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ABSTRACT

Ridge and valley lines are important terrain features to many scientific

endeavors and practical applications. They are extracted manually from topographic

maps traditionally. Besides being tedious, the manual process involves much

arbitrariness by human interpreters and the results are not repeatable nor consistent.

The lack of repeatability and consistence undermines the usefulness of the extracted

results. The increasing availability of digital terrain data provides an alternative that

may remedy the shortcomings of manual extraction.

The automatic delineation of terrain features is a multi-faceted task that is

relevant to cognitive issues, terrain modeling, and computer implementation. This

research has identified four groups of methods for the extraction of ridge and valley

lines. They are: symbolic approach, tracing approach, profiling approach, and

hydrological approach. The embedded meaning of ridge and valley lines in each of

these methods is investigated. A series of tests are conducted inside computers to

evaluate the performance of these methods. A primary investigation on the symbolic

method concludes that the difficulty pertaining to the generation of TINs undermines

the feasibility of the symbolic approach, thus it is not pursued further. The other three

groups of methods have been tested and compared on the basis of the numbers,

continuity, agreement, and positional accuracy of the extracted features. It is

concluded that the hydrological approach performs the best generally.

The hydrological approach, instead of emulating manual interpretation in

computers, takes an innovative approach that makes good use of the computational

power of modem computers. By defining ridge and valley lines with accumulation

values, this method is less sensitive to local terrain variations and extracts a rather
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continuous and complete result. In contrast, the tracing and profiling methods attempt

to emulate manual process in extraction and the outcomes tum out to be not

satisfactory. The various performances of the three methods present a notion that

direct replication of human knowledge into computers is not necessarily feasible in the

development of automatic methods. Several topics for future research are identified

and subject to further study.
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Chapter 1. Introduction

1.1 Importance of Terrain Analysis

Terrain features such as plains, rivers, mountains, and rills exert a great

influence upon human activity on the earth's surface. Natural catastrophes caused by

volcanic eruptions, floods, and landslides are either processes of terrain evolution or

the consequence of certain terrain conditions. Analysis of terrain may help to

anticipate and so reduce the damage caused by these hazards. The terrain exerts a

great influence on the stability of the land intended for the construction of bridges and

mountain highways. Soil conservation is important to sustain agriculture and water

supply. The erodibility of soil is greatly affected by the steepness and length of slope,

which are factors of terrain. These examples portray the wide relevance and

importance of terrain to human beings. For both practical applications and intellectual

curiosity, terrain is studied by researchers from a number of fields including physical

geography, geology, soil science, and civil engineering. By integrating terrain analysis

with design and management projects, e.g., site selection, environmental impact

assessment, and water resource management, researchers can provide better policies

for maintaining the physical environment.

The approaches to terrain analysis vary from one discipline to another. There

is no universal definition of terrain analysis and how it is being conducted. In general,

terrain analysts investigate the morphometry, spatial difference, and the evolution of

terrain. Morphometry deals with the shape, form, and pattern of the ground surface,

such as slope, aspect, drainage pattern, drainage density, and bifurcation ratio: the

ratio of the number of stream segments of one order to the number of stream segments

of the next higher order. These factors are often measured or represented



quantitatively. Experienced researchers interpret these values to gain understanding of

an area, and apply them to further investigation of its terrain. The differences in the

spatial aspects of terrain are of interest to some geomorphologists. The identification

and explanation of such differences constitute a major component of geographic

analysis by geomorphologists. One aspect of the study of terrain processes aims to

identify the cause-and-effect relation of terrain evolution, such as erosion and mass

movement. The dynamic analysis of terrain assists geomorphologists to fulfill one of

the ultimate goals of scientific research, that is the prediction of change based on the

current situation.

1.2 Feature Extraction and Terrain Analysis

Terrain features can be identified from their geometry (shape, size, and

volume) or location and connection to other features. Terrain features can be large

(i.e., glaciers, valleys, ridges, mountains); or small (i.e., rills and gullies). Ridge and

valley lines define the character of terrain and play an important role in almost every

type of terrain analysis.

From a morphometric perspective, ridges are important because they separate

slope units and delineate water basins. The pattern of ridge lines can be used as a

measure of the complexity of terrain. Valley lines, which dominate the pattern of

drainage networks, are often thought of as the duality of ridges. Many morphometric

measures are derived from the pattern of drainage networks; these include drainage

density, stream ordering, and bifurcation ratio. Drainage patterns may reveal

information concerning the parent rock and soil materials on the ground (Way, 1978,

pA9). For example, a dendritic pattern of drainage network often indicates

homogeneous, uniform soil and rock material, such as soft sedimentary rocks or

2



volcanic tuff. The density and pattern of drainage and ridges networks can serve as

indicators of areal difference. Furthermore, ridge and valley lines often serve as

natural boundaries between different terrain units. The ridge crest of the Koolau

Range on the island of Oahu, for example, separates the windward side from the

leeward side. Climatologically, the ridge is a natural barrier intercepting the north-east

trade wind, and inducing heavy precipitation. The windward side tends to receive

more precipitation than the leeward side. The difference in precipitation strongly

affects the morphometry, soil, and vegetation between these two sides of the range.

These spatial patterns are of interest to many fields of study. Stream channels are the

vessels of the earth. They carry water as well as sediments from mountains to flood

plains and then to the ocean. For a dynamic analysis of terrain, streams and rivers are

a major force in carving and shaping of the earth's surface. The density and pattern of

drainage networks affect the hydrography of a water basin, such as a time-lag of storm

flood, flow velocity, discharge, and frequency of floods. These are important factors

affecting the evolution of terrain.

The focus and approach of terrain analysis may be different between individual

research projects, yet the definition of terrain features from available data is almost

always a preliminary step to any terrain analysis task and this is conventionally

referred to as the "extraction of terrain features". This usage will be followed for the

remains of the narrative. This extraction process used to be carried out by human

interpreters using topographic maps. Automatic methods need to be developed to

speed and systematize tasks that formerly had to be done manually.

3



1.3 Computers and Terrain Analysis

There are two specific reasons to use computers for terrain analysis. First,

large quantities of terrain data are now being collected and stored in a digital form.

The availability of digital data not only makes automatic methods simpler but the

abundance of the data demands some sort of automatic method to handle it.

Computers excel in dealing with fixed-format data when numerous computations are

routinely required. It is difficult, if not impossible, for humans to deal with these data

manually. The application of computers using automatic methods is desirable as well

as necessary. Second, there is a growing appeal to adopt quantitative methods and

numeric modeling in terrain analysis. Instead of descriptive and qualitative analysis of

terrain, quantitative approaches are being used for the comparison and analysis of

terrain (Evans, 1972; Hobson, 1972; Mark, 1975). There are increasing attempts to

simulate natural phenomena with computer models and mathematical equations

(Sprunt, 1972; Anderson et al., 1988; Clarke, 1988). These research endeavors require

a wide range of data in numeric format. Methods that provide information

automatically as input to these models will facilitate this research. The hydrological

model of a watershed is such an example. As slope is a major factor affecting

hydrography it should be included in any such model. However, using traditional

methods on topographic maps, the resulting slope data are normally given in categories

(i.e., 10-20%), rather than as a discrete value for each individual unit area. Such

categorization of slope values constitutes a loss or generalization of information and is

undesirable for a quantitative model. With the use of digital data and automatic

methods, slope information can be computed quickly and accurately in a format better

suited to the modeling task.

4
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There have been notable advancements in the application of computer

techniques for terrain analysis during the past two decades. In the early 1970's, the

concept of using a matrix of numbers to represent terrain was still an idea to be

implemented (Evans, 1972). Today the use of digital elevation data is commonplace.

With digital elevation data and computers, researchers within the geosciences and

related fields have been able to analyze terrain more efficiently and precisely. New

applications of computer processing are continuously being introduced. There is much

room for further development, just as there are always questions to be solved.

1.4 Automatic Extraction of Terrain Features

Ridge and valley lines are traditionally delineated from topographic maps by

interpreters based on the curvature and density of contour lines. The process of

manual extraction is tedious. After extraction, to convert these valley and ridge data

into a computer readable format, a digitizing process is needed, which is equally

tedious. Given the fact that more terrain data are becoming available in digital format,

the extraction process will be even more tedious and complicated for human if they

have to work from large matrices of numbers. Since it is almost impossible for a

human to work on the digital data directly, an extra conversion from digital data to a

topographic map may be needed to continue using traditional method. An automatic

method that can extract terrain features from digital terrain data will be highly

desirable for this reason alone. Another major drawback of manual extraction is its

arbitrariness, as shown by Mark (1983). There is no clear-cut rule of where a valley

starts and where a ridge ends; thus, consistent delineation of valley and ridge networks

is unlikely when the interpreters or the occasions vary. The following figures

illustrate this problem. Figure l.la is a contour map extracted from a 1:24,000
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topographic sheet of Kaneohe, Oahu. Figure 1.1b shows the stream channels of the

same area from the same topographic sheet. The valley lines of this area have been

extracted by two different interpreters and their results are illustrated in Figure 1.2.

These two interpreters delineated the number and length of valley lines differently. In

fact, it is common that the same interpreter may not be able to repeat his or her result.

(a)

Figure 1.1: (a) A sample contour map; (b) its stream channels.

(b)

Figure 1.2: The valley lines extracted by two different interpreters.
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Replication of the same result is a criterion of scientific experimentation, yet manual

extraction is not repeatable. The lack of repeatability may impose problems when

applications are developed from these variable extracted terrain features. A third order

stream, for example, may otherwise be classified as a fourth order stream when the

extent of a drainage network is extracted differently. Thus, the inconsistency of

definition of stream order undermines the value of this method of analysis. In contrast

to human interpretation, automatic extraction will always apply the same criterion to

different areas or to the same area on repeated interpretations, and thus the terrain

features can be consistently extracted. For practical reasons, an automatic method that

extracts terrain features consistently will benefit researchers of many fields and is

highly desirable.

Beyond practical applications, there are theoretical aspects pertaining to the

development of automatic methods for feature extraction. An emerging branch of

computer science, artificial intelligence (AI), emphasizes developing computer systems

that are possible to perceive, reason, and act (Winston, 1992, p.5). AI technology has

been applied in robotics, natural language processing, and expert systems with some

successful examples. These intelligent computer systems, which work as human

experts in specific domains, were once labeled as the next generation of computers. In

geography, Robinson et al. (1986) identified four geographic tasks suitable for AI, one

of which was automatic extraction of features from digital data. Many researchers

have also been trying to develop intelligent computer system to extract geographic

features, besides elevation data, from remotely sensed imagery (Erickson et al., 1984;

Goodenough et al., 1987). A common challenge to the automatic extraction of

features is to develop operational definitions of various features that are suitable to be

used in computers. The development of operational definitions involves human
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cognition, the nature of digital data, and technical concerns in computer

implementation. The problems facing automatic extraction of terrain features pertain

to extraction of other objects as well. Thus, the research into methods of terrain

feature extraction is a specialized case in the general development of automatic

systems of feature extraction.

There has been much effort expended to develop automatic methods to extract

terrain features from digital terrain models, yet many questions remain unanswered.

Having many applications within various fields, and being a subject of great interest in

its own right, the automatic extraction of valley and ridge lines has intrigued the

author, who has made it the topic for this dissertation.

The extraction of terrain features is closely related to the terrain model being

used. Since digital terrain modeling is relatively new, Chapter Two will introduce and

investigate the nature of these models. Chapter Three will address the problems of

feature extraction, review previous work, and then identify the research problem and

goals of this study. Chapter Four explores the generic issues of definition. Chapters

Five through Eight contain a sequence of testings and analyses. The last two chapters

evaluate the performance of automatic extraction methods, identify a satisfactory

method, and propose topics for future research.
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Chapter 2. Digital Terrain Models

2.1 Introduction to Terrain Models

Models are widely used by scientists of various fields. As defined by Haggett,

"a model is an idealized representation of the real world built in order to demonstrate

certain of its properties" (Haggett, 1975, p.16). Most models are used for two main

reasons. First, they are used to illustrate phenomena that are either too small or too

huge for human eyes, for example, molecular structures of chemical compounds and

planet systems. This type of model preserves the shape and pattern of the real-world

phenomena at different scales and are called 'iconic models' by Haggett (1975, p.17)

and Cromley (1992, p.6). Iconic models normally involve a limited degree of

abstraction and can be directly seen and understood by most people. Second, models

are used to highlight certain properties of complicated phenomena. As stated by

Chorley and Haggett,

Models can be viewed as selective approximations which, by elimination of
incidental detail, allow some fundamental, relevant or interesting aspects of the
real world to appear in some generalized form. Thus models can be thought of
as selective pictures and 'a direct description of the logical characteristics of
our knowledge of the external world shows that each of these pictures gives
undue prominence to some features of our knowledge and obscures and distorts
the other features that rival pictures emphasize.... ' (Chorley and Haggett, 1967,
p.23).

This paragraph explains the generalization function built into most models.

Complicated phenomena can be better understood or analyzed through selection,

reduction, and distortion of original properties.

Many geographic models have been developed and adopted by researchers for

various purposes. Because of the relevance of terrain to most geographic and

environmental research, terrain models are the most widely used. A terrain model is
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any representation of the earth's surface that can help us comprehend or analyze

terrain. The popular use of terrain models can be attributed to the two reasons

mentioned in the previous section. Very often, researchers may find the terrain of

their study area too large to comprehend when on the ground, especially where the

terrain is rough. Thus, the adoption of a terrain model is needed in order to gain a

whole view of a large area. Furthermore, much of the topographic detail on the

earth's surface is often beyond the interest of research and needs to be generalized.

The trivial features of terrain can be neglected on a model so that researchers can

concentrate on more important properties of terrain.

A terrain model is an abstract and generalized form of the earth's surface. The

degree of abstraction and generalization vary from one model to another. This

variation affects the representativeness and usefulness of terrain models and, therefore,

deserves our attention. The difference in the degree of abstraction and its implications

can be illuminated by a comparison between a physical model and a contour map. A

physical model represents the earth's surface explicitly with a three dimensional solid

block, which can be easily comprehended by most people and thus is often presented

in the information centers of national parks and so on. In contrast, a contour map

represents the earth's surface more abstractly. The geometry of the ground is

transferred into a pattern of contour lines, which is not as comprehensible to most

people as physical models. However, the comprehensibility of these two models does

not directly associate with their usefulness. Although physical models are easier to

perceive, they are not very useful when certain measurements and analyses need to be

made. For example, measuring the relief and steepness of terrain is difficult on a

physical model. To the contrary, such morphometric properties can be easily

measured from contour maps by experienced interpreters.
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While the degree of abstraction may vary among different types of terrain

models, the degree of generalization varies within terrain models of the same type.

Contour maps of different scales, for example, show a different degree of

generalization. The implication of different generalization to terrain modeling can be

illustrated by the concept of fractal developed by Mandelbrot (1967). A fractal object

is always inexact in its geometry and carries self-similarity, a property by which a

subset, when magnified to the size of the whole, is indistinguishable from the whole

(Goodchild and Mark, 1987; Clarke and Schweizer, 1991). Features with such

property tend to reveal more detail with increasing resolution. Figure 2.1 shows a

sample fractal feature in which the same shape appears in various levels. From

another aspect, these lines can also be thought of as different generalization of a same

fractal feature.

(a)

(c)

(b)

(d)

Figure 2.1: A sample of fractal plot (redrawn after Lam and De Cola, 1993).
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To some extent, terrain surface and its profiles are fractal by nature (Clarke and

Schweizer, 1991) Therefore, the amount of detail of terrain depends on the resolution

it is being studied. All terrain models are generalized forms of the earth's surface at

arbitrary scales with selected details. In terrain analysis, researchers derive much

information from terrain models, e.g., slope and aspect. The various generalization of

terrain models affects measurement and analysis derived from these models. Any

measurement analysis with no regard to scale and generalization is meaningless. Thus,

an extensive understanding of the nature of terrain models is necessary for their proper

use.

The research in this study deals with digital terrain models (DTMs), which are

relatively new compared to traditional terrain models. The following section

introduces the structure of DTMs and investigates their characteristics.

2.2 Digital Terrain Models

"A digital terrain model may be any numeric or digital representation of the

elevations of all or part of a planetary surface, given as a function of geographic

location" (Mark, 1984). There have been attempts to use mathematical equations to

model terrain surfaces, but no practical application have been reported. Given the

complex and variable nature of terrain, a feasible mathematical model for real-world

application does not seem very likely. Currently, most digital terrain models explicitly

record elevation of the earth's surface at a collection of points.

Three major data models are currently used in DTM storage. They are regular­

grid, digital contour, and triangulated irregular network (TIN) (Figure 2.2). The

apparent differences of data format and organization are superficial. A profound

difference among these three structures, however, is how they generalize the earth's
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surface, eliminate noise, and selectively sample ground truth into digital models.

These generalization and sampling processes determine the nature and amount of

information presented in the DTM. More details of these three structures follow .



(a) (b) (c)

Figure 2.2: Three structures of DTMs, (a) regular-grid; (b) digital contour; (c) TIN.

2.2.1 Regular-Grid Structure

A regular-grid structure stores an array of elevation data, taken from a matrix

of equally-spaced points, to represent the earth's surface. It is a projection of a

regular grid on the terrain surface and a recorded elevation value at every intersection

of the grid (Figure 2.3).
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Figure 2.3: An illustration of a regular-grid DTM.

Elevation is measured at a fixed distance, normally referred to as data resolution, in

orthogonal directions regardless of the complexity of terrain. Figure 2.4 is an example

that generalizes the cross profile with a sequence of points, with variation between two

adjacent points being ignored. Local relief with a horizontal extension less than the

data resolution, such as (A) in Figure 2.4, will likely be ignored no matter how steep

the relief is. On the other hand, a gentle wide relief as (B) will be recorded in the

model. Horizontal extension of a relief is the major factor affecting the sampling

process.
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Figure 2.4: A cross-profile sampled by regular-grid.

The elevation of any location inside the data area can be referred to by a

known elevation, within a maximum distance of 0.707 times the data resolution, which

is one half of the diagonal distance between adjacent known points, as illustrated in

Figure 2.5.
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Figure 2.5: Distance within one pixel.

The average distance between any point and a known elevation can be derived from

the mathematical equation:
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d=JJVX 2+y 2/ Q , Q : area

which is 0.383 times the data resolution. With a 30 meter resolution, these figures

translate to 21.21 meters for maximum distance and 11.5 meters for average distance.

There will be some variation of elevation within these distances, depending on the

local complexity of terrain. A careful user of DTM should be aware of these

variations.

The advantage of this structure is its simplicity in data format and consequently

the ease in data retrieval and analysis. The U.S. Geological Survey (USGS) uses

automatic photogramrnetric systems to create digital elevation data in this format

(USGS, 1983a). Several interpolation methods are also available to generate this

regular- grid data from contour lines. This structure is currently the most available

and frequently used structure of DTM.

2.2.2 Digital Contour

A contour is a smoothed line that passes through points having the same

elevation. It is the line formed by the intersection of a level surface with the surface

of ground. It was first introduced by marine cartographers to show the depth of water

in the 1730's and the method was later applied to land (Harvey, 1980, p.182).

Contour maps have been widely used to represent terrain relief since the second

quarter of the nineteen century. On a contour map, the ground surface is generalized

into a set of horizontal intersections sampled at a constant interval, as Figure 2.6

shows.
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Figure 2.6: An illustration of contours.
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Figure 2.7: A cross-profile sampled by contours.

The cross profile in Figure 2.5 is sampled by contour as illustrated in Figure 2.7. The

(A) feature will be recorded in the data because its relief is larger than the contour
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interval. On the other hand, feature (B) is being ignored because its relief is not large

enough to cross the contour interval.

The elevation of every point within the map area can be estimated to a range,

i.e., the elevations between two adjacent contour lines. The distance between an

unknown point to its adjacent contour lines may be far, yet this estimate is valid

regardless of the distance. Besides providing elevation data, contour maps also

visually display the complexity of terrain by the varying density and shape of contour

lines.

Contour maps are the major means for storing elevation data. By digitizing

these contour maps, either through manual methods or scanning, digital contour data

can be obtained. There are semi-automatic systems that compile contour lines from

stereoscopic aerial photos. Although digital contour data can be obtained in many

ways, they are seldom used directly in computer analysis. Contour lines are not easily

manipulated by computers due to the inexplicit relation both between contours and

data points of contours, thereby limiting their use in digital analysis.

