in Figure 15 where d ~n A/d ~n V = ~44 - ~ is shown. There

are pronounced extrema at e/a ~ 5.0 for the 3~ metals, at e/a

~ 5.4 for the 4~ metals, and at e/a ~ 5.7 for the 5d metals.

A reexamination of Figure 11 shows that there are inflection

points in the shear moduli curves at e/a ~ 5.4 and 5.7 for

the 4d and 5d alloys respectively. There also appear to be

small bumps in the 4d curves for e/a near 4.9 or 5.0. A

close examination of the 3d curves (see Fig. 3) reveals that

there may also be changes in the composition dependence of
,

C near e/a ~ 5.0, but this is not certain because of the

scatter in the data.

related to the response of the d-electron bands

It is suggested here that, primarily through the

In view of the preceding discussion of the C.. and
1J

is clear that the large variations in thedC .. /dT, it
1J

dC .. /dP are
1J

to strain.

second term in (27), the changes in the e/a dependence of

moduli and their pressure derivatives are related to changes

in the topology of the Fermi surface as e/a varies within a

rigid-band model. These changes could come about not only

through changes in the total Fermi surface area over which
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the integral in (27) is taken, but also through changes in

dE/dE and VEe The Fermi surface is a surface of constant

energy, so a topological change implies ~.E = 0 [Lifshitz,

1960]. Thus the second term in (27) should have singulari­

ties in the density of states. It is not expected that

these will be very visible in the moduli because of broaden­

ing due to disorder and temperature effects. However, it

may be expected that the pressure derivatives of the moduli

would exhibit the singularities to a greater degree.

The Fermi surfaces of Group VB and VIB elements are

shown in Figure 16 [e.g., see Halloran et al., 1970;

Hoekstra and Stanford, 1973]. The Group VB Fermi surface is

composed of three sheets as follows. (1) There is a second­

band hole surface (Fig. l6a) shaped approximately like an

octahedron which is located at the Brillouin zone center, r.

This surface will be denoted here by OCT(r). (2) There is a

multiply-connected third-band hole surface (Fig. l6b) which

is known as the "jungle-gym" (JG) surface. (3) Ellipsoidal

third-band hole surfaces (ELL) are centered on the zone

faces at the (110) points, N (Fig. 16b). As electrons are

added according to the rigid-band hypothesis, all of these

surfaces shrink since they are hole surfaces. OCT and JG

near the center of the zone shrink relatively rapidly with

increasing e/a, and eventually OCT disappears and JG pinches

off near r leaving octahedral surfaces at H. At about the

same e/a, a fourth-band electron surface begins to grow at r.

By the time e/a = 6 is reached, the Fermi surface looks
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Figure 16. Fermi surfaces of Group VB and VIB elements.
(a) Octahedral hole surface at r for e/a = S. (b) Hole
ellipsoids and "Jungle-gym" for e/a = S. (c) Fermi surface
for e/a = 6 including ellipsoids at N and octahedra at H
which are remnants of (b). There is an electron "j ack" at
the zone center. For Mo but not for W there are also lens­
shaped electron surfaces wi thin the "necks" of the "j a ck" .
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like that depicted in Figure l6c. There is now a fourth­

band electron "j ack" at the zone center. The ELL surfaces

are considerably smaller, and the octahedra at the zone

corners are the remnants of JG.

The band structure alongf-H (the [100] direction in

reciprocal space) for a typical bcc transition metal is

shown in Figure 17. The disappearance of OCT(f) and the
,

pinching off of JG occur in the neighborhood of EF = f Z5.

The corresponding e/a can be estimated from existing band

structure calculations. For instance, e/a values of about

5.5 and 5.8 are found respectively from the Nb and Ta band

structures of Mattheiss [1970, Fig. 3]. On the other hand,

a Mo band structure [Koelling et al., 1974] yields e/a tV 5.2.

while a W band structure [Mattheiss, 1965] gives e/a tV 5.6.

The differences between the Group VB and VIB values are to

be expected from the discussion in the previous section.

The greater band widths of the Group VIB elements lead to

lower densities of states. The lower N(E) together with the

relative depression of the ~-bands imply that a Group VI,
band structure will predict Ep = r 25 at a lower e/a. The

averages of the above values, 5.4 for the 4d metals and 5.7

for.the 5d metals, coincide very nicely with the extrema in

Figures 13 and 15 and with the inflection points in Figure

11.

