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ABSTRACT

We apply a new separable-Green's-function matrix method due to

Rehr and Albers (Phys. Rev. B41 (1990) 8139) to a multiple scattering

treatment of photoelectron diffraction and Auger electron diffraction.

This cluster-based method permits building up successive orders of

scattering and judging the approach to convergence in a convenient and

time-saving way. We include multiple scattering up to tenth order and

can treat photoelectron emission from any initial state (s, p, d, or

f) with full final-state interference, as well as Auger emission in

the s-final-state approximation. This new approach is used to

simulate emission from linear and bent chains of atoms, from epitaxial

overlayers and multilayer substrates and from atomic and molecular

adsorbates. The method appears to have a very broad range of utility.

We also discuss the types of geometric structures for which multiple

scattering effects must be considered, and the nature of the effects

expected.
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1

CHAPTER 1.

GENERAL INTRODUCTION

Photoelectron diffraction (PO) and its close relative, Auger

electron diffraction (AED) , are by now valuable tools for determining

the atomic structure of surfaces [1]. A surface is the result of an

abrupt termination of the bulk sructure. Due to the short inelastic

attenuation lengths of -5-15 Xfor the electrons used in these

diffraction techniques, they probe principally the first few layers

inwards from such a bulk termination. A knowledge of the detailed

atomic structure of a surface is an essential first step in

understanding its electronic and vibrational properties. These

properties are in turn the basis of the physical and chemical nature

of a surface and are important for understanding catalytic activity,

oxidation and corrosion, adhesion, interface formation, and many other

surface phenomena of both basic scientific and technological interest.

The photoelectron diffraction experiment begins when an atom near

a surface is exposed to x-rays of high enough energy to eject a core

electron, leaving behind a hole. The ejected electron is termed a

photoelectron. This phenomena was first explained by Einstein in 1905

[2], and it obeys the following energy conservation law:

(1-1)



2

where Ek. is the kinetic energy of the photoelectron at the detector,
1n

hv is the energy of the incoming radiation, nl. denotes the core
1

subshell from which emission occurs, E~(nli) is the binding energy of

this subshell measured with respect to the vacuum level, E~(nli) is

the same binding energy measured with respect to the Fermi level, and

~sp is the spectrometer work function. This ejection process has two

selection rules in the dipole approximation for the electron-photon

interaction [3]. They are

8m

lf - li ±l

0, ±1

(1-2)

(1-3)

where L. - (l.,m.) are the angular momentum and magnetic quantum
111

numbers of the initial core atomic state and Lf - (If,mf) are the

corresponding numbers for the final state in the continuum. Once

ejected from somewhere at or below the surface, a photoelectron wave

can either leave the surface without being scattered by another atom

(a component of the total wave represented by ~O) or can undergo

scattering from other atoms along some path j in the solid

(represented by ~j)' The ~j'S can have contributions from both single

and multiple scattering events. The obse'.ved photocurrent outside the

solid contains interference effects between these two types of

components. The intensity of the photocurrent at a detector placed

~

along a direction defined by the final wave vector k or its associated

polar and azimuthal angles (8,~) can be written as,
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(1-4)

where j represents all possible scattering paths inside the solid and

~

k is the magnitude of k. Figure 1.1 gives the definitions of 8 and ¢

that will be used throughout this dissertation.
~

The magnitude of k,

which is proportional the momentum of the photoelectron through p -

hk/2rr, is thus proportional in a non-relativistic limit to the square

root of the kinetic energy of the photoelectron and can be calculated

conveniently as

(1-5)

If the angular momentum quantum number of the initial state is

not equal to zero (i.e., a non s-initial state), then, according to

Equation (1-2), there are two possible channels for the photoelectron.

Contributions from these two channels should thus be added up with the

relevant phase factors in such a case. The importance of such final

state interference effects between channels in photoelectron

diffraction was first discussed in a systematic way by Friedman and

Fadley [4], who used a single scattering approximation. These effects

are explicitly included in the more accurate multiple scattering

calculations to be described in this dissertation.

A given atom in different materials can have different binding

energies for a certain core level. Also, a given core level of an
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atom in different environments within a single surface region can have

slightly different binding energies. Such difference are known as

chemical shifts [6]. Thus, Equation (1-1) can be used to identify an

atomic level n~., as well as its chemical states. By separately
1

measuring the angular or energy dependences of the intensites of

chemically-shifted peaks, a state-specific determination of structure

can be made [l(c)].

In Auger emission a different process is involved. The nl~l hole

left behind in a first core subshell by either photoelectron ejection

or inelastic electron scattering can be filled by an electron in an

outer n2~2 subshell. During this process the atom can end up singly

or doubly charged. In the first case, the energy difference between

the core hole and the outer electron hole comes out as radiation at

energy hv', leaving a hole in an outer shell. This energy is given by

where ~(nl~l) and ~(n2~2) are the binding energies of electrons in

subshells nl~l and n2~2' respectively. This is known as radiative

decay and it results in x-ray fluorescence [5]. The second

possibility is that the excess energy can go into ejecting aI.other

electron in an outer subshell n3~3' finally leaving two holes in outer

shells:

(1-7)
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*where Eki n is the kinetic energy of the ejected electron and ~(n313)

is the binding energy of the an n313 electron in an atom which already

has an n212 hole. This process is known as Auger emission [5(a)].

The probability of ejecting an Auger electron relative to that of

fluorescent decay generally decreases as atomic number increases for a

given nll l hole [5(a)]. The selection rules on Auger emission are not

as strict as those in photoelectron emission, so that a number of

final state (If,mf) combinations can be involved; however, the

effective averaging over these combinations which occures has been

shown to allow approximating the final state of the Auger electron as

an s-wave or (If,mf) - (0,0) [6]. Except for these differences in the

final state associated with the emission process, a scattering Auger

electron will behave identically to a scattering photoelectron at the

same energy, in spite of erroneous statements to the contrary in the

recent literature [7]. Since the final kinetic energy of an Auger

electron depends on the internal energy levels of the emitter, Auger

electron diffraction also is sensitive to the nature and the chemical

state of the emitter [5(a)].

A typical experimental geometry has been shown in Fig 1.1.

Measurements can be done in three different modes, as shown in Figure

1.2. These modes are, scanning azimuthal angle (8 and Ek, are kept
1n

constant while ~ is varied), scanning polar angle (~ and Ek, are kept
1n

constant while 8 is varied) and scanning energy (8 and ~ are kept

constant while photoelectron energy Ek, is varied by sweeping hv).
1n
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The scanned energy mode is often referred to as angle-resolved

photoemission extended fine structure (ARPEFS). The first two modes

can be carried out in a normal laboratory environment with a

conventional x-ray tube (or for Auger, also an electron gun) as

excitation source, but the scanned energy mode requires a tunable

photon source such as a synchrotron radiation facility. Scanning

energy is obviously not possible for Auger emission, since the energy

is determined by the atomic levels involved. Laboratory sources

generally yield unpolarized radiation, so some sort of averaging over

the polarization f is involved. With highly polarized synchrotron

radiation, the direction of fcan be a very useful experimental

variable. Details of experimental procedures are found elsewhere [1].

In varying the polar angle 8, the azimuthal angle ~, or the

kinetic energy of the photoelectron Ek. , one also varies the
~n

amplitudes and phase differences between ~O and ~j in Equation (1-4).

The amplitude changes are due to the angle and energy dependences of

the photoexcitation process and the atomic scattering factors. The

phase differences are due to both path length differences between

waves (the aspect that carries all structural information) and the

scattering process itself. These differences in amplitude and phase

cause modulations in intensity. These intensity modulations, known as

diffraction patterns, can then in principle be traced back to the

geometric arrangement of the atoms around the emitter of the

photoelectrons or Auger electrons. However, this last step requires

the comparison of theoretical simulations of diffraction patterns for
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different trial structures with the experimental patterns. Deriving a

better method for carrying out these simulations is the topic of this

dissertation. A brief history of photoelectron and Auger electron

diffraction is given in the next paragraph, with an emphasis on the

previous theoretical developments leading up to the work discussed

here.

The first experimental work in x-ray photoelectron diffraction

(XPD) was by Siegbahn, Gelius, and Olson [8] who studied NaCl in 1970,

and by Fadley and Bergstrom [9(a)] who studied Au Ln 1971. The first

interpretations of such high-energy data at E
k.

= 1 keV involved the
~n

Bragg-like reflections in Kikuchi-band theory and were only

qualitatively successful in describing the experimental data [8,9].

The first quantitative theoretical explanation of these

diffraction patterns was by Liebsch in 1974 [10]. who considered

emission at much lower energies. A more detailed presentation of this

theory. including multiple-scattering effects. appeared in 1976 [11].

This theory was based on methods developed for describing low energy

electron diffraction (LEED) and hence required the assumption of full

translational symmetry parallel to the surface for the system under

investigation. It was limited to emission from atomic-like core

orbitals. In 1976, Pendry [12(a)], and subsequently in 1978, Li,

Lubinsky, and Tong [12(b)], presented similar theories for valence

photoelectron emission at typical ultraviolet energies including the

more complex nature of both the initial and final states involved.
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The first cluster-based theories of such processes utilized the

plane-wave approximation and single scattering, and were applied to

explaining extended x-ray absorption fine structure (EXAFS) by Lee

[13] and to low-energy Auger emission by Woodruff et al. [14]. The

cluster model was then applied for the first time to predicting

photoelectron diffraction curves by Kono et al. in 1978 and 1980

[15,16]. Cluster-based theories are inherently very suitable for PO

and AED in view of the spherical outgoing waves involved, the short

inelastic attenuation lengths, and the short-range order sensitivity

of these techniques. Within the framework of a cluster model, the

importance of forward scattering along low-index directions at high

energies> 500 eV was first discussed by Kono et al. [16] and the use

of these effects to determine bond directions was first demonstrated

by Petersson et al. [17].

The next major theoretical contribution was by Poon and Tong in

1984 [18] and by Tong, Poon, and Snider [19] in 1985; they made the

important observation that multiple scattering along low-index rows of

atoms tends to supress forward scattering intensity along rows, an

effect they called "defocussing". Further experimental work by our

group [l(b), l(c)], by Egelhoff and co-workers [20], by Chambers and

co-workers [l(d)], and by Bonzel and coworkers [21] further developed

the use of forward-scattering peaks in both XPD and AED for studying

epitaxial structures and adsorbed molecules.

The first cluster-based theory which included both spherical-wave

scattering corrections and multiple-scattering effects was due to
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Barton and Shirley in 1985 [22]. This method relies on a Taylor

series expansion in the magnetic quantum numbers to reduce the

complexity of the calculation. In 1985 and 1986, Rehr et a1. [23]

proposed spherical-wave corrections to single-scattering calculations

of angle-resolved photoemission fine structure (ARPEFS) based on a

separable approximation to the scattering Green's function. This also

is a cluster-based method. This method was generalized further for

single-scattering PD in 1989 by Mustre de Leon et a1. [24]. Further

extensions to include multiple-scattering with application to both

x-ray absorption fine structure [XAFS] and photoelectron diffraction

were reported in 1990 by Rehr and Albers [25], and this paper is a key

starting point for the work of this dissertation. The differences

between the treatments of Barton and Shirley [22] and Rehr and Albers

are discussed elsewhere [25] and in sections 2.4.7 and 3.2.4 to

follow. These approaches are similar in that they both use scattering

matrices to uncouple the nested sums over angular momentum indices

that plague full-sum theories such as those used in LEED. They are

different primarily in the way the scattering matrices are defined

and calculated. As noted, the method of Barton and Shirley (B-S) is

based on a Taylor expansion in magnetic quantum numbers. The

Rehr-Albers (R-A) approach is based on a separable approximation for

the propagator and has the correct behavior in both high and low

energy limits at low order; this gives the R-A method improved

convergence properties. (i.e. it appears that smaller matrices are

needed to achieve a given degree of convergence). In particular, the
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Rehr-Albers method reduces to the point scattering approximation at

lowest order.

The above summary is not intended to contain all important

theoretical work in the field, but rather the major contributions

relevant to the work of this dissertation. The aim of this

dissertation was to adopt and implement the method of Rehr and Albers

[25] to the simulation of multiple-scattering photoelectron and Auger

electron diffraction. We have also included the proper final state

interferences for PO from a non-s subshell; this has not been done

previously for a cluster-based multiple-scattering theory. The rest

of this dissertation contains two major chapters. Chapter 2 is

devoted to the details of the formalism by Rehr and Albers [25] as

applied to multiple-scattering PO and AEO. It also contains

computational details, a guide to the use of the computer program

involved, and comparisons of our results to prior theoretical and

experimental results as test cases. Chapter 3 is primerily new

results and will be submitted for publication. (Other short papers

based upon this dissertation have already appeared [26-28].)
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Figure 1.1. The general geometry for a photoelectron or Auger electron

diffraction experiment. The azimuthal angle ¢ is defined with respect

to an axis fixed in the sample surface. The polar takeoff angle 8 is

measured from the surface. The angle between the incoming radiation

~

and the outgoing wave vector k is a. The polar angle of the incoming

-to

radiation with respect to the surface is 8hv , ~v is the wave vector,

and ~ is the polarization vector of the radiation. The solid angle

accepted by the detector is 00'
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Figure 1.2. The three basic types of photoelectron diffraction

measurements: (1) an azimuthal (~) scan at constant polar angle,

sometimes referred to as azimuthal photoelectron diffraction or APD;

(2) a polar scan (8) at constant azimuthal angle, referred to as polar

photoelectron diffraction PPD; and (3) a scan of hv in fixed geometry

that can be done for emission either normal or off-normal to the

surface (denoted NPD or OPO, respectively). :he scanned-energy t~·pe

has also been referred to as angle resolved photoemission extended

fine structure or ARPEFS. Note that 8 is measured with respect to the

surface. Auger electron diffraction can be carried out either in mode

(1) or (2).
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CHAPTER 2.

THEORETICAL AND COMPUTATIONAL METHODOLOGY

2.1. INTRODUCTION:

In this chapter, we will discuss various aspects of the

theoretical simulation of photoelectron and Auger electron

diffraction. We will begin with the simplest approximation of

single-scattering in a finite cluster (SSC). with the scattering being

calculated in the plane wave (PW) limit [1-3]. This approximation,

discussed in detail in Section 2.2. is very easy to understand and

contains almost all of the crucial physical features of the

scattering. Then we will discuss the limitations of this approach and

consider first spherical-wave (SW) corrections [4-6] as a possible

improvement to it (Section 2.3). The agreement between experiment and

simulation is generally very satisfactory at this level of the theory.

But for a fully quantitative treatment that is applicable to all

geometries and energies, we must go further and explore the effects of

multiple-scattering [5-9] on the simulated diffraction curves.

Details of a new approach to multiple-scattering will be discussed in

Section 2.4. Section 2.5 discusses our methods for computin~ certain

important intermediate quantities. A user's guide to the FORTRAN-77

computer code used in these simulations is in Section 2.6. The

several computing environments in which the code has been run are

described in Section 2.7. Section 2.8 contains some applications to
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test cases and comparisons to prior theoretical and experimental

results, together with a discussion of the sensitivity of results to

input parameters. Section 2.9 contains our general conclusions

concerning the new method and our implementation of it.

2.2. SINGLE-SCATTERING CLUSTER MODEL IN THE PLANE-WAVE LIMIT:

The simplest approach to photoelectron diffraction simulations is

to use the single-scattering cluster approximation in the plane-wave

limit (SSC-PW) [1,2]. In this model, it is assumed that the portion

of the photoelectron incident on the scatterer has sufficiently low

curvature compared to the dimensions of the scattering potential that

it can be represented as a plane-wave at each scatterer (see Figure

2.1). This is the so-called small-atom approximation [3]. If it is

further assumed that the final state before scattering is a p-wave

(i.e., that apprpriate to s photoemission), then the final expression

->
for the intensity I(k) is [2]:

-+
Q II(k) e ·k exp{ -LO/2Ae}

+2 " "
f
j(8j

)

f ·R. --w. exp( -L./2A }
J R. J J e

j J

exp{-ikR.(1-cos8.) + 1Is.(8.)} 12
J J J J

(2-2-1)

-+
where k is the wave vector of the photoelectron and k its magnitude,

8. is the scattering angle as showu in Figure 2.2, € is the radiation
J



18
-.

polarization vector, and R. is the vector pointing from the emitter to
J

the first scatterer, LO is the distance from the emitter to the

surface, and L. is the total path length from the emitter to the
J

scatterer to the surface. W. is a Debye-Waller factor representing
J

the attenuation of diffraction by the thermal vibrations of the

scatterer. f
j(8j

) is the complex plane-wave scattering factor with

magnitude Ifj(8 j ) 1 and phase ~j(8j)' It can be calculated from

2max

f
j(8j

) - (2ik)-1 2 (2J.
j

+l )

2.-0
J

(exp(2i6 2 . ) - 1) P2 (cos8
j

) ,
J j

(2-2-2)

where .e. is the angular momentum of each partial wave, 6.e. is the
J

J

phase shift of the 2t h . 1 f h .th scatterer, and P2. is. partla wave or t e J
J

J

the Legendre polynomial of order 2 .. The limit on the sum is 2 =
J max

~T' where ~T is the effective or muffin-tin radius of the

scattering potential, as shown in Figure 2.1. For a typical case of a

Cu scatterer in Cu metal with R T - 1.28 A, this yields 2 - 7 for-11 max

100 eV, 21 for 1,000 eV, and 66 for 10,000 eV.

The magnitude and phase of this scattering factor for scattering

from Cu at energies from 500 eV upwards are shown in Figures 2.3(a)

and 2.3(b) respectively. It is interesting to note that the amplitude

of the scattering factor has a prominent peak in the forward

scattering direction and, only for the lowest energies less than 500.0

eV, does it have also a weaker and broader peak in the back scattering
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direction. The generally small phase shift in forward scattering (cf.

Figure 2.3(b» also implies that this peak in forward scattering

magnitude will produce enhanced intensity in that direction. This

effect has been termed simply "forward scattering" [2] or also

"forward focussing" (10). This feature is very valuable in the

extraction of structural information from experimental data [2]. But

not all of the peaks seen in experimental data at higher energies are

due to forward focussing; significant features can also arise due to

scattering at larger angles that produce higher-order interference

effects, as illustrated in Figure 2.3(c) for the simple case of a

two-atom eu chain. We can thus denote the forward-scattering peak as

"oth order" with 1s t, 2nd, 3r d, etc. order peaks expected at larger

angles [2]. Therefore, a full scattering calculation is required for

unambiguous assignment of all experimental peaks.

The quantity kR.(1-cos8.) in Equation (2-2-1) represents the
J J

geometric phase shift associated with scattering. This arises due to

the different distances traveled by the primary wave, ~O' and the

scattered wave, ~., as shown by the darker lines in Figure 2.2. This
J

phase shift thus contains bond length information. The l/R
j

attenuation of the outgoing spherical wave as it passes to each

scatterer shown in Equation (2-2-1) makes both photoelectron and Auger

electron diffraction short-range-order probes. There is an additional

attenuation of the photoelectron or the Auger electron due to the

inelastic mean free path in the solid, as represented by the factors

exp{-L
O/2A

} and exp{-L./2A } in Equation (2-2-1). €·k and €.R
J
.

e J e
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represent the s-level emission cross-section of the photoelectron in

the direction of the detector and the scatterer, respectively.

The plane wave approximation is computationally very efficient.

But it has the drawback of overestimating the intensity of the

forward-scattering peaks [4], as shown in one prior comparison of

plane-wave (PW) and spherical-wave (SW) results in Figure 2.4. In

this case, emission from an s-level (li - 0, If - 1) towards a single

Ni scatterer 2.49 Xaway is considered. The polarization f is kept

~

parallel to k. The PW results consistently overestimate the scattered

intensity in the forward direction over the entire energy range

studied: for energies less than about 200 eV, additional differences

are seen between the PW and SW results. The overestimation of the

forward peak is larger at higher energies, and it has in previous work

been corrected in an ad hoc manner by introducing an empirical

reduction factor of -0.4-0.5 to all scattering factors [11]. However,

without such corrections the simple PW approximation still yields

results that are very similar in form to those using spherical wave

scattering. Hence, it has been used to draw useful structural

conclusions for a number of systems [2].

2.3. SPHERICAL-WAVE AND MULTIPLE-SCATTERING MODIFICATIONS:

A first improvement possible to the SSC-PW model is thus to add

spherical-wave (SW) corrections. Here the assumption that the

curvature of the photoelectron is small compared to the scattering
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potential is abandoned and the photoelectron is represented by a

spherical wave [4-6,12-17]. As expected from Figure 2.4, this

modification results in a reduction in intensity of forward scattering

peaks, and it does improve the agreement between experiment and theory

for some cases. For example, Figure 2.5 shows a comparison of PW and

SW modeling as applied to a cluster representing c(2x2)0/Ni(001)

[4,19,20]. At 8 - 7.0° and ~ - 0°, we are just 7° away from the chain

of 0 atoms in the [100] direction. The PW results have a very

pronounced peak in this direction, but the experiment has only a small

peak that appears to be a doublet. SW theory is here able to

correctly predict a weaker doublet, although it is still too

pronounced. This last difference might be due to the neglect of

multiple-scattering effects along linear chains of atoms, an effect we

consider in more detail below.

In single scattering, we assume that there is only one scatterer

per path between the emitter and the detector. At higher electron

energies, this is a good approximation, provided that there are no

linear chains of atoms in the path. A single-scattering picture is

thus expected to be valid at higher energies when the emitter is in

the first 1-2 layers of the surface and/or the emission direction is

not parallel to dense rows of scatterers in low-index directions. If

there are linear or nearly linear chains of atoms in the path, one

must account for the 'shadowing' of some scatterers by others [5,21].

This shadowing leads to a significant reduction in intensity along the

chain axis, an effect that has been termed 'defocussing' [5J. There
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are several prior investigations of this shadowing or defocussing

effect using different theoretical methods [5,7-9). All of them reach

very similar conclusions.

The rest of this chapter is devoted to the first use of a new

theoretical method by Rehr and Albers [17] for treating multiple

scattering in photoelectron and Auger electron diffraction. We will

also present some simulations of experimental results in an attempt to

test the method and derive a general set of rules to determine when

and where multiple-scattering (MS) effects will be important.

2.4. APPLICATION OF THE SEPARABLE GREEN'S FUNCTION APPROACH OF REHR

AND ALBERS TO SINGLE· AND MULTIPLE-SCATTERING:

In this section we will discuss the application of the

scattering-matrix formalism of Rehr and Albers [17] to single and

multiple scattering in both photoelectron and Auger electron

diffraction. This full spherical wave method approximates the system

by a cluster of individual atoms. This is a sensible alternative to

LEED-type methods which require full translational sYmmetry along the

surface [5]. The cluster approach [2,13-15] is very appropriate to

short-range-order probes such as photoelectron and Auger electron

diffraction. In a recent work, the R-A method has been used in SSC-SW

calculations by our group for treating emission form a general n.l.
~ ~

subshell [18]. The multiple-scattering version of this approach has

been termed the multiple-scattering cluster-spherical wave (MSC-SW)



23

method to distinguish it from the SSC-PW and SSC-SW methods. In the

following paragraphs we present the crucial points of a new method for

doing MSC-SW calculations by Rehr and Albers (17). In the equations

to follow, we will for simplicity not include effects due to inelastic

scattering or vibrational motion, but the form in which these have

been incorporated will be indicated later.

We begin with some essential definitions and equations used by

Rehr and Albers (17). From Equation (25) of reference 17, the

photoelectron diffraction intensity at the detector is given by

de
dna: (2-4-1)

(N-l) thwhere GOO L is the (N-l) order multiple-scattering Green's function
, f

... ...
for a path from RO B R .tt (taken to be the origin) via scatterers

em~ er

.... ,
~ -+ -+ -+
R.._ to R.._ !II R Ell R at <Xl m, is the
-~-l -~ detector d 'Lf,C

amplitude and o~ is the phase of the dipole matrix element into a
f

Within the matrix element, wE kdenotes the final continuum state
kin' ...

~Z the photoelectron corresponding to emission into direction k (which

... ...
must be parallel to ~ - Rd), ~n.~.m. is the initial core orbital from

~ ~ ~

which the photoelectron is emitted, and € is the radiation

polarization vector. The sum is over L f - (if,mf) and over all

combinations of N, the number of atoms in a given scattering path from
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single-scattering (N - 2) to the highest order considered (usually

10 t h order or N - 11).

Let us now look at this matrix element in detail for the case in

which there are no scatterers, which is

(2-4-2)

But,

x/r Q sin9 cos¢> Q -Yll + Yl- l, (2-4-3a)

y/r Q sinfJ sin¢> Q Yll + Yl- l, (2-4-3b)

z/r Q cosfJ Q Yl O , (2-4-3c)

where Yl m is a spherical harmonic. Now we choose for convenience the

€ vector to lie in the z direction: € - € - a and € = 1.x y z

Substituting these values, together with Equation (2-4-3c) into

Equation (2-4-2) we obtain

(2-4-4)

We now expand both ~E kA and ¢> n in products of appropriate
kin' ni"imi

radial and angular parts. In expanding ~E k we make use of the
kin'

fact that it is a plane wave at the detector and then use the standard

ingoing-wave expansion for it [22] to get
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For ~ 1 ,we can simply write
ni imi

