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Abstract

Fox’s H-function provide a unified and elegant framework to tackle several physical phenomena.
We solve the space fractional diffusion equation on the real line equipped with a delta distribution
initial condition and identify the corresponding H-function by studying the small x expansion of the
solution. The asymptotic expansions near zero and infinity are expressed, for rational values of the
index «, in terms of a finite series of generalized hypergeometric functions. In z-space, the o = 1
stable law is also derived by solving the anomalous diffusion equation with an appropriately chosen
infinitesimal generator for time translations. We propose a new classification scheme of stable
laws according to which a stable law is now characterized by a generating probability density
function. Knowing this elementary probability density function and bearing in mind the infinitely
divisible property we can reconstruct the corresponding stable law. Finally, using the asymptotic
behavior of H-function in terms of hypergeometric functions we can compute closed expressions
for the probability density functions depending on their parameters «, 3,c,7. Known cases are
then reproduced and new probability density functions are presented. Stable symmetric laws; H-
function; Hypergeometric functions; Fractional diffusion equation.
subclass60E07; 33C60; 33C20.

1 INTRODUCTION

The notion of stable distributions was first introduced by Lévy [1] in the study of Generalized Central
Limit Theorem, and there is a nice early account of the theory in [2]. A stable law is a direct
generalization of the Gaussian distribution and in fact includes the Gaussian as a limiting case. The
main difference between the stable and the Gaussian distributions is that the tails of the stable density
are heavier than those of the Gaussian density. This characteristic is one of the main reasons why
stable laws are suitable for modelling a plethora of phenomena such as laser cooling [3], turbulence
[4], dynamical systems [5], statistical mechanics, signal processing [6], biology [7] and mathematical
finance [8].

The goal of the present paper is to give analytic expressions for the probability density functions
(p.d.f.’s) of the stable laws, in terms of known functions. These were lacking from the literature apart
from a handful of well known ones. To accomplish our task we organize the paper as follows:

In Section 2 we briefly review the definition of infinite divisible laws in terms of characteristic
functions (or the Fourier transform of the probability measure) and limit our investigation to the



subclass of stable laws. We give the characteristic exponent for the general one-dimensional case and
comment on the role and the essential properties of the parameters which are involved.

In Section & we exploit the definition of the Fox’s H-function as a Mellin-Barnes path integral
and performing the integration on the appropriate contour. This allows us to write its asymptotic
expansion at zero and infinity (see expressions (16) and (19)). The reason for choosing the specific
values m = n =1 and p = ¢ = 2 for the H-function is its close relation to the solution of the free space
fractional diffusion equation. Using the Gauss’s multiplication formula as well as standard properties
of the gamma function we resum the series for rational values of the index a and produce general
closed expressions containing the generalized hypergeometric functions. These expressions can be
manipulated, for different values of the parameters, using a simple computer program running under
Maple software.

In Section 4 we solve the anomalous spatial diffusion equation on the real line with a fractional
Laplacian consisting of Weyl derivatives and a Dirac delta distribution as initial condition. In this
way we determine the most general form of the p.d.f. for a stable law. We establish the connection
with the corresponding Fox function and find its asymptotics. Finally, we express them as finite sums
of generalized hypergeometric functions.

In Section 5 we demonstrate that the diffusion equation has as infinitesimal generator of time
translations the spatial derivative of the convolution of two terms, which under Fourier transformation
they reproduce the characteristic function of the & = 1 stable law. The corresponding integral cannot
be performed exactly, unless 6 = 0 in which case we recover the shifted Cauchy p.d.f. Only in the
small z, 8 regime one can provide a triple series expansion.

In Section 6 we establish a new way to classify stable laws by exploiting their infinitely divisible
property. It is possible to write a formula that determines the p.f.d. of the stable law as an infinite
limit of the m-fold convolution of a generating p.d.f. This expression although it gives new insight,
from calculational view point is cumbersome due to its complexity.

In Section 7 we present a sample of our results in the subdiffusion regime (« < 1) while « takes
values on the Farey series ! F;, of order n = 5. In the superdiffusion regime (o > 1) we recover all
previously known results and also give new ones for general rational a.