It is interesting to note that for Nb the (111) extremal

cross-sectional areas of OCT(r) and JG atf have negative

pressure derivatives while the derivatives of extremal areas
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Figure 17. Band structure along [100] in recipr~cal space
for a bcc transition metal (after Mattheiss [1965]. r is
the zone center and H is a corner. The dashed lines indi­
cate the approximate positions of the Fermi energy at e/a
= 5 and 6. The bands are shown without spin-orbit split­
ting on the left and wi th spin-orbit splitting on the right.
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located elsewhere are positive [Anderson et al., 1973]. The

second- and third-band states near the Brillouin zone center

thus behave differently under stress compared to other

states. It therefore seems reasonable to suppose that it is

the occupation of these states that cause the large changes

in the C.. and, particularly, dC .. /dP with e/a.
1) 1)

These states may also strongly influence the tempera-

ture derivatives of the moduli. It has already been noted

that niobium-rich molybdenum alloys exhibit anomalous tem­

perature derivatives of C44 [Hubbell et al., 1972; Hubbell

and Brotzen, 1972]. There is a pronounced maximum in dC44/
dT at e/a = 5.3 - 5.4, i.e., at an electron population

slightly less than that at which the ~econd- and third-zone

centers become completely occupied. Carpenter and Shannette

[unpublished] also observed positive values of dC 44/dT in

Ta-W alloys. In this case the maximum anomaly may be at e/a

~ 5.4, but there is a gap in the data over the range 5.43 <

e/a < 5.73, and the anomaly appears to persist up to e/a ~

5.7. This is consistent with the greater band widths and

larger relativistic effects in the 5d metals as will be dis-

cussed later.

Now consider what happens when e/a is decreased below

5. In this case, the hole surfaces expand. From the vana­

dium band structure of Papaconstantopoulos et al. [1972] it

is found that JG merges with ELL along r - N at an e/a value

just slightly less than 5.0. This is again just where the

extrema occur in Figures 13 and 15 for the 3~ alloys. When



102

niobium band structures are used [Mattheiss, 1970; Anderson

et al., 1973], the rigid-band model predicts that JG and ELL

merge at e/a ~ 4.9. Data on dCij/dP are not available for

e/a < 5, but it has already been noted that there are bumps

in the 4d CoJo curves at e/a ~ 4.9 in Figure 11 which may be
- 1

rel~ted to the topological change.

The deo o/dT of Zr-Nb alloys have been studied by Walker
1J

and Peter [unpublished]. Positive values of dC 44/dT were

observed in the composition range 4.6 < e/a < 4.9. The max­

imum anomaly occurs at e/a = 4.8 which is again slightly

less than the e~pected e/a value for the topological change

in the 4d metals.

If e/a is decreased still further~ ELL and JG merge

more and more until they are completely joined in the (100)

planes as e/a approaches 4. This topological change may be

associated with the instability of the bcc structure in this

composition region.

Another quantity whose composition dependence is rele-

vant to this discussion is the electronic GrUneisen param-

eter, Ye , which can be obtained from measurements of the

electronic contributions to the specific "heat and thermal

expansion at low temperatures [Collins and White, 1964].

When mass enhancement effects are neglected, Y is given bye

[Collins and White, 1964, p. 457]:

(31)
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Smith and Finlayson [1976] and White and Smith [unpublished]

have evaluated y for Zr-Nb-Mo-Re alloys and their resultse

are shown in Figure 18. It can be seen from (29) and (31)

that y is related to the volume derivatives of the sheare

moduli. More precisely, if the total shear modulus is writ-

ten as

'If =

then it follows from (29) and (31) that

d,Q,nGT~_ G2 ( " d,Q,nD 2 ) GO d,Q,nG O
d,Q,nV - G

T
Ye - 2 + d,Q,nV + G

T
d~nV (32)

Note from equation (20) that G2 is negative. Comparisons of"

Figures 13 and 18 shows that there is a rough correlation

between the extrema in 'lf 44 and -Yeo This correlation is, of

course, affected by a number of factors including the defor-

mation potentials and their volume derivatives which are un­

known as yet.

The predicted e/a values for the topological changes

are reasonably consistent with the e/a values at which

changes are seen in the elastic properties and related quan-

tities. What is lacking is a clear physical picture of how

the ~-electrons respond to strain. A theoretical calcula­

tion along these lines would be helpful. Peter et al.

11974] "have in fact carried out preliminary calculations of

the electronic contributions to C44 and C' of Nb at 900 0K

using a variant of equation (25) and a tight-binding model

for the d-bands. Their results for the dCij/dT are in fair
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Figure 18. Electronic Gruneisen parameter, Ye, vs. e/a for
the 4d alloys [Smith and Finlayson, 1976; White and Smith,

to be published] .
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qualitative agreement with the experiment. Their results
,

for C44 and C also indicated that d-electron contributions

to the shear moduli are very substantial--on the order of a

megabar. However they did not sort out contributions from

different Fermi-surface sheets and they did not consider the

effects of volume changes.