¢ n - R (r) Y n .m. (8 ,~).n.A;.m. n.l. A;
~~~ ~~ ~~

(2-4-5)

(2-4-6)

Here, RE n (r) and R n (r) are radial parts of the continuum
kin,A;f niA;i

orbital at if and a given core orbital with quantum numbers n. and .2.,
~ ~

... ...
respectively. The angles defining the detector along k or Rd are

(8k'~k)' although after integration over 8 and ~ in the matrix

element, we will later simplify this rotation to be (8,~).

By substituting Equations (2-4-5) and (2-4-6) into (2-4-4) and by

doing some simplifications, one arrives at

co.2 i

4~ 2 ~ [(-i) fexP{i6~f}
if-O mf--i<

x <Yi (8,~) R
E

i (r)
~f kin' f

x YIO(8,~)rIRn . .2. (r)Y.2.m. (8,~»],
~ ~ ~ ~

(2-4-7)
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where i< is the lesser of the pair ii and if' Since r, 0 and ~ are

independent variables, this reduces further to:

co i i

4~ 2 ~ [(-i) feXP{iO~f} Yifmf(Ok'~k)
if-O mf--i<

x <RE n (r)lrIR n (r»
kin'~f ni~i

x <Yi~f(O,~)IY10(O,~)IYiimi (o.~»]. (2-4-8)

The last factor in the summation in Equation (2-4-8) has (since

is known as a Gaunt coefficient. These coefficients are non-zero only

well-known dipole selection rule in photoelectron emission: if - £i ±
'" '"

1. (2) Im1 - m31 - m2. When to II z (as assumed also by Rehr and

Albers [17]) this condition forces mf = mi' This makes the final

expressions simpler, and it also prevents cross transition in m and

thus makes the calculation more efficient.

These two proporties of Gaunt coefficients can be used to

simplify Equation (4-2-8) further to yield,

x <RE n (r)lrIR i(r»
kin'~f ni i

x <Yi...m.(O,r/J) YlO(O,r/J)IY.e.m. (O,cP»]. (2-4-9)
t ~ ~ ~
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It is now convenient to define a core-to-~f matrix element ffi­
Lf·C

(where Lf • (~f.mf» in the notation of Rehr and Albers (R-A) [17] as

~f
(-i) <RE n (r)lrIR n(r»

kin'~f ni~i

X <Y~fmi(o.~)IYlO(o.~)1 Y~imi(o.~». (2-4-10)

so that Equation (2-4-9) becomes

" ~f
" -to 2 2<w IE' r I~ > - 411'Ek· .k n.~.m. ~f'c

1n 1 1 1 n _n +1 _en
~f .A:;i- mi ~f

exp( iO~ }
f

Equation (2-4-10) for ffi- can also be written in a shorthand
Lf·C

notation as

_ (3/411')1/2 . ~f 1
m, ( - 1 ) R n ( Ek . ) C (i f •m. •~ . •m• )
Lf.C ~f i.n 1 1 1

(2-4-11)

In the special case of emission

,I 1/2and v (~f,m .• ~ .• m.) - (411'/3)
1 1 1

where Rn - <RE n (r)lrIR n(r»
~f kin'~f ni~i

<Yo (O,~) YlO(O.¢)1 Y n (O.~».
~~i .A:;imi

into a single final state, (as, for example, for s emission (~. = m. =
1 1

0) to a p final-state (~f - 1. mf - mi - 0». we can ignore these

matrix element prefactors, as they become just scaling factors for the
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overall intensity. But they are extremely important in calculations

to more complex final states involving emission from 2i ~ a to the two

channels 2. ± 1.
~

In general, it is thus necessary to know both R2
f

cand 52 for this general case.
f

cAs one source, R2 and 52 have been
f f

tabulated for a number of free atoms at several energies by Goldberg,

Fadley, and Kono [22]. In this treatment, we will introduce these

factors only in the last sections to account for fully general

emission into

As noted

the 2i ± 1 channels.

. 1 G(N-l).
prev~ous y, 00 L ~n

, f
Equation (2-4-1) is the exact

multiple-scattering expansion for an N-leg scattering path with (N-l)

scattering events. It can be written, using Equation (14) of

Reference 17, as,

(N-I) -+
GOO L (RI,, f 2

{paths)

-+

t2. (~-l)
N-I

(2-4-12)

-+
where, GL L (P·+l) is a matrix element of the free-electron

j+I' j J

propagator in an angular momentum and site basis with L. 1 ­
J+

-+ -+-+
(2. I,m. 1)' L. = (R.,m.), p. 1 - k(R. l-R.) is a "bond vector" in

J+ J+ J J J J+ J+ J

units of 2~(number of electron wave lengths), and t R - exp{i52}sin52

is a diagonal elements of the t-matrix for scattering. A graphical

representation of one of the paths in G6~-t) is given in Figure
, f
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2.6(a). The summation is over all combinations of intermidiate L
i

and

all possible scattering paths of (N-l) order in the cluster. The

-+
matrix elements or intermediate propagators G

L
L (p

j
1) in the

j+l' j +

above expression can thus be thought of as giving the strength of a

-+
given L

j
+l component of spherical waves centered on Rj +l as contained

-+ -+
in the component L

j
propagating outward from R

j.
At each Rj +l ,

-+
t~ (R. 1) then accounts for the effects of scattering on the next

j+l J+

outgoing components. The last ~ - (~N'~) is restricted to (0,0)

because it represents the projection of ~-l at the last scattering

...
center into a plane-wave at the detector R

d
an infinite distance away.

One can qualitatively see this limiting character in the expansion of

Equation (2-4-5),

infinity, the sum

for which, since R
d

II k, () -+

over mf becomes \ IY~ 12

L fIlf
m

f

()k and tP -+ tPk at

(21+l)/4~ via the

Unsold Theorem.
-+

A form frequently used for GL L (Pj +l ) • GL L'(P)
j+l' j ,

[23] is, in R-A notation:

GL,L' (p) = 4~ 2
L"

(2-4-13)

h h (-+) .1 h(+)(' ) Y (") Awere, L P - 1. ~ '~P ~m P , P
-+ and h (+)pip, 1 is an f'l.1tgoing

spherical Hankel function that can be written in its usual form as

.-1
~ exp{ip}/p C1( p ) , (2-4-14)
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or, in terms of the variable z - l/ip as

(+) - (.e-l)
hi (z) - i exp(l/z) z Ci(z). (2-4-15)

Another use of the coefficient GL,L' is in the so-called addition

formula for the translation of spherical waves from one center at the

...
origin to another at a:

Yim(r)
-to -+ -to .......... -to

ji(klr - al) Yim«r-a)//r-al), (2-4-16)

where ji is the i
t h

spherical Bessel function.

A more convenient form for subsequent development is the defining

integral for GL,L'(P) [17]:

(2-4-17)

where the YL's are spherical harmonics with L = (2,m) and the j2's

again spherical Bessal functions.
... ...
rand r' are arbitrary

-+ -+
displacements about Rand R', respectively.

The major contribution of Rehr and Albers [17] was to develop a

...
convergent separable approximation to GL L'(P). Details of their,
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procedure are given elsewhere [17] and we will thus present only a

brief outline of their method and results. The first step is to use

...
rotation matrices to rotate a given bond direction corresponding to p

-+ -+
- k(R-R') onto the z axis to simplify the calculation. Then one has

after some manipulation,

i

G (...) [ {.}/] 2R
m

i
jj

( pA- 1 )L L' P - exp 1p p,
Jj--i

(2-4-18)

i A

where R ,(p) is a rotation matrix which rotates p onto the z-axis,
Jjm

R~m(;-l) is the inverse of this matrix, and gi1~') is a reduced,

dimensionless z-axis propagator. The general Euler angles (a,p,~)

associated with the rotation are shown in Figure 2.7. They start at

XYZ, rotate by a about Z to yield X'Y'Z, rotate by p about Y' to yield

X"Y'z, and finally rotate by ~ about z to

rotation matrices have the property that,

yield xyz.
i A

if R (p)­
mjj

The associated

iR (a,p,~), then
mjj

For more details on rotation angles and

matrices see Sections 2.5.2 and 2.5.3. Equation (2-4-18) is

equivalent to Equation (9) of Reference 17, but we have used p to

-+ -+
represent the Euler angles of R-R' with respect to z, in place of the

OA used by R-A.
p

...
The first step thus separates GL L'(P) into purely,

angle-dependent rotation matrices and a radial z-axis propagator

gj1~1) that depends, through k, on energy.

The second step in the R-A method is to achieve a separable

approximation to the radial z-axis propagator gi1~') This proceeds
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by deriving the following form for gi1~') [Appendix A of Reference

17]:

(2-4-19)

where Nl~ and Nl'~ are normalization constants for spherical harmonics

as Nl~ - [(21+l)(~_~)!/(1+~)!]l/2, z - l/ip, P~(cosO) are associated

Legendre polynomials, and cosO - (I-x). This form can be further

simplified using contour integration methods to yield the final

fully-separated equation for gi1~') [Appendix B of Reference 17]:

min[l,l'-I~I]

gi1~')(p) - 2 l~v(P)
v-o

(2-4-20)

where, min[l,l'-I~I] - the minimum of 2 and 2-1~1 a [2,2'-I~I], P-

(2-4-21)

and

(2-4-22)
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Here, C£(z) is the polynomial part of the spherical Hankel function as

defined previously in Equation (2-4-15), and c~v)(z) - 8vC£/8zv.

Computational details concerning the evaluation of the C£'s and c~v),s

are given in Section 2.5.1.

Combining Equations (2-4-18) and (2-4-20) now yields the final

form of the R-A separation:

-to

GL L' (p),

min[£,.2' -I~I]
'\ -£L -y~v<p)

v-a

which can be rearranged as

-to

GL L' (p),

min[l .L' -I~I]

2
v=o

(2-4-23)

This can be further simplified by letting A represent the expansion

indices (~,v) and by defining the two bracketed quantities to be

(2-4-24)

and,

(2-4-25)
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to yield finally

-+
GL L' (p), (2-4-26)

The factors involving Land L' are thus fully separated in this

description, a key advantage of the R-A method, as we will see below

in applying it to various cases in single- and multiple-scattering.

In addition, the sums in Equation (2-4-23) are found to be

rapidly convergent, so that in practice results of very high accuracy

are obtained with I~I S 2 and v s 1. This is the principal advantage

of using this method as far as calculation times are concerned. We

comment more on the consequences of working at this level in Section

3.2.1.

The results of this separable approximation can now be

substituted into Equation (2-4-12) to yield the principal equation of

the R-A method as applied to photoelectron and Auger electron

diffraction:

(2-4-27)
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termed "scattering amplitude matrices" and are given by

-. -.
FA A (Pk,Pk- l)k' k-l

.e
- k-l
~~ 'v (Pk- l),k-l k-l

(2-4-28)

.ek '" "'-1
with the composite rotation matrix R~ ~ (Pk,Pk-l) corresponding to a

k k

rotation first of P
k

into z and then z

-+ -+
amplitude matrix FA A (Pk,Pk- l) can

k' k-l

-+
into Pk- l. The scattering

thus be thought of as a

generalized spherical-wave scattering factor associated with the site

-+ -+ -.
at ~ and specific choices of scatterers at ~ and ~-2 (cf. Figure

2.6(b».

The "termination matrix" involving the first and last factors in

(N-l) .
G 00 L is g1ven by

, f

(2-4-29)

Lf,OO -+ -+
is equivalent to MA A (Pl,PN) used by Rehr and

l' N

Albers [17]. For photolectron and Auger electron diffraction, where

the detector is at infinity, W can be simplified further via
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(2-4-30)

where we have dropped the subscript N on A and p for the simplicity .

.£ " -1 1/2"-1 0 " -1
Note that because R~O(p ) - [4~/(2.£+1)1 Y.£~(p), then R~O(p )-

o "-1o for all ~ ~ 0 and R~O(p ) - 1 for ~ - O. Then Equation (2-4-30)

becomes, from Equation (2-4-22),

(2-4-31)

When the detector is at infinity, p ~~, CO(~) ~ 1, c~v)(~) - 0 for

all v ~ 0, and c~v)(~) - 1 for v - O. Hence from Equations (2-4-30)

-00and (2-4-31), r A (PN ~~) - 1, and
N

OO,L
f ~ ~

tJA A (PN,Pl)
. N' 1

(2-4-32)

~

Note that this important termination quantity does not depend on PN -

As indicated before in connection with Equation (2-4-4), the z

axis is as~umed to be along the polarization vector E, as it

simplifies the resulting expressions by requiring mi - mf. This means

that whan a photoelectron is ejected for an initial state (.£.,m.) the
~ ~

final state should be (!.±l,m.). We will include this simplification
~ ~

in all applications of the R-A method to follow.
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2.4.1. The General Single-Scattering Intensity in Photoelectron

Diffraction:

The single-scattering intensity in photoelectron emission from a

general L. - (ii,m.) core level can now be written from Equation
1 1

(2-4-1) for N - 2 as

x [

mL (e) exp(iS~ )
f'C ..f.f12

L f-(i·+1,m.)1_ 1

(1) ....
.. ~) + GOO L (R.,Rd, f J

(0) ..
GOO L (Rd

I f

(2-4-33)

-+ ... -+ -+
with the emitter as usual at the origin, P

j
- kR

j
, P

d
- kR

d
in the.. .. ..

first or direct wave term and Pd - k(Rd-R
j

) in the second or scattered

wave term.

GO(10) must involve a sum over j - 1,2, ... ,M, where M is the
,L

f

number of single-scattering
.. .. ..

centers at positions R1, R
2, ,~... ..

(R1, R2,··· . here thus have a slightly different meaning from the..
general-path R.'s in Equation (2-4-1) and Figure 2.6). The first sum

1

on Lf thus represents what can be termed the "direct" or "unscattered"

wave ~O (cf. Figure 2.2) and the second sum on Lf and, within G~~)L '
, f

Since aalso on j represents all of the singly scattered waves ~j.

nones core level will, in general, have (2i.+1) degenerate sublevels,
1

the final intensity observed must sum over emission from them
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1

-2 ~
m.--l.l. l.

(n. , 1 . ,mi -+ Ek. , 1.+1' m. ) .l. l. l.n l._ 1.
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(2-4-34)

For the l f - l i - 1 channel, there will only be 2(1 1-1) + 1 terms in

th1s sum. For the l f - l i + 1 channel, (21 i+1) terms must be

included.

First we concentrate on the direct-wave which is represented by

the Green's function From Equations (2-4-12) and

(2-4-18)

-+
- GOO L(Rd), f

1

[ { • }/ ] '\ ROOIL(P"d-l)- exp l.pd Pd L ,..
p.--l

(2-4-35)

° "-1As stated earlier, ROp.(p ) is zero for p. ~ 0, and the only

surviving term in the summation is p. - 0. This allows us to use the

following relations to simplify the expression for the direct-wave

Green's function:

(2-4-36a)

and a special case (~ o and J.I. ~ 0) of Equation (2-4-36a),
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(2-4-36b)

and another special case (~ - 0 and ~ - 0) of Equations (2-4-20) -

(2-4-22)

(2-4-36c)

-+
By defining (8k'~k) to be the angles of k with respect to the

polarization vector f (and hence the z axis), one can thus rewrite the

direct-wave Green's function as

(2-4-37)

-+
angles of Rd with respect to the z axis.

(1) -+-+
The single-scattering Green's function, GOO L (R.,Rd), can be

, f J

expressed, using Equation (2-4-12), as follows:

-+ -+
t~ (R.) GL L (p.),

j J j' f J
(2-4-38)

-to> -+- -+ -+- -+-+
where Pj - k(Rj-(RO-O» and Pd - k(Rd-Rj). This geometry is shown in

Figure 2.8. As noted previously, one can express t 1 in terms of

partial wave phase shifts °2 as t i - exp{ioi} sin(oi).
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Using Equation (2-4-18) one gets the following expression for

(2-4-39)

Writing g in terms of 7 and ~ from Equation (2-4-20), one now

gets,

2 [exp (ip d) / pd]

(j), (L
j

)

(2-4-40)

Since the (~,v) combination occurs frequently, we will often use the

simpler notation in which ~ = (~,v); when they do not occur together

we will keep the original notation.

As another important simplification, note from Figure 2.8 that

-+
R -+

d

-+ -+
and hence the above expression becomes IRd - Rjl =

-+ -+
when R

d
» R

j
,

OJ, 8' -+ 8.
J

one can write Also as
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Pd from

The

-+ -+
Rj I - IRdl - Rj cos6 j, and

-+ -+ -+
IRd - Rjl - klRd I - PjCOS6 j.

-+ -+ -+
IRdl - IRjl cos 6r Thus, IRd -

the scatterer is found to be k

exponentials in Equation (2-4-40) thus become exp(ipd} exp(iPj
} - exp

-+ ~

(i(klRdl - Pjcos6j + Pj)} - exp(iklRdl} exp(iPj(1-cos6j)} - exp(ipd}

exp(iPj(1-cos6j)} with Pd - kRd now defined as in the direct wave case

considered earlier. p.(1-cos6.) is thus simply the phase shift
J J

difference between the direct wave and the jth scattered wave, as

caused by the path length difference Rj(1-cos6 j). Equation (2-4-40)

can thus be written as

(2-4-41)

By considering explicit sums on 1. and ro. and by realizing from
J J

Equation (2-4-36a) that Rg~,(Q,P'1) - (4~)1/2 YO~,(P,1) is defined

only when ~'-o, one can simplify this expression. The facts that

o v' v'
10v,(Pd) - Co (zd) zd / v'! (cf. Equation (2-4-21» and CO(zd) - 1

oimply that 1
0v'(Pd)

~ 0 only when v' ~ O. This makes v' - ~ the only

surviving term in that summation. Hence A' - (~',v') - (0,0) for

o A -0 .
single-scattering. This makes ROO(Pd) - 1.0 and 100(Pd) - 1.0 ana we

have
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(2-4-42)

Notice that the m. sum can considered to be a composite rotation.
J

Hence, it can be written in general as

(2-4-43)

" "
where this composite rotation is Pd into z and z into P

j
' Combining

Equations (2-4-42) and (2-4-43) yields,

(2-4-44)

A"

where, with suppression of the j subscript on i,



ML,OO discussed by R-A.
A1,AN
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and,

OO,LfAs noted previously, the quantities Ware equal to the quantitiesAN,A1
OO,Lf ~

Note also that W,\ ,\ do not depend on PdN' 1

due the fact that the detector is at infinity (cf. Equations (2-4-29)

- (2-4-32». (See also for example, Equation 7 in reference 18.)

The total intensity for a single final state Lf-(lf,mf) is thus

calculated for single scattering from:

l
I

L
( 1 ) (k , 8 , -I. ) a I (-1.') f ('''c) R (E ) <n 1101 n >f ~ exp 1.Q i-

f
if kin ~~i ~imi

[
(0) ~ (1) ~ ~ ] 12

x GOO L (Rd) + GOO L (R.,Rd) ,
, f ' f J

(2-4-45)

where we have now let Ok ~ 8d ~ 8 and tP
k
~ tPd ~ tP for simplicity. We

have also cancelled out a trivial factor of exp{-ipd} eXP{iPd}/Pd
2 ­

-2Pd that simply allows for the spherical-wave character of the

outgoing flux. Examples of such single final states would be the

p-wave final state in s photoelectron emission (Li=(O,O) ~ Lf-(l,O»,
A A

noting again that we take f II z , and the often used s -wave final state

approximation for Auger electron emission (Lf-(O,O». For such cases,

the excitation matrix elements and phase shifts in Equation (2-4-45)

can simply be omitted, as they yield only a constant factor. In a
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more general case such as p-wave initial state photoemission into s-

and d-wave final states, one has to add final amplitudes with correct

relative phases and to sum over the various mi excitations possible.

In general, the final intensity in this case can be written with

Equation (2-4-34) as

c
where 0.e

f
is the core level phase shift and Rn (Ek. ) is defined

~f an

previously. The integral <.e~. 110I.e.m.> is a Gaunt coefficient to
t ~ ~ ~

within a multiplication factor of (4~/3)1/2. The explicit form of

Equation (2-4-46) is

exp(io:) Rn(Ek. ) <.e~.1101.e.m.>
~f JC. f a.n 1: ~ a, ~

(2-4-47)

A"

which is a generalization of of the equivalent Equation (26) in

Reference 17.
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We also note that W is dependent only on the initial (Lf ­

(If,mf)) and final (Ld - ~ - (0,0» states. We will thus find that W

has to be calculated only once for given L
f

channel, whether it passes

through a single or a multiple scattering path. Thus, one can perform

multiple-scattering calculations for non-s initial states without much

additional computer time. As an example, for a 23 atom (J3xj3)R30
o

Ag

on 5i(111) cluster the correct d ~ f + s final state calculation takes

only 5% more time than an approximate s ~ p final state calculation.

The range of the index v is given in Equation (2-4-20): 0 to

min[l,l'-I~I]. So far we have not imposed restrictions on the

The dependence of the coefficients ~ (p) and
~v

~ ~ -(2v+ lL ) -(2v'+~')
that FAA,(p,p') a (p) ~ (p') for~ (p) on p implies

~v

large p and p'. p. - kR. is generally greater than unity, even for
J J

the smallest bond lengths, since nearest neighbor distances are always

summation index ~.

several atomic units and k for excitation above threshold is greater

than the Fermi momentum kf (~1.0 in atomic units) [17]. This

suggests the possibility of truncating the summations on ~ and v, and

we now consider several levels for doing this. Keeping only the

largest matrix element yields the effective curved-wave scatttering

amplitude F6g)00 for point scattering and a (lxl) matrix. Going,

beyond this requires recalling the restrictions on (~,v) set by prior

definitions:



IJlI :S .2,

v ~ 0,

v + IJlI :s 1.
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(2-4-48a)

(2-4-48b)

(2-4-48c)

In view of these, a calculation that is first order in lip for

larger p could contain only non-zero (JI,v) - (0,1), (+1,0) and (-1,0),

leading to a (lx3) matrix for F~~~ whose elements are given in single

scattering by Equation (2-4-44). (Note here that F is a column matrix

due to the fact that the detector is at the infinity.) Going to

second order in lip permits including additional non-zero (J,l,v)

(0,1), (2,0) and (-2,0) to yield a symmetric (lx6) matrix whose

elements are given again by Equation (2-4-44). This second-order

level of truncation, fortunately turns out be fully adequate for

accurate numerical calculations, as discussed both by Rehr and Albers

[17] and in Section 3.2.1. For third order one has to consider four

additional combinations; they are (0,3), (0,-3), (1,1) and (1,-1).

Third order thus corresponds to a (lxlO) matrix for F~~~. Fourth

(4)
order corresponds to a (lx15) matrix for FOA"

1f "
We also note that since R" (p.) is not defined when JI" > 1f or

J,l mi J

OO,Lf -+

mi > .2 f [29], Woo,A"(Pj) is also not defined under these conditions.

These restrictions thus impose a limit on JI values allowed by order

(IJlI + 2v) in single scattering. For example, in .2c - ° to simulate
.L

Auger emission, only JI = 0 is allowed. Therefore, only the first term

in the F matrix has to be calculated in single scattering. Thus, for

Auger emission oth order or (lxl) matrix theory is exact in single
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scattering. For if - I, the largest ~ value allowed is 1 and hence,

nd2 order or (lx4) matrix theory is exact in the single-scattering

level and the allowed (~,v) combinations are (0,0), (±l,O), and (0,1).

(Note that in single scattering the F is a column matrix due the fact

that the detector is at infinity.) For if 2, the next two

combinations (±2,O) allowed by the 2nd order and (±l,l) allowed by

rd
3 order theory makes the (lxS) matrix theory exact. For if - 3, it

is a (lx13) and for if - 4 it is (lx15). It should be stressed that

the aforementioned conclusions are true only for single scattering.

In multiple scattering more than one scattering matrix is involved and

such straightforward conclusions can not be made.

In the next three subsections we explore in detail a few final

states of specific interest. This includes if - a, which can be used

to approximate the final state in Auger electron diffraction [2b], if

= 1 to represent p-wave final state photoelectron diffraction and if

0,2 to describe p ~ s + d photoelectron diffraction. In the section

following these three subsections we extend this formalism to the

fully general case of non-s emission with multiple-scattring.

2.4.2. Single-Scattering Intensity for an s-Wave Final State:

The most simple case we consider in scattering is the s-wave

final state, an approximation often used in Auger electron emission
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[2(c)]. In this case 1f - mf - O. Hence the direct-wave is

(2-4-49)

According to Equation (2-4-48b), the fact that Lf - (0,0) forces

W to be a (lxl) unit matrix. That is,

(2-4-50)

Therefore, the only contributing term in the F matrix is FOO 00' This,

indicates that the R-A formalism is exact at the zeroth order for

s-wave single-scattering. Now one can write,

(2-4-51)

j

where, again with the supression of the j subscript of 1,

~ ~

FOO,OO(Pd,P j )
\ 1 1 A A_I -1- L t 1(Rj ) ~OO(Pd) ROO(Pd,P j ) ~OO(Pj)
1

-2(21+1) t 1 (Rj ) P1(cosO j ) C1 (Zj )

1

where, OJ is as before the scattering angle or the angle between Rd
A

and R
j

, and Zj - l/iPj
. Note that this scattering factor is

proportional to the plane wave result in Equation (2-2-2), but with



correction factors introduced via the C~'s.
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This type of correction

was first introduced by Rehr et al. in an earlier less general version

of this method [24].

The final intensity in this case is thus

M

I~1)(k,8,~) Q 11.0 + 2[exp{iPj(1-cos8j»/Pj]

j-l

X 2(2.2 j +l )

~j

(2-4-52)

• r O
2 1°0 2

and we have neglected the (l/Pd) and Imoo,ce 1 factors on the

right hand side of the equation as they are common to both the primary

and singly-scattered waves.

2.4.3. Single-Scattering Intensity for a s-Emission into a p-Wave

Final State:

We now write down the intensity for a p-wave final state in

single-scattering, as would correspond to s ~ p emission. Here we

will use the following identities that can be derived or taken from

our prior discussion and definitions:

L
f

= (1,0),

°ROO(O:,,8,"Y)
1

ROO(O:,,B,"Y)

- 1.0,

1/2
(4~/3) Y10(,8,"Y) cos,B,

(2-4-53a)

(2-4-53b)

(2-4-53c)
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(2-4-53d)

(2-4-53e)

(2-4-53f)

We now begin with the direct-wave; which is, from Equation

(2-4-18):

(2-4-54)

Here the RO term requires ~ to be 0, as stated previously. Then
O~

we have

(2-4-55)

where (a,p,~) are the Euler angles of Rd (or k) with respect to the

polarization vecter E. Then, from Equation (2-4-53),

(2-4-56)

One can choose the rotation so that the first Euler angle Q - °
and (0,P,7) - (O,9,~) such that (9,~) are the polar and azimuthal

angles between E and Rd (or k). In that case,

(2-4-57)
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" "with cosO then also being equal to E·k, the form seen in Equation

(2-2-1).

Now let us turn to the single-scattering amplitude, which can be

taken from Equation (2-4-44) as:

(2-4-58)

A"

where, with the supression of the j index on 2,

-2
1.

and,

The rotation matrices in the above equations are complex in

nature and deserve further scrutiny. In the convention used by

Edmonds [25],

R1. (") R2 (" ") R2 ( a ) _ eiJ.L~ d:",(a) iJ.L'~
J.LjJ' P - jJjJ' Z +- P '" J.LjJ' ~'I-"~ rrr: I-' e ,(2-4-59)
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1" 1
For a simple matrix like Rj.£"O(P

j
) - Rj.£"O(a,f3,'Y) in W of Equation

(2-4-58), one can choose the rotation such that a - 0, f3 - 9r and 'Y -

~r where (9r'~r) are the azimuthal and polar angles of Pj with respect

to the z axis. Therefore, the rotation matrix in Wcan be written as

1 1
R "0(0,9 ,~ ) - d "0(9 ).j.£ r r j.£ r (2-4-60)

Unfortunately, the composite rotation is not that simple. The

one for this case implies

(2-4-61)

Let (9k'~k) and (9r'~r) be the spherical polar coordinates of Pd
-10

(which is parallel to k ) and P
j

with respect to the z axis,

respectively, and denote the composite rotation angles by (a,p,-y).

Remember that the composite rotation is Pd -10 z -10 Pjo Since (O,9r'~r)

" "
corresponds to the z ~ P

j
rotation, one has to use Euler angles for

the inverse rotation, (-~ ,-9 ,0), in place of (0,9 ,~ ) in ther r r r

composite rctation. Then we have after mul t Lpl.yr.ng the two matrices

and solving [l8b]:

a = arg[(sin9 k cos9 r - sin9 r cos9 k cos(~k-¢r))

+ i(sin9 sin(¢ -¢k))]'r r
(2-4-62a)



p - acos[sin9 k sin9 r cos(~k-~r) + cos9 r cos9k],

~ - arg[(sin9k cos9 r cos(~k-~r) - cos9k sin9 r)

- i(sin9 k sin(~r-~k»l,
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(2-4-62b)

(2-4-62c)

with the derivation of these angles being given in Section 2.5.2. Now

the composite rotation matrix can be written as:

iJj"~
e . (2-4-63)

i.Computational details of the determination of d , are given in
JjJj

Section 2.5.3. Equations (2-4-58), (2-4-60) and (2-4-63) can be

combined to yield the final expression for s-emission and/or p-wave

final-state single-scattering:

[exp(ip.(1-cos9.)}/p.]
J J J

(2-4-64)

where, with the supression of the j index on i.,
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with p from Equation (2-4-62b), and,

Finally, the intensity is given by

a Ij3 cosO + 2[exp(iPj(l-cosOj)}/Pj]

j

X 2F00, ,\"(pd 'Pj )
,\"

(2-4-65)

2.4.4. Single-Scattering Intensity for p-Emission into sand d

Final-State Channels:

In the case of p emission, one has two final-state 1 channels:

s-wave and d-wave. Once they are calculated they should be added with

the appropriate phase factors to get the final amplitude. We have

already worked out the simple s-wave final state in detail. Now we

consider the d-wave final state. This case, in contrast to those

considered previously, has five possible channels. They are -2,

-1, 0, 1, 2. But our continuing choice of f to be along the z axis

imposes the restriction m
i

= m
f.

Since the initial p-state has only
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mi - -1, 0, 1, there are thus only three possible channels

corresponding to m
f
- -1, 0 and +1. Hence one has three possible

direct d waves and three corresponding W matrices. The F matrices, as

we have noted earlier. do not depend on the final state. Calculating

the direct-wave Green's function for the cases of relevance yields,

from Equation (2-4-35) the general expression:

(2-4-66a)

The specific values of the above expression are, from Equations

(2-4-36):

To get the single-scattering wave, we begin with Equation

(2-4-44) and substitute Lf - (2,-1). (2,0) and (2,1):

(2-4-67)

where, with the supression of the j index on i,
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-2
i.

and,

00,2mi ~ 2 2 A

WOO,~" (pJ. ) - 7~"(PJ') R" (p.).P. mi J

As we have stated earlier, only the W factor changes with the

precise specifications of Lf. Everything we said previously about

rotation matrices still holds. This is true for all higher i.'s. That

is, the derivation for other final states of interest is trivial. The

final intensity for the p-wave initial state problem in single

scattering is thus:

i.
(-i) fexp(io~ ) Rn (Ek. ) <i..m.1101i.~.>

~f ~f ~n ~ ~ ~ ~

a I (_i)2 exp(io~) R2(Eki n) <1-111012-1>

M

X [(15/2)1/2 cosO sinO exp(-i~) + \ [exp{ip.(l-cosO.)}/p.jL J J J
j-l
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M

+ I {(_i)O eXP(i60
c) RO(Ek. ) <10110100> [1+\ [exp(ip.(l-cosO.)}/p.)

~ L J J J
j-1

x \ (2i.+1) t i (R.) p~ (cosO) C~ (z.»)l +
L J j J j j J
i

j

{(_i)2 eXP(i6~) R2(Eki n) <10110120> [J5 (3cos20 - 1)/2

+\ [exp{ip.(1-cosO.)1/p.)L J J J
j

\ 00,20 2
x L F00, >." (;d ; j) WOO, >." (;j ) j} I

>."

+ I (_i)2 exp(i6~) R2(Eki n ) <11110121>

M

x [_(15/2)1/2 cosO sinO exp(i~) + 2[exp{ipj(l-cosOj)}/Pj]

j-1 .

(2-4-68)

Again t~. ­
J

exp{io~.} sin6~. is a t-matrix element at site j.
J J

P.e . (cos 0) is a
J

Legendre polynomial of order ~., and Ci (z) is the polynomial part of
J j

the spherical Hankel functions in the variable z - l/ip.

This expression illustrates a general feature of the final-state

inteference between if - ~i ± 1 channels that will convay th~ough all

our results: inteference can only occur between final-state channels

with the same mf - mi values. Thus, we can see it only between Lf ­

(0,0) and Lf - (2,0). For the more general case to be treated below,
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this will mean that inteference arises between l
i

+ 1 and l i - 1 only

for the mf - mi values of l i - I, l i - 2, , -(l i - 1).

It is known in general that, at the higher energies of ~ 500 eV

typical in x-ray photoelectron diffraction, the (1-1) component

becomes less significant compared to the (1+1) component in emission

from a state with angular momentum 1 [22]; that is, one might here be

able to make the assumption, R2(Eki n) » RO(Eki n), thus neglecting the

s-wave contribution in emission from a p-initial state. This

approximation, however, should be tested for each individual system

involved, as a calculation of these matrix elements for a number of

elements up to the 1 keV range yield ratios R2/RO that are only as

large as -2-4 [22].

2.4.5. Multiple-Scattering Intensity for Emission from a General

Initial State:

We here discuss emission from a general L. - (l.,m.) initial
~ ~ ~

state to a set of general final states, but with the important

addition that multiple-scattering paths of arbitrary order are

considered. The direct wave in this case is identical to that given

in Equation (2-4-37). By definition a multiple scattering path

contains the emitter and more than one scatterer. Different aspects

of a typical multiple-scattering path are shown in Figure 2.6. Our

notation for the various vectors needed to unambiguously describe a

complete set of multiple-scattering paths will be more explicit than



59

that of R-A, although we will remain as close to it as possible.

-+
Specifically the emitter is still taken to be at RO - 0 and the

vectors of all other scatterers R. and the
J

-+
detector Rd are measured

with respect to this origin. To keep track of a given typical

-Jo. -+ -+ -+ -+ -+
scattering path RO' Rl , RZ' .. , , ~, ~+l • Rd , we will designate all

-+
Rj Z' etc., up to a

possible first
-+

scatterers by Rj l'

thgeneral k

all possible second scatterers by

The vector used in the

-+
arguments of the F and W matrices we can then calculate from p. j

J k k-l
-+ -+

k (R. - R. ), with two indices now required due to the many paths
Jk Jk-l

involved.

-+

-+
For the first step in a path, this is simply P

j l

P
j

in the single-scattering discussion of the prior section. For the

-+
last step in any N-event path, Pd .

,I N

simplicity, since this vector always points from the last scatterer to

the detector at~. In multiple scattering, there may be several

consecutive scattering events, including those in which the

photoelectron is scattered off the emitter at some step after a first

scattering event on another site. In this case, we will treat the

emitter as a neutral atom even though it contains a core hole. The

-+
presence of this core hole could affect the phase shifts 0i (RO)o
somewhat, but final state screening is expected to reduce this effect,

so we have chosen to ignore it here.
-+

The restriction on p.. is
JkJk-l

that jk ~ jk-l for all k: that is, the photoelectron cannot be

scattered off the same atom twice in a row. In this notation, ji can
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represent any atom of the M atoms in the cluster, including the

emitter. The summations in any of the multiple-scattering paths to

follow will thus be over (M-1) jk values at each order in a path, with

the restriction that jk ~ jk-1 for all k. We will not write this

restriction explicitly in equations, but indicate such sums only with

the set of indices (j i) .

th
The N order multiple-scattering Green's function in

photoemission to a state Lf - (~f,mi)' can now be written following

Equation (2-4-12) as,

(2-4-69)

-+ -+
where we have now added ~+1 • Rd so that the scattering order is

directly given in G6~)L' This general Green's function can now be
, f

written in terms of the prior Wand F matrices, again using the

notation A - (~,v) to make expressions more compact. This is very

useful in multiple scattering where several (~,v) combinations are

involved.

Th 1 d ' 'f' Luati f h' G(N)e steps ea ~ng to a spec~ ~c eva uat~on 0 t ~s 00 L are
J f

very similar to those shown in detail for the single-scattering cases.

Therefore, we will omit details here and directly write from Equations

(2-4-27) and (2-4-69)
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~ ~ OO,Lf ~
F). x (p. j .e, ) WOO). (p j ),

2 1 J2 1 J1 'N 1
(2-4-70)

with the second subscript of W equals to 0 due to the fact that the

detector is at ~.

Now we look at each factor in the above expression in detail.

First, we consider the prefactor involving the exponential term. This

can be written in terms of scattering angles. The notation we use for

angles is as follows.

9.. - angle between vectors p. . and p.. ,
JkJ k-l Jk+lJk JkJk-l

" A

(2-4-70a)

~

which is the true scattering angle for the event at R. , and
Jk

" " (2-4-70b)

which is the angle required for calculating the path length difference

" ->
along p.. leading to the event at R..

JkJ k- l J k
Then, by repeated usage of

the argument used to obtain Equation (2-4-41), we can show that
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(2-4-71)

After the last scattering event, the photoelectron escapes

towards the detector. This last event, or the first event in a time

reversed sense, involves a finite and an infinite distance and is

-+ -+
represented by Faa ~ (Pd,P j j ). This F matrix is identical in

, N N N-I

structure to the one we worked out in the single-scattering case. The

W matrix as defined in Equation (2-4-44) depends only on the

polarization the incoming radiation and the position of the first

scatterer relative to the emitter; thus it does not require any

modification either. The only other factors left to calculate are the

-+ -+
matrices F~ ~ (p.. ,po • ) involving two finite distances.

k k-l JkJk-1 Jk-IJk-2

The general form of these is identical to that given in Equation

-+ -+
(2-4-28) for the two bond vectors PI and P2 connecting these atomic

positions:

)-2
.£

(2-4-72)

Now combining the above equations, we have,
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(2-4-73)

where,

and,

Now, as an specific example, we write out the above general

equation explicitly for fifth-order multiple-scattering:
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...... ...... OO,Lf ... ]
x FA A (p • . 'P j . ) FA A (p j j 'P j ) WOO A (p j )

3 2 J 3J 2 2J 1 2 1 2 1 1 'l 1
(2-4-74)

(2-4-75)