2.2.3 Triangulated Irregular Network

A triangulated irregular network (TIN) is a system of triangulated facets to

approximate the earth's surface (Peucker et al., 1978). A TIN matrix consists of

nodes, segments, and triangles. Nodes are points with elevation data; segments are

non-intersecting linkages between adjacent nodes; triangles are the consequent facet of

three adjacent segments. The construction of TIN consists of two steps: selection of

points that will serve as nodes for networks and then connecting nodes into triangles.

The selection of nodes is critical because nodes are the basic element of the TIN. The

connection of nodes into networks is intricate. Different connections will render
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terrain differently. An arbitrary connection may fail to render the original terrain

faithfully. The subtle nature of this structure introduces much uncertainty and

difficulty in constructing a TIN. Building an accurate TIN is still a research topic

attracting much interest (Lee, 1989, 1991; Tsai et ai., 1991).

One advantage of the TIN structure is its flexibility over different terrain areas.

In a homogeneous terrain area where slope remains more or less unchanged, a small

number of triangles will be sufficient to represent a large area closely. In an area

where terrain is rugged and complex, the number of triangles may increase to reflect

such complexity adequately.

2.3 Comparison and Conclusion

The volume of data is often an important concern for data usage. A larger

volume requires more storage and more processing time. A regular-grid is rigid in

data volume because the measurements are at a fixed distance regardless of the terrain

complexity, with much redundancy in flat areas. Its data volume is roughly

proportional to the size of data area. The data volumes of contour lines and TIN

structures will vary with the complexity of terrain. A gentle terrain area requires

fewer contour lines or TIN for rendering. The superficial redundancy and flexibility

associated with each structure does not necessarily reflect on the efficiency of storage

among different structures. With a regular-grid structure, the coordinates of each point

are automatically indicated by their order and, therefore, need not be explicitly

registered. Digital contours require explicit registration of x,y coordinates for each

point on the lines. Triangulated irregular networks require definite x,y,z values for

each node and also require extra storage to specify the connections between nodes.
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Taking these into account, there is no apparent large advantage in storage size among

these structures within the expected variation in terrain types.

AvailabiIity of data is another concern in adopting the structure of terrain

models. There are many methods available to convert these three data structures from

one to the other (Lam, 1983; Legates et al., 1986; Lay, 1987). If necessary,

conversion from one to the other is possible. However, conversion between different

structures always causes loss of information and never makes the data more accurate.

Unless there is no other choice, conversion should be avoided.

Currently, the regular-grid structure of DTMs is the most popular and most

available format. In the United States, the United States Geological Survey produces

and distributes regular-grid structure terrain models, named a Digital Elevation Model

(DEM), at two different scales. In fact, in the United States, 'DEM' has a strong

connotation with regular-grid DTM when used as a generic term. The series at

1:250,000 (USGS 1:250,000 DEM) scale is produced by interpolating digitized line

data from 1:250,000 topographic maps. The coordinates are based on the longitude

and latitude system and spaces between data points are 3 arc-seconds. The other

series is parallel to 1:24,000 scale of topographic sheets, based on Universal

Transverse Mercator (UTM) coordinates with a 30 meter resolution. Each file of this

DEM series corresponds to a I:24,000 or 1:25,000 topographic quadrangle map.

These data are produced by either photogrammetric or interpolation methods. The

Defense Mapping Agency (DMA) produces another series of data called digital terrain

tapes (DTT), which are also distributed by the USGS. Each DTT file covers a 1 by 1

degree block, representing one half of a 1:250,000 scale map. The grid size of DTT is

about 208 feet (USGS, 1983a).
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The U.S. Geological Survey, one of the major producers of digital geographic

data, does not publish digital data in TIN format. It may not be necessary to have

such data since a TIN matrix is supposed to be flexible in presenting various details of

terrain. TINs may be built from either regular-grid, contour data, or from field

surveying anyway if needed. For large areas, field surveying is not very likely;

conversion from DEMs or digital contours is the main approach of generating a TIN.

Recently, the USGS has begun to release digital contour lines as part of the USGS

digital line graphs (DLG) series. They, however, are not generally available. The

regular-grid DEM is still the most widely available source of digital terrain models.

This chapter introduced the structure of DTMs and their characteristics. Many

methods have been developed to extract terrain features automatically from digital

terrain data. The nature of digital data will affect the extraction of terrain features.

DTMs of regular-grid structure use points to represent surfaces; digital contours use

lines to represent surfaces; TINs use facets to represent the surfaces. These different

structures represent the original terrain differently. A sensible extraction method

should take the unique characteristics of each structure into account.
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Chapter 3. Research Questions and Purpose

3.1 Problem Domain of Terrain Feature Extraction

Systematically, the process of extracting terrain features can be divided into

three steps: conceptualization, abstraction, and implementation. A brief review on the

procedures of manual extraction is provided here for showing the rationale of these

three steps. Because of their availability, contour maps are most often used in manual

extraction. Before delineation of ridge and valley lines, interpreters using contour

maps must form a concrete conceptual model of 'ridge' and 'valley' containing the

characteristics of these objects. Such a task constitutes the conceptualization stage of

work. Based on the conceptual model, interpreters transform these characteristics into

the shape and pattern of contour lines, which involves a work of abstraction. Through

this conversion, for example, a ridge is abstracted as a linear feature along all those

points where contour lines show a convex down-hill curvature. Following the same

manner, a valley line can be abstracted as a line along points where contour lines pose

a down-hill concave shape. The pattern of contour lines becomes an operational

definition of ridge and valley lines on a contour map. Based on such a definition,

interpreters can delineate these terrain features by tracing across contour lines. This

constitutes implementation work. The process of manual extraction has been well

developed and widely adopted, thus anyone who can read contour maps can be trained

easily to delineate valley and ridge lines following a set of rules without knowing the

underlying conceptualization and abstraction processes. The development of automatic

extraction is to construct such a set of rules to be implemented and executed in

computers.
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Computers differ from humans in their computation and reasoning ability.

Contour maps and digital terrain data differ in their formats and characteristics. Due

to such differences, those extraction procedures contained in manual extraction are not

necessarily applicable to automatic extraction. The development of automatic

extraction first requires a comprehensive review on the tasks involved. The

methodology of automatic extraction may be different from that of manual extraction,

while the necessity of the three steps are the same. This review starts with an

explanation of these steps: conceptualization, abstraction, and implementation.

3.1.1 Conceptualization

People create and use various terms to organize their thinking and experiences.

Gyorgy Kepes (Abler et al., 1971, p.3) once wrote, "We make a map of our

experience patterns, an inner model of the outer world, and we use this to organize our

lives." Words and terms of human language are labels of these maps or models that

represent our experience. Thus, each term carries a conceptual model that portrays its

characteristics. We use these conceptual models in daily life whenever applicable,

e.g., we call an object a 'mountain' when its characteristics fit our conceptual model

of 'mountain'. Conceptual models exist and are used so natural that we are seldom

aware of their existence.

The conceptual models in our mind are usually somewhat vague and difficult

to describe. Most geographers, for example, will admit having used 'maps' for

various purposes, yet what is a map? Topographic maps and road maps are some

typical objects that all geographers will agree are maps. Yet, is an aerial photograph a

map? How about a satellite image? Recent advances in the field of computer

graphics and visualization are being introduced to display spatial information. Along
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with the diversity of the outlooks and materials of 'map', the definition of 'map' is

getting both more complicated and more vague. The definition of 'map' is important

and problematic enough to attract the research interest of Vasiliev et al. (1990). They

investigated the nature of 'map' and identified five factors that contributed to the

categorization of a map: location, graphic image, generalization, function, and

prototype effect. However, the measurement of these factors to the categorization of

map is often vague.

A clear description of our conceptual model for valley and ridge is essential

before we can program computers to extract them from a digital terrain model.

Therefore, an exploration for the characteristics of terrain features is needed for their

extraction.

3.1.2 Abstraction

The delineation of terrain features from digital data is done by reference to

models and not from the ground surface; therefore, it is necessary to associate our

conceptual models with the representation of ground surface in various sorts of terrain

models. This association should result in a solid and feasible definition, an operational

definition of terrain features that can be applied to the specific form of a terrain

model, i.e., terrain is represented differently by various terrain models, the operational

definitions need to reflect model differences. On an aerial photo, ridges are associated

with contrast between different tones while on a contour map they are associated with

the convex pattern of contours. This example illustrates why we need to develop an

individual operational definition to fit different data models.

The representation of terrain on digital terrain models can be very different

from that on traditional models. The creation of new operational definitions based on
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the representativeness of these DTMs is needed in order to make the development of

automatic extraction possible. The criteria for this operational definition are twofold:

first, the definition must faithfully reflect the representation of terrain features on

DTMs; second, the definition must be in a form that will enable computer processing.

To extract valley lines from a regular-grid DTM, for instance, we need to first imagine

how a valley line, based on our conceptual model, will be represented on this DTM,

and then create a feasible computer definition. It is the author's view that this stage is

the most critical in the entire process of feature extraction. How we define terrain

features will greatly affect the results obtained.

3.1.3 Implementation

Although there are attempts to make smart computers that can learn by

themselves, most current computers will solve problems only when the problem

solving procedure is clearly defined. Linguistic definitions such as "convex" and

"concave pattern" are not appropriate to computers since they are ambiguous and

require subjective and arbitrary judgments, which are difficult for computers to

execute. An operational definition to be used in computers needs to be precise and

definable. Otherwise, the definition will be in vain if it is not in a form applicable to

computers.

Given a feasible operational definition, the technical challenge is how to adapt

it so that it works accurately, efficiently, and flexibly on a computer. Although the

price of computer hardware keeps decreasing while performance keeps improving,

efficient use of computer memory and the time needed for computations is still a

concern to software development. Pragmatically, when the execution time of an

algorithm is too great, it is simply not appropriate. Algorithm analysis aims to
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improve the efficiency of computation and storage and can make an otherwise too

costly algorithm feasible. A flexible method that can work with different types of

terrain and data sizes is preferable.

3.2 Introduction to Previous Research

The automatic extraction of terrain features has attracted much research

attention in cartography and GIS, remote sensing, computer graphics, geomorphology,

water resources, and geology in the past two decades. In a broad sense, the concept of

terrain features has been applied in other fields of study as well. Warntz (1966)

borrowed the concept of terrain features (pit, peak, pass, pale, and course line) and

defined them in his study of socio-economic surface. Much research of the past two

decades is presented in a methodological evolution from primitive to sophisticated

techniques. There are also contemporary studies which developed in parallel with

fundamentally different approaches and emphases. Such methodological variations

often occur, not coincidentally, with variations in researchers' backgrounds.

Researchers of different backgrounds often perceived terrain features differently.

These different perceptions are reflected in the working definition of terrain features.

Over the years, noted contributions to this topic include studies by Peucker and

Douglas (1975), Marks, Dozier, and Frew (1984), O'Callaghan and Mark (1984),

Palmer (1984), Jenson (1985), Band (1986), Douglas (1986), Jenson and Dominigue

(1988), Riazanoff, Cervelle, and Chorowicz (1988), Lammers and Band (1990), Smith,

Zhan, and Gao (1990), and Chou (1992). Not all these studies, however, explicitly

dealt with extraction of valleys and ridges. The research by Marks et al. delineates

water basins from gridded DTM. Their method first sorts points in a descending order

based on their elevation. The highest point is the head and sole boundary point of the
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first water basin being extracted. This method will then check the location of each

next point in the descending list to see whether it is adjacent to the boundaries of any

existing water basin. The point will be assigned to a particular water basin if it is

adjacent to the basin, otherwise it will be assigned as the head of a new water basin.

One major drawback of this method is that many grid points may have the same

elevation which makes the comparison of elevation difficult. Also, this method only

extracts water basins, not valley and ridge lines. The method developed by Chou

(1992) delineates slope lines from digital contours stored in the ARCIINFO format.

The vagueness of spatial relations between contour lines and between points of a

contour introduces much tedious bookkeeping and computation to this method. As a

result, this method is much more complicated and computation-intensive compared to

the method of same function developed for a gridded DTM structure. Furthermore,

Chou's implementation requires the user to specify the starting point of each slope line

to be extracted and is not fully automatic.

The rest of the aforementioned studies present a rather complete procedure for

the extraction of valley and ridge lines. Based on their methodology, this author

categorized the rest of the studies into four groups: symbolic, profiling, tracing, and

hydrological. Each group represents a unique perspective toward terrain feature

extraction. The first approach is applied to triangulated irregular networks although

the original researchers claimed their work was applicable to gridded DTMs as well.

The remaining three approaches deal with gridded DTMs. Each of these groups are

introduced below and subject to further tests and analyses in later chapters.
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3.2.1 Symbolic Approach

Palmer (1984) used the Prolog language to explicitly define terrain features.

Prolog, stands for f2.[Qgramming in logic (Firebaugh, 1988, p.46), is a relatively new

computer language that has a strong connection to the development of artificial

intelligence technology. Unlike most conventional programming languages that

specify problem-solving procedures step by step, Prolog language specifies rules or

knowledge for problem-solving. Thus, it is very suitable to handle symbolic

operations, a unique characteristic compared to many other computer languages that

excel in numerical operations. With the expressive nature of Prolog in coding rules,

the working definition of terrain features can be explicitly expressed in the Prolog

language.

Much of Palmer's work emphasized the development of a formal definition of

geographic features, rather than extraction of terrain features. Formal definitions were

based on formal theories (e.g., Euclidian geometry) and consist of a small number of

initial terms on which all other terms build. Formal definitions are considered

alternatives used to avoid the problem of dependence on generally accepted terms or

circular definitions which cause subjectivity and ambiguity. Following this study,

Frank et al. (1986) examined the feasibility of creating formal definitions for physical

geographic features. They concluded that research to analyze the problem of scale­

dependency should be carried out first. The scale-dependency issue here refers to the

amount of detail in a TIN. Such a conclusion is by no means an accident but rather

an expectable consequence of the data structure they adopted. Their research adopted

a TIN structure of DTMs for analysis, the only usage of TIN of all four reviewed

groups. A TIN structure is flexible in data size and amount of detail. The amount of

detail of the terrain data critically affects the number of features that can be extracted.
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Therefore, the construction of TIN is a critical issue for the automatic extraction

method from a TIN structure.

3.2.2 Profiling Approach

The shape of terrain profiles appears to be an obvious property of terrain

features. Therefore, several algorithms have been developed by geographers and

computer scientists separately based on this property (Peucker and Douglas, 1975;

Haralick, 1983; Jenson, 1985). In this group of approaches, ridge lines are composed

of points with convex slope inversion, and vice versa for valley lines. The HILO

(high/low) algorithm proposed by Peucker and Douglas (1975) represents an early

development of this approach. This method employs a local operator on a two row by

two column area of DTM grid that flags the lowest point out of the four grid points.

The local operator sequentially works on each 2 x 2 grid, from left to the right and top

to bottom of the DTM area, repeating the flagging process. When the process

completed, those points remaining un-flagged are considered ridge points. By flagging

the highest point of each 2 x 2 window, this method can also identify drainage

networks. Although this method works on 2 x 2 window superficially, the deep

implication is in fact comparing the profiles of each 3 x 3 window of a DTM grid. A

later development by Jenson (1985) explicitly compared the cross profiles of DTMs in

each 3 columns by 3 rows of grid.

Zero-crossing, widely used in computer graphics for edge-detection, provides

another approach to the profiling method. A zero-crossing can be defined as those

points where the curve of a mathematical function passes the X-axis. In computer

graphics, images are normally scanned and represented with a matrix of grey-level

values for further operations. The data structure of these grey values is identical to
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Zero-Crossing

.>

that of gridded DTMs and digital remotely sensed imagery. Therefore, techniques

developed for computer graphics and image processing are often applicable to analysis

of gridded DTM data. A zero-crossing can be identified easily on a discrete data set

such as gridded DTM. On a 3 x 3 window of a DTM grid, a center point that is

either higher or lower than its two neighbors in any of the four cross profiles will be a

zero-crossing (Figure 3.1). These zero-crossings are considered as part of ridge or

valley line networks.

A

(a) (b)

Figure 3.1: An illustration of a zero-crossing, (a) the original curve; (b) its derivative.

Concerned with the noise and error in gridded DTMs, Haralick (1983)

introduced a sophisticated method to find zero-crossings on such data. This method

generates a two-variable cubic polynomial to fit elevations of each neighborhood of

gridded DTMs. Ridge and valley lines are defined as those points close enough to

zero-crossings of the first directional derivative taken in a direction that maximizes the

second-directional derivative. Smith, Zhan, and Gao (1990) presented a two-step
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procedure for extracting valley lines built upon Haralick's method. The first step

employs Haralick's method to extract pixels pertaining to valley lines from digital

images. The second step is a tracing process that starts from particular extracted

pixels of valley lines and delineate valley line networks of single-pixel width. The

following review of the tracing approach will cover more details of this process.

3.2.3 Tracing Approach

To geologists, ridge and valley lines are continuous linear features that can be

traced in several ways. Based on this concept, Riazanoff et ai. (1988) developed three

algorithms and named them as: streaming, walker, and main saddle points. These

algorithms can extract both ridge and valley lines using different definitions. Each

algorithm uses a 'selected point' and a 'progress constraint'. A selected point is one

of those points described as singular, e.g., a saddle point, or a local maximum. These

points are normally first identified during one pass of the whole DTM area. A

progress constraint is a function that associates a candidate, its eight neighbors, parent

(direction from which it comes from) and a series of children (directions of progress).

A candidate is part of a feature if, and only if, it has children. Each child becomes a

candidate in turn, and so on. Different selected points and progress constraints

distinguish one tracing algorithm from the others. The tracing algorithms treat ridges

and valleys as 'duals' of each other. By reversing the tracing criteria from highest to

lowest, for example, an algorithm used to trace ridges is used to trace valleys.

Smith et al. (1990) integrated a tracing process as part of their extraction

method. Their tracing approach started from the highest point of each valley line

extracted by a zero-crossing approach. From each starting point, the progress
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constraint is to trace along the lowest neighbor until the tracing process encounters a

pit, a point lower than all its neighbors.

3.2.4 Hydrological Approach

A hydrological approach was adopted by a group of researchers (O'Callaghan

and Mark, 1984; Band, 1986; Jenson and Dominigue, 1988) that was concerned

specifically with water flow. Early research focused on the extraction of drainage

networks. Later developments proceeded to delineate watersheds and calculate stream

ordering. O'Callaghan and Mark (1984) first presented this approach to extract a

drainage network from a regular gridded DTM. Their method first smooths DTM data

by a local averaging procedure that is designed to decrease noise characteristics of the

DTM. Next, the program finds pits. The problem raising from pits, which will

terminate a water flow, is solved by finding the overflow of a pit, or depressed area.

An overflow is the point with lowest elevation along the boundary of a depressed area.

Water flows that encounter a pit will be directed to the overflow point accordingly

without being terminated. This approach then computes flow direction, the direction

to one of its eight neighbors with lowest elevation, adjusted with distance, of each cell

inside the data area. Next, the accumulative amount of input water is calculated for

each cell based on flow direction. All those cells with input water in excess of a

threshold value are marked as stream channels. By changing the threshold, users are

able to extract stream channels of different hierarchies.

Some methodological improvements have been made in the hydrological

approaches. Band (1986) incorporated a coding scheme to label each stream segment

and water basin extracted. Lammers and Band (1990) later organized these extracted

terrain features into an object-oriented geomorphometric database, which stores each
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segment and basin as an individual object rather than storing low-level raster data.

Ehlschlaeger (1989) also contributed to the development of the hydrological approach

by introducing a more efficient searching algorithm for tracing water flow. Automatic

extraction of stream channels and water basins using this approach is now part of the

GRASS (Geographical Resources Analysis Support System) package, a GIS software

developed and made available to the public by the U.S. Army Construction

Engineering Research Laboratory (U.S. Army CERL, 1992).

3.3 Research Questions and Purpose

Most previous studies focused on implementation and technical issues.

Comparing these studies with the problem domain addressed in section 3.1, the author

identifies a lack of investigation into conceptualization and abstraction issues. A

complete investigation should incorporate all relevant issues of extraction in order to

produce the most accurate result. Each method carries a definition of terrain features,

explicitly specified as in Prolog or implicitly hidden in the algorithms. These

definitions affect what and how terrain features will be extracted. This is an area

critical to the development of automatic methods for terrain features extraction and

deserves more research. This current research examines the performance of the four

approaches through tests and analysis with a focus on issues relevant to operational

definitions. The major research questions are listed below.