If it is accepted that the rigid-band model works, and

that topological changes in the Fermi-surface are related to

sharp changes in the elastic properties of the alloys, then

it is possible to make predictions about composition regions

which have not yet been studied. Using the vanadium band

calculation of Papaconstantopoulos et al. [1972], it is ex­

pected that, in analogy to the 4d and sd alloys, the 3d

metals will exhibit minima in ~44' ~ and dtn A/dtn V near
,

e/a = 5.7 corresponding to EF = r Zs ' Similarly, extrema, or

sharp changes, should be seen in these quantities at e/a ~

4.9 and 4.7 for the 4d and sd alloys respectively when ELL

merges with JG.

Thus far only variations with e/a have been discussed.

It is interesting to also look at interperiodic trends. Note

first that, for a given e/a value, the 4~ and sd alloys have

virtually identical atomic volumes while the 3d metals have

smaller lattice parameters [Pearson, 1958, 1966]. This fact

makes comparisons between the Nb-Mo and Ta-W systems rela­

tively simple. The sd-bands are broader and because of rel­

ativistic effects, fall higher in the nearly-free-electron

bands than is the case for the 4d bands [Mattheiss, 1970,
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1972]. The relatively large widths in the Sd bands imply

less localization of the d-electrons and thus a generally

smaller electronic contribution to the shear moduli. This

is reflected in Figure 14 where the anisotropy is larger for

the Ta-W alloys than for the Nb-Mo alloys. Similarly, Fig­

ures 13 and 15 display less pronounced minima for the Sd

metals. The latter fact may also be due in part to increased

spin-orbit splitting which reduces the degeneracies in the
. .'bands as shown schematically in Figure 17. The r 2S level is

split and the topological changes are spread out over a

wider e/a range. DCTer) disappears and JG pinches off at

lower e/a values, and the electron "jack" appears at higher

e/a, than would be predicted without the splitting. This may

also cause the anomaly in dC44/dT to be spread out more with

e/a as mentioned earlier.

The consequence of the Sd bands falling at higher ener­

gies relative to the nearly-free-e1ectron band is that EF =
,

r 2S at a higher e/a value than in the 4d metals. This ac-

counts for the difference in the critical e/a values of 5.4

and 5.7 for the Nb-Mo and Ta-W alloys respectively.

Comparison with the 3d alloys is difficult because of

the different atomic volumes and because the data do not

cover the same e/a range. The major difference in the band

structure is that the 3d bands are much narrower in V than

the 4d and Sd bands in Nb and Ta [Mattheiss, 1972]. It

might be expected therefore that the 3~ alloys should ex­

hibit even more pronounced changes than the 4d alloys in the
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shear moduli and their pressure derivatives at e/a ~ S.7
,

corresponding to EF = rZSo But the narrower d bands would

also tend to imply lower values of A. There is no evidence

for this in Figure 14 although it is possible that the 3d

curve passes under the 4d curve in the unexplored e/a re­

gion. It is also possible that the smaller atomic volumes

in the 3d metals somehow offset the narrower band widths so

that the 3d metals exhibit behavior intermediate between the

4d and Sd metals.
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VI. SUMMARY AND CONCLUSIONS

A. Experimental Aspects

Sources of error in the ultrasonic measurements have

been examined in some detail. It has been found both from

experiment (Chapter IV) and theory (Appendices A and C) that

compression of the pressure medium can cause appreciable er­

rors by altering the boundary conditions on the surfaces of

the transducer-bond-sample assembly. Wave-guide effects,

reflection phase shifts and diffraction effects all contrib­

ute to errors in the dC. ·/dP (particularly for longitudinal
1J

modes) because of the variations in the properties of the

pressure medium. Remedies for these problems have been sug-

gested which include using the bond material as the pressure

medium in the vicinity of the transducer, and choosing an

appropriately high carrier frequency.

Values for the Ci j at zero-pressure were generally in

fairly good agreement with those of other studies. Discrep­

ancies could be explained for the most part by differences

in the samples.

On the other hand, agreement with other studies was

generally poor for the dC. ·/dP. In some of these cases pos­
1J

sible errors have been identified in the previous work.

Extrapolation of the ultrasonic data to high pressures via

the Birch-Murnaghan equation resulted in satisfactory agree­

ment in the low pressure region (~ 102 kbar) with static

X-ray and shock compression experiments. In the megabar
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region the ultrasonic results predicted higher volumes than

were found in the shock experiments. Although errors in the

ultrasonic measurements could not be absolutely ruled out,

it was suggested that neglect of higher-order derivatives of

KT was also a likely source for at least part of the dis­

agreement.