In some of our numerical simulations involving small clusters of ~ 40

atoms, we have used the equivalent expressions up to tenth-order

multiple-scattering.We will later use the above expansion in the

discussion of structure of the computer code used for numerical

simulations.

The final expression for the intensity for a single final-state
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(N )
I
L

max (k,9,q,)
f

co

\ Go(No)n (it ,R., ... ,R. ,R
d

) ] 12
.

N~2 ' x.f'li J 1 J 2 J N
(2-4-76)

where N is the highest scattering order included. On the rightmax

hand side of the above expression, the first term represents the

direct wave, the second the singly-scattered waves and the final

summation the multiply-scattered waves up to all orders. In practice

we go only up to the tenth order mu1tip1e-scattring (N - 10).max

For emission from all the initial magnetic sublevels .e.m. into
1 1

two final state channels .ef - .e. ± l,m. we have the fully general
1 1

result

(2-4-77)

I h b . G(O) h d' G(l)n tea ave expresslon OO,if'li represents t e lrect wave, OO,.ef'li

the singly-scattered waves, and G~~~.ef'li in the summation represents

the Nth order multiply-scattered waves. Equation (2-4-77) can be

written more explicitly as,
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(N )
I max (k (J .J.)

n i. ",/,
i i

(2-4-78)

OO,L
f

where FOO \ , F , and WOO \ are given with Equation (2-4-73).
,AN AkAk_ 1 '''1

2.4.6. Inclusion of Inelastic Scattering, Vibrational Effects,

Instrumental Angular Averaging and Unpo1arized Radiation:

We now consider the inclusion of several additional effects that

are essential for a quantitative comparison of theory and experiment:

inelastic scattering, vibrational effects, intrumental angular

averaging, and the possible use of unpolarized radiation.

A fully rigorous method for including inelestic attenuation is so

far not available, and thus we use the common phenomenological

approach of an exponential decay of the amplititude of each component
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of the photoelectron wave with the distance travelled in the solid

before escaping through the "surface". The surface here is a plane

used to define both the cutoff of inelastic scattering and the

location of possible refraction effects due to the inner potential Vo
(as discussed below). If the distance travelled along a given path is

L and the inelastic attenuation length for photoelectron intensity is

h , then the exponential decay factor for the amplitude is
e

exp(-L/2h}. Incorporating such factors into Equation (2-4-78)
e

yields:

(N )
I max (k 8 A.)n 1. ,,'I'

i i

J.
Q 2/2 (-i) f eXP(iO~i RJ.iEki n) <J.rmi lOIJ.im i >

m
i

J. f

x [(4~)l/2 YJ.rmi(8) exp(-IROsl/2he} +

f
1

[eXP ( i P
J 1

(1-cos9J
1)

)/P
J 1

1 exp( -lit
J 1

8 1

~ ~ OO,Lf ~

FOO'A
l

(Pd,Pj l) WOO,Al(Pjl) +

x 2
(A. )

~

(2-4-79)
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-+
where, as shown in Figure 2.6(c), ROS is the vector from the emitter

-+
to the surface in the direction of k.

-+
- R.

J k - l
-+ -+
p.. /k, and R. S is the vector from atom jN to the surface in the
JkJk-1 I N

direction of k (see Figure 2.6(c».

Thermal vibrations can be treated most simply in an isotropic

uncorrelated fashion, although anisotropic correlated vibrations are a

more accurate description for the more important near-neighbor

scatterers [15,18]. There is no generally applicable yet accurate

model for including both anisotropy and correlation in single or

multiple scattering calculations, although different methods for

approximating these effects have been discussed previously by Sagurton

et al. [4(b)] and by Barton et a1. [15].

In the simplest case of isotropic uncorrelated vibrations,

inclusion of them in Equation (2-4-79) can be effected by multiplying

each scattered amplitude by a simple Debye-Wal1er factor W~c
J k

-+
representing the motion of a given scatterer jk; if ~k.. is the

JkJk-l

change in k on scattering at the jkt h atom, e. j is the scattering
Jk k-1

"2angle defined in equation (2-4-70(a» and U. is the absolute mean
Jk

1 f h . th h" 1 1 t dsquare disp acement 0 t e J k atom, t ~s s~mp e uncorre a e

Debye-Waller factor is given by

2 "2exn( -2k (l-cose.. ) U. }.
• JkJk_l J k

(2-4-80)
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But for correlated vibrations, this factor is expected to depend on

the distance between the present scatterer and the previous scatterer.

We represent this by W: .
JkJk_l

and the previous scatterer is large enough W:. will approach the
JkJk-l

uncorrelated W~c. But in general, it will depend on the displacement
J k

of atom jk relative to the previous scatterer, which we denote by

With the definition of the effective mean square

displacement with thermal averaging (indicated by <...» of u
2
..
JkJk_l

-+
«~k.. ·U.. », the equivalent correlated Debye-Waller-type

JkJk_l JkJk-l

attenuation factor is given by [4(c)]:

-+ -+ 2
exp(-1/2«~k.. ·U.. ) >}

JkJk-l JkJ k_1
2 2- exp(-k (l-cosO.. )u.. ).

JkJk_l JkJk-l

(2-4-81)

2
a.. we have calculated from a sum over phonon modes in the
JkJ k_ l

"substrate" crystal, usually neglecting surface-specific effects. The

method is one due to Beni and Platzmann [26], but with simplifications

introduced by Sagurton et al. [4(b)]. The relevant equation is

[(4(b)] :
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(2-4-82)

sin~j j
k k-1

1

3 (hf21l') 2

2
2MskBODqD

2
~ ~ 2 (l-cos~j j )

IRj -Rj I k k-1
k k-1

co

+ ~ :qD 2 -2::----....;;;..--~2 (e -na [n
IRj -Rj la -1 n + (Pj j fa)

k k-l n k k-1

+ (Pj j fa) COS~j j ] - ~j j fa»)
k k-1 k k-l k k-l

where MS is the substrate or "average-atom" atomic mass, kB is the

Boltzmann constant, 0D is the effective or "average-atom" Debye

temperature, qo is the associated Debye wave vector, a - °DfT(K), and

~ ~

~ - q IR - R I The curve in Figure 2.9 shows some typical
jkjk-l D jk jk-1'

results obtained for ~:. with this method. The way in which it is
JkJ k-1

input the program is discussed below.

Additional details of calculating W.. 's including the
JNJN-l

allowance for surface-specific affects are found elsewhere [4(b)]. In

the calculations reported here, the W.. 's have been determined
JNJ N- l

from Equations (2-4-81) and (2-4-82) and then inserted into Equation

(2-4-79) as follows:
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...
exp ( - IR. I/u. ) W. 0

J l e J 1

-+
exp ( - IR. S 1/2h )

I N e

-+
x exp ( - IRj j I/u. )

N N-l e

... ...
exp ( - IRj 2j 11 /z«e) exp ( - IRj In«e)

x Wj j Wj j " Wj j W. 0
N N-l N-l N-2 2 1 Jl

..... -+ .....-+
F00 oX (pd' Pj j ) FoX x (p j j ,Pj j ) .....

, N N N-l N-l N-2 N N-l N-l N-2

OO,Lf ]] 2
F~ ~ (P. . ,P. ) WOO x (pj ) I·

2 1 J 2J 1 J 1 '1 1
(2-4-83)

where the physical origin of each W factor in indicated in Figure

3.6(c).

For convenience in calculations. we also note that defining F and

Wfactors that are damped by inelastic scattering and vibrational

motion again yields the same simple from of Equation (2-4-78). That

is we can let.

OO.L
f- ...

WOO \ (p. )
'''1 J 1

(2-4-84)

(2-4-85)
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...
x exp{-IR.. 1/2A} W

j
j (2-4-86)

. J NJ N_1 e N N-l

and then substituting these tilde quantities into Equation (2-4-78)

yields the equivalent of Equation (2-4-83) with both inelastic and

vibrational effects included. These F's and W's (or F's and W's) can

then in principle be calculated once and for all for all

scatterer-to-detector combinations (Faa A
, 1

aa,L
f

and Waa A ),
'N

all

scatterer-to-scatterer-to-detector combinations (Faa A for N·~ 2),
, N

and all scatterer-to-scatterer-to-scatterer "vertices" centered at

scatterer j (FA A ). We comment below on the time saving
k-l k' k-l

possible in this way.

In addition, we must also include the important effects of

instrumental angular averaging due to the finite aperture of the

detector. This is done by summing the photoelectron intensities over

a grid of points on a circular aperture centered on the nominal

...
emission direction as defined by k. The direct wave and the

singly-scattered waves have to be recalculated for each grid point on

the aperture. For multiply scattered waves, only the path length

differences represented by p.. (l-cosa~. ) and the last
JkJk-l JkJk-l

......
scattering matrix represented by Faa), (Pd,p.. ) need to be

, N JNJN-l
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recalculated (cf. Equation (2-4-73). This calculation has been made

much more efficient by further assuming that the scattering matricies

-+
are slowly varying functions of the angles (8,¢) in k. Then only the

geometric phase factors due to path length differences need to be

recalculated.

If (8,¢) are now taken to be the mean angles of the nominal

emission direction k and 2is a sum over the (8b'¢b) combinations on a

b

grid spanning the acceptance aperture, usually in a centered circular

pattern, we can include angular broadening in Equation (2-4-83) as:

N
max N

2 2 [k~1[exP{iPj~k_1(1 - COS8bjkjk_1»)/Pjkjk_1]
N-2 (j i)

-+ -+ -+
x exp ( - IRj S I/211. ) exp ( - IR., I /211. ) .. exp ( - IR. . I /211. )

N e J NJN-1 e J 2J 1 e
-+

x exp ( - IR. I /211. ) W.. W. .
J 1 e J NJ N-1 J N-1J N- 2



-+ -+ OO,Lf ]] 2
FA A (p j j 'P j ) WOO ~ (;.) I .

2 1 2 1 1 ' 1 Jl
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(2-4-88)

The direct wave is thus recalculated for each grid point (8b'~b) but

only the geometric phase differences due to path length difference are

recalculated for each scattered waves via the angle 8' as
bjkjk_l

indicated by the added "b" subscript.

An additional correction in our calculations is that all of the

external exit angles with respect to the surface 8 t have been
ex

adjusted relative to the internal angles of propogating to the surface

8. t using the following refraction equation [1];
~n

(2-4-89)

where Va is the inner potential and Eki n is the internal kinetic

energy such that Ek . (external) - Ek' . (internal) - Vo' Thus all
~n ~n

-+
different paths are calculated for k corresponding to 8. ,but

~nt

angular averaging is over the actual 8 .ext

Finally, all of the above equations are valid only for radiation

of a definite polarization, as usual with the coordinates chosen so

" " "
that e II z. Normally, we choose this polarization vector f to lie

somewhere in the plane defined by the directions of the incoming

radiation (~v) and the outgoing electron (k), as indicated in Figure

"
2.2. However, if the source is unpolarized, a second polarization f'
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perpendicular to this plane must be considered, with I(unpolarized)

I(f) + I(f'). However, our past experience with single-scattering

calculations has shown that the other polarization component can

safely be neglected; this is because f in most experimental geometries

is usually aproximately parallel to k, and thus more strongly excites

the direct and scattered waves towards it, whereas f' is perpendicular

to k and therefore is much less important.

We have used Equation (2-4-88) in all of the photoelectron

diffraction calculations discussed here. For simulations of Auger

electron diffraction, the program was simply forced by the input

choices of R
l f

and SC to treat a fictitious case of p emission into a
if

single s channel. This method yields the correct final state for

scattering if it is assumed that the final state of the Auger process

is an s-wave [7]. The only trivial drawback in using Equation

(2-4-88) for Auger electron diffraction is that it includes the

evaluation of an unnecssary Gaunt coefficient characteristic of the p

~ s process; however, this produces only a multiplicative constant in

the final intensity. Equation (2-4-88) should be applicable to any

final state and over a broad range of energy.

2.4.7. Comparison to the Multiple-Scattering Treatment by

Barton and Shirley:

We now compare the Rehr-Albers [17] approach to another similar

spherical-wave multiple-scattering method by Barton and Shirley (B-S)



76

[15]. Both of these methods are cluster based in contrast to

traditional LEED multiple-scattering methods which rely on the

translational sYmmetry of the system under investigation. We will

first introduce the essential elements of the Barton-Shirley [17]

method briefly.

The B-S method is based upon a Taylor series

magnetic-quantum-number expansion (TS-MQNE). These authors note that

the addition formula for the translation of spherical waves in

Equation (2-4-13) can be derived by first taking the Fourier transform

of the spherical wave and then doing the inverse transform. They then

return to the transform and expand it in a Taylor series about the

-+
origin-shift vector a, which is the bond vector of a particular

-+
scatterer. The z-axis is also rotated parallel to a to simplify the

calculation just as in the R-A method. They finally obtain an angular

momentum series when each term in the translation is subjected to the

inverse Fourier transform. This is done to obtain a workable

approximation to the Gaunt-integral summation formula of Equation

(2-4-13). This results in the following expression for the

-+
single-scattering portion of a p-wave final state at the detector (Rd)

-+
due to an atom at a with respect to the emitter [17], the case we

will treat as our comparative example:

-ik [exp{ipd}/Pd] [exp{ip (I-cosO R )}/p ]
a a d a

1

2
q--l

l-Iql

2
p-o

(2-4-90)
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where e is the radiation polarization, ~ R is the azimuth of Rd with
ea d

-+ -+
respect to e as rotated around a or P

a
,

1

ik

.£max

2
.£-Iql

pq(~ ~ (1) 1
PI O a,e) - N R (0 9 ~-~ ) C.£q IqlO 'ea' ~xea pq

HPq(p)_(i+q)! (-l)P E...!.
.£ a (i-q)! (ip )q+p q!

a

p

2
s-O

(q+p-s)! s
(p a)

s! (p-s)!

s
8 C.£(p)

[8(Pa)]s

p1ql(cOS9aRd) is an associated Legendre polynomial, 9 is theaRd
-+ -+

dihedral angle between vectors a and Rd (also equal to the single

scattering

harmonics,

angle), N.£q is a normalization constant for spherical

R(l l),0(0,9 ,~-~ ) is a rotation matrix element withq faxea

angles defined in the same format, 9 and tP are the polar andsa xs a
~ ~

azimuthal angles of ~ with respect to e II z, and

Cl (.R.+lql+p)! 1
pq (.£-Iql-p)! p! (2Iql+2p)!!

The expansion index q is found to correct the zeroth order

origin-shift term in an arc perpendicular to the bond vector that

moves away from the center of the scattering potential, where as the

index p corrects outward from the center along this bond vector [17].
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One can compare the above equation with Equation (2-4-44) by

making some minor modifications to the latter. Note first that, from

the discussion just above Equation (2-4-41), the exponential

prefactors above can be rewritten as -ik[exp(ip lip 1 x
a a

...
[exp(ikIRdl-p coso R l/Pd] = exp(ipdlPdl x exp{ip (l-cosO R )/p );

a a d a a d a

this is thus the same prefactor as in Equation (2-4-44). Then note

that Equation (2-4-44) includes the sum over atoms in the cluster

while Equation (2-4-90) does not; thus the sum over j in Equation

... ...
(2-4-44) can be removed, with R

j
being replaced by a and P

j
by Pa .

Then Equation (2-4-44) becomes

[exp(ip (l-cosO R ))/p 1
a a d a

00,10 ...
WOO >.,,(Pa ), (2-4-91)

where, with the simplification of Equation (2-4-60) in both F and W,

...
FOO,>."(pd,Pa )

and

i

2
max

iJ.'''-Y
- e

i-O

... ...
and again OaR is the angle between vectors a and Rd,·

d
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We note at once some similarities between these two expressions.

The summation limits in Equation (2-4-90), which is a first order

Taylor Series in m, and Equation (2-4-91), which is a second order

expansion in the parameter lip, lead to an equivalant number of terms.

In Equation (2-4-90), q - -1, 0, +1 and p - 0, I, and these are in

fact happen to be equal to the allowed values for JJ" and II" in ~" -

(JJ",II"). It is also evident that the summations in Equations (2-4-90)

and (2-4-91) can be broken into two major factors. The first factors,

iq¢
00 ~ ~ EaRd ~ ~

Fpq(Pa,Pd) e in Equation (2-4-90) and FOO,~,,(Pd,Pa) in Equation

(2-4-91), are independent of the exact initial and final states

involved, while the second factors, pici(;,:) in Equation (2-4-90) and

00,10
~

WOO ~,,(Pa) in Equation (2-4-91), are not. Also, the "effective,

scattering factors" in the two approximations are similar in that both

00 ~ ~ ~ ~

Fpq (ka,Rd) and FOO,>.."(pd,P a) represent the scattering of a given

angular momentum component «p,q) or (JJ",II") respectively) incident on

scatterer "a" into the correct (0,0) component at the detector.

To compare these models further, we modify Equation (2-4-91)

futher. First we substitute explicit expressions for ~ and~. Also

dJ. 's be written in terms of the associated Legendre polynomials P~.
JJII ,(;

Then we ~et,

2max

eiJJ"~ ~ tJ.(;) (22+1)1/2 CJ.(za)

2=0

x [4:11/(22+1)]1/2
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(2-4-92)

00,10
WA",OO(Pa) - [(_l)v" Nl~" II"+~" v"+~"

[a Cl (za)laz ]

1
I (II "+IL " ) I.] d (Ll )

r: "0 U •
~ fa

Equation (2-4-92) can be simplified further, as

v"+~"
Z

(2-4-93)

ei~"~ [4~]1/2 ~ (2.e+l) t.e(:)

.e
v" v" v"

X [Cn(z ) (a Cn(z )Iaz ) z Iv"!]A:a A:a a a

x p1~"I(cOS8aR)'
d

(2-4-94)

Now, if we compare the effective scattering factor FOo,A"(Pd,Pa )

00 -+ ....
in Equation (2-4-94) with that of F (p ,P

d)
in Equation (2-4-90), itpq a

is evident that they have some similarities, but also some important

differences. Both involve the t-matrix elements t.e and the associated

Legendre polynomials P~(coS8aR)' But the Barton-Shirley method has a
d

sum of derivatives of the C 's in HPq and the Rehr-Albers formalism
.e .e '

contains products of e.e's and their derivatives.

00,10 -+ pq A A

In comparing WOO,A"(Pa) in Equation (2-4-93) with PlO(a,f) in

00,10 ....
Equation (2-4-90), we note that, while WOO A"(P a ) is dependent on the,

distance between the emitter and the first scatterer, pirie;,:) is

independent of any distance. This is also true for the analogous
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multiple-scattering comparisons. For example, we can compare

double-scattering terms in a similar manner, and it is clear that they

exhibit distinct differences.

From the point of view of computational time, inspection of the

number and types of factors to be calculated in the two methods in

single-scattering indicates a comparable amount of numerical work.

However, in general multiple-scattering, the cleaner separability of

-+-+ ... -+
the F, , (Pk,Pk- l) for each scattering vertex defined by ~ ~ ~Ak,Ak_l

-K -K-l

-+
~ ~-2 would appear to furnish a computational advantage in the R-A

approach.

As final comparative comments, we believe that the R-A approach

has better convergence and formal properties, as discussed also

eleswhere [17]. In particular, the R-A formalism reduces to effective

curved wave scattering amplitude in a point scattering approximation

in zeroth order (i.e., (lxl», whereas that of B-S does not. For a

given degree of convergence smaller matrices should be needed in R-A

calculations. The R-A method also does not distinguish between

forward and backward scattering, whereas the B-S method appears to

converge faster in back scattering [15]. The R-A method at the (6x6)

level assumed here also should be applicable to a broader range of

energies, with the B-S appt0ach representing more of a low-energy

Taylor expansion. We will illustrate some of these comments in

subsequent numerical calculations with the R-A method.

In conclusion, the R-A and B-S methods are fundamentally

different in the kind of truncation and approximation they make in the
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expansion of GL L'(P). But the R-A separation appears to be,

inherently applicable to a broader range of energies, to be more

readily generalizable to higher order expansions (even though the

second order (6x6) seems fully adequate to date), and to be more

easily adopted to a variety of situations such as, e.g., emission from

a general nil
i

subshell treated here (a case which has not yet been

dealt with using the B-S approach).

2.5. COMPUTATIONAL DETAILS OF IMPORTANT INTERMEDIATE QUANTITIES:

In this section we present the computational details of the

several quantities which are important for applying this method in

numerical simulations. (Additional useful comments appear in

reference l8(b).) Whenever possible, we will provide at least two

alternative methods for calculating a quantity, including a

non-recursive option. These non-recursive methods are suitable for

computers with compilers which can vectorize a code, as such compilers

usually cannot vectorize segments with recurrence relations. The

efficient recursive methods are most suitable for non-vectorizing

machines. But it is advisable to try both options on a given machine

to assess both speed and accuracy bef~re settling on one.
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2.5.1. Polynomial Part of the Spherical Hankel Function C1

and its Derivatives c~n):

As noted above we can decompose the spherical Hankel function as,

h(+) (p)
1

. -i- ~

ip
e
p

(2-5-1)

To calculate the Ci's one can use the following recurrence relation

for hi(+)(p) [27].

(2-5-2)

Substituting Equation (2-5-1) in Equation (2-5-2) and changing

variables from p to z = l/ip, we have, for i > 1:

The initial values are CO(z) = 1.0 and Cl(z) = l-z.

(2-5-3)

One can also use a non-recursive approximate method to calculate

2 1/2
Ci(z) ~ (1.0 + i(i+l) z ) (2-5-4)

In the computer code discussed below we have used recurrence relations

to calculate the C
1's

for the sake of accuracy.
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Next we discuss a method for calculating the derivatives c~n)(z)

which are given by

(2-5-5)

1,

A consideration of the C~'s needed in calculating both F and W shows

that, in a second order (6x6) treatment, we will need C(l) for ~ - 0,
~

,~ and c~2) for ~ - ~l.' ± 1.max ~

We can obtain the following recurrence relation for the c~n),s by

partially differentiating Equation (2-5-3) n times with respect to z.

This yields

c(n)(z) _ c(n)(z) - (2~+1)[ z c(n)(z) + n c~n-1)(Z)].
~+l ~-1 ~ ~

(2-5-6)

In practice, we used the following two relations, which are

special cases of Equation (2-5-6), for second order calculations:

The initial conditions for these are

(2-5-7)

(2-5-8)

1.0,

0.0,

(2-5-9)

(2-5-10)



85

C(2)(z) - 0.0, (2-5-11)a
c(O)(z) - 1 - z, (2-5-12)1
c(l)(z) - -1.0. (2-5-13)1

(The above recurrence relations can be vectorized by making the do

loop on n the innermost loop. But for the purpose of second order

calculations, we need only a ~ n ~ 2 and hence the length of this

vector is not large enough to gain significantly by vectorization.)

A final useful property of the Cl's is that lim Cl(z) - 1.0.
z...O

2.5.2. Euler Angles, a,p,~:

l 1\

First we consider the simple rotation, R ,(PI)' From Equation
J1.J1.

(2-4-59) we have that

(2-5-14)

with the angles a, p, and ~ defined as in Figure 2.7(a).

If 81 and ~l are polar and aximuthal angles of PI with respect to

the z axis and x axis, respectively (cf. Figure 2.7(c)) we can choose

a - 0, p - 81 and ~ - ¢l' Therefore this rotation matrix simplifies

to:

iJ1.'ifJ1
e (2-5-15)
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The rotation matrix occuring in the W matrix is even simpler:

(2-5-16)

In rotating the polarization vector E onto the z axis, the

initial step of the R-A method, we make use of the same expression,

but with (8E'~E) replacing (81'~1)' as shown in Figure 2.7(b).

Jl " "-1
The composite rotation given by R~~,(P1,P2 ), as shown in Figures

2.7(c) and (d), is more complicated:

(2-5-17)

Let (81'~1) and (82'~2) be the spherical polar coordinates of PI and

P
2

with respect to the x and z-axes. Also, let (Q,p,~) be the Euler

" "
angles of the composite rotation PI ~ z ~ P2. The Euler angles for

the rotation PI ~ z are (O,81'~1)' For the z ~ P2 rotation they are

as for the inverse of P2 ~ z with (O,82'~2) or (-~2,-e2'O).

Any coordinate rotation through (Q,P,~) can be represented by the

matrix [28],

R(Q,p,~) -

[

COSQCOSPcos~-sinasin~ COSQcospsin~-sinQcos~ -cosQsinpl
-sinacospcoS~-cosQsin~-sinacospsin~+cosQCOS~ sinasinPJ' (2-5-18)
sinpcos~ sinpsin7 cosp
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To now determine (a,~,~) for the composite rotation, we have to

consider the following matrix equation, which equates R(Q~~) to the

[

COSQCOS~cos~-sinQsin~ COSQcos~sin~-sinQcos~ .COSQSin~]
-sinQcos~cOS~-cosQsin~ -sinQcos~sin~+cosacos~ sinQsin~

sin~cos~ sin~sin~ cos~

[
cosOlcos<P l cosOlsin<Pl -sinO l

] x-sin<Pl cos<P l
0

sinOlcos<Pl sinOlsin<Pl cos0 1

[
cos0 2cos<P2 sin<P2 Sino2cos . 2]
cos02sin<P2 cos<P 2 sin02sin<P2 . (2-5-19)

-sin0
2 0 cos0 2

By comparing the matrix elements on the left and right sides of the

above equation one finally gets the following expression for the Euler

angles [lab]:

a = arg[(sinO l cos0 2 - sin0 2 cosOl cos(<Pl-<P2»

+ i(sin0 2 sin(<P2-<P1»],
-1

~ = cos [sinO l sin0 2 cos(<P2-¢1) + cos0 2 cosO l],

~ - arg[(sinO l cos0 2 cos(¢1-¢2) . cosO l sin9 2)

- i(sinO l sin(<P2-<P1» ] ·

(2-5-20)

(2-5-21)

(2-5-22)
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12.5.3. Rotation Matricies, R ,(Q,~,l):
IJIJ

From Equation (2-4-59), we have again

(2-5-23)

Beginning from Equation (a4) of Reference 25, we can arrive at

1the following recurrence relation for d ,(~). Here 8 has been
IJIJ

replaced by -8 to switch from the Messiah [29] to Edmonds [25]

convention to be used here. Also, row-column indicies have been

switched using Equation (2-5-29) to get,

2[(1+1J)(1+IJ-l)]1/2d2 ,(~) = [(1+1J')(1+1J'-1)]1/2(1+cos8)
IJIJ

1-1 2 2 1/2. 2 - 1
xd 1 '1(~)+2(l-(1J'» s~n8d 1 ,(~)+IJ- ,jj - jj- ,IJ

1/2 1-1
[(l-jj') (1-1J' -1)] (1-cos8) d 1 ' 1(~)' (2-5-24)IJ- ,jj +

The initial conditions are:

0
- 1.0 (2-5-25)dOO(~)

d~IJ'(~) [ (1+coslJ)/2 sinlJ/j2 (1-coslJ)/2 ]-sinO/j2 cosO sinO/j2 (2-5-26)
(1-coslJ)/2 -sinlJ/j2 (1+cosO)/2

where columns (or rows) are labeled in the order jj (or jj') - 1, 0, -1.

Although generally efficient, there are a few drawbacks in this

method. The first is that it may require the calculation of
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intermediate terms that are not used, especially in the case of

multiple-scattering. Second, and a direct consequence of the first,

it can require very large arrays to hold these intermediate terms.

Both of these features are undesirable in time-consuming large-scale

computations. Hence we have used in the computer code the

non-recursive method described below [30]:

(fl-j,L-II)! (fl+j,L' -II)! (1I+j,L-j,L')! II!
II

X [cos(~/2)12fl+j,L'-j,L-211 [-sin(~/2)1j,L-J.L'+211. (2-5-27)

Since the arguments of the factorials should be greater than or equal

to zero, we have to impose the following limits on the summation index

II:

max(O, j,L-j,L') ~ II ~ min(fl-j,L. fl+j,L').

In this approach it is possible to calculate factors that are

(2-5-28)

independent of ~ once and hold them in arrays. Also, it can be used

to calculate only the required (j,L,J.L') combinations. In addition, it

is vectorizable.

fl ~ ~

The d ,(~). and hence also the F, ,,(Pl,P2)' have very usefulj,LJ.L ~.~

symmetry relations which can be used to reduce the computation time
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(30). Two of these are:

(2-5-29)

Other symmetry relations of the d~~,(P) also can be used to reduce

their computation time.

2.5.4. Gaunt Coefficients, <~fm.1101~.m.>:1. 1. 1.

From Reference 28, we find for the Gaunt cefficients required in
1\

our calculation when z is rotated to be parallel to e:

<~~ill01~imi> - <i~i 10/iimi>

m.
- (-1) 1. (3/4~) (2i

f+1)
(2i

i+1)
A,

where, A is a product of two 3j symbols:

(2-5-30)

A =

-m a m

To calculate this product, we define i> a max(if,ii) and i< ­

min(if'~i)' and use the properties of the 3j symbols (31), to show

that,

1/2
m. [(~<+m1..+1)(i<-m1..+1))(-1) 1. _ (2-5-31)
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<1fm. lOI1.m.>-
1. 1. 1. [

(1<+mi +l ) (i<-mi+l)] 1/2

(21<+ 3) (21< + 1)
(2-5-32)

2.5.5. Associate Legendre Polynomicals, p~ml(COS8):

We can calculate the p~ml from the recusion relation [27]:

p~ml(coS8) - 1~m [ (21-1) cos8 p1~i(COS8) +

(1-lml-1) P1~~(COS8) ]. (2-5-33)

To start the recursion above, we need for each m both p 1ml and p 1ml
m m+1'

We can get these from,

Iml Im-11Pm (cos8) - (2m-1) sin8 Pm-1 (cos8),

and,

plm/(cos8) - (2m+1) cos8 p1ml(cos8).
m+1 m

oFinally we need the initial conditions of, PO(cos8) = 1.0 and

piO)(COS8) = cos8.

(2-5-34)

(2-5-35)
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2.6. USER'S GUIDE TO THE FORTRAN CODE:

This section is intended as the User's Guide to the FORTRAN-77

code. For simplicity, we do not provide any machine specific

information here, although the several computing environments on which

the code has been run are discussed below. At present, we have a

single code capable of doing both scanned-angle photoelectron and

Auger electron diffraction, and scanned-energy photoelectron

diffraction (ARPEFS). Both the polar and azimuthal angles can be

scanned in scanned-angle mode. Multiple-scattering up to tenth order

events can be included; single-scattering output is an option in any

run. For photoelectron diffraction, emission from any n.l. subshell
~ ~

also can be treated. This is thus the most general cluster-based code

for such diffraction calculations of which we are aware. As an

estimate of the program size, the present version named XPD.F (version

of 08/90) requires about 75 kW of high speed memory and about 5 MW of

fast disk storage. (On a supercomputer such as a Cray, one word (W)

is 64 bytes, whereas on a work station such as a Sun SPARCstation a

word is equal to 32 bytes). In Section 2.6.1, we discuss the general

structure of this program. In Section 2.6.2, we provide examples of

all input and OULput files for this code. In Section 2.6.3, we

discuss the minor changes needed in one of the input files to simulate

scanned-angle Auger electron diffraction. In Section 2.6.4, possible

methods for more accelerated calculations and geometry optimization

are discussed.
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2.6.1. General Structure of the FORTRAN code:

In this section the structure of the code will be discussed. At

the beginning the code reads the input files to be discussed in detail

in the next section and immediately writes input information to output

files. Next it calculates and stores some frequently used prefactors.

They are used in subroutines for the scattering factors F~~, and the

rotation matrices. The bond length matrix R.. also is stored for
JkJk+l

future reference. Then comes the angular or energy stepping loops.

. ~ ~

Ins~de these loops usually the (6x6) matrices F~ ~ (Pk,Pk-l) for all
k k-l

scattering centers or verticies are calculated. Typical scattering

verticies are shown in Figure 2.6(b). At each such scattering vertex,

the first atom in the sequence can be any atom in the cluster. The

second atom can be any other atom except for the first one. The third

atom can also be any other atom except for the second one. Hence,

there are [Mx(M-l)x(M-l)] such scattering verticies in an M-atom

cluster that includes the emitter as a scatterer. That is, we are

typically dealing with 36 times this value of complex numbers, or

4 62.9xlO for a lO-atom cluster, 4.3xlO for a 50-atom cluster, and

3.5xl07 for a lOa-atom cluster (which is larger than anything

attempted to date). The last atom of the three can also be replaced

by the vector pointing towards the detector; the number of such

verticies is [Mx(M-l)] and they represent either all single-scattering

events or the last events in all multiple-scattering paths (that is
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FOO,A)' The number of these is thus 5.4xl02 for 10 atoms, 1.5xl0
4

for

450 atoms, and 5.9xlO for 100 atoms. All of these verticies are

calculated and stored in scratch files to prevent redundancy.

Provided the scratch files containing F's can be accessed quickly,

this leads to a considerable savings in computer time. The W matrices

have to be calculated only once for each multiple-scattering path and

hence there are only M-l of them for each final if value; they can be

stored in an array. This leads to a very small number of Wmatricies

for a given £ : 54x(2i +1) matrix elements for 10 atoms,max max

294x(2£ +1) for 50 atoms, and 594x(2i +1) for 100 atoms. Thismax max

method is also ideal for the approximate approach to geometry

optimization that will be discussed in the next section. Once these

matrices, which are the building blocks, are calculated and stored,

the code proceeds to calculate intensity at each scattering order

starting from single-scattering.

After each order it checks for the value of the maximum order

desired (N - variable "LEVEL") to determine whether all pathsmax

should be extended to the next order or terminated. This gives the

user a chance to go up to only a predetermined order to save time.

This predetermination can be done by performing a full calculation for

R given system at the beginning. Th~n by looking at intensities for

each order one can determine the order at which the intensities are

(N ) (N -1)
converged (i.e., the point at which I max (k,e,¢) = I max (k,e,¢)

to with in a small enough difference). As long as atomic positions
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are not changed too much, any further calculations on this system can

be done only up to that order.

An additional special feature of the code is in incorporating

convergence criteria at each order above 3r d (varibles "cut4", "cutS",

... , "cutlO") in order to decide whether each path should be

calculated to that order or not. For a given order, the cutoff

thcriterion at the n order "cutn" is defined as x% of the maximum

li d f 11 3r d h' th damp tu e or a events at order, so t at a glven n or er event

this calculated only if the (n-l) event in this path is ~ x% of this

rdmaximum in 3 order. A cutoff of 0.0% thus includes all events up to

Nmax As discussed below, a satisfactory cutoff appears to be at -5%.

Yith a suitable cutoff in place, a second method of cheking for

convergence is to watch the number of events verses order (a program

output) and note the N at which they fall to a negligible numbers (see

discussion in section 2.8.2 and 3.2.5, and Table 3.1).

In single-scattering, the photoelectron is propagated from the

emitter to the first scatterer. Then the appropriate Fao A value,

describing the scattering of this photoelectron into the direction of

the detector is read from a scratch file,. In double-scattering, one

starts from the emitter and reads the appropriate FAA' value for the

first scatterer towards the second. The resu~~ing scattering

amplitude just before the second scatterer is saved, again in a

scratch file, to be used as the starting value for triple-scatttering.

After the saving LS done, the photoelectron can be scattered off the

second scatterer in the direction of the detector using the
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appropriate FOO,~ to yield the double-scattering intensity. This

thsaving and retrieving can be extended up to 10 order: this

procedure is used to overcome the large memory requirements on F~A'

for bigger clusters. Another advantage of this order-by-order

approach is that it eliminates redundancy in calculating the building

blocks of the calculation. Once the desired scattering order is

reached the output files are written. The Cray version has built in

timing routines to write both the CPU time and wall clock time at the

end of the output file LISTOUT.

Now we discuss other features of this code in some detail. First

inelastic damping. As discussed in connection with Equation (2-4-79),

inelastic damping is introduced by multiplying a given wave amplitude

by exp{-L/2A }, where L is the total distance traveled by the
e

photoelectron inside the solid and A is the inelastic attenuation
e

length. The latter is calculated using the empirical approximation,

A
e

- f
O

(E
k i n)1/2,

where f
O

is a constant used as an input parameter

to the computer code, and E
k.

here is the internal kinetic energy.
~n

(The actual input to the code is the external kinetic energy.)

As discussed in Section 2.4.6, this code is capable of including

simple correlated, parameterized correlated, and simple uncorrelated

Debye-Waller vibrat:ons. The correlated vibrations are done using a

subroutine developed by M. Sagurton [4(b)] using the Equation

(2-4-82).
2In this case the u.. is generated for each diatomic

JkJk-l

combination. In the second approximate correlated vibration option,

the curve of u.
2 . is calculated outside the code. Then it is
J~k-l



2
a. from Equation (2-4-82).

J k
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approximated by three straight line segments, as shown in Figure 2.9.

The inputs to the code are the gradients (m
l,m2,m3) and intercepts

(cl,c2,c3) of each line and the distances (xl and x2) below which the

first two lines are applicable. The third line really requuire only

the intercept, as its gradient m3 is taken to be zero to mimic