(1). What are human conceptual models for ridge and valley lines?

Conceptual models reflect our definition and specification of terrain features for

various applications. To understand the definition of terrain features better, this

research investigates issues relevant to human cognition and addresses the nature of

conceptual models.
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(2). What criteria and factors have been used by automated methods for their

operational definitions?

Each of the existing algorithms and methods of feature extraction carries a

definition. By analyzing these algorithms, this research decodes the buried or hidden

operational definitions. Dissection of these operational definitions may reveal what

criteria have been used and what is missing.

(3). What are the performance levels of these approaches?

A series of tests are proposed to evaluate the rationale and performance of

these approaches. The resulting ridge and valley lines will be analyzed and compared.

(4). Which approach performs most closely to manual extraction?

By examining the results of each different approach, this research attempts to

identify those approaches that more closely reflect human conceptual models of ridge

and valley lines. The identified approaches should be useful to general purposes of

terrain features extraction.

(5). How and why do these approaches perform differently?

The different performance between approaches can be attributed to many

sources such as human cognition, nature of terrain model, and implementation. The

identification of such sources will facilitate our understanding on feature extraction

and enhance the development of automatic extraction methods.

The purpose and influence of this research is multi-faceted. Immediately,

findings from this research will provide a more thorough solution and understanding of

automatic extraction of terrain features. In a broader sense, this research deals with a

wide range of subjects relevant to terrain feature extraction, a geographic task. It

covers topics on geographic data, human factors, and implementation in computers.

Through the process, the many problems regarding computers and geographic
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applications will surface. This will result in a better understanding of what computers

can do and can not do, therefore promoting a better use of computers in geographic

analysis. Theoretically, this research deals with human cognition and spatial

reasoning. There are attempts in developing automatic image understanding system

(Erickson et al., 1984; Goodenough et al., 1987; McKeown, 1987). Such tasks are

related to human cognition and conceptual models. Findings of this current research

on conceptual and cognitive aspects of spatial reasoning may be fruitful to these

research interests.
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Chapter 4. Conceptualization

4.1 Feature Extraction and Categorization

Every automatic method for the extraction of terrain features requires clear and

implementable definitions of the features. For example, a computer needs to be

programmed to what exactly a 'ridge' is before it can extract ridges. Thus, the first

task in the extraction of terrain features is to define the features. Although there exists

formal descriptions of terrain features in many dictionaries, these descriptions are often

ambiguous or circular and hence unsuitable to be implemented in computers. For

example, one definition of a ridge in the Webster's Third New International Dictionary

(Gove, 1976) is: an extended elevation between valleys. One question arises from this

definition: what is a valley? Without knowing what constitutes a valley, this

definition is meaningless. Another definition in the same dictionary specifies that a

ridge is 'a top or upper part especially when long and narrow'. But then, how long is

long and how narrow is narrow? In regards to definition, the challenge facing the

automatic extraction of terrain features is twofold: first, to clarify the characters of

terrain features; second, to adapt these characters, mostly expressed verbally, into

operational digital definitions that can be implemented in computers.

This chapter first investigates the properties of terrain features. Through

references to dictionary descriptions and interviews with experts, the characteristics of

terrain features are explored. The analysis of 'meaning' and 'definition' is part of a

categorization process that delineates boundaries of categories. 'Ridge' and 'valley'

are categories that compose certain parts of the earth's surface and possess particular

characteristics.
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Categorization has been a topic of interest in many academic fields such as

cognitive science, linguistics, and philosophy. Theories of categorization should be

useful for a better understanding on the definition of terrain features. The

characteristics of terrain features identified from dictionaries and interviews will be

analyzed with reference of these categorization theories. The analysis will address the

problems in defining features and suggest possible solutions for the development of

operational definitions to be used in computers.

4.2 Characters of Terrain Features

In the literature of automatic extraction, the terminology used to describe

terrain features is diverse. The term 'ridge' has been commonly used in the literature

of terrain feature extraction (Douglas, 1986; Riazanoff et al., 1988), although the use

of 'divide' can also be found in literatures (Band, 1986; Fairfield et al., 1991) For the

counterpart of ridges, many different terms have been used, such as 'valley' (Riazanoff

et al., 1988), 'channel' (O'Callaghan et al., 1984; Douglas, 1986), and 'drainage

network' ( O'Callaghan et al., 1984; Fairfield et al., 1991). The definitions of these

terms are to be explored, in this context, with reference to several dictionaries.

Besides the aforementioned terms, many other related terms are found in

dictionaries. For example, the term 'valley' is used to define many other terms, such

as 'ravine', 'gully', and 'gulch'. The term 'ridge' is used to explain 'divide', which is

related to 'water parting'. To obtain a complete picture of these terms, a review on

the descriptions of relevant terms would be helpful. The definitions for ridge and

associated terms are quoted below.
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ridge:
a) The line of intersection at the top between the opposite slopes... (Gove, 1976,

p.1953).

b) A range of hills or mountains or the upper part of such a range(Gove, 1976,
p.1953).

c) An extended elevation between valleys (Gove, 1976, p.1953).

d) A top or upper part especially when long and narrow (Gove, 1976, p.1953).

e) A long narrow upland, with steep sides... (Monkhouse, 1970, p.297).

f) Ridge is applied loosely to any long narrow rise in the ground, hills etc.
(Stamp, 1966, p.353).

divide:
a) A dividing ridge or section of high ground between two basins or areas of

drainage (Gove, 1976, p.663).

b) A ridge or area of high ground between river basins (Monkhouse, 1970, p.ll0).

water parting:
a) A summit or boundary line separating the drainage districts of two streams or

coasts (Gove, 1976, p.2584).

b) The boundary line between two or more drainage basins (Stamp, 1966, pA58).

Based on these descriptions, a ridge can refer to a linear feature as well as an

area feature. It is a line when considered as the intersection of opposite slopes or a

divide between water basins. It is an area feature when considered as 'a top of upper

part' or 'an extended elevation between valleys'. The definitions of 'valley' and its

related terms follows.

valley:
a) An elongate depression of the earth's surface and commonly situated between

ranges of hills or mountains and often comprising a drainage area (Gove, 1976,
p.2530).
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b) An elongated depression sloping towards the sea or an inland drainage basin,
usually though not always occupied a river (Monkhouse, 1970, p.365).

c) An elongated depression, usually with an outlet, between ranges of hills
(Stamp, 1966, p.445).

gully:
a) A miniature valley or gorge worn in the earth originally by running water

through which water usually runs only after rains (Gove, 1976, p.lOll).

b) A small ravine in the face of a precipice (Gove, 1976, p.lOll).

c) A well-defined waterworn channel on a hill-side (Monkhouse, 1970, p.167).

ravine:
a) A small narrow steep-sided valley that is larger than a gully and smaller than a

canyon and is usually worn down by running water (Gove, 1976, p.1887).

b) A narrow steep-sided valley, but larger than a gully or a cleft (Monkhouse,
1970, p.288).

gorge:
a) A narrow steep-walled canyon or a particular narrow steep-walled part of a

canyon (Gove, 1976, p.980).

b) A ravine with steep rock walls (Gove, 1976, p.980).

c) A deep, steep-sided, rocky river valley (Monkhouse, 1970, p.160).

canyon:
a) A deep narrow valley with precipitous sides characteristic of regions where

downward cutting of the streams greatly exceeds weathering (Gove, 1976,
p.329).

b) A deep, steep-sided gorge with a river at the bottom; manly found in arid or
semi-arid areas, where a rapidly eroding river maintains its volume from snow­
melt on distant mountains....(Monkhouse, 1970, p.56).

stream:
a) A body of running water flowing in a channel on the surface of the ground...

(Gove, 1976, p.2258).
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b) A body of flowing water, covering all scales from a small rill to a large river.
Hence the term is used to denote all the characters of processes and landform
resulting from streams (Monkhouse 1970, p.334).

c) Any river or course of running water of current in the sea, as Gulf Stream
(Stamp, 1966, p.399).

channel:
The deepest part of a river-bed, containing its main current, naturally shaped by
the force of water flowing in it (Monkhouse 1970, p.64).

thalweg:
A 'valley-way', but used to denote the longitudinal profile of a river.
(Monkhouse, 1970, p.347)

watershed:
a) A region or area bounded peripherally by water parting and draining ultimately

to a particular water course or body of water (Gove, 1976, p.2584).

b) The catchment area or drainage basin from which the waters of a stream or
stream system are drawn (Gove, 1976, p.2584).

c) The line separating headstreams which flow to different river systems...; in the
U.S.A.,this is equivalent to a divide (Monkhouse, 1970, p.370).

A valley is a basic terrain feature that has many derivatives in various shapes

and scales, such as: ravine, gully, canyon, and gorge. For this study, the term

'valley' will refer to all the various derivatives (shapes and sizes) of a valley.

Apparently, the term 'valley' has many connotations. It is part of a water basin and

embraced by its surrounding ridges. Although a valley normally is considered as an

area feature, it is closely associated with linear terrain features such as streams,

channels, or thalwegs. This linear association is even stronger when a valley is

narrow and deep. In a mountainous area, where most analyses of terrain are being

conducted, the distribution of valleys also suggests the presence of stream networks.

A valley line which indicates the location of a valley is in fact a thalweg of that
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valley. In this sense, the use of 'stream', 'channel', or 'thalweg' is closely related to

'valley'. Yet, the terms 'stream' and 'channel' strongly suggest the presence of water

which may not be a major concern to many other applications. The term 'valley line'

is more conclusive in reflecting the characteristics of this group of terrain features.

The dictionary definitions primarily describe the spatial location and geometry

of terrain features. Not all of these descriptions are useful. Those circular definitions

that use valley and ridge to define each other are not very useful except to show the

duality of these two features. Some of the definitions related to geometry are too

vague to be implemented in computers. To further investigate the properties of terrain

features, interviews with specialists from various fields were conducted. By knowing

how and why researchers use terrain features in their domain of study, the properties

of these features can be better perceived. The following section documents the

findings of the interviews.

4.3 Specialists Interviews

Six specialists with experience in soil science, geomorphology, forest

management, hydrology, and cartography, were asked: 1) why they need to delineate

terrain features, and 2) how they use terrain features in their research. The answers

should reveal the purposes of using terrain features in research and will help to

determine their definitions. The results of the interviews are summarized below.

Two interviewees in the field of engineering geomorphology indicated that

ridge and valley lines are basic components of their analyses of slope stability. Ridge

and valley lines are the boundaries of different slope complexes. By delineating ridge

and valley lines, they can roughly delineate slope complexes of various aspects. These

units are further divided into sub-units based on the density of contours. From this
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delineation, slope and aspect maps can be produced. The slope and aspect map of a

study area then can be integrated with the dip and strike of geological structures. By

analyzing these data, geomorphologists can identify areas with a high potential of

landslides. In their view, a ridge line is the intersection of opposite slope complexes

while a valley line is the intersection of two facing slope complexes. Such views

reveal the important role of geometric properties in defining ridges and valley lines.

In soil science, the development of soils is closed related to landform type, and

therefore landform patterns and topography are of general concern. In particular, soil

erosion is related to slope and slope length. The Universal Soil Loss Equation, a

widely used equation to predict soil erosion, is expressed as (Gerrard, 1981, p.35):

A =RKLSCP where A =average annual soil loss;
R = rainfall factor;
K = soil erodibility factor;
L = slope length factor;
S =slope steepness factor;
C = cropping and management factor;
P =conservation practice.

The slope length is the distance from a ridge line to either the slope foot or valley

bed; therefore, the location of ridge lines is needed for the calculation of slope length.

In the field of water resource management, the boundary of a water basin is

important, for it indicates how much overland flow will run into a drainage system.

This boundary combined with drainage patterns and stream ordering is used by

hydrologists to predict the pattern of storm hydrography and floods. From an

environmental perspective, the boundary of a water basin is important for the control

of water quality. With the delineated watershed, environmental managers can identify

a potential source of water pollution and take appropriate measures.
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The location of ridge and valley lines is a factor in timber management as well.

One interviewee indicated that in many cases logging is not allowed within certain

distances from ridge tops and valley beds. Foresters, in order to comply with natural

resource legislation or regulation, need to plot a buffer zone around ridge and valley

lines for the management of forestry.

For cartographic illustration, ridge and valley lines are important in portraying

the terrain. On contour maps, the plot of ridge and valley lines will enhance the

readability of maps by revealing the general structure of an area. Another widely-used

representation of terrain is a shadow relief map. By mimicking the diffuse reflection

of sunshine on the ground, this map helps a reader to comprehend the pattern of relief

of the ground surface. Ridge lines are the natural boundary of different reflection

zones and thus are the boundaries of different tones on the shadow-relief map.

Cartographers often start shading along ridge lines. A pre-process to delineate ridge

lines is often conducted. In the production of topographic maps or relief maps, the

delineation of ridge and valley lines is a fundamental step.

These interviews provided multi-perspective descriptions of ridges and valley

lines. This author did not explicitly ask for definitions during interviews based on an

assumption that general descriptions and applications of terrain features can provide a

broader picture of terrain features. These various applications and general descriptions

collected from interviews will be summarized in next section. It is, however,

questionable whether these properties are complete and precise enough to induce

suitable operational definitions for the implementation in computers. This author will

analyze these properties with reference to categorization theories.
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4.4 Analysis of Definitions of Terrain Features

Three major properties of ridges and valleys emerge from interviews and the

descriptions in dictionaries. They include hydrologic, spatial, and geometric

perspectives. From a hydrological perspective, a ridge is the divide of overland flow

and a valley line is where overland flow accumulates. In a spatial context, a ridge is a

line along the top of mountain and a valley line is along the lowest part of a valley.

From a geometric perspective, a ridge and a valley line delineate the boundaries of

opposite slope units. Deduced from this geometric perspective, a ridge and a valley

can be defined as a linear feature with a convex downward shape along its cross

profiles. In conclusion, four definitions of 'ridge' and 'valley' have been loosely

identified. The variation of these four definitions leads to an analysis of

categorization.

In the traditional view of categorization, a category is composed of entities that

share common properties, which are necessary and sufficient criteria to define a

category. Each category is thought of as having a clear and fixed boundary, which

may be a set of well-defined criteria (Lakoff, 1987, p.16). Many questions will arise

if we apply this traditional theory to the examination of the four definitions of ridge

and valley. Are they necessary and sufficient to define ridge or valley line? Is it

possible to delineate a clear and fixed boundary separately for ridges, or valley lines?

Are these properties consistent regardless of the variation of terrain types and area

size? The answers to these questions are probably negative. Recent advances in

cognitive science and experimental psychology develop many new theories on

categorization. These theories include prototype effect of category (Rosch, 1975,

1978), ad hoc categorization (Barsalou, 1983; Lakoff, 1987, pAS), and fuzzy

categorization (Lakoff, 1987, p.21). Within these theories, as explained below, the
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fuzziness of categorization is the most relevant concept to the categorization of terrain

features.

Much ambiguity of the definition of ridges/valleys can be contributed to the

fuzzy nature of categorization. Fuzzy set theory was first introduced by Zadeh (1965)

and has been widely applied to various fields since. Instead of being precise and

clear, many human concepts are fuzzy, e.g., tall vs. short, steep vs. gentle. In classical

theory, an element is either a member or not a member of a set; in fuzzy theory,

membership is not a binary yes-or-no phenomenon, but a graded property. A six-foot­

high man is more likely to be considered tall compared to a five-foot-eight man, yet it

is difficult to define how tall is tall. The effect of fuzziness to human categorization

can be illustrated by the experiment conducted by Labov (1973). Labov drew many

similar objects with varying heights and widths to show a graded variation between

cup and bowl, as in Figure 4.1.
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(a) (b) (c) (d)

Figure 4.1: Cups of various shapes (redrawn after Labov, 1973).

Labov asked his experimental subjects to categorize the four objects at the top

row of Figure 4.1 as cup or bowl. These four objects have the same height while their

ratios of height to width vary. He asked the subjects of this experiment to decide if

these objects were cups or bowls (1) when the objects are neutral, i.e., the objects are

empty, and (2) when there are food inside these objects. The result of categorization

showed that there was no clear boundary between the categories of bowl and cup.
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Some subjects thought item 2 was a cup while others thought it as a bowl. Also, the

boundary is not fixed. Many subjects changed the categorization of bowls and cup

when the contents of these objects changed. This experiment shows the fuzziness of

boundaries between categories and an ad hoc effect on categorization.

The vagueness of categorization identified by Labov's experiment pertains to

the definition of terrain features as well. The ground surface is composed of slope

units with continuous variation, from a very steep cliff to gentle horizontal plain, and

from huge mountains to trivial reliefs on the ground. Such variations are presented,

by mimicking the work of Labov, in the sample plot of Figure 4.2.

(a)

~
(b)

Figure 4.2: (a) Cross profiles of various shapes; (b) cross profiles of various size.

The three profiles in Figure 4.2a show a continuous variation of steepness in

the shape of terrain profiles. The profiles in Figure 4.2b show a variation in the size
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of terrain objects. Shape and size are two apparent factors in defining terrain features.

It is, however, improbable and implausible to derive a set of consistent measurements

that can separate the steep from non-steep for universal applications. Even if cross

profiles are in a same shape, the magnitude of these profiles affects human

interpretation of them. The bigger ones will be more likely to be interpreted as ridges

compared to smaller ones. Besides shape and size, in real-world situations, the

contents of an area or its surrounding landscape will affect people's interpretation of

terrain features. A peak of 50 meters may not be significant in the Rocky Mountains,

yet it could be a significant feature if located an American Midwest plain state. Such

context-oriented effects highlight the ad hoc effect in the definition of terrain features

and makes the delineation even more complicated. Given such vagueness and

uncertainty in extraction, human interpreters have no problem, with some

subjectiveness and arbitrariness, in extracting the desired features for their application.

How to deal with the various requirement of difference application is a challenge

facing the development of automatic extraction method.

4.5 Conclusion

This chapter explored the definitions of ridges and valley lines through the

descriptions in dictionaries and by interviews with domain experts. It is found that the

meanings of ridges/valleys are multi-faceted. Ridge and valley have different

meanings to practitioners with different purposes of extraction. In a cognitive term,

these variations may reflect an ad hoc categorization of terrain features. In another

theory of cognitive science, characteristics that used to describe ridge and valley, e.g.,

shape and size, are often graded and fuzzy and unlikely to serve as a precise measure.

To be useful to the various applications, a satisfactory method of automatic extraction
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should be able to accommodate into its implementation these ad hoc purposes and

flexibility in size and shape. The manual extraction of ridge/valley lines has been an

subjective and ad hoc process and should remain so in automatic extraction. The type

and amount of extracted features should be left as an option to the individual user,

based on his/her purpose of extraction, of automatic methods.

Four groups of automatic methods have been identified in Chapter 3. Each of

these groups of methods carry a unique operational definition of ridge and valley lines.

The interviews and reviews in this chapter identified several characteristics pertaining

to the definition of ridge and valley lines as well. The next four chapters investigate

each group of methods separately. The characteristics embedded in each operational

definition of ridge/valley lines will be examined. The performance of each method

will be tested through implementation on computers with a sample data set. A series

of analyses and experiments will reveal how the difference of definition affects the

results of extraction. The performance of each method is subjected to further

comparison and analyses.
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Chapter 5. Symbolic Approach

5.1 Introduction

This chapter examines the feasibility of a symbolic approach for the automatic

extraction of ridge and valley lines, an approach first proposed by Palmer (1984) and

followed by Frank et al. (1986). The term symbolic was adopted to denote that the

approach explicitly expressed the relations between different terrain features, and used

them to define and extract terrain features automatically. The development of such

approach was made possible largely attributed to the availability of expressive

computer language such as Prolog, which makes explicit representation of rules and

relations much easier compared to other computer languages.

Palmer (1984) adopted the symbolic approach to delineate several terrain

features: peaks, pits, ridges, and streams (termed as valley lines by this author). The

program was written in Prolog and the terrain data was represented in a TIN structure.

It was successful in the sense that it delineated all the designated terrain features in his

simple data set, however the data was well below the complexity of real world terrain.

As mentioned in Chapter 3, an automatic method for the extraction of terrain features

needs to integrate the nature of terrain models into the algorithm development. A

method that can handle a simple data set may fail on a complex data set. Whether

this method is feasible for real world applications will be analyzed and tested.

