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ABSTRACT

We apply a new separable-Green'’s-function matrix method due to
Rehr and Albers (Phys. Rev. B41 (1990) 8139) to a multiple scattering
treatment of photoelectron diffraction and Auger electron diffraction.
This cluster-based method permits building up successive orders of
scattering and judging the approach to convergence in a convenient and
time-saving way. We include multiple scattering up to tenth order and
can treat photoelectron emission from any initial state (s, p, d, or
f) with full final-state interference, as well as Auger emission in
the s-final-state approximation. This new approach is used to
simulate emission from linear and bent chains of atoms, from epitaxial
overlayers and multilayer substrates and from atomic and molecular
adsorbates. The method appears to have a very broad range of utility.
We also discuss the types of geometric structures for which multiple
scattering effects must be considered, and the nature of the effects

expected.
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CHAPTER 1.

GENERAL INTRODUCTION

Photoelectron diffraction (PD) and its close relative, Auger
electron diffraction (AED), are by now valuable tools for determining
the atomic structure of surfaces [l]. A surface is the result of an
abrupt termination of the bulk sructure. Due to the short inelastic
attenuation lengths of ~5-15 % for the electrons used in these
diffraction techniques, they probe principally the first few layers
inwards from such a bulk termination. A knowledge of the detailed
atomic structure of a surface is an essential first step in
understanding its electronic and vibrational properties. These
properties are in turn the basis of the physical and chemical nature
of a surface and are important for understanding catalytic activity,
oxidation and corrosion, adhesion, interface formation, and many other
surface phenomena of both basic scientific and technological interest.

The photoelectron diffraction experiment begins when an atom near
a surface is exposed to x-rays of high enough energy to eject a core
electron, leaving behind a hole. The ejected electron is termed a
photoelectron. This phenomena was first explained by Einstein in 1905

{2], and it obeys the following energy conservation law:

A F
Ekin = hy - Eb(nﬁi) = hy - Eb(nEi) - ¢sp (1-1)
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where Ekin is the kinetic energy of the photoelectron at the detector,
hv is the energy of the incoming radiation, nzi denotes the core
subshell from which emission occurs, EZ(nzi) is the binding energy of
this subshell measured with respect to the vacuum level, Eg(nﬂi) is
the same binding energy measured with respect to the Fermi level, and
¢sp is the spectrometer work function. This ejection process has two

selection rules in the dipole approximation for the electron-photon

interaction [3]. They are
AR = £f - 21 - %] (1-2)
Am = me - m, = 0, #1 (1-3)

where Li - (Ei,mi) are the angular momentum and magnetic quantum
numbers of the initial core atomic state and Lf - (2f,mf) are the
corresponding numbers for the final state in the continuum. Once
ejected from somewhere at or below the surface, a photoelectron wave
can either leave the surface without being scattered by another atom
(a component of the total wave represented by ¢0) or can undergo
scattering from other atoms along some path j in the solid
(represented by ¢j). The ¢j's can have contributions from both singlé
and multiple scattering events. The obse-ved photocurrent outside the
solid contains interference effects between these two types of
components. The intensity of the photocurrent at a detector placed
along a direction defined by the final wave vector k or its associated

polar and azimuthal angles (§,¢) can be written as,



I(k,0,6) a |¢g + = ¢, | (1-4)
3

where j represents all possible scattering paths inside the solid and
k is the magnitude of k. Figure 1.1 gives the definitions of § and ¢
that will be used throughout this dissertation. The magnitude of ﬁ,
which is proportional the momentum of the photoelectron through p =
hk/2x, is thus proportional in a non-relativistic limit to the square

root of the kinetic energy of the photoelectron and can be calculated

conveniently as
=+ 1/2
k = |k| = 2x (Ekin/150.2) . (1-5)

If the angular momentum quantum number of the initial state is
not equal to zero (i.e., a non s-initial state), then, according to
Equation (1-2), there are two possible channels for the photoelectron.
Contributions from these two channels should thus be added up with the
relevant phase factors in such a case. The importance of such final
state interference effects between channels in photoelectron
diffraction was first discussed in a systematic way by Friedman and
Fadley [4], who used a single scattering approximation. These effects
are explicitly included in the more accurate multiple scattering
calculations to be described in this dissertation.

A given atom in different materials can have different binding

energies for a certain core level. Also, a given core level of an
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atom in different enviromments within a single surface region can have
slightly different binding energies. Such difference are known as
chemical shifts [6]. Thus, Equation (1l-1) can be used to identify an
atomic level nﬂi, as well as its chemical states. By separately
measuring the angular or energy dependences of the intensites of
chemically-shifted peaks, a state-specific determination of structure
can be made [1(c)].

In Auger emission a different process is involved. The n1£1 hole
left behind in a first core subshell by either photoelectron ejection
or inelastic electron scattering can be filled by an electron in an
outer n2£2 subshell. During this process the atom can end up singly
or doubly charged. In the first case, the energy difference between

the core hole and the outer electron hole comes out as radiation at

energy hv’', leaving a hole in an outer shell. This energy is given by

where Eb(nlzl) and Eb(nzlz) are the binding enerxgies of electrons in

subshells n1£1 and n

decay and it results in x-ray fluorescence [5]. The second

2£2, respectively. This is known as radiative
possibility is that the excess energy can go into ejecting arother

electron in an outer subshell n3£3, finally leaving two holes in outer

shells:

£ 3
Epin = 7 Bp(mpdy) + Ep(nydy) - Ep(ngdy) (1-7)



where Ekin is the kinetic energy of the ejected electron and E:(n3£3)
is the binding energy of the an n3£3 electron in an atom which already
has an n2£2 hole. This process is known as Auger emission [5(a)].
The probability of ejecting an Auger electron relative to that of
fluorescent decay generally decreases as atomic number increases for a
given nl£1 hole [5(a)]. The selection rules on Auger emission are not
as strict as those in photoelectron emission, so that a number of
final state (Bf,mf) combinations can be involved; however, the
effective averaging over these combinations which occures has been
shown to allow approximating ﬁhe final state of the Auger electron as
an s-wave or (lf,mf) = (0,0) {6]. Except for these differences in the
final state associated with the emission process, a scattering Auger
electron will behave identically to a scattering photoelectron at the
same energy, in spite of erroneous statements to the contrary in the
recent literature [7]. Since the final kinetic energy of an Auger
electron depends on the internal energy levels of the emitter, Auger
electron diffraction also is sensitive to the nature and the chemical
state of the emitter [5(a)].

A typical experimental geometry has been shown in Fig 1.1.
Measurements can be done in three different modes, as shown in Figure

1.2. These modes are, scanning azimuthal angle (4§ and Ek are kept

in
constant while ¢ is varied), scanning polar angle (¢ and Ek

. kept
in 2T€ P

constant while § is varied) and scanning energy (4 and ¢ are kept

constant while photoelectron energy Ek is varied by sweeping hv).

in



The scanned energy mode is often referred to as angle-resolved
photoemission extended fine structure (ARPEFS). The first two modes
can be carried out in a normal laboratory environment with a
conventional x-ray tube (or for Auger, also an electron gun) as
excitation source, but the scanned energy mode requires a tunable
photon source such as a synchrotron radiation facility. Scanning
energy is obviously not possible for Auger emission, since the energy
is determined by the atomic levels involved. Laboratory sources
generally yield unpolarized radiation, so some sort of averaging over
the polarization : is involved. With highly polarized synchrotron
radiation, the direction of z'can be a very useful experimental
variable. Details of experimental procedures are found elsewhere [l}.
In varying the polar angle 4, the azimuthal angle ¢, or the

kinetic energy of the photoelectron E, . , one also varies the

kin
amplitudes and phase differences between ¢0 and ¢j in Equation (1-4).
The amplitude changes are due to the angle and energy dependences of
the photoexcitation process and the atomic scattering factors. The
phase differences are due to both path length differences between
waves (the aspect that carries all structural information) and the
scattering process itself. These differences in amplitude and phase
cause modulations in intensity. These intensity modulations, known as
diffraction patterns, can then in principle be traced back to the
geometric arrangement of the atoms around the emitter of the

photoelectrons or Auger electrons. However, this last step requires

the comparison of theoretical simulations of diffraction patterns for
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different trial structures with the experimental patterns. Deriving a
better method for carrying out these simulations is the topic of this
dissertation. A brief history of photoelectron and Auger electron
diffraction is given in the next paragraph, with an emphasis on the
previous theoretical developments leading up to the work discussed
here.

The first experimental work in x-ray photoelectron diffraction
(XPD) was by Siegbahn, Gelius, and Olson [8] who studied NaCl in 1970,
and by Fadley and Bergstrom [9(a)] who studied Au .n 1971. The first

interpretations of such high-energy data at E = 1 keV involved the

kin
Bragg-like reflections in Kikuchi-band theory and were only
qualitatively successful in describing the experimental data [8,9].
The first quantitative theoretical explanation of these
diffraction patterns was by Liebsch in 1974 [10], who considered
emission at much lower energies. A more detailed presentation of this
theory, including multiple-scattering effects, appeared in 1976 [11].
This theory was based on methods developed for describing low energy
electron diffraction (LEED) and hence required the assumption of full
translational symmetry parallel to the surface for the system under
investigation. It was limited to emission from atomic-like core
orbitals. In 1976, Pendry [12(a)], and subsequently in 1978, Li,
Lubinsky, and Tong [12(b)], presented similar theories for valence
photoelectron emission at typical ultraviolet energies including the

more complex nature of both the initial and final states involwved.
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The first cluster-based theories of such processes utilized the
plane-wave approximation and single scattering, and were applied to
explaining extended x-ray absorption fine structure (EXAFS) by Lee
[13] and to low-energy Auger emission by Woodruff et al. [14]. The
cluster model was then applied for the first time to predicting
photoelectron diffraction curves by Kono et al. in 1978 and 1980
[15,16]. Cluster-based theories are inherently very suitable for PD
and AED in view of the spherical outgoing waves involved, the short
inelastic attenuation lengths, and the short-range order sensitivity
of these techniques. Within the framework of a cluster model, the
importance of forward scattering along low-index directions at high
energies > 500 eV was first discussed by Kono et al. [l6] and the use
of these effects to determine bond directions was first demonstrated
by Petersson et al. [17].

The next major theoretical contribution was by Poon and Tong in
1984 [18] and by Tong, Poon, and Snider [19] in 1985; they made the
important observation that multiple scattering along low-index rows of
atoms tends to supress forward scattering intensity along rows, an
effect they called "defocussing". Further experimental work by our
group [1l(b), 1(c)], by Egelhoff and co-workers [20], by Chambers and
co-workers [1(d)], and by Bonzel and coworkers [21] further developed
the use of forward-scattering peaks in both XPD and AED for studying
epitaxial structures and adsorbed molecules.

The first cluster-based theory which included both spherical-wave

scattering corrections and multiple-scattering effects was due to



Barton and Shirley in 1985 [22]. This method relies on a Taylor
series expansion in the magnetic quantum numbers to reduce the
complexity of the calculation. In 1985 and 1986, Rehr et al. [23]
proposed spherical-wave corrections to single-scattering calculations
of angle-resolved photoemission fine structure (ARPEFS) based on a
separable approximation to the scattering Green'’s function. This also
is a cluster-based method. This method was generalized further for
single-scattering PD in 1989 by Mustre de Leon et al. [24]. Further
extensions to include multiple-scattering with application to both
x-ray absorption fine structure [XAFS] and photoelectron diffraction
were reported in 1990 by Rehr and Albers [25], and this paper is a key
starting point for the work of this dissertation. The differences
between the treatments of Barton and Shirley [22] and Rehr and Albers
are discussed elsewhere [25] and in sections 2.4.7 and 3.2.4 to
follow. These approaches are similar in that they both use scattering
matrices to uncouple the nested sums over angular momentum indices
that plague full-sum theories such as those used in LEED. They are
different primarily in the way the scattering matrices are defined
and calculated. As noted, the method of Barton and Shirley (B-S) is
based on a Taylor expansion in magnetic quantum numbers. The
Rehr-Albers (R-A) approach is_based on a separable approximation for
the propagator and has the correct behavior in both high and low
energy limits at low order; this gives the R-A method improved
convergence properties., (i.e. it appears that smaller matrices are

needed to achieve a given degree of convergence). In particular, the
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Rehr-Albers method reduces to the point scattering approximation at
lowest order.

The above summary is not intended to contain all important
theoretical work in the field, but rather the major contributions
relevant to the work of this dissertation. The aim of this
dissertation was to adopt and implement the method of Rehr and Albers
[25] to the simulation of multiple-scattering photoelectron and Auger
electron diffraction. We have also included the proper final state
interferences for PD from a non-s subshell; this has not been done
previously for a cluster-based multiple-scattering theory. The rest
of this dissertation contains two major chapters. Chapter 2 is
devoted to the details of the formalism by Rehr and Albers [25] as
applied to multiple-scattering PD and AED. It also contains
computational details, a guide to the use of the computer program
involved, and comparisons of our results to prior theoretical and
experimental results as test cases. Chapter 3 is primerily new
results and will be submitted for publication. (Other short papers

based upon this dissertation have already appeared [26-28].)
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P

Figure 1.1. The general geometry for a photoelectron or Auger electron

diffraction experiment. The azimuthal angle ¢ is defined with respect
to an axis fixed in the sample surface. The polar takeoff angle § is
measured from the surface. The angle between the incoming radiation
and the outgoing wave vector K is a. The polar angle of the incoming
radiation with respect to the surface is ehy, Ehu is the wave vector,

and ¢ is the polarization vector of the radiation. The solid angle

accepted by the detector is no.
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Figure 1.2. The three basic types of photoelectron diffraction
measurements: (1) an azimuthal (¢) scan at constant polar angle,
sometimes referred to as azimuthal photoelectron diffraction or APD;
(2) a polar scan (§) at constant azimuthal angle, referred to as polar
photoelectron diffraction PPD; and (3) a scan of hv in fixed geometry
that can be done for emission either normal or off-normal to the
surface (denoted NPD or OPD, respectively). The scanned-energy ti:pe
has also been referred to as angle resolved photoemission extended
fine structure or ARPEFS. Note that § is measured with respect to the
surface. Auger electron diffraction can be carried out either in mode

(1) or (2).
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CHAPTER 2.

THEORETICAL AND COMPUTATIONAL METHODOLOGY

2.1. INTRODUCTION:

In this chapter, we will discuss various aspects of the
theoretical simulation of photoelectron and Auger electron
diffraction. We will begin with the simplest approximation of
single-scattering in a finite cluster (SSC), with the scattering being
calculated in the plane wave (PW) limit [1-3]. This approximation,
discussed in detail in Section 2.2, is very easy to understand and
contains almost all of the crucial physical features of the
scattering. Then we will discuss the limitations of this approach and
consider first spherical-wave (SW) corrections [4-6] as a possible
improvement to it (Section 2.3). The agreement between experiment and
simulation is generally very satisfactory at this level of the theory.
But for a fully quantitative treatment that is applicable to all
geometries and energies, we must go further and explore the effects of
multiple-scattering [5-9] on the simulated diffraction curves.

Details of a new approach to multiple-scattering will be discussed in
Section 2.4. Section 2.5 discusses our methods for computing certain
important intermediate quantities. A user’s guide to the FORTRAN-77
computer code used in these simulations is in Section 2.6. The
several computing environmenté in which the code has been run are

described in Section 2.7. Section 2.8 contains some applications to



17
test cases and comparisons to prior theoretical and experimental
results, together with a discussion of the sensitivity of results to
input parameters. Section 2.9 contains our general conclusions

concerning the new method and our implementation of it.
2.2. SINGLE-SCATTERING CLUSTER MODEL IN THE PLANE-WAVE LIMIT:

The simplest approach to photoelectron diffraction simulations is
to use the single-scattering cluster approximation in the plane-wave
limit (SSC-PW) [1,2]. 1In this model, it is assumed that the portion
of the photoelectron incident on the scatterer has sufficiently low
curvature compared to the dimensions of the scattering potential that
it can be represented as a plane-wave at each scatterer (see Figure
2.1). This is the so-called small-atom approximation [3]. If it is
further assumed that the final state before scattering is a p-wave
(i.e., that apprpriate to s photoemission), then the final expression

for the intensity I(ﬁ) is [2]:

1K) a | ek exp(-L/24,)
£.(0,
J( J) |2

+ } e-Rj " Wj exp(-Lj/ZAe} exp(-ikRj(l-cosﬁj) + wj<aj))
J J
(2-2-1)

where k is the wave vector of the photoelectron and k its magnitude,
A

9. is the scattering angle as shown in Figure 2.2, ¢ is the radiation
]



18
polarization vector, and Ej is the vector pointing from the emitter to
the first scatterer, LO is the distance from the emitter to the
surface, and Lj is the total path length from the emitter to the
scatterer to the surface. Wj is a Debye-Waller factor representing
the attenuation of diffraction by the thermal vibrations of the
scatterer. £.(4

j) is the complex plane-wave scattering factor with

)] and phase ¥, (4

magnitude IfJ(ﬂ ). It can be calculated from

J 343
2
max
-1
£,(0,) = (21K) } (22;+1) (exp(216, ) = 1) P, (cosd ), (2-2-2)
Z.=0 3 3
j

where Ej is the angular momentum of each partial wave, § is the

2.
J

phase shift of the ﬁgh partial wave for the jth scatterer, and P£ is
3

the Legendre polynomial of order 2j. The limit on the sum is zmaxz
kRMT’ where RMT is the effective or muffin-tin radius of the
scattering potential, as shown in Figure 2.1l. For a typical case of a
Cu scatterer in Cu metal with RMT = 1.28 &, this yields Emax = 7 for
100 eV, 21 for 1,000 eV, and 66 for 10,000 eV.

The magnitude and phase of this scattering factor for scattering
from Cu at energies from 500 eV upwards are shown in Figures 2.3(a)
and 2.3(b) respectively. It is interesting to note that the amplitude
of the scattering factor has a promiment peak in the forward

scattering direction and, only for the lowest energies less than 500.0

eV, does it have also a weaker and broader pezk in the back scattering
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direction. The generally small phase shift in forward scattering (cf.
Figure 2.3(b)) also implies that this peak in forward scattering
magnitude will produce enhanced intensity in that direction. This
effect has been termed simply "forward scattering" [2] or also
"forward focussing" [10]. This feature is very valuable in the
extraction of structural information from experimental data [2]. But
not all of the peaks seen in experimental data at higher energies are
due to forward focussing; significant features can also arise due to
scattering at larger angles that produce higher-order interference
effects, as illustrated in Figure 2.3(c) for the simple case of a
two-atom Cu chain. We can thus denote the forward-scattering peak as
"0th order" with ISt, an, 3rd, etc. order peaks expected at larger
angles [2]. Therefore, a full scattering calculation is required for
unambiguous assignment of all experimental peaks.

The quantity kRj(l-cosoj) in Equation (2-2-1) represents the
geometric phase shift associated with scattering. This arises due to
the different distances traveled by the primary wave, ¢0, and the
scattered wave, ¢j, as shown by the darker lines in Figure 2.2. This
phase shift thus contains bond length information. The l/R.j
attenuation of the outgoing spherical wave as it passes to each
scatterer shown in Equation (2-2-1) makes both photoelectron and Auger
electron diffraction short-range-order probes. There is an additional
attenuation of the photoelectron or the Auger electron due to the
inelastic mean free path in the solid, as represented by the factors

A A A A

exp(-LO/ZAe} and exp{-Lj/ZAe) in Equation (2-2-1). €'k and e-Rj



20
represent the s-level emission cross-section of the photoelectron in
the direction of the detector and the scatterer, respectively.

The plane wave approximation is computationally very efficient.
But it has the drawback of overestimating the intensity of the
forward-scattering peaks [4], as shown in one prior comparison of
plane-wave (PW) and spherical-wave (SW) results in Figure 2.4. In
this case, emission from an s-level (Bi =0, £f = 1) towards a single
Ni scatterer 2.49 & away is considered. The polarization : is kept
parallel to k. The PW results consistently overestimate the scattered
intensity in the forward direction over the entire energy range
studied: for energies less than about 200 eV, additional differences
are seen between the PW and SW results, The overestimation of the
forward peak is larger at higher energies, and it has in previous work
been corrected in an ad hoc manner by introducing an empirical
reduction factor of ~0.4-0.5 to all scattering factors [l1l]. However,
without such corrections the simple PW approximation still yields
results that are very similar in form to those using spherical wave

scattering. Hence, it has been used to draw useful structural

conclusions for a number of systems [2].
2.3. SPHERICAL-WAVE AND MULTIPLE-SCATTERING MODIFICATIONS:
A first improvement possiblie to the SSC-PW model is thus to add

spherical-wave (SW) corrections. Here the assumption that the

curvature of the photoelectron is small compared to the scattering
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potential is abandoned and the photoelectron is represented by a
spherical wave [4-6,12-17]. As expected from Figure 2.4, this
modification results in a reduction in intensity of forward scattering
peaks, and it does improve the agreement between experiment and theory
for some cases. For example, Figure 2.5 shows a comparison of PW and
SW modeling as applied to a cluster representing c(2x2)0/Ni(001)
[4,19,20]. At 8 = 7.0° and ¢ = 0°, we are just 7° away from the chain
of O atoms in the [100] direction. The PW results have a very
pronounced peak in this direction, but the experiment has only a small
peak that appears to be a doublet. SW theory is here able to
correctly predict a weaker doublet, although it is still too
pronounced. This last difference might be due to the neglect of
multiple-scattering effects along linear chains of atoms, an effect we
consider in more detail below.

In single scattering, we assume that there is only one scatterer
per path between the emitter and the detector. At higher electron
energies, this is a good approximation, provided that there are no
linear chains of atoms in the path. A single-scattering picture is
thus expected to be valid at higher energies when the emitter is in
the first 1-2 layers of the surface and/or the emission direction is
not parallel to dense rows of scatterers in low-index directions. If
there are linear or nearly linear chains of atoms in the path, one
must account for the ’'shadowing’ of some scatterers by others [5,21].
This shadowing leads to a significant raduction in intensity along the

chain axis, an effect that has been termed ’'defocussing’ [5]. There
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are several prior investigations of this shadowing or defocussing
effect using different theoretical methods [5,7-9]. All of them reach
very similar conclusions.

The rest of this chapter is devoted to the first use of a new
theoretical method by Rehr and Albers [l7] for treating multiple
scattering in photoelectron and Auger electron diffraction. We will
also present some simulations of experimental results in an attempt to
test the method and derive a general set of rules to determine when

and where multiple-scattering (MS) effects will be important.

2.4, APPLICATION OF THE SEPARABLE GREEN'S FUNCTION APPROACH OF REHR

AND ALBERS TO SINGLE- AND MULTIPLE-SCATTERING:

In this section we will discuss the application of the
scattering-matrix formalism of Rehr and Albers [17] to single and
multiple scattering in both photoelectron and Auger electron
diffraction. This full spherical wave method approximates the system
by a cluster of individual atoms. This is a sensible alternative to
LEED-type methods which require full translational symmetry along the
surface [5]. The cluster approach [2,13-15] is very appropriate to
short-range-order probes such as photoelectron and Auger electron
diffraction. In a recent work, the R-A method has been used in SSC-SW
calculations by our group for treating emission form a general niﬂi
subshell [18]. The multiple-scattering version of this approach has

been termed the multiple-scattering cluster-spherical wave (MSC-SW)
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method to distinguish it from the SSC-PW and SSC-SW methods. 1In the
following paragraphs we present the crucial points of a new method for
doing MSC-SW calculations by Rehr and Albers [17]. 1In the equations
to follow, we will for simplicity not include effects due to inelastic
scattering or vibrational motion, but the form in which these have
been incorporated will be indicated later.

We begin with some essential definitions and equations used by
Rehr and Albers [17]. From Equation (25) of reference 17, the

photoelectron diffraction intensity at the detector is given by

} Gég:i;(ﬁl’ﬁz'“--%) mLf,c(e) eXP(iS‘jf) 2 (2-4-1)
L

g

a

gl&

(N-1)
OO,Lf

for a path from R

where G is the (N-l)th order multiple-scattering Green’s function

R 2 .
0= Remitter.(taken to be the origin) via scatterers

-

t B, R R R, =R R, at is th
=

a 1* 72 0 RN-l to RN detector ~d &% % mLf,c ts the

amplitude and 5; is the phase of the dipole matrix element into a
3

. . . - A'A-’
given final-state Lf - (gf,mf) contained in <WE ) ,k'e'r|¢n.2.m.>’
kin 111

Within the matrix element, WE * denotes the final continuum state
kin’

- = -
¢Z the photoelectron corresponding to emission into direction k (which

must be parallel to ﬁN = ﬁd), ¢n o.m is the initial core orbital from
i7ii

which the photoelectron is emitted, and ¢ is the radiation

polarization vector. The sum is over Lf - (£f,mf) and over all

combinations of N, the number of atoms in a given scattering path from
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single-scattering (N = 2) to the highest order considered (usually

10 order or N = 11).

Let us now look at this matrix element in detail for the case in

which there are no scatterers, which is

s
<WE ,kle'r|¢n £.m.> - <WE k|(e x/r+eyy/r+e z/r)r|¢ 2

kin i"i1 kin i i
(2-4-2)
But,
x/r a sinf cos¢ a -Y11 + Yl-l' (2-4-3a)
y/r a sinf sing a Y11 + Yl-l’ (2-4-3b)
z/r a cosf a YlO , (2-4-3c)

where YBm is a spherical harmonic. Now we choose for convenience the
A A

€ vector to lie in the z direction: €= ey = 0 and €, = 1.
Substituting these values, together with Equation (2-4-3c¢) into

Equation (2-4-2) we obtain

Vg kle 165y, R N T W RS (2-4-4)
kin i kin i"ii
We now expand both ¥ ~ and ¢ in products of appropriate
E . ,k n.2.m,
kin i1
radial and angular parts. In expanding T ﬁ we make use of the
kin’

fact that it is a plane wave at the detector and then use the standard

ingoing-wave expansion for it [22] to get
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£f £f c
} [i exp(-185 )
Mg

(-]

v Lo 4 }

Ekin'k ) - f
f f

=0

Pty Yy 08V R @] @45

. v
£7f kin’'“f

For ¢n1£im1’ we can simply write

$n.a.m, = Bn g (¥) Yy o, (6.4). (2-4-6)
111 11 i1

Here, RE 2 (r) and Rn 2 (r) are radial parts of the continuum

kin'"f i71i

orbital at £f and a given core orbital with quantum numbers n, and ﬂi,

respectively. The angles defining the detector along k or Kd

(Gk,¢k), although after integration over # and ¢ in the matrix

are

element, we will later simplify this rotation to be (8,¢).
By substituting Equations (2-4-5) and (2-4-6) into (2-4-4) and by

doing some simplifications, one arrives at

@ 2

A 2
A =+ . £ . ~C
<WE ) ,kle'rl¢n.£.m.> = 47 E §< [(-1) exp(162 } Yﬁ o (ﬁk,¢k)
kin i7ii T =0 mo=-g £ ff
f f <
x <Y (8,4) R (r)
Leme Exin'?£

x Y10<e,¢>r|Rni£i<r>Y£imi<o,¢>>], (2-4-7)
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where £< is the lesser of the pair Bi and £f. Since r, 8 and ¢ are

independent variables, this reduces further to:

.

£

x <R (O rIR 5 ()>
Egin'{s %5

x <Y£fmf<o,¢>|Y10<o,¢)|Y£imi<o.¢)>]. (2-4-8)

8,,4,.)
kin’ 1°1™ me kT

@D
<¥ o2 > =4
E. k€T, o> =47 .
;

« +C
[( i) exp(l&zf) Y,
-O L

The last factor in the summation in Equation (2-4-8) has (since

Y., is real) the general form <Y 9,4 Y 4,|Y (6,4)> and
10 2my £9my £4my

is known as a Gaunt coefficient. These coefficients are non-zero only

when: (1) |£2-£3| < 21 < £2+£ For 22 = 1, this yields the

well-known dipole selection rule in photoelectron emission: £f - Zi *
1. (2) |ml - m3| - m,. When : l ; (as assumed also by Rehr and
Albers [17]) this condition forces me = m,. This makes the final
expressions simpler, and it also prevents cross transition in m and
thus makes the calculation more efficient.

These two proporties of Gaunt coefficients can be used to

simplify Equation (4-2-8) further to yield,

. £
<¥ SIE: > =4 () (16$) Y, _ (4,,4,)
. kl€TI%y gn > =07 ) exp(1 2l Yom Croti
£in i1 1 2f=2.il m. =_£
X <RE P) (r)|r|R (r)>
kin'“f 1 i

X <Y£fmi(0,¢) Ylo(€,¢)lYgimi(0,¢)>], (2-4-9)
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It is now convenient to define a core-to-ﬁf matrix element mL e
f,

(where Lf - (£f,mf)) in the notation of Rehr and Albers (R-A) [l7] as

m = (-i) <R () |L|R_ ,(r)>
Lgic Erin'?s g4y

X <Yy g D] Yy ) (8.0)>, (2-4-10)
i i'i

so that Equation (2-4-9) becomes

A r . ~C
<WEk. ,kle'rl¢n.£.m.> - 4 } moe exp{l&z )
in 17171 5 =p 4] W= f f
£ 7i i f

X Yoefmi(ak'¢k) (2°4'9')

Equation (2-4-10) for m . can also be written in a shorthand
f’

notation as

1
£ sz(Ekin) CT(£pm,, 2, ,m,) (2-4-11)

where R, = <R () (TR ,(x)> and ¢Y(o.,m, 2, ,m.) = (4my3)"/2
2 E .2 n 4. £
£ kin’"f i“i

<Y£fm.(0’¢) Y10(9,¢)| Yl.m.(0’¢)>’ In the special case of emission

i ii

into a single final state, (as, for example, for s emission (Ei =m, =
0) to a p final-state (Ef -1, me = m, = 0)), we can ignore these

matrix element prefactors, as they become just scaling factors for the
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overall intensity. But they are extremely important in calculations
to more complex final states involving emission from Zi » 0 to the two

channels £i * 1. In general, it is thus necessary to know both Rz
f

and §¢ for this general case. As one source, R, and §¢ have been
2 2 2
f f £
tabulated for a number of free atoms at several energies by Goldberg,
Fadley, and Kono [22]. 1In this treatment, we will introduce these
factors only in the last sections to account for fully general
emission into the £i + 1 channels.

As noted previously, Gég'i) in Equation (2-4-1) is the exact
U

multiple-scattering expansion for an N-leg scattering path with (N-1)
scattering events. It can be written, using Equation (14) of

Reference 17, as,

(N-l) - - - -
o0, %1 - W) " } } %001, N Cpy  Fn-r?
{paths) [Li}

G

X G (P 1) £, (R o) eeennnn.
N

......... t, (Rl) GL

(o)) (2-4-12)
1 1

L

where, G
Lj+l'Lj

propagator in an angular momentum and site basis with Lj+l =

(;j+l) is a matrix element of the free-electron

(2j+1'mj+l)’ Lj = (Bj,mj), ;j+1 - k(ﬁj+1—§j) is a "bond vector" in

units of 2n(number of electron wave lengths), and tz = exp{iSz)sinsz

is a diagonal elements of the t-matrix for scattering. A graphical

(N-1)

representation of one of the paths in G
OO,Lf

is given in Figure
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2.6(a). The summation is over all combinations of intermidiate Li and
all possible scattering paths of (N-1) order in the cluster. The

matrix elements or intermediate propagators GL

-
(p ) in the
j+1'Lj j+l

above expression can thus be thought of as giving the strength of a
given Lj+l component of spherical waves centered on ﬁj+1 as contained

in the component Lj propagating outward from ﬁj' At each ﬁj+l’

tg (§.+1) then accounts for the effects of scattering on the next
j+l

outgoing components. The last LN - (ZN,mN) is restricted to (0,0)
because it represents the projection of LN-l at the last scattering

-
center into a plane-wave at the detector R, an infinite distance away.

d

One can qualitatively see this limiting character in the expansion of

Equation (2-4-5), for which, since ﬁd “ K, 6 - ok and ¢ -+ ¢k at
infinity, the sum over m_ becomes |Y |2 = (28+1)/4n via the
£ Leme
B

Unsold Theorem. A form frequently used for G

J+1'7j
[23] is, in R-A notation:
GL,L'(p) = 4x } <Y2m Yﬂ"m"lYl'm'> hL"(p) (2-4-13)
Lll
where, hL<;) = iz h§+)(kp) Yﬁm(p)’ p = ;/p, and h§+) is an r~utgoing

spherical Hankel function that can be written in its usual form as

R () = 1% exp(in1/s ¢y, (2-4-14)
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or, in terms of the variable z = 1/ip as

h§+)(2> - 17D exp1yz) 2 C,(2). (2-4-15)

Another use of the coefficient GL L’ is in the so-called addition
formula for the translation of spherical waves from one center at the

. -
origin to another at a:

h & = * 8P v, ()

- E Gy Lo (k&) J,(kIE - E|) Y, ((F-3)/[E-3]), (2-4-16)
L |

where jz is the £th spherical Bessel function.

A more convenient form for subsequent development is the defining

integral for GL,L'(p) [17]:

- (4m)?
2k
* 2 » -+ 3> =
J L L0 ¥, (k) exp(ik- (R-B)) 3, (ke) j,, (ke')

G ->
L,L' (p) -

3 7 — (2-4-17)
(27) (e - k°/2 + 107) j,(d2e)r) j,, 1 2e)x”)

where the YL’s are spherical harmonics with L = (£,m) and the jz's
again spherical Bessal functions. T and T’ are arbitrary
displacements about R and ﬁ', respectively.

The major contribution of Rehr and Albers [17] was to develop a

-+ 3 ~ - -
convergent separable approximation to GL L,(p). Details of their
3
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procedure are given elsewhere [17] and we will thus present only a
brief outline of their method and results. The first step is to use
rotation matrices to rotate a given bond direction corresponding to ;
- k(ﬁ-ﬁ') onto the z axis to simplify the calculation. Then one has

after some manipulation,

2
Gy 1 (5) = [explip)/e] }Rﬁw(p-l) ggpt! (o) R, () (2-4-18)
u=-A

A A

£ . . . s .
where R#m,(p) is a rotation matrix which rotates p onto the z-axis,

Rﬁm(p-l) is the inverse of this matrix, and giiel) is a reduced,

dimensionless z-axis propagator. The general Euler angles («,8,7)
associated with the rotation are shown in Figure 2.7. They start at
XYZ, rotate by a about Z to yield X'Y'Z, rotate by 8 about Y’ to yield

X"Y'z, and finally rotate by vy about z to yield xyz. The associated

rotation matrices have the property that, if Riﬁ(p) - Rﬁp(a,ﬁ,v), then

Rﬁ#(p'l) - Rﬁﬁ(-y,-ﬂ,-a). For more details on rotation angles and
matrices see Sections 2.5.2 and 2.5.3. Equation (2-4-18) is
equivalent to Equation (9) of Reference 17, but we have used p to

A

represent the Euler angles of R-R’ with respect to z, in place of the

fl. used by R-A. The first step thus separates GL L'(;) into purely
p H

angle-dependent rotation matrices and a radial z-axis propagator

géiel) that depends, through k, on energy.

The second step in the R-A method is to achieve a separable

iy

approximation to the radial z-axis propagator Bypr

This proceeds
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by deriving the following form for giLel) [Appendix A of Reference

17}:

o) _ g g

dx -(x/2)
Bl o Nory e P

z H-x) P (1-x), (2-4-19)

ON— 8

where Nﬂp and Nz,# are normalization constants for spherical harmonics
as N, = [(28+1) (R-p) 1/ (k) 112, 2 = 1/1p, Ph(cost) are associated
Legendre polynomials, and cosf = (1-x). This form can be further
simplified using contour integration methods to yield the final

fully-separated equation for géiel) [Appendix B of Reference 17]:

min(2,2’-|u]]

g,(z,lz'fl)(p) - } rrﬁv(p) ¥

#;<p) (2-4-20)

v=0

where, min[£,£2'-|u|] = the minimum of £ and 2-|u| = [£,8'-|ul|], p =

kR,
1h,0) = CLF N, cF @y 2, (2-4-21)

and

Th,00) = a+1) €5 (@) 2/, . (2-4-22)
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Here, Cz(z) is the polynomial part of the spherical Hankel function as
defined previously in Equation (2-4-15), and ¢\ (2) = 8"c /32"
Computational details concerning the evaluation of the Cz's and Ciy)'s
are given in Section 2.5.1.