uncorrelated Debye-Waller behavior at large distances. Then the value

2of a.. for a given distance can be calculated inside the code in a
JkJ k_1

more rapid manner. The approximate correlated vibrations provide the

additional freedom to use an ad hoc scheme for a given system.

Finally the uncorrelated option involves simply calculating the

. 1" f 2asymptot~c ~m~t 0 a ..
JkJ k- 1

An additional important correction is for angular broadening due

to the finite anlyzer acceptance solid angle. The most accurate way

to do this is to sum each intensity over ~ 10
...

points of k equally

distributed over the solid angle of acceptance of the analyzer to be

simulated. This, however, would cost a great deal of computation

time, basically in proportion to the number of points. However, as

noted earliar, we can simplify this calculation by noting that only

-+
factors depending on the direction of Pd will change as the angle

averaging is done; these are only the phase factors

exp{ip.. (l-cos8~. )}/p.. (with 8~. defined as before as
JkJ k_l JIJk-l JkJk_l JkJk-l

-+ ...
the scattering angle between p. ~ and Pd) and, the scattering

JkJk-l
-+ -+

factors Faa' (Pd,P.. ). Then, we can furthermore assume that,
,AN JNJN-l

within the small angular cone of a typical analyzer of of ± a few
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degrees, the variation of the scattering factors Faa A with angle is
, N

much less important than that of the phase factors

Hence, as a first approximation,

we can vary only the phase factors while keeping F; this is the very

rapid method used at present. As a further improvement to the code we

note that the factors Faa A are only as difficult to compute as in a
, N

'single-scattering' problem and thus only moderately time consuming.

The code therefore is written in such a way that it could be easily

modified in the future to do exact angular broadening. However,

single-scattering comparisons between the approximate and exact

angular broadening results indicate that the former is fully

satisfactory over a small angular cone.

2.6.2. Scanned-Angle and Scanned-Energy Photoelectron Diffraction:

(a). The Inputs:

There are several inputs to this code. They are listed below;

begining with an example of a scanned-angle case, and then showing a

scanned-energy case.

File 1 - XPDIN:

The name of File I should always be XPDIN. Names of other files

are listed in XPDIN and, hence, can vary. For clarity, we label lines

in this file as LI, L2 etc. The actual input file does not have these

line numbers. The example shown below is for s ~ p photoemission from
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a two atom Cu chain at 1000.0 eV. An azimuthal scan is done at a

polar takeoff angle equal to zero. Polar angle is henceforth measured

with respect to the specimen surface. The electron mean free path is

effectively "infinite" with an f
O

factor of 107, and the inner

potential is zero. Events up to 10t h order are included and the R-A

method is used in second order «6x6) F matrices). The convergence

cutoff is 5% for all scattering orders above 3r d, and is defined in

the previous section.

L1. XPD.F Cu 03 atoms 5% cutoff 6x6 ekin-1000.eV vO-O NV 1f-1

L2. 0 0.0000 0.0000000 0.0000 1.0000000

L3. 28 00 00 00 00

L4. coord cu1000p junkp junkp junkp

Ls. $list1 thetab-0.0,thetar-1.0,thetas-2.0,

L6. phib-0.0,phir-180.0,phis-2.0

L7. energb=1000.0,energr=1.0,energs=1.0 Send

LB. $list2 a1pha=90.0 , level-10 ,vO=O.O, order=2 ,

L9. Ifactr=10e+06,bang1e=0.0 Send

LIO. $list3 zs-0.0,cut4-s.0,cuts-s.0,cut6-s.0,cut7=s.0,cut8-s.0,

L11. cut9-S.0,cut10=S.0 Send

L12. azimuthal

Ll3. full

L14. parameterized

LIS. 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 00.00000

L16. 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 00.00000
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Explanation of Lines:

L1. Title line: at user discretion

L2. linitia1' °l_l(radians), R1_1, °i+1(radians) , R1+1

L3. Atomic number of the emitter followed by atomic numbers for

up to four other elements

14. Coordinate file and phase-shift files for each atomic type.

If the number of atomic types are less than five, leave blanks

for up to five names using the as format

L5. $list1 - beginnig of 1ist1

the tab - beginning polar angle (degrees with respect to the

surface)

thetar - range of polar angle (0)

thetas polar angle step size (0), with polar scanning being

always made on an axis perpendicular to the plane

containing hv and k
L6. phib - beginning azimuthal angle (0)

phir - range of azimuthal angle (0)

phis - azimuthal angle step size (0), with azimuthal scaning

always being made about the speciman surface normal

L7. energb - beginning kinetic energy (eV) (Ek. external)
~n

energr - range of kinetic energy (eV)

energs - kinetic energy step size (eV)

Send - end of listl
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(This set of input is appropriate to scanned-energy

calculations, as discussed in'~he next example)

L8. $list2 - beginning of 1ist2

alpha - angle between hv incident and k (0), from which the

polar angle of the polarization vector E can be

calculated. Since E is assumed to be in the plane

~

of hv and k, ~E - ~k'

level - maximum order of scattering (Nmax in prior notation)

vO . inner potential (eV)

order - order of the R-A approximation used (0 - (lxl),

1 - (3x3) , 2 - (6x6)

L9. lfactr determines the mean free path using the empirical

relation
0

lfactr * k (X-I)A (A) - with k calculatee

from k 2~
1/2 (Again Eki n here[Ek. (eV)/lSO.2] .Ln

is the internal kinetc energy)

bangle - half angle of the analyzer acceptance cone (0)

$end - end of list2

LIO. $list3 - beginning of list3

zs - the height in X of the region above the centers of the

surface layer of atoms in which additional inelastic

attenuation should be taken into account. The surface,

before this modification, is taken to be at the

highest z value in the coordinate file. (z is negative

into the bulk and positive otherwise. The emitter is

always at x - y - z - 0).
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cut4 - cutoff value for fourth order

cutS - cutoff value for fifth order

cut6 - cutoff value for sixth order

cut? - cutoff value for seventh order

cut8 - cutoff value for eighth order

Lll. cut9 - cutoff value for ninth order

cutlO - cutoff value for tenth order

Send - end of list3

rd(cut4 - cutlO above are measured as a % of 3 order maximum

reference)

Ll2. azimuthal, polar or energy (selects the type of scan to be

done. Once selected, only the beginning parameters and their

ranges for that mode are used, and those for the others modes

are ignored.)

L13. 'atomic' to calculate normalized X curves as

[I(k,8,~) - I(k,8,~,direct)]/I(k,8,~,direct) or 'full' for

full intensity

Ll4. 'parameterized' for parameterized vibrations using three

linear segments or 'exact' for correlated vibrations from

Equation (2-4-82).

LlS. and Ll6. parameters for vibrations depending on the model.

At present this code can handle vibrations of two-component

systems only (e.g., adsorbate-substrate systems). The

parameters on line LIS are for the adsorbate and those

on line Ll6 are for the substrate. (Both lines are read
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in the code using free format). For systems with more than

two atomic types, set all variables to zero. (The next

version of this code will be capable of handling vibrations

for upto five different atomic types).

For parameterized correlated vibrations:

° 92 9 02 92 9 9ml(A) , Cl(A ), m2(A) , C2 (A ), C3 (A ), Xl(A), X2(A) (see

Figure 2.9).

For simple Debye-Waller vibrations:

02
0.0, 0.0, 0.0, 0.0, c 3(A ), 0.0, 0.0. (again from Figure

2.9)

For exact correlated vibrations:

-+ -+
R., qo' t D b' t ,amass (where R. - IR. - R. I

J e exp J Jk Jk-l

°- distance between the two correlated atoms (A), q -
D

9-1magnitude of the Debye wave vector (A ), t Oeb = 8D -

Oebye temperature (K), t - T - experimental temperatureexp

(K), and amass - M - mass of the vibrating atom (g».
s

A sample input file for a normal energy scan from 10~ to 500 eV

for the above case with emission along the x-axis (8 = 0°, ~ = 0°) is

given below. If an angle-resolved photoelectron extended fine

structure scan is intended then line 13 should read 'atomic' so that a

normalized X function defined as [I - I(direct)] / I(direct) is

calculated as a function of energy.
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L1 XPD.F Cu 03 atoms S% cutoff 6x6 e-scan vO~O NV 1f-1

L2 a 0.0000 0.0000000 0.0000 1.0000000

L3 28 00 00 00 00

L4 coord cuphase junkp junkp junkp

LS $1ist1 thetab-0.0,thetar-1.0,thetas-2.0,

L6 phib-0.0,phir-1.0,phis-2.0

L7 energb-100.0,energr-400.,energs-S.0 $end

L8 $list2 alpha-90.0, level-S,vO-0.O,order-2 ,

L9 Ifactr-10e+06,bang1e-0.0 $end

L10 $list3 zs-0.0,cut4-S.0,cutS-S.0,cut6-S.0,cut7-S.0,cut8-S.0,

Ll1 cut9-S.0,cut10-S.0 $end

L12 energy

L13 full

L14 parameterized

L16 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 00.00000

L17 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 00.00000

File 2 - Coordinate File:

The name of the coordinate file is given on as the first entry on

line 4 (14) of XPDIN. The first line of this coordinate file has the

number of atoms in the cluster. The second line represents the x, y,

and z corrdinates (in Z) and the atomic number of the emitter and it

must must directly follow the number of atoms in the cluster. On the

following lines, the first three numbers are the x, y, and z

o
coordinates for each atom (in A) and the last n~~ber is the atomic
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number. This version of the code handles five different atomic types.

As expected, x and yare in the surface plane, with x located at 8 ­

0°, ~ - 0°; z is thus perpendicular to the surface, with +z values

lying above this plane and -z values lying in the opposite sense. The

sample file shown below is for a three atom eu chain along the x-axis.

3

0.0000

3.5000

7.0000

0.0000

0.0000

0.0000

0.0000 28

0.0000 28

0.0000 28

File 3 - Phase Shift Files:

The names of phase shift files are listed on line 4, after the

name of the coordinate file. Each element listed on line 3 should

have a corresponding phase shift file. In the example given above

there is only one such file (culOOOp). It has the following

structure. The first line gives the energy in eV and the number of

phase shifts to be used at that energy. The next five lines list

these phase shifts. The first line contains 2 = a to 2 = 4, the

second line 2 - 5 to 2 - 9 etc. For energy scans, where multiple

energy steps are involved. this file must be repeated for each energy

step.
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1000.0 20

-0.87809 0.71220 -0.61514 -1.51618 1.07160

0.72774 0.50911 0.36592 0.26775 0.19854

0.14799 0.11017 0.08180 0.06003 0.04318

0.03050 0.02102 0.01368 0.00808 0.00422

0.00193 0.00000 0.00000 0.00000 0.00000

(b). The Outputs:

There can be two or three output files. They are listed below.

The first file is named LISTOUT. This is the long output file. In

the intensity part the first column is polar angle, the second is

azimuthal angle, the third is the single scattering intensity, the

fourth is the double scattering intensity and so on up to the tenth

order intensity. For energy scans the first column is energy in eV,

9-1the second is the k vector (in A ), the third is the single

scattering intensity, the fourth is the double scattering intensity

and so on up to tenth order. Shown below is the file LISTOUT

corresponding to the input file for an azimuthal scan given at the

beginning of this section.

THE LONG OUTPUT OF XPD.FOR (August/'990)

Copyright (c) 1990 by A. P. Kaduwe1a, D. J. Friedman and C. S. Fad1ey

Please acknowledge the use of this code
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XPD.F Cu 03 atoms 5% cutoff 6x6 ekin-1000.eV vO=O NV If-O

&LISTl THETAB - 0.0, THETAR - 1.0, THETAS - 2.0, PHIB - 0.0,

PHIR = 180.0, PHIS = 2.0, ENERGB = 1000.0, ENERGR = 1.0,

ENERGS - 1.0, &END

&LIST2 ALPHA - 90.0, LEVEL - 10, VO - 0.0, ORDER - 2,

LFACTR - 10000000.0, BANGLE - 0.0, &END

&LIST3 ZS - 0.0, CUT4 - S.OE-02, CUTS - S.OE-02, CUT6 - 5.0E-02,

CUT7 - S.OE-02, CUT8- 5.0E-02, CUT9 - 5.0E-02,

CUT10 - 5.0E-02, &END

Vibrational Parameters: adsorbate-adsorbate

Gradients - 0.000000 0.000000 Intercepts - 0.000000 0.000000

Critical Values: Y - 0.000000 X - 0.000000 0.000000

Vibrational Parameters: adsorbate-substrate and substrate-substrate

Gradients - 0.000000 0.000000 Intercepts ­

Critical Values: Y - 0.000000 X - 0.000000

The number of atoms in the cluster = 3

Coordina~es of the Cluster

0.000000

0.000000

0.000000

0.0000

3.5000

7.0000

0.0000

0.0000

0.0000

0.0000 28

0.0000 28

0.0000 28



The Z coordinate of the surface is

The bond length matrix

0.0000
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0.0000

3.5000

7.0000

3.5000

0.0000

3.5000

7.0000

3.5000

0.0000

Phase-shifts for atomic number 28

1000 .• 20

-0.878090 0.712200 -0.615140 -1. 516180 1.071600

0.727740 0.509110 0.365920 0.267750 0.198540

0.147990 0.110170 0.081800 0.060030 0.043180

0.030500 0.021020 0.013680 0.008080 0.004220

0.001930 0.000000 0.000000 0.000000 0.000000

Intensities up to 10th order

0.0 0.0 0.25874E-01 0.19670E-01 0.19532E-01 0.19339E-01

0.19384E-01 0.19384E-01 0.19384E-01 0.19384E-Ol

0.19384E-01 0.19384E-01

0.0 2.0 0.24603E-Ol 0.18027E-01 0.17891E-01 0.17712E-01

o.17755E-01 0.17755E-01 0.17755E-01 o L7755E-Ol

0.17755E-01 0.17755E-Ol

0.0 4.0 O.20901E-01 o.13590E-Ol o.13464E-01 0.13322E-01

0.13361E-Ol O.13361E-Ol O.13361E-Ol O.13361E-Ol

O.1336IE-Ol o.13361E-Ol
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0.0 6.0 0.15255E-Ol 0.78439E-02 O.77348E-02 O.76507E-02

0.768l5E-02 O.76815E-02 0.768l5E-02 O.76815E-02

O.76815E-02 O.76815E-02

0.0 8.0 O.88506E-02 O.30380E-02 0.29565E-02 O.29350E-02

0.29544E-02 O.29544E-02 0.29544E-02 O.29544E-02

0.29544E-02 O.29544E-02

0.0 10.0 O.36152E-02 O.12626E-02 0.12142E-02 O.12397E-02

O.12462E-02 O.12462E-02 0.12462E-02 O.12462E-02

O.12462E-02 O.12462E-02

0.0 170.0 O.53175E-02 O.54698E-02 0.59504E-02 0.57292E-02

0.57265E-02 0.57265E-02 0.57265E-02 0.57265E-02

0.57265E-02 0.57265E-02

0.0 172.0 0.53306E-02 0.60318E-02 0.65777E-02 0.63047E-02

0.62999E-02 0.62999E-02 0.62999E-02 0.62999E-02

0.62999E-02 0.62999E-02

0.0 174.0 0".54862E-02 0.66138E-02 0.71893E-02 O.68665E-02

0.68602E-02 0.68602E-02 0.68602E-02 0.68602E-02

0.68602E-02 O.68602E-02

0.0 176.0 0.56649E-02 0.70539E-02 0.76338E-02 O.72720E-02

O.72646E-02 0.72646E-02 0.72646E-02 0.72646E-02

O.72646E-02 u.72646E-02
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0.0 178.0 0.57931E-02 0.73119E-02 0.78862E-02 0.74999E-02

0.74920E-02 0.74920E-02 0.74920E-02 0.74920E-02

0.74920E-02 0.74920E-02

0.0 180.0 0.58386E-02 0.73954E-02 0.79664E-02 0.75718E-02

0.75637E-02 0.75637E-02 0.75637E-02 0.75637E-02

0.75637E-02 0.75637E-02

THE TOTAL NUMBER OF SCATTERING EVENTS

Single 182

Double 364

Triple 728

Quadruple: 910

Quintuple: 546

Sextuple 0

Heptuple 0

Octuple 0

9th 0

10th 0

THE BEGINNING DATE AND TIME

THE ENDING DATE AND TIME

TOTAL CPU MINUTES

11/21/90

11/21/90

O.4495E-Ol

21:51:51

21:52:12

File 2 - PLOT1: This file is a short version of LISTOUT containing

intensities up to fifth order. If "level" is greater than five then



111

another file named PLOT2 will appear. That contains intensites from

sixth to tenth order. File PLOTl for the above LISTODT is shown

below.

XPD.F Cu 03 atoms 5% cutoff 6x6 ekin-1000.eV vO-O NV If-O

0.0 0.0 O.25874E-01 0.19670E-01 0.19532E-01 0.19339E-Ol 0.19384E-01

0.0 2.0 0.24603E-01 0.18027E-Ol 0.17891E-01 O.17712E-Ol O.17755E-01

0.0 4.0 0.2090lE-Ol 0.13590E-01 0.13464E-01 0.13322E-01 0.13361E-01

0.0 6.0 0.15255E-01 0.78439E-02 0.77348E-02 0.76507E-02 O.768l5E-02

0.0 8.0 0.88506E-02 0.30380E-02 0.29565E-02 0.29350E-02 O.29544E-02

0.0 10.0 0.36152E-02 0.12626E-02 O.12142E-02 0.12397E-02 O.12462E-02

0.0 170.0 0.53l75E-02 0.54698E-02 0.59504E-02 0.57292E-02 0.57265E-02

0.0 172.0 0.53306E-02 0.60318E-02 0.65777E-02 0.63047E-02 0.62999E-02

0.0 174.0 0.54862E-02 0.66138E-02 0.71893E-02 0.68665E-02 0.68602E-02

0.0 176.0 0.56649E-02 0.70539E-02 0.76338E-02 0.72720E-02 0.72646E-02

0.0 178.0 0.57931E-02 0.73119E-02 0.78862E-02 0.74999E-02 0.74920E-02

0.0 180.0 0.58386E-02 0.73954E-02 0.79664E-02 0.75718E-02 O.75637E-02

File PLOT2 for this case is identical in structure to PLOT1 but

contains intensities for sixth to tenth order.
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2.6.3. Scanned-Angle Auger Electron Diffraction:

To prepare XPDIN for scanned-angle Auger electron diffraction the

following changes are needed on line 2.

1. i. should be 1.
i.

2. 0i_1 should be 0.0 and Ri_ 1 should be 1.0.

3. Both 0i+1 and Ri+1 should be 0.0.

Then the modified XPDIN for a typical case at 917 eV energy looks

as,

L1 XPD.F eu 02 atoms 5% cutoff 6x6 ekin-917.0 eV vO-O NV 1f-0

L2 1 0.0000 1.0000000 0.000 0.0000000

L3 28 00 00 00 00

14 coord cu917p junkp junkp junkp

L5 $listl thetab-O.O, thetar-l.O, thetas-2.0,

L6 phib=0.0,phir-180.0,phis=2.0

L7 energb-917.0,energr-1.0,energs=1.0 $end

L8 $list2 a1pha=90.0,leve1=10,vO=0.0,order-2,

L9 1factr=10e+06,bang1e=0.0 $end

L10 $list3 zs=0.0,cut4=5.0,cut5=5.0,cut6=5.0,cut7=5.0,cut8=5.0

L11 cut9=5.0,cut10=5.0 $end

112 azimuthal

L13 atomic

L14 parametrized
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L15 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 00.00000

L16 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 00.00000

Also, one should set ENERGB on line 7 (L7) of XPDIN to the

desired energy of the Auger electron, here chosen to be 917.0 eV, a

case to be considered later. Once the mode on line 12 (L12) of XPDIN

is set to either polar or azimuthal, ENERGR and ENERGS become

unimportant. Other input parameters are set as discussed in Section

2.6.2. Other input files are identical in structure to those

described in that section.

These modifications mimic a p ~ s transition. Here we make the

assumption that the final state of an Auger electron is an s-wave.

The final single-scattering intensity for this case is given in

Equation (2-4-52). Notice that the p-initial state does not yield any

observable effect in that equation; this initial state appears only in

1the factor C (I f,mi,1i,mi) within ~,c (cf. Equation (2-4-11» which

is common to both direct and scattered waves (single and multiple).

Hence, the only consequence of simulating the s-wave Auger final state

by using the 1-1 channel of a p-initial state is that the final

intensities are multiplied by a constant.
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2.6.4. Possible Methods for More Accelerated Calculations and

Geometry Optimizations:

In comparing theoretical and experimental curves so as to

determine a structure one often has to fine tune several structural

parameters of the theoretical model before finding the optimum set.

This is known as geometry optimization, and it can involve calculating

diffraction curves for many different geometries, exactly as is done

in a typical LEED analysis. In the case of an adsorbate/substrate

system, for example, one of the most frequently changed structural

parameters is the vertical distance of the adsorbate from the

substrate; but beyond this various relaxations of the underlying

substrate atoms from their bulk positions may be tried. To avoid

incurring a prohibitive cost in computation time for such

optimizations, it is logical then to search for a way to do such sets

of calculations for different structural parameters in the most

efficient way. One thing to avoid is calculating anything from one

structure to another that does not change at all, or at a more

approximate level, does not change very much. We discuss below two

possible approximations to permit more rapid calculations and geometry

opti~~zations.

The most time consuming part of our method is the calculation of

~ ~

the scattering matrices F~ ~ (Pk,P k- l). The elegance of the
k k-l

Rehr-Albers approach allows us to initially calculate scattering

matrices for every atom with respect to two other atoms on each side
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of it in some scattering path. Each such F~ ~ can be referred to
k k-l

as a vertex, as shown in Figure 2.6(b). Once all the verticies are

calculated, they can be used, together with the W "termination"

factors that are much easier to calculate, to build up the the actual

scattering calculation. Let us now estimate the number of scattering

matrices or verticies that would need to be recalculated in going from

one geometry to another in an adsorbate/substrate system for which we

are varying the vertical adsorbate/substrate distance only.

Let M be the total number of atoms in the cluster and f be the

fraction of these atoms in the adsorbate layer. Then the number of

atoms in the substrate is (l-f)M. Out of all possible M(M-l)(M-I)

verticies in the cluster, only a fraction of these has to be

recalculated when the vertical distance is changed. There are eight

possible verticies in the notation A - adsorbate, S - substrate:

A-A-A, A-A-S, A-S-A, A-S-S, S-A-A, S-A-S, S-S-A, and S-S-S, we must

recalculate all types coupling S and A, or 6 out of 8. Note also that

there are as many A-A-S combinations as S-A-A combinations. This is

also true for A-S-S and S-S-A combinations. Therefore, the fraction

of verticies to be recalculated, F, can be written as,

F - (2·[fM·(fM-I)·(I-f)M] + [fM'(l-f)M'fM] +

2·[fM·(1-f)M·«I-f)M-l)] + [(I-f)M·fM·(I-f)M]l /

M· (M-l)· (M-l)

f (I-f) Ii (3Ii-4)

(M_l)2
(2.6.1)
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The large M limit of F is thus,

F(M ~~) - 3 f (l-f). (2-6-2)

Table 2.1 shows the behavior of F as a function of both M and f.

It is evident from this table that about 50% of the verticies have to

be recalculated for each vertical distance for a typical case of f

0.20. This would save 50% of the time of recalculating the FA A's,
k k-l

and would be worth incorporating in a future version of the program.

This conclusion is also valid for the case of first-layer relaxation

in a substrate system. However, the situation gets worse for

multilayer adsorbate/substrate relaxation where f could be as high as

0.5 and about 3/4 of the FA A 's would have to be recalculated for
k k-l

each geometry. This approach is thus interesting, but not as

generally useful as one might desire.

We now consider a more approximate approach. Small vertical

relaxations or other atomic displacements will cause only slight

changes in the angles in the vertices. Therefore, a perturbation

approach to the problem could be a very efficient path to geometry

optimization.

One such approach depends on the fact that, except in the forward

and backward scattering directions, the scattering factor FA A is
k k-l

generally not rapidly varying with vertex angle. This suggests taking
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those FA A values appropriate to some reference structure not too
k k-l

far from the actual structure, and varying only the geometric phase

factors in which the actual path length differences of waves are

accounted for. To illustrate this idea in detail let us look at the

general single-scattering expression for the scattered wave as written

down before in Equation (2-4-44):

(2-6-3)

where,

and,

In this equation the only time consuming factor is FOO,A.' Other
J

factors can be recalculated for each new choice of structural

parameters. The approximation is then to multiply the old scattering

factor, FOO,A.' by a new phase factor,
J
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exp(i(p.+op.)(1-cos[9.+69.])l/(p.+op.). This approach is expected to
J J J J J J

be acceptable if the scattering angle of the vertex is at least 20°

away from either forward or backward directions. Otherwise new

scattering factors should be recalculated. In implementing such a

scheme, the magnitudes of both o9
j

and oP
j

with respect to the

reference structure could easily be calculated at each step in an

optimization and criteria established as to when a given FA A needs
k k-1

recalculation, or when a new reference structure is needed. The same

approximation could be made in a multiple scattering calculation, but

here all of the associated phase factors

exp(i(P j j HPJ j )(1-cos[9 j' j +69 j' . i . ])}/(P j • +Sp
j

• )
k k-l k k-1 k k-1 k"k-1 kJk-1 kJk-1

in Equation (2-4-77) would need to be recalculated. (Note that it is

9' we must use here and not 9 (cf. definitions leading to Equation

(2-4-71).) Such a scheme should be very efficient way to search

structures, and its implementation in a future version of this program

is strongly recommended. This method is also very similar in

philosophy to that of "tensor LEED" proposed recently [32].

Finally we note two other procedures that could be used to speed

up such calculations: (1) storing all F's and W's needed in

fast-access RAM, thus eliminating slower disk retrival and (2) going

to lower order F's or even plane-wave scattering) if the two distances

in-F become larger.
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2.4.7. COMPUTING ENVIRONMENT:

We have used several computers during the development,

optimization, testing, and application of this program. We briefly

indicate the characteristics of these machines and point out certain

machine-specific parts of the code below.

2.7.1. Cray X-MP/48 (CTSS):

This code was initially developed, optimized, and tested on the

Cray X-MP/48 supercomputer at the San Diego Supercomputer Center using

the CTSS operating system. The Cray X-MP/48 is a 64-bit machine with

vectorizing capabilities. It has four CPU's and an eight megaword RAM

shared by all CPUs. During the optimization several Cray specific

functions were used. They are as follows:

call link - A call to the routine 'link' must appear as the first

executable statement of the code. This is also capable of

linking files to unit numbers. If you wish to open your files in

the traditional FORTRAN way, then you may use the 'call

dropfile(O)' statement instead of call link( ..... ) and then use

the 'open' statement. At end of the main module you may use

'call exit'. But the 'end' statement does the equivalent.

n = cvmgz(i,j,k) - if k = 0 then n = i

if k .ne. 0 then n = j
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This function is vectorizab1e. But "IF" statements in the

equivalent Fortran soubroutine are not.

This is equivalent to v2(1) - v2(1) - v1(1)

v2(2) - v2(2) - v1(2)

v2(3) - v2(3) - v1(3)

The first 3 means that the vector length is 3. -1 correspond to

the - sign and other l's correspond to vector strides of 1.

sdot(3,v2.1,kuv,1) - This is the dot product of two vectors. That is

v2(1)xkuv(1) + v2(2)xkuv(2) + v2(2)xkuv(2). Again 3 is the

vector length and l's are strides.

wrbin(xx,yy(l,l,l),length) - This allows to unload the array yy onto

unit xx in a very efficient way through a buffer. yy(l,l,l), for

example, is the first element of the array and length is the

number of words you want to unload.

rdbin(xx,yy,length) - This is the complement of webin. The only

difference is that you specify just the array.

Another thing to notice in this code is the style, which has been

written specially with vectorization in mind. To run this code on a

non-vector machine efficiently requires rearranging certain parts, as

we have done in converting to a Sun workstation.

This machine was replaced with a Cray Y-MP/864 in January, 1990.

Modifications needed for this changeover are described in the next

section.
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2.7.2. Cray Y-MP/864 (UNICOS):

The current version of the code runs on the Cray Y-MP/864 at the

San Diego Supercomputer Center using the UNICOS operating system.

This machine has eight CPUs and 16 megawords of RAM. The inputs and

outputs on the Y-MP are identical to those on the Cray X-MP. Some

X-MP specific routines in the codes are replaced by corresponding Y-MP

counterparts and we describe them below.

The "call link" statement is not available on the Y-MP. Hence

all the files opened or created in that statement should now be opened

with the standard FORTRAN-77 OPEN statement. RDBIN and WRBIN are

replaced by BUFFER IN and BUFFER OUT, respectively:

buffer in (id,mode) (bloc,eloc), and,

buffer out (id,mode) (bloc,eloc).

These allow the subsequent execution sequence to proceed concurrently

with the tranfer of data. Here id is the unit specifier. Use of mode

~ 0 is for regular full record I/O and <0 for partial records, and

bloc is the symbolic name of the variable, array or array element that

marks th~ beginning location of the buffered I/O transfer.

2.7.3. Sun-4 SPARCstation (SunOS):

rnis 32-bit Sun-4 system with SPARC (Scalable Processor

~RChitecture) runs SunOS Release 4.0. The Sun-4 CPU comprises an

Integer Unit (IU) that performs basic processing and a Floating Point
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Unit (FPU) that performs floating point calculations. SPARC is a RISK

(Reduced Instruction Set) architecture that emphasizes simplicity and

efficiency. The RAM on this machine is 8 Mb and the disk capasity is

about 1.3 Gb. It is housed in the Department of Chemistry, University

of Hawaii.

This SPARCstation has a FORTRAN-77 compiler. To run on this

mechine, our code was rewritten in ANSI FORTRAN-77 to remove all Cray

specific routines. The run times were obtained by using a simple UNIX

script. Table 2.3 shows the times required for a small chain of Ge

atoms, as described in Section 2.7.2. This can be compared with Table

2.2 which contains the same times on a Cray Y-MP/864. The following

facts should be kept in mind during this comparison: 1. The Sun had a

very light work load and was almost a single user environment. 2. The

Cray had the usual work load, but these calculations were done at

priority - 2, which is the highest, but nonetheless usual for such

quick chain calculations. 3. The Cray is double precision and Sun is

single, but the numerical results are found to agree very well. 4.

The code is vectorizable on the Cray but not on the Sun. Table 2.4

shows the normali~ed time rations Sun/Cray without taking any of the

above facts into account. As shown there, when the Cray is used at

its highest priority it can be as much as 35 times faster than the

SPARCstation on the wal1clock. On the CPU clock the Cray is about 25

times faster. But for more time consuming jobs, the Cray should be

used in a batch queue mode to stretch time allocations and this

usually increases the wallclock time by an order of magnitutde, thus
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making it comparable to that for the SPARCstation! Hence a single

user (or nearly single user) SPARCstation environment is a viable

option for running this code in production mode, and our group is

proceeding to further develop this option.

2.8. SENSITIVITY TO INPUT PARAMETERS AND COMPARISON OF RESULTS WITH

PREVIOUS CALCULATIONS:

2.8.1. Auger and Photoelectron Emission from Atomic Chains:

We now consider single-scattering and fully converged

multiple-scattering results for simple linear chains of different

atoms, an illustrative type of test case discussed first by Xu,

Barton, and Van Hove [7]. To illustrate the type of diffraction

pattern one expects from such chains, we show in Figure 2.3(c) a

simplified drawing applicable to high-energy scattering where forward

peaking is dominant and the scattering phase shift is small (here

assumed to be zero). Both the oth order (forward scattering) peak and

the higher-order diffraction peaks are labelled. In a real n-atom

chain these features will be distorted somewhat by scattering phase

shifts that depend on scattering angle, by the resulting imperfect

overlap of different orders from different scatterers, by inelastic

attenuation effects, and by multiple-scattering effects.

o
We begin by considering Cu atoms placed at 45 with respect to a

fictitious "(001) surface", as shown in the inset of Figure 2.10. The



124

2.56 Anearest neighbor distance is chosen to simulate emission along

a [101] direction. The surface is used only to determine that region

of space over which an exponential decay of intensity due to inelastic

scattering is included. These chains represent the nearest-neighbor

[101] direction in the fcc Cu crystal, with a single emitting atom at

the bottom of the chain. The total emission from such a [101] chain

in the metal would thus be the sum over the intensities of all of

these emitters from the surface inward to the end of the chain. Cu

LMM Auger emission at 917.0 eV is simulated using the aforementioned

approximation of an s outgoing wave (~f-O only). he 1s taken to be

11.7 Aat 917 eV and 3.9 Aat 100 eV in results to be discussed later.

Refraction at the surface due to the inner potential Vo has not been

included. The resulting curves for 2-10 atom linear chains are shown

in Figure 2.10. Figure 2.11 shows other information derived from

these curves, in particular the forward-scattering along-chain

intensities in both SS and MS and, in the lower panel, the amount of

MS "defocussing", which is defined as D(%) - 100 X [ISS(along chain) -

MS 55I (along chain)] / I (along chain), all as a function of chain

length n ,

From these two figures, it is evident that the longer the chain

is, the greater are the MS effects: the forward-scattering peak

height systematically diminishes as the number of atoms in the chain

increases, eventually falling"by about 6 atoms to a level equal to the

background on either side of the chain axis. Such intensity

reductions were termed "defocussing" in the first discussion of this
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effect by Tong and co-workers [2]. It is also interesting to note

that the MS peak widths are consistently narrower than those of

corresponding 55 peaks, becoming systematically smaller in FWHM as the

number of atoms in the chain is increased. This can be qualitatively

understood from a classical picture in which only those electrons with

very small deflections (i.e., with large impact parameters at the edge

of the scattering potential) can avoid being driven into defocussing

pathways in passing several scattering centers. By contrast, for a

2-atom chain and at this high energy, M5 effects are negligible, a

simplifying result which is applicable to emission from an oriented

diatomic molecule such as the system CO/Fe that is to be discussed

later. The 4- to la-atom cases are applicable to multilayer substrate

emission or to grazing-angle emission from adsorbate/substrate

systems, since in both of these cases, emitters can have more or less

linear rows of atoms between them and the detector for a certain

direction of emission. In such cases, one thus expects that intensity

along linear or nearly-linear chains of atoms with small interatomic

distances will be significantly reduced. By contrast to the M5

results, the 55 intensity only begins to reduce after n = 4-5 due to

both interference effects and inelastic attenuation. But even at n

10, the 55 intensity shows a pronounced forward-scattering peak and is

much too strong compared to the M5 intensity.

These calculations provide another test of the accuracy of our

method and the computer code, because a similar set of curves for the

same case were reported earlier by Xu and Van Hove [7] for 2-, 3- and
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5-atom Cu [101] chains at 917.0 eV; they have used the TS-MQNE method

of Barton and Shirley [15] in their work. The good agreement between

these two different approaches to MS is very encouraging: in fact,

excellent agreement is obtained if we allow fully for the differing

degrees of angular broadening used in the two sets of calculations.

We have also performed calculations on such Cu chains at the much

lower energy of 100.0 eV. There is no eu Auger peak at 100.0 eV and

this energy was simply chosen to investigate the low energy behavior

of multiple-scattering effects, again for an outgoing s-wave. As

shown in Figures 3.9 and 3.10, the SS and MS forward-scattering

intensities decay at a more nearly comparable rate than those at 917.0

eV. This is due to the lack of a strongly forward-peaked scattering

factor, as well as to the shorter electron mean free path at this

energy, which tends to attenuate MS effects with longer total path

lengths. Although both defocussing loss of intensity and peak

narrowing with increasing chain length are still present, they are

less pronounced than at 917 eV and we expect this to be a general

comparison between lower (-100 eV) and higher (~ 500 eV) energies with

an emitter at the end of the chain.

A further noteworthy effect at lower energies is that the peak

maxin~ systematically moves to higher takeoff angles so that it is

2_5 0 away from the chain axis. This is due to peak distortion by the

stronger exponential damping of intensities by inelastic effects,

which will go as exn(-Z fA sin8), if Z is the depth of the emitter in. n e n

the n-atom chain below the surface.



127

Another interesting case is that of bent chains, results from