This chapter first examines the Prolog code to determine the operational

definition of terrain features embedded in the program to determine whether the

operational definition reflects a specific human conceptual model. The nature of a

terrain model is an indispensable factor to the operational definition of terrain features.

As the program was developed to work on a TIN structure of a DTM, a further

50



investigation of TIN is necessary. Through a cross reference of TIN and this program,

a final evaluation of this method will conclude this chapter.

5.2 Analysis of Operational Definition

The terrain data and program in Palmer's paper was written in the Prolog

language which is a computer language suitable for dealing with objects and relations.

A Prolog program is composed of 'facts' and 'rules'. The terrain data will be 'facts'

in this case. In a TIN structure, terrain data can be composed of nodes, segments, and

triangles, or cells in Palmer's terms. For a TIN in Figure 5.1, Palmer specified these

items in Prolog. Some sample facts are listed below.

151__-~--1\----"';"---7J53

158

Figure 5.1: Part of a sample TIN matrix.

node ( 150, 6987, 2152, 1010, [240,238],260).
node ( 151, 8482, 1861, 1240, [250,238,240]).
segment (301, [150,151], [238,240]).
segment (302, [150,152], [260,238]).
cells (238, [150,151,152], [240,250,260], [301,303,302], [1,-.3, -.7]).
cells (250, [151,153,156], [270,280,238], [304,305,303], [-.7,-.3,1]).

Each node fact indicates the node's identifier (ID), x, y, and z coordinates, and the
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cell(s) it belongs to. Each segment fact specifies the segment's ID, the Ids of the two

nodes at the two ends, and the Ids of the cells (triangles) on both sides of the segment.

For a cell, the fact specified its ID, the Ids of the three nodes on the corners, the Ids

of three adjacent triangles, the Ids of the segment on three sides and the flow direction

along each segment. These facts are very informative, including coordinates and

topology of the TIN matrix.

Built upon these facts, Palmer defined 'ridges' and 'streams'. A ridge is

defined as:

cell_flow ( C, S, F) :- cell ( C, _, [S, _, _1 ,_, [F, _, _D.
cell_flow ( C, S, F) :- cell ( C, _, L, S, _1 ,_, L, F, _D.
cell_flow ( C, S, F) :- cell ( C, _, L, _, Sl ,_, L, _, FD.

ridge(S) :- segment (S, _, [CI,C2D,
cell_flow (CI, S, FI), FI >O,!
cell_flow (C2, S, F2), F2 >0.

To understand this definition better, an introduction to the format of Prolog language

will help. Prolog rules are composed of a head and a body, separated by a colon and

dash (:-). The head can be taken as goal to be realized, based on the body at the right

hand side. The body can be composed of logic expressions or sub-goals which need

to be subsequently evaluated. Capital letters in a rule symbolize variables and an

underscore L) means any value. The rules of 'cell_flow' are to determine whether

water would flow in or out of a cell across each of the segments of a cell. Since a

segment can be the first, second, or the third item on the segment list of a cell, it takes

three rules to specify the 'cell_flow'. The rules for a 'ridge' specify that for an item S

to be a ridge, it must be a segment and the flow direction of this segment to its two

adjacent cells must be positive, which can be determined the elevations of four

adjacent nodes.
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By querying a data base of facts with these rules, the user can test whether

another fact is true or not. For example, to check whether segment 303 is a ridge, the

user can key in:

ridge (303).

The Prolog interpreter will work backwards, starting from a goal to evaluate the body

at the right, while the body itself may be goal itself and need more evaluations. To

evaluate 'ridge (303)', the interpreter will evaluate 'segment (303, _, Cl,C2)' first,

which is validated since segment 303 has been defined in the fact in previous part of

program. The evaluation of segment also associates the two cells, 238 and 251, with

segment 303 which are part of the fact. After identifying these two cells, the

interpreter will find the flow directions of segment 303 to cell 238 and to cell 251. If

both directions are positive, which means waterflow would run from the segment into

the cells, then the segment is a ridge. The query can be used to find all the segments

that fulfill the definition of ridge by inquiry with a variable, such as:

ridge (A).

The interpreter will list all the ridges defined in these way through pattern matching.

A further analysis of this operational definition reveals that this method defines

valley and ridge lines based on the shape of the cross profile. If water flows from the

segment to its adjacent triangles, then it is a ridge. If the segment is the highest edge

of the three sides it is assumed water will flow from that segment back into the cell.

If a segment is higher than both its adjacent nodes, the two cells will pose an 'A'
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shape in a cross profile. If the flow directions are from the cells to the segment, then

the segment will be a valley line and there will be a 'V' shape profile instead. To

express this in another way, this definition is based on comparisons between the

segment and its two adjacent nodes, the nodes opposite of the segment. If both

adjacent nodes are lower than the segment, then the segment is a ridge. As long as

the two adjacent nodes are lower, it does not matter how low or how high, it wiII be

classified as a ridge.

This definition does not specify scale and steepness. As discussed in previous

chapters, scale is a major factor in the representation of a terrain feature. A TIN can

represent a terrain surface with varying scale and detail. The definition and criteria in

this method are rather primitive; they rely on TINs to deal with the generalization and

scale problem of terrain features. To apply this method in real world terrain, the

ability to create a TIN that adequately represents ground surface is critical. To pursue

Palmer's method of feature extraction requires an investigation on the creation and

nature of a TIN structure.

Currently, a TIN structure of DTM is not generally available. DEMs of

regular-grid format are almost the sole source to create TINs. The following section

wiII investigate this creation process and evaluate the reliability of TIN.

5.3 Constructing a Triangulated Irregular Network

The extraction techniques of TINs is a topic of interest to many researchers. In

general, the generation of a TIN from regular-grid OEMs involves two steps: first, to

select the nodes as basic elements of networks; secondly, connecting these nodes into

triangles. The following section will investigate the node selection process.
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5.3.1 Selection of Nodes

Two methods to select nodes are widely recognized: the very important points

(VIP) method and hierarchical method. The VIP method selects nodes based on the a

local relief. For any point inside the DEM data, a 3 by 3 window of a DEM is taken

for analysis. The average elevation of the eight neighbors is computed. This average

is compared to the elevation of the center point. A big difference between these two

values suggests a major change with trend of relief occurs at the central point, such as

on the ridge top, valley bed, or slope break. Although a large difference between the

values could also result from an isolated relief feature. There will usually be some

difference between the elevation of the average and that of the center point and users

may specify the number of nodes to be selected based on the ranking of deviation. In

this way, the user can control the size of extracted TIN. The selection may also be

based on a threshold value and all those points with a deviation exceeding the

threshold value may be chosen as nodes.

The second widely accepted method to choose nodes is the hierarchical

method. The method is a 3-dimensional sibling of the Douglas-Peucker algorithm

(Douglas and Peucker, 1973) for line generalization. The Douglas-Peucker algorithm

begins the line generalization by first connecting the two ends of a line to be

generalized as a straight segment. The distance between each selected point on the

original line to the straight segment is calculated and compared. The farthest point

from the segment is chosen as an intermediate end point and connected to the two

ends of the original segment. The segment is therefore split into two segments, as

Figure 5.2 shows.
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Figure 5.2: The Douglas-Peucker algorithm for line generalization.

Within each of these new segments, the same procedure is taken to identify the

farthest point and break the segment into two further divisions. This procedure is

recursively taken until the distance between the farthest point and the correspondent

segment is within a pre-defined tolerance value. Derived from this generalization

method, a node selection procedure for three dimensional planes is being used for the

TIN construction (Lee, 1989, 1991).

When applied to 3-D data, the rectangle area of a regular-grid DEM is

arbitrarily divided into two triangles, by connecting two diagonal corners into a

segment. Within each triangle, the distance between each point of the original DEM

and the plane defined by the three nodes is computed. The point most distant from

the plane is chosen as a new node and the original triangle is split into three triangles.

Within each resultant triangle, the computation of distance and selection of new nodes
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is recursively performed, until the distance between the farthest point and the triangle

is less than the pre-set tolerance value.

5.3.2 Connection of Nodes

After selection, these nodes need to be connected by segments and formed into

triangles. The connection will affect the representation of the terrain. Most methods

will first sort the nodes based on their x,y coordinates and then connect them. The

Delaunay triangulation is a widely used method to connect nodes to form facets. The

It is based on a circular criterion that the circumcircle through the three nodes of any

triangle does not contain any other nodes. If the circumcircle of a triangle contains

other nodes, the triangle will be re-configured to fulfill the circular criterion, as shown

in Figure 5.3.

(a) (b)

Figure 5.3: The circular test of Delaunay triangulation.
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A merit of Delaunay triangulation is that it will maximize the minimum interior angle

of the triangle formed, thus nodes can be linked to their nearby neighbors and form

equiangular triangles (Lee et aI., 1980; De Floriani et ai., 1984; Lee, 1991).

To those nodes selected by the VIP method, there is no underlying relations

between them. The adoption of the Delaunay triangulation to connect those nodes

may be a reasonable solution, compared to no triangulation criterion at all. On the

other hand, the nodes selected from the hierarchical method are associated with the

triangle, and the three nodes of the triangle, from which they are selected. Whether

we can skip these embedded triangles and adopt the same criteria as Delaunay test is

questionable and requires further study.

5.4 Tests

To compare the variation of these methods, a series of tests were conducted. A

1:24,000 DEM of Kaneohe, Oahu produced by USGS was used to build several TINs.

The Kaneohe DEM contains of 256 by 256 pixels, or 65,356 points. For the first test,

the VIP method was used to choose 2000 nodes and 5000 nodes separately. These

nodes are connected into TINs with a Delaunay triangulation. The TINs are shown in

Figure 5.4 and 5.5.
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Figure 5.4: A TIN matrix of 2000 nodes generated by VIP method.

Figure 5.5: A TIN matrix of 5000 nodes generated by VIP method.
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The same data set was used to select nodes based on the hierarchical method.

Two different threshold values of 50 and 80 meters were used for two different tests.

These two tests selected 1578 and 3548 of nodes respectively. The Delaunay

triangulation was used to connect these two sets of nodes, as illustrated in Figures 5.6

and 5.7.

Figure 5.6: A TIN matrix with nodes selected by hierarchical method using a
50 m threshold and connected by Delaunay triangulation.
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Figure 5.7: A similar TIN of Figure 5.6 except using a 80 m threshold.

The same sets of nodes from the hierarchical methods were connected based on the

original triangles that each nodes were chosen from, the result is shown as Figure 5.7

and 5.8 at below.
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Figure 5.8: Same nodes of Figure 5.6 connected by their original triangles.

Figure 5.9: Same nodes of Figure 5.7 connected by their original triangles.
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There are various concerns relating to the preservation of terrain characters,

such as elevation and ground surface pattern. The resultant TINs from these

experiments are very different. It is questionable whether they resemble the original

surface or preserve the elevation. Following section investigates the representativeness

of these various TINs.

5.5 Discussion

The VIP method does not guarantee a fit between resultant TINs and the

original DEM. The nodes selected from the VIP methods are important in a local area

of 3 by 3 window, yet this does not imply they will be critical to global representation

of the DEM. On the other hand, a major relief of a large area may contain no VIP at

local areas. Take the profile in Figure 5.10 as an example.

A

Figure 5.10: A sample cross profile.

Point B is on a major curve of smooth transition. Yet because this transition is

smooth, we cannot identify any significant difference between the point and its

neighbors, therefore no VIP will be detected. On the other hand point A can be

selected as a VIP because it fits the requirement of a VIP although it is not as
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important as point B in representing the whole surface. The VIP method fails to see

these important differences.

The connection of nodes into triangles critically affects the resultant terrain

surface in terms of elevation, slope, and aspect. The four points in Figure 5.11 may

represent a ridge, or a valley, depending on how we connect them.

200

300

300

(a)

200
200

300

L-----~J' 200

300

(b)

Figure 5.11: Different connections of TINs with same nodes.

The connection itself decides the final configuration. The correct connection should

be based on the ground relief. The Delaunay network on VIP points is not based on

actual topography, but on horizontal angles between points. There may be merit in

connecting nodes with nearby neighbors and to building acute triangles. Yet, the sole

reliance on geometric pattern for triangulation is insufficient for the TINs to represent

ground surface. This theoretical deficiency of automatic TIN generation is yet to be

resolved.

The hierarchical process selects nodes based on the distance between points to

their embracing triangle. The resulting triangles should preserve the elevation within
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an error margin. Yet, this guarantee can only be held when nodes are connected based

on the original triangles they were chosen from. The selected nodes are important in

representing the original surface because they are farthest away from the particular

triangle. Without the embracing triangle, they may not be important at all. Take the

line in Figure 5.12 as an example to illustrate this problem. Point A is selected

because it is the farthest point from the segment CD. If we chose A and then did not

plot CD, then the representativeness of A in such segment is questionable.

B c
Figure 5.12: The node selection process in a segment.

Theoretically, those points selected by the Hierarchical method should be linked with

their original triangles. The TINs in the Figure 5.8 and 5.9 resulted from such

connection. They look very awkward and unnatural with many long and obtuse

triangles. This representation may preserve the original elevation to a tolerance level,

yet it distorts the terrain pattern. This method recursively breaks triangles into 3

smaller one's with a new nodes, either lower or higher than the triangle. This new

configuration will be a pyramid by the nature of picking the farthest point.

Consequently, the aspect of these three triangles will be facing away from each other

and the result will be unnatural and unfaithful to the original terrain surface. On the
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other hand, if we use the Delaunay triangulation to connect these nodes, then the role

of these nodes will be of question first of all, let alone whether the connection will

make sense or not.

By the nature of TIN, adjacent triangles tend to often differ in aspect and

slope. Some of these differences may be reflecting variation on the ground surface,

yet not uncommonly, some of these differences are introduced by the generation of the

TIN. The latter case makes the TIN very unnatural and unfaithful in representing

ground patterns. In a recent attempt to derive slope lines from digital terrain data of

vector format, Chou (1992) also found that the TIN he created was unnatural in

representing the earth's surface.

From theoretical analysis, several problems of node selection and connection

have been identified. From implementation and testing we have seen wide

disagreement in the representation of TINs. From the graphic illustrations we also see

the failure of TINs in rendering the original surface. All these show a revision on the

TIN construction method is needed. Ideally, each facet of TIN represents a

homogeneous slope unit on the ground. To represent the ground faithfully, the TIN

should be built upon and reflect the true boundaries of slope units on the ground. To

fulfill this goal, a TIN should be built upon lines of ridges, drainage networks, and

slope breaks (Douglas 1986). These lines delineate the slope units and should serve as

the backbone of the TIN structure. In other word, the locations of valleys, ridges, and

slope breaks are prerequisite data for a faithful representation of terrain in TINs.

5.6 Conclusion

The computer program by Palmer in fact compares the elevations of one

segment with the elevations of its two adjacent nodes, although this comparison is not
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explicit in the program. The use of Prolog with a TIN is the major factor which sets

the Palmer's method apart from other methods for the extraction of terrain features.

The program uses symbolic processing and is compact, but, these characteristics are

not particularly meaningful to analysis of terrain features. They are more concerned

with the accuracy of results, speed of processing, and ease in using the computer

programs. The claimed characteristics of this method do not reflect the user's needs.

In fact, Prolog is slow in computation. The extraction of terrain features will require

enormous amount of computations and is not suitable for Prolog, which is not

designed for calculation. For practical implementation, this method is not appropriate.

The reliability of TINs is a major concern in using this method. On a TIN

structure, the valley and ridge lines will be a subset of the segment in the TIN. A

comparison of the various configuration of segments shows some are very awkward, it

is really doubtful whether the resulting valley and ridge lines will make sense. It has

been suggested that information of ridges, valleys, and slope breaks are needed for a

faithful creation of TINs. To extract these features from TINs does not appear to be

practical so this research will not further pursue the subject. To the contrary, the task

of this current research to find valleys and ridges will be beneficial to the construction

of TINs.

The strength of Prolog in defining objects and relations makes it very suitable

to construct an object-oriented data base of terrain features. For example, a slope unit

can be defined by its adjacent ridge and valley lines. A mountain can be built upon

slope units. These hierarchical features can be organized in Prolog and carry the

inheritance of features. The lines along valley beds and ridge tops are defined at a

low level in this hierarchy. The extraction then requires enormous manipulation of the

raw data of elevation which is not suitable for Prolog to handle. Yet, when
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successfully built, it has a great potential to represent a hierarchical structure of terrain

features in a way which represents a close approximation of reality.
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Chapter 6. Profiling Approach

6.1 Introduction

Geometric properties are essential to human conceptual models of terrain

features. The conceptual model of ridges, for instance, would be that a ridge displays

a convex pattern along its cross profiles. Conversely, a valley is thought of as having

a characteristic concave pattern along its cross profiles. The shape of cross profiles is

so natural and intuitive that many researchers have adopted it to develop operational

definitions for ridges and valleys. On a regular-grid DEM, ridges are defined as a

collection of those points with a convex cross profile and valleys are those points with

a concave cross profile.

The shape of a cross profile is a local phenomenon, i.e., it is a property

pertaining to a small area. Thus, these algorithms extract terrain features with a local

operation, or 'filter' as termed in image processing. The filter will identify a

candidate terrain feature within a small area within the DEM, e.g. a 3 by 3 or 5 by 5

window of DEM cells. This filtering process is conducted sequentially to cover the

whole data area, as shown in Figure 6.1..9t .· .. . .· .. . .· . . ... . .· .

Figure 6.1: A local process.
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When the operation runs through the whole area, points extracted from local

operations are taken collectively as ridges or valleys. Variations exist in defining

'convex profile' and 'concave profile'. Based on the use of DEM data, the profiling

methods can be classified into two groups: discrete approaches and continuous

approaches. The discrete approaches take DEMs as the true elevations and analyze

them directly. The continuous approaches take the DEMs as elevation data with noise.

The latter approaches use DEM data to generate a polynomial to fit the ground surface

and analyzes the polynomial instead of the original DEMs. This author identified

three profiling methods, including two discrete approaches: discrete profiling and

HILO algorithm, and one continuous approach of zero-crossing. In this chapter, the

author will dissect their definitions, describe an implementation of each of these

methods, and evaluate their performance both individually and generally. Each of the

next three sections contains of the analysis of one approach. A discussion section at

the end will conclude the performance of profiling methods.

6.2 Discrete Profiling

A direct comparison of elevations along cross profiles is straightforward in

meaning and implementation. The discrete profiling approach is built upon this

concept. The local operation takes place in a 3 by 3 window of a DEM. Within each

window, the elevations along four straight profiles are compared (Figure 6.2). On any

of the four profiles, if the central point is higher than its two adjacent points, it will be

classified as a ridge point. A central point lower than its two adjacent points on any

of these profiles will be classified as a valley point.
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Figure 6.2: Four profiles in a 3x3 DEM window.

This algorithm has been implemented and tested by the author. The Kaneohe

data set was used for the test. For each data point inside the matrix, its elevation was

compared to that of adjacent points. The extracted ridge points are shown in Figure

6.3 while the extracted valley points are shown at Figure 6.4.
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Figure 6.3: Ridges extracted by the discrete profiling approach.

Figure 6.4: Valleys extracted by the discrete profiling approach.
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In that test, comparisons were performed without a threshold value relief. The

DEM data is composed of integer elevations at a 30 meter spatial resolution. Along

the two orthogonal directions, if the central point is only one meter higher than its two

adjacent neighbors, the slope will be 1130, with the center point still being classified as

a ridge point. Along the two diagonal directions, a one-meter relief will be 1151;

although much gentler, the center will still be classified as a ridge point according to

the definition of this approach. Such definition is rather loose. This loose definition

is the cause of extraneous ridge points scattered all over the area. On the other hand,

even with this loose definition, there are many gaps on the major structures of ridges

or valleys which are supposed to be connected. In a subsequent test, the criterion is

raised so that, to be a ridge or valley point, there must be at least a two meter

difference between the center and its neighbors. The extracted ridge points are in

Figure 6.5.

Figure 6.5: Ridges extracted by a 2 m criterion.
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This stricter criterion reduces the number of ridge points from 11354 to 7626. It

eliminates many scattered points on the low elevation area. However, the main

structures of ridges and valleys become even more fragmented. Changing the criterion

for the local process will not gain overall improvement. This phenomenon shows a

dilemma in keeping the main structures complete while reducing the number of noise

points. More analysis in the following sections will reveal whether this dilemma is

pertinent to profiling approaches generally.