Combining Equations (2-4-18) and (2-4-20) now yields the final

form of the R-A separation:

. min[£,£' - |p]]
1p J) A-l

- e " ~4 L' L "
GL'L.(p) - Rm#(p ) vﬁy(p) V#V(P) R#m,(p).
pm=- 2 v=0
which can be rearranged as
. eip £ mln['ev'e"““ll
GL'L:(P) = —p—_
u=-2 v=0
2 -1, ~2 2’ £ "
X [Rm”(p ) 7ﬂy(p)] [1ﬂu(p) Rum.(p)]- (2-4-23)

This can be further simplified by letting XA represent the expansion

indices (u,v) and by defining the two bracketed quantities to be

=L -~ 2 -1, -2
= (9.4 -
Fk(p) Rm#(p ) 7#V(p) (2-4-24)
and,
L' - 2 . R )
ry (p) = R#m,(p; 7pu(p) (2-4-25)
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to yield finally

ip
- e ~1, = L' -+
GL,L,(P) - T () Ty (). (2-4-26)
A

The factors involving L and L’ are thus fully separated in this
description, a key advantage of the R-A method, as we will see below
in applying it to various cases in single- and multiple-scattering.

In addition, the sums in Equation (2-4-23) are found to be
rapidly convergent, so that in practice results of very high accuracy
are obtained with |u| < 2 and.u < 1. This is the principal advantage
of using this method as far as calculation times are concerned. We
comment more on the consequences of working at this level in Section
3.2.1.

The results of this separable approximation can now be
substituted into Equation (2-4-12) to yield the principal equation of

the R-A method as applied to photoelectron and Auger electron

diffraction:
¢ g g R~R.) = exp(i(p,+p,+ +.))/
00,L. R1:Ry - Ry=Ry 1*Pgt - tey
f
{paths)
(pl p2 ...pN) } FA ,A (PN,PN_l)
(x,) YNl
i
X F (P,Po) F (yrpy)
Agax, P30 P27 Ty Ml
00,L. ,
X W)‘ A (Pprl), (2'4'27)

N°T1
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where the quantities F (* » ) F
PrrPr.1) =
e T B R g Y WL}

termed "scattering amplitude matrices”™ and are given by

(P rPy_q) are

b, b

- o max -

M M1 K k-1
Lea
gmax £ £ 2
k S . o
- t, v (p,) R (Pyspy 1) Y ' (1), (2-4-28)
} he B K By RTRL Ty gty kel
2, =0
k-1
2 A A

with the composite rotation matrix R# (pk’pi%l) corresponding to a
k

1F
A A A

- . . K3 -+ *
rotation first of Py into z and then z into Pr.1 The scattering

amplitude matrix F (; ,; ) can thus be thought of as a
Ak’xk-l k'"k-1

generalized spherical-wave scattering factor associated with the site

at ﬁk and specific choices of scatterers at ﬁk and ﬁk-Z (cf. Figure

2.6(b)).

The "termination matrix" involving the first and last factors in

(N-1) .
G 00,L is given by
£
OO,Lf N 00 Lf N
W (pygsp1) = Ty () T, (pq). (2-4-29)
AN’Al N'"1 AN N Al 1
OO,Lf . L.,00 ,
Our WA 2 (pN,pl) is equivalent to MA A (pl,pN) used by Rehr and
N'71 1’"N

Albers [17]. For photolectron and Auger electron diffraction, where

the detector is at infinity, W can be simplified further via
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0

(2-4-30)
Py

=00 0 S B
Fo(py) =R (pg ) 7 (py) >
AN N pNO N YN N

where we have dropped the subscript N on X and p for the simplicity.

1, _ 1/2 ~1 0
) = [4m/(24+1)] sz(p ), then Rﬂ

0 for all p » O and Rgo(p'l) =1 for g4 = 0. Then Equation (2-4-30)

2 - oL
Note that because Rpo(p o(p ) =

becomes, from Equation (2-4-22),

~00 -
FAN(pN) - C(()u)(z) z"/(N00 v!). (2-4-31)

When the detector is at infinity, p -+ o, Co(w) -1, Céu)(w) = 0 for

all v = 0, and Céu)(m) = 1 for v = 0, Hence from Equations (2-4-30)

and (2-4-31), foo(p -+ o) = 1, and
Y N
N
00,L L 2 A 2
I A f - f f
W (PygrPq) =T .7 (pqy) = v (p7) R (pq). (2-4-32)
,AN’AI N'"1 Al 1 Bivq 1 Bymg 1

-
Note that this important termination quantity does not depend on PN =

-
Py

As indicated before in connection with Equation (2-4-4), the z

axis is assumed to be along the polarization vector ¢, as it
simplifies the resulting expressions by requiring m, = mc. This means
that whan a photoelectron is ejected for an initial state (ﬂi,mi) the

final state should be (Bitl,mi). We will include this simplification

in all applications of the R-A method to follow.
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2.4.1. The General Single-Scattering Intensity in Photoelectron

Diffraction:

The single-scattering intensity in photoelectron emission from a
general Li - (ﬂi,mi) core level can now be written from Equation

(2-4-1) for N = 2 as

do " . C
aa (Mg * Eggpediegomp) o | } "L, e{8) SXPUE, )
Le=(2g410m5)
0 L =z 3z 2
X [ GOO,Lf(Rd » @)+ Ggo'y (RyRy )]
£
(2-4-33)

-

with the emitter as usual at the origin, ;j - kRj, ;d - kﬁd in the
first or direct wave term and ;d - k(ﬁd-ﬁj) in the second or scattered

wave term.

G(l) must involve a sum over j = 1,2, ... ,M, where M is the
OO,Lf
number of single-scattering centers at positions ﬁl’ KZ’ - '§M'
(ﬁl, §2""' here thus have a slightly different meaning from the

general-path ﬁi's in Equation (2-4-1) and Figure 2.6). The first sum

on Lf thus represents what can be termed the "direct" or "unscattered"

wave ¢, (cf. Figure 2.2) and the second sum on L. and, within G(l) ,
0 £ OO,Lf
also on j represents all of the singly scattered waves ¢j. Since a

non-s core level will, in general, have (2£i+1) degenerate sublevels,

the final intensity observed must sum over emission from them
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2
n. kg
i“i do
@ - } a (M 2iemy > By iy emy)- (2-4-34)
m

For the £f - 21 - 1 channel, there will only be 2(21-1) + 1 terms in

this sum. For the Bf - £i + 1 channel, (2£i+1) terms must be

included.

First we concentrate on the direct-wave which is represented by

the Green's function G(O) (ﬁd). From Equations (2-4-12) and

OO,Lf
(2-4-18)

(O) -+ -

G (R) =G (R))

00,L;""d 00,Lsd

L 2
- . 0 -1, (lu]) £ e
[eXP{lpd}/pd] } Ro“(pd ) gozf (py) Rpmi(pd)- (2-4-35)

p=-2

A

As stated earlier, Rgﬁ(p-l) is zero for u = O, and the only
suxrviving term in the summation is g = 0. This allows us to use the
following relations to simplify the expression for the direct-wave

Green’s function:
£ 1/2 e
Ro#(e) = [4n/(28+1)] Yzﬂ(a), (2-4-36a)

and a special case (£ =0 and p = 8) of Equation (2-4-36a),
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o A
Roo(p) = 1.0, (2-4-36b)

and another special case (u# = 0 and £ = 0) of Equations (2-4-20) -

(2-4-22)

gégz(w) - (220+1)1/2 (2-4-36c)

By defining (ok,¢k) to be the angles of k with respect to the
polarization vector ¢ (and hence the z axis), one can thus rewrite the

direct-wave Green's function as

(O

00,L (2-4-37)

®) = lexplipg)/p,) (4m)H/? Yy Pt
f i

- -
or, since k " Rd’ Yﬁfmi(ok’¢k) - Yﬂfmi(ad’¢d)’ where (0d,¢d) are the

angles of Kd with respect to the z axis.

The single-scattering Green’s function, G(l) (ﬁ.,ﬁ ), can be
- OO,Lf j'd
expressed, using Equation (2-4-12), as follows:
(1) - = - -+ - -+ 4-38
GOO,Lf(Rj'Rd) GOO,L.(”d) tzj (RJ-) GLj»Lf(pj)’ (2 )

i)}, (L,
(3} {J}

-> - =+ - -»>
where pj - k(Rj-(RO-O)) and Py = k(Rd

-ﬁj). This geometry is shown in
Figure 2.8. As noted previously, one can express ty in terms of

partial wave phase shifts 62 as t, = exp{isg) sin(6£).
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Using Equation (2-4-18) one gets the following expression for

¢l

00 Lf

1 - =
Soo.1,, Ry R - ) lenting)/og)
[j).(lj

A

R, (31 50L§ Doy R#j n, G tfj(RJ) (expLpy)/p,]

x

A

)
gt

2 A
(I# 1) £ b
j 2, (pj) Rp"mi(pj)' (2-4-39)

Writing g in terms of v and 7 from Equation (2-4-20), one now

gets,
R [o"ej'lu'll 0 2.
- } [exp(lpd)/pd] } ou’ p'l) [ } 7“,u,(pd) 1p9V,(pd)]
{j}, (Lj} L' v'=0
2 A_l
(pd) t, (R ) [eXP(lp }/p ] } m. " pJ )
™ J J
[o'fj-w"n . o
X 7 W "(p ) Yy, "(p )] ” mi(pj). (2-4-40)
y'=0

Since the (u,v) combination occurs frequently, we will often use the
simpler notation in which X = (u,v); when they do not occur together
we will keep the original notation.

As another important simplification, note from Figure 2.8 that
hen R R i R R R R 6’ Also as
when R, >> 50 one can write | q - j' = | d! | J.| cos . s

ﬁd -+ o, §' - Hj and hence the above expression becomes Iﬁd - ﬁjl =



41

- -
IRJI cos 0J. Thus, |Rd

the scatterer is found to be k Iﬁd - ﬁjl - k[ﬁ

- - -
IR4l - - le - |Rd| - R cosej, and p 4 from

J

d | - pjcoso The

i

exponentials in Equation (2-4-40) thus become exp(ipd) exp(ipj] = exp
i(k|R,| - p.cosf, + - exp(ik|R xp(i l-cosf = exp{i
(1(k|R ] #3 j pj)) plik|R [} exp( pj( j)) plipy)

exp(ipj(l-coso )} with Pq = kR, now defined as in the direct wave case

i d

considered earlier. pj(l-cosoj) is thus simply the phase shift
difference between the direct wave and the jth scattered wave, as

caused by the path length difference R,(1l-cosf,). Equation (2-4-40)

N J

can thus be written as

¢l (®,,R) = lexplip )/p,4] } [exp(ipj(l-cosﬂj))/pj]

00,L.""3""d
lj).{Lj)
A £ L. A 2 A
0 -1, ~0 > j j j -1
X } Roﬂ.(pd ) Yy (pg) tz,(Rj) 7,7 (Pg) R“.m.(pd) Rm_“"(pj )
J J J
AIA"
x ~ﬂj( ) zf( ) sz (5:) (2-4-41)
‘YA" pj ‘YA" pj #llmi pj .

By considering explicit sums on Zj and mj and by realizing from
Equation (2-4-36a) that Rg#,(a,ﬂ,v) - (4m)t/? Yo, (8,7) is defined
only when p’'=0, one can simplify this expression. The facts that
78V,(pd) - cg'(zd) z;'/ vt (cf. Equation (2-4-21)) and Gy(z) = 1
imply that 1gu,(pd) » 0 only when v’ » 0. This makes v’ = 0 the only
surviving term in that summation. Hence A’ = (p',v') = (0,0) for

. . . I ¢ ~0 . .
single-scattering. This makes Roo(pd) = 1.0 and 700(pd) 1.0 and we

have
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Géé?Lf(ﬁj'ﬁd) = [exp(ip 1/p,4l } [exp(ipj(l-cosej))/Pj]

(J)
LA 2oa 4 2
X } £y (R5) vp(p) } [}ROm (pg) R, ..(p ] Ty (py)
2 j A" m j J
3 ]

2 £f A

X Tyulpy) Rﬂumi(pj). (2-4-42)

Notice that the mj sum can considered to be a composite rotation.

Hence, it can be written in general as

A £ A A
J J -RrJ -1 4
m

A A A A

where this composite rotation is Pq into z and z into pj. Combining

Equations (2-4-42) and (2-4-43) yields,

1 I = . c
Géofo(Rj,Rd) = [exp(ir )/p4l } [eXP{lpj(l-cosﬂj))/pj]
{j)
00,L,
X} 00 A"(pd,p ) woo A"(p ) (2-4-‘&4)
A

where, with suppression of the j subscript on £,

- = -+ £ £ R T
2
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and,
0o,L 2 2 A
i f f
WOO,A"(pj) 7An(pj) R#llmi(pj)'
00,L
As noted previously, the quantities WA ). are equal to the quantities
N'"1
L.00 00,L o
M discussed by R-A. Note also that W do not depend on p
A1y A d

due the fact that the detector is at infinity (cf. Equations (2-4-29)
- (2-4-32)). (See also for example, Equation 7 in reference 18.)
The total intensity for a single final state Lf-(lf,mf) is thus

calculated for single scattering from:

2
(L S . .C
ILf (k,8,4) @ | (-i) exp(l&zi):. RzéEkin) <fm, |10|2;m >

x [cégfo(ﬁd) + céé?Lf(ﬁj,ﬁd)]P, (2-4-45)
where we have now let 0k -+ ﬂd -+ 4 and ¢k -+ ¢d -+ ¢ for simplicity. We
have also cancelled out a trivial factor of exp(-ipd) exp(ipd)/pd2
péz that simply allows for the spherical-wave character of the
outgoing flux. Examples of such single final states would be the
p-wave final state in s photoelectron emission (Li=(0,0) -+ Lf—(l,O)),
noting again that we take ; I ;, and the often used s-wave final state
approximation for Auger electron emission (Lf=(0,0)). For such cases,

the excitation matrix elements and phase shifts in Equation (2-4-45)

can simply be omitted, as they yield only a constant factor. 1In a
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more general case such as p-wave initial state photoemission into s-
and d-wave final states, one has to add final amplitudes with correct
relative phases and to sum over the various m, excitations possible.
In general, the final intensity in this case can be written with

Equation (2-4-34) as

2.+l

2
I(lzék.0.¢) a E I} (-1) £ exp(i&j% RﬂéEkin) <2fmi|10|2imi>
m, 2f
(O) 2 (1) - = 2
X [GOO,Lf(Rd) + GOO'Lf(Rj,Rd)]I (2-4-46)

where 8; is the core level phase shift and RE (E
b f

previously. The integral <2fmi|10|2imi> is a Gaunt coefficient to

kin) is defined

within a multiplication factor of (41/3)1/2. The explicit form of

Equation (2-4-46) is

£2.+1
i

2
Ii%ifk,0,¢) a } |§ (-1) £ exp(i&i) RE(Ekin) <£fmi|10|£imi>
i71i o 7 £ f

i~f
M
x [(an)l/z Y, (8.4) + } [explip,(L-cosd.))/p.]
' £fmi ! J j J
7=1
-+ -~ Oo’Lf -+ 2
X } FOO,A"(pd,pj) WOO,A"(pj)I . (2'4-47)

A"

which is a generalization of of the equivalent Equation (26) in

Reference 17.
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We also note that W is dependent only on the initial (Lf -
(lf,mf)) and final (Ld - LN = (0,0)) states. We will thus find that W

has to be calculated only once for given L_. channel, whether it passes

£
through a single or a multiple scattering path. Thus, one can perform
multiple-scattering calculations for non-s initial states without much
additional computer time. As an example, for a 23 atom (J3xd3)R30° Ag
on Si(11ll) cluster the correct d - f + s final state calculation takes
only 5% more time than an approximate s -+ p final state calculation,
The range of the index v is given in Equation (2-4-20): O to
min{2,2'-}u|]. So far we have not imposed restrictions on the
summation index p. The dependence of the coefficients ;ﬂy(p) and
7#u(p) on p implies that FAA'(;’;') @ (p)-(2y+#) (P')-(2U'+“') for
lafge p and p'. pj - kR.j is generally greater than unity, even for
the smallest bond lengths, since nearest neighbor distances are always
several atomic units and k for excitation above threshold is greater
than the Fermi momentum kf (= 1.0 in atomic units) [17]. This
suggests the possibility of truncating the summations on g and v, and

we now consider several levels for doing this. Keeping only the

largest matrix element yields the effective curved-wave scatttering

(0)
00,00

beyond this requires recalling the restrictions on (u,v) set by prior

amplitude F for point scattering and a (1x1) matrix. Going

definitions:
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lp| = 2, (2-4-48a)
v =20, (2-4-48b)
v + |p| < 2. (2-4-48c)

In view of these, a calculation that is first order in 1/p for

larger p could contain only non-zero (u,v) = (0,1), (+1,0) and (-1,0),

(1)

leading to a (1x3) matrix for FOA'

whose elements are given in single
scattering by Equation (2-4-44). (Note here that F is a column matrix
due to the fact that the detector is at the infinity.) Going to
second order in 1/p permits including additional non-zero (u,v) =
(0,1), (2,0) and (-2,0) to yield a symmetric (1x6) matrix whose
elements are given again by Equation (2-4-44). This second-order
level of truncation, fortunately turns out be fully adequate for
accurate numerical calculations, as discussed both by Rehr and Albers

[17]) and in Section 3.2.1. For third order one has to consider four

additional combinations; they are (0,3), (0,-3), (1,1) and (1,-1).

Third order thus corresponds to a (1x10) matrix for Féi?. Fourth
order corresponds to a (1x15) matrix for Féi?.

2 A
We also note that since Rpfm (pj) is not defined when u" > £f or
i

00,L
mg > 2, [29], Voo

f(;j) is also not defined under these conditiomns.
These restrictions thus impose a limit on g values allowed by order
(|p] + 2v) in single scattering. For example, in £f = 0 to simulate
Auger emission, only u = 0 is allowed. Therefore, only the first term

in the F matrix has to be calculated in single scattering. Thus, for

- t . . - .
Auger emission O h order or (1x1) matrix theory is exact in single
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scattering. For £f = 1, the largest p value allowed is 1 and hence,
2nd order or (1x4) matrix theory is exact in the single-scattering
level and the allowed (u,v) combinations are (0,0), (¥1,0), and (0,1).
(Note that in single scattering the F is a column matrix due the fact
that the detector is at infinity.) For Zf = 2, the next two
combinations (*2,0) allowed by the 2nd order and (%1,1) allowed by
Brdorder theory makes the (1x8) matrix theory exact. For Zf =3, it
is a (1x13) and for 2f = 4 it is (1x15). It should be stressed that
the aforementioned conclusions are true only for single scattering.

In multiple scattering more than one scattering matrix is involved and
such straightforward conclusions can not be made.

In the next three subsections we explore in detail a few final
states of specific interest. This includes Ef = 0, which can be used
to approximate the final state in Auger electron diffraction [2b], £f
= 1 to represent p-wave final state photoelectron diffraction and Ef -
0,2 to describe p + s + d photoelectron diffraction. In the section

following these three subsections we extend this formalism to the

fully general case of non-s emission with multiple-scattring.
2.4.2. Single-Scattering Intensity for an s-Wave Final State:

The most simple case we consider in scattering is the s-wave

final state, an approximation often used in Auger electron emission
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(2(c)]. In this case 2f - me - 0. Hence the direct-wave is

0 -
GéO?OO(Rd) - [exp(ipd)/pd]. (2-4-49)

According to Equation (2-4-48b), the fact that L. = (0,0) forces

£
W to be a (1x1) unit matrix. That is,

00,00
¥o0,00(P5) = 1.0 (2-4-50)

Therefore, the only contributing term in the F matrix is FOO,OO' This
indicates that the R-A formalism is exact at the zeroth order for
s-wave single-scattering. Now one can write,
So0. 00y By) = [explisg)/py)
x} [explip, (1-c0s8 )1 /p;] Foq go(pqipy)  (2-4-51)

J
where, again with the supression of the j subscript of £,

> - 3. 2 L0 -1~k
Foo,oo(pd,pj) - } tﬂ(Rj) T00¢Pd) Roo(pd,pj ) 100(pj)
2
= E (2£+1) tz(Rj) Pz(cosaj) Cﬂ(zj)
2

A

where, Hj is as before the scattering angle or the angle between R,

A

and R,, and zj = 1/ipj. Note that this scattering factor is
J

proportional to the plane wave result in Equation (2-2-2), but with



49

correction factors introduced via the C,’s. This type of correction

2

was first introduced by Rehr et al. in an earlier less general version

of this method [24].

The final intensity in this case is thus

M
(1) .
Ip "(k,0.¢) e [1.0 +§ [eXP{lpj(l-cosﬁj))/pJ]
j=1
> 2
x} (2;zj+1) t:zj(Rj) sz(cosﬁj) Czj(zj)l ,
2,

J

159

(2-4-52)

and we have neglected the (l/pd)2 and ImOO o o|2 factors on the

right hand side of the equation as they are common to both the primary

and singly-scattered waves,

2.4.3. Single-Scattering Intensity for a s-Emission into a p-Wave

Final State:

We now write down the intensity for a p-wave final state in

single-scattering, as would correspond to s - p emission.

Here we

will use the following identities that can be derived or taken from

our prior discussion and definitions:

Lf = (110):
R% (a,8,7) - 1.0
00 1P Y <V

Réo(&,ﬂ,ﬂ) = (47\'/3)1/2 Ylo(ﬂ,v) = cosf,

(2-4-53a)
(2-4-53b)

(2-4-53c)



50

?80<pd> - 1go(pd) - 1.0, (2-4-53d)
TooPe) = 43 2z = 43, (2-4-53e)
g (0 = 75Ce 0 Tao(ryg)- (2-4-53£)

We now begin with the direct-wave; which is, from Equation

(2-4-18):

S50 10®a) = [exp(ipd)/pdl
x } O (Pd ) g(lul)( Py Rio(pd). (2-4-54)
7

Hexe the Rgﬂ term requires pu to be 0, as stated previously. Then

we have

G(0)10(R ) = [explipy}/p ] g81<pd) Réo(a.ﬂ,v), (2-4-55)

where (a,B,7) are the Euler angles of Rd (or k) with respect to the

polarization vecter e¢. Then, from Equation (2-4-53),

58’10<R ) = [expling)/py] J3 cosp. (2-4-56)

One can choose the rotation so that the first Euler angle a = 0

and (0,8,7) = (0,0,4) such that (8,¢) are the polar and azimuthal

angles between e and Rd (or k). In that case,

ég)lo(Rd) - [eXP(iPd}/pd] J3 cosd, (2-4-57)
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A A

with cosf then also being equal to ¢-k, the form seen in Equation

(2-2-1).

Now let us turn to the single-scattering amplitude, which can be

taken from Equation (2-4-44) as:

M
1 - o )
GéO?lO(Rj'Rd’ = [explipg)/py] } [explip;(L-cost ))/py]
j=1
L L 00,10 |
X} Foo'A"(pd’pj) woo'x"(pj) (2'4*58)

A"

where, with the supression of the j index on £,

- - - 2 2 A ~a1. ~2
FOO,A"(pd’pj) - } th(Rj) Y003’ ROp“(pd'pj ) YA..(Pj).
2
and,
00,10 1 1 A
WOO,A"<pj) - 7Au(pj) ano (pJ)

The rotation matrices in the above equations are complex in

nature and deserve further scrutiny. In the convention used by

Edmonds [25]}],

2 " 2 " 2 ipa A2
R =R° ,(z«p) =R ,(a,8,7) =eH* 4
(p) #u'( p) - (x,8,7) "

, (8 e, (2-4-59)
By
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with dﬁ#,(ﬂ) satisfying the symmetry relations dﬁ“, - df”, u
ptp' R
-1 a, .
(-1 u'

A

For a simple matrix like Ri"O(pj) - Rtno(a,ﬁ,y) in W of Equation
(2-4-58), one can choose the rotation such that a = 0, 8 = Er and vy =

¢r where (ﬁr,¢r) are the azimuthal and polar angles of pj with respect

to the z axis. Therefore, the rotation matrix in W can be written as

1 " 1 1
R[J"O(pj) - Rp"O(O'or’¢r) - d#,,o(ﬂr). (2-4-60)

Unfortunately, the composite rotation is not that simple. The

one for this case implies

2 A A-l £ A A A
RO#"(Pd,Pj ) = ROp"(pd -~z pj). (2-4-61)

Let (0k,¢k) and (0r,¢r) be the spherical polar coordinates of Py

(which is parallel to k ) and pj with respect to the z axis,
respectively, and denote the composite rotation angles by (a,8,7v).
Remember that the composite rotation is ;d - ; - ;j' Since (O,&r,¢r)
corresponds to the ; - ;j rotation, one has to use Euler angles for
the inverse rotation, (-¢r,-0r,0), in place of (O,Br,¢r) in the

composite rctation. Then we have after multiplying the two matrices

and solving [18b]:

a = arg[(sin0k c050r - sin&r c050k cos(¢k-¢r))

+ i(sim9r sin(¢r-¢k))], (2-4-623)
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g - acos[sin0k sin0r cos(¢k-¢r) + coser cosok], (2-4-62b)
v - arg[(51n0k c050r cos(¢k-¢r) - cosOk sinor)
- 1(51n9k sin(¢r-¢k))], (2-4-62¢)

with the derivation of these angles being given in Section 2.5.2. Now

the composite rotation matrix can be written as:

2 A A 1 2 A A A 2 i“""
Roun(ParPy™) = Rouulpg = 2 = py) = dp u(B) ™7 . (2-4-63)
Computational details of the determination of dﬁ“, are given in
Section 2.5.3. Equations (2-4-58), (2-4-60) and (2-4-63) can be
combined to yield the final expression for s-emission and/or p-wave

final-state single-scattering:

1 - - . )
c(()o),lo(RJ.,Rd) = [explip }/p ] } [exp{lpj(l-cosoj)}/pj]
. . 00,10
X } FOO,A"(pd’pj) WOO,A"(pj) (2-4-64)
A"

where, with the supression of the j index on £,

2.2 ip"y Zy 4 2 ~4
2
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with B from Equation (2-4-62b), and,

00,10

1 1
wOO,A"(pj) - -YX"(pj) duuo(or)'

Finally, the intensity is given by

(1) o)y = L = = 2
)7 (66,8) o | Gyg 1g(Ry) + Cgy 10(Ry Ry |

@ |J/3 cosf + } [exp(ipj(l-cosoj))/pj]

00,10
Foo yn(Pgops) Woo 1u(p) ] (2-4-65)
X ) F00,a" Par?3) Yoo, an(P;

A"

00,10
with FOO,A"(pd’zﬁ) and WOO,A"(pj) defined just above.

2.4.4. Single-Scattering Intensity for p-Emission into s and d

Final-State Channels:

In the case of p emission, one has two final-state £ channels:
s-wave and d-wave. Once they are calculated they should be added with
the appropriate phase factors to get the final amplitude. We have
already worked out the simple s-wave final state in detail. Now we
consider the d-wave final state. This case, in contrast to those
considered previously, has five possible channels. They are m. = -2,

-1, 0, 1, 2. But our continuing choice of ¢ to be along the z axis

imposes the restriction m; = M. Since the initial p-state has only
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m, = -1, 0, 1, there are thus only three possible channels
corresponding to m .= -1, 0 and +1. Hence one has three possible
direct d waves and three corresponding W matrices. The F matrices, as
we have noted earlier, do not depend on the final state. Calculating
the direct-wave Green's function for the cases of relevance ylelds,
from Equation (2-4-35) the general expression:

(0) = 0 2
Goo'zmi(Rd) = lexplipy)/py] 8o, (ry) ROmi(o,a,¢). (2-4-66a)

The specific values of the above expression are, from Equations

(2-4-36):
6O (R.) - fexplip.)/o,] /5 (3cos?d - 1) / 2 (2-4-66b)
00,20'"d Pilrgl/Pg ,
Gég?2f1(§d)' lexplin1/p,] (15/2)1/2c059 sinf exp(+ig). (2-4-66c)

To get the single-scattering wave, we begin with Equation

(2-4-44) and substitute Lf = (2,-1), (2,0) and (2,1):

M
(L 2 By o : P 3
G00,2m.(Rj’Rd) (explipy}/p 4l E [eXP(ij(l cosﬁj)l/pj]
i =1
v - 00,2mi N
X } FOO,A"(pd’pj) WOO,A" (pj) (2'4-07)

A"

where, with the supression of the j index on 2,



56

- SN £ -l ~£
FOO,A"(pd’pj) - } tz(Rj) 7oo(pd) RO#..(dePj ) 7A"(pj)v
2

and,

00,2mi - 2 2 N
WOO,z\" (pJ) - 7/\"(pj) Rl‘"mi(pj).

As we have stated earlier, only the W factor changes with the
precise specifications of Lf. Everything we said previously about
rotation matrices still holds. This is true for all higher 2‘s. That
is, the derivation for other final states of interest is trivial. The
final intensity for the p-wave initial state problem in single

scattering is thus:

2

18D (k,0,4) a} |§ (-1) fexp(ié';f) Ry (Byg) <gmg 1101 2gm;>
m, 2
i"f
(0) (1) > o 2
x [G (R;)) + G (R.,R)I[",
00,.2fmi d OO,Efmi j’d
e | (-1)2 exp(i85) R,(E, ) <L-1{10|2-1>
M
x [(15/2)?% cost sind exp(-id) +§ [expip; (1-cosd )1/, ]
51

. L, 0021
X } FOO,A"(pd’pj) WOO,A"(pj)]I
A"
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M
0 c
+ | (-1 exp(i6) Ry(E,, ) <10[10{00> [1+ [exp(ipj(l-cosoj))/pj]
j=1
X } (22j+1) tE (Rj) P2 (cosf) Cz (zj)]) +
y; h| J J

A
2 ) 2
((-1) exp(16;) R,(E,; ) <10]10|20> [/5 (3cos“d - 1)/2

+§ {eXP(ipj(l-cosﬂj))/pj]

3
<S5 o 4 w00,20 N 2
OO,A"(pd Pj) OO,A"(pJ)])'
All
iy 2 . oC
+ | (-1) exp(i8,) R,(E,,; ) <11]10|21>
M
1/2 . . s
x [-(15/2) cosf sinfd exp(i¢) + [exp(lpj(l-cosoj))/pj]
=1
00,21
X Y Foo yu(Parpy) Woo 10 (30112 (2-4-68)
00,A"*"d'"j 00,x"*"j
All
o . 00,2mi -
with FOO,A"(pd'pj) and wOO,A" (pj) defined just above. Again t‘ej -
exp{i&z } sin&z is a t-matrix element at site j. P£ (cos#) is a
h| J J
Legendre polynomial of order lj, and Cz (z) 1is the polynomial part of
3

the spherical Hankel functions in the variable z = 1/ip.
This expression illustrates a general feature of the final-state

inteference between Ef - £i + 1 channels that will convay through all

our results: inteference can only occur between final-state channels

with the same me = m values. Thus, we can see it only between Lf =

{(C,0) and Lf = (2,0). Tor the more general case to De treated below,
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this will mean that inteference arises between 21 + 1 and zi - 1 only

for the me = m, values of 2, - 1, li - 2, e , (4

i
It is known in general that, at the higher energies of = 500 eV
typical in x-ray photoelectron diffraction, the (£-1) component
becomes less significant compared to the (£+1) component in emission
from a state with angular momentum £ [22]; that is, one might here be

able to make the assumption, RZ(Ekin) >> RO(E thus neglecting the

kin)'
s-wave contribution in emission from a p-initial state. This

approximation, however, should be tested for each individual system
involved, as a calculation of these matrix elements for a number of

elements up to the 1 keV range yield ratios R2/R0 that are only as

large as ~2-4 ([22].

2.4.5, Multiple-Scattering Intensity for Emission from a General

Initial State:

We here discuss emission from a general Li = (£i,mi) initial
state to a set of general final states, but with the important
addition that multiple-scattering paths of arbitrary order are
considered. The direct wave in this case is identical to that given
in Equation (2-4-37). By definition a multiple scattering path
contains the emitter and more than one scatterer. Different aspects
of a typical multiple-scattering path are shown in Figure 2.6. Our
notation for the various vectors needed to unambiguously describe a

complete set of multiple-scattering paths will be more explicit than
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that of R-A, although we will remain as close to it as possible.

Specifically the emitter is still taken to be at R, = 0 and the

0

- -
vectors of all other scatterers Rj and the detector Rd are measured

with respect to this origin. To keep track of a given typical
tteri hR., R, R R, R R i1l desi 1
scattering pat o' Ry By vy RN' RN+1 - 4’ we wi esignate all

possible first scatterers by ﬁj
1
R , etc., up to a general kth order R, .
32 I

-
arguments of the F and W matrices we can then calculate from pj

, all possible second scatterers by

The vector used in the

KWk-1

-

k (Rj - ﬁj ), with two indices now required due to the many paths
k k-1

involved. For the first step in a path, this is simply ;j - k ﬁj L]
1 1

-
pj in the single-scattering discussion of the prior section. For the

. -+ - -+
last step in any N-event path, P4 ; -k (R, ~-R, )= Pq for
N

simplicity, since this vector always points from the last scatterer to
the detector at «». In multiple scattering, there may be several
consecutive scattering events, including those in which the
photoelectron is scattered off the emitter at some step after a first
scattering event on another site. In this case, we will treat the
emitter as a neutral atom even though it contains a core hole. The

presence of this core hole could affect the phase shifts 62 (ﬁo)
0

somewhat, but final state screening is expected to reduce this effect,
-+
so we have chosen to ignore it here. The restriction on pj i is
k'k-1

that jk 4 for all k: that is, the photoelectron camnot be

Jk-1

scattered off the same atom twice in a row. In this notation, ji can
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represent any atom of the M atoms in the cluster, including the
emitter. The summations in any of the multiple-scattering paths to
follow will thus be over (M-1) jk values at each order in a path, with
the restriction that jk 9 jk-l for all k. We will not write this
restriction explicitly in equations, but indicate such sums only with
the set of indices {ji).

The Nt:h order multiple-scattering Green’s function in

photoemission to a state Lf - (£f,mi), can now be written following

Equation (2-4-12) as,

¢® & B

oo, (R

. R, , ... B. R) =
g J1 3g iy Y

G () t, R.) G TR P
, } 00,Ly"d” "y iy" Lylyar
(3;).1L))

. )t

) (2-4-69)
231

sty ®.) 6

(p
2 Jp" Loy

where we have now added §N+1 = ﬁd so that the scattering order is

directly given in Gég)L . This general Green’s function can now be
7f

written in terms of the prior W and F matrices, again using the
notation X = (p,v) to make expressions more compact. This is very
useful in multiple scattering where several (z,v) combinations are

involved.

The steps leading to a specific evaluation of this Gég)L are
"f

very similar to those shown in detail for the single-scattering cases.
Therefore, we will omit details here and directly write from Equations

(2-4-27) and (2-4-69)
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(N) - - - -
G (R, ,R, , ... ,R, ,R,) =
00,Le™ 317 g Iy ¢
[explip ;+p +...4p, V(o P coepy )]
} 4 Indn-1 317 74 ey T
3y
X } Foo,x (Pa

-

p ) F (» p )e.n.
N N1’ Awer Idn-er In-idwe2
(xp)
. . 00,L
....... F (p. P, ) W (p. ), (2-4-70)
Agrp Tdpdp773," 00Ag TS

with the second subscript of W equals to 0 due to the fact that the
detector is at o,

Now we look at each factor in the above expression in detail.
First, we consider the prefactor involving the exponential term. This
can be written in terms of scattering angles. The notation we use for

angles is as follows.

6. . = angle between vectors p, . and p. . ) (2-4-70a)
Jidk-1 Jr+19k Ik
which is the true scattering angle for the event at ﬁj , and
k
6. . = angle between vectors Pq and p. . R (2-4-70b)
Jidk-1 : k-1

which is the angle required for calculating the path length difference

along p. . leading to the event at R, . Then, by repeated usage of
k-1 Tk

the argument used to obtain Equation (2-4-41), we can show that
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explip, +p, . +...4p. ) / (PP, .0 .u..p: ) =
d - Tiyiya 31 d dna1r T TR
N
(exp{ip )/p,) Il [explip, (l-cosb! . )/p, ]. (2-4-71)
47T a1 Jidk-1 Bk hidea

After the last scattering event, the photoelectron escapes
towards the detector. This last event, or the first event in a time
reversed sense, involves a finite and an infinite distance and is

represented by F This F matrix is identical in

-
OO’AN(pd,ijJN-l).
structure to the one we worked out in the single-scattering case. The
W matrix as defined in Equation (2-4-44) depends only on the
polarization the incoming radiation and the position of the first
scatterer relative to the emitter; thus it does not require any
modification either. The only other factors left to calculate are the
matrices FA A\ (zj j ,pj j
k"k-1 “k'k-1 -k-1"k-2

The general form of these is identical to that given in Equation

) involving two finite distances.