which are shown in Figure 2.14 for 917.0 eV and in Figure 2.15 for

100.0 eV. The amount of defocussing vs. the bend angle ~ for 2- 3-

and 5-atom chains is presented. The dropoff of defocussing to zero

for 917 eV at ~ _25°_30° is consistent with the fact that the forward

peak in the plane-wave scattering factor dies away to essentially

"background" level by this angle [1]. At 100 eV, however, the forward

peak is much broader, but the SS and MS intensities still converge at

about the same angle. Thus, events more than about 30° off axis are

expected to be rather SS in character over a broad range of energy,

although we note that the chain geometry we have used here does not

allow for back scattering from atom(s) just below the emitter, an

effect which could become important by 100 eV.

We now investigate the dependence of these MS effects in chains

on different crystallographic directions and materials. In Figures

2.16 and 2.17, we first look at 917 eV emission along the much more

open [Ill] direction in the fcc Cu lattice, which has a

nearest-neighbor distance of d - 6.27 Kcompared to 2.56 Kfor then-n

[101] direction considered previously. In this case, the chain is

placed at 35.3° with respect to a fictitious (001) surface and hence

the forward-sc .•ttering peak is very close to that angle with respect

to the surface. The intensities along the chain fall more rapidly

with increasing chain length due to inelastic attenuation, which now

goes as exp(-Z fA sin(35.3°)}. These inelastic effects are enhanced
- n e

because the interatomic distance and thus Z is about 2.5 times larger
n
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than that for the [101] chains at a given n. We note here also that

o
enhanced inelastic attenuation has shifted the peak position about 2

toward higher takeoff angles. Also, the SS and MS results are much

closer to one another for [111] chains because of the increased

nearest-neighbor distance and a concomitant reduction of MS

defocussing effects; thus the importance of this type of M5 effect

will depend strongly on the direction of observation. Nonetheless, up

to 50% defocussing is seen for the longest chain, and the same sort of

peak narrowing in MS is observed. Both 5S and MS peaks are very small

after about eight atoms and hence major contributions to the

photoelectron intensity are coming from the top eight layers in each

case.

To further investigate the effects of interatomic distances on

o
defocussing, we have finally studied Cu [001] chains (d - 3.62 A)non

which are less dense than [101] chains but more dense than [111]

chains. We see from Figures 2.18 and 2.19 that both single and

multiple scattering intensities for [001] chains are in between those

for [101] and [111] cases, but closer in behavior to the [101] case,

consistent with the interatomic distance being closer.

As a final comment concerning these results for various Cu chains

at 917 eV kinetic energ~', we note that the higher-order diffraction

o
features occuring for emission angles more than 10-15 away from the

chain axis are always predicted reasonably well by 55 theory, even

though the MS cur~es ey~ibit some additional fine structure about an

average that is very close to the companion SS curves. This is
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another indication that SS becomes a reasonable approximation for

angles sufficiently far from a near-linear chain of scatterers. (cf.

also discussion of Figures 2.14 and 2.15.)

We now turn to examples of chains for different materials, and

first show in Figures 2.20 and 2.21 results for linear [101] Al chains

at 1336.0 eV, which corresponds to MgK -excited Al 2s emission. We
a

have here assumed f and k to be parallel. Defocusing effects are

again obvious, since the SS curves show a pronounced peak for an

emitter as deep as -10 layers in the solid, but the MS intensity goes

essentially to background level when the emitter is about eight layers

deep. Peak narrowing as chain length increases is also evident. Note

also that defocussing sets in more slowly for Al than for eu as a

function of chain length, with about an additional 2 chain atoms being

required to yield the same effect in AI.

A second case of Ge [IIi] chains is also interesting and related

to a recent x-ray photoelectron diffraction study by our group of a

surface phase transition on Ge(lll) [10]. In this study, the

intensity of a forward-scattering peak along a [111] direction at

19.0° with respect to the Ge(lll) surface was monitored as a function

of temperature, and it was found to show an abrupt decrease at a

previously-observed surface phase transition temperature. The Ge

[IIi] chains on which we have carried out MS calculations represent

this direction. As shown in Figures 2.22 and 2.23, even though the 55

peak has contributions from more than ten layers (five (Ill) double

layers in the usual notation), the M5 signal is seem to come from the
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top eight layers (four double layers) only. Both defocussing

intensity reduction and peak narrowing are again seen. The

smooth-curve average behavior of of the defocussing effects in Figure

2.23 also make it appear that Ge defocusses intensity more rapidly

than Cu.

Figure 2.23 illustrates another interesting effect in Ge: the

"saw tooth" variation of the curves as the chain length increases,

which is found in both the 55 and MS curves. This is explained by the

alternating short-long-short-long nature of the interatomic distances

along this chain. That is, within a double layer d is 2.45 X, butn-n

between them it is three times this or 7.35 X. The chains with odd

numbers of atoms thus have a gap of 7.35 Xbetween the emitter and the

nearest forward scatterer, and then two foward scatterers with dn-n

2.45 Xalong the chain. Chains with even numbers of atoms have a

o
single nearest-neighbor scatterer at d - 2.45 A, and then a longn-n

o
gap of 7.35 A to the next scatterer. The enhanced intensity for even

numbers is thus due to having a strong forward-focussing scatterer

very close to the emitter. This oscillatory effect on intensity,

which has not been discussed previously, could be useful in studying

semiconductor epitaxial growth. The "stairstep" form of the

defocu~3ing curve also has the same origin, in that increasing from

even to odd adds only a long distance scatterer that is very

ineffective at defocussing.

In Figure 2.22, S5 peak centroids are found to shift to higher

takeoff angles by about 3
0

due to previously discussed inelastic
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effects. We do not observe such distortions in the MS peak. This is

due to the less severe inelastic distortions on the narrower MS peaks.

We continue this discussion on chains by investigating the

dependence of these strong forward-scattering defocussing effects on

some of the non-structural parameters used in the simulations.

First, we consider the size of the muffin-tin radius which is

used in the program generating the scattering phase shifts 0i' This

is motivated by recent work by Aebisher et al. [34] who have

theoretically investigated the material dependence of such MS effects

along chains. They concluded that the different amounts of

defocussing in Cu and Al chains at a given chain length (cf. our more

detailed results of this type in Figures 2.10-2.13, 2.16, and

2.17-2.23) are not due to the choice of non-structural input

parameters but rather are primarily due to the differences in the

scattering strengths of the constituent atoms (i.e., their atomic

numbers and the resultant set of 0i's). However, an additional

parameter related to the 0i's that depends on the nature of the

material and also has a certain degree of arbitrariness in its choice

is the muffin-tin radius ~T used in the calculation of the 0l's. The

usual choice is the touching-sphere radius and hence ~T is clearly

dependent on the lattice parameters of a given material. We have thus

investigated the effects of muffin-tin radius on the final intensities

for a five-atom Cu chain, as shown in Figure 2.24. Here we have

chosen two non-touching radii which are 30% and 15% smaller than the

touching radius, the touching.radius, and two overlapping radii which
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are 15% and 30% larger than the touching radius. The magnitude of the

SS forward intensity increases monotonically with the size of the

muffin-tin radius. This can be qualitatively explained in terms of a

potential of greater radial extent being capable of better focusing

the photoelectrons in the forward direction, since forward-scattering

is primarily controlled by the outer portion of the potential

corresponding to larger impact parameters. But the MS intensities

show a much weaker variation with ~T that is, if anything, the

inverse of the 5S intensities; that is, the strongest forward

scattering in SS (the largest ~T) gives the strongest defocussing and

the lowest MS intensity along the chain. This can be explained via a

potential of greater radial extent causing stronger defocussing and

thus being capable of directing photoelectrons away from the forward

direction through multiple-scattering effects. However it is evident

from Figure 2.24 that the choice of muffin-tin radius has only minor

effects on defocussing. Hence, the choice of muffin-tin radius alone

is not sufficient to account for the different amounts of defocussing

in different materials; our results show that these differences are

mainly due to a combination of the differing atomic scattering

strengths and the change in interatomic distance along chains of

atoms, in agreement with the work of Aebisher et a1. [34].

As a final comment on Figure 2.24, we note that, for angles more

than 10-15° away from the chain axis, the diffraction structure is

negligiblly affected by the choice of the muffin-tin radius in either

SS or MS. This is useful, because as noted previously, it is such
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higher-order structure that contains bond length information, or via

holographic inversion, also atomic image positions.

There are other non-structural parameters that could influence

chain intensities such as the precise choice of the inelastic

attenuation length of the photoelectron, the finite aperture of the

photoelectron detector and the inner potential. Varying the first two

parameters over a reasonable range is found to cause changes in

relative peak intensities of only about 1-10%; peak positions are very

little affected. Increasing the inner potential is responsible for

moving peak positions to lower takeoff angles due to refraction, an

effect that is strong for lower energies and/or lower takeoff angles.

When the inner potential is increased the peak positions move away

from the surface normal. But the single and multiple scattering peaks

are found to move together with no relative displacement.

We now present elapsed-time information for these calculations.

As noted before, 'a cutoff criterion is used to discard many

unimportant multiple scattering events. This cutoff becomes effective

after the third order. All events which are less than, say 5%, of the

maxim~ third order amplitude are not carried over to fourth order

scattering. The same check is performed at the end of fourth order

scattering and again all events that are less than 5% of the same

third order cutoff are not carried over to fifth order. This is done

all the way up to the maxim~~ scattering order, which was tenth order

in this case. The number of scattering events for each chain is

plotted against the order of scattering in Figure 2.25 for chains of
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A1 atoms varying from two (1 emitter, 1 forward scatterer) to ten (1

emitter, 9 forward scatterers). Since the cutoff becomes effective

after third order scattering, the numbers up to third order represent

all events possible. For shorter chains the maximum number of events

is at the third order. After that the number of events tails off.

For longer chains there is a competition between the cutoff and the

very large number of new scattering events for each order. The latter

seems to dominate over the middle range of orders, but the cutoff

takes over eventually. As a result the maximum moves towards higher

scattering order.

As an indication of how many events are eliminated with a 5%

cutoff, we note that the total number for a given length n at a given

Norder N can be estimated from (n-1) , so that each extra order should

be go up by a factor of (n-1). For n - 10, the fact that the ratio of

the number of 5t h order events to that of 3r d order is only about

8.8/5.9 - 1.27 instead of 81 indicates that 5th order has been very

heavily discriminated against, with only about 0.39% of them being

computed.

Figure 2.25 illustrates another simple rule for high-energy

scatttering along such chains: the highest order of scattering that

needs to be considered is often equal to the maximum number of

forward-scattering events in sequence, that is, (n-1) for an n-atom

chain. All of the curves in this figure obey this (n-1) rule. (For

chains of the much higher Z scatterer W, we find however, that higher

orders than predicted by this rule might have to be included.)
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Finally, Figure 2.26 shows Cray Y-MP/864 CPU seconds for each

chain. Times are for tenth order MS. Even with a 5% cut-off limit

the increase in time is a very steep function of n. This time should

vary roughly as the area under the different curves in Figure 2.25.

For the four highest n values, a log-log plot of time vs. n shows that

time Q n5. 5, with an exponent that is not surprisingly about equal to

the scattering orders with the largest numbers. This is probably a

generally useful way to estimate time scaling with n: that is, if the

largest number of scattering events for a given cutoff occurs at N*,

then for an n-atom cluster, the variation of time with n can be

*estimated from nN .

2.8.2. Choice of Convergence Limit and the Maximum Scattering Order:

We now consider the influence of the two crucial parameters

controlling both the degree of convergence of the calculation and the

amount of computational time required: the cutoff criteria for 4t hand

higher order events and the maximum of order of scattering included.

The effects of these choices will be illustrated first for

calculations on simple linear chains.

Shown in Figure 2.27 are the defocussing and the CPU time as a

function of the cutoff. This is for a linear chain of five Cu atoms

at 1000.0 eV. It is clear from this figure that the cutoff does not

have much effect on the defocussing for any value above about 2-3%. as

the amplitudes of the important events are much larger than the
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cutoffs considered. By contrast, the CPU time falls off rapidly for

smaller cutoffs but levels off after about 5-10%. The reason for this

is that there are a large number of unimportant events at lower

cutoffs for this case. These events are responsible for only about

1.5% of the total defocussing (the spike seen as cutoff goes to zero)

and hence can be neglected to save computer time. In this case we

chose a 5% cutoff as it reduces the computational time by a factor of

about eight but has a negligible effect on defocussing. We have found

this cutoff to be both safe and time saving in more complicated

calculations with many more unimportant events.

As noted above, this example exhibits an unexpected upturn in the

% defocussing as the cutoff passes 1%. As this occurs, many more

events are calculated, and the CPU time also rises dramatically.

However the change in the % defocussing is very small (only -1.5-2.0%

of the total peak intensity in SS), and the 5% cutoff we have chosen

thus nonetherless yields quite quantitative results. This kind of

small change as the cutoff goes to zero is seen in other test

calculations of this type, and we tentatively attribute it to the

presence of a large number of small-amplitude events in a linear

chain.

As noted previously, the maximum scattering order can be selected

by looking at the final intensities and watching for their

(N)For example, I (k,9,¢) can be compared with

I(N-l)(k.9,~) visually or with an R-factor to determine where a

sufficient degree of convergence has been achieved. In, the most
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general approach, a preliminary calculation has be done at the maximum

order possible, with inspection of the table of intensities and

numbers of events versus order then showing where the N can be setmax

so as to exclude a neg1egible number of events. However, there is a

shortcut for estimation at higher energies via the (n-l) rule which

says that the convergence is at the (n_1)th order for a chain of n

atoms. With this in mind, one can examine the cluster to determine

the number of atoms n in the longest chain and then perform the

calculation at the (n-1) and n orders to see if convergence has been

reached. For medium-Z scatterers such as Cu this rule is valid when

inelastic attenuations are included in the calculation. But the (n-1)

rule does not seem to hold for strong high-Z scatterers such as W. In

such a case, the aforementioned shortcut should be used with caution.

As a final check on the overall accuracy and convergence of this

code, we have calcuated the total fluxes from a linear chain of Cu

atoms at 917.0 eV (see Figure 2.28). Flux conservation between the

case of no scatterers present (a I-atom cluster) and the case of n

scatterers is necessary for physical consistency: that is, the total

emitted intensity with n scatterers, which can be calculated as

I(N)
n,tot

2~ ~ (N)J J I (k,8,~) sin8 d8 d~,
o 0 n

must equal that in the absence of any scatterers:



r(N) _
l,tot

2~ ~

I I riN) (k , 9 ,¢ ) sin9 d9 d¢,
o 0
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provided that we do not include any inelastic attenuations. Figure

2.28 shows that including single-scattering events alone for this case

conserves flux to within a ± 1.5%. But it is also evident that, in

order to achieve a reasonable flux conservation of within ± 1% in a

multiple-scattering calculation, all orders up to convergence should

be included. Therefore one must be cautious in going up to only a

predetermined order without checking for convergence, especially for

cases involving long chains. This figure also shows that the (n-l)

rule we have mentioned in the previous paragraph works reasonably

well, although flux conservation does improve on going 1-2 orders

higher. Since we have not included inelastic attenuation in this

calculation, the (n-l) rule does not hold as rigorously for this case.

2.8.3. Auger Emission From Thin Epitaxial Overlayers of Cu(OOl) on

Ni(OOl) substrate:

In this section we present theoretical simulations of an Auger

experiment by Egelhoff [21] on a pseudomorphic monolayer of eu

deposited on Ni(OOl) and then buried by successive epitaxial

overlayers of Ni. The polar-angle dependence of the eu Auger

intensity at 917.0 eV was recorded for overlayers of 2, 4 and 10

monolayers (ML) in thickness. The rapid falloff with increasing

thickness of the relative intensities of forward-scattering features
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o
such as that shown in Figure 2.29(a) at 45 has been interpreted as

evidence of MS effects. This conclusion was supported by qualitative

arguments based on classical trajectories [21].

In order to more quantitatively assess these data, we have

performed SS and fully-converged MS calculations for 1 to 4 over1ayers

of Ni(OOl). The electron mean free path used in these calculations

was 11.6 K. We have also performed SS calculations using 5.0 Kas the

mean free path, since several prior studies have suggested that this

empirical reduction acts to simulate some MS effects [2a,2c], for

example, for the case of photoelectron diffraction from bulk Ni(OOl)

[36].

Experimental and theoretical curves are compared in Figure 2.29.

The MS theory is shown in both zeroth order (lx1) and in converged

second order (6x6). Comparing Figures 2.29(a) and 2.29(b), it is

clear that a quantum-mechanical treatment of the SS problem does

correctly predict the diminished importance of the features at large

angles with respect to the surface normal, particularly for the

theoretical curves with a reduced attenuation length of 5 X. This

trend is also found in SS calculations by Herman et al. for up to a 14

ML thickness [37]. Considering now the MS results, we find reasonable

agreement be~7een the (lx1) and (6x6) curves, especially well off the

[101] direction; however, the differences along [101] are large enough

to illustrate that (lxI) is not converged. The (6x6) curves are in

agreement with experiment for the 2 ML case as to both peak positions

and approximate relative intensities, although the experimental
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features are larger in width in general than predicted by theory.

Going to 4 ML, we note that MS theory predicts too much of a

defocussing effect for the scattering along [101], and that SS theory

with a reduced attenuation length is actually in better agreement with

experiment! The MS curve also has a pronounced higher-order peak

about 23° away from the surface normal (67° on the scale of this

figure); this is present also in the SS curves, and its more complex

origin in forward-scattering plus higher order interference effects

has been discussed in a previous analysis of Auger diffraction from

epitaxial overlayers by Bullock and Fadley [38].

These MS results can also be compared to previous MS calculations

by Xu et al. [7] on the same system, in which the intensity of this

inteference peak was lower, although all other features of our MS

results are in excellent agreement with their curves. In particular,

they also predict a more rapid decrease in the relative intensity of

h k 45 ° h i b dt e pea at t an s 0 serve . The lack of better success with the

MS approach for thicknesses of 4 ML or greater case could be due to

several effects: the presence of some strain and disorder in the

actual overlayer studied, the small cluster size of only about 40

atoms used in our calculations, our neglect of angular averaging over

the spectrometer accept~nce cone and/or a systematic tendency of such

calculations to overestimate the degree of defocussing due to some of

the simplifying assumptions made in the model (as, e.g., the

muffin-tin approximation). Therefore, the full degree to which MS
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defocussing is responsible for the intensity loss at 45° is not clear,

although it is certainly expected to contribute to some extent.

2.8.4. Scanned-Energy (Angle-Resolved Photoemission Fine Structure)

Results for the c(2x2)S/Ni(001) System:

In this section, we compare two angle-resolved photoemission fine

structure (ARPEFS) experimental curves for the c(2x2)S over1ayer on

Ni(OOl) due to Barton et al. to a multiple-scattering cluster

spherical-wave (MSC-SW) analysis of this data by the same authors

[15], and to our reanalysis of this work using the present method. In

both experiments, the photon incidence direction, the polarization f,

the [001] surface normal, and the electron emission direction lie in

the same plane, normal to the surface. Our calculations made use of

clusters of 40 atoms and non-structural inputs as described elsewhere

in a SSC-SW analysis of the same data by Sagurton et a1. [4(b)].

In the first case, the incoming photon beam makes an angle of 8hv

° .70 w1th respect to the surface normal and the detector is placed in

0°). (Hence, this has been

termed normal photoelectron diffraction or NPD.) The photon energy

was scanned from SO to 420 eV. Figure 2.30(a) shows the experimental

curve superimposed on the MSC-SW simulation by Barton et al. [7(b)]

for an optimized structure with sulfur 1.30 Xabove the first Ni layer

and a first-to-second Ni-Ni inter1ayer distance of 1.84 Xthat is

expanded by 4.5% with respect to the bulk value of 1.76 A. Figure
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2.30(b) shows a similar comparison of our SS and MS results to

experiment. In SS, several peak positions and intensities are not

predicted correctly (e.g., 1, m and 0, as well as the valley between k

and 1). By contrast, our MSC-SW simulations are in excellent

agreement with the experiment, and appear to provide an overall better

description of the data than the earlier calculations shown in (a).

In perticular, we are better able to predict the intensities of peaks

o and p, and the positions of peaks rand s are also in better

agreement with experiment.

The second case is very similar to the first, except that the

incoming photons are oriented

normal and the detector is at

o
at 9hv - 45 away from the surface

o
9 - 45 away from the surface normal.e-

(This has been termed off-normal photoelectron diffraction or OPD.)

Figure 2.31(a) again shows the experimental curve and the MSC-SW

simulation by Barton et al. [15] for the optimized structure. Figure

2.31(b) shows our SS and MS results compared to the same experimental

data. In SS, the position and intensity of the valley between peaks a

and b are not well reproduced. For peak c, the calculated intensity

is too small. Also peak i in the SS simulation is displaced by

several eV. In our MS results however, the only major disagreement

compared to the simulation by Barton et al. [15] is the intensity of

peak f, which is overestimated. But our simulation of peaks e and j

is in better agreement with experiment than that of Barton et a1. [15]

The x-scale ordinates on both Figures 2.30 and 2.31 are set by

the experimental data and our calculations have not been rescaled to
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fit experiment. This is an important point, as prior SSC-SW results

due to Sagurton et a1. [4(b)] have an adjusted x-scale which is more

expanded than the experimental scale. This difference is due to the

different sets of correlated vibrational parameters used in the two

calculations, which evidently oversuppressed the diffraction

oscillations in the earlier work. Our parameters correspond to the

alternative "correlated model 1" discussed by Sagurton at a1. [4(b)].

As a final comment concerning our calculations, we note that

thconvergence is achieved at 4 order as judged from final intensities,

thalthough events through 5 order were included in the calculation.

Overall, the MSC-SW results obtained using these two different

methods agree very well with themselves and with experiment. This

indicates that the Rehr-A1bers approach [17] is reliable over low to

medium energies of photoelectron diffraction and that it can provide

at least as good a description of such experimental data as the method

of Barton and Shirley, if not somewhat better.

2.8.5. Scanned-Angle X-ray Photoelectron Diffraction Results for

the c(2x2)S/Ni(00l) System:

As a final comprarison of our calculations to p~ior experimental

data and MS theory, we consider an experimental study by Sinkovic et

al., who used the intermediate kinetic energy range from 230 to 900 eV

to study adsorbate core-level azimuthal photoelectron diffraction

[39]. The adsorbate/substrate system employed in this study was again
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the well-defined c(2x2)S overlayer on Ni(OOl). Again the photon

incident direction, the polarization, the [001] surface normal, and

the electron emission direction were in a single plane normal to the

surface. They utilized two polarization orientations: s-polarization

lying in the (001) surface and a specially selected p-polarization

o
only 18 off the surface normal that maximally emphasized substrate Ni

scattering relative to the primary wave. A grazing electron takeoff

angle of 0 - 10
0

with respect to the surface was used in both cases,

with the azimuthal angle ~ being scanned. The experimental geometry

for p polarization is shown in the inset of Figure 2.32.

o
The s-polarization results with e only 10 away from the electron

emission direction and thus yielding a very strong primary wave were

reasonablly well reproduced by a quite simple single-scattering

cluster plane-wave (SSC-PW) model [39]. The corresponding

p-polarization results were markedly different however. In order to

be semiquantitatively described by the theory, the p-polarization data

required a reduction in the PW scattering amplitudes and the inclusion

of double-scattering events [39]. These p-polarization data were

later analyzed by Sagurton et al. [40] using a single-scattering

cluster spherical-wave approach, but there was no significant

improvement in the agreement. From this prior work, it was co~cluded

that the p-polarization geometry with its weaker primary wave showed

evidence of MS effects [40].

Tang [41] subsequently performed a multiple-scattering

spherical-wave analysis on this system and agreed in concluding that
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MS is required for the accurate description of the p-po1arization

data. Tang's computational method is based on an inverse-LEED type

final state, as described e1eswhere by Tong et al. [5,42]; this method

takes the translational symmetry of the system into account and thus

requires the assumption of long range order. Hence it is

fundamentally different from the cluster-based methods used by Barton

et al. [15] and in this work .. We have now performed

multiple-scattering cluster spherical-wave (MSC-SW) calculations on

the same system and Figure 2.32 compares this p-polarization

experimental data to various theoretical curves. We considered a

cluster of 36 atoms. We see that, SSC-SW theory fails to predict the

peak observed in the [110] direction, and yields very poor positions

for the other two peaks in experiment at ~ - 22° and 67°. By contrast

the two MS curves agree much better with experiment, and also very

well with one another. Tang's MS curve has a peak in the [110]

direction, but it is too strong in relative intensity. The other

peaks and shoulders at ~ 12° and 82° in his curve are in good

agreement with experiment. Our MS curve has a wider double peak along

[110]. This may be due to our small cluster size of 36 atoms and/or

our neglect of the finite aperture of the detector. But the relative

intensity of our central peak is in better agreement with the

experiment than that predicted by Tang [41]. The rest of the

structure in our MS curve away from [110] is in excellent agreement

with experiment. The strong disagreement of our SS results with

experiment is consistent with the prior conclusions by both Sinkovic
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et al. [39] and Tang [41] concerning the need for MS for this

particular geometry. Finally, we note that convergence for this case

was reached at 4t h order, as judged intensities.

2.9. CONCLUSIONS:

We have implemented and tested a new method for carrying out

multiple-scattering (MS) photoelectron and Auger electron diffraction

calculations due to Rehr and Albers, and have developed a general

purpose computer program for applying it to a wide range of problems.

Results obtained using this new separable Green's function matrix

approach are in very good agreement with those obtained with other MS

methods and with experiment. In agreement with previous work we find

that Auger and photoelectron peak intensities along chains diminish

rapidly due to MS defocussing effects as the number of atoms in the

chain is increased. These MS effects are prominent only in a cone

within about 20° of the chain axis. This implies the necessity of

linear or nearly linear chains to observe MS effects at higher

energies of ~ SeQ eV. This defocussing due to MS is found to depend

on the material as well as the crystallographic directions in a given

material.
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Table 2.1.

The fraction F of three-atom scattering verticies to be recalculated
with a change in adsorbate/substrate spacing as a function of both f
(the fraction of adsorbate atoms) and M (the total number of atoms

in the cluster).

F

f M - 10 M - 100 M .... ao

0.1 0.29 0.27 0.27
0.2 0.51 0.48 0.48
0.3 0.67 0.63 0.63
0.4 0.77 0.73 0.72
0.5 0.80 0.76 0.75



Table 2.2.
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Timing information on the Cray Y-MP/864 for chains of Ge atoms.
(cf. Figure 2.22)

# of atoms Wallclock(sec) CPU(sec)

1 4.7 0.4
2 7.2 1.1
3 15.6 7.7
4 52.6 23.8
5 119.4 52.7
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Table 2.3.

Timing information on the Sun-4 SPARCstation for chains of Ge atoms.

# of atoms W'allc1ock( sec) CPU(sec)

1 37.8 2.3
2 85.6 22.1
3 547.5 189.4
4 1129.4 608.6
5 2090.2 1315.6



Table 2.4.

Timing ratio for Ge chains: Sun-4 SPARCstation/Cray Y-MP/864

# of atoms Wa11clock(sec) CPU(sec)

1 8.0 5.8
2 11.9 20.1
3 35.1 24.6
4 21. 5 25.6
5 17.5 25.0
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Figure 2.1. Scattering of a plane-wave by a shperically symmetric

atomic potential.
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Figure 2.2. Illustration of the phase shift between the primary wave

(~o) and a scattered wave (~j) due to path length difference.

"

The

polarization e is here assumed to lie in the plane ~f the scattering.

The other component e' is perpendicular to this.
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Figure 2.3.(a) The magnitude of the atomic scattering factor If(8)1

for Cu as a function of scattering angle 8 for various electron

kinetic energies from 500 to 10,000 eV. Note the enhanced forward

peaking as energy increases and the concomitant decrease in the

importance of any back-scattering.
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Figure 2.3.(b) The scattering phase-shift ~(O) for eu as a function of

scattering angle 8 for various electron kinetic energies from 500 to

10,000 eV.
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Figure 2.3.(c) The inteference patterns produced by an idealized

single Cu scatterer, assuming the scattering phase shifts to be zero.

Note the higher order scattering features away from the forward

scattering "oth order" peak.
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Figure 2.4. Theoretical X curves for emission from an s-level in Ni as

a function of-the scattering angle 8Ni for a Ni single scatterer at a

distance of 2.49 Afrom the emitter (Em). The radiation polarization

is kept parallel to the emission direction. Results from three

different approximations to the scattering (PW, SW, and sw(l) a

lower-order spherical wave approximation) are shown for energies of

50-950 eV.
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Figure 2.6. The geometry of the scattering process: (a) the initial

general expression in terms of the free particle propagator GL,L' and

the t-matrix elements t..e; (b) the separation into scattering matrices

F). ).1 and termination factors
Lf d rOO h ; obtained in ther an _). t ..at_s-).,

1 N

Rehr-Albers method [17]; (c) tha inclusion of Debye-Waller and

-+
inelastic damping, with ~ now defined as the last scatterer instead

of the detector as in (a) and (b).
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Figure 2.9. Correlated vibrations as calculated from Eq~ation (2-4-82)

(smooth curve) and in an approximation was as parametrised by three

straight lines.
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Figure 2.10. Single and Multiple scattering calculations of Auger

electron diffraction from linear eu [101] chains at 917.0 eV.
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Figure 2.11. (a) Single and multiple scattering Auger electron

diffraction intensities directly alomng linear Cu [101] chains at 917

eV as a function of the number of atoms in the chain. (b) The %

defocussing (defined in the inset) in Auger electron diffraction

intensity along linear chains of Cu [101] at 917 eV.
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Figure 2.18. Same as Figure 2.10, but for Cu [001] chains.
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Figure 2.20. Single and multiple scattering calculations of Al 2s

photoelectron diffraction from a linear A1 [101] chain at 1336.0 eV,

The emitter is at one end of the chain, as shown in the insert.
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intensity, based upon results in (a).
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Figure 2.29. Polar angle dependence of Cu LMM Auger emission at 917.0

eV from a single monolayer of Cu buried under different thicknesses of

Ni(OOl). The experimental data in (a) are from Reference [21]. The

calculations in (b) are all form this work, and include both single

and multiple scattering with two choices of inelastic attenuation

length.
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curves for S Is emission from c(2x2)S/Ni(001) by Barton et al. [15].

o
The incoming radiation makes a 70 angle with the surface normal, and

the photoelectrons are emitted along che surface normal. (b) Single