2 PRELIMINARIES ON o-STABLE LAWS

Consider a probability measure p on R™ and its characteristic function [9, 10, 11]

o) = Flul(p) = [ <P p(da), p e R (1)

n

A probability measure p on R" is called infinitely divisible if

VYm € N, 3 pim, Flum] : Flul(p) = (Fluml(p)™

where p = pm * -+ * Uy, is the m-fold convolution of p,, with itself. If the measure p is infinitely
divisible then there exists a unique continuous function ¢ : R™ — C, called the characteristic exponent
of p, such that ¢(0) = 0 and

Flul(p) = "™, pe R,

!The Farey series F,, of order n is the ascending series of irreducible fractions between 0 and 1 whose denominators
do not exceed n. Thus a = % belongs in F, if

0<p<g<n, (pg=1

where (,) denotes the highest common divisor of two integers.



The Lévy-Khintchine representation or Lévy-Khintchine formula states that a probability measure p
on R" is infinitely divisible iff we can write the characteristic exponent in the form

1 )
b(p) =i<pT>—5 <pAp> +/Rn (e P™> =1 =i < p,& > Ljgyca ) w(de) (2)

where 7 € R™, A is a symmetric nonnegative-definite n X n matrix, called the Gaussian covariance
matriz, and v is a o-finite Borel measure on Rjj := R"/{0}, called the Lévy measure, such that

/nmin{l, 2|2} (dz) < oo. (3)
RO

The triplet [7, A, v] is unique and will be called the generating triplet of the infinitely divisible proba-
bility measure p. If A =0 then p is said to be purely non-Gaussian.

A subclass of infinitely divisible laws is the stable laws class. Suppose that X, X1, -+, X, denote
mutually independent random variables with a common distribution F and S,, = >/, X;. The
distribution F is stable if for each m € N there exist constants ¢, > 0 and 7,,, € R such that

S 4 cmX 4 Ton (4)

and F is not concentrated at one point. F is stable in the strict sense if 7,,, = 0. The symbol 2 means
that the distributions of S,,, and 1X are identical up to scale and location parameters. The norming
constants are of the form ¢,, = ma with 0 < a < 2 and the constant « is called characteristic exponent
of F or index of the stable law.

Let 0 < a < 2 and p be an infinitely divisible and non-trivial on R™ probability measure with
generating triplet [1, A, v]. If p is a-stable then there is a finite non-zero measure A on the unit sphere
S ={x € R": |x| =1} such that

(i) A=0and v(B) = [¢ A(d€) [5° 1p(r€) %5 for B € B(R").

(i1) fu(p) = exp |- [g¢| <p, &> |*(1 —itan(5}))sgn < p,§ >)A(d€) +i < 7,p >|fora # land T € R"

(iii) f(p) = exp [—fs(l <p &> +i2 <p,&>In| <p,€>AdE) +i < T,p >] for a =1 and 7 €
R".

In the one-dimensional case (n = 1) one can prove that the characteristic exponent has the form

clp|* [1 —iBsgn(p) tan(7y)] if a#1,2

clpl [1+ 62 sgn(p) In(lp])] if a=1 (5)

Y(p) =itp — {

where

cy —cC_ m 1
- - d c¢= _ f 2 6
p cr +c’ and ¢ 2I'(1 + ) sin (%) (e e for az (6)

with ¢;,c_ >0 and ¢y +c_ >0 2. Note that when o = 2 then v = 0.
The collection of the four parameters («a, 3, ¢, T) is called the stable law parameters and completely
determines the distribution as follows:

2The same result can be recovered if one uses the absolutely continuous Lévy measure

v(dz) = (c4laso0 4+ c-laco) 2|71 *da.



Characteristic exponent . This parameter determines the degree of leptokurtosis and the fatness of
the tails. For a stable real-valued random variable X it can be shown that

EX|<ow=1l<a<2

When « < 1 the means becomes infinite. The variance for o € (0,2) becomes infinite or undefined
while all moments of a random variable X become finite iff &« = 2. Also the moments of order less
than « are positive and have a finite limit, namely F|X|* < 0o, 0 < k < a 3.
Skewness parameter §. This parameter characterizes the degree of asymmetry of the Lévy measure
and takes values in the interval [—1,1]. The measure v is called symmetric if 5 =0 (or ¢y = c¢_) and
the a-stable distribution is called stable a-symmetric .
Scale parameter c. This parameter ranges into the interval (0,00) and measures scale in place of
standard deviation.
Location parameter 7. This parameter saturates the set of real numbers and shifts the distribution to
the left or right. If 1 < a < 2 then 7 equals to the mean of p. When 0 < a < 1, although, the mean
is infinite it serves as an index of the location of the peak of the stable distribution and is identical to
the drift of pu.

A stable law generated by (o, 3, ¢, 7) is often denoted by S, (53, ¢, 7). In the present work our law
will be first generated by S, (c) and then we will study the most general case.