(2-4-28) for the two bond vectors ;1 and ;2 connecting these atomic

positions:

> 7 £ b TS RS’
FA’ ,A"(Pl’pz ) = } tg 7)1 (Pl) R#y#n(plxpz ) 7A.|(P2)- (2-4-72)
2

Now combining the above equations, we have,
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(N) -+ -

S0 L R n Rjz . ,R.j Ry -
(exp(ip . }/p ) } [ I [exp(ip (l-cosé! . ))/p. ]
d7rd 5.7 Ide1 Ide1” T Ik
i
x } Foo (.. p F G, » )

P.
N ¢ ijN 1 AN-1 Ipdn-1’ In-1Ine2

00,L

- f -
zjlvpjl) woo Al(le)] (2'4'73)

where,

SRS !

2 ~
(» ,p ) - } t, Yan(p) Ry (p .p ) v, (p )
oo AL A I N ‘ 2 To0‘\fd OpN d' %3 dn. A o

-t

(p, ' P
Mokl Jidker’ Jk-13k-2

2 ) A ~1 -2

} t v, (P: ) R (p; . P : ) v (» ),
z el M Iidker” BrPier ke eetdie2’ ket Jk-tdkeo
k-1

F ) -

and,

00,L z .
Le o £ £
W (p; ) =, (p. )R (py ).
00,3, %1;7 T A 307 Tuyms Vg

Now, as an specific example, we write out the above general

equation explicitly for fifth-order multiple-scattering:
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(5) - -»
G R, ,R -
00,1, ®y Ry Ry Ry 35

(1- cos€

(exp{ip41/py) } [ exp{ip ]

J
(jkl Ik

- -+ - > P4
X ’ F s s 1Hs s F i. 3. j
[Z ) F00,x, Gg IS PRV VG S PR R IR VEVRS PRI B

))/pj

Jpdea Wk-1

-+ g f -

x F P ) F (p P (»
2?1 Iy j1 H00,x, %3,

OOL ]
AERU RN EN PR PR

(2-4-74)

- (eXP(lpd}/pd){E [ [exP{in (1- cosﬂjl))/pjll
E

X [exp(ipj (1-c05052j1))/p32j1] [eXP{ipj3j2(1-cose9J!3J2))/pj ]

3p 332

x [exp[ipj4j3(1-cosﬂjaj )}/pJ j3] [exp(ipj (l-cosf’

s34
X Foy 4 (Pgip (p YN IS NN C U T
00,354 %y 3,0 Isda"3adsT A3 34337 353,

0L ]

X (p .p (p P (p
3ty J3dy j231 3pdy j1 Yoo, A j1

(2-4-75)

In some of our numerical simulations involving small clusters of < 40
atoms, we have used the equivalent expressions up to tenth-order
multiple-scattering.We will later use the above expansion in the
discussion of structure of the computer code used for numerical
simulations.

The final expression for the intensity for a single final-state

Lf = (Zf,mi) is thus
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(N )
max (0) # (1) 2
ILf (k,0,4) a } |[G00'£fm§Rd) + GOO,Efngjl'Rd) +
my
(N) - - s - ] 2
G R, ,R, , ... ,R, ,R . 2-4-76
N§2 Oo'gfmi( I1 RJZ IN 2]l ( )

where Nmax is the highest scattering order included. On the right
hand side of the above expression, the first term represents the
direct wave, the second the singly-scattered waves and the final
summation the multiply-scattered waves up to all orders. In practice
we go only up to the tenth order multiple-scattring (Nmax = 10).

For emission from all the initial magnetic sublevels Bimi into

two final state channels £_ = £i + 1,mi we have the fully general

f
result
I(Nmax)(k 8,8) | (-')Ef (16%) R,(E, . ) <f.m, |10[2,m.>
n e, (K6.8)a 1) 7 exp(18y) Ry(Byyp) <fgmy11014;m;
i"i £ 7t
m, £f
(0) 3 (1) 2
X [G (R) + G (R, ,R,)) +
00,£fmi d 00,£fmi AR d
ax
(N) -+ - - =+ 2 e
}m GOO'Efm.(Rj Ry e ,Rj ,Rd)]l . (2-4-77)
i 2 N
N=2
In the above expression G(o) represents the direct wave G(l)
P 00, 2.m, * 700, 2.m,
i i
the singly-scattered waves, and Gég)ﬂfm in the summation represents
! i

the Nth order multiply-scattered waves. Egquation (2-4-77) can be

written more explicitly as,
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(Nmax) zf c
1“121 (k,0,4) a} |§ (-1) exp(ib'xj):_ Rﬁt(_Ekin) <fem, (10| 25m >
mi 2f
e [(lm)l/2 Yz (8) +
£
v . 00,L; |

} [eXP(ipj (1-c050j ))/pj ] } FOO,A (pd,;oj ) WOO,A (pj ) +

1 1 1 1 1 1 -1
3 M
gmax} [ N

I {explip (l-cosé’ DRVIP ]

AN T hdg-1 Sidgar” T Idk

N=2 (3}

-+ =+ -+ -+
} F (pyp, . )F (o, . P ) T
&) 00,2 " a" Jpdyno1” AMw-1 Idn-1’ In-1dn-2
i

00,L
- T - 2
........ F Py « P ) W (p. )]]| , (2-4-78)
Ay I3y 000, Ty
00,L
where FOO,AN' FAkAk-l' and wOO,Al are given with Equation (2-4-73).

2.4.6. Inclusion of Inelastic Scattering, Vibrational Effects,

Instrumental Angular Averaging and Unpolarized Radiation:

We now consider the inclusion of several additional effects that
are essential for a quantitative comparison of theory and experiment:
inelastic scattering, vibrational effects, intrumental angular
averaging, and the possible use of unpolarized radiation.

A fully rigorous method for including inelestic attenuation is so
far not available, and thus we use the common phenomenological

approach of an exponential decay of the amplititude of each component
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of the photoelectron wave with the distance travelled in the solid
before escaping through the "surface". The surface here is a plane
used to define both the cutoff of inelastic scattering and the
location of possible refracti@n effects due to the inner potential V0
(as discussed below). If the distance travelled along a given path is
L and the inelastic attenuation length for photoelectron intensity is

Ay then the exponential decay factor for the amplitude is

exp{-L/ZAe). Incorporating such factors into Equation (2-4-78)

yields:
I(Nmax)(k 8,4) | (-')}Zf (16S) R,(E,, ) <f.m, 10|, m >
ne, 08 P exp(i8y) Relfian) gy 014y
m 2g
1/2 =+
b [(Aw) Y (6) exp{-|R .|/2A ) +
ﬂfmi 0s e

; [exp(ipjl(l-cosﬁjl))/PJI] exp(-lﬁjlsl /2Ae) exp(-|§j1|/2Ae)
1

} .. 0,L,
X F (p,p. ) W (p. ) +
OO,A1 d i 00,,\1 i
A
1
gmax } [ N R
I {exp(ip. . (l-cosé! . YY/e. . ] exp{-|R. .|/2A))
C gt I dk1 Iede-1” T ddka IS e
N=2 {3;}
x exp(-|R, . 2A ) .. exp(-|R. . |/2A ) exp{-|R. |/2A)
P leJN-ll/ e P lJZJll/ e P IJll/ e
b PasP: s Ps s VP D I
e 00,204 3N’ A1 Indne1 In-1dn-2
i
00,L
-+ -+ M 2
........ F (p. . ,p: ) W (p. )]] (2-4-79)
A2 393,773, OO,A1 Jq I
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where, as shown in Figure 2.6(c), ﬁOS is the vector from the emitter

-+ - -
to the surface in the direction of k. R -R

. R.
Ik
P: s /k, and ﬁ. is the wvector from atom j,, to the surface in the
3o J NS N

k'k-1 N

direction of k (see Figure 2.6(c)).

R,
Jk-1

Thermal vibrations can be treated most simply in an isotropic
uncorrelated fashion, although anisotropic correlated vibrations are a
more accurate description for.the more important near-neighbor
scatterers [15,18]. There is no generally applicable yet accurate
model for including both anisotropy and correlation in single or
multiple scattering c;lculations, although different methods for
approximating these effects have been discussed previously by Sagurton
et al. [4(b)] and by Barton et al. [15].

In the simplest case of isotropic uncorrelated vibrations,
inclusion of them in Equation (2-4-79) can be effected by multiplying

each scattered amplitude by a simple Debye-Waller factor W?c
k
representing the motion of a given scatterer jk; if Aﬁj i is the
k'k-1
change in k on scattering at the jkth atom, Hj j is the scattering
k'k-1

angle defined in equation (2-4-70(a)) and U? is the absolute mean
k

square displacement of the jkth atom, this simple uncorrelated

Debye-Waller factor is given by

W?c = exp(-Ak? . U? } = exp{-2k2(1-cosﬁ. . ) U? }. (2-4-80)

k Ixdk-1 Tk k-1 Ik
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But for correlated vibrations, this factor is expected to depend on

the distance between the present scatterer and the previous scatterer.

We represent this by we . When the distance between the present
-1
and the previous scatterer is large enough we . will approach the
Jdi-1
uncorrelated W.C. But in general, it will depend on the displacement
k

of atom jk relative to the previous scatterer, which we denote by

ﬁj j With the definition of the effective mean square
k'k-1
2

displacement with thermal averaging (indicated by <-::>) of o i3 -
k'k-1

<(ak, )>, the equivalent correlated Debye-Waller-type

. U, .
Jdk-1 Idk-1

attenuation factor is given by [4(c)]:

c -+ - -
W, . = <exp(-iak, ‘U, . 1> = exp(-1/2<(Ak, . ‘U, .
Iidg Iidar Sdka Jdk-1 k-1

2 2 2 2
= exp{-1/2(Ak, ) - } = exp{-k"(l-cosf, . Yo . }.
Jidkaa”  Idka Jidk-1" Idk-a

(2-4-81)

y2>)

ag . we have calculated from a sum over phonon modes in the

helk-1
"substrate" crystal, usually neglecting surface-specific effects. The
method is one due to Beni and Platzmann [26], but with simplifications

introduced by Sagurton et al. [4(b)]. The relevant equation is

[(4(D)]:
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2 )
2 _ 3(h/2m? (o + 49p [52 ] E Loa, e-an]
33 7 {9p 2 2
Wil 2k 0 a2 a?le L ¥ a
- —:__—:2____5 (l-cosg )
IR, -R, | ik
Jp Ik
4q -
+ — D E 3 1 3 (e’ ™ [n sinﬁj 3
IRjk-Rjk-lla =l P + <ﬂjkjk-1/a) k'k-1
+ (B /a) cosf ] -8 /a)) (2-4-82)
Jidk-1 ddga Jidk-1

where MS is the substrate or "average-atom" atomic mass, kB is the

Boltzmann constant, #_ is the effective or "average-atom" Debye

D

temperature, aQ is the associated Debye wave vector, a = GD/T(K), and

B. [ qnlﬁ. - R, |. The curve in Figure 2.9 shows some typical

Iedk-1 e Jka

results obtained for a? 3 with this method. The way in which it is
k k-1

input the program is discussed below.

Additional details of calculating Wj 3 ‘s including the
N-N-1

allowance for surface-specific affects are found elsewhere [4(b)]. In

the calculations reported here, the Wj j ‘s have been determined
N-N-1

from Equations (2-4-81) and (2-4-82) and then inserted into Equation

(2-4-79) as follows:

(N ) )
max .\ £ . oC
I, (k6.9) a} |} (-1) ~ exp(isy) R,(E,, ) <fm |10[¢;m >
i7i £ °f
m; g

(8,) expl-|Rygl/20,) +

X [(4%)1/2 Yﬂfm
i
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} IGXP(ipjl(l cosﬂJ ))/pj ] exp(-|R 5 gl/72a,) exP(-le [/72A,) Wj 0

1 1 1
3
00,L, |

x } F (Parpy ) W (. ) +
¢ 00,1, Pa’f3,” "00,2, %5,

max
Il [exp(ip (L-cosf! . )V1/ps i exp(-lﬁ. 1/2A )
} } [k-l Jpdk-1 Jdpar” T hdka s e
N=2 (Ji

x -IR 20 ) .. -IR 2A - 1R, |/2A
xp(-Ify g 1/20g) o expl-IRy 4 17200 expl-1E1/20,)

x W W o W W,
Indn-1 In-idne2 Jpd1 3,0

x } F (P49 ) F (» s Yeuuin
& 00, 00" 4 31" Ane1Pn-2 Idn-1" In-1In-2
i
00,L
........ Fy o By s 80 ) Voo 4 (5 )]]|2. (2-4-83)
2 32317y A3y

where the physical origin of each W factor in indicated in Figure
3.6(c).

For convenience in calculations, we also note that defining F and
W factors that are damped by inelastic scattering and vibrational
motion again yields the same simple from of Equation (2-4-78). That

is we can let,

- =+ -+
(p,,p. ) =F (p.,,p. ) exp(-|R, |/2A )
00 Al d Jl OO,A1 d i1 Jls e

X exp{-lell/ZAe) W510 (2-4-84)

OO,Lf OO,Lf R

-~ -
W (p; ) =W (p; )
OO,,\1 iq OO,A1 iy

(2-4-85)
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~ - - - -
F (pq,P ) = F (ps,p, ) exp{-|R, .|/2A )
00,2, %a" %3 3,0 o 00,2 Pa"P5 iy igs e
x exp(-|R. [/20 ) W (2-4-86)
C U dgdnar T e Igdna
F (» P ) = F G P )
s 1P - P: = 1P s .
e rke1 ddker’ Ig-1dk-2 Meordper Jidge1 Ike13k-o
x exp(-|R, . |/2A) W, . (2-4-87)
k-1 ¢ Jdk1

and then substituting these tilde quantities into Equation (2-4-78)
yields the equivalent of Equation (2-4-83) with both inelastic and
vibrational effects included. These F's and W's (or F’'s and W’'s) can

then in principle be calculated once and for all for all
00,L

£
scatterer-to-detector combinations (FOO,Al and WOO,AN)’ all

scatterer-to-scatterer-to-detector combinations (F for N-= 2),

N

and all scatterer-to-scatterer-to-scatterer "vertices" centered at

00, A

~

scatterer j (F

We comment below on the time saving
k-1

et
possible in this way.

In addition, we must also include the important effects of
instrumental angular averaging due to the finite aperture of the
detector. This is done by summing the photoelectron intensities over
a grid of points on a circular aperture centered on the nominal
emission direction as defined by kK. The direct wave and the
singly-scattered waves have to be recalculated for each grid point on

the aperture. For multiply scattered waves, only the path length

differences represented by p. . (l-cosf; . ) and the last
I k-1 Jidk-1

scattering matrix represented by F (; ,;. . ) need to be
OO,AN d JNJN_l
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recalculated (cf. Equation (2-4-73). This calculation has been made
much more efficient by further assuming that the scattering matricies
are slowly varying functions of the angles (4,¢) in k. Then only the
geometric phase factors due to path length differences need to be
recalculated.

If (6,4) are now taken to be the mean angles of the nominal

-
emission direction k and E is a sum over the (0b,¢b) combinations on a
b

grid spanning the acceptance aperture, usually in a centered circular

pattern, we can include angular broadening in Equation (2-4-83) as:

_(Nmax 2f c
I, (ko4 a } } |§ (-1) © exp(16,) R,(E , ) <fcm. |10]&m >
i"i f £
b m, Bf

x [(4n>1/2 Y, | (6,,6,) expl-|Rogl/20 ) +

Lemy

[eXP{iPJ- (1-c°50bjl) )/pjll exp{- IRj

1 S|/2Ae) exp(-lell/ZAe) wj 0
3

1 1

00,L¢

x}F (PP ) W (b, ) +
P ysPs :
00,3, *?a*?5,” Fo0,x, "3,
o

N
max

N
I [expl(ip, (1 - cosf!, . YY/p. . ]
} [k-l Jidg-1 Pidir” T hdka
N=2 (ji)
x exp{-|R. I
JNS

x exp(-|R. |/2A } W, . W. . W, . W,
pl-| Jll/ & Jydno1 In-1Ix-2 Jod1 N

2A -|R.
/2h Yexp(-] 33

-
|/2A }..exp{-|R. . |/2A )
N1 © Jdp ©

2J
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x} F G..p. . )F (. o 0. Yt
& 00, A¢""d" "Igdin.1” An-1?n-2 Indne1’ In-1dn-2
i
00,L
- -+ L 2
........ F (p Py ) W (p. )]]l . (2-4-88)
Agr1 3031737 00,2 Ty

The direct wave is thus recalculated for each grid point (4 ) but

b'%
only the geometric phase differences due to path length difference are

recalculated for each scattered waves via the angle 4.

. as
Pide.

indicated by the added "b" subscript.

An additional correction in our calculations is that all of the
external exit angles with respect to the surface 0ext have been
adjusted relative to the internal angles of propogating to the surface

aint using the following refraction equation [1];

-1 2 . \1/2
foxe = tan "[(sin Oint - VO/Ekin) /Cosgint]’ (2-4-89)

where V0 is the inner potential and Eéin is the internal kinetic

energy such that Ekin(external) - Ekin(lnternal) - VO. Thus all

different paths are calculated for Kk corresponding to oint, but

angular averaging is over the actual aext'

Finally, all of the above equations are valid only for radiation

of a definite polarization, as usual with the coordinates chosen so
A

A A
that € || z. Normally, we choose this polarization vector ¢ to lie

somewhere in the plane defined by the directions of the incoming
radiation (khu) and the outgoing electron (k), as indicated in Figure

2.2. However, if the source is unpolarized, a second polarization ¢’
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perpendicular to this plane must be considered, with I(unpolarized) =
I(;) + 1(2'). However, our past experience with single-scattering
calculations has shown that the other polarization component can
safely be neglected; this is because : in most experimental geometries
is usually aproximately parallel to ﬁ, and thus more strongly excites
the direct and scattered waves towards it, whereas :' is perpendicular
to ﬂ and therefore is much less important.

We have used Equation (2-4-88) in all of the photoelectron
diffraction calculations discussed here. For simulations of Auger

electron diffraction, the program was simply forced by the input

choices of RB and 5; to treat a fictitious case of p emission into a
£ f

single s channel. This method yields the correct final state for
scattering if it is assumed that the final state of the Auger process
is an s-wave [7]. The only trivial drawback in using Equation
(2-4-88) for Auger electron diffraction is that it includes the
evaluation of an unnecssary Gaunt coefficient characteristic of the p
-+ s process; however, this produces only a multiplicative constant in
the final intensity. Equation (2-4-88) should be applicable to any

final state and over a broad range of energy.

2.4.7. Comparison to the Multiple-Scattering Treatment by

Barton and Shirley:

We now compare the Rehr-Albers [17] approach to another similar

spherical-wave multiple-scattering method by Barton and Shirley (B-S)
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[15]. Both of these methods are cluster based in contrast to
traditional LEED multiple-scattering methods which rely on the
translational symmetry of the system under investigation. We will
first introduce the essential elements of the Barton-Shirley [17]
method briefly.

The B-S method is based upon a Taylor series
magnetic-quantum-number expansion (TS-MQNE). These authors note that
the addition formula for the translation of spherical waves in
Equation (2-4-13) can be derived by first taking the Fourier transform
of the spherical wave and then doing the inverse transform. They then
return to the transform and expand it in a Taylor series about the
origin-shift vector 3, which is the bond vector of a particular
scatterer. The z-axis is also rotated parallel to a to simplify the
calculation just as in the R-A method. They finally obtain an angular
momentum series when each term in the translation is subjected to the
inverse Fourier transform. This is done to obtain a workable
approximation to the Gaunt-integral summation formula of Equation

(2-4-13). This results in the following expression for the

single-scattering portion of a p-wave final state at the detector (ﬁd)
due to an atom at ; with respect to the emitter [17], the case we
will treat as our comparative example:
p DR ) = -k [explipy)/p,] [explip, (1-cosd o ))/p,]
a d d d a aRd a
1 1- i
1 1-1qf 0 - o 1q¢eaRd g A
} } qu (pavpd) e Plo(aye): (2-&—90)

g=-1 p=0



77

A

where ¢ is the radiation polarization, ¢eaR is the azimuth of Rd with
d

A

- -
respect to € as rotated around a or P

Imax
oo - _ 1 : 2y P4 lql
q‘? ,pd) n } 1 (28+41) ty(a) Hy(p) P <cos9aRd),
£=1q|
Pq gL i 1
P, (a &) - q R1q100fear™dyea) Coq

S
d Cz(”a)

P
.1)P .
qu(pa) - (£+q)! (-1) El (S+E s)! (p )S

-t (1o )VP qr £ st pes)t T (8o )1°

Pqu(cosﬁ ) is an associated Legendre polynomial, §4 is the

akR

aRd d

dihedral angle between vectors a and ﬁd (also equal to the single

scattering angle), N, 1is a normalization constant for spherical

£q

harmonics, R(l) (0,8 ,n-¢ ) is a rotation matrix element with
[ql0 €a Xea

angles defined in the same format, gea and ¢xea are the polar and

- d 3
azimuthal angles of a with respect to ¢ | z, and

¢l _ (+]q)+p)! 1
pqa  (£-|q|-p)! p! (2]q|+2p)!!

The expansion index q is found to correct the zeroth order
origin-shift term in an arc perpendicular to the bond vector that
moves away from the center of the scattering potential, where as the

index p corrects outward from the center along this bond vector [17].
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One can compare the above equation with Equation (2-4-44) by
making some minor modifications to the latter. Note first that, from
the discussion just above Equation (2-4-41), the exponential
prefactors above can be rewritten as -ik[exp(ipa)/pa] X

[exp(lklel-pacosaaRd)/pd] = exp(ipd/pd} X exp(lpa(l-cosﬁaRd)/pa];

this is thus the same prefactor as in Equation (2-4-44). Then note
that Equation (2-4-44) includes the sum over atoms in the cluster
while Equation (2-4-90) does not; thus the sum over j in Equation
(2-4-44) can be removed, with ﬁj being replaced by a and pj by Py

Then Equation (2-4-44) becomes

D ; ;
Géo310(a,Rd) - [exp(lpd)/Pd] [exp(lpa(l-coseaRd))/pa]
L . 00,10 _
X } Foo,an(PqrPa) Yoo an(ry) (2-4-91)

All
where, with the simplification of Equation (2-4-60) in both F and W,
max
- ity s 4 2 ~2
FOO,/\"(pd’pa) e } tz(a) 700(pd) dO[l"(gaRd) 71\"(pa)'
A=0
and

00,10

- i
wOO,A"(pa) = 7k"(Pa) dﬂ"o(afa)’

-+ -
and again aaR is the angle between vectors a and Rd"

d



79

We note at once some similarities between these two expressions.
The summation limits in Equation (2-4-90), which is a first order
Taylor Series in m, and Equation (2-4-91), which is a second order
expansion in the parameter 1/p, lead to an equivalant number of terms.
In Equation (2-4-90), q = -1, 0, +1 and p = 0, 1, and these are in
fact happen to be equal to the allowed values for u" and v" in A" =
(u",v"). It is also evident that the summations in Equations (2-4-90)
and (2-4-91) can be broken into two major factors. The first factors,

00 - lq¢eaR

- d . .
qu(pa,pd) e in Equation (2-4-90) and FOO,A"

(2-4-91), are independent of the exact initial and final states

-+ -» . E .
(pd,pa) in Equation

A A

involved, while the second factors, ng(a,e) in Equation (2-4-90) and

00,10
Woo A"(pa) in Equation (2-4-91), are not. Also, the "effective

scattering factors" in the two approximations are similar in that both
F% (3,R,) and F P t the scattering of a gi

pq a,R;) an 00,,\,,(pd,pa) represent the scattering of a given
angular momentum component ((p,q) or (u",v") respectively) incident on
scatterer "a" into the correct (0,0) component at the detector.

To compare these models further, we modify Equation (2-4-91)

futher. First we substitute explicit expressions for ¥ and Y. Also

2

dﬁy’s be written in terms of the associated Legendre polynomials P

Then we get,

m
'R

fmax
N 1L - 1/2
Foo,,\"(”d"’a) =e " } t,(a) (2£+1) C,p(z)
=0
x [enye1) 12N, B (cost )

2#" \d
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X (24+1) [a”"c2<za)/az:">] z:"/Nﬂﬂn v, (2-4-92)

and,

00,10

WA",OO(;a) - [('1)V" N V"+ﬂ-"

V"+p"

[a”“*”"cl(za)/az ] 2

1# "
" " 1
/Gt (e ). (2-4-93)

Equation (2-4-92) can be simplified further, as

Foo,anParpg) = &7 (4m11/? } (2041) £,(3)
2
x [Cy(z,) @ Cp(z,)/82) ) 22 /vmt]

x PL# I (coss (2-4-94)

).
Ry

Now, if we compare the effective scattering factor FOO A"(;d’;a)

in Equation (2-4-94) with that of Fgg(;a,;d) in Equation (2-4-90), it
is evident that they have some similarities, but also some important

differences. Both involve the t-matrix elements t£ and the associated

Legendre polynomials P?(cosoaR ). But the Barton-Shirley method has a3
d

sum of derivatives of the Cz's in qu, and the Rehr-Albers formalism

contains products of C,’s and their derivatives.

2
00,10

- . . L . pa,” " .
OO,A"(pa) in Equation (2-4-93) with Plo(a,e) in

00,10
00,a"

In comparing W

Equation (2-4-90), we note that, while W (;a) is dependent on the

A A

distance between the emitter and the first scatterer, ng(a,e) is

independent of any distance. This is also true for the analogous
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multiple-scattering comparisons. For example, we can compare
double-scattering terms in a similar manner, and it is clear that they
exhibit distinct differences.

From the point of view of computational time, inspection of the
number and types of factors to be calculated in the two methods in
single-scattering indicates a comparable amount of numerical work.
However, in general multiple-scattering, the cleaner separability of

- - . R -+ -
the Fkk,Ak_l(pk'pk-l) for each scattering vertex defined by Rk - Rk-l

- ﬁk-Z would appear to furnish a computational advantage in the R-A
approach,

As final comparative comments, we believe that the R-A approach
has better convergence and formal properties, as discussed also
eleswhere [17]. In particular, the R-A formalism reduces to effective
curved wave scattering amplitude in a point scattering approximation
in zeroth order (i.e., (1x1)), whereas that of B-S does not. For a
given degree of convergence smaller matrices should be needed in R-A
calculations. The R-A method also does not distinguish between
forward and backward scattering, whereas the B-S method appears to
converge faster in back scattering [15]. The R-A method at the (6x6)
level assumed here also should be applicable to a broader range of
energies, with the B-S approach representing more of a low-energy
Taylor expansion. We will illustrate some of these comments in
subsequent numerical calculations with the R-A method.

In conclusion, the R-A and B-S methods are fundamentally

different in the kind of truncation and approximation they make in the
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expansion of GL,L'(p)' But the R-A separation appears to be
inherently applicable to a broader range of energies, to be more
readily generalizable to higher order expansions (even though the
second order (6x6) seems fully adequate to date), and to be more
easily adopted to a variety of situations such as, e.g., emission from
a general niﬁi subshell treated here (a case which has not yet been

dealt with using the B-S approach).

2.5. COMPUTATIONAL DETAILS OF IMPORTANT INTERMEDIATE QUANTITIES:

In this section we present the computational details of the
several quantities which are important for applying this method in
numerical simulations. (Additional useful comments appear in
reference 18(b).) Whenever possible, we will provide at least two
alternative methods for calculating a quantity, including a
non-recursive option. These non-recursive methods are suitable for
computers with compilers which can vectorize a code, as such compilers
usually cannot vectorize segments with recurrence relations. The
efficient recursive methods are most suitable for non-vectorizing
machines, But it is advisable to try both options on a given machine

to assess both speed and accuracy befure settling on one.
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2.5.1. Polynomial Part of the Spherical Hankel Function C£

and its Derivatives Cén):

As noted above we can decompose the spherical Hankel function as,

- ip
n™ o) = 177 £ cyo. (2-5-1)

To calculate the C£'s one can use the following recurrence relation

for b, (o) [27],

hy 1(p) + by, (p) = (2241) p7" hy(p). (2-5-2)

Substituting Equation (2-5-1) in Equation (2-5-2) and changing

variables from p to z = 1/ip, we have, for £ > 1:

C2+1(z) - CE-l(z) + (22+1) =z Cﬂ(z). (2-5-3)
The initial values are Co(z) = 1.0 and Cl(z) = 1l-z.
One can also use a non-recursive approximate method to calculate

the C,'s [17]:

1/2 2
Cy(z) = (1.0 + £(2+1) z°) expl- £C2#1) 271 (2-5-4)

L2 ]

In the computer code discussed below we have used recurrence relations

to calculate the Cz’s for the sake of accuracy.
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(n)

Next we discuss a method for calculating the derivatives C£ (z)

which are given by
(n) n n
C, (z) = 8 Cz(z) / 8z . (2-5-5)

A consideration of the Cz's needed in calculating both F and W shows

(1) for £ = 0,

that, in a second order (6x6) treatment, we will need C£

1, ..., & _and ¢$® for g =2, *1.
max 2 i
We can obtain the following recurrence relation for the Cin)'s by
partially differentiating Equation (2-5-3) n times with respect to z.
This yields

In practice, we used the following two relations, which are

special cases of Equation (2-5-6), for second order calculations:

¢ 2y = ¢{Mea - (22+1)[ z V) + Cio)(z)}, (2-5-7)

The initial conditions for these are

Céo)(z) - 1.0, (2-5-9)

Cél)(z) = 0.0, (2-5-10)
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Céz)(z) - 0.0, (2-5-11)
cfo)(z) -1z (2-5-12)
Cil)(z) - -1.0. (2-5-13)

(The above recurrence relations can be vectorized by making the do
loop on n the innermost loop. But for the purpose of second order
calculations, we need only 0 < n < 2 and hence the length of this

vector is not large enough to gain significantly by vectorization.)

A final useful property of the Cg's is that 1lim Cz(z) =-1.0.
z-0

2.5.2. Euler Angles, «,8,7:

First we consider the simple rotation, Rﬁ#,(pl). From Equation
(2-4-59) we have that

£ 0 ~ 2 a

2 . ip 2 i’y
R - R = R Bur) = a- ,
W,(pl) W,(z 2P M‘.(az B,v) = e s (B) e

(2-5-14)

with the angles a, 8, and y defined as in Figure 2.7(a).

1f 01 and ¢1 are polar and aximuthal angles of 2] with respect to
the z axis and x axis, respectively (cf. Figure 2.7(c)) we can choose

a=0, 8= Bl and vy = ¢1. Therefore this rotation matrix simplifies

to:

A in'é
£ 2 1
R - d 6 . 2-5-15)
pu’(pl) pp'( 1> € (
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The rotation matrix occuring in the W matrix is even simpler:

1 .,° 1 1
RuO(pl) - R#o(0161)¢1) - dﬂo(ol). (2'5'16)

A

In rotating the polarization vector ¢ onto the z axis, the
initial step of the R-A method, we make use of the same expression,

but with (0€,¢€) replacing (0l,¢1), as shown in Figure 2.7(b).

The composite rotation given by Rﬁ#,(pl,pél), as shown in Figures

2.7(c) and (d), is more complicated:

2 A A 2 A A A

-1
R##r(pltpz ) - Rﬂ#'(pl +z pz)' (2'5'17)

Let (01,¢1) and (92,¢2) be the spherical polar coordinates of 2 and

A

Py with respect to the x and z-axes. Also, let (a,8,7) be the Euler
angles of the composite rotation P12 P, The Euler angles for
the rotation py ~ 2 are (0,01,¢1). For the z -+ Py rotation they are

as for the inverse of py = 2 with (0,02,¢2) or (-¢2,-0 0).

2’
Any coordinate rotation through («,8,7) can be represented by the

matrix [28],

R(a,8,7) =

cosacosfBcosy-sinasiny cosacosfsiny-sinacosy -cosasinﬂ]
-sinacosBcosy-cosasiny -sinacosfsiny+cosacosy sinasing). (2-5-18)
sinfBcosy sinfsiny cospf
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To now determine («,8,v) for the composite rotation, we have to
consider the following matrix equation, which equates R(afy) to the

product R(0,01,¢1) X R(-¢2,- 0):

02,

[ cosacosfcosy-sinasiny cosacosBsiny-sinacosy -cosasing
-sinacosfcosy-cosasiny -sinacosfsiny+cosacosy sinasinf| =
| sinBcosy sinfsiny cosf
cosﬂlcos¢l c0591s1n¢1 -51n01
-sin¢1 cos¢1 0 X
L sinalcos¢l sin&lsin¢l cosf,
cos&zcoscﬁ2 51n¢2 51n62cos¢2
cos&251n¢2 cos¢2 51n0251n¢2 . (2-5-19)
-31n02 0 c0502

By comparing the matrix elements on the left and right sides of the
above equation one finally gets the following expression for the Euler
angles [18b]:
a = arg[(sim91 cos¢92 - sinﬁ2 cosﬁ1 cos(¢l-¢2))
+ i(sin02 sin(¢2-¢1))], (2-5-20)
B = cos'l[sinf)1 sinf, cos($,-4,) + cosf, cosf,], (2-5-21)
v - arg[(sin&1 cosﬂ2 cos(¢l-¢2) - cosG1 sin02)

- i(sin&1 sin(¢2-¢l))]. (2-5-22)
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2.5.3. Rotation Matricies, Rﬁ#,(a,ﬂ,y):

From Equation (2-4-59), we have again

2 ipa
R BiyY) =
up! (a,8,7) = e

2 iu’
S OR B (2-5-23)
Beginning from Equation (a4) of Reference 25, we can arrive at
the following recurrence relation for dﬁ“,(ﬂ). Here 6 has been
replaced by -4 to switch from the Messiah [29] to Edmonds [25]
convention to be used here. Also, row-column indicies have been

switched using Equation (2-5-29) to get,

1/2 42

kB = [(eu’) (2tp' -1) 1/ 2 (14cosh)

2((&+p) (£+p-1) ]

2-1 2, ,2.172 ., .£-1
X &) (B + 205w sime @)L (B) +
[Caept) (ot -1 2 (Lecost) @217 (8. (2-5-24)
The initial conditions are:
a ) = 1.0 (2-5-25)
00 .
1 (1+cosf) /2 sinb//2 (l-cosf) /2
d ,(B) = | -sing//2 cosf sind//2 (2-5-26)
By (1-cosf) /2 -sinf/J2 (1+cos8) /2

where columns (or rows) are labeled in the order p (or p’') = 1, 0, -1.
Although generally efficient, there are a few drawbacks in this

method. The first is that it may require the calculation of
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intermediate terms that are not used, especially in the case of
multiple-scattering. Second, and a direct consequence of the first,
it can require very large arrays to hold these intermediate terms.
Both of these features are undesirable in time-consuming large-scale
computations. Hence we have used in the computer code the

non-recursive method described below [30]:

&b (B) = () (2m) (24" (2-01)1Y7

« } 1"
(B-p-v)! (R+u'-v)! (v+p-u')! v!
v
x [cos(B/2) 12 HH "B [ sinegyayHH . (2-5-27)

Since the arguments of the factorials should be greater than or equal
to zero, we have to impose the following limits on the summation index

v:

max(0, up-p') < v £ min(L-u, L+p'). (2-5-28)

In this approach it is possible to calculate factors that are
independent of B once and hold them in arrays. Also, it can be used
to calculate only the required (p,u’) combinations. In addition, it

is vectorizable.

The dgﬂ,(ﬂ), and hence also the FA

n

symmetry relations which can be used to reduce the computation time

-+ =
\,(pl,Pz), have very useful

’
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(30]. Two of these are:

2
~u',-p

2

EPERRY L
(8 (-1) d_“,_#.