B. Elasticity and Band Structure

The rigid-band model was used to deduce from existing

band structure calculations the critical e/a values at which

topological changes occur in the Fermi surface. These crit­

ical compositions were found to coincide very well with

changes ,in the shear moduli and their pressure derivatives,

and to a certain extent with their temperature derivatives

as well. It was suggested that these correlations were due

to the domination of the shear moduli by' a term involving a

Fermi surface integral. It was argued, qualitatively, that

this integral could be sensitive to changes in EF near a

critical value because of changes in the Fermi surface area,

changes in the strain dependence of energies near EF, and

singularities in the integral at critical points.

The crucial assumption is that the rigid-band model, as

defined in Chapter V, works well for the bcc transition met­

als. The good consistency between the present results and

the rigid-band model lends support to this assumption but

further exploration of this question would be desirable.
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APPENDIX A

TRANSDUCER-BOND PHASE SHIFTS

This appendix treats the problem of determining the

phase shifts that occur when an ultrasonic wave train is

reflected from the sample face to which the transducer is

attached. It is assumed that the transducer diameter is

much larger than the wavelength, and that the wave train is

sufficiently long~ and monochromatic, so that we need to

consider only steady-state conditions. Our problem is thus

the one-dimensional one of a continuous plane wave normally

incident on the transducer-bond assembly as shown in Figure

19. We further assume that attenuation is negligible.

McSkimin [1957, 1961] and McSkimin and Andreatch [1962]

have considered this problem using transmission line theory

for cases in which the pressure medium has zero acoustical

impedance. Their treatment is thus suitable for longitudi­

nal waves at low pressure with a gaseous external medium or

for shear waves when the pressure medium is a gas or a low

viscosity liquid. Here we will consider explicitly the case

of longitudinal waves when the pressure medium cannot be

neglected. This problem does not appear to have been

treated in the existing literature.

Following the usual procedure in elasticity theory

(e.g., see Ewing, Jardetzky and Press [1957]), we define a

scalar potential in each medium:
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Figure 19. Schematic diagram of transducer-bond-samp1e assembly immersed in a pres­
sure medium. The x-axis is normal to the boundaries arid the boundary positions are
shown at the bottom of the figure. The incident and transmitted waves propagate in

the negative x direction, and the reflected wave in the positive x direction.
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(A-1)

where n = 0,1,2,3 corresponds to the pressure medium, the

transducer, the bond, and the sample respectively. The wave

vectors are kn = w/vn' We require the ratio an/bn to be real

and positive, so the Cl are the phase differences between
n

waves traveling in the positive and negative x-directions in

each medium. Our objective is to solve for Cl 3 which gives

the net phase shift of the ultrasonic wave upon reflection.

Note that in normal experimental conditions, the bond is

thin and the transducer thickness is an odd multiple of half

the wavelength. Since the acoustical impedance of the pres-

sure medium is, in all practical situations, much lower than

that of the transducer or sample, it follows that Cl 3 ~ TI. In

a round-trip through the specimen there is an additional

phase shift of TI at the other sample face which approxi­

mately cancels Cl 3 . We are really interested only in the

small residual phase shift defined by

ep = Cl 3 - TI •

In terms of 1)Jn the particle displacement is

a1)Jn
u =n ax

or, from (A-1),

(A- 2)

-iwte (A- 3)
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a2
1jJ

p n= Pn -a;zn
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(A-4)

where Pn is the density of medium n.

Both the displacement and stress must be continuous at

each boundary. We note that there is only a transmitted

wave in the pressure medium so that ao = O. Thus at x = ­

(i+d) (see Fig. 19) we have from (A-3) and (A-4):

(A-S)

and

(A-6)

Manipulation of (A-S) and (A-6) yields

(A-7)

where Z = wp /k = p v is the impedance of medium n. Sim-n n n n n
ilarly, the boundary conditions at x = - ~ and x = 0 can be

shown to lead, respectively, to
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a l -Zi(kl$/, + (1,1 1Z) Zl - Zz
aZ -i(1,Z 'b":""e +

Zl + Zz1 (A-B)be =
Zz a l -Zi(k l$/, + (1,l/Z)Zl -Z e + 1

Zl + Z2" D1

and

'a -ia Zz - Z3Z e Z +a3 - i(1,3 OZ Zz + Z3
(A-g)- e = -iab3 Zz - Z3 a Z e Z + 1

Zz + Z3 b Z

Note that successive substitutions of (A-7) into (A-8)

and of (A-8) into (A-9), and separation of the resulting

expression into real and imaginary parts will yield a closed­

form solution for a 3, or, equivalently, for ~ (see equation

(A-Z)). The closed-form solution will not be given expli-

citly here since it is very cumbersome and because practical

calculations of ~ are probably more conveniently done in a

stepwise fashion. Instead we will consider two special

cases.