The parameter space (a, b) of stable p.d.f.’s with the centering constant b restricted in the region
13)

o 0<axl
< b
|b|_{2—a, 1<a<?2 (7)

is depicted in the following figure

b parameter

a parameter

Figure 1: The parameter space of all stable p.d.f’s on the 7 = 0 plane. The points of the axis 3 =0

represent the stable a-symmetric p.d.f.’s with the property fo g—o(x) = fa,8=0(—2). On this axis are
3

located the familiar Cauchy (a = 1), Holtsmark (o = 35) and Gaussian (« = 2) distributions.

3Tt is also true that a symmetric a-stable random variable has finite negative-order moments —1 < k < 0 [12].
“In general a measure p is symmetric when u(B) = p(—B) for B € B(R"). In n = 1 the rotation invariance is
tantamount to symmetry.



3 FOX’S H-FUNCTION AND GENERALIZED HYPERGEOMET-
RIC FUNCTIONS FOR THE LAW §5,(c = K,) WITH RATIO-
NAL «o

Fox [14, 15] defined the H-function in his studies of symmetrical Fourier kernels as the Mellin-Barnes
path integral

m,n m,n (a’lvAl)’(a2’A2)7"‘7(aP’AIJ) 1 / s
H™ =H" -
e (Z) e [Z| (61731)?(b2732)>' "7(bQ7Bq) 2me CX(S)Z ds (8)

where the integral density x(s) is given by
X(s) _ ;11 F(bl — BZS) ?:1 F(l —aj; + Ajs)
Hg:m—i—l F<1 — b + BZS) H?:n—‘rl F(CL]‘ - Ajs)

m,n,p,q are integers satisfying
O0<n<p 0<m<c<y,

B;, A; are positive numbers and b;, a; are complex numbers such that

Ajbp,+v)# Bplaj—1—-X), v,A=0,1---; h=1,---m; j=1,---,n
This condition implies that the poles of I'(b; — B;s) and I'(1 — aj + A;s) form two disjoint sets. C is a
contour in the complex s-plane which runs from s = co—ik to s = co+ik with k > ‘Iig—l?j‘, j=1,--.n
and which encloses the poles
b
s = ( Z;V) i=1,---.m
but none of the poles
(aj—1-v) .
— =1, .n.
8 A] .7 ) 7n
H(z) makes sense and defines an analytic function of z in the following two cases:
(i) If
q P
M=> Bi—» A;>0, Vz2#0 (10)
i=1 j=1
(i1) If
q P
M=0 and 0<|z|<R with R=][(B:)%J](4;) Y. (11)
i=1 j=1

Schneider [16] has introduced into physics the Fox’s H-function as analytic representations for
the Lévy distributions in x-space, and as solutions of the fractional diffusion equation ®. If one tries
to solve the one-dimensional anomalous diffusion equation equipped with the following initial and

boundary conditions®
Bf(aa;,t) = K,A(a)f(z,t), z€R,t>0,ac(0,2)
lim f(z,t) = d(x), ‘ 1|im flz,t) =0 (12)

°In nature there is a diversity of diffusion processes for which the k-moment of the displacement grows not linearly
with time but follows a power-law pattern of the form E|X (t)|* ~ tg, 0<k<oa.

°In equation (12) K, is the generalized diffusion constant having dimensions [L]*[T]! and A is the operator (33)
with 8 =0 and 7 = 0. This is the generalization of the Laplacian to a fractional order.



then the solution (or propagator) reads

(1,
(1

3)
71)7

which expresses the a-symmetric stable p.d.f. in terms of the Fox’s H-function. Thus our study will
be focused on the H-function

i

LY (1,3) / (1—s)(2) 2]

' a 2 a Sds, ORI ol 14
(171) (17% 271'1 F % — % (Kat)é ( )
The simple poles of I'(>) and I'(1 — s) are given by the disjoint sets of points
P(s)={sy, = —av, v=0,1,---}

Q(s)={sy=1+v, v=0,1,---}

We distinguish the following two cases:

I |z
flz,t;a) = Hy
alz] 2 | (Kat)a

1,3
0 g) 1 (13)

(i) Asymptotic expansion of H(z) near the point z = co. Applying the residue theorem clockwise we
find

(s)2ds — i x(s)2%ds (15)

21

= Z Res{x(s)z"; sm € P(s)} + 7—
m=1

21

where the contour C has been replaced by the rectilinear contours Cp,Co running from o —
o+ ik — —oco+ ik and 0 — 0 — itk — —oo — ik respectively. It can be proved that the error
terms on the right-hand side of (15) vanish. In this case we obtain the algebraic asymptotic
expansion