2
d##.(ﬂ) -d 8. (2-5-29)

Other symmetry relations of the di#,(ﬂ) also can be used to reduce

their computation time.
2.5.4. Gaunt Coefficients, <f_m, [10|2.m_ >:
fi i'i

From Reference 28, we find for the Gaunt cefficients required in

our calculation when z is rotated to be parallel to e:

<Aem |10]2.m > = <cm; 10]£.m,>

m.
- (-1) T (3/4x) (28:+1) (24.+1) A, (2-5-30)

where, A is a product of two 3j symbols:

-mOm O 00

To calculate this product, we define £> = max(Ef,Ii) and £< -
min(if,zi), and use the properties of the 3j symbols [31], to show

that,

' 1/2
m, [(£ +m_+1)(£L _-m_+1)]
(2£<+3)(22<+l)
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where, |2f-£i| - 1, or finally,

(2_+m +1) (8 _-m +1) 172
<¢gm, 10|2;m > = . (2-5-32)
20+ 3) (22_ + 1)

2.5.5. Associate Legendre Polynomicals, P}ml(cosﬁ):

We can calculate the PLml from the recusion relation [27]:

|m| -1 ) jm|
PB (cos?®) o [ (22-1) cos$ Pg_l(cos0) +

(2-[m|-1) PLT;(COSH) ]. (2-5-33)

. m
To start the recursion above, we need for each m both Pé ! and PAT{.
We can get these from,

PI™ (coss) = (2m-1) sino PLTill(cosﬂ), (2-5-34)

and,

|m] - |m| &
Pm+1(cosﬁ) (2m+1) cosé Pm (cos?). (2-5-35)

Finally we need the initial conditions of, Pg(cosa) = 1.0 and

Pio)(cosﬁ) — cosd.
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2.6. USER'S GUIDE TO THE FORTRAN CODE:

This section is intended as the User’'s Guide to the FORTRAN-77
code. For simplicity, we do not provide any machine specific
information here, although the several computing environments on which
the code has been run are discussed below. At present, we have a
single code capable of doing both scanned-angle photoelectron and
Auger electron diffraction, and scanned-energy photoelectron
diffraction (ARPEFS). Both the polar and azimuthal angles can be
scanned in scanned-angle mode. Multiple-scattering up to tenth order
events can be included; single-scattering output is an option in any
run. For photoelectron diffraction, emission from any niki subshell
also can be treated. This is thus the most general cluster-based code
for such diffraction calculations of which we are aware. As an
estimate of the program size, the present version named XPD.F (version
of 08/90) requires about 75 kW of high speed memory and about 5 MW of
fast disk storage. (On a supercomputer such as a Cray, one word (W)
is 64 bytes, whereas on a work station such as a Sun SPARCstation a
word is equal to 32 bytes). In Section 2.6.1, we discuss the general
structure of this program. In Section 2.6.2, we provide examples of
all input and output files for this code. 1In Section 2.6.3, we
discuss the minor changes needed in one of the input files to simulate
scanned-angle Auger electron diffraction. In Section 2.6.4, possible
methods for more accelerated calculations and geometry optimization

are discussed.
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2.6.1. General Structure of the FORTRAN code:

In this section the structure of the code will be discussed. At
the beginning the code reads the input files to be discussed in detail
in the next section and immediately writes input information to output
files. Next it calculates and stores some frequently used prefactors.

They are used in subroutines for the scattering factors F and the

AN’

rotation matrices. The bond length matrix R, , also is stored for
e+l

future reference. Then comes the angular or energy stepping loops.

Inside these loops usually the (6x6) matrices F (; .; ) for all
AkAk-l k'"k-1

scattering centers or verticies are calculated. Typical scattering
verticies are shown in Figure 2.6(b). At each such scattering vertex,
the first atom in the sequence can be any atom in the cluster. The
second atom can be any other atom except for the first one. The third
atom can also be any other atom except for the second one. Hence,
there are [Mx(M-1)x(M-1)] such scattering verticies in an M-atom
cluster that includes the emitter as a scatterer. That is, we are
typically dealing with 36 times this value of complex numbers, or
2.9x104 for a 10-atom cluster, 4.3x106 for a 50-atom cluster, and
3.5x107 for a 100-atom cluster (which is larger than anything
attempted to date). The last atom of the three can also be replaced
by the vector pointing towards the detector; the number of such
verticies is [Mx(M-1)] and they represent either all single-scattering

events or the last events in all multiple-scattering paths (that is



94
2

Fgg n) The number of these is thus 5.4x10° for 10 atoms, 1.5x10° for
50 atoms, and 5.9><104 for 100 atoms. All of these verticies are
calculated and stored in scratch files to prevent redundancy.

Provided the scratch files containing F’'s can be accessed quickly,
this leads to a considerable savings in computer time. The W matrices
have to be calculated only once for each multiple-scattering path and
hence there are only M-1 of them for each final Ef value; they can be
stored in an array. This leads to a very small number of W matricies
for a given Emax: 54x(22max+1) matrix elements for 10 atoms,
294x(22max+1) for 50 atoms, and 594x(22max+1) for 100 atoms. This
method is also ideal for the approximate approach to geometry
optimization that will be discussed in the next section. Once these
matrices, which are the building blocks, are calculated and stored,
the code proceeds to calculate intensity at each scattering order
starting from single-scattering.

After each order it checks for the value of the maximum order
desired (Nmax - variable "LEVEL") to determine whether all paths
should be extended to the next order or terminated. This gives the
user a chance to go up to only a predetermined order to save time.
This predetermination can be done by performing a full calculation for

a given system at the beginning. Then by looking at intensities for

each order one can determine the order at which the intensities are

(N N 1)

MEX(k,8,6) = 1T " (k,6,4)

converged (i.e., the point at which I

to with in a small enough difference). As long as atomic positions
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are not changed too much, any further calculations on this system can
be done only up to that order.

An additional special feature of the code is in incorporating
convergence criteria at each order above 3rd (varibles "cut4", "cut5",

, "cutlO") in order to decide whether each path should be
calculated to that order or not. For a given order, the cutoff
criterion at the nth order "cutn" is defined as x% of the maximum
amplitude for all events at 3rd order, so that a given nth order event
is calculated only if the (n-l)thevent in this path is = x% of this
maximum in 3rd order. A cutoff of 0.0% thus includes all events up to
Nmax' As discussed below, a satisfactory cutoff appears to be at ~5%.
With a suitable cutoff in place, a second method of cheking for
convergence is to watch the number of events verses order (a program
output) and note the N at which they fall to a negligible numbers (see
discussion in section 2.8.2 and 3.2.5, and Table 3.1).

In single-scattering, the photoelectron is propagated from the
emitter to the first scatterer. Then the appropriate FOO,X value
describing the scattering of this photoelectron into the direction of
the detector is read from a scratch file,. In double-scattering, one
starts from the emitter and reads the appropriate FAA' value for the
first scatterer towards the second. The resulxing scattering
amplitude just before the second scatterer is saved, again in a
scratch file, to be used as the starting value for triple-scatttering.

After the saving is done, the photoelectron can be scattered off the

second scatterer in the direction of the detector using the
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appropriate F to yield the double-scattering intensity. This

00,2
saving and retrieving can be extended up to 10th order: this
procedure is used to overcome the large memory requirements on FAA'
for bigger clusters. Another advantage of this order-by-order
approach is that it eliminates redundancy in calculating the building
blocks of the calculation. Once the desired scattering order is
reached the output files are written. The Cray version has built in
timing routines to write both the CPU time and wall clock time at the
end of the output file LISTOUT.

Now we discuss other features of this code in some detail. First
inelastic damping. As discussed in connection with Equation (2-4-79),
inelastic damping is introduced by multiplying a given wave amplitude
by exp{-L/ZAe), where L is the total distance traveled by the
photoelectron inside the solid and Ae is the inelastic attenuation
length. The latter is calculated using the empirical approximation,
1/2

Ae - f0 (Ekin) , Where fo is a constant used as an input parameter

to the computer code, and E a here is the internal kinetic energy.

ki
(The actual input to the code is the external kinetic energy.)

As discussed in Section 2.4.6, this code is capable of including
simple correlated, parameterized correlated, and simple uncorrelated
Debye-Waller vibrations. The correlated vibrations are done using a

subroutine developed by M. Sagurton [4(b)] using the Equation

(2-4-82). 1In this case the ajzj is generated for each diatomic
k k-1

combination. In the second approximate correlated vibration option,

the curve of a.ij is calculated outside the code. Then it is
k-1
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approximated by three straight line segments, as shown in Figure 2.9.
The inputs to the code are the gradients (ml,mz,m3) and intercepts
(cl,cz,c3) of each line and the distances (x1 and x2) below which the
first two lines are applicable. The third line really requuire only
the intercept, as its gradient m3 is taken to be zero to mimic
uncorrelated Debye-Waller behavior at large distances. Then the value

of a? 5 for a given distance can be calculated inside the code in a

Tkl
more rapid manner. The approximate correlated vibrations provide the

additional freedom to use an ad hoc scheme for a given system.

Finally the uncorrelated option involves simply calculating the

asymptotic 1limit of a? ;0= a? from Equation (2-4-82).
k-1 Ik

An additional important correction is for angular broadening due
to the finite anlyzer acceptance solid angle. The most accurate way
to do this is to sum each intensity over = 10 points of k equally
distributed over the solid angle of acceptance of the analyzer to be
simulated. This, however, would cost a great deal of computation
time, basically in proportion to the number of points. However, as
noted earliar, we can simplify this calculation by noting that only
factors depending on the direction of ;d will change as the angle
averaging is done; these are only the phase factors

exp{ip. . (l-cosf! . Y/p. . (with 6! . defined as before as
Jidk-1 IWk-1 Idk-1 k-1
the scattering angle between ;. - and ; ) and, the scattering
Ikl d

factors F Then, we can furthermore assume that,

(5.7 )
 (paap. . .
00,2 4" Iy

within the small angular cone of a typical analyzer of of * a few
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degrees, the variation of the scattering factors F with angle is

OO,AN

much less important than that of the phase factors

exp{ipj j (l-cosf’ . YY/p. Hence, as a first approximation,

k-1 Jidk-1 k-1

we can vary only the phase factors while keeping F; this is the very
rapid method used at present. As a further improvement to the code we

note that the factors FOO ) are only as difficult to compute as in a
"N

‘single-scattering’ problem and thus only moderately time consuming.
The code therefore is written in such a way that it could be easily
modified in the future to do exact angular broadening. However,
single-scattering comparisons between the approximate and exact
angular broadening results indicate that the former is fully

satisfactory over a small angular cone.

2.6.2. Scanned-Angle and Scanned-Energy Photoelectron Diffraction:

(a). The Inputs:
There are several inputs to this code. They are listed below;
begining with an example of a scanned-angle case, and then showing a

scanned-energy case.

File 1 - XPDIN:

The name of File 1 should always be XPDIN. Names of other files
are listed in XPDIN and, hence, can vary. For clarity, we label lines
in this file as L1, L2 etc. The actual input file does not have these

line numbers. The example shown below is for s - p photoemission from
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a two atom Cu chain at 1000.0 eV. An azimuthal scan is done at a
polar takeoff angle equal to zero. Polar angle is henceforth measured
with respect to the specimen surface. The electron mean free path is
effectively "infinite" with an f0 factor of 107, and the inner
potential is zero. Events up to 10th order are included and the R-A
method is used in second order ((6x6) F matrices). The convergence
cutoff is 5% for all scattering orders above 3rd' and 1s defined in

the previous section.

Ll. XPD.F Cu 03 atoms 5% cutoff 6x6 ekin=1000.eV v0=0 NV 1f=1
L2. 0 0.0000 0.0000000 0.0000 1.0000000

L3. 28 00 00 00 00

L4, coord culOO00p junkp junkp  junkp

L5. S$listl thetab=0.0,thetar=1.0,thetas=2.0,

L6. phib=0.0,phir=180.0,phis=2.0

L7. energh=1000.0,energr=1.0,energs=1.0 $end

L8. $list2 alpha=90.0,level=10,v0=0.0,order=2,

L9. 1factr=10e+06,bangle=0.0 $end

L10. $1ist3 zs=0.0,cut4=5.0,cut5=5.0,cut6=5,0,cut7=5.0,cut8=5.0,
L11. cut9=5.0,cutl0=5.0 $end

L12. azimuthal

L13. full

L14. parameterized

L15. 0.00000 0.00000 0.00000 0.0000C 0.0000C 0.00000 GO.060000

L16. 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 00.00000
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Explanation of Lines:

Ll.

L2.

L3.

L5.

L6.

L7.

Title line: at user discretion

R, ... 3,
initial

Atomic

82_1(radians), Rﬁ-l’ 6£+1(radians), R2+l

number of the emitter followed by atomic numbers for

up to four other elements

Coordinate file and phase-shift files for each atomic type.

If the
for up
$listl

thetab

thetar

thetas

phib -
phir -

phis -

energb
energr
energs

Send -

number of atomic types are less than five, leave blanks

to five names using the a8 format

beginnig of listl

beginning polar angle (degrees with respect to the

surface)

range of polar angle (o)

polar angle step size (o), with polar scanning being
always made on an axis perpendicular to the plane
containing hv and k

beginning azimuthal angle (o)

range of azimuthal angle (o)

azimuthal angle step size (o), with azimuthal scaning
always being made about the speciman surface normal

- beginning kinetic energy (eV) (Ekin external)

- range of kinetic energy (eV)

- kinetic energy step size (eV)

end of listl
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(This set of input is appropriate to scanned-energy
calculations, as discussed in'the next example)
L8. $list2 - beginning of list2
alpha - angle between hv incident and ﬁ (o), from which the
polar angle of the polarization vector : can be
calculated. Since 2 is assumed to be in the plane
of hv and E, ¢€ - ¢k.
level - maximum order of scattering (Nmax in prior notation)
v0 - inner potential (eV)
order - order of the R-A approximation used (0 = (1x1),
1 = (3x3), 2 = (6x6)
L9. 1factr - determines the mean free path using the empirical
relation Ae (K) = lfactr * k (K'l) with k calculate

from k = 2r [E,,  (eV)/150.2]'/2. (Again E,_ here

ki
is the internal kinetc energy)
bangle - half angle of the analyzer acceptance cone (o)
Send - end of list2
L10. $1list3 - beginning of list3
zs - the height in & of the region above the centers of the
surface layer of atoms in which additional inelastic
attenuation should be taken into account. The surface,
before this modification, is taken to be at the
highest z value in the coordinate file. (z is negative
into the bulk and positive otherwise. The emitter is

always at ¥ =y =z = 0).



L11.

L12.

L13.

L1l4.

L15.
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cut4 - cutoff value for fourth order
cutd - cutoff value for fifth order
cuté - cutoff value for sixth order
cut’7 - cutoff value for seventh order

cut8 - cutoff value for eighth order

cut9 - cutoff value for ninth order
cutlQ - cutoff value for tenth order
S$end - end of list3
(cut4 - cﬁth above are measured as a % of 3rd order maximum
reference)
azimuthal, polar or energy (selects the type of scan to be
done. Once selected, only the beginning parameters and their
ranges for that mode are Used, and those for the others modes
are ignored.)
‘atomic’ to calculate normalized y curves as
[I(k,0,0) - I(k,0,6,direct)]/I(k,d,¢,direct) or ’full’ for
full intensity
‘parameterized’ for parameterized vibrations using three
linear segments or ’‘exact’ for correlated vibrations from
Equation (2-4-82).
and L16. parameters for vibrations depending on the model.
At present this code can handle vibrations of two-component
systems only (e.g., adsorbate-substrate systems). The
parameters on line L1535 are for the adsorbate and those

on line L16 are for the substrate. (Both lines are read



103
in the code using free format). For systems with more than
two atomic types, set all variables to zero. (The next
version of this code will be capable of handling vibrations
for upto five different atomic types).

For parameterized correlated vibrations:
m &), ¢, &5, m,R), ¢, &Y, ey, % R, xy&) (see
Figure 2.9).

For simple Debye-Waller vibrations:
0.0, 0.0, 0.0, 0.0, cy(&%), 0.0, 0.0. (again from Figure
2.9)

For exact correlated vibrations:

—

R t , amass (where Rj = Iﬁ. -

. , t , R,
j 9 “peb exp Jp Jk-ll
- distance between the two correlated atoms (K), 9 -

8 -

magnitude of the Debye wave vector (K-l), tDeb = b,

Debye temperature (K), texp = T - experimental temperature

(K), and amass = Ms - mass of the vibrating atom (g)).

A sample input file for a normal energy scan from 109 to 500 eV
for the above case with emission along the x-axis (§ = Oo, ¢ = Oo) is
given below. If an angle-resolved photoelectron extended fine
structure scan is intended then line 13 should read ’‘atomic’ so that a
normalized y function defined as [I - I(direct)] / I(direct) is

calculated as a function of energy.
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L1 ZXPD.F Cu 03 atoms 5% cutoff 6x6 e-scan v0=0 NV 1f=1
L2 0 0.0000 0.0000000 0.0000 1.0000000
L3 28 00 00 00 OO
L4 coord cuphase junkp  junkp  junkp
L5 $listl thetab=0.0,thetar=1.0,thetas=2.0,
L6 phib=0.0,phir=l1.0,phis=2.0
L7 energb=100.0,energr=400.,energs=5.0 $end
L8 $1list2 alpha=90.0,level=5,v0=0.0,order=2,
L9 1lfactr~10e+06,bangle=0.0 $end
L10 $1ist3 zs=0.0,cut4=5,0,cut5=5.0,cut6=5.0,cut?=5.0,cut8=5.0,
L1l cut9=5.0,cutl0=5.0 S$end
L12 energy
L13 full
Ll4 parameterized
L16 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 00.00000

L17 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 00.00000

File 2 - Coordinate File:

The name of the coordinate file is given on as the first entry on
line 4 (L4) of XPDIN. The first line of this coordinate file has the
number of atoms in the cluster. The second line represents the x, vy,
and z corrdinates (in K) and the atomic number of the emitter and it
must must directly follow the number of atoms in the cluster. On the
following lines, the first three numbers are the x, y, and z

._© . .
coordinates for each atom (in A) and the last number is the atomic
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number. This version of the code handles five different atomic types.
As expected, x and y are in the surface plane, with x located at § =
O°, ¢ = 0°; z is thus perpendicular to the surface, with +z values
lying above this plane and -z values lying in the opposite sense. The

sample file shown below is for a three atom Cu chain along the x-axis.

0.0000 0.0000 0.0000 28
3.5000 0.0000 0.0000 28

7.0000 0.0000 0.0000 28

File 3 - Phase Shift Files:

The names of phase shift files are listed on line 4, after the
name of the coordinate file. Each element listed on line 3 should
have a corresponding phase shift file. 1In the example given above
there is only one such file (culO00p). It has the following
structure. The first line gives the energy in eV and the number of
phase shifts to be used at that energy. The next five lines list
these phase shifts. The first line contains £ = 0 to £ = 4, the
second line £ = 5 to £ = 9 etc. For energy scans, where multiple
energy steps are involved this file must be repeated for each energy

step.
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1000.0 20
-0.87809 0.71220 -0.61514 -1.51618 1.07160
0.72774 0.50911 0.36592 0.26775 0.19854
0.14799 0.11017 0.08180 0.06003 0.04318
0.03050 0.02102 0.01368 0.00808 0.00422
0.00193 0.00000 0.00000 0.00000 0.00000

(b). The Outputs:

There can be two or three output files. They are listed below.
The first file is named LISTOUT. This is the long output file. In
the intensity part the first column is polar angle, the second is
azimuthal angle, the third is the single scattering intensity, the
fourth is the double scattering intensity and so on up to the tenth
order intensity. For energy scans the first column is energy in eV,
the second is the k vector (in K'l), the third is the single
scattering iIntensity, the fourth is the double scattering intensity
and so on up to tenth order. Shown below is the file LISTOUT
corresponding to the input file for an azimuthal scan given at the

beginning of this section.

THE LONG OUTPUT OF XPD.FOR (August/1990)
Copyright (c¢) 1990 by A. P. Kaduwela, D. J. Friedman and C. S. Fadley

Please acknowledge the use of this code
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XPD.F Cu 03 atoms 5% cutoff 6x6 ekin=1000.eV v0=0 NV 1f=0
&LIST1 THETAB = 0.0, THETAR = 1.0, THETAS = 2.0, PHIB = 0.0,
PHIR = 180.0, PHIS = 2.0, ENERGB = 1000.0, ENERGR = 1.0,
ENERGS = 1.0, &END
&LIST2 ALPHA = 90.0, LEVEL = 10, VO = 0.0, ORDER = 2,
LFACTR = 10000000.0, BANGLE = 0.0, &END
&LIST3 2S = 0.0, CUT4 = 5.0E-02, CUT5 = 5.0E-02, CUT6 = 5.0E-02,
CUT7 - 5.0E-02, CUT8 .= 5.0E-02, CUT9 = 5.0E-02,

CUT10 = 5.0E-02, &END

Vibrational Parameters: adsorbate-adsorbate
Gradients = 0.000000 0.000000 Intercepts = 0.000000 0.000000

Critical Values: Y = 0.000000 X = 0.000000 0.000000

Vibrational Parameters: adsorbate-substrate and substrate-substrate
Gradients = 0.000000 0.000000 Intercepts = 0,000000 0.000000

Critical Values: Y = 0.000000 X = 0.000000 0.000000

The number of atoms in the cluster = 3

Coordinates of the Cluster
0.0000 0.0000 0.0000 28
3.5000 0.0000 0.0000 28

7.0000 0.0000 0.0000 28



The Z coordinate of the surface is
The bond length matrix
0.0000 3.5000 7.0000
3.5000 0.0000 3.5000
7.0000 3.5000 0.0000
Phase-shifts for atomic number 28
1000., 20
-0.878090 0.712200 -0.615140
0.727740 0.509110 0.365920
0.147990 0.110170 0.081800
0.030500 0.021020 0.013680
0.001930 0.000000 0.000000
Intensities up to 10th order
0.0 0.0 0.25874E-01 .19670E-01
0.19384E-01 0.19384E-01
0.19384E-01 .19384E-01
0.0 2.0 0.24603E-01 .18027E-01
0.17755E-01 .17755E-01
0.17755E-01 .17755E-01
0.0 4.0 0.20901E-01 .13590E-01
0.13361E-01 .13361E-01
0.13361E-01 .13361E-01

0.0000

.516180
.267750
.060030
.008080

.000000

.19532E-01

.19384E-01

.17891E-01

.17755E-01

.13464E-01

.13361E-01

1.071600
0.198540
0.043180
0.004220

0.000000

.19339E-01

.19384E-01

.17712E-01

L7755E-01

.13322E-01

.13361E-01
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0.0

0.0

0.0 10.0

0.0 170.0

0.0 172.0

0.0 174.0

0.0 176.0

.15255E-01
.76815E-02
.76815E-02
.88506E-02
.29544E-02
.29544E-02
.36152E-02
.12462E-02

.12462E-02

.53175E-02
.57265E-02
.57265E-02
.53306E-02
.62999E-02
.62999E-02
.54862E-02
.68602E-02
.68602E-02
.56649E-02
.72646E-02

.72646E-02

(%]

.78439E-02
.76815E-02
.76815E-02
.30380E-02
.29544E-02
.29544E-02
.12626E-02
.12462E-02

.12462E-02

.54698E-02
.57265E-02
.57265E-02
.60318E-02
.62999E-02
.62999E-02
.66138E-02
.68602E-02
.68602E-02
.70539E-02
.72646E-02

.72646E-02

.77348E-02

.76815E-02

.29565E-02

.29544E-02

.12142E-02

.12462E-02

.59504E-02

.57265E-02

.65777E-02

.62999E-02

.71893E-02

.68602E-02

.76338E-02

.72646E-02

.76507E-02

.76815E-02

.29350E-02

.29544E-02

.12397E-02

.12462E-02

.57292E-02

.57265E-02

.63047E-02

.62999E-02

.68665E-02

.68602E-02

.72720E-02

.72646E-02
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0.0 178.0 0.57931E-02

0.0 180.0

0.74920E-02
0.74920E-02
0.58386E-02
0.75637E-02

0.75637E-02

0.73119E-02
0.74920E-02
0.74920E-02
0.73954E-02
0.75637E-02

0.75637E-02

0.78862E-02

0.74920E-02

0.79664E-02

0.75637E-02

THE TOTAL NUMBER OF SCATTERING EVENTS

THE BEGINNING DATE AND TIME :

THE ENDING DATE AND TIME

Single
Double
Triple
Quadruple:
Quintuple:
Sextuple :
Heptuple :
Octuple
9th

10th

TOTAL CPU MINUTES

File 2

intensities up to fifth order.

PLOT1:

182

364

728

910

546

0

0.74999E-02

0.74920E-02

0.75718E-02

0.75637E-02

11/21/90 21:51:51
11,/21/90 21:52:12
0.4495E-01
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This file is a short version of LISTOUT containing

If "level®™ is greater than five then



another file named PLOT2 will appear.

sixth to tenth order.

below.

XPD.F Cu 03 atoms 5% cutoff 6x6 ekin=1000.eV

0.0 0.00

0.0 2.00

0.0 4.0 0.

0.0 6.0 0.

0.0 8.00

0.0 10.0 0.

0.0 170.
0.0 172.
0.0 174.
0.0 17s6.
0.0 178.

0.0 180.

File PLOT2 for this case.is identical in

00

0o

00

00

00

00.

.25874E-01 0.19670E-01 0.19532E-01 O.

.24603E-01 0.18027E-01 0.17891E-01 O.

20901E-01 0.13590E-01 0.13464E-01 O.

15255E-01 0.78439E-02 0.77348E-02 O.

.88506E-02 0.30380E-02 0.29565E-02 O.

36152E-02 0.12626E-02 0.12142E-02 O.

.53175E-02 0.54698E-02 0.59504E-02 O
.53306E-02 0.60318E-02 0.65777E-02 O
.54862E-02 0.66138E-02 0.71893E-02 O
.56649E-02 0.70539E-02 0.76338E-02 0.

.57931E-02 0.73119E-02 0.78862E-02 O

contains intensities for sixth to tenth order.

58386E-02 0.73954E-02 0.79664E-02 O
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That contains intensites from

File PLOT1 for the above LISTOUT is shown

vO0=0 NV 1f=0

19339E-01 0.19384E-01
17712E-01 0.17755E-01
13322E-01 0.13361E-01
76507E-02 0.76815E-02
29350E-02 0.29544E-02

12397E-02 0.12462E-02

.57292E-02 0.57265E-02
.63047E-02 0.62999E-02
.68665E-02 0.68602E-02
72720E-02 0.72646E-02
.74999E-02 0.74920E-02

.75718E-02 0.75637E-02

structure to PLOT1 but
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2.6.3. Scanned-Angle Auger Electron Diffraction:

To prepare XPDIN for scanned-angle Auger electron diffraction the
following changes are needed on line 2.
1. 21 should be 1.
2. 62_1 should be 0.0 and R£-1 should be 1.0.

3. Both 62+1 and R2+1 should be 0.0.
Then the modified XPDIN for a typical case at 917 eV energy looks

as,

L1 XPD.F Cu 02 atoms 5% cutoff 6x6 ekin=917.0 eV v0=~0 NV 1f=0
L2 1 0.0000 1.0000000 0.000 0.0000000

L3 28 00 00 00 00

L4 coord cu9l7p junkp junkp  junkp

L5 $listl thetab=0.0, thetar=1.0,thetas=2.0,

L6 phib=0.0,phir=180.0,phis=2.0

L7 energb=917.0,energr=1.0,energs=1.0 $end

L8 $list2 alpha=90.0,level=10,v0=0.0,o0rder=2,

L9 1factr=10e+06 ,bangle=0.0 $end

110 $1ist3 zs=0.0,cut4=5.0,cut5=5.0,cut6=5.0,cut7=5.0,cut8=5.0
L1l cut9=5.0,cutl0=5.0 $end

L12 azimuthal

L13 atomic

L14 parametrized
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L15 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 00.00000

L16 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 00.00000

Also, one should set ENERGB on line 7 (L7) of XPDIN to the
desired energy of the Auger electron, here chosen to be 917.0 eV, a
case to be considered later. Once the mode on line 12 (L12) of XPDIN
is set to either polar or azimuthal, ENERGR and ENERGS become
unimportant. Other input parameters are set as discussed in Section
2.6.2. Other input files are identical in structure to those
described in that section.

These modifications mimic a p =+ s transition. Here we make the
assumption that the final state of an Auger electron is an s-wave.

The final single-scattering intensity for this case is given in
Equation (2-4-52). Notice that the p-initial state does not yield any
observable effect in that equation; this initial state appears only in

1
the factor C (Ef,m Ii,mi) within mL,c (cf. Equation (2-4-11)) which

i!
is common to both direct and scattered waves (single and multiple).
Hence, the only consequence of simulating the s-wave Auger final state

by using the £-1 channel of a p-initial state is that the final

intensities are multiplied by a constant.
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2.6.4. Possible Methods for More Accelerated Calculations and

Geometry Optimizations:

In comparing theoretical and experimental curves so as to
determine a structure one often has to fine tune several structural
parameters of the theoretical model before finding the optimum set.
This is known as geometry optimization, and it can involve calculating
diffraction curves for many different geometries, exactly as is done
in a typical LEED analysis. In the case of an adsorbate/substrate
system, for example, one of the most frequently changed structural
parameters is the vertical distance of the adsorbate from the
substrate; but beyond this various relaxations of the underlying
substrate atoms from their bulk positions may be tried. To avoid
incurring a prohibitive cost in computation time for such
optimizations, it 1s logical then to search for a way to do such sets
of calculatiéns for different structural parameters in the most
efficient way. One thing to avoid is calculating anything from one
structure to another that does not change at all, or at a more
approximate level, does not change very much. We discuss below two
possible approximations to permit more rapid calculations and geometry
optim.zations.

The most time consuming part of our method is the calculation of

the scattering matrices FA ) (;k’;k l). The elegance of the
k k-1 )

Rehr-Albers approach allows us to initially calculate scattering

matrices for every atom with respect to two other atoms on each side
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of it in some scattering path. Each such Fy 'y can be referred to
kk-1

as a vertex, as shown in Figure 2.6(b). Once all the verticies are
calculated, they can be used, together with the W "termination"
factors that are much easier to calculate, to build up the the actual
scattering calculation. Let us now estimate the number of scattering
matrices or verticies that would need to be recalculated in going from
one geometry to another in an adsorbate/substrate system for which we
are varying the vertical adsorbate/substrate distance only.

Let M be the total number of atoms in the cluster and f be the
fraction of these atoms in the adsorbate layer. Then the number of
atoms in the substrate is (1l-f)M. Out of all possible M(M-1)(M-1)
verticies in the cluster, only a fraction of these has to be
recalculated when the vertical distance is changed. There are eight
possible verticies in the notétion A = adsorbate, S = substrate:
A-A-A, A-A-S5, A-S-A, A-S-S, S-A-A, S-A-S, S-S-A, and S-S5-S, we must
recalculate all types coupling S and A, or 6 out of 8. Note also that
there are as many A-A-S combinations as S-A-A combinations. This is

also true for A-S-S and S-S-A combinations. Therefore, the fraction

of verticies to be recalculated, F, can be written as,

F= (2.-[fM- (£fM-1)-(1-£)M] + [fM-(1-£)M-fM] +
2. [fM- (1-£)M- ((1-£)M-1)] + [(1-£)M-EM-(1-£)M]) /

M.(M-1)-(M-1)

_ £ (1-£) M (3M-4)
M-1)2

(2.6.1)
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The large M limit of F is thus,

F(M » @) =3 £ (1-£). (2-6-2)

Table 2.1 shows the behavior of F as a function of both M and f.
It is evident from this table that about 50% of the verticies have to
be recalculated for each vertical distance for a typical case of f =

0.20. This would save 50% of the time of recalculating the F 's,

Mek-1
and would be worth incorporating in a future version of the program.
This conclusion is also valid for the case of first-layer relaxation
in a substrate system. However, the situation gets worse for
multilayer adsorbate/substrate relaxation where f could be as high as

0.5 and about 3/4 of the F ‘s would have to be recalculated for

Mete-1
each geometry. This approach is thus interesting, but not as
generally useful as one might desire.

We now consider a more approximate approach. Small vertical
relaxations or other atomic displacements will cause only slight
changes in the angles in the vertices. Therefore, a perturbation
approach to the problem could be a very efficient path to geometry
optimization.

One such approach depends on the fact that, except in the forward
and backward scattering directions, the scattering factor F is

MPk-1

generally not rapidly varying with vertex angle. This suggests taking
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those FA A values appropriate to some reference structure not too
k"k-1

far from the actual structure, and varying only the geometric phase

factors in which the actual path length differences of waves are

accounted for. To illustrate this idea in detail let us look at the

general single-scattering expression for the scattered wave as written

down before in Equation (2-4-44):

Gé(l)fo<§j,'ﬁd> = lexplipy)/p,] E [exp(ip (1-cosb ))/p,]

00,L

- - f -+
L 3 3
3
where,
oo,,\.(pd”’j) = )ty Yo0lPy) 0#_(pd,pj ) 1A_(pj),
7 J J J
j
and,
00,L 2 2 A
M £ £
W (p;) = v, (p.) R (ps).
00, ), A, .m
3 J j J ﬂJ £ J
In this equation the only time consuming factor is F00 . Other

"\j
factors can be recalculated for each new choice of structural
parameters. The approximation is then to multiply the old scattering

factor, by a new phase factor,

Foo .
j
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exp(i(pj+8pj)(1-cos[0j+60j]))/(pj+8pj). This approach is expected to
be acceptable if the scattering angle of the vertex is at least 20°
away from either forward or backward directions. Otherwise new
scattering factors should be recalculated. In implementing such a
scheme, the magnitudes of both 60j and Spj with respect to the
reference structure could easily be calculated at each step in an

optimization and criteria established as to when a given FA A needs

k'k-1

recalculation, or when a new reference structure is needed. The same
approximation could be made in a multiple scattering calculation, but
here all of the associated phase factors

exp(i(pJ +6p )(1- cos[o' +50! ]))/(p . +§p

Jidk-1 Ideer it Ikl idka
in Equation (2-4-77) would need to be recalculated. (Note that it is

Wk-1 )
§' we must use here and not # (cf. definitions leading to Equation
(2-4-71).) Such a scheme should be very efficient way to search
structures, and its implementation in a future version of this program
is strongly recommended. This method is also very similar in
philosophy to that of "temsor LEED" proposed recently (32].

Finally we note two other procedures that could be used to speed
up such calculations: (1) storing all F’'s and W's needed in
fast-access RAM, thus eliminating slower disk retrival and (2) going
to lower order F's or even plane-wave scattering) if the two distances

in‘F become larger.
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2.4.7. COMPUTING ENVIRONMENT:

We have used several computers during the development,
optimization, testing, and application of this program. We briefly
indicate the characteristics of these machines and point out certain

machine-specific parts of the code below.

2.7.1. Cray X-MP/48 (CTSS):

This code was initially developed, optimized, and tested on the
Cray X-MP/48 supercomputer at the San Diego Supercomputer Center using
the CTSS operating system. The Cray X-MP/48 is a 64-bit machine with
vectorizing capabilities. It has four CPU’s and an eight megaword RAM
shared by all CPUs. During the optimization several Cray specific

functions were used. They are as follows:

call link - A call to the routine ’‘link’ must appear as the first
executable statement of the code. This is also capable of
linking files to unit numbers. If you wish to open your files in
the traditional FORTRAN way, then you may use the ‘call
dropfile(0)’ statement instead of call link(..... ) and then use
the ‘open’ statement. At end of the main module you may use
'call exit’. But the ’'end’ statement does the equivalent.

n = cvmgz(i,j,k) - if k=0 thenn =1

if k .ne., 0 thenn = j
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This function is vectorizable. But "IF" statements in the
equivalent Fortran soubroutine are not.
saxpy(3,-1,v1l,1,v2,1) - This is equivalent to v2(l) = v2(1l) - v1(Ll)
v2(2) = v2(2) - v1(2)
v2(3) = v2(3) - vl(3)
The first 3 means that the vector length is 3. -1 correspond to
the - sign and other 1’s correspond to vector strides of 1.
sdot(3,v2,1,kuv,1l) - This is the dot product of two vectors. That is
v2(1)xkuv(l) + v2(2)xkuv(2) + v2(2)xkuv(2). Again 3 is the
vector length and 1’s are strides.
wrbin(xx,yy(1,1,1),length) - This allows to unload the array yy onto
unit xx in a very efficient way through a buffer. yy(1,1,1), for
example, is the first element of the array and length is the
number of words you want to unload.
rdbin(xx,yy,length) - This is the complement of webin. The only

difference is that you specify just the array.

Another thing to notice in this code is the style, which has been
. written specially with vectorization in mind. To run this code on a
non-vector machine efficiently requires rearranging certain parts, as
we have done in converting to a Sun workstation.

This machine was replaced with a Cray Y-MP/864 in January, 1990.
Modifications needed for this changeover are described in the next

section.
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2.7.2. Cray Y-MP/864 (UNICOS):

The current version of the code runs on the Cray Y-MP/864 at the
San Diego Supercomputer Center using the UNICOS operating system.

This machine has eight CPUs and 16 megawords of RAM. The inputs and
outputs on the Y-MP are identical to those on the Cray X-MP. Some
X-MP specific routines in the codes are replaced by corresponding Y-MP
counterparts and we describe them below.

The "call 1link" statement is not available on the Y-MP. Hence
all the files opened or created in that statement should now be opened
with the standard FORTRAN-77 OPEN statement. RDBIN and WRBIN are
replaced by BUFFER IN and BUFFER OUT, respectively:

buffer in (id,mode) (bloc,eloc), and,

buffer out (id,mode) (bloc,eloc).