As a check on the present results, we first consider

the problem solved by McSkimin [1957, 1961] in which there

is a free surface at x = - ($/,+d). We note that Z = 0 ando

a Ib = 1 in equations (A-7), (A-8) and (A-9). These equa­n n

tions may be easily shown to reduce to

kl $/, +
a l

kId +
7T

T = 2 .

tan (k Z$/,

a Z Zz
(k

1$/,

a l- -) = - tan - 2)Z., Zl

(A-IO)

(A-II)
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and

= (A-1Z)

These three equations, together with (A-Z) and suitable

trigonometric identities, yield

Z
- ~ tan (kId) tan (kZ~)

Z "

tan t =Z

tan
Zz

~ 1

Z
1 "tan (kId)
~" (A-13)

This is the same result as was obtained by McSkimin [1957,

1961]. Note that when the transducer is operated at its

resonance or any harmonic, we have kId equal to a multiple

of ~, so (A-13) reduces to

tan ~Z = - (A-14)

Thus ~ is negative. This causes the measured travel

time at the in-phase condition of the pulse superposition

method to be larger than the travel time through the sample

alone. Note also that samples with large impedances will

have small phase shifts. In the present study values of

ZZ/Z3 fell between O.Z and O.OZ, so ~ was generally about an

order of magnitude less than kZ~'

As pointed out by McSkimin [1961], the phase shift ~

can, in principle, be measured since the velocities "and im-

pedances are all known or can be determined. Measurement of

travel times at different values of w then allows the deter-"

mination of ~ and ~ using equations (A-13) and (2). This



116

was found to be rather difficult to do in practice, however.

There are a number of possible reasons for this including

inadequate flatness and parallelism of transducers and sam-

pIes, inhomogeneities in the bond, wave-guide or "side-wall"

effects, diffraction, lack of precision in measuring the

travel times and the carrier frequencies, poor spectral pur­

ity of the wave train due to harmonic distortion and other

causes, and attenuation in the transducer, bond and sample.

The result is that the uncertainty in cf> was generally as

large as cf> itself.

Consider now the case where Zo f 0 and the transducer

is operated at resonance or at harmonic so that tan (kId) =

O. Equation (A-7) becomes

= (A-IS)

Inserting this into (A-8) yields

az -ia.
e Z

bZ
= (A-16)

Combination of (A-Z) , (A-g) and (A-16) can be shown to lead

to

tan cf> = - (A-17)

This is the expression we have been seeking. Note that it
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is equivalent to (A-14) when Zo = O.

Equation (A-17) shows that the phase shift ¢ is, in

fact, a function of Z .
o

portance in several respects" It has already been pointed

out that accurate determination of ¢ is difficult in prac­

tice. From equation (A-17) it can be seen that ¢ = 0 when

Zo = Z2 regardless of the bond thickness. This might also

have been seen intuitively since at its resonance frequency

the transducer is 1/2 wavelength thick and is therefore

"transparent" to the ultrasonic waves. There is thus in ef-

fect only a single medium with impedance Zo = Z2 bounding

the sample. Thus, by immersing the sample-bond-transducer

assembly in a medium whose impedance is equal to that of the

bond, it is possible to eliminate the phase shift entirely.

This would allow a higher degree of accuracy in velocity

measurement--particularly for small samples with low acou­

stic impedances. Papadakis [1972] has recently discussed

the absolute accuracy of ultrasonic velocity measurements.

One point that emerges from his discussion is that the major

sources of error are bond and diffraction effects. Bond er-

rors tend to increase with carrier frequency while diffrac­

tion errors tend to decrease and there is thus normally a

trade-off between these two effects when one chooses the rf.

Elimination of the bond phase shifts as proposed here would

allow use of higher frequencies to minimize the diffraction

effects.

Equation (A-17) also indicates an alternative method
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for determining~. By measuring travel times with the sam­

ple immersed in different media it is in principle possible

to obtain the bond thickness and the phase shift and thus

to obtain corrected travel times.

For the purposes of this study, the most important im­

plication of equation (A-17) is that the densification of

the pressure medium can cause systematic errors in the meas-

ured values of the dC .. /dP. In order to evaluate these,
1)

estimates of the effect of pressure on the phase shifts were

made as follows. The- sample impedance was chosen to be close

to the longitudinal mode impedances in niobium. The sample

and transducer properties were assumed to remain constant

since they vary much more slowly than the properties of the

bond and the pressure medium. The bond material was assumed

to have the same properties as the "hypothetical" bond ma-

terial of Davies and O'Connell [1977] except that the bond

was assumed to compress uniaxially rather than isotropically

--i.e., the bond cross section was taken to be constant.