and multiple-scattering simulations of the experimental data in (a)

using the present method.
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curves for S Is emission from c(2x2)S/Ni(OOl) by Barton et al. [15].

The incoming radiation makes a 45
0

angle with the surface normal, and

o
the photoelectrons are emitted at a 45 angle with respect to the

surface normal. (b) Single and multiple-scattering simulations of the

experimental data in (a) using the present method.
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in the inset. The experimental data are from Reference 40, the bottom

MS-SW curve is from Reference 41, and the rest of the theoretical

curves are from this work.
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CHAPTER 3.

APPLICATION OF A NOVEL MULTIPLE-SCATTERING APPROACH TO

PHOTOELECTRON DIFFRACTION AND AUGER ELECTRON DIFFRACTION

3.1. INTRODUCTION:

Single-scattering cluster (SSC) theories, initially with plane

wave (PW) scattering, but by now often with spherical-wave (SW)

effects included, have been widely used in simulating experimental

scanned-angle photoelectron diffraction (PO) and Auger electron

diffraction (AED) patterns [1,2]. The same types of sse models have

also been applied with reasonable success to scanned-energy

photoelectron diffraction or angle resolved photoemission extended

fine structure (ARPEFS) [l(b),l(c),3). However, the possible effects

of multiple-scattering (MS) on such patterns have also been discussed

by several authors [1(c),3-ll]. Thus, even though a single scattering

(SS) approach has been found to predict most of the diffraction

features observed experimentally with enough accuracy to be useful for

structure determinations [1-3], several instances where such an

approach is not fully adequate in explaining experimental results have

been pointed out [l(c),3,6-ll]. It is thus desirable to have a

quickly-convergent and versatile MS algorithm that can be applied to

both photoemission from any core subshell (i.e., to s, p, d, or f

emission) and to Auger emission (as treated in the common

approximation of an outgoing s wave [10-12]).
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In this paper, we further develop a new approach to MS due to

Rehr and Albers [13] for this purpose. This method is conceptually

simple and computationally efficient. It is based on a separable

approximation to the scattering Green's function or free-particle

propagator, and it allows building up successive orders of scattering

and judging the approach to convergence in a convenient and efficient

way. Scattering events up to lOth order have been included in our

calcuations for some cases to insure convergence. The general-purpose

computer program written in this work permits treating photoelectron

emission from any subshell, as well as s-wave Auger emission. The

example systems studied to date and discussed here include c(2x2)S on

Ni(OOl) , linear and bent chains of several different atoms (Cu, AI,

and Ge), multilayer epitaxial overlayers (Cu(OOl) on Ni(OOl)) and

multilayer substrates (Ni(OOl)), and more complex structures of

molecular or atomic adsorbates on surfaces (the tilted Q 3 state of CO

on Fe(OOl) and (J3xj3)R30o Ag on Si(lll)).

3.2. APPLICATION OF THE SEPARABLE GREEN'S FUNCTION APPROACH OF REHR

AND ALBERS TO SINGLE AND MULTIPLE SCATTERING:

In thi~ section we will discuss the application of the

scattering-matrix formalism of Rehr and Albers (R-A) [13] to single

and multiple scattering in both photoelectron and Auger electron

diffraction. This full spherical-wave method approximates the system

by a cluster of individual atoms. This is a sensible alternative to
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prior MS methods derived from low energy electron diffraction (LEED)

[4,6,9] which require full translational symmetry along the surface

and are thus not as well matched to treating short-range probes such

as PO, AED or ARPEFS, or the presence of any disorder. Cluster

methods [1,3,7,10,11] are by contrast very appropriate to modeling all

types of short-range-order effects. The most accurate version of the

cluster approach we will term multiple-scattering cluster-spherical

wave (MSC-SW) to distinguish it from the previously-used SSC-PW and

SSC-SW methods. In the following paragraphs, we present the essential

points of the treatment by Rehr and Albers [13], and then expand it to

apply to MS in photoemission from any subshell or Auger emission. In

the equations to follow, we will for simplicity not initially include

effects due to inelastic scattering or vibrational motion, but the

form in which these have been incorporated will be indicated later.

The details of the original derivation by Rehr and Albers will only be

discussed briefly, as they are discussed fully in the original article

discribing this approach [13].

We begin with some fundarmental equations and definitions used by

Rehr and Albers [13]. From Equation (25) of Reference 13, the

photoelectron diffraction intensity at the detector is given by

(3-2-1)
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where I(k) is the intensity at the detector for emission with wave

-. da-.
vector k, dO(k) is the core photoelectric cross section for emission

. (N-l) th
from a g~ven sublevel nilimi, GOO,L

f
is the (N-1) order

-. -.
multiple-scattering Green's function for a path from RO • Remitter at

-+ -+ -+ -to...... ......
the origin via scatterers at R1, R2, .... , ~-1 to ~. Rdetector· Rd

cat ~,DL (e) is the amplitude and On is the phase of the dipole
Lf,C ~f

matrix element into a given final-state Lf

(Lf here is equal to L in the notation of

from the emitter to the

(0,0) state required at the detector an infinite distance away.

Within the matrix element, wE k denotes the final continuum state
kin'

"
of the photoelectron at a kinetic energy Ek" and in the direction k ­

~n

-.
k/k, ~n.l"m" is the initial core orbital from which the photoelectron

~ ~ ~

"is emitted, and e is the radiation polarization vector. The sum is

over L
f

- (If,mf) and over all combinations of N, the number of atoms

in a given scattering path from single-scattering (N-2) to the highest

order considered (in our case 10t h order or N-11).

"Now R-A choose the e vector in the z direction to simplify the

matrix element evaluation. The expression for the matrix element then

becomes [14]

(3-2-2)
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where Y10(8,¢) is a spherical harmonic. Both ~E k and ¢ are
kin' ni l imi

now expanded in spherical harmonics. In expanding ~E k' use is
kin'

made of the fact that it is a plane wave at the detector, thus

implying the usual ingoing-wave expansion for it [14] to yield

(3-2-3)

with the angles defining the detector along k (or Rd) taken to be

(8 k ' ¢k ) . For ¢ we can simply writen.l.m.'
1. 1. 1.

(3-2-4)

Here, RE n (r) and R n (r) are radial parts of the continuum
kin'~f ni~i

orbital at if and a given core orbital with quantum numbers ni and ii'

respectively.

Substituting Equations (3-2-3) and (3-2-4) into (3-2-2) and doing

some simplifications, one arrives at



194

where i< is the lesser of the pair ii and if. The integral in 8, ~

yields the selection rules if - ii - ± 1 and mf - mi - 0 (due to

polarization choice).

It is convenient now to define a core-to-i
f

matrix element rn.
Lf,c

as

or in shorthand notation as

i
rn. - (3/4~)1/2 (-i) f Rn (E

k.
) cl(..ef,m.,i.,m.),

L f , c ..t.
f

an 1 1 1

(3-2-6)

(3-2-7)

where Rn ~ ~E n (r)/rIR n(r» and cl(if,m.,~.,m.) -
..t. f kin,..t. f ni..t. i 1 1 1

(4~/3)l/2<Yn (8,~) YlO(8,~)1 Yn (8,~», with the last factor being
..t.?i ..t.imi

a Gaunt coefficient. In the case of emission to a single final state

(as, for example, for s emission (i. = 0, m. = 0) to a p final-state
1 1

(if - 1, mf - mi - 0) or Auger emission to an assumed s final state
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(if - 0, mf - 0», we can ignore these matrix elements and phase

shifts, as they produce only scaling factors of the intensity. But

they are extremely important in calculations to more complex final

states where ~i can go into the two channels ~f ~i ± 1. As one

available source of both Ri and SC , Goldberg et al. [14) have
f .e f

tabulated them for a a number of free atoms at several energies. We

will here introduce these factors only at the end of derivations to

account for fully general

As noted previously,

emission into the ii ± 1 channels.

(N-l)GOO L in Equation (3-2-1) is the exact
, f

multiple-scattering expansion for an N-1eg scattering path with (N-l)

scattering events. It can be written, using Equation (14) of

Reference 13, as,

(N-l) -+
GOO L (RI ,

, f ,~) -2 2 Goo,~ (PN) t i (~-l)
(paths) (L.) -1 N-l

~

-+ -to
x GL_ L_ (PN-I) t~ (~-2) .

~-1'~-2 N-2
-to -to

......... t n (Rl) GL L (PI) (3-2-8)
.f.1 I' f

-to
where GL L (Pj+l) is a matrix element of the free-electron

j+l' j

propagator in an angular momentum and site basis, L
j+1 - (i

J+I,mj+1),

L ( n ) -to k(-toR -toR)' "bond vector" Ln units ofj - .f.j,mj , Pj+l - j+l- j ~s a •

2~(number of electron wave lengths), and t~ = exp(iS~}sinoi is a

diagonal element of the t-rnatrix for scattering. A graphical

f f h •. G(N-l). . . F' 3 1representation 0 one 0 t e patns ~n 00 L ~s g~ven ~n ~gure . .
, f
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The summations are over all combinations of intermediate Li's and all

possible scattering paths of (N-l) order in the cluster. The matrix

-.
elements or intermediate propagators GL L (p. 1) in the above

j+l' j J+

expression thus give the strength of a given L
j+l component of

-.
spherical waves centered on R. 1 as contained in the component L.

J+ J
-. -. -.

propagating outward from Rj; at each Rj+l, t
1

. l(Rj+l) then accounts
J+

for the effects of scattering on the next outgoing components. For a

general multiple-scattering event, both L
j+l and Lj must take on all

values from 0 up to some L at which t n and t go to zero.
max A;j+llj_l

The last ~ (IN'~) can be shown to be restricted to (0,0) because

it represents the projection of ~-l at the last scattering center

-.
into a plane-wave at the detector Rd an infinite distance away.

The major contribution of Rehr and Albers (R-A) [13] was to

develop a convergent separable approximation to the general matrix

-.
element GL L'(P). Details of their derivation and certain extensions,

we have made of it for the specific case of multiple-scattering in

photoelectron and Auger emission are given elsewhere [13,15] and we

will thus present only a brief outline of essential steps and results.

Beyond choosing the initial z axis to be parallel to the polarization

vector f, as noted previously, the next step is to rotate a given bond

-. -+-.
direction corresponding to p - k(R-R') onto the z-axis to further

simplify the calculation. Then one has after some manipulation,

-.
GL L'(P) ~ [exp{ip}/p],

(3-2-9)
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'".2 '"
where R (p) is a rotation matrix which rotates the unit vector pontomJJ

the z-axis, R;JJ(;-l) is the inverse of this matrix, P - Ipi and g~~~I)

is found to be a reduced, dimensionless z-axis propagator. (Equation

(3-2-9) here is equivalent to Equation (9) of Reference 13.) The

Euler angles (a,fi,~) associated with these rotations are defined

according to the convention in reference 16: a about initial Z, ~

about intermediate Y', and ~ about final z. The two matrices are

.2 '" .2
R ,(p) - R ,(a,fi,l) and

mJJ mJJ

The first step in the R-A treatment thus

related by the standard identities:

.2 "'-1 .2
RmJJ,(p ) - RmJJ,(-~,-fi,-a).

-+
separates GL L'(P) into purely angle-dependent rotation matrices and a,

radial z-axis propagator g~1~1) that depends, through k in p, on

energy.

The second step in the R-A method is to achieve a separable

approximation to this z-axis propagator. This proceeds by deriving an

integral expression for g~1~1) (Appendix A of Reference 13); and then

further simplifying this using contour integration methods to yield

the final fully-separated equation (Appendix B of Reference 13) as:

min [.2 , .2 ' - IJJ I ]
\ -.2L 1JJ/p)

v-O

(3-2-10)

where min[i,i'-IJJll - the minimum of.2 and .2-IJJI • [.2,.2'-IJJll in later

notation, and the new functions 1 and? are defined as,
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and

-£ c(v)(Z) v
~~v(p) - (2£+1) £ Z /(N£~ v!).

(3-2-11)

(3-2-12)

Here, C£(z) is the polynomial part of the spherical Hankel function

and cjv)(Z) _ 8vC£/8zv .

Combining Equations (3-2-9) and (3-2-10) now yields the final

form of the R-A separation:

..
GL,L' (p)

min [ £ , £ ' - I~ I ]

2
v-o

£ 1\ 1 _£ l' £' 1\

X [Rmll(p - ) ~ (p)] b (p) R , (p) ] .
r: ~v ~v ~m

(3-2-13)

This can be further simplified by letting A - (~,v) represent the

combined expansion indices and by defining the two bracketed

quantities to be

and,

L'-" l' 1,' 1\

r,(p) =; (p) R ,(p)
" ~v ~m

(3-2-14)

(3-2-15)
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to yield finally

G (~) e
i p

\ rL(~) rL'(~)
L,L' P - p LAP A P .

A

(3-2-16)

The factors involving Land L' are thus fully separated in this

description, a key advantage of the R-A method, as we will see below

in applying it to both single and multiple scattering.

In addition, the sums in Equation (3-2-13) are found to be

rapidly convergent [13], so that in practice results of very high

accuracy are obtained with I~ I s 2 and v :s 1. This is the principal

advantage of using this method as far as calculation times are

concerned. We comment more on the adequacy of working at this level

later.

The results of this separable approximation can now be

substituted into Equation (3-2-8) to yield the principal equation of

the R-A method as applied to photoelectron and Auger electron

diffraction:
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termed "scattering amplitude matrices" and are given by

2.
\max

tL 2.k _
12.k-1-0

(3-2-18)

2.k ""-1
with the composite rotation matrix R~ ~ (Pk,Pk-1) corresponding to a

k k-1
...

rotation first of Pk into z and then z into Pk-1' The scattering

... ...
amplitude matrix FA A (Pk,Pk-1) can thus be thought of as a

k' k-1

generalized spherical-wave scattering factor associated with the site

... ...
at ~-1 and specific choices of scatterers at ~

schematic illustration of the separated form for

Figure 3. 1 (b) ,

...
and ~-2' A

G(N-1) is given in
OO,L

f

A "termination matrix" involving the first and last factors in

G(N-1) is further given by
Oa,L

f

(3-2-19)

oa,Lf... ... Lf,aa... ...
(Our WA A (PN,P1) is equivalent to the MA A (P1,PN) used by Rehr and

N' 1 l' N

Albers [13].) For photo1ectron and Auger electron diffraction, where

the detector is at infinity, W can be simplified further via
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(3-2-20)

The general result that R~O(;-l) - [4~/(2£+1)]1/2 y£~(;-l) [16]
o A_lOA 1

indicates that R~O(p ) - 0 for all ~ ~ 0 and R~O(p- ) - 1 for ~ - O.

Then Equation (3-2-20) becomes,

(3-2-21)

Since the detector is at infinity, P - P
d
~ ~, CO(~) ~ 1, C6v)(~) - 0

for all v ~ 0, and c~v)(~) - 1 for v - O. Hence from Equations

-00(3-2-20) and (3-2-21), r A (PN ~~) - 1, and we have a final generally
N

useful form not discussed previously:

(3-2-22)

Note that W does not finally depend on the location of the detector

through P
d

,
A

although it does depend on the orLencatton of e through

£f A
the rotation in R (PI).

~lmi

3.2.1. The Single-Scattering Intensity in Photoelectron Diffraction:

As a first example of the application of this formalism, we

consider the single-scattering intensity 1(1) in photoelectron
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emission from a general niLi - (ni,li,mi) core sublevel, a case

introduced by R-A [13] and also discussed using the R-A approach by

Friedman and Fadley [17]. This can be written directly from Equation

(3-2-1) for N - 2 as

(1) -+
I (k,n. ,li,m.)

~ ~

-+
-+ Ek· ,k,l·+l,m.)

~n 1_ 1

'"mL. (€) exp(i6~ )
f'c ~f

(3-2-23)

in the second or scattered

-+
with the emitter as usual at the origin, P

j
-+ -+-+

first or direct wave term and Pd - k(Rd-R
j

)

wave term.

-+ ...
- kRj , Pd

-+
kRd in the

different meaning

Figure 3.1.) The

G(l) must involve a sum over all single-scattering path choicesOO,L
f

of j - 1,2, ... ,M, where M is the number of single-scattering centers

-to -+ -+ -to-to

at positions Rl, R2, ... ,~. (Rl, R
2,

.... here thus have a slightly

...
from the general-path R.'s in Equation (3-2-1) and

1

(0) -+
first sum on GOO L (Rd) thus represents what can be

, f

termed the "direct" or "unscattered" wave ,pO' and the second sum on

G(l) represents all of the singly scattered waves ,p •. Since a non-s
OO,Lf J

core level will, in general, have (21
i+l)

degenerate sublevels, the

final intensity observed must sum over emission from them to yield
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do n (k)

ni~i
Q -

<in
-to

(n. ,J.. ,m. -to Ek. , k, J. .+1' m. ) .
L L L Ln L_ L
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(3-2-24)

For the J. f - J. i - 1 channel, there will only be 2(J. i-1) + 1 terms in

this sum. For the J. f - J. i + 1 channel, (2J.i+1) terms must be

included.

First we concentrate on the direct-wave which is represented by

(0) -to
the Green's function GOO L (Rd). From Equations (3-2-8) and (3-2-9),

, f

it is a simple matter to show that [15,16]:

(3-2-25)

-to -to
where (9k'~k) are the angles of k (or Rd) measured with respect to the

polarization vector f as the z axis.

(1) -to-to
The single-scattering Green's function, GOO L (R.,Rd), can now be

, f J

expressed, using Equation (3-2-8), as follows:

-+ -+
tJ. (R.) GL L (p.).

j J j' f J
(3-2-26)

Now using Equations (3-2-9) and (3-2-10), one gets the following final

(1)
expression for GOO L :

, f
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i. . " l i. . "1J -+ J -x R, (Pd) to (R.) [exp(ip.}/p.] R ,,(p.)
I" mj A:;j J J J m.1" J

1"" J
[O,i.·-IIJ"I] 0 0 0

[
'\ J _A:;j A:;f ] A:;f "

x L "Y1J"1I"(Pj) "Y1J"1I"(Pj) RIJ"m. (P j). (3-2-27)
11"-0 1

-+ -+
Another useful simplification arises since R

d
» R

j:
if 9

j
is

the single scattering angle at site j, the exponentials in Equation

-+
(3-2-27) can be written as exp(ipd} exp(ip.} - exp (i(klRdl - p.cos9.

J J J
-+

+ Pj ) - exp{iklRdl} exp(iPj(1-cos9j)} - exp{ipd) exp(iPj(1-cos9 j)},
-+

with Pd • klRdl now defined as in the direct wave case considered

earlier. Pj(1-cos9
j)

is thus simply the phase difference between the

direct wave and the jth scattered wave as caused by the path length

-+
difference IR.I(1-cos9.), and it appears directly in numerous prior

J J

discussions of the theory of photoelectron diffraction [1-3].

Equation (3-2-27) can thus be written as

(3-2-28)
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By considering explicit sums on 2. and m. and by realizing that
J J

R~~,(a'P'7) - (4rr)1/2 YO~,(P,7) is defined only when ~'-o, one can

o v' v'
simplify this expression. The facts that 7

0v'(Pd) - Co (zd) zd / v'!

(cf. Equation (3-2-11» and CO(zd) - 1 imply that 7gv'(Pd) ~ 0 only

when v' ~ O. This makes v' - 0 the only surviving term in that

summation. Hence A' - (~',v') - (0,0) for single-scattering. This

o A -0
makes ROO(Pd) - 1.0 and 700 (Pd) - 1.0 and we have

(3-2-29)

Equation (3-2-29) becomes in the alternate notation of F's and W's

introduced before:

(3-2-30a)

>.n

where Equation (3-2-18) gives
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(3-2-30b)

and Equation (3-2-22) gives,

(3-2-30c)

As an interesting special case of this single-scattering result.

the total intensity for emission into a single final state Lf-(~f.mf)

is thus:

(3-2-31)

where we have now let 8k - 8d ~ 8 and ~k - ~d ~ ~ for simplicity. We

have also cancelled out a trivial factor of exp(-ipd) eXP(iPd}/Pd
2

=

-2
P

d
that simply allows for the spherical-wave character of the

outgoing flux. Examples of such single final states would be the

p-wave final state in s (L
i

- (0,0)) photoelectron emission to p (Lf =

"
(1, 0)) (noting again that ye take E II z ) and the often used s-wave

final state approximation for Auger electron emission (Lf - (0,0)).

For such cases, the excitation matrix elements and phase shifts in

Equation (3-2-31) can simply be omitted, as they yield only constant

factors in the intensity.
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In a more general case such as p-wave initial state photoemission

into s- and d-wave final states, one has to add final amplitudes with

correct relative phases and to sum over the various m
i

excitations

possible. In general, the final intensity in this case can be written

with Equation (3-2-24) as

The explicit form of Equation (3-2-32) is

I~~~. (k,O,,p)
~ ~

(3-2-33)

A"

which is a generalization to non-s emission of the equivalent Equation

(26) in Reference 13.

We also note that W is dependent only on the initial (L~ ~...
(if,m

f»
and final (Ld = ~ = (0,0» states. Thus only one set of W's

has to be calculated for a given Lf channel, whether the event

considered passes through a single or a multiple scattering path.
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The range of the index v is given in Equation (3-2-10): 0 to

min[i,i'-I~I]. So far we have not imposed restrictions on the

summation index~. The dependence of the coefficients ~ (p) and
~v

~ ~ -(2v+~) -(2v'+~')
~~v(p) on p implies that FAA,(p,p') Q (p) (p') for

large p and p' [13]. P
j

- kR
j

is generally greater than unity, even

for the smallest bond lengths, since nearest neighbor distances are

always several atomic units and k for excitation above threshold is

greater than the Fermi momentum kf (= 1.0 in atomic units). This

suggests the possibility of truncating the summations on ~ and v, and

we now consider several levels for doing this. Keeping only the

largest matrix element yields.the effective curved-wave scatttering

amplitude F~g~oo for point scattering (a result that is zeroth order

in lip) and a (lx1) matrix. Going beyond this requires recalling the

restrictions on (~,v) set by prior definitions:

(3-2-34a)

with i - 0,1,2, .,. i unless otherwise restricted at pathmax

termination points or by the following relations:

v ~ 0,

v + I~I s i.

(3-2-34t)

(3-2-34c)

A calculation that is first order in lip for large p can thus contain

only non-zero terms corresponding to (p,v) - (0,1), (+1,0) and (-1,0),
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leading to a (3x3) symmetric mat~ix for Fi~~ whose elements are given

in single scattering by Equation (3-2-30b). Going to second order in

IIp permits including the additional non-zero (~,v) - (0,1), (2,0) and

(-2,0) to yield a symmetric (6x6) matrix whose elements are again

given by Equation (3-2-30b).

We have gone only up to the second order in IIp in all of

calculations described here, because prior work by both Rehr and

Albers [13] for x-ray absorption fine structure and by Bullock [18]

for single scattering photoelectron diffraction has demonstrated that

this level of approximation should be fully adequate, especially for

energies above about 100 eV. As one example of these tests, single

scattering calculations by Bullock [18] shown in Figure 3.2 involve

the fictitious case of f emission from one atom in a two-atom chain

with single eu scatterer. The case of f emission into a single final

g channel was selected to represent a more stringent convergence test.

~

The wave vector k is kept parallel to the radiation polarization

vector, as shown in the inset. At 100.0 eV the difference between the

zeroth and second order approximation is noticeable over the whole

range of the scattering angle. However, the second and eighth order

curves are within a few % of one another over the whole range. In

fact the only minor differences between the second and eighth orders

• 0
occur for energ~es of -300 eV or less and for angles ~ 30 that are

near the forward-scattering cone. At 1000.0 eV, which represents a

tJ~ical x-ray photoelectron diffraction (XPD) kinetic energy, the

second and eighth orders are identical. Overall, we thus believe that
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the second-order R-A method is fully adequate for work from 50-100 eV

upward.

3.2.2. The Multiple-Scattering Intensity for a General Initial State:

We here discuss emission from a general Li - (2 i ,mi ) initial

state to a set of general final states, but with the important

addition that multiple-scattering paths of arbitrary order are

considered. The direct wave in this case is identical to that given

in Equation (3-2-25). A multiple-scattering path contains the emitter

and more than one scatterer, and a typical path is shown in Figure

3.1. Our notation for the various vectors needed to unambiguously

describe a complete set of multiple-scattering paths will be more

explicit than that of R-A, although we will remain as close to it as

-+
possible. Specifically, the emitter is still taken to be at R

O
- 0,

.... -+
with the vectors of all other scatterers R

j
and the detector Rd being

measured with respect to the emitter. We will now increment the

meaning of N by unity so that it now represents the order of the

scattering (rather than (N-l) as before), so that a typical path is

-+ -to -+ -+ -+ -+
now RO,Rl,R2 ... ~'~+l-Rd' In order to keep track of a given

scatterer in a typical path, we will designate all possible first

.... -+
scatterers by R. , all possible second scatterers by R. , etc., up to

J l J2

The vector used in the arguments of the Fth ....
a general k order R.

Jk
....

and W matrices we can then calculate from p ..
JkJk-l

.... ....
k(R. - R

j
) ,

J k k-l

with two indices now required due to the many paths involved. For the



first step in a path, this is simply P.
J l

-+ -+
kR. & P

J
. , as in the

Jl
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single-scattering discussion of the prior section. For the last step

-+ -+
in any N-event path, p - k(R

d,jN d
-+ -+
R. ) ~ Pd for simplicity, since
I N

this vector always points from the last scatterer to the detector at

~. In multiple-scattering, there may be several consecutive

scattering events, including those in which the photoelectron is

scattered off the emitter at some point after a first scattering event

on another site. In this case, we will treat the emitter as a neutral

atom, even though it contains a core hole. The presence of this core

-+
hole could affect the. phase shifts 0i(R

O)
somewhat, but final state

screening is expected to reduce this effect, so we have chosen to

ignore it here. (In any case, our computer code is flexible enough to

permit using different 0i's for the emitter if desired). The

-+
restriction on P

j
j is that jk '" jk-l for all k: that is, the

k k-l

photoelectron cannot be scattered off the same atom twice in a row.

In this notation, jk can represent any atom of the M atoms in the

cluster, including the emitter. The summations in any of the

multiple-scattering paths to follow will thus at each step be over

(M-l) jk values at each order in a path, with the restriction that jk

'" jk-l for all k. We will not write this restriction explicitly in

equations, but indicate such sums only with the set of indices (j.).
~

T' Nth . 1 . 1 . G 'ft' .ne oraer mu t~p e-scatter~ng reen s unc ~on ~n

photoemission to a unique state Lf = (!f,m
i

) , can now be written in

the revised notation from Equation (3-2-8) as,
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-+ -+
,R. ,Rd) ­

I N
-+

t.e
N

(Rj N) G~~_l (PjNjN-l)·········

-+
GL L (p j j ) t.e (Rj ) GL L (p j ).

2 1 2 1 1 1 1 f 1
(3-2-35)

This general Green's function can now be written in terms of the prior

Wand F matrices.

The steps leading to a specific evaluation of this G6~)L are
, f

very similar to those shown in detail for the single-scattering cases.

Therefore, we will omit details here and directly write from Equations

(3-2-17) and (3-2-35):

(3-2-36)

First we consider the exponential prefactors involving path

length differences and thus containing all of the structural

information. These can be written in terms of two angles. The

notation we use for these angles is as follows:
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"OJ j - angle between vectors p. . and p ..
k k-l Jk+IJ k JkJk-1

-+
which is the true scattering angle for the event at R. , and

J k

" "
0' - angle between vectors pd and p
jkjk-l jkjk-l'

(3-2-37a)

(3-2-37b)

which is the angle required for calculating the path length difference

" ....
along p leading to the event at R. o Then, by repeated usage of

jkjk-l J k

the argument used to obtain Equation (3-2-28), we can show that

exp(ipd + Pj . + .. .+p. } / (P d p • • 0 .. .. p. ) -
NJN-I J I JNJN_I J I

N
(exp(iPd}/Pd) II [exp(iPj j (l-cosO~. )/P

j
. ] 0

k-l k k-l JkJk-l kJk-l
(3-2-37c)

After the last scattering event, the photoelectron escapes

towards the detector. This last event, or the first event in a time

reversed sense, involves a finite and an infinite distance and is

... -+
represented by F

OO
A (Pd,P.. ). This F matrix is identical in

, N JNJN-l

structure to the one we worked out in the single-scattering case.

Also, the W matrix as defined in Equation (3-2-30) depends only on the

polarization of the incoming radiation and the position of the first

scatterer relative to the emitter; thus it does not require any

modification either. The only other factors left to calculate are the

... ....
matrices FA A (p.. ,po . ) involving two finite distances.

k k-l JkJk_l Jk-lJk-2
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The general form of these is identical to that given in Equation

(3-2-18).

Thus we have finally,

-+ -+ OO,Lf -+ ]
x F>. x (p • • .», ) WOO>. (Pj )

2 1 J 2J 1 J 1 I 1 1

where,

(3-2-38)

~k A A_1 _ik _1
RJ£kJ£k_1 (p jkjk-1' pjk-1jk-/ 'Y>'k_1(p jk-1jk-Z) ,

and,

OO,Lf -+ if ~f A

WOO>. (p. ) - '1>. (pJo ) R (po).
, 1 J 1 1 1 1£1mi J 1



215

As a specific example of applying this result, we write it out

explicitly for fifth-order multiple-scattering:

[exp(iPj . (1-cos9j' j ) }/P
j

j ]
3J 2 3 2 3 2

[exp(iPj j (1-cos9 j' j ) l/P j j ]
5 4 5 4 5 4

x [eXP(iPj2jl (1-cOS9j2jl)}/Pj2jl]

x [eXP(iPj4j3 (1-cOS9j4j/}/Pj4j3]

-+ .... .... ....
x Faa>. (Pd,Pj j ) F>. >. (p j j 'P j j )

'5 54 545443

.... ....
F>. >. (Pj j , Pj j )

4 3 4 3 3 2
OO,L f ]

Woo >. (pj ) .
, 1 1

(3-2-39)

In some of our numerical simulations involving small clusters of S 40

atoms, we have used equivalent expressions upto tenth-order multiple

scattering.

The overall expression for the intensity for a single final-state

(N )
I
L

max (k,9,,p)
f

(3-2-40)
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On the right hand side, the first term represents the direct wave, the

second the singly-scattered waves and the final summation the

multiply-scattered waves up to a maximum order of N (S 10 in thismax

work).

For emission from all of the initial magnetic sublevels i.m. into
1. 1.

two final state chanels if - ii ± 1,mi we have the fully general

result

(N
I max) (k 9 A.)

n i ..Y'
i i

Equation (3-2-41) can be written more explicitly as,

i
(-i) f eXP(iO~i Ri~Ekin) <i~iI10Iiimi>
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-+ -+ -+-+

FOO,AN(Pd,PjNjN_1) FANAN_1 (PjNjN-1'PjN-1jN-2)·····

(3-2-42)

OO,Lf
and WOO A are given with Equation (3-2-38).

, 1

3.2.3. Inclusion of Inelastic Scattering, Vibrational Effects,

Instrumental Angular Averaging, Unpo1arized Radiation and

Auger Emission:

We now consider the inclusion of several additional effects that

are essential for a quantitative comparison of theory and experiment:

damping due to inelastic scattering, damping due to vibrational

effects, intrumental angular averaging, the possible use of

unpolarized radiation, and the treatment of Auger emission.

A fully rigorous method for including inelestic attenuation is so

far not available, and thus we use the common phenomenological

approach of an exponential decay of the amplititude of each component

of the photoelectron wave with the distance travelled in the solid

before escaping through the "surface" fl,3]. The surface here is a

plane used to define both the cutoff of inelastic scattering and the

location of possible refraction effects due to the inner potential Vo
(as discussed below). If the distance travelled along a given path is

L and the inelastic attenuation length for photoelectron intensity is

A , then the exponential decay factor for the amplitude is exp{-Lj2A }
e e
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[1,3]. If we define ROS as the vector from the emitter to the surface

-+ ~ -to -.. -to -.
in the direction of k, R R R /k d R as

jkjk-1 - jk - jk-1 - Pjkjk-1 ,an jNS

-+
the vector from atom jN to the surface in the direction of k (see

Figure 3.1(c», such factors can be incorporated into Equation

(3-2-42) to yield:

(N )
I max (k () -J.)n 2. ,,'I'

i i

l
(-i) f exp(i5~) R.(Ek. ) <l~. lOll.m.>

~f ~f ~n I ~ ~ ~

-+
/2Ae} exp{-IR. 1/2A }

Jl e

-+
exp {- IR. S I /2A }I N e

(3-2-43)

Thermal vibrations can be treated most simply in an isotropic

uncorrelated fashion, although anisotropic correlated vibrations are a

more accurate description for the more important near-neighbor

scatterers [3,7]. There is no generally applicable yet accurate model
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for including both anisotropy and correlation in single or multiple

scattering calculations, although different methods for approximating

these effects have been discussed previously by Sagurton et al. [3]

and by Barton et al. [7].

In the simplest case of isotropic uncorrelated vibrations,

inclusion of them in Equation (3-2-43) can be effected by multiplying

each scattered amplitude by a simple Debye-Waller factor WUC

jk
-+

representing the motion of a given scatterer jk; if ~k.. is the
JkJ k_ l

h i -+k t i h j k t h 8 i h ic ange n on scat er ng at t e atom, j' s t e scatter ng
kJk-l

2"angle defined in equation (3-2-37(a» and U. is the absolute mean
J k

square displacement of the jk
t h

atom, this simple uncorrelated

Debye-Waller factor is given by [3]

k2 U2. } 2k2(l ) 2exp{-~ . . - exp{- -cos8.. U.}.
JkJk_l Jk JkJk-l Jk

(3-2-44)

But for correlated vibrations, this factor is expected to depend on

the distance between the present scatterer and the previous scatterer.

We represent this by W: .
JkJk-l

When the distance between the present

cand the previous scatterer is large enough, W.. will a:Jproach the
JkJk_l

uncorrelated W~c. But in general, it will depend on the displacement
J k

of atom jk relative to the previous scatterer, which we denote by

-+
U. j . (The displacement relative to the emitter may also playa

J k k-l

role, but we will here simplify the problem by neglecting it.) With
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the definition of the effective mean square displacement with thermal

averaging (indicated by < ...» of (,2. j - «t.k.. .D.. », the
J k k-l JkJ k- l JkJk-l

equivalent correlated Oebye-Waller-type attenuation factor is given by

[3] :

c ~ ~ ~ ~ 2
W

J.
j - <exp( -it.kj j ·U. j » - exp( -l/2«t.k.. ·U.. ) »

k k-l k k-l Jk k-l JkJk-l JkJ k_l

- exp( -l/2(t.k. j )2 (,2 ) - exp( -k2(l-COS8
j j )uj

2
j ).

Jk k-l jkjk-l k k-l k k-l

(3-2-45)

2u. j we have calculated from a sum over phonon modes in the
Jk k-l

"substrate" crystal, usually neglecting surface-specific effects. The

method is one due to Beni and Platzmann [19], but with simplifications

introduced by Sagurton et al. [3]. The relevant equation is [3]:

~ ~ 2
IR. -R. I

J k Jk-l

2
4qO

+­
2

o

+ ~ ) e -on]
n

+ (fJ.. /0) cosfJ.. ] - fJ.. /0) )
J~k-l J~k-l JkJ k- l

(3-2-46)

where M
S

is the substrate or "average-atom" atomic mass, kB is the

Boltzmann constant, 8
0

is the effective or "average-atom" Debye
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temperature, qD is the associated Oebye wave vector, a - °O/T(K), and
.... ....

p - q IR - R I Additional details of calculating
jkjk-l D jk jk-1'

Wj . 's including the allowance for surface-specific affects are
NJN-l

found elsewhere [3,7). In the calculations reported here, the

Wj j 's have been determined from Equations (3-2-45) and (3-2-46)
N N-l

and then inserted into Equation (3-2-43) as follows:

....
exp {- IR. I/2A } w. a

J1 e J 1

x2
>"1

i
Nmax 2 [N ....II [exp{ip .. (1-cosO~. )}/p .. ) exp{-IR. sl/2A}
N=2 {j.} k-1 JkJk_1 JkJk-l JkJk_1 I N e

l.
.... .... ....

x exp{ -IR.. 1/2A} .. exp{ -IR.. 1/2A } exp{ -IR.I/2A }J NJ N
_1 e. J 2J l e J e

x w.· . w. .
J NJ N-1 JN-1J N-2

........
Faa>.. (Pd'P.. )

, N J NJ N-1

.... .... OO,Lf ]] 2
F, , (p • • .e, ) Woo,)., (P

J
·
1

) I,
"'2"'1 J 2J 1 J 1 _

(3-2-47)



222

where the physical origin of each W. j factor is indicated in
Jk k-l

Figure 3.l(c).

In addition, we must also include the important effects of

instrumental angular averaging due to the finite aperture of the

detector. This is done by summing the photoelectron intensities over

a grid of points on a circular aperture centered on the nominal

. ~

emission direction as def~ned by k. The direct wave and the

singly-scattered waves have to be recalculated for each grid point on

the aperture. For multiply scattered waves, only the path length

differences represented by P
j

j (l-cosO
j
' j ) and the last

k k-l k k-l