These allow the subsequent execution sequence to proceed concurrently
with the tranfer of data. Here id is the unit specifier. Use of mode
> 0 is for regular full record I/0 and <0 for partial records, and

bloc is the symbolic name of the variable, array or array element that

marks th2 beginning location of the buffered I/0 transfer.
2.7.3. Sun-4 SPARCstation (SunOS):
This 32-bit Sun-4 system with SPARC (Scalable Processor

ARChitecture) runs Sun0S Release 4.0. The Sun-4 CPU comprises an

Integer Unit (IU) that performs basic processing and a Floating Point
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Unit (FPU) that performs floating point calculations. SPARC is a RISK
(Reduced Instruction Set) architecture that emphasizes simplicity and
efficiency. The RAM on this machine is 8 Mb and the disk capasity is

about 1.3 Gb. It is housed in the Department of Chemistry, University

of Hawaii.

This SPARCstation has a FORTRAN-77 compiler. To run on this
mechine, our code was rewritten in ANSI FORTRAN-77 to remove all Cray
specific routines. The run times were obtained by using a simple UNIX
script. Table 2.3 shows the times required for a small chain of Ge
atoms, as described in Section 2.7.2. This can be compared with Table
2.2 which contains the same times on a Cray Y-MP/864. The following
facts should be kept in mind during this comparison: 1. The Sun had a
very light work load and was almost a single user environment. 2. The
Cray had the usual work load, but these calculations were done at
priority = 2, which is the highest, but nonetheless usual for such
quick chain calculations. 3. The Cray is double precision and Sun is
single, but the numerical results are found to agree very well. 4.
The code is vectorizable on the Cray but not on the Sun. Table 2.4
shows the normalized time rations Sun/Cray without taking any of the
above facts into account. As shown there, when the Cray is used at
its highest priority it can be as much as 35 times faster than the
SPARCstation on the wallclock. On the CPU clock the Cray is about 25
times faster. But for more time consuming jobs, the Cray should be
used in a batch queue mode to stretch time allocaticns and this

usually increases the wallclock time by an order of magnitutde, thus
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making it comparable to that for the SPARCstation! Hence a single
user (or nearly single user) SPARCstation environment is a viable
option for running this code in production mode, and our group is

proceeding to further develop this option.

2.8. SENSITIVITY TO INPUT PARAMETERS AND COMPARISON OF RESULTS WITH

PREVIOUS CALCULATIONS:
2.8.1. Auger and Photoelectron Emission from Atomic Chains:

We now consider single-scattering and fully converged
multiple-scattering results for simple linear chains of different
atoms, an illustrative type of test case discussed first by Xu,
Barton, and Van Hove [7]. To illustrate the type of diffraction
pattern one expects from such chains, we show in Figure 2.3(c) a
simplified drawing applicable to high-energy scattering where forward
peaking is dominant and the scattering phase shift is small (here
assumed to be zero). Both the Oth order (forward scattering) peak and
the higher-order diffraction peaks are labelled. In a real n-atom
chain these features will be distorted somewhat by scattering phase
shifts that depend on scattering angle, by the resulting imperfect
overlap of different orders from different scatterers, by inelastic
attenuation effects, and by multiple-scattering effects.

We begin by considering Cu atoms placed at 45° with respect to a

fictitious "(001) surface", as shown in the inset of Figure 2.10. The
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2.56 & nearest neighbor distaﬁce is chosen to simulate emission along
a [101] direction. The surface is used only to determine that region
of space over which an exponential decay of intensity due to inelastic
scattering is included. These chains represent the nearest-neighbor
(101]) direction in thé fce Cu crystal, with a single emitting atom at
the bottom of the chain. The total emission from such a [l0l] chain
in the metal would thus be the sum over the intensities of all of
these emitters from the surface inward to the end of the chain. Cu
IMM Auger emission at 917.0 eV is simulated using the aforementioned
approximation of an s outgoing wave (ﬁf-O only). A, is taken to be
11.7 & at 917 eV and 3.9 X at 100 eV in results to be discussed later.
Refraction at the surface due to the inner potential V0 has not been
included. The resulting curves for 2-10 atom linear chains are shown
in Figure 2.10. Figure 2.11 shows other information derived from
these curves, in particular the forward-scattering along-chain
intensities in both SS and MS and, in the lower panel, the amount of
MS "defocussing", which is defined as D(%) = 100 x [Iss(along chain) -
IMS(along chain)] / Iss(along chain), all as a function of chain
length n.

From these two figures, it is evident that the longer the chain
is, the greater are the MS effects: the forward-scattering peak
height systematically diminishes as the number of atoms in the chain
increases, eventually falling by about 6 atoms to a level equal to the
background on either side of the chain axis. Such intensity

reductions were termed "defocussing" in the first discussion of this
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effect by Tong and co-workers [2]. It is also interesting to note
that the MS peak widths are consistently narrower than those of
corresponding SS peaks, becoming systematically smaller in FWHM as the
number of atoms in the chain is increased. This can be qualitatively
understood from a classical picture in which only those electrons with
very small deflections (i.e., with large impact parameters at the edge
of the scattering potential) can avoid being driven into defocussing
pathways in passing several scattering centers. By contrast, for a
2-atom chain and at this high energy, MS effects are negligible, a
simplifying result which is applicable to emission from an oriented
diatomic molecule such as the system CO/Fe that is to be discussed
later. The 4- to 10-atom cases are applicable to multilayer substrate
emission or to grazing-angle emission from adsorbate/substrate
systems, since in both of these cases, emitters can have more or less
linear rows of atoms between them and the detector for a certain
direction of emission. In such cases, one thus expects that intensity
along linear or nearly-linear chains of atoms with small interatomic
distances will be significantly reduced. By contrast to the MS
results, the SS intensity only begins to reduce after n = 4-5 due to
both interference effects and inelastic attenuation. But even at n =
10, the SS intensity shows a pronounced forward-scattering peak and is
much too strong compared to the MS intensity.

These calculations provide another test of the accuracy of our
method and the computer code, because a similar set of curves for the

same case were reported earlier by Xu and Van Hove (7] for 2-, 3- and
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5-atom Cu [101] chains at 917.0 eV; they have used the TS-MQNE method
of Barton and Shirley [15] in their work. The good agreement between
these two different approaches to MS is very encouraging: in fact,
excellent agreement is obtained if we allow fully for the differing
degrees of angular broadening used in the two sets of calculations.

We have also performed calculations on such Cu chains at the much
lower energy of 100.0 eV. There is no Cu Auger peak at 100.0 eV and
this energy was simply chosen.to investigate the low energy behavior
of multiple-scattering effects, again for an outgoing s-wave. As
shown in Figures 3.9 and 3.10, the SS and MS forward-scattering
intensities decay at a more nearly comparable rate than those at 917.0
eV. This is due to tﬁe lack of a strongly forward-peaked scattering
factor, as well as to the shorter electron mean free path at this
energy, which tends to attenuate MS effects with longer total path
lengths. Although both defocussing loss of intensity and peak
narrowing with increasing chain length are still present, they are
less pronounced than at 917 eV and we expect this to be a general
comparison between lower (~100 eV) and higher (= 500 eV) energies with
an emitter at the end of the chain.

A further noteworthy effect at lower energies is that the peak
maxinam systematically moves to higher takeoff angles so that it is
2-5° away from the chain axis. This is due to peak distortion by the
stronger exponential damping of intensities by inelastic effects,
which will go as exp(-Zn/AesinG), if Zn is the depth of the emitter in

the n-atom chain below the surface.
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Another interesting case is that of bent chains, results from
which are shown in Figure 2.14 for 917.0 eV and in Figure 2.15 for
100.0 eV. The amount of defocussing vs. the bend angle 8 for 2- 3-
and 5-atom chains is presented. The dropoff of defocussing to zero
for 917 eV at 8 ~25°-30° is consistent with the fact that the forward
peak in the plane-wave scattering factor dies away to essentially
"background" level by this angle [1]. At 100 eV, however, the forward
peak is much broader, but the SS and MS intensities still converge at
about the same angle. Thus, events more than about 30° off axis are
expected to be rather SS in character over a broad range of energy,
although we note that the chain geometry we have used here does not
allow for back scattering from atom(s) just below the emitter, an
effect which could become important by 100 eV.

We now investigate the dependence of these MS effects in chains
on different crystallographic directions and materials. In Figures
2.16 and 2.17, we first look at 917 eV emission along the much more
open [111] direction in the fcc Cu lattice, which has a
nearest-neighbor distance of dn-n= 6.27 & compared to 2.56 & for the
[101] direction considered previously. In this case, the chain is
placed at 35.3° with respect to a fictitious (001) surface and hence
the forward-sc..ttering peak is very close to that angle with respect
to the surface. The intensities along the chain fall more rapidly
with increasing chain length due to inelastic attenuation, which now
goes as exp(-Zn/Aesin(3S.3°)). These inelastic effects are enhanced

because the interatomic distance and thus Zn is about 2.5 times larger
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than that for the {101] chains at a given n. We note here also that
enhanced inelastic attenuation has shifted the peak position about 2°
toward higher takeoff angles. Also, the SS and MS results are much
closer to one another for [11ll] chains because of the increased
nearest-neighbor distance and a concomitant reduction of MS
defocussing effects; thus the importance of this type of MS effect
will depend strongly on the direction of observation. Nonetheless, up
to 50% defocussing is seen for the longest chain, and the same sort of
peak narrowing in MS is observed. Both SS and MS peaks are very small
after about eight atoms and hence major contributions to the
photoelectron intensity are coming from the top eight layers in each
case.

To further investigate the effects of interatomic distances on
defocussing, we have finally studied Cu [001] chains (dn_n = 3.62 )
which are less dense than [101] chains but more dense than [111]
chains . We see from Figures 2.18 and 2.19 that both single and
multiple scattering intensities for [00l] chains are in between those
for [101] and [111] cases, but closer in behavior to the [10l] case,
consistent with the iﬁteratomic distance being closer.

As a final comment concerning these results for various Cu chains
at 917 eV kinetic energv, we note that the higher-order diffraction
features occuring for emission angles more than 10-15° away from the
chain axis are always predicted reasonably well by SS theory, even
though the MS curves exhibit some additicnal fine structure about an

average that is very close to the companion SS curves. This is
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another indication that SS becomes a reasonable approximation for
angles sufficiently far from a near-linear chain of scatterers. (cf.
also discussion of Figures 2.14 and 2.15.)

We now turn to examples of chains for different materials, and
first show in Figures 2.20 and 2.21 results for linear [101] Al chains
at 1336.0 eV, which corresponds to MgKa-excited Al 2s emission. We
have here assumed : and ﬂ to be parallel. Defocusing effects are
again obvious, since the SS curves show a pronounced peak for an
emitter as deep as ~10 layers in the solid, but the MS intensity goes
essentially to background level when the emitter is about eight layers
deep. Peak narrowing as chain length increases is also evident. Note
also that defocussing sets in more slowly for Al than for Cu as a
function of chain length, with about an additional 2 chain atoms being
required to yield the same effect in Al.

A second case of Ge [111] chains is also interesting and related
to a recent x-ray photoelectron diffraction study by our group of a
surface phase transition on Ge(1lll) [10]. In this study, the
intensity of a forward-scattering peak along a [11T] direction at
19.00 with respect to the Ge(lll) surface was monitored as a function
of temperature, and it was found to show an abrupt decrease at a
previously-observed surface phase transition temperature. The Ge
[111] chains on which we have carried out MS calculations represent
this direction. As shown in Figures 2.22 and 2.23, even though the SS
pezk has contributions from more than ten layers {five (111) double

layers in the usual notation), the MS signal is seem to come from the
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top eight layers (four double layers) only. Both defocussing
intensity reduction and peak narrowing are again seen. The
smooth-curve average behavior of of the defocussing effects in Figure
2.23 also make it appear that Ge defocusses intensity more rapidly
than Cu.

Figure 2.23 illustrates another interesting effect in Ge: the
"saw tooth" variation of the curves as the chain length increases,
which is found in both the SS and MS curves. This is explained by the
alternating short-long-short-long nature of the interatomic distances
along this chain. That is, within a double layer dn-n is 2.45 X, but
between them it is three times this or 7.35 &. The chains with odd
numbers of atoms thus have a gap of 7.35 & between the emitter and the
nearest forward scatterer, and then two foward scatterers with dn-n -
2.45 & along the chain. Chains with even numbers of atoms have a
single nearest-neighbor scatterer at dn-n = 2.45 X, and then a long
gap of 7.35 & to the next scatterer. The enhanced intensity for even
numbers is thus due to having a strong forward-focussing scatterer
very close to the emitter. This oscillatory effect on intensity,
vhich has not been discussed previously, could be useful in studying
semiconductor epitaxial growth. The "stairstep" form of the
defocussing curve also has the same origin, in that increasing from
even to odd adds only a long distance scatterer that is very
ineffective at defocussing.

In Figure 2.22, SS peak centroids are found to shift to higher

takeoff angles by about 3° due to previously discussed inelastic
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effects. We do not observe such distortions in the MS peak. This is
due to the less severe inelastic distortions on the narrower MS peaks.

We continue this discussion on chains by investigating the
dependence of these strong forward-scattering defocussing effects on
some of the non-structural parameters used in the simulationms.

First, we consider the size of the muffin-tin radius which is
used in the program génerating the scattering phase shifts 62. This
is motivated by recent work by Aebisher et al. [34] who have
theoretically investigated the material dependence of such MS effects
along chains. They concluded that the different amounts of
defocussing in Cu and Al chains at a given chain length (cf. our more
detailed results of this type in Figures 2.10-2.13, 2.16, and
2.17-2.23) are not due to the choice of non-structural input
parameters but rather are primarily due to the differences in the
scattering strengths of the constituent atoms (i.e., their atomic
numbers and the resultant set of §,’s). However, an additional

£

parameter related to the §,’s that depends on the nature of the

2
material and also has a certain degree of arbitrariness in its choice
is the muffin-tin radius RMT used in the calculation of the 61’5. The
usual choice is the touching-sphere radius and hence RMT is clearly
dependent on the lattice parameters of a given materjal. We have thus
investigated the effects of muffin-tin radius on the final intensities
for a five-atom Cu chain, as shown in Figure 2.24. Hexe we have

chosen two non-touching radii which are 30% and 15% smaller than the

touching radius, the touching radius, and two overlapping radii which
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are 15% and 30% larger than the touching radius. The magnitude of the
SS forward intensity increases monotonically with the size of the
muffin-tin radius. This can be qualitatively explained in terms of a
potential of greater radial extent being capable of better focusing
the photoelectrons in the forward direction, since forward-scattering
is primarily controlled by the outer portion of the potential
corresponding to larger impact parameters. But the MS intensities
show a much weaker variation with RMT that is, if anything, the
inverse of the SS intensities; that is, the strongest forward
scattering in SS (the largest RMT) gives the strongest defocussing and
the lowest MS intensity along the chain. This can be explained via a
potential of greater radial extent causing stronger defocussing and
thus being capable of directing photoelectrons away from the forward
direction through multiple-scattering effects. However it is evident
from Figure 2.24 that the choice of muffin-tin radius has only minor
effects on defocussing. Hence, the choice of muffin-tin radius alone
is not sufficient to account for the different amounts of defocussing
in different materials; our results show that these differences are
mainly due to a combination of the differing atomic scattering
strengths and the change in interatomic distance along chains of
atoms, in agreement with the work of Aebisher et al. [34].

As a final comment on Figure 2.24, we note that, for angles more
than 10-15° away from the chain axis, the diffraction structure is
negligiblly affected by the choice of the muffin-tin radius in either

SS or MS. This is useful, because as noted previously, it is such
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higher-order structure that contains bond length information, or via
holographic inversion, also atomic image positions.

There are other non-structural parameters that could influence
chain intensities such as the precise choice of the inelastic
attenuation length of the photoelectron, the finite aperture of the
photoelectron detector and the inner potential. Varying the first two
parameters over a reasonable range is found to cause changes in
relative peak intensities of only about 1-10%; peak positions are very
lictle affected. Increasing the inner potential is responsible for
moving peak positions to lower takeoff angles due to refraction, an
effect that is strong for lower energies and/or lower takeoff angles.
When the inner potential is increased the peak positions move away
from the surface normal. But the single and multiple scattering peaks
are found to move together with no relative displacement.

We now present elapsed-time information for these calculations.
As noted before, a cutoff criterion is used to discard many
unimportant multiple scattering events. This cutoff becomes effective
after the third order. All events which are less than, say 5%, of the
maximun third order amplitude are not carried over to fourth order
scattering. The same check is performed at the end of fourth order
scattering and again all events that are less than 5% of the same
third order cutoff are not carried over to fifth order. This is domne
all the way up to the maximum scattering order, which was tenth order
in this case. The number of scattering events for each chain is

plotted against the order of scattering in Figure 2.25 for chains of
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Al atoms varying from two (1 emitter, 1 forward scatterer) to ten (1l
emitter, 9 forward scatterers). Since the cutoff becomes effective
after third order scattering, the numbers up to third order represent
all events possible. For shorter chains the maximum number of events
is at the third order. After that the number of events tails off.
For longer chains there is a competition between the cutoff and the
very large number of new scattering events for each order. The latter
seems to dominate over the middle range of orders, but the cutoff
takes over eventually. As a result the maximum moves towards higher
scattering order.

As an indication of how many events are eliminated with a 5%
cutoff, we note that the total number for a given length n at a given
order N can be estimated from.(n-l)N, so that each extra order should
be go up by a factor of (n-1). For n = 10, the fact that the ratio of
the number of Sth order events to that of 3rd order is only about
8.8/5.9 = 1.27 instead of 81 indicates that 5th order has been very
heavily discriminated against, with only about 0.39% of them being
computed.

Figure 2.25 illustrates another simple rule for high-energy
scatttering along such chains: the highest order of scattering that
needs to be considered is often equal to the maximum number of
forward-scattering events in sequence, that is, (n-1) for an n-atom
chain. All of the curves in this figure obey this (n-1) rule. (For
chains of the much higher Z scatterer W, we find however, that higher

orders than predicted by this rule might have to be included.)
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Finally, Figure 2.26 shows Cray Y-MP/864 CPU seconds for each
chain. Times are for tenth order MS. Even with a 5% cut-off limit
the increase in time is a very steep function of n. This time should
vary roughly as the area under the different curves in Figure 2.25.
For the four highest n values, a log-log plot of time vs. n shows that
time a ns's, with an exponent that is not surprisingly about equal to
the scattering orders with the largest numbers. This is probably a
generally useful way to estimate time scaling with n: that is, if the
largest number of scattering events for a given cutoff occurs at N*,

then for an n-atom cluster, the variation of time with n can be

*
estimated from nN

2.8.2. Choice of Convergence Limit and the Maximum Scattering Order:

We now consider the influence of the two crucial parameters
controlling both the degree of convergence of the calculation and the
amount of computational time fequired: the cutoff criteria for athand
higher order events and the maximum of order of scattering included.
The effects of these choices will be illustrated first for
calculations on simple linear chains.

Shown in Figure 2.27 are the defocussing and the CFU time as a
function of the cutoff. This is for a linear chain of five Cu atoms
at 1000.0 eV. It is clear from this figure that the cutoff does not
have much effect on the defocussing for any value above about 2-3%, as

the amplitudes of the important events are much larger than the
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cutoffs considered. By contrast, the CPU time falls off rapidly for
smaller cutoffs but levels off after about 5-10%. The reason for this
is that there are a large number of unimportant events at lower
cutoffs for this case. These events are responsible for only about
1.5% of the total defocussing (the spike seen as cutoff goes to zero)
and hence can be neglected to save computer time. In this case we
chose a 5% cutoff as it reduces the computational time by a factor of
about eight but has a negligible effect on defocussing. We have found
this cutoff to be both safe and time saving in more complicated
calculations with many more unimportant events.

As noted above, this example exhibits an unexpected upturn in the
% defocussing as the cutoff passes 1%. As this occurs, many more
events are calculated, and the CPU time also rises dramatically.
However the change in the % defocussing is very small (only ~1.5-2.0%
of the total peak intensity in SS), and the 5% cutoff we have chosen
thus nonetherless yields quite quantitative results. This kind of
small change as the cutoff goes to zero is seen in other test
calculations of this type, and we tentatively attribute it to the
presence of a large number of small-amplitude events in a linear
chain.

As noted previously, the maximum scattering order can be selected
by looking at the final intensities and watching for their
convergence. For example, I(N)(k,9,¢) can be compared with
I(N-l)(k,€,¢) visually or with an R-factor to determine where a

sufficient degree of convergence has been achieved. In, the most
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general approach, a preliminary calculation has be done at the maximum
order possible, with inspectién of the table of intensities and
numbers of events versus order then showing where the Nmax can be set
so as to exclude a neglegible number of events. However, there is a
shortcut for estimation at higher energies via the (n-1) rule which
says that the convergence is at the (n-l)th order for a chain of n
atoms. With this in mind, one can examine the cluster to determine
the number of atoms n in the longest chain and then perform the
calculation at the (n-1) and n orders to see if convergence has been
reached. For medium-Z scatterers such as Cu this rule is valid when
inelastic attenuations are included in the calculation. But the (n-1)
rule does not seem to hold for strong high-Z scatterers such as W. 1In
such a case, the aforementioned shortcut should be used with caution.

As a final check on the overall accuracy and convergence of this
code, we have calcuated the total fluxes from a linear chain of Cu
atoms at 917.0 eV (see Figure 2.28). Flux conservation between the
case of no scatterers present (a l-atom cluster) and the case of n

.

scatterers is necessary for physical consistency: that is, the total

emitted intensity with n scatterers, which can be calculated as

2x x

1 e 16,4 sing 4o o,
0 0

n, tot

must equal that in the absence of any scatterers:
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provided that we do_not include any inelastic attenuations. Figure

2.28 shows that including single-scattering events alone for this case
conserves flux to within a * 1.5%. But it is also evident that, in
order to achieve a reasonable flux conservation of within * 1% in a
multiple-scattering calculation, all orders up to convergence should
be included. Therefore one must be cautious in going up to only a
predetermined order without checking for convergence, especially for
cases involving long chains. This figure also shows that the (n-1)
rule we have mentioned in the previous paragraph works reasonably
well, although flux conservation does improve on going 1-2 orders
higher. Since we have not included inelastic attenuation in this

calculation, the (n-1) rule does not hold as rigorously for this case.

2.8.3. Auger Emission From Thin Epitaxial Overlayers of Cu(00l) on

Ni(00l1) substrate:

In this section we present theoretical simulations of an Auger
experiment by Egelhoff [21] on a pseudomorphic monolayer of Cu
deposited on Ni(00l) and then buried by successive epitaxial
overlayers of Ni. The polar-angle dependence of the Cu Auger
intensity at 917.0 eV was recorded for overlayers of 2, 4 and 10
monolayers (ML) in thickness. The rapid falloff with increasing

thickness of the relative intensities of forward-scattering features
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such as that shown in Figure 2.29(a) at 45° has been interpreted as
evidence of MS effects. This conclusion was supported by qualitative
arguments based on classical trajectories [21].

In order to more quantitatively assess these data, we have
performed SS and fully-converged MS calculations for 1 to 4 overlayers
of Ni(001l). The electron mean free path used in these calculations
was 11.6 &. We have also performed SS calculations using 5.0 8 as the
mean free path, since several prior studies have suggested that this
empirical reduction acts to simulate some MS effects [2a,2¢c], for
example, for the case of photoelectron diffraction from bulk Ni(001)
[36].

Experimental andvtheoretical curves are compared in Figure 2.29.
The MS theory is shown in both zeroth order (1x1l) and in converged
second order (6x6). Comparing Figures 2.29(a) and 2.29(b), it is
clear that a quantum-mechanical treatment of the SS problem does
correctly predict the diminished importance of the features at large
angles with respect to the surface normal, particularly for the
theoretical curves with a reduced attenuation length of 5 &. This
trend is also found in SS calculations by Herman et al. for up to a 14
ML thickness [37]. Considering now the MS results, we find reasonable
agreement betveen the (1x1) and (6x6) curves, especially well off the
[101] direction; however, the differences along [101] are large enough
to illustrate that (1x1) is not converged. The (6X6) curves are in
agreement with experiment for the 2 ML case as to both peak positions

and approximate relative intensities, although the experimental
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features are larger in width in general than predicted by theory.
Going to 4 ML, we note that MS theory predicts too much of a
defocussing effect for the scattering along [101], and that SS theory
with a reduced attenuation length is actually in better agreement with
experiment! The MS curve also has a pronounced higher-order peak
about 23° away from the surface normal (67° on the scale of this
figure); this is present also in the SS curves, and its more complex
origin in forward-scattering plus higher order interference effects
has been discussed in a previous analysis of Auger diffraction from
epitaxlal overlayers by Bullock and Fadley [38].

These MS results can also be compared to previous MS calculations
by Xu et al. [7] on the same system, in which the intensity of this
inteference peak was lower, although all other features of our MS
results are in excellent agreement with their curves. In particular,
they also predict a more rapid decrease in the relative intensity of
the peak at 45° than is observed. The lack of better success with the
MS approach for thicknesses of 4 ML or greater case could be due to
several effects: the presence of some strain and disorder in the
actual overlayer studied, the small cluster size of only about 40
atoms used in our calculations, our neglect of angular averaging over
the spectrometer acceptince cone and/or a systematic tendency of such
calculations to overestimate the degree of defocussing due to some of
the simplifying assumptions made im the model (as, e.g., the

muffin-tin approximation). Therefore, the full degree to which MS
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defocussing is responsible for the intensity loss at 45° is not clear,

although it is certainly expected to contribute to some extent,

2.8.4. Scanned-Energy (Angle-Resolved Photoemission Fine Structure)

Results for the c(2x2)S/Ni(001) System:

In this section, we compare two angle-resolved photoemission fine
structure (ARPEFS) experimental curves for the c(2x2)S overlayer on
Ni(00l) due to Barton et al. to a multiple-scattering cluster
spherical-wave (MSC-SW) analysis of this data by the same authors
[15], and to our reanalysis of this work using the present method. In
both experiments, the photon incidence direction, the polarization ;,
the [001] surface normal, and the electron emission direction lie in
the same plane, normal to the surface. Our calculations made use of
clusters of 40 atoms and non-structural inputs as described elsewhere
in a SSC-SW analysis of the same data by Sagurton et al. [4(b)].

In the first case, the incoming photon beam makes an angle of th
= 70° with respect to the surface normal and the detector is placed in
the direction of the surface normal (oe_ = Oo). (Hence, this has been
termed normal photoelectron diffraction or NPD.) The photon energy
was scanned from 50 to 420 eV. Figure 2.30(a) shows the experimental
curve superimposed on the MSC-SW simulation by Barton et al. [7(b)]
for an optimized structure with sulfur 1.30 A above the first Ni layex

and a first-to-second Ni-Ni interlayer distance of 1.84 2 that is

expanded by 4.5% with respect to the bulk value of 1.76 2. Figure
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2.30(b) shows a similér comparison of our SS and MS results to
experiment. In SS, several peak positions and intensities are not
predicted correctly (e.g., 1, m and o, as well as the valley between k
and 1). By contrast, our MSC-SW simulations are in excellent
agreement with the experiment, and appear to provide an overall better
description of the data than the earlier calculations shown in (a).
In perticular, we are better able to predict the intensities of peaks
o and p, and the positions of peaks r and s are also in better

agreement with experiment.
The second case is very similar to the first, except that the

» . . [+]
incoming photons are oriented at 6, = 45 away from the surface

hy
normal and the detector is at ﬁe_ = 45° away from the surface normal.
(This has been termed off-normal photoelectron diffraction or OPD.)
Figure 2.31(a) again shows the experimental curve and the MSC-SW
simulation by Barton et al. [15] for the optimized structure. Figure
2.31(b) shows our SS and MS results compared to the same experimental
data. In SS, the position and intensity of the valley between peaks a
and b are not well reproduced. For peak c, the calculated intensity
is too small. Also peak i in the SS simulation is displaced by
several eV. In our MS results however, the only major disagreement
compared to the simulation by Barton et al. [15] is the intensity of
peak £, which is overestimated. But our simulation of peaks e and j
is in better agreement with experiment than that of Barton et al. [15]
The x-scale ordinates on both Figures 2.30 and 2.31 are set by

the experimental data and our calculations have not been rescaled to
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fit experiment. This is an important point, as prior SSC-SW results
due to Sagurton et al. [4(b)] have an adjusted x-scale which is more
expanded than the experimental scale. This difference is due to the
different sets of correlated vibrational parameters used in the two
calculations, which evidently oversuppressed the diffraction
oscillations in the earlier work. Our parameters correspond to the
alternative "correlated model 1" discussed by Sagurton at al. [4(b)].

As a final comment concerning our calculations, we note that
convergence 1s achieved at ath order as judged from final intensities,
although events through Sth order were included in the calculation.

Overall, the MSC-SW results obtained using these two different
methods agree very well with themselves and with experiment. This
indicates that the Rehr-Albers approach [17] is reliable over low to
medium energies of photoelectron diffraction and that it can provide
at least as good a description of such experimental data as the method

of Barton and Shirley, if not somewhat better.

2.8.5. Scanned-Angle X-ray Photoelectron Diffraction Results for

the c(2x2)S/Ni(001) System:

As a final comprarison of our calculations to prior experimental
data and MS theory, we consider an experimental study by Sinkovic et
al., who used the intermediate kinetic energy range from 230 to 900 &V
to study adsorbate core-level azimuthal photoelectron diffraction

{39]. The adsorbate/substrate system employed in this study was again
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the well-defined c¢(2x2)S overlayer on Ni(001). Again the photon
incident direction, the polarization, the [001] surface normal, and
the electron emission direction were in a single plane normal to the
surface. They utilized two pélarization orientations: s-polarization
lying in the (00l) surface and a specially selected p-polarization
only 18° off the surface normal that maximally emphasized substrate Ni
scattering relative to the primary wave. A grazing electron takeoff
angle of 4 = 10° with respect to the surface was used in both cases,
with the azimuthal angle ¢ being scanned. The experimental geometry
for p polarization is shown in the inset of Figure 2.32.

The s-polarization results with 2 only 10°away from the electron
emission direction and thus yielding a very strong primary wave were
reasonablly well reproduced by a quite simple single-scattering
cluster plane-wave (SSC-PW) model [39]. The corresponding
p-polarization results were markedly different however. 1In order to
be semiquantitatively described by the theory, the p-polarization data
required a reduction in the PW scattering amplitudes and the inclusion
of double-scattering events [39]). These p-polarization data were
later analyzed by Sagurton et al. [40] using a single-scattering
cluster spherical-wave approach, but there was no significant
improvement in the agreement. From this prior work, it was concluded
that the p-polarization geometry with its weaker primary wave showed
evidence of MS effects [40].

Tang [41] subsequently performed a multiple-scattering

spherical-wave analysis on this system and agreed in concluding that
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MS is required for the accurate description of the p-polarization
data. Tang's computational method is based on an inverse-LEED type
final state, as described eleswhere by Tong et al. [5,42]; this method
takes the translational symmetry of the system into account and thus
requires the assumption of long range order. Hence it is
fundamentally different from the cluster-based methods used by Barton
et al. [15] and in this work.. We have now performed
multiple-scattering cluster spherical-wave (MSC-SW) calculations on
the same system and Figure 2.32 compares this p-polarization
experimental data to various theoretical curves. We considered a
cluster of 36 atoms. -We see that, SSC-SW theory fails to predict the
peak observed in the [110] direction, and yields very poor positions
for the other two peaks in experiment at ¢ ~ 22° and 67°. By contrast
the two MS curves agree much better with experiment, and also very
well with one another. Tang’s MS curve has a peak in the [110]
direction, but it is too strong in relative intensity. The other
peaks and shoulders at ¢ -~ 12° and 82° in his curve are in good
agreement with experiment. Our MS curve has a wider double peak along
[110]. This may be due to our small cluster size of 36 atoms and/or
our neglect of the finite aperture of the detector. But the relative
intensity of our central peak is in better agreement with the
experiment than that predicted by Tang [41]. The rest of the
structure in our MS curve away from [110] is in excellent agreement
with experiment. The strong disagreement of our SS results with

experiment is consistent with the prior conclusicns by both Sinkovic
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et al. [39] and Tang [4l] concerning the need for MS for this
particular geometry. Finally, we note that convergence for this case

was reached at hth order, as judged intensities.

2.9. CONCLUSIONS:

We have implemented and tested a new method for carrying out
multiple-scattering (MS) photoelectron and Auger electron diffraction
calculations due to Rehr and Albers, and have developed a general
purpose computer program for applying it to a wide range of problems.
Results obtained using this new separable Green’s function matrix
approach are in very good agreement with those obtained with other MS
methods and with experiment. In agreement with previous work we find
that Auger and photoelectron peak intensities along chains diminish
rapldly due to MS defocussing effects as the number of atoms in the
chain is increased. These MS effects are prominent only in a cone
within about 20° of the chain axis. This implies the necessity of
linear or nearly linear chains to observe MS effects at higher
energies of = 5C0 eV. This defocussing due to MS is found to depend
on the material as well as the crystallographic directions in a given

material.
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Table 2.1.

The fraction F of three-atom scattering verticies to be recalculated

with a change in adsorbate/substrate spacing as a function of both £

(the fraction of adsorbate atoms) and M (the total number of atoms
in the cluster).

F
£ M =120 M - 100 M-+ o
0.1 0.29 0.27 0.27
0.2 0.51 0.48 0.48
0.3 0.67 0.63 0.63
0.4 0.77 0.73 0.72
0.5 0.80 0.76 0.75
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Table 2.2,

Timing information on the Cray Y-MP/864 for chains of Ge atoms.
(cf. Figure 2.22)

# of atoms Wallclock(sec) CPU(sec)
1 4.7 0.4
2 7.2 1.1
3 15.6 7.7
4 52.6 23.8
5 119.4 52.7
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Table 2.3,

Timing information on the Sun-4 SPARCstation for chains of Ge atoms.

# of atoms Wallclock(sec) CPU(sec)
1 37.8 2.3
2 85.6 22.1
3 547.5 189.4
4 1129.4 608.6
5 2090.2 1315.6
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Table 2.4.

Timing ratio for Ge chains: Sun-4 SPARCstation/Cray Y-MP/864

# of atoms Wallclock(sec) CPU(sec)
1 8.0 5.8
2 11.9 20.1
3 35.1 24.6
4 21.5 25.6
5 17.5 25.0
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Emitterx ;
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Figure 2.2. Illustration of the phase shift between the primary wave

(¢0) and a scattered wave (¢,) due to path length difference. The

j
A
polarization ¢ is here assumed to lie in the plane of the scattering.

A

The other component ¢’ is perpendicular to this.
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5.09
Scattering Amplitude for Cu

from the Partial Wave Method

10,000 eV
4.04—5000 oV

2,000 a&v
%:::1,500 1\
1,000 ov
3.0_( 500 oV
\

? 20 40 60 80 100 120 140 160 1?0
forward 8 (.) backward

Figure 2.3.(a) The magnitude of the atomic scattering factor |f(4)|
for Cu as a function of scattering angle ¢ for various electron
kinetic energies from 500 to 10,000 eV. Note the enhanced forward
peaking as energy increases and the concomitant decrease in the

importance of any back-scattering.
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Figure 2.3.(b) The scattering phase-shift ¥(4) for Cu as a function of

scattering angle # for various electron kinetic energies from 500 to

10,000 v,
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FORWARD = "O™" ORDER

Figure 2.3.(c) The inteference patterns produced by an idealized
single Cu scatterer, assuming the scattering phase shifts to be zero.
ote the higher order scattering features away from the forward

scattering "0™ order” peak.
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Figure 2.4, Theoretical x curves for emission from an s-level in Ni as

a function of -the scattering angle GN for a Ni single scatterer at a

i
distance of 2.49 A from the emitter (Em). The radiation polarization
is kept parallel to the emission direction. Results from three

different approximations to the scattering (PW, SW, and Sw(l) a

lower-order spherical wave approximation) are shown for energies of

50-950 eV.
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Figure 2.5. Experimental and single-scattering theoretical azimuthal
scans of O 1s intensity from c¢(2x2)0/Ni(001) at angles § of emission
with respect to the surface of (a) 7.0° and (b) 13.3°. The
experimenal data are for an exposure of 30 langmuirs (30 L) (1 L =

10-6 Torr-Sec). PW and SW theoretical calculations are shown.
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Figure 2.7. (a) Definition of the Euler rotations. (b) Polar and

azimuthal angles of the vector €. (c) Same as (b) but for the vector

;1 at some atom 1. (d) Same as (b) but for the vector ;2.
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Figure 2.8. The scattering geometry for a single scatterer as used in

calculating the path length difference as lﬁdl -+ @,
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defocussing (defined in the inset) in Auger electron diffraction

intensity along linear chains of Cu [101] at 917 eV.
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Figure 2.13. (a) Same as Figure 2.1l1(a), but for 100 eV. (b) Same as

Figure 2.8.11(b), but for 100 eV.
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Figure 2.14. Defocussing of the Auger electron diffraction intensity

at 917 eV in bent Cu [101] chains as a function of the bend angle.
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Figure 2.16. Same as Figure 2.10, but for Cu [111] chains.
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Figure 2.18. Same as Figure 2.10, but for Cu [001] chains.
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Figure 2.19. Same as Figure 2.11, but for Cu [001] chains.
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Figure 2.20. Single and multiple scattering calculations of Al 2s

.0 evV.
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Figure 2.21.(a) Al 2¢ photoelectron diffraction intensity at 1336.0 eV
directly along linear Al [101] chains as a function of number of atoms
in the chain. (b) The % defocussing in 2s photoelectron diffraction

intensity, based upon results in (a).
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Figure 2.22. Single and multiple scattering calculations of Ge 3d
photoelectron diffraction at 1457.0 eV from linear Ge [111] chains.