This is justified if the bond is assumed to be a viscous

liquid with good adhesion to both the sample and the trans­

ducer. The surface tension at the edges of the bond, there-

fore, maintains an approximately constant cross section. The

bond thickness is thus inversely proportional to its den­

sity, and since the wave vector is inversely proportional to

the velocity, it follows that k 22 is proportional to 1/Z2.

The results are altered only slightly if the bond is assumed

to compress isotropically as was done by Davies and 0' Connell
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[1977]. The pressure medium was assumed to be N2 gas which

has a negligible impedance at atmospheric pressure. The high

pressure acoustic impedance of nitrogen was estimated from

the compression data of Bridgman [1924], by neglecting the

difference between isothermal and adiabatic compressibili-

ties, and by assuming that Zo is independent of frequency.

These approximations are crude, but they are quite adequate

for illustrative order-of-magnitude calculations.

The results are shown in Table 15 for two initial (P =

0) values of the bond thickness: k 2! = 100 and 300
• The

second row of ~ values was calculated by using the bond

properties estimated at 5 kbar, but the pressure medium was

neglected as in the work of McSkimin and Andreatch [1963]

and Davies and O'Connell [1977]. In accordance with their

results, ~ appears to be virtually independent of pressure.

The third row of Table 15 shows ~ values at 5 kbar with the

pressure medium taken into account. The change in ~ with

compression in this case is much larger. If it is assumed
o 0that the k2! = 10 and 30 cases correspond to measurements

on the present niobium sample at 20 and 60 MHz, then the ob­

served uncorrected values of d(pv 2)/dP will be too high by

about 0.3 and 0.4% respectively. In general, the magnitude

of the correction term will increase with (a) increasing

carrier frequency, (b) decreasing sample impedance, (c) de­

creasing sample size, and (d) increasing bond thickness.

Similar calculations have also been carried out for a

liquid pressure medium. The liquid chosen was n-pentane



Table 15. Values of the phase shift $ of equation (A-17)
under different conditions. Impedances are in units of

10 5 g/cm2-s.
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p = 0 k R, = 10° k R, = 30°
2 2

Z = 0.0 $ = -0.919° $ = -3.01°
°

Z = 1. 822

P = 5 kbar k R, = 6.3° k R, = 18.8°
2 2

Zo = 0.0 <P = -0.914° $ = -2.83°

Z = 2.9
2

P = 5 kbar k R, = 6.3° k R, = 18.8°
2 2

Z = 1.3 <P = -0.73° $ = -2.22°
°

Z = 2.9
2

P = 0 k R, = 10° k R, = 30°
2 2

Z = 0.66 <P = -0.80° <P = -2.51°
°

Z = 1. 82
2

P = 5 kbar k R, = 6.3° k R, = 18.8°
2 2

Z'o = 1.9 <P = -0.52° <P = -1.55°

Z2 = 2.9
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which is used occasionally in various laboratories. The

density, compressibility and acoustic velocity of this mate­

rial were taken from tables in the American Institute of

Physics Handbook [Gray, 1972]. The results are given in the

last two rows of Table 15. Note that the change in ~ with

pressure is greater than for the case where N2 is the pres­

sure medium. It should be kept in mind, however, that these

results depend somewhat on the assumed bond properties. The

hypothetical bond properties of Davies and O'Connell [1977]

were used here because they were readily available, and be­

cause there appears to be no direct experimental data on

this subject.

Since the bond properties are not well known, and since

the initial bond thicknesses were difficult to determine, it

is not at present feasible to apply corrections to the meas­

ured d{pV2)/dP reported here. In view of the calculations

carried out above, it is tentatively concluded that the er­

rors incurred by neglecting the corrections are probably ac-

ceptably small for the purpose of studying the composition

dependence of the dC. ·/dP. For smaller samples with low im­
1J

pedance, or when more accurate results are desired, and es-

pecially when second-order derivatives need to be determined,

the effect of the pressure medium must be taken into account.