6.3 HILO (HighestILowest) Algorithm

The HILO algorithm (Peucker and Douglas, 1975) takes a 2 by 2 window of a

DEM matrix as the working unit. The local operation marks the highest point of the 2

by 2 window. After the operation runs through the whole area moving cell by cell,

points that have not been marked are considered valley points. In a similar process of

marking the lowest point of the 2 by 2 window, points that remain un-marked are

ridge points.

The meaning of this algorithm is not apparent and is susceptible to

misunderstanding; further dissection is required in order to comprehend its meaning.

For doing that, a 3 by 3 window of DEM with focus on the central point is

considered, as shown in Figure 6.6.
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Figure 6.6: A central point within four 2x2 windows.

The central point is involved with four runs of local operations each taking place in

the 2 by 2 window at four comers: upper-left, upper-right, lower-left, and lower-right.

According to the algorithm, a ridge point must not be the lowest point in each of these

four sub-windows, i.e. it must be higher than at least one of the other three points at

each 2 by 2 window. This algorithm is similar to the previous discrete profiling

approach in terms of the comparison of elevations between neighboring points.

However, the discrete profiling method deals with clearly defined profiles while this

algorithm does not. Figure 6.7 illustrates several examples of 3x3 window in which

the central point is higher than its adjacent points along the cross profile and will be

classified as a ridge point.
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•
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•

Figure 6.7: Configurations for sample ridge points.

It should be mentioned that there are configurations that are similar to those

shown in Figure 6.7 and present a convex shape, yet do not meet the criteria of the

HILO algorithm as ridges. The center points of these 3x3 windows may be the lowest

point in one of the four 2x2 windows; therefore, they are not extracted as ridge points

based on the HILO algorithm. These configurations are illustrated in Figure 6.8.

•
•
•

Figure 6.8: Configurations for non-ridge points.

Comparing the conditions in both Figure 6.7 and Figure 6.8, the left most

configurations of both figures are similar except one is along an orthogonal profile

while the other is along a diagonal profile. These two configurations show how the

direction of a cross profile can affect the resulting ridge and valley lines. On DEM

data, the directions of ridges and valleys are various and unpredictable. As Figure 6.9

presents, the true ridge on the ground may be along any direction or even between

points.
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· .

Figure 6.9: A possible ridge line within aDEM.

Using the HILO algorithm, ridge and valley lines along diagonal directions are less

likely to be extracted compared to those with a horizontal or vertical direction. This

directional discrimination is rather arbitrary and not appropriate.

Compared to the discrete profiling algorithm, the HILO algorithm applies a

stricter criterion in defining 'convex' and 'concave'. In a further investigation, the

HILO algorithm has been implemented by the author to extract both ridge points and

valleys points for the Kaneohe data set. Figure 6.10 presents the extracted ridge

points while figure 6.11 shows the extracted valley points.
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Figure 6.10: Ridges extracted by the HILO algorithm.
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Figure 6,11: Valleys extracted by the HILO algorithm.
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This approach extracts many fewer points compared to the aforementioned

discrete profiling approach. As the result shows, the main structures are more

fragmented than those ridges shown in Figure 6.3. In a further experiment, the

criterion of local operation was loosened from 'higher' than at least one point in each

2 by 2 window to 'not lower' than at least one point in each 2 by 2 window. The

extracted ridge points are shown in the following figure.

Figure 6.12: Ridges extracted by a loosened constraint.

This criterion extracts many more points and makes the main structure more complete

at the cost of including more scattered points and those on a flat area. Again, this test

shows that a simple change in the local operation will not result in an overall

improvement in extracting features. The dilemma between completeness of main

structures and number of noise points pertains to both discrete approaches tested here.

In the following section, a continuous approach will be investigated.
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6.4 Zero-Crossing of a Facet-Model

Zero-crossing is widely used for edge detection in computer graphics and

image processing. A zero-cross occurs when the plot of a mathematical function curve

passes the zero line. A zero-crossing may occur to any mathematical function,

although the meaning of zero-crossing varies with the function. For example, for a

function representing elevation data, the zero-crossing of the first derivative indicates

areas where slope is zero. The zero-crossing of the second derivative for the same

function indicates that slope is constant.

Haralick (1983) introduced a facet model of zero-crossing to delineate valleys

and ridges from remotely sensed imagery. Smith et al. (1990) applied this model to

identify the same features from OEM data. This method defines a center point as

either a ridge or valley point if it is close enough to a zero-crossing along the steepest

direction of the embracing local window. Whether the center is a ridge or a valley

point can be checked by the rate of slope change. Conceptually, this approach stilI

uses the shape of the cross profile as the only criteria to detect feature points.

Nevertheless, this method is technically much more intricate than the two discrete

methods described previously. An introduction to the zero-crossing of this facet­

method is provided below.

The mathematical equations listed here are to be applied to a 5 by 5 window,

the size used by both Haralick and Smith et al. In practice, the filtering process and

the detection of zero-crossing can be performed in various sizes. For each 5 by 5

window of OEM data, the cubic polynomial in equation (1) is created to fit the

original OEM data.
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f(r,c)= k, + k2r + k3c + k4r + ksrc + k6c
2 + k7~ + ksr

2c + ~rc2 + k lOc
3 (1)

-2::; r ~ 2

-2::; c ~ 2

Each coefficient of this equation is unique and needs to be determined from pre­

defined fixed masks and the DEM data of the current window. The mask for K1, for

example, is listed below.

-13 2

2 17

7 22

2 17

-13 2

7

22

27

22

7

2

17
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17

2

-13

2

7

2

-13

For a 5 by 5 window of elevation eij ,

After creating these coefficients, the steepest slope direction, a, is obtained from the

solution of which the second directional derivative of equation (1) equals zero. Thus,
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The value of a with a minimum slope differs from that with a maximum slope in rrJ2.

From that solution Equation (1) can be converted into a format of polar coordinates by

following substitution:

r = p sina and c = p cosa

thus, Equation (1) changes to:

f(p) = Ap3 + Bp2 +Cp + RI (2)

where A=(k7sin
3a + kssin2acosa + ~cos2sina + klOcos3a)

B=(k4sin
2a + k.sinccoso + ~cos2a)

p= the distance from the center at the direction of a

Now, the elevation along the steepest direction is a function of p. The zero-crossing

will occur where the first derivative of equation (2) is zero, i.e.

f'(p) = 3Ap2 + 2Bp + C = 0 (3)

By solving Equation (3), the zero-crossing will occur at:
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If P is small enough, i.e., compared to a pre-defined threshold value, the central point

will be classified as a valley or ridge, depending on the sign of the second derivative.

If the second derivative is positive, the central point is extracted as a valley point,

otherwise a ridge point.

A copy of the source code developed by Smith et al. (1990) has been received

and adapted in this current research. This program has been tested for the Kaneohe

data. The extracted ridge and valley points are shown as below.

Figure 6.13: Ridges extracted by a zero-crossing method.
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Figure 6.14: Valleys extracted by a zero-crossing method.

By visually comparing these two figures with those figures created from

discrete approaches, there is no obviously apparent advantage of this computation­

intensive approach. There are still many gaps on the main structures of ridges and

valleys. The local noise is still abundant. Besides having the same problem of

discontinuity and noise as discrete approaches do, the zero-crossing approach

implemented here introduced another problem. The extracted valleys from the zero­

crossing method contain many false points, points that do not present a convex or

concave pattern in the original DEMs. The former problems of discontinuity and

noise are related to the filter size of finding zero-crossing. The later problem is

related to the mathematical nature of fitting original DEMs with cubic polynomials.

Further investigation of these two aspects of problems follow.

The problems of noise and discontinuity pertain to zero-crossing approaches in

general. The usage of zero-crossing techniques normally require a trial-and-error
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process for determining the filter size and threshold value. If a larger filter is used,

the extracted edges will be more continuous, only constituting major structures, thus

removing the short features and scattered points. The disadvantage of using a large

filter is that it will generalize the major linear features on the data. To show the

relations between filter size and the resulting features, the 'i.zc' function, for zero­

crossing detection, available in the GRASS 4.0 system is adopted for several tests.

Figure 6.15 shows the input image for zero-crossing, a watershed map of the Kaneohe

area. Each watershed is homogeneous with a unique number, so the edges between

watersheds are clear. The 'i.zc' program was executed several times to find these

edges with different filter size and threshold values. Figure 6.16 shows the extracted

edges using a filter size of 3 by 3. Figure 6.17 shows results using a filter size 9 by

9. A threshold value of 10 was used by all these figures.

Figure 6.15: An image for tests of zero-crossing.
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Figure 6.16: Zero-crossing by a 3x3 filter.

Figure 6.17: Zero-crossing by a 9x9 filter.
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As these results show, the filter size greatly affects the detail of the results. With a 3

by 3 filter, the resulting edges are most complete. The 9 by 9 filter extracted many

fewer edges, as Figure 6.17 shows, and the resulting edges were smoother than those

extracted from a 3 by 3 filter. In this test, the 3 by 3 filter is better than filters of

other sizes, due to the fact that the watershed image is composed of homogenous

polygons thus the edges are clear. For an image with graded variation on its pixel

values, the selection of filter size will be very difficult. Partly to investigate the filter

size problem further, but also to test the feasibility of the concept that ridges are

boundaries of various slope units, more experiments with zero-crossing were

conducted using the 'i.zc' command of GRASS4.0.

The slope aspect of Kaneohe is used as source image for finding zero-crossing,

as shown in Figure 6.18.

Figure 6.18: An aspect map of Kaneohe OEM.
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The values in the aspect map, ranging from 0 to 25, indicate the slope aspect of this

area. The value 0 means no data, value 25 means flat areas, each value from I to 24

represents a specific aspect category at a 15-degree interval. As shown in Figure 6.18,

the boundaries of slope suggest the locations of many ridges, yet it is questionable

whether we can delineate the designated boundaries as ridge lines. In a sequence of

experiments, filter sizes of 3, 9 , and 15 were used respectively for finding zero­

crossings. The extracted edges are shown below.

Figure 6.19: Zero-crossing by a 3x3 filter.
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Figure 6.20: Zero-crossing by a 9x9 filter.

Figure 6.21: Zero-crossing by a 15x15 filter.
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These figures show that various sizes of filters extract edges at different levels of

detail. The 3 by 3 filter extracts many small features and misses the major structures.

The 15 by 15 filter delineates the boundaries between major blocks of slope units. If

edges of various level are designated, it is necessary to run the computer program

several times with different filter size to find zero-crossings and integrate them

together. These processes involve much trial-and-error, which are tedious and difficult

to automate. For the development of automatic extraction of terrain features, these

complicated zero-crossing techniques do not provide any clear advantages to

compensate for their being tedious and expensive in computation.

The fitting process of creating a cubic polynomial for each 5 by 5 window

raises some concern. An examination of Figure 6.14, showing the extracted valley

points by the zero-crossing approach, finds a series of 'valley points' along the coastal

line at the upper right corner. These points suggest that there is a continuous concave

pattern along that area. However, on the original DEMs, there is no such pattern.

Apparently, the fitting process of the facet model introduces inflections which produce

fictitious valley points. Such false inflections are common in a cubic polynomial. For

a further investigation on such inflections, several tests were conducted using S-plus, a

computer package for interactive data analysis and display. This author input several

5x5 matrices into S-plus, implementing the filtering function inside S-plus. The

original matrices and the resulting surface from filtering are shown in Figure 6.22.
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(a)

(b)

Figure 6.22: An illustration of fitting problem of a facet model, (a) original surfaces;
(b) resulting surface by the facet model.

These tests show some possible inflections introduced by the filtering process. In a

continuous surface, these inflections may be part of the surface. For the representation

of ground surface, however, these artificial inflections are rather unnatural and

misleading for the subsequent analysis. If the filtering results fail to reflect the true

characteristics of the original surface, the result of zero-crossing will be questionable.

In conclusion, the zero-crossing method is complicated and problematic. Two

problems have been identified - filter size and fallacious inflection. There is no

apparent resolution to these concerns. Furthermore, the results from zero-crossing is

not any better than results from discrete approaches. The approaches such as zero-

crossing continuous may be theoretically intriguing, but not practical for the extraction

of ridge and valley lines.
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6.5 Conclusion

This chapter analyzed and tested three profiling algorithms for the extraction of

terrain features. At a micro level, there are differences between feature points

extracted by these three approaches. Since each of these approaches adopt different

criteria in defining features, points extracted by one approach do not necessarily

appear in the results from other approaches. In general, the results from all

approaches were very similar: disconnected and noisy. This similarity resulted from

the adoption of a local process to terrain feature extraction.

Conceptually, the geometric pattern of cross profiles is sufficient to define

ridges and valleys. Throughout the experiments in this chapter, the author concluded

that geometric patterning itself is both difficult to implement and insufficient to define

terrain features. Geometric properties are very sensitive to the data resolution.

Interpretation of shape is closely affected by the scale of area examined and the

resolution of the terrain model. To be able to extract terrain features of various

magnitude, the criteria used for defining shape should be flexible enough to deal with

various sizes. The algorithms tested in this chapter all adopt a fixed scale to interpret

the terrain data and consequently miss features at other scales. In the discussion of

the tracing process, it also becomes apparent that shape alone does not completely

define terrain features. Elevation, length, and spatial location of an entity with

continuous pattern of 'convex' or 'concave' affect whether or not such entity will be

classified as a given terrain feature.

The profiling approaches provide a general location and pattern of the ridges

and valleys. Yet, before further development to fix the continuity and noise problem,

they are not suitable for practical purposes. Technically, finding the convex pattern is

not as easy as it appears to be. Conceptually, the geometric pattern of cross-profile is
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not critical enough to separate features and non-features. To make these profiling

approaches useful, further research is needed. Smith et al. (1990) suggested a tracing

process to construct a connected drainage network. Several other tracing approaches

were also developed by different research groups. Next chapter will investigate the

performance of these tracing approaches.
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Chapter 7. Tracing Approach

7.1 Introduction

The preceding chapter investigated several profiling approaches. It is

concluded that the resulting features from those profiling approaches are discontinuous

and contain too much noise, and thus are hardly useful for practical applications. The

discontinuity and noise in these resulting features are inherent from the adoption of

local and segmented operations on DEMs. These undesirable characteristics are

difficult to fix by improving the local operations; therefore, alternative approaches are

sought. Riazanoff et al. (1988) introduced three algorithms using a feature tracing

procedure for the extraction of terrain features. Smith et al. (1990) also adopted a

tracing process to fix the segmented features resulting from a zero-crossing approach.

In distinction to the segmentation of profiling approaches, tracing approaches will

delineate terrain features continuously. As a result, the extracted ridges/valleys are

supposed to be better connected with fewer short and scattered features.

In fact, tracing is not new. Manual delineation of valleys and ridges is a

tracing process. To extract a ridge line, for instance, human interpreters may first

identify a peak as a starting point. From a peak, they delineate the ridge line by

tracing along the direction displaying a convex cross profile until there is no more

convex pattern along the profiles. The manual extraction of valleys follows a similar

procedure. Although the automatic tracing approaches are carried out in computers

and deal with DEMs, their problem-solving procedure is similar to that of the manual

process. These automatic tracing methods consist of two steps: 1) the identification

of starting points; and 2) the tracing along DEMs based on a progress constraint that

defines the direction of progressing. The starting points are normally selected from
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one pass of filtering of the whole DEM matrix and are stored in a list. With a

computer, rather than drawing a line, the tracing process can be thought of as a search

among the adjacent neighbors conducted at the end of a current feature line. The

constraint of each tracing approach will determine which neighbor(s) should be added

to the current features. The newly selected point(s) will in turn become an end point

for further tracing. The tracing process will continue until 1) the traced line reaches

the border of the DEM matrix, or 2) the traced line meets another existing feature line;

or 3) no adjacent points of the current end point meet the criteria of progress

constraint. There are various ways of selecting starting points and setting progress

constraints, which distinguish tracing approaches from each other.

This chapter investigates the performance of automatic tracing approaches.

Besides providing potential alternatives for terrain feature extraction, this investigation

is intriguing for two reasons. Firstly, the automatic tracing approaches are close

renderings of the manual extraction of terrain features. This investigation provides

comparisons between extraction by computers and by humans, as well as between

characteristics of DEMs and contour maps. Such comparisons will lead to a better

understanding of the characteristics of DEMs and computer methods, and better

insights for further developments. Secondly, after reviewing the previous work, it is

anticipated that the resulting features from these automatic tracing approaches will be

very different. Riazanoff et al. (1988) linked the different approaches with various

applications, e.g., the streaming approach is suitable for hydrological research. Yet, to

this author the adequacy of such linkage deserves further scrutiny. The difference of

results may reveal a variation in the definition of terrain features; on the other hand, it

may suggest a fallacy embedded in the implementation or the nature of tracing

approaches. Only after identifying the reasons and sources of difference, can one
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determine whether such linkage is suitable and desirable. The next section introduces

the algorithms of tracing approaches. After that, a detailed analysis and investigation

will follow.

7.2 Procedures of Tracing Approach

The three tracing algorithms introduced by Riazanoff et al. (1988) are the

streaming algorithm, the walker algorithm, and the main saddle points algorithm. In

common, these algorithms treat valleys and ridges as the duals of each other. By

inverting the criteria of starting points or progress constraints, e.g., descending rather

than ascending, the same algorithms for the extraction of ridges are applicable for the

extraction of valleys. These three algorithms are described below.

- The streaming algorithm

The tracing of the streaming approach starts from a saddle point.

Conceptually, a saddle point is a low point on a ridge, or the intersection of ridges and

valleys. On a contour map, such saddle points are normally surrounded by two pairs

of contour lines at two orthogonal directions, as shown in Figure 7.1.
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Figure 7.1: An illustration of a saddle point.

Applying this concept into DEMs, Riazanoff et al. defined the saddle point as a point

with at least two groups of contiguous neighboring points lower than it and two

groups of contiguous neighbors higher than it. Figure 7.2 shows several samples of

3x3 DEM window which are considered as saddle points, based on this definition.

+ - + + - - - +- +: higher than center

+ P + + P + + P + -: lower than center

- +- - - + - +- P: center point

Figure 7.2: Samples of saddle points defined by Riazanoff et al.

Starting from a saddle point, to extract a ridge line, the progress constraint of

this algorithm is to 'climb along the steepest direction'. The same set of saddle points
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is applicable for the extraction of valley lines with a progress constraint to 'descend

along the steepest direction'.

- The walker algorithm

For extracting ridges, this algorithm starts from a local maximum: a point

higher than all its neighbors. The progress constraint is to 'trace along those points

posing a convex pattern along their four profiles less the one from the existing

feature'. The extraction of valleys starts from local minima, or pits, and traces along

those points carrying a concave cross profile.

- The main saddle algorithm

The selected points of this algorithm are 'main saddle points', as named by

Riazanoff et al. A main saddle point is a saddle point that is not on the network

extracted from the aforementioned Walker algorithm. The progress constraint of this

approach is, identical with that of the Streaming algorithm, to climb along the steepest

direction for ridges and to descend along the steepest direction for valleys.

Besides Riazanoff et al., Smith et al. (1990) also derived a tracing approach as

a follow-up operation of their zero-crossing approach. Working on the resulting

features from a zero-crossing approach, their tracing process first selects all those

features that are longer than a pre-defined threshold length. Subsequently, the highest

point of each of these selected features is identified and stored into a list. The list is

then sorted according either to the elevation of each point or to the length of the

feature from which each point was selected. These points are the starting ones for the

tracing process. The progress constraint is to trace along the lowest neighbor, with
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distance adjusted, until the current feature reaches a pit, border, or already extracted

feature.

Although only four tracing approaches were described above, more methods

can be derived from these four. As a generalization, those four approaches employed

three types of starting points with two types of progress constraints. By different

combinations of those alternatives of starting points and progress constraints, six

different tracing approaches should be available, as shown below.

Starting points:

Saddle points

Local Extremes

Highest/lowest from
existing features

Progress constraints:

Highest/lowest neighbors

Points with convex pattern

By adding a new type of starting point or progress constraint, the number of automatic

tracing algorithms may even be greater. Instead of trying to test these tracing

algorithms one by one, this research takes a more fundamental approach by

investigating two components of the tracing algorithms: selection of starting points

and progress constraint. The performance of each tracing method relies on the

feasibility and adequacy of the two steps of tracing -point selection and tracing.