The emitter is at one end of the chain.
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intensity, based upon the results in (a).
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Figure 2.24. The effect of changing muffin-tin radius (RMT) by +30% on
defocussing in a five atom Cu [10l] chain at 917.0 eV. The multiple
scattering curves all cluster very close together at the bottom of the
figure. The direction of variation of RMT is indicated by an arrow

for each set of curves.



181

o

Al CHAINS
| Eyin = 1336.0eV

Cutoff =5.0%

@

g

No. Atoms
n =10

H 1))

NUMBER OF SCATTERING EVENTS (x10%)
N

& 7 8 9 10
SCATTERING

5
OF

0 +

ORDE
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Figure 2.26. The Cray Y-MP/864 CPU time taken for the linear Al [101]
chains of Figure 2.25 at tenth order scattering. A cut-off of 5% was

again used.
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Figure 2.29. Polar angle dependence of Cu LMM Auger emission at 917.0

eV from a single monolayer of Cu buried under different thicknesses of

Ni(00l). The experimental data in (a) are from Reference [21].
calculations in (b) are all form this work, and include both single

and multiple scattering with two choices of inelastic attenuation

length,
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Figure 2.30. (a) Eaperimental and theoretical scanned-energy (AXPEFS)

curves for S ls emission from c(2x2)S/Ni(001) by Barton et al. [15].

The incoming radiation makes a 70° angle with the surface normal, and

the photoslectrons are emitted along the surface normal. {b) Single

and multiple-scattering simulations of the experimental data in (a)

using the present method.
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Figure 2 31. (a) Experimental and theoretical scanned-energy (ARPEFS)
curves for S 1ls emission from c¢(2x2)S/Ni(001) by Barton et al. [15].
The incoming radiation makes a 45° angle with the surface normal, and
the photoelectrons are emitted at a 45° angle with respect to the
surface normal. (b) Single and multiple-scattering simulations of the

experimental data in (a) using the present method.
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Figure 2.32. Azimuthal photoelectron diffraction for S 1s emission
from ¢(2x2)S/Ni(001) at 230.0 eV. The experimental geometry is shown
in the inset. The experimental data are from Reference 40, the bottom
MS-SW curve is from Reference 41, and the rest of the theoretical

curves are from this work.
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CHAPTER 3.
APPLICATION OF A NOVEL MULTIPLE-SCATTERING APPROACH TO

PHOTOELECTRON DIFFRACTION AND AUGER ELECTRON DIFFRACTION
3.1. INTRODUCTION:

Single-scattering cluster (SSC) theories, initially with plane
wave (PW) scattering, but by now often with spherical-wave (SW)
effects included, havé been widely used in simulating experimental
scanned-angle photoelectron diffraction (PD) and Auger electron
diffraction (AED) patterns [1,2]. The same types of SSC models have
also been applied with reasonable succe;s to scanned-energy
photoelectron diffraction or angle resolved photoemission extended
fine structure (ARPEFS) [1(b),l(c),3]. However, the possible effects
of multiple-scattering (MS) on such patterns have also been discussed
by several authors [1(c),3-11]. Thus, even though a single scattering
(SS) approach has been found to predict most of the diffraction
features observed experimentally with enough accuracy to be useful for
structure determinations [1-3], several instances where such an
approach is not fully adequate in explaining experimental results have
been pointed out [1(c),3,6-11]. It is thus desirable to have a
quickly-convergent and versatile MS algorithm that can be applied to
both photoemission from any core subshell (i.e., to s, p, d, or f
emission) and to Auger emission (as treated in the common

approximation of an outgoing s wave [10-12]).
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In this paper, we further develop a new approach to MS due to
Rehr and Albers [13] for this purpose. This method is conceptually
simple and computationally efficient. It is based on a separable
approximation to the scattering Green's function or free-particle
propagator, and it allows building up successive orders of scattering
and judging the approach to convergence in a convenient and efficient
way. Scattering events up to 10th order have been included in our
calcuations for some cases to insure convergence. The general-purpose
computer program written in this work permits treating photoelectron
emission from any subshell, as well as s-wave Auger emission. The
example systems studied to date and discussed here include c(2x2)S on
Ni(00l1l), linear and bent chains of several different atoms (Cu, Al,
and Ge), multilayer epitaxial overlayers (Cu(00l) on Ni(00l)) and
multilayer substrates (Ni(00l)), and more complex structures of

molecular or atomic adsorbates on surfaces (the tilted «a., state of CO

3
on Fe(001) and ({3x]3)R30° Ag on Si(111)).

3.2. APPLICATION OF THE SEPARABLE GREEN'S FUNCTION APPROACH OF REHR

AND ALBERS TO SINGLE AND MULTIPLE SCATTERING:

In thi, section we will discuss the application of the
scattering-matrix formalism of Rehr and Albers (R-A) [13] to single
and multipie scattering in both photoelectron and Auger electron
diffracticn. This full spherical-wave methcd approximates the system

by a cluster of individual atoms. This is a sensible alternative to
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prior MS methods derived from low energy electron diffraction (LEED)
(4,6,9] which require full translational symmetry along the surface
and are thus not as well matched to treating short-range probes such
as PD, AED or ARPEFS, or the presence of any disorder. Cluster
methods [1,3,7,10,11] are by contrast very appropriate to modeling all
types of short-range-order effects. The most accurate version of the
cluster approach we will term multiple-scattering cluster-spherical
wave (MSC-SW) to distinguish it from the previously-used SSC-PW and
S§SC-SW methods. In the following paragraphs, we present the essential
points of the treatment by Rehr and Albers [1l3], and then expand it to
apply to MS in photoemission from any subshell or Auger emission. In
the equations to follow, we will for simplicity not initially include
effects due to inelastic scattering or vibrational motion, but the
form in which these have been incorporated will be indicated later.
The details of the original derivation by Rehr and Albers will only be
discussed briefly, as they are discussed fully in the original article
discribing this approach [13].

We begin with some fundarmental equations and definitions used by
Rehr and Albers [13]. From Equation (25) of Reference 13, the

photoelectron diffraction intensity at the detector is given by

=+ do > (N 1) = 2 ) . C 2
I(k) o4 d—ﬂ.(k) I} 00 L st---rRN) mLf,C(e) exP(lszf)
LN

(3-2-1)
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where I(K) is the intensity at the detector for emission with wave

+ do,>»
vector k, ==(k) is the core photoelectric cross section for emission

(N-1)

1) is the (N-1) P order
' Lg

from a given sublevel n,2 ,m., G
i7ivi

- -
multiple-scattering Green’s function for a path from RO = Remitter at

th .g. i R R RN RN R R
e origin via scatterers at to - -
1, 2' e -1 detector d

(o4

L

matrix element into a given final-state Lf - (Zf,mf) value as given by

at «, m c(e) is the amplitude and § is the phase of the dipole
f!

A o : i
<WE ,kle.r|¢n om> (Lf here is equal to L in the notation of
kin i"i1

R-4). G(N'l) thus couples the (2.,m_.) state from the emitter to the
OO,Lf £f'f

(0,0) state required at the detector an infinite distance away.

E ﬂ denotes the final continuum state
kin’

Within the matrix element, ¥

A

of the photoelectron at a kinetic energy E and in the direction k =

kin
ﬁ/k, ¢n o.m is the initial core orbital from which the photoelectron
i"i

1

A

is emitted, and ¢ is the radiation polarization vector. The sum is
over Lf - (£f,mf) and over all combinations of N, the number of atoms
in a given scattering path from single-scattering (N=2) to the highest
order considered (in our case 10th oxrder or N=11).

Now R-A choose the 2 vector in the ; direction to simplify the

matrix element evaluation. The expression for the matrix element then

becomes [14]

AA-’
<WE ,kle'rl¢n.£.m.> - <WE
n i7ii

. ,QIY10(0,¢)rl¢n2_m_>, (3-2-2)
ki n

ki ii
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where Y10(0,¢) is a spherical harmonic. Both wEk' k and ¢n 2.m. are
in i"ii
now expanded in spherical harmonics. 1In expanding WE ﬂ, use is
kin’

made of the fact that it is a plane wave at the detector, thus

implying the usual ingoing-wave expansion for it [14] to yield

if
m

[ exp(-isj )
-g £

(6,.,4,) Y (0,6) R (r)] (3-2-3)
fm kKT T lems Ein'2s

with the angles defining the detector along k (or ﬁd) taken to be

(Gk,¢k). For ¢n.£.m.' we can simply write
i"ivi
R, g (O Yzimi(0.¢). (3-2-4)

Here, RE P (r) and R 2 (r) are radial parts of the continuum
kin'" £

orbital at Bf and a given core orbital with quantum numbers n, and Bi,
respectively.
Substituting Equations (3-2-3) and (3-2-4) into (3-2-2) and doing

some simplifications, one arrives at



2
<¥ “(R)|e-T|é > = b4n } }([( 1) Fexp(is, )
E.. L,k n.f.m 2
kin i7ii Ef'l +1 m __2 f
x Y (6,..4,) <R (r)|efR_ (x)>
Aemg kTR TRy 02 02y
X <Y£fmi(0'¢)lylo(a’¢)lyzimi(0,¢)>], (3'2'5)

where 2< is the lesser of the pair ﬂi and Zf. The integral in 4, ¢

yields the selection rules £f - 21 = * 1 and me - m, = 0 (due to

polarization choice).

It is convenient now to define a core-to-.2f matrix element m

as

. f
= (-1) () xR H(r)>
Lf,c Ekln £f 2

X Yy (OO0 Y, .9, (3-2-6)

or in shorthand notation as

2
1/2 f 1
where R£ = <RE 2 (r)|r|R 2(r)> and C (2 Ii,mi) =
£ kin’“f
(47:/3)1/2 C)) Ylo(ﬁ &) | Y (8,4)>, with the last factor being
i 1 By

a Gaunt coefficient. In the case of emission to a single final state
(as, for example, for s emission (Ei = 0, m, = 0) to a p final-state

(Bf =1, me = m, = 0) or Auger emission to an assumed s final state
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(2f -0, me = 0)), we can ignore these matrix elements and phase
shifts, as they produce only scaling factors of the intensity. But
they are extremely important in calculations to more complex final
states where 21 can go into the two channels £. = £Z. * 1. As one

i i

available source of both RE and 62 , Goldberg et al. [14] have
f f

tabulated them for a a number of free atoms at several energies. We
will here introduce these factors only at the end of derivations to
account for fully general emission into the £. * 1 channels.

i
(N-1) {0 Equation (3-2-1) is the exact
00,L,

multiple-scattering expansion for an N-leg scattering path with (N-1)

As noted previously, G

scattering events. It can be written, using Equation (14) of

Reference 13, as,

N1 @ Ry - G o £, (R )
00,L.R1r - By 00,1, , ‘¥ Ry-1
f ) -1 N-1
{paths) {Lil
-+ -+
x G Ge )ty R ) e,
Lypolyeg N1 Cay "N-2
- -+
......... t, (R;) G (p,) (3-2-8)
2,717 TL L1
where GL L (;j+1) is a matrix element of the free-electron
J+177j

propagator in an angular momentum and site basis, Lj+l - (£J+l’mj+1)’

Lj - ('zjymj): Pj+1 - k(Rj+1

2x(number of electron wave lengths), and t£ = exp{i&z}sinsz is a

-ﬁj) is a "bond vector" in units of

diagonal element of the t-matrix for scattering. A graphical

(N-1)

i i i i .1.
OO,Lf is given in Figure 3

representation of one of the paths in G
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The summations are over all combinations of intermediate Li's and all

possible scattering paths of (N-1) order in the cluster. The matrix

elements or intermediate propagators G (;j+1) in the above

Lty

expression thus give the strength of a given component of

I"j+1

- -
spherical waves centered on Rj+1 as contained in the component L,

. - -+ -
propagating outward from Rj' at each Rj+1' t2j+1(Rj+1) then accounts

for the effects of scattering on the next outgoing components. For a

general multiple-scattering event, both L +

j+1

P and t2 ) go to zero.
j+l 3

and Lj must take on all

values from O up to some L at which t
max

The last LN - (BN,mN) can be shown to be restricted to (0,0) because
it represents the projection of LN-l at the last scattering center
into a plane-wave at the detector ﬁd an infinite distance away.

The major contribution of Rehr and Albers (R-A) [13] was to
develop a convergent separable approximation to the general matrix
element GL,L’(;)' Details of their derivation and certain extensions
we have made of it for the specific case of multiple-scattering in
photoelectron and Auger emission are given elsewhere [13,15] and we
wili thus present only a brief outline of essential steps and results.
Beyond choosing the initial z axis to be parallel to the polarization
vector :, as noted previously, the next step is to rotate a given bond

- -+ =
direction corresponding to p = k(R-R’) onto the z-axis to further

simplify the calculation. Then one has after some manipulation,

2
- i 2 -1 20
6 1) = lemptinn/e) ) &G gl ) ®EL (0 (3-2-9)
p=-2
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A A

where Rm“(p) is a rotation matrix which rotates the unit vector p onto
the z-axis, Riy(;'l) is the inverse of this matrix, p = |p| and giﬁel)
is found to be a reduced, dimensionless z-axis propagator. (Equation
(3-2-9) here is equivalent to Equation (9) of Reference 13.) The
Euler angles (a,8,y) associated with these rotations are defined
according to the convention in reference 16: a about initial Z, 8
about intermediate Y', and y about final z. The two matrices are
related by the standard identities: Ri“,(;) - Rﬁu,(a,ﬂ,y) and

2 -1

R, (p

mp’ ) - Rip,(-y,-ﬂ,-a). The first step in the R-A treatment thus

separates GL,L,(;) into purely angle-dependent rotation matrices and a
radial z-axis propagator gELeI) that depends, through k in p, on
energy.

The second step in the R-A method is to achieve a separable
approximation to this z-axis propagator. This proceeds by deriving an
integral expression for g§Lel) (Appendix A of Reference 13); and then

further simplifying this using contour integration methods to yield

the final fully-separated equation (Appendix B of Reference 13) as:

min[2,2'-u])
gt (o) - 720 1o 6), (3-2-10)
v=0

where min{4£,£’-|s|] = the minimum of £ and 2-|u] = [£,2'-|p|] in later

netation, and the new functions 7 and v are defined as,
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2
T () = CLP N, P @) T, (3-2-11)
and
7 (o) = (2841) ¢ (z) 2 N, w1y (3-2-12)
7;111 14 ? b4 L vt).

Here, Cz(z) is the polynomial part of the spherical Hankel function
and ¢ (2) = 8 ,/az".
2
Combining Equations (3-2-9) and (3-2-10) now yields the final
form of the R-A separation:
£ min[2,2'-|p|]

eip

G -
L,L’ (p) = ’—p—

p=-2 y=0

2 "1, ~8 2 2"
x Ry, e ) v, () [y, (P R (0] (3-2-13)
This can be further simplified by letting A = (g,v) represent the
combined expansion indices and by defining the two bracketed
quantities to be
" 2

BG) - R, (6™ 7L 0 (3-2-14)

and,

Lt~ 2 K ~
= X 3-2-15
NI OB e ( )
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to yield finally

- eip
Gy 1 (P) = -

~L -+ L' -
P } I Ty (p). (3-2-16)

A

The factors involving L and L’ are thus fully separated in this
description, a key advantage of the R-A method, as we will see below
in applying it to both single and multiple scattering.

In addition, the sums in Equation (3-2-13) are found to be
rapidly convergent [13], so that in practice results of very high
accuracy are obtained with |g] < 2 and v < 1. This is the principal
advantage of using this method as far as calculation times are
concerned. We comment more on the adequacy of working at this level
later.

The results of this separable approximation can now be
substituted into Equation (3-2-8) to yield the principal equation of

the R-A method as applied to photoelectron and Auger electron

diffraction:
(N-l) - - =1 - .
GOO,Lf(Rl’RZ ...,RN—Rd) } exp{l(p1+p2+ e +pN))/
{paths}
- -
(py Py - P ) Foo,n,  PnPn-1)
N-1
{Ai)

o . ., 0oL
F, |, (pa,p,) F (po,pq) W
A3ady 737727 Tan A T2 Ty

£f -+ -

(pyrpp)  (3-2-17)
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where the quantities F (; ,; ) =-F
L e T L

termed "scattering amplitude matrices" and are given by

- =
(P 1Py 1) are

- = Lk - ...Lk-]_ -+
Lea

e k-1 k k-1

2
max 2 2 A A 2
k k -1 | ~"k-1
- t v < (p) R PPy 1) 7 (P, 1),  (3-2-18)
2 el P K B KURY gy kL
k-1~0
ﬂk Aaq
with the composite rotation matrix R (py, P ) corresponding to a
Piby 1 k'"k-1

rotation first of Py into z and then z into Zk-l’ The scattering

amplitude matrix F

- =
A\ (pk’pk-l) can thus be thought of as a

k' k-1

generalized spherical-wave scattering factor associated with the site

- -+
at Rk-l and specific choices of scatterers at ﬁk and Rk-2' A

(N-1)

schematic illustration of the separated form for GOo L
'Tf

is given in
Figure 3.1(b).

A "termination matrix" involving the first and last factors in

G(N-l) is further given by
OO,Lf
W LG = Gy TG (3-2-19)
Ppg=P 4:P) = PP pq)- -2-
AN’Al N “da’"1 AN N "d Al 1

00,L. , L;,00 ,

(Our W (py,P4) 1s equivalent to the M (p,,p,,) used by Rehr and
D e Mt Ay T PN

Albers [13].) For photolectron and Auger electron diffraction, where

the detector is at infinity, W can be simplified further via
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<00 1+ 0 -1, -0
L7 (o) =R (p™) 7 (py) » (3-2-20)
AN N pNO N By N
The general result that Rﬁo(p-l) - [4m/(2241) ]2 Yzﬁ(p-l) [16]
indicates that Rgo(p-l) - 0 for all 4 » 0 and Rgo(p-l) -1 for u=20.

Then Equation (3-2-20) becomes,

<00 ~
FAN(pN) - cé”)(z) 2/ (Nyy vD). (3-2-21)

Since the detector is at infinity, p = ;d » ©, Co(=) + 1, Céu>(”) -0

for all v » 0, and Cév)(w) = 1 for v = 0. Hence from Equations

(3-2-20) and (3-2-21), fgo(pN + ©) = 1, and we have a final generally
N

useful form not discussed previously:

OO,Lf L 2f £f

(G.) =T G0 (p) R
- py) = p
AN’AI 1 Al 1 B1vq 1 pqms

W (pl). (3-2-22)

Note that W does not finally depend on the location of the detector

A

through ;d’ although it does depend on the orientatioa of ¢ through

£ a
the rotation in Rylmi(pl).

3.2.1. The Single-Scattering Intensity in Photoelectron Diffraction:

As a first example of the application of this formalism, we

(1)

consider the single-scattering intensity I in photoelectron
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emission from a general niLi - (ni,ﬂi,mi) core sublevel, a case
introduced by R-A [13] and also discussed using the R-A approach by

Friedman and Fadley (17]. This can be written directly from Equation

(3-2-1) for N = 2 as

1) g do L3
Iokng, 2y omy) @ qg (ny, 2y my = Bk gy ,mg)

a | E m . _(e) exp(is§ )
Lo=(f ,.,m) = £
£ Fie10 ™
(0) R » o (1) R R »w
X [ %00, Ra ™ = * So0,1,®;-Ra )]l

2
(3-2-23)

with the emitter as usual at the origin, ;j - kﬁj, ;d - kﬁd in the

first or direct wave term and ;d - k(ﬁd-ﬁj) in the second or scattered

wave term.

Géé)L must involve a sum over all single-scattering path choices
Tt
of j =1,2, ... ,M, where M is the number of single-scattering centers
itions R,, R R B, R here thus h lightl
at positions Ry, R,, ... ’RM' ( 1+ Ry, ... here thus have a slightly

different meaning from the general-path ﬁi's in Equation (3-2-1) and

0 =z
00.L (Rd) thus represents what can be

f
termed the "direct" or "unscattered" wave ¢O, and the second sum on

(1)
0o,L

Figure 3.1.) The first sum on G

G represents all of the singly scattered waves ¢j. Since a non-s

£

core level will, in general, have (2£i+1) degenerate sublevels, the

final intensity observed must sum over emission from them to yield
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k,2 (3-2-24)

410

2
(L) = i%i do
Ih2 (B e - } an (i d5emy 2 Epgpe
m

For the Zf - 21 - 1 channel, there will only be 2(£i-1) + 1 terms in

this sum. For the £f - 21 + 1 channel, (221+1) terms must be

included.

First we concentrate on the direct-wave which is represented by

[CO T
(R
00,Lg

it is a simple matter to show that [15,16]:

the Green’s function G From Equations (3-2-8) and (3-2-9),

d)'

Gég?Lf<§d) - lexplipg)/pg] WmY% ¥, (0, .40, (3-2-25)

£

where (0k,¢k) are the angles of k (or ﬁd) measured with respect to the

polarization vector ¢ as the z axis.

The single-scattering Green’s function, Géé) (ﬁ.,ﬁ ), can now be
Lemjid
expressed, using Equation (3-2-8), as follows:
(]_) - = -+ - -+ 5.
Goo,Lf(Rj’Rd) E GOO,L.(pd) tzj(Rj) GLijf(pj)' (3-2-26)

i), (L.
{i). ¢ J}

Now using Equations (3-2-9) and (3-2-10), one gets the following final

(1)

OO,Lf

expression for G
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1 = ~.1
Goo 1 (BB - ) lexplisgl/pg] } L (o3h)
{j}, (L ) u'
(0,5~ |n* |]~0 :,
v’- 0
%5 By
x R 4'm (pd) ty (R ) [eXP(ip )/p ] } R "(p )
™ h] P it
[O,Ej'll-l"ll 2 2 zf R
X #llull(p ) 7 n n(p )] m mi(pj)' (3'2-27)
y"'=0
Another useful simplification arises since ﬁd >> ﬁj: if 4, is

the single scattering angle at site j, the exponentials in Equation
(3-2-27) can be written as exp{ipd) exp(ipj} = exp {i(klﬁd] - pjcosoj

+ pj)) - eXP{iklﬁdI) eXP(ipj(l-cosﬂj)) = exp(ip,) exv(ipj(l-cosﬁ )Y,

3

with Pq = k|§d| now defined as in the direct wave case considered
earlier. pj(l-cosﬁj) is thus simply the phase difference between the
direct wave and the jth scattered wave as caused by the path length
difference |§j|(1-cosoj), and it appears directly in numerous prior
discussions of the theory of photoelectron diffraction [1-3].

Equation (3-2-27) can thus be written as

(]_) - = . )
oo Lf(RJ.,Rd) = [explip }/p 4] } [exp{lpj(l cosﬁj))/pj]
j,(L-}
x ( 3Gty &) v o R R LI
Pq 7A' Pq A Pa a’ “m, p" P
AIA" J J J
2 2 2 -
£, £ .
X YA"(p ) 7)‘"\,) ) N nm (PJ-)- (3'2'L8)
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By considering explicit sums on £j and mj and by realizing that
Rgﬂ,(a,ﬂ,‘y) - (4m)t/? Yo, (8.7) is defined only when u'=0, one can
0 v' v' .
simplify this expression. The facts that 70U,(pd) - Co (zd) 24 J v
(cf. Equation (3-2-11)) and Co(zd) = 1 imply that ng'(pd) » 0 only
when v’ » 0. This makes v’ = 0 the only surviving term in that
summation. Hence A’ = (u',v') = (0,0) for single-scattering. This
o * ~0
makes Roo(pd) = 1.0 and 700(pd) = 1.0 and we have

Sgo,1,, Ry Ry) = [exp(ing)/oy] ) lexplip (1-cost,))/py]

J

LA 7 1A
J n
Z, X
3
2 A

f
x vxf(pj) R e (55) (3-2-29)
L

Equation (3-2-29) becomes in the alternate notation of F's and W's

introduced before:

1 = = . .
GéO?Lf(RJ.,Rd) = lexplipg)/p,] } [exmlpj(l-cosoj))/pj]
. o 00,Lg
XE Foo,,\"("d"’j) WOO,A"(pj) (3-2-30a)
AII

where Equation (3-2-18) gives
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- - z aXxX - 2 y A A_l .y’
£=0
and Equation (3-2-22) gives,
b Gy e By RE () (3-2-30¢)
OO,A" j M j ““mi j .

As an interesting special case of this single-scattering result,

the total intensity for emission into a single final state Lf-(zf,mf)

is thus:

2
(1) O F . .C
ILf (k,0,4) a | (-1) exp(18£)f sz(:.Ekin) <fm 1018 m >
0) g 1y = =.]2
% [GOO,L Ry + Goo,Lf(RJ.Rd)]I : (3-2-31)

£

where we have now let Gk - 0d + # and ¢k = ¢d + ¢ for simplicity. We
have also cancelled out a trivial factor of exp(-ipd) exp(ipd}/pd2 =
péz that simply allows for the spherical-wave character of the
outgoing flux. Examples of such single final states would be the
p-wave final state in s (Li = (0,0)) photoelectron emission to p (Lf =
(1,0)) (noting again that we take : " ;) and the often used s-wave
final state approximation for Auger electron emission (Lf = (0,0)).
For such cases, the excitation matrix elements and phase shifts in
Equation (3-2-31) can simply be omitted, as they yieid only constant

factors in the intensity.
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In a more general case such as p-wave initial state photoemission
into s- and d-wave final states, one has to add final amplitudes with
correct relative phases and to sum over the various m, excitations

possible. In general, the final intensity in this case can be written

with Equation (3-2-24) as

£,%1 P
(1) £ . .C
Inizi(k.9,¢) o } |§ (-1) exp(162% RléEkin) <2fmi'1°|£1m1>
my Le
0) g (1) 2 =2 .42
x [GOO,Lf(Rd) * GOO,Lf(Rj'Rd)]I : (3-2-32)

The explicit form of Equation (3-2-32) is

2.1
1
(1) T
I (k6,4) @ } |§ (-1) © exp(i8,) Ry(E,; ) <2m, |10|2,m >
i1 P f 7f
Ty g
M
X [(4#)1/2 Y (9,9) + } [exp{ip.(l-cosf.)}/p.]
£em, =" j it
j=1
o 5 O0OL. .
x } Foo,an(Par?y) Voo, an (P 1” (3-2-33)

A"

which is a generalization to non-s emission of the equivalent Equation
(26) in Reference 13.

We also note that W is dependent only on the initial (Lf =
(£f,mf)) and final (Ld = LN = (0,0)) states. Thus only one set of W's
has to be calculated for a given Lf channel, whether the event

considered passes through a single or a multiple scattering path.
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The range of the index v is given in Equation (3-2-10): 0 to
min[£,2'-|u}]. So far we have not imposed restrictions on the
summation index ux. The dependence of the coefficients ;pu(p) and
7pv(p) on p implies that FAA'(;’;') a (p)-(2u+p) (P')-(ZV'+“') for
large p and p’' [13]. pj - kRj is generally greater than unity, even
for the smallest bond lengths, since nearest neighbor distances are
always several atomic units and k for excitation above threshold is
greater than the Fermi momentum kf (= 1.0 in atomic units). This
suggests the possibility of truncating the summations on g and v, and
we now consider several levels for doing this. Keeping only the
largest matrix element yields. the effective curved-wave scatttering
amplitude Fégfoo for point scattering (a result that is zeroth order

in 1/p) and a (1x1) matrix. Going beyond this requires recalling the

restrictions on (u,v) set by prior definitions:
lul = 2, (3-2-34a)

with £ = 0,1,2, ... Emax unless otherwise restricted at path

termination points or by the following relations:

v =0, (3-2-34t)

v + |p] < L. (3-2-34c)

A calculation that is first order in 1/p for large p can thus contain

only non-zero terms corresponding to (z,v) = (0,1), (+1,0) and (-1,0),
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(1)
AN

in single scattering by Equation (3-2-30b). Going to second order in

leading to a (3x3) symmetric matcix for F whose elements are given
1/p permits including the additional non-zero (u,v) = (0,1), (2,0) and
(-2,0) to yield a symmetric (6x6) matrix whose elements are again
given by Equation (3-2-30b).

We have gone only up to the second order in 1/p in all of
calculations described here, because prior work by both Rehr and
Albers [13] for x-ray absorption fine structure and by Bullock [18]
for single scattering photoelectron diffraction has demonstrated that
this level of approximation should be fully adequate, especially for
energies above about 100 eV. As one example of these tests, single
scattering calculations by Bullock [18] shown in Figure 3.2 involve
the fictitious case of f emission from one atom in a two-atom chain
with single Cu scatterer. The case of f emission into a single final
g channel was selected to repfesent a more stringent convergence test.
The wave vector k is kept parallel to the radiation polarization
vector, as shown in the inset. At 100.0 eV the difference between the
zeroth and second order approximation is noticeable over the whole
range of the scattering angle. However, the second and eighth order
curves are within a few % of one another over the whole range. In
fact the only minor differences between the second and eighth orders
occur for energies of ~300 eV or less and for angles =< 30° that are

near the forward-scattering cone. At 1000.0 eV, which represents a

<]
~~
»d
vl
>
~7/
%
.-l
[«]
[1}]
ct
b
(o]
(]
ja}
0]
[a]
48]
i
¢
o
a

typical x-ray photoeslectron diffractio

second and eighth orders are identical. Overall, we thus believe that
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the second-order R-A method is fully adequate for work from 50-100 eV

upward.

3.2.2. The Multiple-Scattering Intensity for a General Initial State:

We here discuss emission from a general L, = (li,mi) initial

i
state to a set of general final states, but with the important
addition that multiple-scattering paths of arbitrary order are
considered. The direct wave in this case is identical to that given
in Equation (3-2-25). A multiple-scattering path contains the emitter
and more than one scatterer, and a typical path is shown in Figure
3.1. Our notation for the various vectors needed to unambiguously
describe a complete set of multiple-scattering paths will be more
explicit than that of R-A, although we will remain as close to it as
possible. Specifically, the emitter is still taken to be at ﬁo - 0,
with the vectors of all other.scatterers ﬁj and the detector ﬁd being
measured with respect to the emitter. We will now increment the
meaning of N by unity so that it now represents the order of the
scattering (rather than: (N-1) as before), so that a typical path is
now ﬁO’ﬁl’ﬁz . ﬁN’§N+l_ﬁd' In order to keep track of a given
scatterer in a typical path, we will designate all possible first

scatterers by ﬁj , all possible second scatterers by ﬁj , etec., up to
1 2

a general kth order R, . The vector used in the arguments of the F
k

and W matrices we can then calculate from ;. . = k(R, - Rj
Idk-1 Jk Ik

-

) ]

with two indices now required due to the many paths involved. For the
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first step in a path, this is simply ;. - kﬁj = ;., as in the
1 1

single-scattering discussion of the prior section. For the last step

in any N-event path, Zd j - k(ﬁd - ﬁj ) = ;d for simplicity, since
"N N

this vector always points from the last scatterer to the detector at
o, In multiple-scattering, there may be several consecutive
scattering events, including those in which the photoelectron is
scattered off the emitter at some point after a first scattering event
on another site. In this case, we will treat the emitter as a neutral
atom, even though it contains a core hole. The presence of this core
hole could affect the.phase shifts Sﬂ(ﬁo) somewhat, but final state
screening is expected to reduce this effect, so we have chosen to
ignore it here. (In any case, our computer code is flexible enough to
permit using different 62'5 for the emitter if desired). The

for all k: that is, the

restriction on ;J is that jk

k-1 " -1
photoelectron cannot be scattered off the same atom twice in a row.
In this notation, jk can represent any atom of the M atoms in the
cluster, including the emitter. The summations in any of the
multiple-scattering paths to follow will thus at each step be over
(M-1) jk values at each order in a path, with the restriction that jk
7 jk-l for all k. We will not write this restriction explicitly in
equations, but indicate such sums only with the set of indices (ji}.
The Nth order mulciple-scattering Green's function in

photoemission to a unique state L. = (Bf,mi), can now be written in

£

the revised notation from Equation (3-2-8) as,
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(N) - - -+ -
G (R 7R~ y e+ JR, ’R)-
00,Le™ 3773, iy ¢
e (p) t, (R, ) G (p ) PP
00,Ly"d” "y iy’ Iyly-1 dndne1
(3,0.(L))
Ct, B )G L by )ty B )G - (py ). (3-2-35)
27397 Lyl TIo3p7 A3y Lk

This general Green’s function can now be written in terms of the prior

W and F matrices.

The steps leading to a specific evaluation of this Gég)L are
Ut

very similar to those shown in detail for the single-scattering cases.
Therefore, we will omit details here and directly write from Equations

(3-2-17) and (3-2-35):

(N) - = -+ =+
G @, 8. ,.. R ,B)-
00, L™ 3y " dy Jy' ¢
[explip +p. . +...4p. V/(p, p. . ceeps )]
z 4 Inina Ip7 T gy Ty
{Ji)
> = -+
XEF (pysp. = ) F Py =« P, D
5 00,2 "™ i1 A1 Indn-1 In-1dn-2
i
. 00,L, |
....... F. . (. ... )W G. ). (3-2-36)
ArTIpdq "3 002 Ty

First we consider the exponential prefactors involving path
length differences and thus containing all of the structural
information. These can be written in terms of two angles. The

notation we use for these angles is as follows:
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0j 3 = angle between vectors p, . and p. . , (3-2-37a)
KWk-1 J+1dk Jdk-1
which 1s the true scattering angle for the event at Ej , and
k
4! = angle between vectors p, and p (3-2-37b)
Jedpa d

g1’

which is the angle required for calculating the path length difference
along pj leading to the event at ﬁj‘ Then, by repeated usage of

Wk-1 K
the argument used to obtain Equation (3-2-28), we can show that

exp{ip, + p, . +...%p. Y/ (P P 2 . .p. ) =
d Tigdya i d Iy 3
N
(explip . )/p ) T [exp{ip (l-cosf! . Y/p, ]. (3-2-37¢)
a ' d Jidgn Idke1”” hdka

After the last scattering event, the photoelectron escapes
towards the detector. This last event, or the first event in a time
reversed sense, involves a finite and an infinite distance and is

represented by F This F matrix is identical in

Gaps - ).
00,,\N d JNJN-l

structure to the one we worked out in the single-scattering case.
Also, the W matrix as defined in Equation (3-2-30) depends only on the

polarization of the incoming radiation and the position of the first

scatterer relative to the emitter; thus it does not require any

matrices F

Y ) involving two finite distances.

(p. . 'O .
k-1 JKkk-1 Jk-19k-2
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The general form of these is identical to that given in Equation
(3-2-18).

Thus we have finally,

(N) - - -+ -
G (R, ,R, , ... ,R; ,R))
OO,Lf Jl j2 JN d
N
(exp{ip )/p ) } [ I [explip, .
a7md L L Idg-1
()

-+ =
X } F (psp: + ) F (p; . iy .
4 00,0 "4 Jdn.1” Atn-1 Indn-1 In-13n-2
i

(l-cos$! Y)Y/p
Jidk-1

-

00,L

(-» - ) W £
Pz +Ps
Ary I3y 73y 00,

1

x F (Zjl)] (3-2-38)

where,

-+ - 2 2 ~oral ~p
F (PP, ) - } t, Yan(Py) Bo (po,p. 7, Y vy ( ),
VPP WAL S I / 2 100°"d” “op ""d b

p. .
Indn-1 N InIN-1

F (p: - P :
k-1 Jdk-1 Ik-1Ik-2

A ) =

£
max 2 2 a N 2
} tg k R k -1 ~"k-1 y,
k-1

v, (P, . (p: P ) (p. .
6 e Ik’ PPrer Sidker dkeidk2” k-1 Ik-1dke2
k-1=0

and,

00,L 2 £ N
i S f f
WOO,A (pjl) -7, (p: ) R (p. ).