1,2 (L3)
1 1 F(m+1) 2

(1
H217’21 lz ] % Z m+1ﬂsin(zma)2_ma. (16)

It is worth noting that all the points of P(s) contribute in the large z limit. For the series (16),
applying the ratio test, one has

0 if 0<axl1
T 1 1 r 1
p1 = lim ‘ ((m +1)a) sin(§(m + D)) < lim ’((m + )a)‘ = 1 if a=1 (17)
m—oo | mI'(ma) sin(§ma) m mI'(ma) o if lea<2

Thus the series converges absolutely for every value of z £ 0 in the interval

(—Rl,Rl) = (—O0,00) if 0<a<l. (18)

(i1) Asymptotic expansion of H(z) near the point z = 0. The function H(z) is analytic in the s-plane
for a € (1,2] since then M =1 — é >0, V2 #0. Also for « =1, M =0, and H is analytic for
0 < |z] < 1. In this case we find

1 1 ) o0 T 2m+1
Hzljgl [Z ((117’ T)) 8:?; ] = mzz:l Res{x(s)z% sm € Q(s z_: (;771+i) 2m+1
= :;1(1)m_11m Sin(gm)zm. (19)



In this case the even numbers of Q(s) give a vanishing result and

a 1 if a=1 (20)

po = lim |——2—"| =
L@2m +3) 0 if l<a<?2

m—0o0

The series converges absolutely for every value of z in the intervals

(-1,1) if a=1

(—Fe, Rz) = { (—00,00) if 1<a<2. (21)

We assume now that « is a positive rational number thus it can be written as: a = g, p,q € Zt (the
symbols p, ¢ should not be confused with those used in the definition of the H-function). Relation
(16), using the substitution m =ng+1, [ =0,---,q — 1, can be casted into the form

a1 < T(np+ 2 +1)
« ; -y p ., T l i _
H _ _ = iml q o v imng ,—np | 29
(2) Wge 2 a (%F(nq—i—l—i—l) sm(2(n+q)p)e z (22)
Using the multiplication theorem of Gauss ” one can write the ratio of the gamma functions as
l -1 _
NW+5+”:2m%mp(wyﬂﬂio<+z>niwmn (23)
[L(ng+1+1) g \q? Hé’;(l) ( - 1) Hg;(l)(bS)n
where (a), is the Pochhammer’s symbol (a), = F(I?(Z;” ) and
k+1 1 l 1
P e S S s i i (24)
p q q
Combining (22) with (23) and assuming that p is odd, we obtain
§ - ppequ é HP—l F( 7Tlp o0 ppe'wr (¢+5 2m
H(z) = =0 sin Z
qqZp HQ_ F( ) s)?m QQzP
7,7r(q+7 2m+1
+ e chos( Z Hk glowons (ppe : ) >
=0 11220 (0s)2m+1 q1zp
3 L
a2 (a=p) pPei™d i Hi;of(ak) . wlp _inp milp ppe“r (a+5
- TR e lg < gz ) i (b, (Mg ) Fe ey )sin(r) | =z
, 2
pPeim(aty)
X P+1Fq (La‘()v"'7ap—1;b07"'7bq—1; (qqu : (25)

The same result holds for p even and the only difference is the swapping of the two terms in the
parentheses. Of course the hypergeometric series converges absolutely when 0 < a < 1 — % which
implies that o € (0, 1).

For the case 1 < a < 2, following similar steps, we can write the ratio of gamma functions as

e B (1) o\ (0P TS (o) TS @
) p (200" ) TIE T (bs) TEE (b

L(2m+1) oCH+HO-F
"The multiplication theorem of Gauss states that I'(mz)(27) ™~ D/2 = m™== 120 ()T (24 L) - . T(z422L), VmeN.

m

q

(26)




where aj, = %(QZ +1)+ 2% and by = i(Zl +1) + 3. The relation (19) then becomes

2L 12g—1

q q,P T
() = mpmrtad DSy () I T
P2 =0 pr2 [[Z T'(bs)
2q)% ,
X oqFop—1 (1, at, -+, ag-1;b1,+,bap_1; 52321) €mp22p> : (27)

The hypergeometric series 94F%,—1 converges absolutely if 2¢ < 2p — 1 or equivalently when
>1+4+ L S (2 )
« — Z 8
- 2 ) q

which implies that o € (1,2]. It also converges when 2¢ = (2p —1) +1 = o = 1 provided that |z| < 1.