In this connection it is important to point out that the im­

pedance of any gas increases very rapidly with pressure at

low pressures and more slowly at higher pressures. Thus ~

will not be a linear function of pressure, and uncorrected
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values of d2C .. / dp2 could be substantially affected. As was
1)

pointed out earlier, the difficulty can be circumvented by

using the bond material as the pressure medium, at least in

the vicinity of the transducer. Note that the phase shift

can also be eliminated in this way for shear waves, since

many bonding materials are in fact viscous liquids which

transmit high frequency shear waves but which have no static

shear strength (up to moderate pressures where they solidify

or become glassy).
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APPENDIX B

UNCERTAINTY IN THE DENSITY

In this appendix an expression is derived for the maxi­

mym error in the sample density due to inaccuracy of the

balance and to errors in determining the water and air den­

sities. In the notation of Chapter I, equation (1), the

sample density is

P = (B-1)

The weight of the immersed sample Ww is obtained through two

separate weighing operations. Measurements are made of the

weight of the sample suspended from the balance, WT' and of

the weight of the suspension apparatus, Woo Thus

Now let x be defined by

x = (B-3)

Note that PA« Pw and that PW tV 1 in units of g/cm 3. Hence

WAP tV - (B-4)- x

Differentiation of equation (B-1) yields

d ~A d 1-R x + dp - (1 - -) dp ~ W
A

- x W p PA (B- 5)
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where (B-4) and the approximations leading to it have been

used.

The maximum error in each of WA, WT and Wo is now taken

to be ~W. By the usual methods [Baird, 1962], the maximum

relative error in the density is then given by:

/).P ~W 1- = (1 + 3p ) w- + (~Pw + ( 1 - -) ~ PA) .
PAP

(B-6)

-_..;..

This equation was used to compute the uncertainties in Table

2 with ~W = 0.25 mg taken from the specifications of the

manufacturer of the balance. The second term in (B-6) is

for the present measurements much smaller than the first. It

-was estimated to be 1 x 10 -4, most of which arises from un-

certainty in the temperature of the water.

Since P is fairly large for transition metals, equation

(B-6) can be approximated by

(B-7)

which is convenient for quick estimates of uncertainty. Nqte

that the uncertainty in the density is roughly inversely

proportional to the sample volume through the factor p/WA.

This is, of course, what one would expect in measurements

using buoyancy methods.

It is perhaps worth pointing out that when a more accu-

rate balance is chosen, and when the sample volumes are

larger, othe~ types of errors become predominant [see Bowman

and Schoonover, 1967].



125

APPENDIX C

VELOCITY ERRORS

This appendix describes the procedures used to obtain

rough estimates of the bond and diffraction phase shifts and

the resulting velocity errors.

Bond phase shifts were estimated by assuming the bond

thickness to be 3 ~m for all measurements. The longitudinal

and shear velocities in the bond were taken to be 2.1 and

0.5 km/s, respectively, which are realistic values for Nonaq

stopcock grease [Bateman, 1967]. The resulting phase shifts,

~B' calculated from equation (A-14) in Appendix A, were of

the proper magnitude as evidenced by rough measurements ac­

cording to the method of McSkimin [1961].

Diffraction effects are more difficult to evaluate.

Papadakis [1972] has pointed out that the phase shift due to

diffraction in the PSP method is a complicated function not

only of the sample and transducer geometry, but also of the

attenuation. Furthermore, the phase shifts as functions of

wavelength, transducer diameter and distance traveled have

only been worked out for longitudinal waves propagating

along axes of three, four, and sixfold rotation symmetry

[Papadakis, 1966]. In other words, they can only be calcu­

lated for mode 1 in Table 1 and not for the other 4 modes.

In the present case, very crude estimates were made by

treating all the crystals as if they were elastically iso­

tropic, and by assuming that the phase shifts for shear
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waves were the same as for longitudinal waves.

Papadakis [1966] has calculated phase shifts as a func­

tion of s = ZA/a 2 where Z is the distance traveled, A is the

wavelength, and a is the transducer radius. For isotropic

materials, the phase shift in radians, $D' can be roughly

approximated by

$ = 0.18sn (C-l)

up to s ~ 5, which includes about 5 to 10 echoes for the

present samples. The phase difference between successive

echoes is then obtained by taking Z = 2~.

Note from equations (3) and (4) that the velocity is

given by

,
v = 2 ~ pF' (1 - ~ ~) (C-2)

to first order in The fractional corrections to v due to

$B and $n are shown in Table 16 for niobium. Note that the

two corrections are of opposite sign and of similar magni-

tude. Although the cancellation between the two terms was

not always quite as good as for Nb, it serves as a partial

justification for neglecting the phase shifts entirely. A

more compelling reason for ignoring the corrections is that

they cannot be accurately calculated for the crystals used

in this study.

In fact, the uncertainty in $B is probably as large as

$B itself, and the same can be said for $D. Because of this

and because they tend to cancel, the corrections were assumed
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Table 16. Fractional Velocity Corrections for Nb

Mode f(MHz)

1

2

3

4

4

5

60

60

30

20

30

60

-0.00010 0.00009

-0.00011 0.00010

-0.00016 0.00004

-0.00010 0.00020

-0.00016 0.00009

-0.00010 0.00008

to contribute to !he an in equation (5) as if they were ran­

dom errors. The length uncertainty was taken throughout to

be 1 part in 104, and the three terms were added as standard

errors to obtain the velocity uncertainties used in the fit-

ting procedure for the moduli.