1 1 31 MM N
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As a specific example of applying this result, we write it out

explicitly for fifth-order multiple-scattering:

-
-

bl

(5) - - -+ -+
¢ (R, , ,R, ,R, ,R. ,R))
00,Lg™ 3,7 37 35773, 357 4

- (exp(ipd)/pd) } [ [cxP(ipj (Ll-cosf j ))/p ]
3, 1 1

X [eXP(ipj j (1'°°5052j1))/pj231] [eXP(lpj3.2(1 cos@j )Y/p ]

271

3dp" "T153,

(l-cosé!

jsja))/p

]
s34 353,

-+ = - - -+ -
F (py1p ) F (p P ) F (p 'P )
00,3574 353," Ashy TIsd  ads” ARy 3457 350,
00 , L
NI By g B30 Voo 2G| (ae2-39)
133273031 Faghy P1,01778)) Hoon, 5
In some of our numerical simulations involving small clusters of =< 40
atoms, we have used equivalent expressions upto tenth-order multiple
scattering.
The overall expression for the intensity for a single final-state

Lf - (£f,mi) is thus

(N_ )
max (0) (L 2
ILf (k,0,4) a } l[ 00, Efm(R 2t GOO,Ifmile Ry +
m,
1

N
(N) - - -+ - ]2
(R. ,R. , ... ,R. ,R . (3-2-40)
2 00,20m; 7377 39 Iy 2l

N=
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On the right hand side, the first term represents the direct wave, the
second the singly-scattered waves and the final summation the
multiply-scattered waves up to a maximum order of Nmax (= 10 in this
work) .
For emission from all of the initial magnetic sublevels Eimi into

two final state chanels £f - 21 t 1,mi we have the fully general

result
2,+1
I(Nmax)(k 6,8) a ) | ’ (-1)£f exp(isS) R,(E,, ) <&.m, |10{2.m >
n, 2 a4 . P10 g) Rptkin’ %™ i™i
i°1 ) £ “f
i “f
)] = (L 2
X [Goo,zfmi(Rd) + Goo:ﬁfmi(le’Rd) +
max
(N) - - - - 2
G (R, ,R, , ... ,R, ,R)I|". (3-2-41)
NZ , ORIy In' ¢

Equation (3-2-41) can be written more explicitly as,

241
I(Nmax)(k 6,4) | (-')}lf (i6%) R,(E,, ) <f.m_|10|2.m >
n, 2 16,4) @ 1) 7 exp(iéy) Ry(E ., ) <iem,| i®
i”i o f £

i°f
x [(ax)l/z Y, () +

£21
| - - oo'Lf-b
3 2

max N
I [exp(ip. . l-cosd! . YY/p. . ]
} [g= e kaJk-l( I / hedie-1
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x } F (?..7 ) F (7. ) PO
& R T R . TP I N JN 1In-2
i
oo L
f 2

........ 21(pj2j1,pj1 oox pj ]]l , (3-2-42)

00,L

where F , F , and W are given with Equation (3-2-38),.

00, 0" "M AL 00,%;

3.2.3. Inclusion of Inelastic Scattering, Vibrational Effects,
Instrumental Angular Averaging, Unpolarized Radiation and

Auger Emission:

We now consider the inclusion of several additional effects that
are essential for a quantitative comparison of theory and experiment:
damping due to inelastic scattering, damping due to vibrational
effects, intrumental angular averaging, the possible use of
unpolarized radiation, and the treatment of Auger emission.

A fully rigorous method for including inelestic attenuation is so
far not available, and thus we use the common phenomenological
approach of an exponential decay of the amplititude of each component
of the photoelectron wave with the distance travelled in the solid
before escaping through the "surface" [1,3]. The surface here is a
plane used to define both the cutoff of inelastic scattering and the
location of possible refraction effects due to the inner potential V0
(as discussed below). If the distance travelled along a given path is
L and the inelastic attenuation length for photoelectron intensity is

Ae, then the exponential decay factor for the amplitude is exp(-L/ZAe}
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[1,3]. If we define ﬁOS as the vector from the emitter to the surface

in the direction of ﬁ, R . = R, - R, - 0. .
ket I Tk T idka

- - -+
/k, and R as
JyS

the vector from atom jN to the surface in the direction of k (see

Figure 3.1(c)), such factors can be incorporated into Equation

(3-2-42) to yield:

(N ) £
max f c
1“121 (k,0,9) a } l} (-1) exp(i&zé RzéEkin) <tem. 10|£,m >
mi £f
1/2 =
X [(4#) Yzfm1(0) exp(-lROSI/ZAe) +
exp(i (l-cosé } -] exp(- ﬁ 2A exp( - ﬁ. 2A
} [exp pjl jl) /pjll pl-]| jlsI /2A,) exp(-| J1I/ !
Iy
x} Fog 5 (Pgrh )WOO'Lf(* ) +
P 1P P
£ OO,A1 d i1 OO,A1 i1
1
}max } [ N N
I [explip. . (l-cosf; . YY/p. . ] exp{-|R, .|/2A )
k=1 k-1 N T 3k S e
N=2 {j;)
x exp(-]|R. . 24 ) .. -|R, 2A SIR. |/2A
xp(-| JNJN-1|/ o) expf-| J2J1I/ o) expl-| JlI/ o)
PsPs = P . 2 P I I
& 00,0078  Jpedn1”  Mty-1 Indne1’ In-1n-2
i
00,L
-+ - PEF 2
........ F (p; + p; ) W (p. )]]] . (3-2-43)
Arp 3317737 00,277y

Thermal vibrations can be treated most simply in an isotropic
uncorrelated fashion, although anisotropic correlated vibrations are a
more accurate description for the more important near-neighbor

scatterers [3,7]. There is no generally applicable yet accurate model
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for including both anisotropy and correlation in single or multiple
scattering calculations, although different methods for approximating
these effects have been discussed previously by Sagurton et al. (3]
and by Barton et al. [7].

In the simplest case of isotropic uncorrelated vibrations,

inclusion of them in Equation (3-2-43) can be effected by multiplying

each scattered amplitude by a simple Debye-Waller factor WEC
k

representing the motion of a given scatterer jk; if Aﬁj j is the
k k-1

h

change in k on scattering at the jkt atom, § is the scattering

Ik

angle defined in equation (3-2-37(a)) and U§ is the absolute mean
k

square displacement of the jkth atom, this simple uncorrelated
Debye-Waller factor is given by {3]
uc 2 2 2

WIS = exp(-8k> . U’ )} = exp{-2k’(l-cosf. . ) U ).  (3-2-44)
Ik k-1 Ik k-1 Ik

But for correlated vibrations, this factor is expected to depend on

the distance between the present scatterer and the previous scatterer.

We represent this by W . . When the distance between the present
Jedk-1
and the previous scatterer is large enough, W will a.proach the
Idk-1
uncorrelated W?c. But in general, it will depend on the displacement
k

of atom jk relative to the previous scatterer, which we denote by

ﬁj j . (The displacement relative to the emitter may also play a
k'k-1

role, but we will here simplify the problem by neglecting it.) With
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the definition of the effective mean square displacement with thermal
2. - <(ak, . U, .
Idk-1 Jdk-1 Idka

equivalent correlated Debye-Waller-type attenuation factor is given by

[3]:

averaging (indicated by <-.:>) of ¢ )>, the

c 2

W )7>)

I dk-1
- exp(-l/Z(Akj

-+ -+
= <exp(-iak ‘U, 1> = exp{-1/2<(Ak, . U, .
Sidk-1 Stk Iidk-1 ik

2 2 2 2
) o ) = exp(-k“(l-cosd Yo ).
I dx-1 I k-1 Idka

(3-2-45)

Wi-1

2
Ipdea

"substrate" crystal, usually neglecting surface-specific effects. The

we have calculated from a sum over phonon modes in the

method is one due to Beni and Platzmann [19], but with simplifications

introduced by Sagurton et al. [3]. The relevant equation is [3]:

2 @
2 - 3h/2m)" 2")2 ( 2 + ﬂ .75.2 - (.]: + 2 ) e-an]
Ndk1 T mrks g D2 L n®  n
s<s’pIp n=1
- :—%——7 (l-cosB, . )
IR, -R, Jdk-1
e Ik
[+ ]
4q
+ D } ) L ) (e-na [n sing. .
IR, R, laf_ n" + (8 . /o) JIidk-1
Jp Jk-1 T I de-1
/a) cosB. - 8. . Ja)) (3-2-46)
Jd g1

+ (B. . . ]
Jidk-1 Jidk-1

where MS is the substrate or "average-atom" atomic mass, kB is the

Boltzmann constant, HD is the effective or "average-atom" Debye
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temperature, qp is the associated Debye wave vector, a = 0D/T(K), and

R, |. Additional details of calculating

B. . =gq.|R., -
Jdgr D3 Ik

Wj j 's including the allowance for surface-specific affects are

N-N-1

found elsewhere [3,7]. In the calculations reported here, the

Wj j 's have been determined from Equations (3-2-45) and (3-2-46)
N'N-1

and then inserted into Equation (3-2-43) as follows:

(N ) £
max f c
In.£ (k,0,4) « } |§ (-1) exp(i&z) Rﬂ(Ekin) <2fmi 10|£imi>
i"i £ f
mi £f

x [(Aw)l/z Y, (0,4 exp(-|Rygl/20 ) +
£

} [exp(ipjl(l-cosej ))/pjl] exp(-|les|/2Ae} exp(-|Rj1|/2Ae) wj 0

A 1 1
J1
.. 00,L,
X } F (pg.p, ) W (p; ) +
OO,)\1 d i OO,A1 Jq
X
1
gmax } [ N N
I [expl{ip. . (1-cosf! . )Y/ e, ] expl{-|R, .|/2A )
AN T Ik Idee1” T Idka NS e
N=2(Ji}
> - -
X exp{-|IR. 2A .. exp{-IR. . 2A )} exp{-IR.l1/2A )
pl-| JNJN_ll/ o) pi-| J2J1l/ o) expl-IR,1/2A
x W, . W e Voo W
IndN-1 In-1In-2 Jodp J1
x} F (.0 ) F (e P )
P sPs - P- - ' P s A BN
00,2 "4 dn.1” Ane1twe2 Indn-l In-idn-2
()
00,L
P - L 2
........ F (P: < »p: ) W (p- )]]] , (3-2-47)
Aoy 7303477317 700,277
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where the physical origin of each W, factor is indicated in
Jidk1
Figure 3.1(c).

In addition, we must also include the important effects of
instrumental angular averaging due to the finite aperture of the
detector. This is done by summing the photoelectron intensities over
a grid of points on a circular aperture centered on the nominal
emission direction as defined by K. The direct wave and the
singly-scattered waves have to be recalculated for each grid point on

the aperture. For multiply scattered waves, only the path length

(l-cosf! ) and the last

differences represented by pJ 3, 3
k'k-1

KWk-1

scattering matrix represented by F ) need to be

+
00,2, PaP5 3
recalculated (cf. Equation (3;2-30b). This calculation has been made
much more efficient by further assuming that the scattering matricies
are slowly varying functions of the angles (4,4) in k. Then only the
geometric phase factors due to path length differences need to be
recalculated. |

1f (§,4) are now taken to be the mean angles of the nominal

g -
emission direction k ond } is a sum over the (Gb,¢b) combinations on a
b

grid spanning the acceptance aperture, usually in a centered circular
pattern, we can include angular broadening in Equation (3-2-47) as:

(N )

_ max
I, (k6,4
11

oI
B I~

2
.\ £ . C
|§ (-1) © exp(isy) Ry(E ;) <2m |10]|Lm.>
7 I I‘
i7f

x [(4w)1/2 Y, (8,.4,) expl-[Rygl/28 ) +

(
2em;
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} (explipy (1-cos,; ))/p; 1 expl- E 351728 exp(- IR, RZNR

j,0
3, 1 1
. 00,L,
x} F00,x (Pd"’J ) W oox ”j *
£ 1 1 1
1
N
max N
I [exp{ip (1 - cosd/ )Y/ p ]
} } [k-l Idk1 Pl dpa” T hidka
N-2 (j)
x exp{-|R 2A -IR 27 ).. -1R 24
exp leSV o 1expl IijN-ll/ o - -expi-| jzjll/ o)
x exp(-|R, [/2A ) W, . W, . erririnininnn. W, . W
37 e ipdygey In-1dn-2 Jpi; 3,0
x} F (34,7 ) F (o P Yeurn.
&) 00,007 Idn1” Pn-1tw-2 IMdn-1 In-1In-2
i
oo L
- -+ f -+ 2
........ F (p P (& ”l . (3-2-48)
Ary T j1 00* jl

The direct wave is thus recalculated for each grid point (Ob,¢b) but
only the phase differences due to path length difference are
recalculated for each scattered wave, as indicated by the added "b"
subscript.

An additional correction incorporated at the end of the
calculation is that all of the external exit angles with respect to
the surface gext have been adjusted relative to the internal angles of

propogating to the surface ﬂi using the following refraction

nt
equation [1];
-1, .2 , £ 1/2 -2-
0ext = tan [(sin gint - VO/Ekin) /cosﬂint], (3-2-49)
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where Vo is the inmer potentiél and Eéin is the internal kinetic

energy such that Ekin(external) - Ekin(internal) - VO'

Finally, all of the above equations are valid only for radiation

of a definite polarization, as usual with the coordinates chosen so
A

A A
that ¢ | z. Normally, we choose this polarization vector ¢ to lie
somewhere in the plane defined by the directions of the incoming

radiation (khu) and the outgoing electron (k). However, if the source
is unpolarized, a second polarization ¢’ perpendicular to other plane

A A

must be considered, with I(unpolarized) = I(¢) + I(¢’). However, our
past experience with single-scattering calculations has shown that the

other direction can in most cases safely be neglected; this is because

A

¢ in most experimental geometries 1s usually aproximately parallel to

A
k, and thus more strongly excites the direct and scattered waves

A A

towards it, whereas ¢’ is perpendicular to k and therefore is much
less important.

We have used Equations (3-2-48) and (3-2-48) in all of the
photoelectron diffraction calculations discussed here. For
simulations of Auger electron diffraction, the program was simply

forced by the input choices of R, and Sz to treat a fictitious case

f f

of p emission into a single s channel. This method yields the correct

2

final state for scattering if it is assumed that the final state of

the Auger process is an s-wave [10-12].
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3.2.4. Comparison to the Multiple-Scattering Treatment by

Barton and Shirley:

We now briefly compare the Rehr-Albers [13] approach utilized
here to another truncated spherical-wave multiple-scattering method
based upon pioneering work by Barton and Shirley (B-S) [7]. Both of
these methods are cluster based in contrast to traditional LEED
multiple-scattering methods which rely on the translational symmetry
of the system under investigation. We will first introduce the
essential elements of the Barton-Shirley method briefly.

This method is based upon a Taylor series magnetic-quantum-number
expansion (TS-MQNE). These authors note that the addition formula for
the translation of spherical waves can be derived by first taking the
Fourier transform of the spherical wave and then doing the inverse
transform. They then return to the transform and expand it in a
Taylor series about the origin-shift vector ;, which is the bond
vector of a particular scatterer. The z-axis is also rotated parallel
to & to simplify the calculation, just as in the R-A method. They
finally obtain an angular momentum series when each term in the
translation is subjected to the inverse Fourier transform. This is
done to obtain a workable approximation to the Gaunt-integral

-+ - .
summations that normally makes the calculation of G (p,p') so time

L,L’

comsuming. This results in the following expression for the

-
single-scattering portion of a p-wave final state at the detector (Rd)
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-
due to an atom at a with respect to the emitter [7], the case we will

treat as our comparative example:

1) =
i Ry = ik [expling)/py] [exp (10, (1-c0s0 g )1/, ]

1l 1-iq] iqé, »
00 - = €4%a Pq
(p .pd) e P (a 6)

(3-2-50)

A
where ¢ is the radiation polarization, ¢ is the azimuth of Rd with

eaRd
» -» -+
respect to ¢ as rotated around a or Py
2
max
P07 2 1 . =+ P lql
Pq(pa,pd) - } i (28+1) ty(a) Hy"(p,) P, (cosf)aR ),
ik d
£=|q|
Pq - r(D ; 1
P (a e) N Iqlo(0 [ ea ™ ¢xea) Cpq ,
p S
P a7 C,(p)
24+q)! (-1 ! +p-s)! 2
qu(p)_( q)! (-1) p! (qtp-s) (p S a

¥ WTP Lot eyt (age®

Pqu(cosﬂ ) is an associated Legendre polynomial, 4 is the angle

Ry R4

between a and ﬁd qu is a normalization constant for spherical
(L

defined in the same format, gea and ¢xea are the polar and azimuthal

harmonics, R o(0 8 ,ﬁ-¢x€a) is a rotation matrix element with angle

€a

A

A
-
angles of a with respect to ¢ || z, and
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1 _ (4+|qi+p)! 1
pa  (L-|q|-p)! p! (2|q|+2p)!!

The expansion index q is found to correct the zeroth order
origin-shift term in an arc perpendicular to the bond vector that
moves away from the center of the scattering potential, whereas the
index p corrects outward from the center along this bond vector [7].
One can compare the above equation with our Equation (3-2-30) by

making some minor modifications to the latter. With R replaced by a

J
and pj by Py Equation (3-2-30) becomes
c{t) (3, K, = [exp(ip )/p,] [exp(ip_(L-cosé . )1/p. ]
00,1034 PiLPql/ Py PiiPg aR Pa
. o 00,10 -
X } FOO,)"(pd’pa) WOO,A"(pa) (3’2'51)

A"

where, with some additional simplifications in both F and W, we have

[(15],

)
. g Tlax
ip"y }

£=0

- = -+ 2 2 ~4
FOO,X"(pd,pa) - e tz(a) Yoo(pd) do#"(oaR ) 'YA..(Pa),

d

and

00,10 ] .
Yoo, an () = Yyule) dnolea)
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where the dﬁy(ﬁ) is a standard function in calculating rotation
matrices.

We note at once some similarities between these two expressions.
The summation limits in Equation (3-2-50), which is a first order
Taylor Series in m, and Equation (3-2-51), which is a second order
expansion in the parameter 1/p, lead to an equivalant number of terms.
In Equation (3-2-50), q = -1, O, +1 and p = 0, 1, and these are in
fact equal to the allowed values for u" and v" in A" = (u",v"). It is

also evident that the summations in Equations (3-2-50) and (3-2-51)

can be broken into two major factors. The first factors, Fgg(za,pd)
iq¢eaR

d . . - - . <
e in Equation (3-2-50) and FOO,A"(pd’pa) in Equation (3-2-51),

are independent of the exact initial and final states involved, while

A oA 00,10

the second factor, Pig(a,e) in Equation (3-2-50) and wOO A“(;a) in

Equation (3-2-51) (which we have already noted also depends on ¢), are

not. Also, the "effective scattering factors” in the two

0
%

represent the scattering of a given angular momentum component ((p,q)

approximations are similar in that both F g (;a’;d) and FOO’A"(Zd,Za)
or (u",v") respectively) incident on scatterer "a" into the correct
(0,0) component at the detector.

To compare these models further, we modify Equation (3-2-51)
further. First we substitute explicit expressions for y and Y. Also
the dﬁv's can be written in terms of the associated Legendre

polynomials Pi. Then we get,
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Foo, an(Parpg) = <7 14m1™/2 ) 2se1) &)@
;
x [Cy(z,) (a""cz(za)/az:") z:"/u“!]

'“"'
X PB (cosaaRd). (3-2-52)
and,
00,10
- n l|+ ” ll+ " Il+ i
Woo an(Pg) = LCDY N 1876z 02" 7 277
” " 1
/ (V +# )'] d"no(oea)- (3'2'53)

Now, if we compare the effective scattering factor FOO A"(zd’;a)

in Equation (3-2-52) with that of Fgg(za,zd) in Equation (3-2-50), it
is evident that they have some similarities, but also some important

differences. Both involve the t-matrix elements tg and the associated

Legendre polynomials P?(cosﬁaR ). But the Barton-Shirley method has a
d

sum of derivatives of the Cz's in qu, and the Rehr-Albers formalism

contains products of Cz's and their derivatives.
00,10

- . Py . Pq,” "\ .
OO,A“(pa) in Equation (3-2-53) with Plo(a,e) in

00,10
00,\"

In comparing W

Equation (3-2-50), we note that, while W (;a) is dependent on the
distance between the emitter and the first scatterer, ng(;,z) is
independent of any distance. This is also true for the analogous
multiple-scattering comparisons. For example, we can compare

double-scattering terms in a similar manner, and it is clear that they

exhibit such differences.
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From the point of view of computational time, inspection of the
number and types of factors to be calculated in the two methods in
single-scattering indicates a comparable amount of numerical work.
However, in general multiple-scattering, the cleaner separability of

-+ - - -
the FAk,Ak_l(pk'pk-l) for each scattering vertex defined by Rk - Rk-l

- ﬁk-Z would appear to furnish a computational advantage in the R-A
approach.

As final comparative comments, we believe that the R-A approach
has better convergence and formal properties, as discussed also
eleswhere [13]. 1In particular, the R-A formalism reduces to effective
curved-wave scattering amplitudes in a point scattering approximation
[13] in zeroth order (i.e., (1x1)), whereas that of B-S does not. For
a given degree of convergence smaller matrices should be needed in R-A
calculations. The R-A method also does not distinguish between
forward and backward scattering, whereas the B-S method appears to
converge faster in back scattering [7]. The R-A method at the (6x6)
level assumed here also should be applicable to a broader range of
energies, with the B-S approach representing mores of a low-energy
Taylor expansion. We will illustrate some of these comments in
subsequent numerical calculations with the R-A method.

In conclusion, the R-A and B-S methods have certain
simililarities in form but are fundamentally different in the kind of
truncation/approximation they make in the expansion of GL,L’(;)' The
R-A separation appears to be more quickly convergent, to be inherently

applicable to a broader range of energies, to be more readily
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generalizable to higher order expansions (even though the second order
(6x6) seems fully adequate to date), and to be more easily adopted to
a variety of situations such as, e.g., emission from a general nili
subshell treated here (a case which to our knowledge has not yet been

dealt with using the B-S approach).

3.2.5. The Computer Code and Input Parameters:

We have a single code capable of doing both scanned-angle
photoelectron (PD) and Auger electron diffraction (AED), and
scanned-energy photoelectron diffraction (ARPEFS).
Multiple-scattering up to tenth order events can be included;
single-scattering output is an option in any run. For photoelectron
diffraction, emission from any niﬂi subshell also can be treated.
This is thus the most general cluster-based code for such diffraction
calculations of which we are aware. This program presently operates
on both supercomputers (e.g., the Cray Y-MP/864 at the San Diego
Supercomputer Center) and work stations (e.g., a Sun SPARCstation),
although to date most calculations have been done on the
supercomputer. As an estimate of the program size, the present
version .equires about 75 kWords of high speed memory (1 Word = 64
bytes) and about 5 MWords of fast disk storage.

In order to avoid calculating negligibly small multiple
scattering events, all events over 3rd order are subjected to a

user-selected cutoff criterion xN(%). Specifically, the amplitude of
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rd .
each 3 order scatterd wave is computed, and x,, is a selected

N
percentage of the maximum amplitude among all 3rd order events. All
rd . th
3 order events above the x, cutoff are continued to 4 order. At

3

th again based on the maximum 3rd order amplitude

4 order, a cutoff Xy
is used to decide which events are continued to 5th order. This

process is then repeated for X5, X .. up to the maximum order

6
considered. Thus we do not depend on less accurate indicators of
intermediate wave strengths such as the total path length [7,13]. A
sufficiently accurate set of cutoffs is found to be Xg = X, = Xg =
..... - Xy - 5%, which is found to yield excellent convergence judged
against test calculations with smaller cutoff choices. The program
also outputs the number of events at each order so that convergence
can also be judged by having a negligible number of events at or below
the Nmax order. We discuss the order required to achieve convergence
for several of the applications considered below,.

The non-structural input parameters to each calculation and our

sources for them are: the radial matrix elements (RE +1) and phase
i

shifts (6; +1) (from Reference 14), the scattering phase shifts 62
i

(from the program MUFPOT of Reference 21), the inelastic attenuation
length (from various sources), the inner potential VO (from various
sources also), the geometric parameters of the experiment, the type of
scan involved (8,4, or hv), the vibrational parameters necessary for
using Equation (3-2-46) (from_various sources), the maximum order of
scattering to be included Nmax’ the order of the R-A approximation to

be used (found to be fully adequate at an order or (6x6) scattering
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matrices), and the cutoff (in %) at each level above 3rd order

measured with respect to the largest 3rd order event,

3.2.6. Tests Against Scanned-Energy (Angle-Resolved Photoemission

Fine Structure) Results for c¢(2x2)S on Ni(001):

We here compare two angle-resolved photoemission fine structure
(ARPEFS) experimental curves for the c¢(2x2)S overlayer on Ni(001l) due
to Barton et al. to a multiple-scattering cluster spherical-wave
(MSC-SW) analysis of this data by the same authors [7(b)], and to our
reanalysis of this work using the present method. In both
experiments, the photon incidence direction, the polarization :, the
[001] surface normal, and the electron emission direction lie in the
same plane, normal to the surface. Our calculations made use of
clusters of 40 atoms and non-structural inputs as described elsewhere
in a SSC-SW analysis of the same data by Sagurton et al. [3].

In the first case, the incoming photon beam makes an angle of 8hu
- 70° with respect to the surface normal and the detector is placed in
the direction of the surface normal (9e_ = 00). (Hence, this has been
termed normal photoelectron diffraction or NPD.) The photon energy
was scanned from 50 to 420 ¢V. Figure 3.3(a) shows the experimental
curve superimposed on the MSC-SW simulation by Barton et al. [7(b)]
for an optimized structure with sulfur 1.30 & above the first Ni layer

and a first-to-second Ni-Ni interlayer distance of 1.84 R that is

expanded by 4.5% with respect to the bulk value of 1.76 2. Figure
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3.3(b) shows a similar comparison of our SS and MS results to
experiment. 1In SS, several peak positions and intensities are not
predicted correctly (e.g., 1, m and o, as well as the valley between k
and 1). By contrast, our MSC-SW simulations are in excellent
agreement with the experiment, and appear to provide an overall better
description of the data than the earlier calculations shown in (a).
In perticular, we are better able to predict the intensities of peaks
o and p, and the positions of peaks r and s are also in better
agreement with experiment.

The second case is very similar to the first, except that the

incoming photons are oriented at §, = 45° away from the surface

hy
normal and the detector is at 0e_ - 45° away from the surface normal.
(This has been termed off-normal photoelectron diffraction or OPD.)
Figure 3.4(a) again shows the experimental curve and the MSC-SW
simulation by Barton et al. [7(b)] for the optimized structure.

Figure 3.4(b) shows our SS and MS results compared to the same
experimental data. In SS, the position and intensity of the valley
between peaks a and b are not well reproduced. For peak c, the
calculated intensity is too small. Also peak i in the SS simulation
is displaced by several eV. 1In our MS results however, the only major
disagreement compared to the simulati.n by Barton et al. [7(b)] is the
intensity of peak f, which is overestimated. But our simulation of

peaks e and j is in better agreement with experiment than that of

these prior calculations [7(b)].
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The x-scale ordinates on both Figures 3.3 and 3.4 are set by the
experimental data and our calculations have not been rescaled to fit
experiment. This is an important point, as prior SSC-SW results due
to Sagurton et al. [3] have an adjusted x-scale which is more expanded
than the experimental scale. This difference is due to the different
sets of correlated vibrational parameters used in the two
calculations, which evidently oversuppressed the diffraction
oscillations in the earlier work. Our parameters correspond to the
alternate "correlated model 1" discussed by Sagurton at al. [3].

As a final comment concerning our calculations, we note that
convergence is achieved at 4th order as judged from final intensities,
although events through Sth order were included in the calculation.
The number of scattering events versus order for several cases
disscussed in this paper are given in Table 3.1, with points of
convergence as judged by intensities or by number of events indicated.

Overall, the MSC-SW results obtained using these two different
methods agree very well with themselves and with experiment. This
indicates that the Rehr-Albers approach [13] is reliable over low to
medium energies of photoelectron diffraction and that it can provide
at least as good a description of such experimental data as the method

of Barton and Shirley, if not somewhat better.
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3.2.7. Tests Against Scanned-Angle X-ray Photoelectron Diffraction

Results for c(2x2)S/Ni(001):

As a final comparison of our calculations to prior experimental
data and MS theory, we consider an experimental study by Sinkovic et
al., who used the intermediate kinetic energy range from 230 to 900 eV
to study adsorbate core-level azimuthal photoelectron diffraction
[22]. The adsorbate/substrate system employed in this study was again
the well-defined c(2x2)S overlayer on Ni(00l). Again the photon
incidence direction, the polarization, the [00l] surface normal, and
the electron emission direction were in a single plane normal to the
surface. They utilized two polarization orientations: s-polarization
lying in the (001) surface and a specially selected p-polarization
only 18° off the surface normal that maximally emphasized substrate Ni
scattering relative to the primary wave. A grazing electron takeoff
angle of § = 10° with respect.to the surface was used in both cases,
with the azimuthal angle ¢ being scanned. The experimental geometry
for p polarization is shown in the inset of Figure 3.5.

The s-polarization results with 2 only 10°away from the electron
emission direction and thus yielding a very strong primary wave were
reasonablly well reproduced by a quite simple single-sca.tering
cluster plane-wave (SSC-PW) model [22]. The corresponding
p-polarization results were markedly different however. In order to
be semiquantitatively described by the theory, the p-polarization data

required a reduction in the PV scattering amplitudes and the inclusion
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of double-scattering events [22]. These p-polarization data were
later analyzed by Sagurton et al. [23] using a single-scattering
cluster spherical-wave approach, but there was no significant
improvement in the agreement. From this prior work, it was concluded
that the p-polarization geometry with its weaker primary wave showed
evidence of MS effects [22].

Tang [9] subsequently performed a multiple-scattering
spherical-wave analysis on this system and agreed in concluding that
MS 1s required for the accurate description of the p-polarization
data. Tang's computational method is based on an inverse-LEED type
final state, as described eleswhere by Tong et al. [6,24]; this method
takes the translational symmetry of the system into account and thus
requires the assumption of long range order. Hence it is
fundamentally different from the cluster-based methods used by Barton
et al. [7] and in this work. We have now performed
multiple-scattering cluster spherical-wave (MSC-SW) calculations on
the same system and Figure 3.5 compares this p-polarization
experimental data to various theoretical curves. We considered a
cluster of 36 atoms. We see that SSC-SW theory fails to predict the
peak observed in the [110] direction, and yields very poor positions
for the other two peaks in experiment at ¢ ~ 22° and 67°. By cont-ast
the two MS curves agree much better with experiment, and also very
well with one another. Tang’s MS curve has a peak in the [110]
direction, but it is too strong in relative intensity. The other

peaks and shoulders at ¢ ~ 10° and 80° in his curve are in good
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agreement with experiment. Our MS curve has a wider double peak along
[110]. This may be due to our small cluster size of 36 atoms and/or
our neglect of the finite aperture of the detector. But the relative
intensity of our central peak is in better agreement with the
experiment than that predicted by Tang {9]. The rest of the structure
in our MS curve away from [110] is in excellent agreement with
experiment. The strong disagreement of our SS results with experiment
is consistent with the prior conclusions by both Sinkovic et al. [22]
and Tang [9] concerning the need for MS for this particular geometry.
h

Finally, we note that convergence for this case was reached at A

order, as indicated by the numbers in Table 3.1.

3.3. APPLICATION TO AUGER AND PHOTOELECTRON DIFFRACTION FORM

ATOMIC CHAINS:
3.3.1. Straight and Bent Chains:

We now consider single-scattering and fully converged
multiple-scattering results for simple linear chains of different
atoms, an illustrative type of test case discussed first by Xu,
Barton, and Van Hove [10(b)]. To illustrate the type of diffraction
pattern one expects from such chains, we show in Figure 3.6 a
simplified drawing applicable'to high-energy scattering where forward
peaking is dominant and the scattering phase shift is small (here

assumed to be zero). Both the 0th order (forward scattering) peak and



239
the higher-order diffraction peaks are labelled. In a real n-atom
chain these features will be distorted somewhat by scattering phase
shifts that depend on scattering angle, by the resulting imperfect
overlap of different orders from different scatterers, by inelastic
attenuation effects, and by multiple-scattering effects.

We begin by considering Cu atoms placed at 45° with respect to a
fictitious "(001) surface", as shown in the inset of Figure 3.7. The
2.56 & nearest neighbor distance is chosen to simulate emission along
a [101] direction. The surface is used only to determine that region
of space over which an exponential decay of intensity due to inelastic
scattering is included. These chains represent the nearest-neighbor
{101] direction in the fcc Cu crystal, with a single emitting atom at
the bottom of the chain. The total emission from such a [101] chain
in the metal would thus be the sum over the intensities of all of
these emitters from the surface inward to the end of the chain. Cu
IMM Auger emission at 917.0 eV is simulated using the aforementioned
approximation of an s outgoing wave (£f=0 only) . Ae is taken to be
11.7 & at 917 eV and 3.9 & at 100 eV in results to be discussed later.
Refraction at the surface due to the inner potential Vo has not been
included. The resulting curves for 2-10 atom linear chains are shown
in Figure 3.7. Figure 3.8 shows other information derived from these
curves, in particular the forward-scattering along-chain intensities
in both SS and MS and, in the lower panel, the amount of MS

"defocussing”, which is defined as D(%) = 100 X [Iss(along chain) -
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IMS(along chain)] / Iss(along chain), all as a function of chain
length n.

From these two figures, it is evident that the longer the chain
is, the greater are the MS effects: the forward-scattering peak
height systematically diminishes as the number of atoms in the chain
increases, eventually falling by about 6 atoms to a level equal to the
background on either side of the chain axis. Such intensity
reductions were termed "defocussing" in the first discussion of this
effect by Tong and co-workers [6]. It is also interesting to note
that the MS peak widths are consistently narrower than those of
corresponding SS peaks, becoming systematically smaller in FWHM as the
number of atoms in the chain is increased. This can be qualitatively
understood from a classical picture in which only those electrons with
very small deflections (i.e., with large impact parameters at the edge
of the scattering potential) can avoid being driven into defocussing
pathways in passing several scattering centers. By contrast, for a
2-atom chain and at this high energy, MS effects are negligible, a
simplifying result which is applicable to emission from an oriented
diatomic molecule such as the system CO/Fe that is to be discussed
later. The 4- to 10-atom cases are applicable to multilayer substrate
emission or to grazing-angle emission from adsorbate/substrate
systems, since in both of these cases, emitters can have more or less
linear rows of atoms between them and the detector for a certain
direction of emission. In such cases, one thus expects that intensity

along linear or nearly-linear chains of atoms with small interatomic
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distances will be significantly reduced. By contrast to the MS
results, the SS intensity only begins to reduce after n = 4-5 due to
both interference effects and inelastic attenuation. But even at n =
10, the SS intensity shows a pronounced forward-scattering peak and is
much too strong compared to the MS intensity.

These calculations provide another test of the accuracy of our
method and the computer code, because a similar set of curves for the
same case were reported earlier by Xu and Van Hove [10(a)] for 2-, 3-
and 5-atom Cu [101] chains at 917.0 eV; they have used the TS-MQNE
method of Barton and Shirley [7] in their work. The good agreement
between these two different approaches to MS is very encouraging: in
fact, excellent agreement is obtained if we allow fully for the
differing degrees of angular broadening used in the two sets of
calculations.

We have also performed calculations on such Cu chains at the much
lower energy of 100.0 eV. There is no Cu Auger peak at 100.0 eV and
this energy was simply chosen to investigate the low energy behavior
of multiple-scattering effects, again for an outgoing s-wave. As
shown in Figures 3.9 and 3.10, the SS ard1 MS forward-scattering
intensities decay at a more nearly comparable rate than those at 917.0
eV. This is due to the lack of a strongly forward-peaked scattering
factor, as well as to the shorter electron mean free path at this
energy, which tends to attenuate MS effects with longer total path
lengths. Although both defocussing loss of intensity and peak

narrowing with increasing chain length are still present, they are
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less pronounced than at 917 eV and we expect this to be a general
comparison between lower (~100 eV) and higher (= 500 eV) energies with
an emitter at the end of the chain.

A further noteworthy effect at lower energies is that the peak
maximum systematically moves to higher takeoff angles so that it is
2-5° away from the chain axis. This is due to peak distortion by the
stronger exponential damping of intensities by inelastic effects,
which will go as exp(-Zn/Aesino), if Zn is the depth of the emitter in
the n-atom chain below the surface.