7.3 Analysis and Experiments

There are theoretical and technical problems related to these two tasks. From a

theoretical aspect, this author is concerned with whether the starting points and

progress constraints are sufficient and necessary for the delineation of valley and ridge
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lines. From the technical aspect, the concern is whether the implementation of these

algorithms can extract those designated points and terrain features. The following

section will first investigate the selection of starting points and progress constraints

separately. Thereafter, a general evaluation of tracing approaches will be provided.

7.3.1 Selection of Starting Points

The selection of starting points critically affects how many and where the

extracting features will be. Each selected starting point indicates the existence and

beginning of a feature line. The starting points designated by Riazanoff et al. are

saddle points, peaks, and pits. These points are terrain features important to the study

and representation of terrain. Similar to the extraction of valley and ridge lines, the

extraction of these points may be problematic, involving the complexity in their

meanings and scales. This investigation takes a practical and experimental approach to

investigate the extraction of these points. A sequence of tests has been conducted to

extract the saddle points, local maximum, and local minimum for the Kaneohe DEM.

The saddle points were extracted using the definition by Riazanoff et al. The

extracted points are given in Figure 7.3.
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Figure 7.3: Saddle points extracted by the definition of Riazanoff et at.

From a different perspective, saddle points are thought of as the intersections of ridges

and heads of valleys. Thus, in a further test, saddle points were defined as those that

were extracted as both a ridge point and a valley point by the profiling method. The

result is shown in Figure 7.4.
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Figure 7.4: Saddle points extracted as intersections of ridges and valleys.
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The preceding method extracted many fewer points compared to those extracted by the

definition of Riazanoff et al (1988). Apparently, by comparing these two different

results, there is no single answer to the selection of saddle points. Another concern of

this result is that some saddle points are located in areas where ridge valley lines are

normally not expected, i.e., flat plains.

The meaning of local peaks and pits are more straightforward, since a peak is

higher than all its neighbors. By the same token, a pit is lower than all its neighbors.

These characteristics were used as the working definitions for the following extraction

of peaks and pits. The resulting points are shown in Figure 7.5 and Figure 7.6

respectively.
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Figure 7.5: Local maxima.
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Figure 7.6: Local minima.

By referring these points to elevation, it is apparent that not all these points of

local extremes are desirable for the extraction of valley and ridge lines. For example,

many 'peaks' are in the low elevation and flat areas where one normally does not

delineate ridges, On the other hand, by observing the elevation image, peaks exist in

areas where the extraction did not extract even one. These problems of missing points

and inclusion of undesired points are caused by the same reasons pertaining to the

discontinuity and noise of the profiling methods, Similar to the local processes of

profiling methods, the extraction of these points was confined to a small area, a 3 by 3

window of DEM matrix here, Thus, these extraction approaches fail to distinguish

significant peaks from those unintended points of minor relief. The discrete nature

and integer elevation of DEMs also cause problems. A peak on the ground may not

meet the criterion of being higher than all its neighbors on a DEM, due to the

truncation of integer elevation, In other words, the true peak is situated between

points of a DEM and thus fails to show its height, as following figure shows.
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Figure 7.7: An illustration of missing peaks on aDEM.

The starting points selected by Smith et al. are not apparent nor clearly-defined

on the ground surface. Rather, they vary with the threshold value set by the user.

This process of point selection has been implemented and tested on the Kaneohe

DEM. The resulting points are shown in Figure 7.8.
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Figure 7.8: Starting points selected by Smith et al.'s approach.

By viewing the distribution of these resulting points, this author noticed some

problems inherent in this process. Firstly, the length of a feature alone may not be

sufficient for the selection of starting points. For example, a feature line located at a

high elevation is very likely to indicate a start of a valley line, compared to those

located on low and flat areas, Secondly, this extraction process will result in fewer

points for well-connected features while extracting many more points from the

fragmented features, given that each feature is longer than the threshold value. The

consequence is that some valley lines may miss their starting points and thus be

excluded from the subsequent tracing stage while many feature lines may be extracted

from the fragmented features.

Previous tests and analyses reveal the difficulty and ambiguity in selecting the

starting points. These problems undermine the feasibility of the tracing methods in

general.
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7.3.2 Progress Constraints

Two types of progress constraints have been identified: tracing along the

steepest direction and tracing along points with convex/concave cross profiles. In an

idealized condition, either of these constraints should be sufficient to delineate a ridge

and valley lines. For example, starting from a saddle point, a typical ridge should be

along the highest elevation, which should also pose a convex pattern along its cross

profile, with each small step of movement. However, it is questionable whether these

two constraints are generally applicable to the extraction of ridges/valleys of various

types and scales.

The tracing approach, based on the criterion of cross profile, will only extract

those points with a concave/convex cross profile. The resulting features from this

tracing approach is therefore a subset of those extracted by the discrete profiling

method that was discussed in the previous chapter. This tracing approach is in fact the

discrete profiling approach with an extra clearance stage. The tracing process starts

from a selected point, thus line features containing no starting points will not be

traced. This criterion will remove many short and scattered features from the result.

However, the major feature lines will remain disconnected since this tracing method

terminates when there is no neighbor of current end point displaying a convex/concave

profile. Thus, the progress constraint based on cross profile cannot extract a

connected and complete network of ridge and valley.

Tracing along the steepest direction, or lowest/highest neighbors adjusted with

distance, is a rather loose constraint. Most points on a DEM have lowest and highest

neighbors. Therefore, this progress constraint will result in a connected network. A

problem with this constraint is that the highest/lowest neighbor may not necessarily be
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qualified as a ridge or a valley point. This problem can be better illustrated by a

sample contour map and its corresponding sample DEM, as shown in Figure 7.9.
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Figure 7.9: Highest points are not necessary along ridges.

Moving from point A to point B, on both the contour map and the DEM, the tracing

along the steepest slope direction delineates a ridge line. From B to C, the tracing

process has no problem in climbing along the steepest direction. Yet, the delineated

line is not normally thought of as a ridge line; it does not pose any convex/concave

pattern along its profile. Here, tracing along the highest direction does not result in a

ridge line, but only the slope line passing point B. Unfortunately, this type of

situation is not rare. Fallacy can occur when a ridge merges into a homogeneous

slope unit or the tracing process derails from the true paths of ridges. The progress
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constraint of steepest direction overlooks these conditions and likely to extract false

terrain features.

7.3.3 Integration of Whole Process

After identifying the potential flaws and problems in each of the two steps of

tracing, this author is curious about the performance of these tracing procedures. As

mentioned in previous section, the progress constraint of cross profile will result in

disconnected features no matter what type of starting points one uses. Thus, no

experiment will be conducted to test those tracing approaches adopting cross profile as

progress constraint. Instead, the progress constraint of tracing along the lowest/highest

neighbor will be tested with various types of starting points.

In the first test, the local maxima of Kaneohe DEM were selected as starting

points for tracing. For each starting point, the computer will trace along highest

neighbors at the two opposite directions. This approach reflects the concept that if one

is standing on top of a peak and moves along the least relief, one will remain on a

ridge. The resulting ridge lines are shown in Figure 7.10.
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Figure 7.10: Ridges extracted by tracing started from peaks.

In the second test, the saddle points of Kaneohe DEM were selected as starting

points. By tracing along the highest neighbors, this test aimed at delineating ridges.

The resulting ridges are shown in Figure 7.11.
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Figure 7.11: Ridges extracted by tracing started from saddle points.

By observing these two results, several problems have been found. First, these

two results are very different. Second, the resulting features present loops which are

not common in the real world terrain and do not pertain to the ground surface of this

test area. Several resulting ridge lines are straight. Through cross-referencing with

the DEM data, many of these lines are slope lines rather than ridges. These various

problems confirm the concern of early discussion on the points selection and tracing

processes.

7.4 Discussion

The results from tracing approaches are very different from those from

profiling and zero-crossing approaches. In general, these tracing approaches result in a

better connected pattern of features with many fewer noise and short features.

Compared to the results by profiling methods, the tracing approaches show a progress
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toward a better rendering of manual extraction. On the other hand, as shown in the

resulting features obtained by this author, and those results by Riazanoff et al.,

different tracing approaches extract terrain features very differently, which is reflected

in the amounts and locations of the extracted features. Such difference has been

addressed by Riazanoff et al. who linked the difference with various applications.

Such linkage, without first identifying the source of difference, is questionable.

Each of these tracing approaches requires a list of starting points. The

adoption of certain types of starting points, for which many alternatives exist, is a

major source of difference. However, not every ridge and valley line contains these

various types of starting points. Peaks, for example, are one option of starting points

for the extraction of a ridge, although from a conceptual aspect as well as a technical

aspect, not every ridge contains a peak point. Conceptually, the top of a ridge may be

somewhat flat so one does not identify a peak. This is particularly true when one is

only dealing with a small part of a relatively large network of ridges. Technically, as

mentioned above, the peaks on the ground surface are not necessarily presented in the

DEMs, because of the truncation and discrete character of DEMs. In either case, the

delineation of ridges starting from peaks will result in the loss of ridge lines.

Similarly, there are ridge and valley lines that do not contain saddle points either

conceptually or technically. The tracing approaches that start from saddle points will

miss some other ridges too. Using the saddle points or local extreme as starting points

will introduce bias in identifying certain types of ridge and valley lines. A ridge line

without a local peak will not be extracted by the streaming algorithm. Similarly, a

ridge line without a saddle point will not be extracted by the walker algorithm. Such

bias is arbitrary and not justified. It reflects the erroneous aspect and incompleteness

of these approaches. Furthermore, on a discrete data set, if one descends along the
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direction of least slope, stops at one point, and then climbs back along the highest

neighbors, the two paths one obtains may not be identical. In other words, 'ascending'

and 'descending' are not directly reversible in the tracing process. Consequently,

tracing in the OEMs with different starting points is very likely to result in different

terrain features. This author thinks such difference is more a weakness than a

desirable characteristic.

The manual tracing approach usually results in connected and complete

networks, yet the same procedure implemented on computers with DEMs may not

produce a satisfactory result. The difference between manual and automatic

approaches can be attributed to two factors. First, the representation of terrain is

continuous on a contour map while discrete on a DEM. When searching for the

steepest direction, for instance, it is always possible to follow the true steepest

direction on a contour map. However, the same tracing process on DEMs is limited to

a fixed number of directions, mostly eight, and is very likely to lose the track of true

ridge. Second, a human interpreter can flexibly adjust the size of working area on

contour maps during the delineation process while most automatic methods are not as

flexible. A ridge network is normally composed of ridges of various magnitude and

slope. Human interpreters can adjust their criteria to deal with ambiguity or

uncertainty arising from these various scales and shapes. In comparison, most of the

developed automatic tracing procedures work on a fixed size of DEM matrix with

rigid criteria. Flexibility is needed to make the automatic tracing approaches more

successful.

The performance of profiling approaches and tracing approaches are

complementary with each other in two respects. First, the profiling approach generally

identifies most of the terrain features with many short noisy segments. The tracing
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approaches, on the other hand, produce fewer but continuous points of terrain features.

Second, the performance of profiling methods is more consistent and reveals the

general location of the terrain features, while the tracing approaches are less reliable in

terms of the accuracy of the resulting features. A local error of DEM data or a minor

relief on the ground may cause serious misleading effects in the tracing results. It is

common for DEMs to contain minor relief in a local area, either due to error of DEMs

data or true minor relief on the ground. For a profiling method, local relief will affect

only the extraction of resulting features around a small area without causing major

change. For the tracing process, however, the local relief may derail the search and

consequently change the delineation. Therefore, the tracing process is very sensitive

to minor relief of the local topography.

Both profiling and tracing approaches have their advantages and drawbacks,

while their performance is complementary to each other. For future development, an

integration of these two groups of methods should be promising. The integrated

approach should make use of the advantages of each group of methods. It may start

with a profiling approach to identify all the potential candidates of ridge or valley

lines and be followed by a tracing process to further process the features resulted from

the profiling process. In terms of adoption of starting points, the tracing process

should trace all segments with several factors of concern. The progress constraints

should include the lengths of segments, their elevation and slope, and their adjacency

to major features lines. The proposed integration of profiling approach and tracing

approach is only an outline. Substantial progress in spatial reasoning is needed before

a possible implementation of the proposed method.

This current research has investigated three groups of methods for the

extraction of ridge and valley lines. There is one more group of methods based on a
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hydrological perspective. The next chapter will investigate the potential of this group

of methods.
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Chapter 8. Hydrological Approach

8.1 Introduction

The development of the hydrological approach, initially concerned with the

extraction of stream channels, was based on the fact that channels are locations where

overland flows accumulate. This approach adopts the regular-grid structure of DEMs

as the working terrain model. By tracing the direction of overland flow and

computing the accumulation of overland flow of each cell, the stream channels of an

area can be extracted. Although this method does not explicitly adopt the property of

shape in the definition, implicitly, shape is still a property pertaining to channels

extracted from this method. The flow direction of each cell is determined by its slope

and aspect which are characteristics of shape. With a screening based on drainage

accumulation, eventually those cells with accumulation exceeding a threshold will be

locations where overland flows of two opposite slopes emerge. So this definition of

stream channel reflects the conceptual model that stream channels are the intersection

of two opposite slopes and that stream channels often carry a V shape profile.

The hydrological approach requires intensive computation and would not be

feasible without the computing power of modem computers. In fact, Smith et al.

e1990) commented that this method was slow because of the enormous computation

required. However, physical computational limitations are decreasing. The huge

computation no longer presents a constraint to this approach.

The hydrological method has been implemented in the GRASS software

version 3.1 and version 4.0. Each version provides a function to delineate drainage

networks and watersheds. These extraction functions were developed by different
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authors and their performance and user interface are different as well. The following

section introduces the built-in procedures of these functions of channels extraction.

8.2 Procedure of Stream Extraction in GRASS

The stream extraction function in version 3.1 is written by Lammers and Band

(1990) and named 'watershed'. This program involves six steps. Each step requires

users to respond to various prompts. The functions and purposes of these six steps are

explained below.

1). Filtering the elevation data

This process smoothes the elevation data with a special filter. The filtering is

done in a weighted average of 3 by 3 window of DEM. The purpose of this process

is to reduce the number of pits which will be identified in the next step.

2). Locating the pits

Pits are points with an elevation lower than all their neighbors. Those overland

flows which run into a pit will not be able to find an outlet and cause a termination of

stream flow. Although some pits may be part of the terrain relief which form a lake,

most of the pits found in a DEM will be due to data resolution and errors and should

be fixed. In order to avoid the termination of a stream channel, it is necessary to

identify pits and treat them with special care. When water flows into these pits, the

elevation of the lowest neighbor is used instead, so that the water flow can find an

outlet and continue.
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3). Calculating drainage accumulation/outlining watershed

This step is to calculate the drainage accumulation values from elevation data.

Drainage accumulation is designated by assigning each cell a value equivalent to the

number of cells which drain to it. The example in Figure 8.1 shows the relationship

between elevation and accumulation value.

257 246 233 228 240 258 276 298 307 309 306 307 310 309 304 299
259 241 225 223 236 253 269 288 295 293 287 287 290 291 289 287
260 236 216 216 232 249 263 279 283 278 269 267 269 272 275 274
252 228 212 215 229 244 256 266 268 262 253 251 253 257 262 262
236 219 210 216 227 239 246 251 251 246 239 238 241 246 251 252
219 209 209 217 226 234 237 237 233 230 226 225 229 235 240 242
202 200 208 219 225 228 228 222 216 214 212 212 217 223 229 231
197 197 206 215 220 223 222 217 211 210 211 211 215 222 227 229
195 197 204 211 215 217 218 214 209 209 213 214 214 222 226 227
193 196 201 206 209 212 213 210 207 208 215 215 214 221 224 225
195 200 204 207 209 211 212 212 210 211 218 218 214 219 223 225
202 207 211 214 215 216 217 219 220 220 225 222 215 217 222 226
213 219 224 226 226 226 225 230 235 234 233 226 215 214 220 228
225 232 238 241 239 238 238 244 252 250 243 232 217 211 220 232
239 245 254 257 254 252 251 259 271 267 254 238 220 209 219 237
250 257 267 271 268 265 265 275 288 283 265 246 225 210 221 242
254 259 268 274 275 277 280 290 298 293 279 265 244 227 234 254
258 258 268 276 282 288 296 305 307 303 294 284 265 246 248 266
261 258 268 278 288 299 311 320 317 314 309 304 287 264 263 280

(a) elevation

1 5 1 3 3 3 3 3 3 1 1 3 3 3 11 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 4 1
1 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1
1 2 6 7 2 2 2 1 1 2 2 4 1 1 1 1
1 2 16 5 3 3 2 1 1 2 3 8 2 2 2 1
1 20 6 1 4 3 1 1 2 2 3 14 3 3 2 1
1 28 2 1 4 1 1 2 2 3 20 4 4 3 2 1

30 3 2 5 2 1 1 2 3 26 65 19 4 3 2 1
34 3 6 3 2 1 1 2 32 66 2 41 10 3 2 1

229 164 154 147 128 2 1 115 74 5 1 1 40 3 2 1
23 4 3 3 16 124 119 1 6 2 1 1 35 3 2 1
19 3 3 2 2 15 3 2 2 3 1 1 30 3 2 1
15 3 2 2 1 1 14 2 1 1 2 3 4 22 3 1
11 3 2 1 1 2 9 2 1 1 2 3 3 12 1 1

8 2 2 1 1 2 4 2 1 1 2 2 2 5 4 1
6 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1
5 1 3 3 3 3 3 3 1 1 3 3 3 11 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 4 1 1
1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1

(b) Accumulation values

Figure 8.1: A sample of elevations and their accumulation values.
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At this step, the user needs to input the location of the outlet which will be the

starting point for the extraction of stream channels and watersheds. This program will

only extract the stream channels and watershed draining to the selected outlet.

4). Creating a stream network

This step delineates stream channels based on the drainage accumulation

values. The user needs to input a threshold value as a criterion to define stream

channels. Only those cells with an accumulation value exceeding the threshold will be

delineated. With this threshold value, the user can extract stream channels of different

scale and can accommodate the resolution of the DEM data when extracting channels.

5). Coding stream/segments/finding segments lengths

This step is optional. It will code the stream network extracted from

step 4. Each segment of the stream networks will have a unique identifier and the

length of each segment can be calculated.

6). Finding sub-watershed basins

This step finds the sub-watershed. It will assign a unique number for each sub­

watershed. Therefore, users can further pursue the characteristics of each sub­

watershed.

This program will only extract the watershed pertaining to the outlet. Using

this program to identify the drainage networks on a whole data set, the user will need

to locate the outlet for each watershed and run the program once for each outlet. This

will be a tedious and time-consuming process. The requirement of interactive input
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will hinder the option of running the program in batch mode. One advantage of batch

mode execution is that users can run the program in a particular time, e.g., mid-night

when the computation load is low, and make better use of computer resources. Also,

with batch mode, users can run several jobs at once without interference. To these

users, the lack of batch mode execution is a major drawback.

The program in GRASS 4.0 version is called 'r,watershed, and was developed

by Ehlschlaeger (1989). Basically this program follows the same procedure as the one

in version 3.1, from smoothing, identifying pits, computing accumulation value, the

extraction of channels and watersheds, and the coding of results. It also requires

threshold values for watersheds. However, the implementation of this program brings

in some advantages to this program over the previous version. First, this program will

take command line parameters so that user can run it in batch mode without constraint

on running time and number of files processed. Secondly, this program will extract all

the channels and waterbasins inside the data area in one execution. In addition, this

program also provides optional information for further analysis. Upon request, it will

calculate S (slope) and LS (slope length) factors of the Revised Universal Soil Loss

Equation (RUSLE). It also provide information to interface with ARMSED, a

software for modelling storm-water runoff and sedimentation yield. Interested readers

should refer to the GRASS 4.0 User Manual (U.S. Army CERL, 1992) for more

details.

Several tests have been conducted to test the performance of these two

programs. In the following section, this author documented the processes and finding

of these tests.
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8.3 Experiments

Both versions have been installed in a Spare Station 2 computer for this current

research. A series of tests has been conducted to test the performance of those

extraction functions of the GRASS software. The process and findings of these tests

are documented next.

The 'watershed' program of GRASS 3.1 was tested using the Kaneohe OEM.