This appendix is probably the most appropriate place in

which to comment upon still another source of error that has

not yet been sufficiently studied. In connection with the

foregoing discussion of diffraction effects, note that the

apparent attenuation for longitudinal waves generally in-

creases with pressure because of increasing transmission

into the pressure medium. (The quantity s in equation (C-1)

changes at a negligible rate under pressure.) ~D(s) in­

creases rapidly with s for small s and then levels off and

asymptotically approaches 'IT as s goes to infinity. When the
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PSP method is used, an increase in the attenuation will give

a greater weight to the early echoes. The average ~D for

PSP measurements will thus tend to increase with pressure.

This effect is probably small for the present samples since

they have relatively high impedances and therefore rela­

tively low transmission losses. Such errors would be larger

for low impedance samples, but they could be circumvented by

using other ultrasonic methods such as the PED technique.
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APPENDIX D

ELECTRONIC CONTRIBUTIONS TO THE SHEAR MODULI

This appendix summarizes the perturbation formalism de-

veloped by Peter [1973, 1974] and Peter et al. [1974] for

the electronic contributions to the shear moduli of metals.

The one-electron Schroedinger equation may be written

as

where k is the electronic wavevector, n is the band index, s

is a parameter describing the strain, H (k, e) is the Hamil­

tonian, and En (k, s) is the nth energy level corresponding

to k. The ket I k, n, s ) denotes the Bloch state corres­

ponding to En (k, s). Assume for the moment that the Hamil­

tonian and the zero-strain eirenstates and eigenvalues are

known. The reciprocal space is defined such that for a

given direct space vector R,

k (s) . R (s) = constant .

The Hamiltonian and its eigenvalues are expanded in a per­

turbation series to second order in the strain:

H (~,s) = H (k, 0) + s B(k) +
1 s2 C(k) (D-l)"2

dEn
2

En(~'s) En(k, 0) + s +
1 2 d En

= aE T e Ta
where the derivatives are evaluated at s = O. Because of
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the definition of the reciprocal space, the strain deriva­

tives of En may be thought of as "co-moving" derivatives in

the sense that they give the variation of the energy for a k

point which is displaced in reciprocal space as the strain

is applied. It can be straightforwardly shown [see Peter

et a1., 1974] that

CD - 2)

and

(D-3)

where

CD-4)

and

(D-S)

These are the results of conventional perturbation theory.

Degeneracies require the usual special procedures.

The elastic moduli are strain derivatives of the free

energy. The free energy of the electrons may now be written

as

if exchange and correlation effects are ignored. Here N is

the number of electrons, 1..1 is the chemical potential and kB
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is Boltzmann's constant.

The volume-conserving shear strains used by Peter et al.

are defined by

£11 = - 2£ 22 = - 2£33 = e

for the C' shear, and

= £22 = = 0

for the C44 shear. In terms of these strains the appropri­

ate shear modulus is

In order to obtain G, equation (D-6) is differentiated

subject to the conditions of (a) equilibrium

dF =
d£

(b) particle conservation

o ,

aN
aE = 0 ,

and (c) symmetry conservation

The last relation expresses the condition that £ = 0 remains
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the equilibrium value for the strain when the number of

electrons is varied (this does not hold for volume

strains).

The final result may be written

). (D-7)

which is the expression quoted in equation (25) with a minor

change in notation. feE) is the Fermi-Dirac function.

The preceding formalism is fairly straightforward. The

major problem in practical calculations lies in finding a

suitable approximate strain-dependent Hamiltonian to use in

equations (D-l) through (D-S) for the strain derivatives of

the energy. The Hamiltonian must be good enough to accu­

rately give second derivatives of the energy and at the same

time it must be simple enough to keep the calculation tract­

able ..·Peter et a L, . [1974] computed G values for Nb using a

tight-binding model which did not take accurate account of

the s-d hybridization. Posternak et al. [1975, 1976] have

since done calculations of stress derivatives of the Mo

Fermi surface which indicate that the hybridization must be

handled carefully. It would thus be of interest to refine

the calculations of Peter et al. to see if their results can

be improved to agree with the experimental results. It is

worth noting that Papaconstantopoulos et al. [1972] and

Anderson et al. [1973] have carried out self-consistent band

structure calculations for V and Nb at normal and reduced
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lattice spacing. Their results could be used to parameter­

ize the model Hamiltonians used in the shear modulus compu­

tations in order to obtain pressure derivatives of these

quantities for comparison with the results reported in this

study.
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