Another interesting case is that of bent chains, results from
which are shown in Figure 3.11 for 917.0 eV and in Figure 3.12 for
100.0 eV. The amount of defocussing vs. the bend angle 8 for 2- 3-
and 5-atom chains is presented. The dropoff of defocussing to zero
for 917 eV at 8 ~25°-30° is consistent with the fact that the forward
peak in the plane-wave scattering factor dies away to essentially
"background" level by this angle [1]. At 100 eV, however, the forward
peak is much broader, but the S5 and MS intensities still converge at
about the same angle. Thus, events more than about 30° off axis are
expected to be rather SS in character over a broac range of energy,
although we ﬁote that the chain geometry we have used here does not
allow for back scattering from atom(s) just below the emitter, an
effect which could become important by 100 eV.

We now investigate the dependence of these MS effects in chains
on different crystallographic directions and materials. In Figures

3.13 and 3.14, we first lock at 917 eV emission along the much more
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open [111] direction in the fcc Cu lattice, which has a
nearest-neighbor distance of dn-n- 6.27 & compared to 2.56 & for the
[101] direction considered previously. 1In this case, the chain is
placed at 35.3° with respect to a fictitious (001) surface and hence
the forward-scattering peak is very close to that angle with respect
to the surface. The intensities along the chain fall more rapidly
with increasing chain length due to inelastic attenuation, which now
goes as exp(-Zn/Aesin(35.3°)). These inelastic effects are enhanced
because the interatomic distance and thus Zn is about 2.5 times larger
than that for the [101] chains at a given n. We note here also that
enhanced inelastic attenuation has shifted the peak position about 2°
toward higher takeoff angles. Also, the SS and MS results are much
closer to one another for [l1l1l] chains because of the increased
nearest-neighbor distance and a concomitant reduction of MS
defocussing effects; thus the importance of this type of MS effect
will depend strongly on the direction of observation. Nonetheless, up
to 50% defocussing is seen for the longest chain, and the same sort of
peak narrowing in MS is observed. Both SS and MS peaks are very small
after about eight atoms and hence major contributions to the
photoelectron intensity are coming from the top eight layers in each
case.

To further invesfigate the effects of interatomic distances on
defocussing, we have finally studied Cu [001] chains (dn-n = 3.62 A)
which are less dense than [101] chains but more dense than [111]

chains . We see from Figures 3.15 and 3.16 that both single and
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multiple scattering intensities for [001] chains are in between those
for [101] and [1l1ll] cases, but closer in behavior to the [10l] case,
consistant with the interatomic distances being closer.

As a final comment concerning these results for various Cu chains
at 917 eV kinetic energy, we note that the higher-order diffraction
features occuring for emission angles more than 10-15° away from the
chain axis are always predicted reasonably well by SS theory, even
though the MS curves exhibit some additional fine structure about an
average that is very close to the companion SS curves. This is
another indication that SS becomes a reasonable approximation for
angles sufficiently far from a near-linear chain of scatterers. (cf.
also discussion of Figures 3.11 and 3.12.) One potentially useful
implication of this observation is in the recently-suggested
holographic inversion of 6,4 intensity plots to yield images of atomic
positions [25]. Since bond-distance information in these inversions
is present only in the higher-order features, SS may prove to be an at
least semiquantitative wusefully accurate way to model the images
expected, and this has been demonstrated in recent preliminary work
[26].

We now turn to examples of chains for different materials, and
first show in Fig.res 3.17 and 3.18 results for linear [101] Al chains
at 1336.0 eV, which corresponds to MgKa-excited Al 2s emission. We
have here assumed 2 and Q to be parallel. Defocussing effects are
again obvious, since the SS curves show a pronounced peak for an

emitter as deep as ~10 layers in the solid, but the MS intensity goes
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essentially to background level when the emitter is about eight layers
deep. Peak narrowing as chain length increases is also evident. Note
also that defocussing sets in more slowly for Al than for Cu as a
function of chain length, with about an additional 2 chain atoms being
required to yield the same effect in Al.

A second case of Ge [111] chains is also interesting and related
to a recent Xx-ray photoelectron diffraction study by our group of a
surface phase transition on Ge(1lll) [27]. In this study, the
intensity of a forward-scattering peak along a [111] direction at
19.0° with respect to the Ge(lll) surface was monitored as a function
of temperature, and it was found to show an abrupt decrease at a
previously-observed surface phase transition temperature. The Ge
[111] chains on which we have carried out MS calculations represent
this direction. As shown in Figures 3.19 and 3.20, even though the SS
peak has contributions from more than ten layers (five (111l) double
layers in the usual notation), the MS signal is seem to come from the
top eight layers (four double layers) only. Both defocussing
intensity reduction and peak narrowing are again seen. The
smooth-curve average behavior of the defocussing effects in Figure
3.20 also make it appear that Ge defocusses intensity more rapidly
than Cu.

Figure 3.20 illustrates another interesting effect in Ge: the
"saw tooth" variation of the curves as the chain length increases,
which is found in both the SS and MS curves. This is explained by the

alternating short-long-short-long nature of the interatemic distances
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along this chain. That is, within a double layer dn-n is 2.45 X, but
between them it is three times this or 7.35 A. The chains with odd
numbers of atoms thus have a gap of 7.35 & between the emitter and the
nearest forward scatterer, and then two foward scatterers with dn-n -
2.45 & along the chain. Chains with even numbers of atoms have a
single nearest-neighbor scatterer at dn-n = 2.45 &, and then a long
gap of 7.35 X to the next scatterer. The enhanced intensity for even
numbers is thus due to having a strong forward-focussing scatterer
very close to the emitter. This oscillatory effect on intensity,
which has not been discussed previously, could be useful in studying
semiconductor epitaxial growth. The "stairstep" form of the
defocussing curve also has the same origin, in that increasing from
even to odd adds only a long distance scatterer that is very
ineffective at defocussing.

In Figure 3,19, SS peak centroids are found to shift to higher
takeoff angles by about 3° due to previously discussed inelastic
effects. We do not observe such distortions in the MS peak. This is
due to the less severe inelastic distortions on the narrower MS peaks.

We continue this discussion on chains by investigating the
dependence of these strong forward-scattering defocussing effects on
.some of the non-structural parameter. used in the simulations.

First, we consider the size of the muffin-tin radius which is
used in the program generating the scattering phase shifts 62. This
is motivated by recent work by Aebisher et al. [28] who have

theoretically investigated the material dependence of such MS effects
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along chains. They concluded that the different amounts of
defocussing in Cu and Al chains at a given chain length (cf. our more
detailed results of this type in Figures 3.7-3.10, 3.13, and
3.14-3.20) are not due to the choice of non-structural input
parameters but rather are primarily due to the differences in the
scattering strengths of the constituent atoms (i.e., their atomic
numbers and the resultant set of 62'5). However, an additional
parameter related to the 62'5 that depends on the nature of the
material and also has a certain degree of arbitrariness in its choice
is the muffin-tin radius RMT used in the calculation of the 62'3. The
usual choice is the touching-sphere radius and hence RMT is clearly
dependent on the lattice parameters of a given material.

We have thus investigated the effects of muffin-tin radius on the
final intensities for a five-atom Cu chain, as shown in Figure 3.21.
Here we have chosen two non-touching radii which are 30% and 15%
smaller than the touching radius, the touching radius, and two
overlapping radii which are 15% and 30% larger than the touching
radius. The magnitude of the SS forward intensity increases
monotonically with the size of the muffin-tin radius. This can be
qualitatively explained in terms of a potential of greater radial
extent being capable of better focusing the photoelectrons in the
forward direction, since forward-scattering is primarily controlled by
the outer portion of the potential corresponding to larger impact

parameters. But the MS intensities show a much weaker variation with
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RMT that is, if anything, the inverse of the SS intensities; that is,
the strongest forward scattering in SS (the largest RMT) gives the
strongest defocussing and the lowest MS intensity along the chain.
This can be explained via a potential of greater radial extent causing
stronger defocussing and thus being capable of directing
photoelectrons away from the forward direction through
multiple-scattering effects. However it is evident from Figure 3,21
that the choice of muffin-tin radius has only minor effects on
defocussing. Hence, the choice of muffin-tin radius alone is not
sufficient to account for the different amounts of defocussing in
different materials; our results show that these differences are
mainly due to a combination of the differing atomic scattering
strengths and the change in interatomic distance along chains of
atoms, in agreement with the work of Aebisher et al. [28].

As a final comment on Figure 3.21, we note that, for angles more
than 10-15° awvay from the chain axis, the diffraction structure is
negligiblly affected by the choice of the muffin-tin radius in either
SS or MS. This is useful, because as noted previously, it is such
higher-order structure that contains bond length information, or via
holographic inversion, also atomic image positioms.

There are othe¥ non-structural parameters that coull influence
chain intensities such as the precise choice of the inelastic
attenuation length of the photoelectron, the finite aperture of the
photoelectron detector and the inner potential. Varying the first two

parameters over a reasonable range is found to cause changes in
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relative peak intensities of only about 1-10%; peak positions are very
little affected. Increasing the inner potential is responsible for
moving peak positions to lower takeoff angles due to refraction, an
effect that is strong for lower energies and/or lower takeoff angles.
When the inner potential is increased, the peak positions move away
from the surface normal according to Equation (3-2-49). But the
single and multiple scattering peaks are found to move together with
no relative displacement.

The various tests we have made to insure that our cutoff criteria
were adequate and that full MS convergence was reached are discussed
eleswhere [15]. But in connection with calculations on linear chains
at higher energies = 100 eV, there is one useful rule of thumb: the
highest order of scattering can be estimated as the maximum number of
forward-scattering events iﬁ sequence, that is, (n-1) for an n-atom
chain. For example, all of the Al chains in Figure 3.17 are found to
obey this (n-1) rule. This is illustrated for a 9-atom chain in Table
3.1, for which a small number of 9th >rder events exceed the 5%
cutoff, but convergence as judged by intensities is reached at 8th
asrder. We do however, have evidence that for chains of much higher
atomic number such as W, orders beyond this rule might need to be
included. Thus, testing its validity at least against the next h’gher

th . . .
n  order is advisable in any case.
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3.3.2. Effect of the Initial State:

As indicated previously our approach to multiple-scattering can
be extended to include the correct initial and final states in
photoemission as allowed by dipole selection rules. This is done with
a very small amount of extra computer time as one has to recalculate
only the W matrix for each final quantum number Lf.

We now look at the effects of photoemitting from different
initial states (that is, into different final states Zf) for two- and
three-atom Cu chains at two different kinetic energies (100.0 and
1000.0 eV) and in both single and multiple scattering. For purposes
of illustration only, the £f - Ei + 1 channel is included. 1In
general, the ﬂi-l channel is expected to be weaker due to the smaller

radial matrix element associated with it. (Our code can, of course,

treat the full problem with £

known.) The polarization ¢ was kept fixed along the electron emission

£ - Bi + 1 if the matrix elements are
direction k. No inelastic attenuation was included. These results
are shown in Figures 3.22 (Ekin - 100 eV) and 3.23 (Ekin = 1000 eV),
where we bave plotted the normalized function x = (I(ﬂ) -
Io(ﬁ))/lo(i), with IO equal to the unscattered intensity. In addition
to the possible 2i+1 final states for photoelectron diffraction, we
have also included the £f = 0 approximate final state for Auger
electron diffraction, so that all of £f =0,1,2,3, and &4 are

considered.
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In Figure 3.22, the first set of curves are for a two-atom Cu
chain at 100.0 eV with SS only. This case was examined earlier using
a single-scattering formalism by Friedman and Fadley {17], and our
results agree completely with theirs. In particular, the
forward-scattering intensity steadily decreases as the initial angular
momentum increases and the intensity for larger scattering angles
shows the oscillatory behavior typical of higher-order diffraction
peaks (cf. Figure 3.6), but with phases that change by as much as = as
£f changes from O to 4. Also the effect of the photoelectron parity
is clear in the backward direction, with odd and even parity curves
being grouped together. As expected [10,11}, there are almost no MS
effects in a two-atom case, as we can see also from Figure 3.22.
Hence, these observations should also be valid for a full MS
calculation.

The second set of curves in Figure 3.22 is for a three-atom SS
chain at 100.0 eV. First, we observe an enhancement of intensity for
all £f in the forward scattering direction due to the presence of an
extra atom in the chain. However, the forward-scattering intensity

still shows a decrease with increasing 2 Second, the absolute value

£
of the back-scattering intensity is now reduced, but it still shows
the grouping of waves according to parity. Relative to the 2-atom
case, we also observe a splitting or fine structure in the first order
interference peaks occuring over about 20°-45°. This is due to the

well understood interference of waves from each scatterer, since the

orders from different scatterers do not occur at the same angle, but
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rather overlap roughly as 15% order of the 15% scatterer and 2nd order
of the 2nd scatterer. However, the presence of scattering phase
shifts makes this correspondence only approximate. The bottom set of
curves are for the same case, but now MS effects are included. The
forward-scattering peaks are now defocused, but they exhibit the same
decrease as 2f is increased that was seen in SS. There is also an
enhancement of the amplitudes of features in the off-forward
directions that must be present in order to yield a net conservation
of flux. This enhancement of diffraction effects in the off-forward
directions is expected to be more pronounced for longer chains as the
defocussing of forward-scattering peak is more severe for those chains
(cf. Figures 3.7 and 3.9). From these curves, it is evident that the
use of the correct final £f states is very important at kinetic
energies as low as 100.0 eV, Note however, that for scattering angles
= 25? the diffraction fine structure is very nearly the same in both
S§ and MS for all angular momenta; this reiterates a point made
earlier that SS is still a reasonable approximation for angles away
from any forward scattering come.

In Figure 3.23, we preseut the high energy (1000.0 eV)
counterparts of the curves shown in Figure 3.22. As expected, the
forward-scattering intensities are much higher at high energies. The
decrease in the forward scattering strength as Zf is increased 1is
still present, but it is much smaller in magnitude compared to that at
low energy. The first few peaks in the higher-order diffraction

o (]
features out to about 35 -40 show a weaker dependence on £f than at
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100 eV, with a general tendency to simply be smeared out as Ef
increases. However, the weaker higher-order diffraction features at
intermediate-to-large scattering angles are not as close to one
another between SS and MS as they were for 100 eV. The grouping by
parity at the back-scattering end of the curves is still true at high
energy, even though the amplitudes of these oscillations are now
smaller compared to the low energy case. (Notice that the left
ordinate of Figure 3.22 is identical to the right expanded ordinate of
Figure 3.23). The effects of defocussing are also clear in the 3-atom
curves: forward scattering is decreased and off-forward features are
in general increased somewhat. From these curves, one can conclude
that, at kinetic energies as high as 1000.0 eV, the correct final
state is not so important for scattering geometries that emphasise
forward scattering. Also, beyond the reduction of the forward
scattering peaks, MS is not found to radically alter the fine
structure over the most significant region up to ~40° scattering
angle; SS calculations thus may reproduce experimental data reasonably
well, as has been noted in numerous studies {1].

In longer chains, MS effects woulc be expected to cause drastic
reductions in the forward-scattering intensity (cf. Figures 3.7, 3.9,
3.13, 3.15, 3.17 and 3.19). This should result in a larger increase
in the relative amplitudes of the large-angle oscillations.

As a further test case concerning the effects of the final
photoelectron angular momenta, we consider the (J3XJ3)R30° Ag

overlayer on Si(1lll) to be discussed in detail in Sectiom 3.5.2. For
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this still controversial structure, Bullock et al. [29] have used
azimuthal x-ray photoelectron diffraction data and SSC-SW calculations
to suggest that the Ag atoms are buried 0.2 & below the top Si layer
in what has been termed a Ag-honeycomb missing-top-layer (MTL) model
(cf. Figure 3.24). Two closely-related domain types are postulated
for this structure, with about a 40:60 mixture of type l:type 2 being
suggested. For this model, Ag photoelectrons are thus expected to
show strong forward scattering from near-neighbor Si atoms for low
takeoff angles (short arrowé). Also, there are some short
nearly-linear Ag-Si3 chains in this geometry (see long arrow) that
might be expected to lead to MS effects (a topic to which we will

return later). The kinetic energy for the Ag 3d photoelectrons

5/2
studied is 1114 eV for this system. In Figures 3.25 and 3.26 we
compare SS and MS curves for £f = 1 and fully interfering £f =3+1
as calculated for the final optimized geometry with two domains. In
agreement with our eaflier prediction, there are no significant
changes in going from the approximate p-wave final state to the
correct d+s-wave final state. This also has been seen in Ni 2p3/2
emission from a Ni(00l) substrate [30(c)], a case. to be discussed in

Section 3.4.2., and another example where high energy

forward-scattering is dominant.
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3.4. APPLICATION TO EPITAXIAL OVERLAYER GROWTH AND SUBSTRATE

EMISSION:

3.4.1. Auger Diffraction from Epitaxial Cu(001l) on Ni(001l):

The experimental data we will consider was obtained by Chambers
et al. [31] and made use of the forward scattering of high-energy
Auger electrons for studying vertical interlayer relaxations in
epitaxially-grown overlayers. In this experiment, 6 & or about 3 ML
of Cu was grown epitaxially on a Ni(00Ol) substrate. Due to the 2.56%
lattice mismatch between Cu and Ni, it was expected that the Cu layers
would relax vertically. The polar-angle dependence of the Cu Auger
peak was measured in the [001] - [101] - [100] azimuth, and compared
to single-scattering plane-wave calculations in which the vertical
distance between Cu layers was varied to simulate interlayer
relaxations [31].

We present in Figure 3.27 both the experimental data and prior
theoretical curves, as well as single- and fully-converged
multiple-scattering spherical-wave counterparts to the plave-wave
calculations by Chambers et al [31]. A cluster of about 40 atoms was
used frr both our SS and MS calculations to permit isolating only
those effects due to MS. There is in general very good agreement
between our SS curves and those of Chambers et ai., with more fine
structure éppearin in the latter, probably due to the larger cluster

used in these prior calculations. The MS results for the [10l] peak
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exhibit the effects of defocussing and narrowing noted earlier, but
importantly still exhibit the same shift in peak position with
vertical relaxation that is seen in the SS curves. Thus, MS does not
appear to prevent the use of thils peak position for estimating the
interlayer relaxation as Chambers et al. have done. However, our
theoretical curves agree best with the position of this peak for an
interlayer distance of 3,71 & that is slightly different from their
value of 3.80 &. As a final comment, the FWHM of the [10l] peak is
reduced by about 10° in going from single- to multiple-scattering, but
the width of the single-scattering curve in fact agrees better with
experiment, perhaps due to the presence of disorder and/or vibrational
effects beyond our model. Overall, we thus conclude that the
single-scattering level of Auger electron-scattering theory is
adequate for studying vertical layer relaxations in thin epitaxial
overlayers via the positions of strong forward scattering peaks, but
that correctly predicting all relative intensities will require

including multiple-scattering effects.
3.4.2. X-ray Photoelectron Diffraction from Ni(001):

Stewart et (1. [30(a)] have reported high angular resolution
x-ray photoelectron diffraction patterns for Ni 2p3/2 emission from a
Ni(001) substrate. Osterwalder et al. [30(b) and (c)] have performed
an extensive set of SS calculations to simulate this experimental

data. The agreement between experiment and the simulations was often
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good, but was not as satisfactory for several angles. We thus in
Figures 3.28(a) and 3.28(b) compare different types of SS and MS
calculations with experiment, focussing on those angles for which
discrepancies were noted. The cluster size was ~40 atoms with
emitters in up to four layers. In increasing order of accuracy and
complexity, the theoretical curves are SSC-PW (p final state),
SSC-SW(p final state), SSC-SW (d+s final state), and MSC-SW (p final
state). The MS theory curves shown are thus for a simple s -> p
transition to simulate the correct p -> d + s transition; as noted
earlier we do not expect this to affect the results strongly for such
a high energy emphasizing forward scattering. And this is borne out
by the near identity of the single scattering SW curves with p and d+s
final states in the figure.

Due to the presence of long atomic chains in single crystal
substrates it is expected, based on our experience with atomic chains,
that the inclusion of MS will improve the agreement between theory and
experiment along linear or nearly linear chain directions. For
example, one approaches such chains at § = 7° and ¢ - 45°, where the
experiment has a valley but all of the SS theory curves predict a
peak. Grazing emission at ¢ = 45° corresponds to emission along
nearest-neighbor <110> dirzctions for which MS effects should be
strongest (cf. Figure 3.7). And indeed multiple scattering is found
to very much reduce this peak in the calculated spectrum for § = 7°,
and to overall enhance the agreement with experiment. The same is

true at § = 10° and 4 = 45°, with the linear chain still in the [110]
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direction. Again the agreement is best as to peak positions and fine
strucure in MS, although a large cluster may be needed to accurately
predict all relative intensities.

For § = 18.4° the agreement between SS theory and the experiment
is satisfactory. This may be due to the fact that now the emission
direction is nearly 20° away from the nearest-neighbor chain axis and
hence that the MS effects are reduced. This was illustrated earlier
using bent Cu chains (cf. Figure 3.11).

The next low-index chain axis as § is increased is [11l1l] at § =
35.3° and ¢ = 45°. We have previously noted that the [111l] direction
in Cu has a large enough nearest-neighbor distance that MS effects are
much reduced compared to [101l] or [001] (cf. Figures 3.7 and 3.13).
However, looking along the [111] axis through an fcc unit cell, we
find that there are in fact two equilateral triangles of 6 total
scatterers comprised of the face centering atoms in the unit cell that
have scattering angles small enough with respect to [111] (19.5° and
35.30) to potentially complicate calculations along this axis through
MS. 1In fact, in this direction, the experiment shows a prominent
peak, but all of the single scattering theories show either a valley
or only a very small peak. Including multiple-scattering is able to
. produce the correct peak shape alon¢ [111], but the peak height is
still too small. Further study of this direction with larger clusters
and the correct d + s final states is called for.

For the final example at § = 450, multiple scattering effects are

expected to be most prominent along the nearest-neighbor [101] azimuth
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for which ¢ = 0°. All of the theory curves here show at least
qualitative agreement with experiment in predicting two strong peaks
at ¢ = O°, 90° and a weaker triplet at ¢ = 450. However, all disagree
in predicting a strong splitting of the ¢ = O°, 90° peaks into
doublets. The SSC-SW (p final state) and MSC-SW (p final state)
curves agree best with experiment. Again, larger clusters and the
correct d + s final states may be necessary to describe these data
adequatly.

In general, these results for Ni(00l) indicate that MS has
improved the agreement between theory and experiment for these problem
directions, suggesting that MS calculations will be of use in fully
simulating x-ray phototelectron diffraction involving substrate
emission. This agreement may be improved by using larger clusters,
and correct final states, as well as including correlated vibrations

and angular broadening.

3.5. APPLICATION TO ADSORBED OVERLAYERS:

3.5.1 CO/Fe(00l) System:

In this section we assess the multiple-s.attering effects arising
for the case of an adsorbed molecule: CO on Fe(00l1). This system has
recently been studied by Saiki et al. [32] using x-ray photoelectron
diffraction. From previous studies including NEXAFS measurements

(33], it was known that, for the o, state of this system, the C-0

3
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bond is tilted away from the Fe(00l) surface normal by about 45i10°.
However, the tilt angle was not very precisely known and there was no
information available on the azimuthal preference of this tilting. By
comparing experimental polar and azimuthal results for C 1ls emission
to spherical-wave single-scattering results for a 7-atom cluster of
COFes, it was possible to determine more precisely both aspects of
structural information mentioned (32], as shown in the inset in Figure
3.29: the tilt is 55+2° from the surface normal and it is
preferentially along [100] azimuths. Single-scattering calculations
have also been performed on much larger CO/Fe clusters but these

results are very similar to those for the COFe. cluster [34]. In

5
order to further estimate the vertical height of the C atom with
respect to the first Fe plane, Saiki et al. used the intensity ratio
I'/1 of the 0th and higher order diffraction peaks at ¢ = 0° and 45°
respectively. Comparison of experiment and single-scattering theory
then suggested a C vertical height of either about 0.3 or about 0.6 A.
In order to assess the influence of MS effects on this analysis,
we have performed azimuthal multiple-scattering calculations for the
7-atom COFe5 cluster. C 1ls emission induced by a single polarization
vector in the plane of x-ray incidence and electron emission was
considered; the angle between photon incident and elect.on emission
was 72°. Although the experiment was done with unpolarized radiation,

prior experience indicates that the intensity due to the second

polarization vector perpendicular to this plane is negligible. Once
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again, no allowance was made for the finite angular acceptance cone of
the spectrometer.

In Figure 3.29, we compare single-scattering and
multiple-scattering results, including the ratio I’/I as a function of
the C vertical distance. The single and multiple scattering curves
are very similar, and as indicated in Table 3.1, the first order
scattering level is where convergence is seen. This indicates that
multiple-scattering effects are not major factors in using such
high-energy x-ray photoelectron diffraction to determine the
structural parameters of such a small-molecule/substrate system. This
is fully consistent with our previous observation that there are no
significant multiple-scattering contributions in high energy emission
from two-atom clusters (cf. Figures 3.7, 3.9, 3.15, 3.17, and 3.19).

The numbers in Table 3.1 for this system also illustra that our
5% cut off criteria (which are based on the maximum amplitude in 3rd

order scattering) are too conservative for this case. That is all

events up to 3rd order are calculated even though those at 2nd and 3rd

order are expected to be neglegible, and this leads also to
. th th .
.calculating some 4 order and 5 order events. For this case,
: N rd
therefore our conservative cutoffs beginning after 3"~ order

nonetheless included unnecessary higher order terms.
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3.5.2. Scanned-Angle X-ray Photoelectron Diffraction Results for

(13x{3)R30° Ag on Si(1lll):

The Ag/Si(11l) system has been studied using almost every
technique in surface science, including Ag 3d x-ray photoelectron
diffraction [29,35]. The most recent study by x-ray photoelectron
diffraction [29] indicated that the Ag cannot be more than 0.5 & below
the surface, and furthermore concluded from an R-factor analysis of
azimuthal Ag 3d results and SSC-SW calculations that the structure
consists of two closely related types of Ag honeycomb domains that
grow on the second Si layer, with the top Si layer missing. This
geometry has been shown in Figure 3.24. For this geometry, linear
Ag-S1-5i-Si chains can be seen, e.g., along the long arrow at ¢ ~
160°. Especially at low photoelectron emission angles relative to the
surface, these chains could cause defocussing or other MS effects near
the chain axis and hence the resulting MS intensity patterns could be
different from their SS counterparts.

We have thus simulated azimuthal intensity patterns for three
take-off -ngles of 4.1°, 10.0° and 14.7° spanning the range studied as
a function of the percentage of domain 1 (see Figure 3.24). As noted

previously, the kinetic energy for the Ag 3d photoelectrons is 1114

5/2
eV. The proper d -+ f + p final state with interference is considered.

o * . ~
The Ag photoemitter is placed 0.2 A below the surface and the

parameters being found via a SS R-factor analysis [29].
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The corresponding R-factors are shown in Figure 3.30. The shape
of the individual R-factor curves are very simillar in SS and MS,
although the SS minima are lower and the MS curves are generally
flatter about their minima. The total R-factor is a sum of individual
R-factors for the three # values involved, with each R value being
weighted by the experimental anisotropy at that 4. The total SS
R-factor, which is smaller than the total MS R-factor, indicates a
mixture of 40% of domain 1 to 60% of domain 2. The ratio indicated by
the MS total R-factor is nearly 50:50. The experiment-theory
comparison in Figure 3.26 is for the SS-derived value of 40% of domain
1. Including MS yields only minor changes relative to SS, and the
overall fits to experiment are very little different for the two sets
of curves (as indicated in Figure 3.26), even though the total SS§
R-factor is slightly lower. The remaining small discrepancies between
experiment and theory could be due to: the use of too small a cluster
(here 22 atoms for SS and MS), the need to more accurately allow for
vibrational attenuation of diffraction effects, slight errors in the
calibration of the experimental theta scale, and/or the need for
further structural refinement.

Finally, the event count versus order in Table 3.1 makes it clear
that, for this particular geometry of Ag/Si(111), at least 3rd order
events must be included. These results thus cast doubt on the recent
use by Fujikawa and Hosoya [36] of only 2nd order events in analyzing

another proposed structure for this system.
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3.6. CONCLUSIONS:

When adapted to a multiple-scattering treatment of photoelectron
diffraction and Auger electron diffraction, the new separable Green's
function approach of Rehr and Albers yields results that are in
excellent agreement with prior multiple-scattering results in the
literature spanning energies from ~80 eV to 1000 eV. This approach
also has certain advantages as to the versatility and speed of
convergence. The code we have written to implement it should be
applicable to a broad range of both scanned-angle and scanned-energy
problems. Multiple-scattering is important when scattering along
linear chains of atoms is involved, with the most obvious effect being
a loss of Intensity due to defocussing, but peak narrowing also being
seen. From calculations on linear chains, we conclude that the amount
of MS defocussing along the chain axis depends on the interatomic
distances as well as the strength of the scatterer (i.e., its atomic
number). Other parameters such as the radius of the muffin-tin
potential, the inner potential, the electron mean free path, and the
degree of angular broadening have a relatively minor effect on this
defocussing. Incorporating the correct final £f state is not
important in geometries emphasizing high-energy forward scattering,
but is quite important for larger scattering angles and/or lower
energies. This was demonstrated for Cu chains and for (J3xJ3)R30° Ag
emission from

293/2 m

agreement between theory and experiment was improved for certain

on Si(111). In Ni a Ni(001l) substrate, the
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near-chain directions when multiple-scattering was included. But for
CO0/Fe(001), where no long chains of atoms are present,
single-scattering theory was adequate. For the case of a recently
proposed structure for (J3x|3)R30° Ag on Si(111), the difference
between single- and multiple-scattering is minor and both analyses

point to the same two-domain model.
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Table 3.1.

Indication of the number of events versus scattering order and the
convergence with order for various cases considered here. A cutoff of

5% of the maximum 3rd order amplitude is used for continuing to ath,

Sth, and higher order events.

Case: S/Ni(001) S/Ni(001) S/Ni(001) Al Chain CO/Fe(001) Ag/Si(111)

Figure: 3.3 3.4 3.5 3.17 3.29 3.26
Cluster
size: 39 37 36 9 7 23
Number of
events#:

st +
1 3838 2701 560 648 360 861
2™ 145844 99937 19600 5184 2160 9261
3T 5542072 3697669 686000 41472 12960 3797017
4™ 4184712 2203646 387807 36288 2880 2583max
5P0 420400™8F  450475™8%  31675™8%X 44960 2160M3%* -
6th ; ; ] 31136 ; ;
,th ; ] ; 12656 ] -
gth ) ; ] 3136" ) ;
gth ; ; ] 360" ; ;
10th ) ) ) omax _ _

# Actually equal to the number of cycles of retrieving elements in the
scattering matricies at each order.

* Already converged at this order as judged by equality of intensities
to within 1.0% between this order and the next order.

Convergence judged by the number of events.

max .
Maximum order considered.
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Figure 3.1. The geometry of the scattering process: (a) the initial
general expression in terms of the free particle propagator GL L’ and
the t-matrix elements tz; (b) the separation into scattering matrices

L
F , and termination factors T £ and rOO that is obtained in the
A, Al AN

Rehr-Albers method [13]; (¢) the inclusion of Debye-Waller and
inelastic damping, with ﬁN now defined for convenience as the last

scatterer instead of the detector as in (a) and (b).
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Figure 3.2. The degree of convergence with order in the Rehr-Albers
approximation. Model single-scattering calculations are shown at Oth
order, 2nd order (the order used throughout this paper), and a much

higher Sth order for hypothetical £ - g emission from a 2-atom chain

a with Cu scatterer (from Bullock, reference 18). Results are shown

at 100 eV, 300 eV, and 1000 eV.
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Figure 3.3. (a) Experimental and theoretical scanned-energy (ARPEFS)
curves for S ls emission from c(2x2)S/Ni(001) by Barton et al. [7(b)].
The incoming radiation makes a 70° angle with the surface .normal, and
the photoelectrons are emitted along the surface normal. (b) Single

and multiple-scattering simulations of the experimental data in (a)

using the present method.
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Figure 3.4. (a) Experimental and theoretical scanned-energy (ARPEFS)
curves for S 1s emission from c¢(2x2)S/Ni(00l) by Barton et al. [7(b)].
The incoming radiation makes a 45° angle with the surface normal, and
the photoelectrons are emitted at a 45° angle with respect to the
surface normel. (b) Single and multiple-scattering simulations of the

experimental data in (a) using the present method.
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Figure 3.5. Azimuthal photoelectron diffraction for S 1ls emission from
c(2x2)S/N1i(001) at 230.0 eV. The experimental geometry is shown in
the inset. The experimental data are from Reference 22, the bottom
MS-SW curve is from Reference 9, and the rest of the theoretical

curves are from this work.
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Figure 3.7. Single and multiple scattering calculations of Auger

electron diffraction from linear Cu [101] chains at 917.0 eV.
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Figure 3.10. (a) Same as Figure 3.8(a), but for 100 eV. (b) Same as

Figure 3.8(b), but for 100 eV.
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Fi .
igure 3.11. Defocussing of the Auger electron diffraction intensity

at 917 eV in bent Cu [101] chains as a function of the bend angle.
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Figure 3.13. Same as Figure 3.7, but for Cu [111] chains.
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Figure 3.15. Same as Figure 3.7, but for Cu [00l] chains.
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Figure 3.17. Single and multiple scattering calculations of Al 2s
photoelectron diffraction from a linear Al [101] chain at 1336.0 eV,

The emitter is at one end of the chain, as shown in the inset.
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Figure 3.18.(a) Al 2s photoelectron diffraction intensity at 1336.0 eV

directly along linear Al [10l] chains as a function of number of atoms
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in the chain. (b) The % defocussing in 2s photoelectron diffraction

intensity, based upon the results in (a).
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Figure 3.19. Single and multiple scattering calculations of Ge 3d
photoelectron diffraction at 1457.0 eV from linear Ge (111]) chains.

The emitter is at one end of the chain.
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Figure 3.20.(a) Ge 3d photoelectron diffruction intensity from linear

Ge [111) chains at 1457.0 eV as a function of the number of atoms in

the chain. (b) The % defocussing in 3d photoelectron diffraction

intensity based upon the results of (a).
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Figure 3.21. The effect of changing muffin-tin radius (RMT) on
defocussing in a five atom Cu [101] chain at 917.0 eV. The multiple
scattering curves all cluster very close together at the bottom of the

figure.
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Figure 3.22. Effects of final state angular momenta £f on
photoelectron diffraction from two- and three-atom Cu chains with an
interatomic spacing of 3.5 & and a kinetic energy of 100.0 eV. Single

and multiple scattering calculations are shown for 2. = 0,1,2,3, and

£

4. For 2 atoms, the single and multiple scattering results are

essentially identical. For three atoms, we show both sets of curves.
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Figure 3.23. Same as Figure 3.22, but at 1000.0 eV.
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Figure 3.24. The 2-domain Ag-honeycomb missing top layer model
proposed in Reference 30 for the ({3x|3)R30° Ag on Si(1ll). The four
short arrows indicate the strong nearest-neighbor forward scattering
peaks expected in this model. A typical nearly linear Ag-Si-Si-Si
chain along which enhanced MS effects might occur is shown by the long

arrow in domain 1.
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photoelectron diffraction data and single and multiple scattering
theoretical curves for this system with an assumed domain mix of

Domain 1:Domain 2 = 40:60.
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Simulations are for an s - p tramsition.
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Figure 3.26. Same as 25, but for the correct d - f + p transitioms.
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Figure 3.27. Polar-angle dependence of Cu IMM Auger emission at 91i7.0
eV from 3 ML of pseudomorphic Cu grown on Ni{00l). Experimental data
and SS calculations with PW scattering are from Reference 32. Also

shown are $SC-SW and MSC-SW calculations from this work.
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Figure 3.28. Ni 2p3/2 azimuthal x-ray photoelectron diffraction data
obtained at high angular resolution from a Ni(00l) substrate at 629 eV
are compared to theoretical calculations at several levels of
approximation: SSC-PW (s - p), SSC-SW (s - p), SSC-SW (p -+ d+s), and

MSC-SW (s » p). (a) results for takeoff angles of 7.0° and 10.0°.
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Figure 3.28.(b) Same as in (a), but results for takeoff angles of

o

18.4°. 35.3° (passing through [111]) ,and 45.0° (passing through

[101]). (See also Reference 31(c).)
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Figure 3.29. Azimuthal dependence of the C ls photoelectron intensity
from the ay state of CO on Fe(00l). The ratio of the intensities I’

and I is also shown in the inset as a function of the distance z of
the C atom above the first Fe layer. The geometry of the cluster used

in the calculation is also shown.
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Figure 3.30. SS and MS R-factors for Ag 3d5/2 X-ray photoelectron
diffraction from (J3xJ3)R30° Ag on Si(11il) as a function of the

percentage of domain 1.