~ ~

scattering matrix represented by FOO A (Pd,P
j

j ) need to be
, N N N-l

recalculated (cf. Equation (3-2-30b). This calculation has been made

much more efficient by further assuming that the scattering matricies

~

are slowly varying functions of the angles (O,~) in k. Then only the

geometric phase factors due to path length differences need to be

recalculated.

If (O,~) are now taken to be the mean angles of the nominal

emission direction k ~nd 2is a sum over the (Ob'~b) combinations on a

b

grid spanning the acceptance aperture, usually in a centered circular

pattern, we can include angular broadening in Equation (3-2-47) as:
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'\ [exp(ip. (1-cos8b. sv/», ] exp(-liL SI/2A) exp(-liL 1/2A} v. 0
~ J l J 1 J1 Jl e J1 e J 1
Jl

N
max N

2 2 [II [exp(iPj j (1 - cosl1bj j »/p j j ]
N-2 (ji) k-1 k k-1 k k-1 k k-1

-+ -+ -+
X exp ( - IRj S1/2A )exp ( - IRj j 1/2A) .. exp ( - IRj j 1/2A )

N e N N-1 e 2 1 e
-+

X exp ( - IR
J
. I/2Ae) Wj j Wj j . . . . . . . . . . . . . .. W. j Wj 0
1 N x-i N-1 N-2 J2 1 1

x 2 FOO x (Pd,Pj j ) F~ x (Pj j ,po j ) .....
, N N N-1 N-1 N-2 N N-1 I N-1 N-2

(~. )
~

00, Lf ]] 2
Fx x (pj j 'Pj ) WOO ~ (pj ) I·

21 21 1 '11
(3-2-48)

The direct wave is thus recalculated for each grid point (l1b'~b) but

only the phase differences due to path length difference are

recalculated for each scattered wave, as indicated by the added "b ll

subscript.

An additional correction incorporated at the end of the

calculation is that all of the f'xternal exit angles with respect to

the surface 11 have been adjusted relative to the internal angles ofext

propagating to the surface 11. using the following refraction
~nt

equation [1];

8 - tan- 1[(sin28. - ValEk'. )1/2/cos8. t 1 ,
ext t nt; l.n l.n .

(3-2-49)
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where Vo is the inner potential and Eki n is the internal kinetic

energy such that Ekin(external) - Ekin(internal) - VO'

Finally, all of the above equations are valid only for radiation

of a definite polarization, as usual with the coordinates chosen so

" " "that e II z . Normally, we choose this polarization vector e to lie

somewhere in the plane defined by the directions of the incoming

radiation (~v) and the outgoing electron (k). However, if the source

is unpolarized, a second polarization e' perpendicular to other plane

" "must be considered, with I(unpolarized) - I(e) + I(e'). However, our

past experience with single-scattering calculations has shown that the

other direction can in most cases safely be neglected; this is because

e in most experimental geometries is usually aproximately parallel to

k, and thus more strongly excites the direct and scattered waves

towards it, whereas e' is perpendicular to k and therefore is much

less important.

We have used Equations (3-2-48) and (3-2-48) in all of the

photoelectron diffraction calculations discussed here. For

simulations of Auger electron diffraction, the program was simply

forced by the input choices of R
i

f
and SC to treat a fictitious case

if

of p emission into a single s channel. This method yields the correct

final state for scattering if it is assumed that the final state of

the Auger process is an s-wave [10-12].
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3.2.4. Comparison to the Multiple-Scattering Treatment by

Barton and Shirley:

We now briefly compare the Rehr-A1bers [13] approach utilized

here to another truncated spherical-wave multiple-scattering method

based upon pioneering work by Barton and Shirley (B-S) [7]. Both of

these methods are cluster based in contrast to traditional LEED

multiple-scattering methods which rely on the translational symmetry

of the system under investigation. We will first introduce the

essential elements of the Barton-Shirley method briefly.

This method is based upon a Taylor series magnetic-quantum-number

expansion (TS-MQNE). These authors note that the addition formula for

the translation of spherical waves can be derived by first taking the

Fourier transform of the spherical wave and then doing the inverse

transform. They then return to the transform and expand it in a

~

Taylor series about the origin-shift vector a, which is the bond

vector of a particular scatterer. The z-axis is also rotated parallel

~

to a to simplify the calculation, just as in the R-A method. They

finally obtain an angular momentum series when each term in the

translation is subjected to the inverse Fourier transform. This is

done to obtain a workable approximation to the Gaunt-integral

~ ~

summations that normally makes the calculation of GL L'(P,P') so time,

comsuming. Tnis results in the following expression for the

single-scattering portion of a p-wave final state at the detector (Rd)
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-+
due to an atom at a with respect to the emitter [7], the case we will

treat as our comparative example:

/l)(R) _ -Lk
a d

I

2
q--1

[exp{ipd)/Pd] [exp{ip (l-cosO R »/p ]
a a d a

1-lql iq~ aR
\ FOO -+ -+ e e d ~ ~L pq (Pa'P d) Pici(a,e),

p-o
(3-2-50)

where e is the radiation polarization, ~ R is the azimuth of R
d

with
ea d

-+ -+
respect to e as rotated around a or P

a'

I

ik

1.max

2
1.-lql

pq(~ ~ (1) 1
P10 a,e) = N..eq R (0 8 n-~ ) CIqlO 'ea' ~xea pq

HPq(p ) _ (1.+9)!
1. a (1.-q)!

p
(-I)P £..!. \
(ip )q+p q! L

a 5-0

(q+p-s)! 5
(P a )

s! (p-s)!

s
a c2.(P a )

[a(Pa)]~

p1ql(cos8 ) is an associated Legendre polynomial, OaR is the angle
..e ~d d

-+ -+
between a and Rd , N..eq is a normalization constant for spherical

harmonics, R(,I)'O(o,e ,71-¢ ) is a rotation matrix element with angle
q Ea XEa

defined in the same format, ° and 0 are the polar and azimuthal
ea 'xea

~ ~

angles of ~ ''lith respect to e II z , and
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cl (i+lql+p)! 1
pq (i-Iql-p)! p! (2Iql+2p)!!

The expansion index q is found to correct the zeroth order

origin-shift term in an arc perpendicular to the bond vector that

moves away from the center of the scattering potential, whereas the

index p corrects outward from the center along this bond vector [7].

One can compare the above equation with our Equation (3-2-30) by

making some minor modifications to the latter.

and P
j

by Pa ' Equation (3-2-30) becomes

-+ -+
With R

j
replaced by a

[exp(ip (1-cos8
aR

)}/p ]
a d a

00,10
-+

WOO >.,,(Pa), (3-2-51)

where, with some additional simplifications in both F and W, we have

[15] ,

il-'''1
- e

and
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where the di (9) is a standard function in calculating rotationpv

matrices.

We note at once some similarities between these two expressions.

The summation limits in Equation (3-2-50), which is a first order

Taylor Series in m, and Equation (3-2-51), which is a second order

expansion in the parameter lip, lead to an equivalant number of terms.

In Equation (3-2-50), q - -1, 0, +1 and p - 0, 1, and these are in

fact equal to the allowed values for pIt and v" in >''' - (p",v"). It is

also evident that the summations in Equations (3-2-50) and (3-2-51)
00.... ,.

can be broken into two major factors. The first factors, Fpq(Pa,Pd)
iq4>eaR

d .... ....
e in Equation (3-2-50) and FOO,>."(pd,Pa) in Equation (3-2-51),

are independent of the exact initial and final states involved, while

,. ,. 00,10
pq ....

the second factor, PlO(a,e) in Equation (3-2-50) and WOO,>."(Pa) in

Equation (3-2-51) (which we have already noted also depends on e), are

not. Also, the "effective scattering factors" in the two

00 .... ,. .... ....
approximations are similar in that both Fpq (Pa,Pd) and FOO,>."(pd,Pa)

represent the scattering of a given angular momentum component «p,q)

or (p",v") respectively) incident on scatterer "a" into the correct

(0,0) component at the detector.

To compare these models further, we modify Equation (3-2-51)

further. First we substitute explicit expressions for ~ and~. Also

the di 's can be written in terms of the associated Legendre
pv

mpolynomials P2. Then we get,
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F00 , )." (pd ' Pa)

and,

- ei~"7 [471']1 /2 2- -+(U+1) t.e(a)

s
v" v" v"

X [C.e(Za) (a C.e(za)laza) Za Iv"!]

x pl~"I(cos8 ).s aR
d
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(3-2-52)

v" v"+~" II"+~"
[(-1) Nll.£" [a Cl (za ) / 8z ]

1
/ ( II "+/L " ) ! ] d (8 )

r: ~"O ea·

11"+1.£"
Z

(3-2-53)

-+ -+
Now, if we compare the effective scattering factor FOO,A"(pd,Pa)

00 -+ -to
in Equation (3-2-52) with that of F (p ,P d) in Equation (3-2-50), itpq a

is evident that they have some similarities, but also some important

differences. Both involve the t-matrix elements t.e and the associated

mLegendre polynomials P.e(COS8
aRd).

But the Barton-Shirley method has a

sum of derivatives of the C.e's in H~q, and the Rehr-Albers formalism

contains products of C.e's and their derivatives.

00,10 -+ pq A ~
In comparing YOO,A"(Pa) in Equation (3-2-53) with PlO(a,e) in

00,10
-+

Equation (3-2-50), we note that, while YOO A"(P a) is dependent on the,
distance between the emitter and the first scatterer, pia(:,:) is

independent of any distance. This is also true for the analogous

multiple-scattering comparisons. For example, we can compare

double-scattering terms in a similar manner, and it is clear that they

exhibit such differences.
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From the point of view of computational time, inspection of the

number and types of factors to be calculated in the two methods in

single-scattering indicates a comparable amount of numerical work.

However, in general multiple-scattering, the cleaner separability of

-+ -to -to -+
the F~k'~k_l(Pk'Pk- l) for each scattering vertex defined by ~ ~ ~-l

..
~ ~-2 would appear to furnish a computational advantage in the R-A

approach.

As final comparative comments, we believe that the R-A approach

has better convergence and formal properties, as discussed also

eleswhere [13]. In particular, the R-A formalism reduces to effective

curved-wave scattering amplitudes in a point scattering approximation

[13] in zeroth order (i.e., (txl», whereas that of B-S does not. For

a given degree of convergence smaller matrices should be needed in R-A

calculations. The R-A method also does not distinguish between

forward and backward scattering, whereas the B-S method appears to

converge faster in back scattering [7]. The R-A method at the (6x6)

level assumed here also should be applicable to a broader range of

energies, with the B-S approach representing mor~ of a low-energy

Taylor expansion. We will illustrate some of these comments in

subsequent numerical calculations with the R-A method.

In conclusion, the R-A and B-S methods have certain

simililarities in form but are fundamentally different in the kind of..
truncation/approximation they make in the expansion of GL,L'(P), The

R-A separation appears to be more quickly convergent, to be inherently

applicable to a broader range of energies, to be more readily
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generalizable to higher order expansions (even though the second order

(6x6) seems fully adequate to date), and to be more easily adopted to

a variety of situations such as, e.g., emission from a general n.l.
L L

subshell treated here (a case which to our knowledge has not yet been

dealt with using the B-S approach).

3.2.5. The Computer Code and Input Parameters:

We have a single code capable of doing both scanned-angle

photoelectron (PO) and Auger electron diffraction (AED) , and

scanned-energy photoelectron diffraction (ARPEFS).

Multiple-scattering up to tenth order events can be included;

single-scattering output is an option in any run. For photoelectron

diffraction, emission from any n.l. subshell also can be treated.
L L

This is thus the most general cluster-based code for such diffraction

calculations of which we are aware. This program presently operates

on both supercomputers (e.g., the Cray Y-MP/864 at the San Diego

Supercomputer Center) and work stations (e.g., a Sun SPARCstation),

although to date most calculations have been done on the

supercomputer. As an estimate of the program size, the present

version :equires about 75 kWords of high speed memory (1 Word - 64

bytes) and about 5 MWords of fast disk storage.

In order to avoid calculating negligibly small multiple

scattering events, all events over 3r d order are subjected to a

user-selected cutoff criterion ~1(%)' Specifically, the amplitude of
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rdeach 3 order scatterd wave is computed, and x
N

is a selected

rdpercentage of the maximum amplitude among all 3 order events. All

3r d thorder events above the x3 cutoff are continued to 4 order. At

4t h order, a cutoff x4' again based on the maximum 3r d order amplitude

this used to decide which events are continued to 5 order. This

process is then repeated for x
5

' x6' ... up to the maximum order

considered. Thus we do not depend on less accurate indicators of

intermediate wave strengths such as the total path length [7,13]. A

sufficiently accurate set of cutoffs is found to be x3 - x4 - Xs -

~ - 5%, which is found to yield excellent convergence judged

against test calculations with smaller cutoff choices. The program

also outputs the number of events at each order so that convergence

can also be judged by having a negligible number of events at or below

the N order. We discuss the order required to achieve convergencemax

for several of the applications considered below.

The non-structural input parameters to each calculation and our

sources for them are: the radial matrix elements (R2.±1) and phase
~

shifts (5~.±l) (from Reference 14), the scattering phase shifts 52
~

(from the program MUFPOT of Reference 21), the inelastic attenuation

length (from various sources), the inner potential Va (from various

sources also), the geometric parameters of the experiment, the type of

scan involved (6,¢, or hv), the vibrational parameters necessary for

using Equation (3-2-46) (from various sources), the maximum order of

scattering to be included N ,the order of the R-A approximation to
max

ndbe used (found to be fully adequate at 2 order or (6x6) scattering
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rdmeasured with respect to the largest 3 order event.

3.2.6. Tests Against Scanned-Energy (Angle-Resolved Photoemission

Fine Structure) Results for c(2x2)S on Ni(OOl):

We here compare two angle-resolved photoemission fine structure

(ARPEFS) experimental curves for the c(2x2)S overlayer on Ni(OOl) due

to Barton et al. to a multiple-scattering cluster spherical-wave

(MSC-SW) analysis of this data by the same authors [7(b)], and to our

reanalysis of this work using the present method. In both

experiments, the photon incidence direction, the polarization f, the

[001] surface normal, and the electron emission direction lie in the

same plane, normal to the surface. Our calculations made use of

clusters of 40 atoms and non-structural inputs as described elsewhere

in a SSC-SW analysis of the same data by Sagurton et al. [3].

In the first case, the incoming photon beam makes an angle of 8hv

°70 with respect to the surface normal and the detector is placed in

the direction of the surface normal (8 ~ 0°). (Hence, this has beene-

termed normal photoelectron diffraction or NPD.) The photon energy

was scanned from 50 to 420 fJ. Figure 3.3(a) shows the experimental

curve superimposed on the MSC-SW simulation by Barton et al. [7(b)]

for an optimized structure with sulfur 1.30 Aabove the first Ni layer

and a first-to-second Ni-Ni inter1ayer distance of 1.84 Athat is

°expanded by 4.5% with respect to the bulk value of 1.76 A. Figure
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3.3(b) shows a similar comparison of our SS and MS results to

experiment. In SS, several peak positions and intensities are not

predicted correctly (e.g., I, m and 0, as well as the valley between k

and 1). By contrast, our MSC-SW simulations are in excellent

agreement with the experiment, and appear to provide an overall better

description of the data than the earlier calculations shown in (a).

In perticular, we are better able to predict the intensities of peaks

o and p, and the positions of peaks rand s are also in better

agreement with experiment.

The second case is very similar to the first, except that the

incoming photons are oriented

normal and the detector is at

o
at 9hv - 45 away from the surface

o
9 - 45 away from the surface normal.e-

(This has been termed off-normal photoelectron diffraction or OPO.)

Figure 3.4(a) again shows the experimental curve and the MSC-SW

simulation by Barton et al. [7(b)] for the optimized structure.

Figure 3.4(b) shows our SS and MS results compared to the same

experimental data. In SS, the position and intensity of the valley

between peaks a and b are not well reproduced. For peak c, the

calculated intensity is too small. Also peak i in the SS simulation

is displaced by several eV. In our MS results however, the only major

disagreement compared to the simulati.n by Barton et al. [7(b)] is the

intensity of peak f, which is overestimated. But our simulation of

peaks e and j is in better agreement with experiment than that of

these prior calculations [7(b)].
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The x-scale ordinates on both Figures 3.3 and 3.4 are set by the

experimental data and our calculations have not been rescaled to fit

experiment. This is an important point, as prior SSC-SW results due

to Sagurton et al. [3] have an adjusted x-scale which is more expanded

than the experimental scale. This difference is due to the different

sets of correlated vibrational parameters used in the two

calculations, which evidently oversuppressed the diffraction

oscillations in the earlier work. Our parameters correspond to the

alternate "correlated model I" discussed by Sagurton at al. [3].

As a final comment concerning our calculations, we note that

convergence is achieved at 4t h order as judged from final intensities,

thalthough events through 5 order were included in the calculation.

The number of scattering events versus order for several cases

disscussed in this paper are given in Table 3.1, with points of

convergence as judged by intensities or by number of events indicated.

Overall, the MSC~SW results obtained using these two different

methods agree very well with themselves and with experiment. This

indicates that the Rehr-Albers approach [13] is reliable over low to

medium energies of photoelectron diffraction and that it can provide

at least as good a description of such experimental data as the method

of Barton ~nd Shirley, if not somewhat better.

--- -- ----------------
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3.2.7. Tests Against Scanned-Angle X-ray Photoelectron Diffraction

Results for c(2x2)S/Ni(OOl):

As a final comparison of our calculations to prior experimental

data and MS theory, we consider an experimental study by Sinkovic et

al., who used the intermediate kinetic energy range from 230 to 900 eV

to study adsorbate core-level azimuthal photoelectron diffraction

[22]. The adsorbate/substrate system employed in this study was again

the well-defined c(2x2)S overlayer on Ni(OOl). Again the photon

incidence direction, the polarization, the [001] surface normal, and

the electron emission direction were in a single plane normal to the

surface. They utilized two polarization orientations: s-polarization

lying in the (001) surface and a specially selected p-polarization

o
only 18 off the surface normal that maximally emphasized substrate Ni

scattering relative to the primary wave. A grazing electron takeoff

angle of 8 - 10
0

with respect to the surface was used in both cases,

with the azimuthal angle ~ being scanned. The experimental geometry

for p polarization is shown in the inset of Figure 3.5.

o
The s-po1arization results with E only 10 away from the electron

emission direction and thus yielding a very strong primary wave were

reasonablly well reproduced by a quite simple single-sca.tering

cluster plane-wave (SSC-PW) model [22]. The corresponding

p-polarization results were markedly different however. In order to

be semiquantitatively described by the theory, the p-polarization data

required a reduction in the PW scattering amplitudes and the inclusion
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of double-scattering events [22]. These p-polarization data were

later analyzed by Sagurton et al. [23] using a single-scattering

cluster spherical-wave approach, but there was no significant

improvement in the agreement. From this prior work, it was concluded

that the p-polarization geometry with its weaker primary wave showed

evidence of MS effects [22].

Tang [9] subsequently performed a multiple-scattering

spherical-wave analysis on this system and agreed in concluding that

MS is required for the accurate description of the p-polarization

data. Tang's computational method is based on an inverse-LEED type

final state, as described eleswhere by Tong et al. [6,24]; this method

takes the translational sYmmetry of the system into account and thus

requires the assumption of long range order. Hence it is

fundamentally different from the cluster-based methods used by Barton

et al. [7] and in this work. We have now performed

multiple-scattering cluster spherical-wave (MSC-SW) calculations on

the same system and Figure 3.5 compares this p-po1arization

experimental data to various theoretical curves. We considered a

c1.uster of 36 atoms. We see that SSC-SW theory fails to predict the

peak observed in the [110] direction, and yields very poor positions

o 0
for the other two peaks in exreriment at ¢ - 22 and 67. By cont··ast

the two MS curves agree much better with experiment, and also very

well with one another. Tang's MS curve has a peak in the [110]

direction, but it is too strong in relative intensity. The other

peaks and shoulders at ¢ - 10
0

and 80° in his curve are in good
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agreement with experiment. Our MS curve has a wider double peak along

[110]. This may be due to our small cluster size of 36 atoms and/or

our neglect of the finite aperture of the detector. But the relative

intensity of our central peak is in better agreement with the

experiment than that predicted by Tang [9]. The rest of the structure

in our MS curve away from [110] is in excellent agreement with

experiment. The strong disagreement of our SS results with experiment

is consistent with the prior conclusions by both Sinkovic et al. [22]

and Tang [9] concerning the need for MS for this particular geometry.

~Finally, we note that convergence for this case was reached at 4

order, as indicated by the numbers in Table 3.1.

3.3. APPLICATION TO AUGER AND PHOTOELECTRON DIFFRACTION FORM

ATOMIC CHAINS:

3.3.1. Straight and Bent Chains:

We now consider single-scattering and fully converged

multiple-s~atteringresults for simple linear chains of different

atoms, an illustrative type of test case discussed first by Xu,

Barton, and Van Hove [lOeb)]. To illusr.rate the type of diffraction

pattern one expects from such chains, we show in Figure 3.6 a

simplified drawing applicable to high-energy scattering where forward

peaking is dominant and the scattering phase shift is small (here

assumed to be zero). Both the oth order (forward scattering) peak and
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the higher-order diffraction peaks are labelled. In a real n-atom

chain these features will be distorted somewhat by scattering phase

shifts that depend on scattering angle, by the resulting imperfect

overlap of different orders from different scatterers, by inelastic

attenuation effects, and by multiple-scattering effects.

We begin by considering Cu atoms placed at 45
0

with respect to a

fictitious "(001) surface", as shown in the inset of Figure 3.7. The

2.56 K nearest neighbor distance is chosen to simulate emission along

a [101] direction. The surface is used only to determine that region

of space over which an exponential decay of intensity due to inelastic

scattering is included. These chains represent the nearest-neighbor

[101] direction in the fcc Cu crystal, with a single emitting atom at

the bottom of the chain. The total emission from such a [101] chain

in the metal would thus be the sum over the intensities of all of

these emitters from the surface inward to the end of the chain. eu

LMM Auger emission at 917.0 eV is simulated using the aforementioned

approximation of an s outgoing wave (if=O only). Ae is taken to be

11.7 Kat 917 eV and 3.9 Kat 100 eV in results to be discussed later.

Refraction at the sur-face due to the inner potential Vo has not been

included. The resulting curves for 2-10 atom linear chains are shown

in Figure 3.7. Figure 3.8 shows other information derived from these

curves, in particular the forward-scattering along-chain intensities

in both SS and MS and, in the lower panel, the amount of MS

"defocussing", which is defined as D(%) - 100 X [ISS(along chain) -



240

IMS(along chain)] / ISS(along chain), all as a function of chain

length n.

From these two figures, it is evident that the longer the chain

is, the greater are the MS effects: the forward-scattering peak

height systematically diminishes as the number of atoms in the chain

increases, eventually falling by about 6 atoms to a level equal to the

background on either side of the chain axis. Such intensity

reductions were termed "defocussing" in the first discussion of this

effect by Tong and co-workers [6]. It is also interesting to note

that the MS peak widths are consistently narrower than those of

corresponding SS peaks, becoming systematically smaller in FWHM as the

number of atoms in the chain is increased. This can be qualitatively

understood from a classical picture in which only those electrons with

very small deflections (i.e., with large impact parameters at the edge

of the scattering potential) can avoid being driven into defocussing

pathways in passing several scattering centers. By contrast, for a

2-atom chain and at this high energy, MS effects are negligible, a

simplifying result which is applicable to emission from an oriented

diatomic molecule such as the ,system CO/Fe that is to be discussed

later. The 4- to IO-atom cases are applicable to multilayer substrate

emission or to grazing-angle emission from adsorbate/substrate

systems, since in both of these cases, emitters can have more or less

linear rows of atoms between them and the detector for a certain

direction of emission. In such cases, one thus expects that intensity

along linear or nearly-linear chains of atoms with small interatomic
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distances will be significantly reduced. By contrast to the MS

results, the SS intensity only begins to reduce after n - 4-5 due to

both interference effects and inelastic attenuation. But even at n ­

10, the SS intensity shows a pronounced forward-scattering peak and is

much too strong compared to the MS intensity.

These calculations provide another test of the accuracy of our

method and the computer code, because a similar set of curves for the

same case were reported earlier by Xu and Van Hove [lO(a)] for 2-, 3­

and 5-atom Cu [101] chains at 917.0 eV; they have used the TS-MQNE

method of Barton and Shirley [7] in their work. The good agreement

between these two different approaches to MS is very encouraging: in

fact, excellent agreement is obtained if we allow fully for the

differing degrees of angular broadening used in the two sets of

calculations.

We have also performed calculations on such Cu chains at the much

lower energy of 100.0 eV. There is no Cu Auger peak at 100.0 eV and

this energy was simply chosen to investigate the low energy behavior

of multiple-scattering effects, again for an outgoing s-wave. As

shown in Figures 3.9 and 3.10, the SS ar~ MS forward-scattering

intensities decay at a more nearly comparable rate than those at 917.0

eV. This is due to the lack of a strongly forward-peaked scattering

factor, as well as to the shorter electron mean free path at this

energy, which tends to attenuate MS effects with longer total path

lengths. Although both defocussing loss of intensity and peak

narrowing with increasing chain length are still present, they are
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less pronounced than at 917 eV and we expect this to be a general

comparison between lower (-100 eV) and higher (~ 500 eV) energies with

an emitter at the end of the chain.

A further noteworthy effect at lower energies is that the peak

maximum systematically moves to higher takeoff angles so that it is

o
2-5 away from the chain axis. This is due to peak distortion by the

stronger exponential damping of intensities by inelastic effects,

which will go as exp(-Z /A sin9), if Z is the depth of the emitter inn e n

the n-atom chain below the surface.

Another interesting case is that of bent chains, results from

which are shown in Figure 3.11 for 917.0 eV and in Figure 3.12 for

100.0 eV. The amount of defocussing vs. the bend angle p for 2- 3-

and 5-atom chains is presented. The dropoff of defocussing to zero

o 0
for 917 eV at p -25 -30 is consistent with the fact that the forward

peak in the plane-wave scattering factor dies away to essentially

"background" level by this angle [1]. At 100 eV, however, the forward

peak is much broader, but the 55 and MS intensities still converge at

about the same angle. Thus, events more than about 30
0

off axis are

expected to be rather 55 in character over a broac range of energy,

although we note that the chain geometry we have used here does not

allow for back scattering from atom(s) just below the emitter, an

effect which could become important by 100 eV.

We now investigate the dependence of these M5 effects in chains

on different crystallographic directions and materials. In Figures

3.13 and 3.14, we first look at 917 eV emission along the much more
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open [111] direction in the fcc Cu lattice, which has a

nearest-neighbor distance of d - 6.27 Xcompared to 2.56 Xfor then-n

[101] direction considered previously. In this case, the chain is

o
placed at 35.3 with respect to a fictitious (001) surface and hence

the forward-scattering peak is very close to that angle with respect

to the surface. The intensities along the chain fall more rapidly

with increasing chain length due to inelastic attenuation, which now

o
goes as exp{-Z IA sin(35.3 »). These inelastic effects are enhancedn e

because the interatomic distance and thus Z is about 2.5 times largern

than that for the [101] chains at a given n. We note here also that

enhanced inelastic attenuation has shifted the peak position about 2
0

toward higher takeoff angles. Also, the SS and MS results are much

closer to one another for [111] chains because of the increased

nearest-neighbor distance and a concomitant reduction of MS

defocussing effects; thus the importance of this type of MS effect

will depend strongly on the direction of observation. Nonetheless, up

to 50% defocussing is seen for the longest chain, and the same sort of

peak narrowing in MS is observed. Both SS and MS peaks are very small

after about eight atoms and hence major contributions to th~

photoelectron intensity are coming from the top eight layers in each

case.

To further investigate the effects of interatomic distances on

defocussing, we have finally studied Cu [001] chains (d = 3.62 X)n-n

which are less dense than [101] chains but more dense than [111]

chains. We see from Figures 3.15 and 3.16 that both single and
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multiple scattering intensities for [001] chains are in between those

for [101] and [111] cases, but closer in behavior to the [101] case,

consistant with the interatomic distances being closer.

As a final comment concerning these results for various Cu chains

at 917 eV kinetic energy, we note that the higher-order diffraction

o
features occuring for emission angles more than 10-15 away from the

chain axis are always predicted reasonably well by SS theory, even

though the MS curves exhibit some additional fine structure about an

average that is very close to the companion SS curves. This is

another indication that SS becomes a reasonable approximation for

angles sufficiently far from a near-linear chain of scatterers. (cf.

also discussion of Figures 3.11 and 3.12.) One potentially useful

implication of this observation is in the recently-suggested

holographic inversion of 8,~ intensity plots to yield images of atomic

positions [25]. Since bond-distance information in these inversions

is present only in the higher-order features, SS may prove to be an at

least semiquantitative usefully accurate way to model the images

expected, and this has been demonstrated in recent preliminary work

[26] .

We now turn to examples of chains for different materials, and

first show in Fig.res 3.17 and 3.18 results for linear [101) Al chains

at 1336.0 eV, which corresponds to MgK -excited Al 2s emission. We
a

have here assumed f and k to be parallel. Defocussing effects are

again obvious, since the 58 curves show a pronounced peak for an

emitter as deep as -10 layers in the solid, but the MS intensity goes
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essentially to background level when the emitter is about eight layers

deep. Peak narrowing as chain length increases is also evident. Note

also that defocussing sets in more slowly for Al than for eu as a

function of chain length, with about an additional 2 chain atoms being

required to yield the same effect in AI.

A second case of Ge [IIi) chains is also interesting and related

to a recent x-ray photoelectron diffraction study by our group of a

surface phase transition on Ge(lll) (27). In this study, the

intensity of a forward-scattering peak along a [111] direction at

o
19.0 with respect to the Ge(lll) surface was monitored as a function

of temperature, and it was found to show an abrupt decrease at a

previously-observed surface phase transition temperature. The Ge

[IIi] chains on which we have carried out MS calculations represent

this direction. As shown in Figures 3.19 and 3.20, even though the SS

peak has contributions from more than ten layers (five (111) double

layers in the usual notation), the MS signal is seem to come from the

top eight layers (four double layers) only. Both defocussing

intensity reduction and peak narrowing are again seen. The

smooth-curve average behavior of the defocussing effects in Figure

3.20 also make it appear that Ge defocusses intensity more rapidly

than Cu.

Figure 3.20 illustrates another interesting effect in Ge: the

"saw tooth" variation of the curves as the chain length increases,

which is found in both the S5 and MS curves. This is explained by the

alternating short-Iong-short-Iong nature of the interatomic distances
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That is, within a double layer d is 2.45 ~, butn-n

between them it is three times this or 7.35~. The chains with odd

numbers of atoms thus have a gap of 7.35 ~ between the emitter and the

nearest forward scatterer, and then two foward scatterers with d
n-n

2.45 1 along the chain. Chains with even numbers of atoms have a

single nearest-neighbor scatterer at d - 2.45 1, and then a long
n-n

gap of 7.35 1 to the next scatterer. The enhanced intensity for even

numbers is thus due to having a strong forward-focussing scatterer

very close to the emitter. This oscillatory effect on intensity,

which has not been discussed previously, could be useful in studying

semiconductor epitaxial growth. The "stairstep" form of the

defocussing curve also has the same origin, in that increasing from

even to odd adds only a long distance scatterer that is very

ineffective at defocussing.

In Figure 3.19, SS peak centroids are found to shift to higher

takeoff angles by about 3
0

due to previously discussed inelastic

effects. We do not observe such distortions in the MS peak. This is

due to the less severe inelastic distortions on the narrower MS peaks.

We continue this discussion on chains by investigating the

dependence of these strong forward-scattering defocussing effects on

·some of the non-structural parameter. used in the simulations.

First, we consider the size of the muffin-tin radius which is

used in the program generating the scattering phase shifts 0i" This

is motivated by recent work by Aebisher et al. [28] who have

theoretically investigated the material dependence of such MS effects



247

along chains. They concluded that the different amounts of

defocussing in Cu and Al chains at a given chain length (cf. our more

detailed results of this type in Figures 3.7-3.10, 3.13, and

3.14-3.20) are not due to the choice of non-structural input

parameters but rather are primarily due to the differences in the

scattering strengths of the constituent atoms (i.e., their atomic

numbers and the resultant set of 0i's). However, an additional

parameter related to the 0i's that depends on the nature of the