An outlet in the west side of the data set was chose for tests. The resulting channels

and watersheds are shown in Figure 8.2 and 8.3.

Figure 8.2: Stream channels extracted by GRASS 3.1.
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Figure 8.3: Watersheds extracted by GRASS 3.1.

As aforementioned, this program only extracted watersheds and channels embracing

the specified outlet. It may be useful for detailed study of a single water basin. For

the extraction of channels and ridges in a large area, this function is rather limited.

The 'r.watershed' of GRASS 4.0 was used for the same data set. For this test,

a threshold value of 500 cell was used for the extraction of watersheds. The resulting

watersheds and channels are shown in Figure 8.4.
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Figure 8.4: Watersheds delineated by GRASS 4.0.

By assigning different threshold values, users can delineate channels and

watersheds of different levels. For the extraction of stream channels, the options of

various levels can be done with manipulation of the drainage accumulation value. In

running 'r.watershed', the program will create a data layer of drainage accumulation.

Those cells at the foot of a slope receives water from their upper slopes and have an

accumulation value reflecting the slope length. For example, on a DEM with a 30

meter resolution, the cells at the end of a 300 meter wide slope may have an

accumulation value of 10. Compared to those cells in the stream channels, the

accumulation from upper slope is rather limited. Those cells on the stream channels

will have input water from both sides of slopes and from their upper streams, thus

have very large accumulation values. In a test, those cells with an accumulation value

over 300 were extracted, as in Figure 8.5. Using the same accumulation data, this

author also extracted those cells with an accumulation value exceeding 50 (Figure 8.6).
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Figure 8.5: Stream channels extracted by a threshold of 300 cells.

Figure 8.6: Stream channels extracted by a threshold of 50 cell.
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By viewing the results so far, the performance of these programs is fairly good.

The stream networks are well connected. The locations of channels fit the terrain

relief very well when checked with locations and their elevations. However, these

programs only extract stream channels, and not ridges.

Several experiments have been conducted to extract ridges using GRASS. The

first test was based on an intuitive idea that ridges are divides of overland flow,

therefore, they are the cells without any input water from their neighboring areas.

This author retrieved the accumulation data calculated from previous steps and

extracted all those cells with an accumulation value of one. It was expected that those

cells would indicate the network of ridges. The result of this test is shown at Figure

8.7.

Figure 8.7: Points without water input from their neighbors.
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As the figure shows, the ridges from this test are not well connected. The result is

similar to those results extracted from profiling methods tested in the previous chapter.

This similarity is understandable. Some 'ridge' cells are located on saddle areas and

receive water flow from nearby ridges, therefore their accumulation value is larger

than 1. This explains why the major ridges are not well connected. On the other

hand, there are many minor local maximum with an elevation higher than its

neighbors, yet their scales are too small to be recognized as ridges. Basically, this

approach is similar to the local profiling method tested before. It will carry the same

disadvantages and limitation as the local profiling methods, which have been

investigated before. This current test does not merit further exploration.

Although the 'r.watershed' function of GRASS 4.0 does not delineate ridges

explicitly, it does delineate water basins and, consequently, the boundaries of

watersheds. There is an overlay between ridges and the divides of water basins.

Ridges, by nature, are the divides of water flows. There are exceptional cases for

ridges not dividing watersheds, yet in general, ridges form the boundaries of

watersheds, this is specially common in mountain areas. By delineating the watershed

boundaries, one can delineate major ridge lines. To delineate the boundary of

',''atersheds, the 'r.poly' function of GRASS 4.0 was used to extract the boundaries of

watersheds, as shown in Figure 8.8.
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Figure 8.8: Boundaries of watersheds.

The watersheds boundaries have a large intersection with 'ridges', yet there is much

discrepancy as well. The network of watersheds does not include the tributaries that a

ridge network normally have. In the real world terrain, ridge networks usually present

a dendritic pattern with major ridges and their branches. On the other hand, the

watershed network includes divides in plain areas, where ridges are not expected to

exist. Thus, this watershed network does not fit our conceptual models of 'ridges'.

To extract ridge lines more reasonably, another test was undertaken.

The following test was inspired by the idea that ridges are the dual of stream

channels. They are similar in some ways. For example, on an aerial photo, it is

difficult to tell a channel from a ridge by only looking at the tonal contrast. The

major difference is that ridges pose a convex shape and channels are concave. But,

then if one take a mould of the ground, then ridges on the ground will become

channels on the mould. In this test, a false elevation data set was created by
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subtracting the true elevation of each cell from 1000. This data set is a mould of the

terrain surface. The 'r.watershed' function extracted the 'channels' on the new

elevation data, which in fact are ridges on the ground. The main interest from this

program is the accumulation data. A large accumulation value indicates a major ridge

on the ground. Following the same procedures of channels extraction, those cells with

an accumulation value over 50 were extracted and categorized. The resulting ridges

are shown as at Figure 8.9.

Figure 8.9: Ridges extracted with accumulation values over 50.

The general pattern of this result is reasonable and close to human extraction from

contour maps, including ridges of different scales and details. One major advantage of

this method is its flexibility for users to define the scale. Using the same

accumulation map while with a larger threshold of 300, the extracted ridges are shown

in Figure 8.10.
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Figure 8.10: Ridges extracted with accumulation values over 300.

At this stage, the purpose of extraction has been fulfilled by the GRASS 4.0

systems using a hydrological approach. The resulting features are continuous and

correspond well to the ground surface. The tests of this current study adjourn at this

stage.

8.4 Discussion and Conclusion

Although, the implementation of algorithms is not a major concern in this

research, a comparison between the two versions of GRASS provide a good example

to show the importance of implementation. Both 3. I and 4.0 versions adopt a

hydrological approach, yet 3.1 version requires interactive input from the users and

only extract one watershed and the drainage network inside it. In contrast, the 4.0

version is more flexible in execution and extracts all the designated features in one

run. The advantage of one over the other is apparent.
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Through analysis, it is found that the definition of channels and ridges implied

by the hydrological approach reflects human conceptual models of 'channel' and

'ridge', i.e., they divide slope units and mark the boundary of slope units. Experts do

not specify the scale of channels and ridges, yet they can delineate channels and ridges

flexibly, although the criteria used are ambiguous and arbitrary. In the hydrological

approach, the channels and ridges can be extracted flexibly and clearly. The criteria,

or the threshold value, can be defined clearly and applied to various data sets. One of

the original appeals of the development of automatic extraction is their objectivity.

The hydrological approach fulfills this goal.

The result shows that features extracted from the GRASS software are well

connected. The noise and local minor relief for both ridges and channels do not show

up on the final result. The reason is that the hydrological approach is not based on

local relief, but rather based on flows of a large area. Also, the threshold value

screens out those candidates for channels and ridges which are not significant enough

to be extracted. The combination of these factors take care of the noise in DEM data

and the true minor relief on the ground.

The hydrological approach requires intensive computations. These computation

are next to impossible for humans to conduct, yet they are suitable and simple enough

for computers to handle. Each of the tests conducted here took less than 10 minutes

on a Spare Station II machine. In all factors of concern, the performance of

hydrological approach in general, and the GRASS software in particular, can meet the

requirement of various research needs in providing consistent while flexible extraction

of channels and ridges.
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Chapter 9. Comparisons and Discussion

9.1 Comparisons

The four proceeding chapters have tested the performance of four groups of

automatic methods of extracting ridge and valley lines. The investigation on the

extraction of terrain features from TINs concluded that the feasibility of such an

extraction method relies on the generation of TINs. A series of tests were conducted

to reveal problems arising from the generation of TINs from grid DEMs, one of the

most common sources for generating TINs. The resulting TINs differed in the

distribution of nodes and the connection of triangles. They were created purely from

the geometric properties of the nodes and triangles, without referring to ground truth.

At the best, they represent a crude approximation of the ground surface. After

conducting a series of experiments to generate TINs by various methods, Kumler

(1992) concluded that the TINs resulting from regular-grid DEMs and digital contours

leave much to be desired in terms of accuracy and storage efficiency. This conclusion

reinforces this author's belief that the construction of a satisfactory TIN needs further

improvement. Without reliable TINs, the extraction of terrain features from TINs is

not meaningful. In fact rather than extracting ridge and valley lines from TINs, many

researchers have suggested that valley and ridge lines could be used as a basis for the

construction of more reliable and accurate TINs (Douglas, 1986). A further extension

from such thinking is that, rather than being extracted from a TIN structure, ridge and

valley lines should be extracted first as skeletons that are to be used in the

construction of a TIN. This author believes such a methodology is reasonable and

proposes a new way to integrate the valley and ridge lines into the process.

130



Several extraction methods pertaining to the three groups of profiling, tracing,

and hydrological approaches have been investigated through a series of tests. These

methods are compared in this chapter. The performance of various methods within

each of the three groups are generally similar. Therefore, only one method was

chosen from each group for further evaluation: the discrete profiling method from the

profiling group, the streaming algorithm from the tracing group, and the 'r. watershed,

command of GRASS version 4.0 from the hydrological group. Since the same

extraction methods are applicable to the extraction of both valley and ridge lines, for

the sake of conciseness, the discussion here will deal with ridge lines only.

The evaluation of these methods starts with a visual inspection. Three figures

have been prepared schematically to show their performance. Figure 9.1 through 9.3

all contain a hypsometric map overlayed with hill-shading that serves as a basemap.

The basemap shows the ground relief so that viewers can envision the locations of

ridges and valley lines. On top of the basemap, terrain features resulting from each of

the three selected methods are plotted. Viewers are advised to examine the amount,

location, and continuity of the extracted features and the difference of spatial patterns

between the three figures. These qualities will be used to compare these methods in

following paragraphs. Figure 9.1 shows the result obtained from the profiling method;

Figure 9.2 shows that of the tracing algorithm; Figure 9.3 shows that from the

hydrological approach of GRASS software.
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Figure 9.1: Ridges resulting from a profiling method.
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Figure 1)._'.' Ridues .e S resultinz fco rom a tr: .1,IClI1g method.
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Figure 9.3: Ridges resulting from a hydrological method.



Although these figures may effectively reveal the performance of each method

visually, a parametric comparison is in order. In order to compare these methods

more comprehensively, the extracting results will be examined in four aspects. They

are: the number of extracted features, the continuity of features, the positional

accuracy of features, and the agreement among the three tested methods. Details of

these examinations follow.

9.1.1 Number of Extracted Features

Before further discussion, it should be mentioned first that the resulting ridge

lines are in fact composed of individual pixels. The set of these pixels represents the

ridge network. As listed in Table 9.1, the profiling approach extracted 11,876 pixels,

the tracing algorithm extracted 6,692 points, and the function of GRASS 4.0 extracted

4,854 pixels. These numbers of pixels respectively represent 18.12 percent, 10.21

percent, and 7.41 percent of the pixels of the test data set respectively. The

percentages are somewhat high compared to a manual interpretation will normally

extract. Many of these pixels clump together in small areas and thus do not reflect the

length of ridge lines. To make the pixels more meaningful in representing the

extension of the ridge network, a line-thinning function was adopted in GRASS to trim

off those pixels adding extra width to the ridge lines. This process effectively reduces

the amount of pixels in each result. The numbers of pixels removed by the

line-thinning process are listed in Table 9.1.
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Table 9.1: Numbers of pixels before and after the line thinning process.

Profiling Tracing Hydrological
======= ===== ==========

Original No. 11876 (18.21%) 6692 (10.21%) 4854 (7.41%)

No. after 8751 (13.35%) 6075 (9.27%) 4598 (7.02%)
thinning

All ridge lines are of single-pixel width after thinning, therefore, the numbers

of pixels are an approximate measure of the total length of ridge networks. As a

result, the profiling method extracted 13.35 percent of the test data as ridge lines,

followed by 9.27 percent of the tracing approach, and 7.02 percent by the hydrological

approach. The profiling method extracted the most points that spread over almost all

parts of the area (Figure 9.1). The ranking of the amount of resulting features is not

the focus of this discussion, however. What is of more concern in this comparison is

the flexibility of each method in extracting features of various levels of hierarchy.

Users may desire extraction of different numbers of features depending on the

use to which the extracted data will be put. The hydrological approach readily

provides such great flexibility. Within GRASS, users can select the accumulation

value as a criterion to extract terrain features in various detail. As tested in Section

8.3, this author used GRASS to extract two sets of ridge lines, one with an

accumulation value of 50 and the other with 300. The former yielded 4854 while the

latter 2074 pixels. Figure 9.4 shows the ridge lines in dark that are dropped out by

raising the criterion.
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Figure 9.4: Ridge lines (dark) dropped out by adopting a higher accumulation value.

The ridge network extracted by the accumulation value 300 is a subset of that

extracted by the value 50. Both networks show a high degree of connection. Their

difference appears to be the number of branches and extension of ridge networks.

These two results demonstrate the flexibility of the hydrological approach in extracting

ridges. The accumulation value can effectively categorize ridge and valley lines into

different levels so that users can extract various levels of features as desired.

The tracing method does not provide flexibility in extraction. As addressed in

Section 7.3, there exists ambiguity in defining the starting points for tracing. Yet,

once a criterion is selected, the number of extracted starting points will be fixed. The

nature of the tracing process itself imposes further rigidity because that no hierarchical

extraction pertains to the tracing process. As a result, the tracing approach provides

no flexibility in extracting various numbers of points.

The profiling method adopts a clear-cut rule in extracting ridge lines. It

appears to be non-flexible in defining features. However, as the extraction is
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performed by a local processor, there exists possibility to extract various numbers of

points by changing the criteria adopted by the local processor. A test in Section 6.2

was conducted to test such a possibility: the criterion for defining a ridge point was

raised from one meter higher than its two neighbors to two meters higher, resulting in

a reduction in number of extracted points from 7626 to 5906. The points dropped out

by the stricter criterion are shown as dark points on Figure 9.5. The shaded points are

the remaining points after raising the criterion of profiling approach to two meters.

Figure 9.5: Ridge points (dark) dropped out by the 2 meter criterion.

As shown in the figure, the variation in criterion does not change the extension of the

ridge networks. Instead, the lost data appear to be points scattered allover the area.

The effect of stricter criterion on the profiling method reduces the numbers of short

and noisy features, but it also breaks the major ridge lines more frequently compared

to a looser criterion. Variation in criterion does not facilitate a flexible and

hierarchical extraction of features in this test.
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In summary, the profiling method extracts the greatest number of ridge points,

followed by the tracing method and the hydrological method. Yet, such a ranking

does not tell the whole story. The ability of each method to extract ridge lines at

various hierarchy is a more important concern. Such flexibility is present in the

hydrological method only.

9.1.2 Agreement Analysis

The agreement analysis reckons the numbers of same points extracted by

different combination of methods. The purpose of this analysis is to examine

correspondence between the resulting ridges. The results of the analysis are tabulated

in Table 9.2. All layers presented here are the original results without thinning.

Table 9.2: Cross-table for numbers of points extracted by different combination
of methods.

H

=
P 1619
NP 1137

T
=

2105
2489

H&T

1813
285

NH&NT
------------

6339
49749

note: H: Points extracted by hydro-method.
T: Points extracted by tracing-method.
P: Points extracted by profiling-method.
NH: Points NOT extracted by hydro-method.
NT: Points NOT extracted by tracing-method.
NP: Points NOT extracted by profiling-method.
H&T: Points extracted by both tracing and hydro-method.
NH&NT: Points extracted by neither tracing nor hydro-method.

Of the 65536 points in the whole area, 49749 points are not extracted by any

of the three methods, and 1813 points are extracted as ridge points by all three
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methods. Obviously, the profiling method extracted many more points (6399) that are

not extracted by the other two. In contrast, the number of points extracted by both of

the other two methods while not by the profiling method is only 285.

In a pair-wise comparison, 70.70 percent of the points extracted by the

hydrological approach are also extracted by the profiling approach whereas only 43

percent of points extracted the hydrological method are also extracted by the tracing

approach. Among those points extracted by the tracing approach, 58.55 percent of

them are also extracted by the profiling method, while only 31 percent of them are

also extracted by the hydrological approach. These figures show that among the three

pairs of methods, the profiling and hydrological methods have the closest fit in

extracting ridge points.

These statistics only represent the agreement on three particular layers of

resulting ridges. To confirm the tentative conclusion on the agreement of the three

methods, the agreement on the other three sets of ridges is examined. These three

layers include: the original points extracted by the profiling method, the thinned layer

of the points by the tracing approach, and the points by the hydrological method with

accumulation value 300. Numbers of points extracted by each combination of

methods are displayed in Table 9.3.

Table 9.3: Cross-table for numbers of points extracted by different combination
of methods (thinned data sets).

H

=

P 1521
NP 553

T
=

3918
2652

H&T

967
122
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NH&NT
------------

7404
60485



Based on this set of results, 73.34 percent of points extracted by the

hydrological approach are also extracted by the profiling method and 58.55 percent of

points extracted by the tracing approach are also extracted by the profiling method too.

Only 52.5 I percent of points extracted by the hydrological method are extracted by the

tracing approach. The statistics of both sets of data demonstrates that the profiling

method and the hydrological method have a best match among the three pairs of

methods.

9.1.3 Continuity Analysis

Ridge lines of a mountain area are normally continuous. This part of analysis

investigates the continuity of ridges resulting from the three methods. This study

counts the numbers of separate disconnected ridge networks on the ridges extracted by

each method. In this analysis a "network" is simply defined as a system of ridge lines

separate from other system of ridge lines. The number of extracted points is divided

by the number of networks, gives an average length per network. The number of

networks and the average length of networks indicate the continuity of each layer.

The implementation of this analysis adopts some theorems of graph theory.

A ridge network can be thought of as a tree, a connected graph of nodes and

edges without circuits (Johnsonbaugh, 1984, p.159). The theorem that a tree of n

nodes contains n-l edges can be proved through induction. Figure 9.6a is a schematic

demonstration of the theorem: the first edge of a tree requires two nodes; thereafter,

the number of edges added to the tree will introduce the same number of new nodes.

For a graph that contains circuits and thus forms faces (areas), a more general theorem

states that on a connected graph, the number of nodes plus the number of faces equals

the number of edges plus one, as shown in Figure 9.6b.
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Nodes:2
Edage: I

Nodes:4
Edges:3

(a)

Nodes: 6
Edges:5

Nodes: 8
Edges: 7

Nodes;4
Edges:3
Faces:0

Nodes: 4
Edges: 4
Faces: 1

(b)

Nodes:5
Edges: 5
Faces: I

Nodes: 5
Edges:6
Faces:2

Figure 9.6: Nodes and edges on a tree.

The relation between the numbers of nodes, edges, and faces can further derive the

number of separate graphs in a data set. On a data set that contains separate graph,

the numbers of nodes and faces minus the number of edges will indicate the number

of separate graphs. In the data set here, each connected graph represents a separate

network of ridge lines. Here the GRASS software is used to convert the three layers
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of ridge points into three separate vector files. Before the raster-to-vector conversion,

the ridge layers need to be thinned to single-pixel width. The numbers of nodes,

edges, and areas, as well as the numbers of networks and average number of points on

networks are also obtained from the vector files. Table 9.4 lists these numbers for

three layers resulted from: the profiling method with a 2 meter criterion, the tracing

method, the hydrological method with an accumulation value 50.

Table 9.4: Number of nodes, edges, and faces on each resulting ridge map.

No. of No. of No. of No. of Average
Nodes Edges Networks Points No. of

points per
Network

====== ------ ======= ======= =======------

Profiling 2272 1635 649 5906 9

Tracing 1139 953 251 6075 24

Hydrological 831 873 11 4598 400

It is recognized that the thinning process of GRASS introduces many artificial loops

when lines are close together. Nevertheless, the existence of such loops does not

affect the number of networks and can be ignored for the purpose here because of the

concern here is the number of networks.

The result obtained through the hydrological method contains only 11 separate

networks, the smallest number among the three results. Its average number of points

per network is about 400, the largest among the three. Both numbers of networks and

average points indicate that the result obtained from the hydrological method is best

connected. On the negative side, the main ridge network of the test area was extracted

143



as two separate networks on the hydrological output. The disconnection appears on a

major saddle area. This disconnection reveals the weakness of the hydrological

approach in certain terrain types. Points around saddle areas are less likely to have a

great accumulation value because they are part of ridges as well. Thus, they are often

missed in the extraction process. Except for the possible disconnection, the

hydrological method generally results in well-connected networks.