material and also has a certain degree of arbitrariness in its choice

is the muffin-tin radius ~T used in the calculation of the 0i's. The

usual choice is the touching-sphere radius and hence ~T is clearly

dependent on the lattice parameters of a given material.

We have thus investigated the effects of muffin-tin radius on the

final intensities for a five-atom Cu chain, as shown in Figure 3.21.

Here we have chosen two non-touching radii which are 30% and 15%

smaller than the touching radius, the touching radius, and two

overlapping radii which are 15% and 30% larger than the touching

radius. The magnitude of the SS forward intensity increases

monotonically with the size of the muffin-tin radius. This can be

qualitatively explained in terms of a potential of greater radial

extent be~ng capable of better focusing the pr~toelectrons in the

forward direction, since forward-scattering is primarily controlled by

the outer portion of the potential corresponding to larger impact

parameters. But the MS intensities show a much weaker variation with
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~T that is, if anything, the inverse of the 55 intensities; that is,

the strongest forward scattering in S5 (the largest ~T) gives the

strongest defocussing and the lowest MS intensity along the chain.

This can be explained via a potential of greater radial extent causing

stronger defocussing and thus being capable of directing

photoelectrons away from the forward direction through

multiple-scattering effects. However it is evident from Figure 3.21

that the choice of muffin-tin radius has only minor effects on

defocussing. Hence, the choice of muffin-tin radius alone is not

sufficient to account for the different amounts of defocussing in

different materials; our results show that these differences are

mainly due to a combination of the differing atomic scattering

strengths and the change in interatomic distance along chains of

atoms, in agreement with the work of Aebisher et al. [28].

As a final comment on Figure 3.21, we note that, for angles more

o
than 10-15 away from the chain axis, the diffraction structure is

negligiblly affected by the choice of the muffin-tin radius in either

5S or MS. This is useful, because as noted previously, it is such

higher-order structure that contains bond length information, or via

holographic inversion, also atomic image positions.

There are other non-structural parameters that couJl influence

chain intensities such as the precise choice of the inelastic

attenuation length of the photoelectron, the finite aperture of the

photoelectron detector and the inner potential. Varying the first two

parameters over a reasonable range is found to cause changes in
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relative peak intensities of only about 1-10%; peak positions are very

little affected. Increasing the inner potential is responsible for

moving peak positions to lower takeoff angles due to refraction, an

effect that is strong for lower energies and/or lower takeoff angles.

When the inner potential is increased, the peak positions move away

from the surface normal according to Equation (3-2-49). But the

single and multiple scattering peaks are found to move together with

no relative displacement.

The various tests we have made to insure that our cutoff criteria

were adequate and that full MS convergence was reached are discussed

eleswhere [15]. But in connection with calculations on linear chains

at higher energies ~ 100 eV, there is one useful rule of thumb: the

highest order of scattering can be estimated as the maximum number of

forward-scattering events in sequence, that is, (n-l) for an n-atom

chain. For example, all of the Al chains in Figure 3.17 are found to

obey this (n-l) rule. This is illustrated for a 9-atom chain in Table

3.1, for which a small number of 9t h Jrder events exceed the 5%

ff b j d d bv J ••• h d 8thcuto , ut convergence as u ge y 1ntens1t1es 1S reac e at

0rder. We do however, have evidence that for chains of much higher

atomic number such as W, orders beyond this rule might need to be

included. Thus, testing its validity at least against the next h:gher

thn order is advisable in any case.
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3.3.2. Effect of the Initial State:

As indicated previously our approach to multiple-scattering can

be extended to include the correct initial and final states in

photoemission as allowed by dipole selection rules. This is done with

a very small amount of extra computer time as one has to recalculate

only the W matrix for each final quantum number Lf.

We now look at the effects of photoemitting from different

initial states (that is, into different final states if) for two- and

three-atom Cu chains at two different kinetic energies (100.0 and

1000.0 eV) and in both single and multiple scattering. For purposes

of illustration only, the if - l i + 1 channel is included. In

general, the 1.-1 channel is expected to be weaker due to the smaller
~

radial matrix element associated with it. (Our code can, of course,

treat the full problem with if - l i ± 1 if the matrix elements are

known.) The polarization E was kept fixed along the electron emission

direction k. No inelastic attenuation was included. These results

are shown in Figures 3.22 (E
k"

- 100 eV) and 3.23 (Ek. - 1000 eV),
~n . ln

-+
where we have plotted the normalized function X - (I(k) -

-+ -+
10(k»/10(k), with 10 equal to the unscattered intensity.

to the possible 1.+1 final states for photoelectron diffraction, we
1

have also included the 1 - 0f
approximate final state for Auger

electron diffraction, so that all of If = 0,1,2,3, and 4 are

considered.

---- ._--- -- - -
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In Figure 3.22, the first set of curves are for a two-atom eu

chain at 100.0 eV with SS only. This case was examined earlier using

a single-scattering formalism by Friedman and Fad1ey [17], and our

results agree completely with theirs. In particular, the

forward-scattering intensity steadily decreases as the initial angular

momentum increases and the intensity for larger scattering angles

shows the oscillatory behavior typical of higher-order diffraction

peaks (cf. Figure 3.6), but with phases that change by as much as ~ as

~f changes from 0 to 4. Also the effect of the photoelectron parity

is clear in the backward direction, with odd and even parity curves

being grouped together. As expected [10,11], there are almost no MS

effects in a two-atom case, as we can see also from Figure 3.22.

Hence, these observations should also be valid for a full MS

calculation.

The second set of curves in Figure 3.22 is for a three-atom S5

chain at 100.0 eV. First, we observe an enhancement of intensity for

all ~f in the forward scattering direction due to the presence of an

extra atom in the chain. However, the forward-scattering intensity

still shows a decrease with increasing ~f' Second, the absolute value

of the back-scattering intensity is now reduced, but it still shows

the grouping of waves according to parity. Relative to the 2-atom

case, we also observe a splitting or fine structure in the first order

• • 0 0
lnterference peaks occurlng over about 20 -45. This is due to the

well understood interference of waves from each scatterer, since the

orders from different scatterers do not occur at the same angle, but
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st st ndrather overlap roughly as 1 order of the 1 scatterer and 2 order

ndof the 2 scatterer. However, the presence of scattering phase

shifts makes this correspondence only approximate. The bottom set of

curves are for the same case, but now MS effects are included. The

forward-scattering peaks are now defocused, but they exhibit the same

decrease as if is increased that was seen in SS. There is also an

enhancement of the amplitudes of features in the off-forward

directions that must be present in order to yield a net conservation

of flux. This enhancement of diffraction effects in the off-forward

directions is expected to be more pronounced for longer chains as the

defocussing of forward-scattering peak is more severe for those chains

(cf. Figures 3.7 and 3.9). From these curves, it is evident that the

use of the correct final if states is very important at kinetic

energies as low as 100.0 eV. Note however, that for scattering angles

°~ 25, the diffraction fine structure is very nearly the same in both

55 and MS for all angular momenta; this reiterates a point made

earlier that SS is still a reasonable approximation for angles away

from any forward scattering cone.

In Figure 3.23, we preseilt the high energy (1000.0 eV)

counterparts of the curves shown in Figure 3.22. As expected, the

forward-scattering intensities are much higher at high energies. The

decrease in the forward scattering strength as if is increased is

still present, but it is much smaller in magnitude compared to that at

low energy. The first few peaks in the higher-order diffraction

features out to about 35°·40oshow a weaker dependence on if than at
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100 eV, with a general tendency to simply be smeared out as ~f

increases. However, the weaker higher-order diffraction features at

intermediate-to-1arge scattering angles are not as close to one

another between SS and MS as they were for 100 eV. The grouping by

parity at the back-scattering end of the curves is still true at high

energy, even though the amplitudes of these oscillations are now

smaller compared to the low energy case. (Notice that the left

ordinate of Figure 3.22 is identical to the right expanded ordinate of

Figure 3.23). The effects of defocussing are also clear in the 3-atom

curves: forward scattering is decreased and off-forward features are

in general increased somewhat. From these curves, one can conclude

that, at kinetic energies as high as 1000.0 eV, the correct final

state is not so important for scattering geometries that emphasise

forward scattering. Also, beyond the reduction of the forward

scattering peaks, MS is not found to radically alter the fine

structure over the most significant region up to _40
0

scattering

angle; SS calculations thus may reproduce experimental data reasonably

well, as has been noted in numerous studies [1].

In longer chains, MS effects woul~ be expected to cause drastic

reductions in the forward-scattering intensity (cf. Figures 3.7, 3.9,

3.13, 3.15, 3.17 and 3.19). This should result in a larger increase

in the relative amplitudes of the large-angle oscillations.

As a further test case concerning the effects of the final

photoelectron angular momenta, we consider the (J3xJ3)R30
0

Ag

over1ayer on Si(lll) to be discussed in detail in Section 3.5.2. For
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this still controversial structure, Bullock et al. [29] have used

azimuthal x-ray photoelectron diffraction data and SSC-SW calculations

oto suggest that the Ag atoms are buried 0.2 A below the top Si layer

in what has been termed a Ag-honeycomb missing-top-layer (MTL) model

(cf. Figure 3.24). Two closely-related domain types are postulated

for this structure, with about a 40:60 mixture of type l:type 2 being

suggested. For this model, Ag photoelectrons are thus expected to

show strong forward scattering from near-neighbor Si atoms for low

takeoff angles (short arrows). Also, there are some short

nearly-linear Ag-Si3 chains in this geometry (see long arrow) that

might be expected to lead to MS effects (a topic to which we will

return later). The kinetic energy for the Ag 3d5/2 photoelectrons

studied is 1114 eV for this system. In Figures 3.25 and 3.26 we

compare SS and MS curves for if - 1 and fully interfering if - 3 + 1

as calculated for the final optimized geometry with two domains. In

agreement with our earlier prediction, there are no significant

changes in going from the approximate p-wave final state to the

correct d+s-wave final state. This also has been seen in Ni 2P3/2

emission from a Ni(OOl) substrate [30(c)], a casco to be discussed in

Section 3.4.2., and another example where high energy

forward-scattering is dominant.
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3.4. APPLICATION TO EPITAXIAL OVERLAYER GROWTH AND SUBSTRATE

EMISSION:

3.4.1. Auger Diffraction from Epitaxial Cu(OOl) on Ni(OOl):

The experimental data we will consider was obtained by Chambers

et al. [31] and made use of the forward scattering of high-energy

Auger electrons for studying vertical interlayer relaxations in

epitaxially-grown overlayers. In this experiment, 6 Xor about 3 ML

of Cu was grown epitaxially on a Ni(OOl) substrate. Due to the 2.56%

lattice mismatch between Cu and Ni, it was expected that the Cu layers

would relax vertically. The polar-angle dependence of the Cu Auger

peak was measured in the [001] ~ [101] ~ [100] azimuth, and compared

to single-scattering plane-wave calculations in which the vertical

distance between Cu layers was varied to simulate interlayer

relaxations [31].

We present in Figure 3.27 both the experimental data and prior

theoretical curves, as well as single- and fully-converged

multiple-scattering spherical-wave counterparts to the pla·r: e-wave

calculations by Chambers et al [31]. A cluster of about 40 atoms was

used fIr both our SS and MS calculations to permit isolating only

those effects due to MS. There is in general very good agreement

between our 55 curves and those of Chambers et al., with more fine

structure appearing in the latter, probably due to the larger cluster

used in these prior calculations. The MS results for the [101] peak
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exhibit the effects of defocussing and narrowing noted earlier, but

importantly still exhibit the same shift in peak position with

vertical relaxation that is seen in the SS curves. Thus, MS does not

appear to prevent the use of this peak position for estimating the

interlayer relaxation as Chambers et al. have done. However, our

theoretical curves agree best with the position of this peak for an

interlayer distance of 3.71 K that is slightly different from their

value of 3.80 K. As a final comment, the FWHM of the [lOll peak is

o
reduced by about 10 in going from single- to multiple-scattering, but

the width of the single-scattering curve in fact agrees better with

experiment, perhaps due to the presence of disorder and/or vibrational

effects beyond our model. Overall, we thus conclude that the

single-scattering level of Auger electron-scattering theory is

adequate for studying vertical layer relaxations in thin epitaxial

over1ayers via the positions of strong forward scattering peaks, but

that correctly predicting all relative intensities will require

including multiple-scattering effects.

3.4.2. X-ray Photoelectron Diffraction from Ni(OOl):

Stewart et .1. [30(a)] have reported high angular resolution

x-ray photoelectron diffraction patterns for Ni 2P3/2 emission from a

Ni(OOl) substrate. Osterwalder et a1. [30(b) and (c)j have performed

an extensive set of SS calculations to simulate this experimental

data. The agreement between experiment and the simulations was often
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good, but was not as satisfactory for several angles. We thus in

Figures 3.28(a) and 3.28(b) compare different types of SS and MS

calculations with experiment, focussing on those angles for which

discrepancies were noted. The cluster size was -40 atoms with

emitters in up to four layers. In increasing order of accuracy and

complexity, the theoretical curves are SSC-PW (p final state),

SSC-SW(p final state), SSC-SW (d+s final state), and MSC-SW (p final

state). The MS theory curves shown are thus for a simple s -> p

transition to simulate the correct p -> d + s transition; as noted

earlier we do not expect this to affect the results strongly for such

a high energy emphasizing forward scattering. And this is borne out

by the near identity of the single scattering SW curves with p and d+s

final states in the figure.

Due to the presence of long atomic chains in single crystal

substrates it is expected, based on our experience with atomic chains,

that the inclusion of MS will improve the agreement between theory and

experiment along linear or nearly linear chain directions. For

° °example, one approaches such chains at 8 - 7 and ~ - 45 , where the

experiment has a valley but all of the SS theory curves predict a

peak. Grazing emission at ~ = 45° corresponds to emission along

nearest-neighbor <110> dir:ctions for which MS effects should be

strongest (cf. Figure 3.7). And indeed multiple scattering is found

f
_

7
0

to very much reduce this peak in the calculated spectrum or 8 ,

and to overall enhance the agreement with experiment. The same is

true at 8 - 10° and ~ - 45°, with the linear chain still in the [110]
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direction. Again the agreement is best as to peak positions and fine

strucure in MS, although a large cluster may be needed to accurately

predict all relative intensities.

For 0 - 18.4° the agreement between SS theory and the experiment

is satisfactory. This may be due to the fact that now the emission

°direction is nearly 20 away from the nearest-neighbor chain axis and

hence that the MS effects are reduced. This was illustrated earlier

using bent Cu chains (cf. Figure 3.11).

The next low-index chain axis as e is increased is [111] at 0 -

35.3 ° and .L - 45°. h 1 h h [1~ We ave previous y noted t at tell] direction

in Cu has a large enough nearest-neighbor distance that MS effects are

much reduced compared to [101] or [001) (cf. Figures 3.7 and 3.13).

However, looking along the [111] axis through an fcc unit cell, we

find that there are in fact two equilateral triangles of 6 total

scatterers comprised of the face centering atoms in the unit cell that

°have scattering angles small enough with respect to [111] (19.5 and

°35.3 ) to potentially complicate calculations along this axis through

MS. In fact, in this direction, the experiment shows a prominent

peak, but all of the single scattering theories show either a valley

or only a very small peak. Including multiple-scattering is able to

. produce the correct peak shape alon~ [111], but the peak height is

still too small. Further study of this direction with larger clusters

and the correct d + s final states is called for.

For the final example at e - 45°, multiple scattering effects are

expected to be most prominent along the nearest-neighbor (101] azimuth
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for which ~ - 0°. All of the theory curves here show at least

qualitative agreement with experiment in predicting two strong peaks

at ¢ - 0°, 90° and a weaker triplet at ~ - 45°. However, all disagree

in predicting a strong splitting of the ¢ - 0°, 90° peaks into

doublets. The SSC-SW (p final state) and MSC-SW (p final state)

curves agree best with experiment. Again, larger clusters and the

correct d + s final states may be necessary to describe these data

adequatly.

In general, these results for Ni(OOl) indicate that MS has

improved the agreement between theory and experiment for these problem

directions, suggesting that MS calculations will be of use in fully

simulating x-ray phototelectron diffraction involving substrate

emission. This agreement may be improved by using larger clusters,

and correct final states, as well as including correlated vibrations

and angular broadening.

3.5. APPLICATION TO ADSORBED OVERLAYERS:

3.5.1 CO/Fe(OOl) System:

In ~his section we assess the multiple-s..attering effects arising

for the case of an adsorbed molecule: CO on Fe(OOl). This system has

recently been studied by Saiki et al. [32] using x-ray photoelectron

diffraction. From previous studies including NEXAFS measurements

[33], it was known that, for the Q 3 state of this system, the c-o
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°bond is tilted away from the Fe(OOI) surface normal by about 45±10 .

However, the tilt angle was not very precisely known and there was no

information available on the azimuthal preference of this tilting. By

comparing experimental polar and azimuthal results for C Is emission

to spherical-wave single-scattering results for a 7-atom cluster of

COFes' it was possible to determine more precisely both aspects of

structural information mentioned [32], as shown in the inset in Figure

3.29: the tilt is SS±2° from the surface normal and it is

preferentially along [100] azimuths. Single-scattering calculations

have also been performed on much larger CO/Fe clusters but these

results are very similar to those for the COFeS cluster [34]. In

order to further estimate the vertical height of the C atom with

respect to the first Fe plane, Saiki et al. used the intensity ratio

th. .. ° °1'/1 of the ° and h~gher order d~ffract~on peaks at ~ - 0 and 4S

respectively. Comparison of experiment and single-scattering theory

°then suggested a C vertical height of either about 0.3 or about 0.6 A.

In order to assess the influence of MS effects on this analysis,

we have performed azimuthal multiple-scattering calculations for the

7-atom COFe
S

cluster. C Is emission induced by a single polarization

vector in the plane of x-ray incidence and electron emission was

considered; the an~le between photon incident and elecr:on emission

was 72°. Although the experiment was done with unpolarized radiation,

prior experience indicates that the intensity due to the second

polarization vector perpendicular to this plane is negligible. Once
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again, no allowance was made for the finite angular acceptance cone of

the spectrometer.

In Figure 3.29, we compare single-scattering and

multiple-scattering results, including the ratio 1'/1 as a function of

the C vertical distance. The single and multiple scattering curves

are very similar, and as indicated in Table 3.1, the first order

scattering level is where convergence is seen. This indicates that

multiple-scattering effects are not major factors in using such

high-energy x-ray photoelectron diffraction to determine the

structural parameters of such a small-molecule/substrate system. This

is fully consistent with our previous observation that there are no

significant multiple-scattering contributions in high energy emission

from two-atom clusters (cf. Figures 3.7, 3.9, 3.15, 3.17, and 3.19).

The numbers in Table 3.1 for this system also illustra that our

5% cut off criteria (which are based on the maximum amplitude in 3r d

order scattering) are too conse~,ative for this case. That is all

~ ~ ~events up to 3 order are calculated even though those at 2 and 3

order are expected to be neglegible, and this leads also to

. th th
,calcu1at~ng some 4 order and 5 order events. For this case,

h f . ff b .. f 3r d dt ere ore our conservat~ve cuto s eg~nn~ng a ter or er

nonetheless included unnecessary higher order terms.
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3.5.2. Scanned-Angle X-ray Photoelectron Diffraction Results for

<J3xJ3)R300 Ag on Si(lll):

The Ag/Si(lll) system has been studied using almost every

technique in surface science, including Ag 3d x-ray photoelectron

diffraction [29,35]. The most recent study by x-ray photoelectron

diffraction [29] indicated that the Ag cannot be more than 0.5 Abelow

the surface, and furthermore concluded from an R-factor analysis of

azimuthal Ag 3d results and SSC-SW calculations that the structure

consists of two closely related types of Ag honeycomb domains that

grow on the second Si layer, with the top Si layer missing. This

geometry has been shown in Figure 3.24. For this geometry, linear

Ag-Si-Si-Si chains can be seen, e.g., along the long arrow at ~­

160°. Especially at low photoelectron emission angles relative to the

surface, these chains could cause defocussing or other MS effects near

the chain axis and hence the resulting MS intensity patterns could be

different from their SS counterparts.

We have thus simulated azimuthal intensity patterns for three

° ° °take-off :'ngles of 4.1 , 10.0 and 14.7 spanning the range studied as

a function of the percentage of domain 1 (see Figure 3.24). As noted

previously, the kinetic energy for the Ag 3ds/ 2 photoelectrons is 1114

eV. The proper d ~ f + p final state with interference is considered.

The Ag photoemitter is placed 0.2 Abelow the surface and the

°compression parameter s for the Ag trimers is 0.86 A, with both

parameters being found via a S5 R-factor analysis [29].
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The corresponding R-factors are shown in Figure 3.30. The shape

of the individual R-factor curves are very simillar in SS and MS,

although the 8S minima are lower and the M8 curves are generally

flatter about their minima. The total R-factor is a sum of individual

R-factors for the three 8 values involved, with each R value being

weighted by the experimental anisotropy at that 8. The total 88

R-factor, which is smaller than the total M8 R-factor, indicates a

mixture of 40% of domain 1 to 60% of domain 2. The ratio indicated by

the M8 total R-factor is nearly 50:50. The experiment-theory

comparison in Figure 3.26 is for the 88-derived value of 40% of domain

1. Including M8 yields only minor changes relative to S8, and the

overall fits to experiment are very little different for the two sets

of curves (as indicated in Figure 3.26), even though the total 88

R-factor is slightly lower. The remaining small discrepancies between

experiment and theory could be due to: the use of too small a cluster

(here 22 atoms for 88 and M8), the need to more accurately allow for

vibrational attenuation of diffraction effects, slight errors in the

calibration of the experimental theta scale, and/or the need for

further structural ~efinement.

Finally, the event count versus order in Table 3.1 makes it clear

that, for this particular geometry of Ag/8i(lll), at least 3
r d

order

events must be included. These results thus cast doubt on the recent

use by Fujikawa and Hosoya [36] of only 2nd order events in analyzing

another proposed structure for this system.
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3.6. CONCLUSIONS:

When adapted to a multiple-scattering treatment of photoelectron

diffraction and Auger electron diffraction, the new separable Green's

function approach of Rehr and Albers yields results that are in

excellent agreement with prior multiple-scattering results in the

literature spanning energies from -80 eV to 1000 eV. This approach

also has certain advantages as to the versatility and speed of

convergence. The code we have written to implement it should be

applicable to a broad range of both scanned-angle and scanned-energy

problems. Multiple-scattering is important when scattering along

linear chains of atoms is involved, with the most obvious effect being

a loss of intensity due to defocussing, but peak narrowing also being

seen. From calculations on linear chains, we conclude that the amount

of MS defocussing along the chain axis depends on the interatomic

distances as well as the strength of the scatterer (i.e., its atomic

number). Other parameters such as the radius of the muffin-tin

potential, the inner potential, the electron mean free path, and the

degree of angular broadening have a relatively minor effect on this

defocussing. Incorporating the correct final 2f state is not

important in geometries emphasizing high-energy forward s~attering,

but is quite important for larger scattering angles and/or lower

energies. This was demonstrated for eu chains and for (J3xj3)R30o Ag

on Si(111). In Ni 2P3/2
emission from a Ni(OOl) substrate, the

agreement between theory and experiment was improved for certain
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near-chain directions when multiple-scattering was included. But for

CO/Fe(OOl) , where no long chains of atoms are present,

single-scattering theory was adequate. For the case of a recently

proposed structure for (J3xj3)R30o Ag on 5i(111), the difference

between sing1e- and multiple-scattering is minor and both analyses

point to the same two-domain model.



266

REFERENCES:

[1]. (a) C.S. Fad1ey, Prog. in Surf. Sci. 16 (1984) 275;

(b) C.S. Fad1ey, Physica Scripta T 17 (1987) 39;

(c) C.S. Fad1ey, in: Synchrotron Radiation Research: Advances

in Surface Science, Ed. R.Z. Bachrach (Plenum, New York, 1990),

in press.

[2]. (a) S.A. Chambers, I.M. Vitomirow, S.B. Anderson, H.W. Chen,

T.J. Wagener, and J.H. Weaver, Super1att. and Microstruct.

3 (1987) 563, and references therein; (b) R.A. Armstrong and

W.F. Egelhoff, Surf. Sci. 154 (1985) L225.

[3]. M. Sagurton, E.L. Bullock, and C.S. Fad1ey, (a) Phys. Rev. B 30

(1984) 7332; and (b) Surf.Sci. 182 (1987) 287.

[4]. A. Liebsch, Phys. Rev. Lett. 32 (1974) 1203; A. Liebsch, Phys.

Rev. B 13 (1976) 544.

[5]. T. Fujikawa, J. Phys. Soc. Jpn. 50 (1981) 1321; 51 (1982) 251;

54 (1985) 2747; J. Elect. Spect. 26 (1986) 4350.

[6]. S.Y. Tong, H.C. Poon, and D.R. Snider, Phys. Rev. B 32

(1985) 2096.

[7]. (a) J.J. Barton and D.A. Shirley, Phys. Rev. B 32 (1985)

1892; J.J. Barton and D.A. Shirley, Phys. Rev. B 32 (1985)

1906; J.J. Barton, Ph.D. Thesis, University of California

at Berkeley (1985); (b) J.J. Barton, S.W. Robey and D.A.

Shirley, Phys. Rev. B 34 (1986) 778.



267

[8]. W.F. Egelhoff, Phys. Rev. Lett. 59 (1987) 559.

[9]. J.-C. Tang, J. Vac. Sci. Techno1. A 5 (1987) 658.

[10]. (a) M.-L. Xu and M. Van Hove, Surf. Sci. 207 (1989) 215;

(b) M.-L. Xu, J.J. Barton, and M.A. Van Hove, Phys. Rev. B 39

(1989) 8275.

[11]. A.P. Kaduwe1a, G.S. Herman, D.J. Friedman, C.S. Fad1ey, and

J.J. Rehr, Physica Scripta 41 (1990) 948.

[12]. H. Hi1ferink, E. Lang, and K. Heinz, Surf. Sci. 93 (1980) 398;

R.G. Weissman and K. Muller, Surf. Sci. Repts. 1 (1981) 251;

P.J. Orders, R.F. Connelley, N.F.T. Hall, and C.S. Fad1ey,

Phys. Rev. B 24 (1981) 6161.

[13]. J.J. Rehr and E.A. Albers, Phys. Rev. B 41 (1990) 8139;

with additional details provided in J.J. Rehr and J. Mustre de

Leon, private communication.

[14]. S.M. Goldberg, C.S. Fad1ey, and S. Kono, J. Electron Spectrose.

Re1at. Phenom., 21 (1981) 285.

[15]. A.P. Kaduwela, Ph.D. Dissertation, University of Hawaii (1991),

Chapter 2. Various details concerning the derivation of

equations and the structure and use of the computer program are

found here.

[16]. K. Gottfried, Quantum Mechanics Volume 1: Fundamentals, 6th ed.

(Wiley, New York,1970).

[17]. D.J. Friedman and C.S. Fadley, J. Electron Spectrosc. Relat.

Phenom. 51 (1990) 689.

[18]. E.L. Bullock, unpublished results.



268

[19]. G. Beni and P.M. P1atzmann, Phys. Rev. B 14 (1976), 1514

[20]. P.A. Lee, Phys. Rev. B 13 (1976) 5261.

[21]. J.B. Pendry, Low Energy Electron Diffraction (Academic, London,

1974) and private communication.

[22]. B. Sinkovic, P.J. Orders, C.S. Fad1ey, R. Trehan, Z. Hussain and

J. Lecante, Phys. Rev. B 30 (1984) 1833.

[23]. M. Sagurton and C.S. Fad1ey, unpublished results.

[24]. S.Y. Tong and C.H. Li, Critical Review in Solid State and

Materials Science (Chemical Rubber, Cleveland, 1981), p. 209.

[25]. A. Szoke in: Short Wavelength Coherent Radiation: Generation

and Application, Eds. D.T. Attwood and J. Bokor, AlP Conference

Proceedings No. 147 (American Institute of Physics, New York,

1986); J.J. Barton, Phys. Rev. Lett. 61 (1988) 1356; G.R. Harp,

D.K. Sa1din, and B.P. Tonner, Phys. Rev. Lett. 65 (1990) 1012.

[26]. B.P. Tonner, private communication; S. Thevuthasan, private

communication.

[27]. T.T. Tran, D.J. Friedman, Y.J. Kim, G.A. Rizzi, and C.S. Fad1ey,

to appear in the "Structure of Surfaces III" in the Springer

Series in Surface Science, Eds. S.Y. Tong, M.A. Van Hove,

K. Takayanagi, and X.D. Xide, (Springer-Verlag, Berlin, 1991).

[28]. H.A. Aebhcher, T. Greber, J. Osterwa1der, A.P. Kaduwela, D.J.

Friedman. G.S. Herman, and C.S. Fad1ey, to appear in Surf. Sci.

[29]. E.L. Bullock and C.S. Fad1ey, Phys. Rev. B 41 (1985) 1212.

[30]. (a) E.A. Stewart, MS Thesis, University of Hawaii (1987);

(b) J. Osterwalder, E.A. Stewart, D. Cyr, e.s. Fadley,



269

J. Mustre de Leon, and J.J. Rehr, Phys Rev B 35 (1987) 9859;

(c) J. Osterwa1der, A. Stuck, D.J. Friedman, A. Kaduwe1a,

C.S. Fad1ey, J. Mustre de Leon, and J.J Rehr, Physica

Scripta 41 (1990) 990.

[31]. S.A. Chambers, I.M. Vitomirow, S.B. Anderson, H.W. Chen,

T.J. Wagner, and J.H. Weaver, Phys. Rev. B 33 (1986) 8810.

[32]. R.S. Saiki, G.S. Herman, M. Yamada, J. Osterwa1der, and

C.S. Fad1ey, Phys. Rev. Lett. 63 (1989) 283.

[33]. D.W. Moon, S. Cameron, F. Zaera, W. Eberthardt, R. Carr,

S.L. Bernasek, J.L. Gland, and D.J. Dwyer, Surf. Sci.

180 (1987) L123.

[34]. G.S. Herman and C.S. Fad1ey, unpublished results.

[35]. S. Kono, K. Higashiyama, and T. Sagawa, Surf. Sci. 165

(1986) 21.

[36]. T. Fujikawa and M. Hosoya, J. Phys. Soc. Jpn. 59 (1990) 3750.



270

Table 3.1.

Indication of the number of events versus scattering order and the
convergence with order for various cases considered here. A cutoff of

5% of the maximum 3r d order amplitude is used for continuing to 4t h,

5t h, and higher order events.

Case: S/NiCOOl> S/NiCOO1) S/Ni(OOl) Ai Chain CO/Fe(OOl) Ag/Si(111)
Figure: 3.3 3.4 3.5 3.17 3.29 3.26
Cluster
size: 39 37 36 9 7 23
Number of

#events

1s t 3838 2701 560 648 360+ 861

2nd 145844 99937 19600 5184 2160 9261

3r cJ 5542072 3697669 686000 41472 12960 379701+

4t h 4184712+ 2203646+ 38780+ 36288 2880 2583max

5t h 429400max 450475max 3167Smax 44960 2160max

6t h 31136

7t h 12656

8t h 3136+

9t h *360

10t h Omax

# Actually equal to the number of cycles of retrieving elements in the
scattering matricies at each order.

+ Already converged at this order as judged by equality of intensities
to within 1.0% between this order and the next order.

* Convergence judged by the number of events.

max Maximum order considered.
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Figure 3.1. The geometry of the scattering process: (a) the initial

general expression in terms of the free particle propagator GL,L' and

the t-matrix elements t..e; (b) the separation into scattering matrices

FA A' and termination factors
Lf 00 obtained in ther and r A that is, Al N

Rehr-Albers method [13]; (c) the inclusion of Debye-Waller and

-+
inelastic damping, with ~ now defined for convenience as the last

scatterer instead of the detector as in (a) and (b).
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Figure 3.3. (a) Experimental and theoretical scanned-energy (ARPEFS)

curves for S 1s emission from c(2x2)S/Ni(OOl) by Barton et al. [7(b)].

o
The incoming radiation makes a 70 angle with the surface normal, and

the photoelectrons are emitted along the surface normal. (b) Single

and multiple-scattering simulations of the experimental data in (a)

using the present method.
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Figure 3.6. Illustration of the origin of the diffraction features

expected in emission from a 2-atom chain, with the oth order (forward

scattering) peak and the higher-order peaks labelled. The scattering

phase shift 1s for simplicity assumed to be zero.
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Figure 3.8. (a) Single and multiple scattering Auger electron

diffraction intensities direcly along linear Cu [101] chains at 917 eV

as a function of the number of atoms in the chain. (b) The %

defocussing (defined in the inset) in Auger electron diffraction

intensity along linear chains of Cu [101] at 917 eV.
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Figure 3.17. Single and multiple scattering calculations of A1 25

photoelectron diffraction from a linear A1 [101] chain at 1336.0 eV.

Tne emitter is at one end of the chain, as shown in the inset.
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Ag on 5i(111). The four
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Figure 3.27. Polar-angle dependence of Cu LMM Auger emission ac 917.0

eV from 3 ML of pseudomorphic Cu grown on Ni(OOl). Experimental data

and SS calculations with PW scattering are from Reference 32. Also

shown are SSC-SW and MSC-SW calculations from this work.



298

-
~
z
::::>.
rna:
~

~en
zw
!z
~a.

N

Z

-20 0 20406080100 -20 0 20406080100

AZIMUTHAL ANGLE (DEG.)

Figure 3.28. Ni 2P3/2 azimuthal x-ray photoelectron diffraction data

obtained at high angular resolution from a Ni(OOl) substrate at 629 eV

are compared to theoretical calculations at several levels of

approximation:

MSC-SY (s ~ p) .

SSC-py (s ~ p), SSC-SY (s ~ p), SSC-SY (p ~ d+s) , and

o 0
(a) results for takeoff angles of 7.0 and 10.0 .
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Figure 3.28.(b) Same as in (a), but results for takeoff angles of

18.4°. 35.3° (passing through [111]) ,and 45.0° (passing through

[101]). (See also Reference 31(c).)
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Figure 3.29. Azimuthal dependence of the C ls photoelectron intensity

from the a 3 state of CO on Fe(OOl). The ratio of the intensicies I'

and I is also shown in the inset as a function of the distance z of

the C atom above the first Fe layer. The geometry of the cluster used

in the calculation is also shown.
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