The other two methods introduce many more networks than a manual

interpretation will normally extract. The profiling method extracted 649 separate

networks and the tracing method extracted 251 separate networks. The average

number of points for networks is 9 for the result obtained from profiling method and

24 for that from the tracing approach. The numbers in Table 9.4 show that the

hydrological method delineates ridge networks that are mostly continuous, followed by

the tracing method. The result obtained through the profiling method is the least

continuous.

9.1.4 Positional Accuracy

The evaluation of positional accuracy of these methods is subtle. Positional

accuracy refers to the difference between the location of extracted ridges and the true

location of ridges appears on the DEM data. The subtlety arises from the fact that

there is no standard answer for extracting ridge and valley lines either conceptually or

technically, as discussed in Chapter 1 and 4. Yet, a standard is needed to evaluate the

accuracy of ridge locations. To resolve the problem, a compromise has been made by

using manually extracted ridge lines from a contour map as the standard for later

evaluation. A contour map was generated from the gridded DEM data using

ARCIINFO software, instead of using an existing USGS topographic map. Such
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practice is to avoid the errors may arise from the difference between USGS

topographic maps and grid DEMs. Some deviation may arise from the grid-to-contour

conversion. However, such differences will be less than the resolution of the grid

DTM, 30 meter of ground distance in this case. Errors of this magnitude are

negligible compared to errors introduced by other possible sources such as manual

extraction and digitizing. To minimize the subjectivity of manual extraction and avoid

too much detail, only the major ridge lines are manually delineated and digitized. The

contour map and the manually extracted ridges are shown in Figure 9.7.

Figure 9.7: Contours and manually extracted ridges.
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A buffer map for each of the three layers of resulting ridges has been created

by the 'r.buffer' function of GRASS. These buffer maps display the distance between

a point and its nearest non-zero point, i.e., the distance between each point and the

nearest ridge point. Then, the map of the standard ridge lines is overlaid separately

with the three buffer maps. The results of the overlaying show the deviation between

the standard ridge lines and the corresponding ones extracted by each method. The

values of deviation are presented in Table 9.5.

Table 9.5: Positional accuracy of three methods.

distance Profiling Tracing Hydrological
-------- --------- ------- -------------------- --------- ------- ------------

0 643 576 707
1 861 739 742
2 255 261 242
3 105 156 112
4 16 51 40
5 4 39 24
6 1 21 6
7 18 5
n 10 20

9 5 2
10 6 1
11 1 1
12 1

Total: 1884 1884 1884

Given the arbitrariness of manual extraction, the error introduced by the

grid-to-contour conversion, and the errors occurring during the digitizing process, the

accuracy of the standard ridges itself is questionable. Taking all these errors into

account, it is proposed here that deviation within two-pixel width is a reasonable
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tolerance value. Namely, the extracted ridges within two pixels of the standard ridge

will be deemed correct. Based on such a criterion, table 9.5 shows that 93.36 percent

of the standard ridge points fit with the results of the profiling method. The same

table shows a 83.65 percent fit with the result by the tracing algorithm and a 89.76

percent fit with the hydrological method. In conclusion, locations of ridge points

extracted by the profiling method is most close to the true locations of ridges,

followed by those obtained through the hydrological approach and the tracing

approach.

9.1.5 Summary of Comparisons

The above analyses address the advantage and disadvantage of the three

methods from various aspects. The properties are summarized in Table 9.6.

Table 9.6: Summary on the properties of three methods.

Profiling
method

Tracing
method

Hydrological
method

Amount of
feature
=========

Not flexible.

Least flexible

Very flexible,
can distinguish
feature
hierarchically.

Continuity

==========

Least continuous.

Not continuous.

Well connected
except in certain
areas such as
saddle areas.
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Positional accuracy

==========

Fit best with true
locations.

Least fit with true
locations.

Mostly fit with true
locations



Obviously, the hydrological approach performs the best in the aspects of continuity

and flexibility. Although the hydrological method is ranked second in positional

accuracy, its results are compatible with the standard ridge up to 87 percent, a figure

that may be good enough for many applications. It can also be noticed that the

profiling methods fit most closely with the standard ridge lines. The profiling method

also shows a high agreement with the other two methods. Yet, the fragmentation with

this method is severe, which may be a serious drawback for many applications. The

tracing method ranks low in all three aspects of concern. As a result, this author

deems the hydrological approach to be the most satisfactory method for general­

purpose extraction of ridge and valley lines.

The above summarized difference can be attributed to several factors in

different perspectives. The following section discusses the relationship between the

performance and those factors.

9.2 Discussion

The automatic extraction of terrain features is relevant to several factors:

nature of DEMs, human cognition, and implementation to computers. From a

conceptual perspective, the extraction process categorizes the ground surface reflecting

human definitions. Therefore, the evaluation of these methods must refer to human

conceptual model of terrain features. These methods attempt to duplicate manual

operations in the computer algorithms. The nature of terrain and the characteristics of

DEMs are reflected in the performance of extraction methods. The performance of

each method is an integrated result of how it interacts with these factors. This section

analyzes the performance of the three methods from these multiple perspectives.
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In the profiling method, a ridge line is defined as a set of points carrying a

convex cross profile. Subsequently, terrain features can be defined by geometric

properties. After all, extraction of terrain features is fundamental to morphometry that

describes the geometry of the earth's surface. Besides being used by a variety of

profiling methods, geometric properties are also adopted in several tracing approaches

for the selection of starting points. From the modeling aspect, not all convex patterns

on the ground will be presented on the grid OEMs. Because the U.S. Geological

Survey's OEMs record the ground height with integer values, it is likely that some

minor relief on the ground will be truncated and will not show in the OEMs. Besides,

the discrete sampling of the DEM data may skip a convex profile sitting between two

DEM points, as shown in figure 9.8.

Figure 9.8: Ridge points missed for not having a convex profile.

The discrete nature of OEMs raises another intricate question: is it sensible to

measure shape at a fixed scale? To answer this question, one might think of the

fractal geometry theory that states that many geometric patterns of terrain features are

scale-independent and can be observed at various scales (Mandelbrot, 1983).

However, such independence does not hold on a discrete data model such as aDEM

since those patterns smaller than twice the data resolution will be lost. Therefore, in
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theory, the identification of the terrain features is closely affected by the scale one

adopts. Whether a cross profile is convex or not depends on the scale of the

representation. Using a fixed-size filter to examine the shape of cross profiles will

surely miss some candidate features. For instance, Figure 9.9 shows a portion of the

test DEM data where the main ridge is disconnected.

642 633 622 607 590 577 564 551 539

648 639 630 617 602 592 581 572 564

640 633 627 616 606 599 594 589 587

627 623 620-612-606 605 605 606 610
I I I

614 613 612-607--607 611 616 623 633
I I I

605 608 608-604-606 613 621 630 644

605 608 607 603 604 609 616 625 638

605 608 605 602 603 606 611 619 632

603 606 601 599 599 602 607 615 626

Figure 9.9: Sample DEM of the test area with main ridge disconnected.

In view of the elevations of the whole area, clearly there exists a saddle area in the

central part, which is concave along the direction of a major ridge and concave in the

perpendicular direction. Such convex pattern will not present when we evaluate only

the elevations of the 3x3 window at the center. This example demonstrates that not

every ridge point will pose a convex cross profile given a fixed scale. As a result,

some ridge lines are disconnected in several places when the ridge points are missed

by the fixed-size filter. A possible remedy to this deficiency may be achieved by

comparing the cross profiles at several scales, e.g., 5x5 window, 7x7 windows, etc.
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However, the additional tests will extract many more ridge points to a set of points

which needs to be trimmed. At scales larger than the data resolution, the self-similar

roughness of terrain surface, as indicated by its fractal dimension (Mandelbrot, 1983;

Lam et al., 1993), is more likely to show up on the DEM data. It is anticipated that

there will be many inflections along the terrain profiles shown on DEMs, therefore,

many points are likely to show convex/concave pattern along their profiles. Such

abundance of points with convex profiles is shown in figure 9.1. The disconnection of

ridge lines and abundance of scattered points suggest that the shape of cross profiles

alone is not comprehensive in extracting terrain features. In addition to analyzing the

shape of cross profiles, more comprehensive factors should be used to define ridge

points. For example, convex points adjacent to major ridge lines at a high elevation

should be more likely to be ridge points in comparison to those with the same profile

in some low flat area. To make the profiling method useful, identification of such

rules is needed.

The tracing approach emulates human delineation process in that a ridge is

taken as the top portion of a mountain range. A tracing process starts from a feature

point of terrain, e.g., a peak or a saddle point. The identification of a starting point is

subject to errors, as points are selected on the basis of geometric pattern shown on

DEM data that has a finite resolution as discussed previously. In addition to problems

in selecting starting points, the rules adopted by automatic tracing are too simple to be

effective. The manual delineation process performed by interpreters involves much

heuristic knowledge. Human heuristic knowledge is often vague and ad hoc and thus

is difficult to specify and implement in algorithms. There are situations in which a

simple rule such as climbing along the steepest direction will not result in the correct

path as expected. These situations are investigated in the literature of artificial
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intelligence (AI) as an analog to describe some shortcomings of hill-climbing search

(Winston, 1992, p.73). Hill-climbing is a searching method in AI that applies heuristic

approach to measure the remaining distance to a goal. Winston (1992, p.73) listed

three types of conditions that the hill climbing process will fail. 1). The foothill

problem crops up when more than one peak sits in a nearby area, as illustrated in

figure 9.lOa. The trail with a maximum immediate gain in elevation may lead to a

local maximum but miss the global maximum. An implication of such problem to the

tracing process of terrain features is that computers fail to identify the major ridge

while tracing along a trivial one. 2). The plateau problem occurs when the tracing

process confronts a flat area with separating peaks, as shown in the example in figure

9.lOb. No obvious direction can be taken for further tracing; eventually the tracing

will be terminated. 3). In the ridge problem, the search process reaches a false peak

which in fact is only a point on a ridge, as in the example of figure 9.IOc, caused by

the limited number of search directions and step sizes. The limitation of searching

directions here also implies limitation of possible solutions in AI. For tracing on a

DEM, the limited number of neighboring points poses serious difficulty for the

operation. Once it derails, the tracing process will follow a false path.

(a) (b) (c)

Figure 9.10: Three problems facing the hill climbing process.
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When confronting these kind of problems, humans and computers respond differently.

These problems are trivial to the human interpreter if he/she can extend the search

area far enough to search globally. In fact, that is what human interpreters do during

tracing a ridge line. Unconstrained to a local area, they can look farther away. In

contrast, tracing methods currently implemented on computers adopt a step-by-step

approach. A global search by such approach will be unlikely since the number of

searches will increase explosively with the number of search steps taken. To make the

tracing process effective, a remedy to the tracing strategy is needed to make them

search somewhat globally. Such a remedy may be a major challenge to the software

engineering as a whole, though, due to the nature of computer functioning.

The two aforementioned methods attempt to delineate ridge and valley lines in

a way that is similar to human interpretation. Their insufficiency reveals a problem in

formalizing and implementing human knowledge/behavior into a computer. Humans

are strong in symbolic reasoning and pattern recognition while computers are strong in

repetitive numerical operations. Direct replication of human knowledge in computers

is often not feasible. From the failure of the tracing approach for the extraction of

ridge lines, it is concluded that the obstacle to such attempts is in formalizing human

heuristic knowledge, which is often ad hoc with many rules-of-thumb. Human experts

may not be aware of such knowledge when applying it, let alone converting it to rules

that can be implemented by computers.

Instead of replicating human process, new approaches should be developed to

make use of the computational strength of computers. As cited by Clarke (1990, p.2),

Morrison (1980) stated that there were three stages in the adaption of a new

technology: 1) the reluctance stage; 2) the replication stage; and 3) the full

implementation stage. In the first stage, people are hesitant to adapt the new
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technology, probably due to the inertia to stay with old technology and the uncertainty

of the new technology. In the second stage, new technology attempts to replicate the

previous technology. In the third stage, new processes and operations that previously

were impossible are emerging. If the profiling methods and tracing approaches stand

for research in the replication stage, the hydrological approach can be considered as a

full implementation stage of a new technology.

In contrast to the profiling and tracing methods, the hydrological approach

avoids emulating human processes by adopting an innovative definition that takes

advantage of the computational power of computers. The embedded definition of

valley and ridge lines in hydrological approach is not explicit. However, using the

accumulation value as the criterion, the stream channels extracted by the hydrological

approach are composed of points that are either: 1) located at the intersection of

opposite slope complexes having accumulative input from both sides of slope, or 2)

the lowest neighbor of an extracted channel point whose large accumulation is

inherited by this lowest neighbor. Such a definition of the stream channel flexibly

integrates the properties of 'convex shape' and 'the edges of opposite slope

complexes'. A selected critical accumulation value filters out points with local minor

relief and extracts only those points that are clear enough to be a feature point. It also

allows extraction of terrain features on various level of details. Such an integration

combined with flexibility of the method explains the success of the hydrological

approach in extracting stream channels and ridges.

Nevertheless, the hydrological approach has its own shortcomings. In a flat

area where the flow directions of each point are all the same, the only current solution

available is to take an arbitrary direction. This situation can be observed in the flat

area where the extracting stream channels appear to be straight lines at a fixed angle.
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This issue brings up the conceptual issue and ad hoc nature of defining a feature. In

their study on errors in DEMs, Lee et aI. (1991) defined stream channels as points

with a smooth gradient in a mountain area. The definition may just be adequate for

their immediate purpose. As discussed in Chapter Four, definitions are often ad hoc

for a specific purpose. The deficiency of hydrological methods occurs in flat areas

which can be deemed as a limitation in its definition incapable of emulating human's

ad hoc inference ability for various terrains. Users of the program should be aware of

such type of deficiency. By explaining the sources of deficiency and constraints of

each method the advantages and disadvantages of each method are made clearer.
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Chapter 10. Conclusion

10.1 Summary

The development of automated method to extract terrain features has the

practical aim to spare people the tedious manual work of delineating and digitizing but

requires that many theoretical issue related to human cognition, the nature of digital

terrain model, and computer software technology be addressed. Ridge and valley lines

were the terrain features chosen as the subject of this study. Four groups of methods

for the extraction of these features have been identified. They are: symbolic

approach, tracing approach, profiling approach, and the hydrological approach. The

symbolic approach was not tested because problems arose from the generation of

TINs, from which the symbolic approach attempted to extract terrain feature but the

other three methods have been tested. Their performance were compared on the basis

of the amount, continuity, agreement, and position accuracy of their extracted features.

From the theoretical side, the different performance of these methods is

discussed with reference to related factors of automatic extraction. The hydrological

approach presents a reasonable answer to all questions about the automation of this

process. This method defines ridge and valley lines as points with large accumulation

values. Consequently, it is less sensitive to local terrain and produces a more

continuous and complete result than the other two methods. The algorithms used for

the tracing and profiling were developed to emulate human cognitive processes but the

outcomes are not satisfactory. It is concluded that the hydrological approach performs

the best on average. The various performances of the three methods present a notion

that direct replication of human knowledge into computers may not be feasible in the
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development of automatic methods. A practical method should be well-adjusted to the

functionality of computers and the nature of digital data involved.

This study achieves two purposes. First, it facilitates a better understanding of

the nature of different extraction methods so that users of these automatic methods can

choose the right tool for a sound result. Second, it addresses the problems facing the

development of automatic methods. Future developers of automatic methods can take

lessons from this study and adopt a better strategy for methodological development.

10.2 Problem

This research focuses on the methodological aspects of automatic extraction.

To remain focused of the subject in the study, the accuracy of DEM data was

assumed. However, in reality, DEM data often contains various types of errors.

Carter (1989) and Theobald (1989) identified some common errors of DEMs: spikes,

strips, and area errors. During this research, the test data of Kaneohe DEM was found

to contain strange patterns which strongly suggest errors. In the coastal area, many

points with a ten meter elevation are scattered in a neighborhood of zero elevation.

To the right of the central part, some straight strips are visible in the hill-shading map.

As another example, solid evidence of errors was found in the Diamond Head area of

the Honolulu DEM which is adjacent to the Kaneohe DEM. In that case, the elevation

in the area is systematically lower than the true elevation. Errors of DEMs were

clearly present.

As most suspected errors found in the test data occurred in flat and edge areas,

the suspected errors would have not apparent impact on the results obtained by the

hydrological approach. Such errors would be critical if located on the main valley or

ridge lines. The suspected errors may contribute to the scattered presence of short
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ridges found in the results from profiling method, since spikes and strips will pose a

convex profile in a 3x3 window of OEMs. The same errors would also affect results

obtained by the tracing approach as well since many local peaks will be introduced

and thus increase the number of starting points for tracing. Users of digital terrain

data should check the quality of OEMs.

10.3 Implications

As the results from the extraction process are readily stored in a digital format

in computers, many further uses are feasible. In forestry management, where it is

necessary to delineate areas near mountain ridges, a buffer zone based on the ridge

lines can easily be generated by most GIS packages available today. For practice of

soil conservation, the application of universal soil loss equation requires the

computation of the slope length as a parameter for modeling the amount of soil

eroded. Once ridge lines have been defined, such slope length can be computed

efficiently and accurately from OEM data. When properly executed by computers, the

extraction of ridge and valley lines will be objective and repeatable and so assure

more meaningful applications of terrain features, such as the

computation/determination of stream order and drainage density. The automatic

extraction of terrain features will promote many more powerful applications of terrain

features and facilitate the studies in geomorphology and many related fields.

The concepts built into the automatic methods of feature extraction inspire new

concepts in analysis. Many tasks that previously relied on data of ridge and valley

lines may take a complete new approach without using those data anymore. For

example, the shape of ridge networks that define waterbasins is often subject to

hydrological analysis since an elongated waterbasin is more likely to have a longer
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time lag. At present, prediction before peak discharge following precipitation in

watersheds more likely to generate damaging floods could then be determined, such is

weak partly because the measurement of shape is crude and partly because the shape

of waterbasin is not critical enough to affect the time lag. A major breakthrough on

this task is possible by adopting the methodology of hydrological approach of feature

extraction. There exists potential for linking accumulation values of points and the

travel distance of overland flow between points. If such relation is identified, the

amount and the time lag of a flood can be estimated better. This type of application

presents an opportunity for future research. The development of automatic methods

should not limit itself to attempting replicating manual processes. Instead, it should

bring in new powerful tools and methods that are otherwise infeasible without the

computational power of modern computers.

10.4 Future Research

The study is a multi-perspective exploration on the automatic extraction of

terrain features. The findings present many possible opportunities for further research.

There is room for improvement on those methods that are not satisfactory and the

author identifies three areas of concentration for future research.

First, the profiling methods for the extraction of ridge and valley lines are

currently not satisfactory in several respects, yet they indicate the positions of ridges

and valleys most correctly. An improvement in ways to define continuity of feature

better while reducing the number of short noisy features defined may make this group

of methods useful. One possible resolution is proposed to integrate more parameters

in extraction, such as the elevation, the relief, and the length of the extracted features.
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Second, the extraction of ridge and valley lines can serve as building block for

the extraction of other terrain features. Based on the successful results obtained

through the hydrological approach, this author proposes to investigate the extraction of

terrain features which have area extent, e.g., valleys and mountains. The idea is partly

inspired by the an attempt to integrate the various data bases generated by the U.S.

Geological Survey. The Geographic Names Information System (GNIS; USGS,

1983c) produced by the USGS contains the coordinates of a name string of terrain

feature, e.g., 'Manoa Valley', but does not indicate the locations of the feature it refers

to. If the areal extent of such terrain features can be automatically identified, the

various data stored in the GNIS, the DEMs, and the DLGs (USGS, 1983b) may be

integrated better and thus foster their applicability.

Third, geomorphology and hydrology probably are the two fields that have

most use for the data produced by methods investigated in this study. The concept of

accumulation values in the hydrological approach is applicable to many tasks in

environmental management and terrain analysis, such as the prediction of flood and

modeling of soil erosion. The number of points extracted can be a measure closely

related to the complexity of terrain, thus it can be used to derive morphometric

parameters and apply to comparative study of different terrain areas.

The development of automatic extraction of terrain features is a multi-faceted

task. A successful development will benefit not only geographers but many scientists

in related disciplines as well. On the other hand, the development of such tasks

requires expertise pertaining to fields in GIS, computer software technology, and many

other related fields that apply terrain features for various analyses. Further

development on this task is anticipated through the integration of knowledge in related

fields.
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