4 FOX’S H-FUNCTION FOR THE LAW S,(5,c = K,,7), a € (0,2]
AND a #1

We consider the generalized one-dimensional anomalous and anisotropic diffusion problem with the
following initial and boundary conditions

af(xat) _ 1 — « fo' 8f($7t) — 1
8t — —COS (‘)‘72%) (K ,OOID:C —+ K+ fEDoo) f(l’,t) — T 8.%' == A(aaﬁv T)f(.f,t),
z € R, te(0,00), ltifélf(x’t) = (), ‘ 1|im flz,t) =0 (29)

where KT are diffusion constants satisfying K* > 0, Kt + K~ > 0 and the dispersion term is
proportional to the constant 7 having dimensions [L]/[T] 8. Also by definition [21, 22]

(o2 4,02 fla) S L () ([ Ay g [F LB g o)

F(m — Oé) % oo (.CL‘ _ y)a—m—l-l . (y _ x)a—m—l—l

are the nonlocal fractional left-handed (right-handed) Weyl derivatives. In (30) m = [a] + 1 with [«a]
representing the integral part of a. Note that when « is an even integer then the two derivatives are
localized and equal while for odd integer values of o both derivatives appear opposite in signs.

The Fourier transform of A(«, 3)f(z,t) for fixed t € (0,00) and f € S(R)? is given by (see proof
at Appendix A)

F [ )5] 0:6) = |~ Kalal® (1~ iBsignq) tan (5" ) ) + ird| Fa.0) (31)
where
Kt —K~-
Ka:K++K_>O, ﬁZWE[—l,l], TER. (32)

The operator /l(oz, () could be casted into the equivalent form

_%((1—5)_00Dg+(1+ﬁ) 2D5) . (33)
2cos (%)

Ao, ) = o

80ne might wonder if it is legitimate to add a Laplacian term to the operator A(a, (). This suggestion is prohibited
by the fact that we consider only a-stable laws.

9S(R) is the set of all infinitely differentiable and rapidly decreasing functions on R, namely supzer|z™(D™f)(z)| <
o0, Vm,n = 0,1,---. This space is usually called the Schwartz space.



The f (g, t) satisfies the Fourier transformed initial value problem
ot )
8f((;i’ ) {—KOJQI“ (1 — ifsign(q) tan (?)) + im} fla,t)
fg,0) = 1. (34)

with solution
f(q7 t) _ e—Ka|q‘at(1—iﬁSigIl(q) tan(oé—“))-‘rz"rqt‘ (35)

The propagator is thus given by

f(a:,t) _ ]_——l[f] (l’,t) — i /OO e—iq(a;_Tt)e*Kaﬂq\a(172',6’Sig1’1(q) tan(%))dq‘ (36)
T J—00
We will first study the small x — 7¢ expansion. We expand cos(qz), sin(gz) in finite Taylor series
_ - (=% glgr)(gz)P !
cos(qz) = 7;) el T @menl
. O~ (=1)™(gz)*™ ™ h(gx)(gz)*m+?
= 37
sin(gr) nZZ:O 2n+1)! 2m + 2)! (87)

where, by the generalized mean value theorem, the functions g(qx), h(gz) are bounded by the extreme
values of the (2m + 1)th ((2m + 2)th) derivative of the cosine (sine), thus |g(¢z)|, |h(gz)| < 1. By
substituting these series into (36), integrating term-by-term and taking the limit m — oo we obtain
the complete asymptotic expansion 1°

f(.%',t;a,,@,’l’) -

Q=

1 — n 1 (1 ) nw n
T Z sin [ —0 ) z (38)
7z (Kat)o (14 792)2 = I'(n+1) 2
where

|x — 7t

1 1
(Ka)* (14725
It is evident from (39) that § € [0,2] and can acquire the three integer values {0, 1,2} provided that
B € {-1,0,1}. The p.d.f. (38) can be reproduced by the following H-function

(1,4 (@, (1 (£ | — 7t
11 27”/ I'(%) %S)ZSdS’ . (Kat)® (1+442)2 o
al)e «
with asymptotic expansion near the point z = 0 given by
= r(1+2) nm
H(z)==)Y (-1)" ' ——%sin( —4) 2" 41
() = 2 L0 Sm(z )z (41)

n=1

2
— Btan (o;r) , 0=1+ o arctany, and z = (39)

H(z) = H21’21 lz

w\cnw\en

In contrast to (19) all the points of Q(s) now contribute. The asymptotic expansion of H(z) near the
point z = o0 is

H(z) =2 Z(—1)"+1FF((11++”73) sin (”Za(s) |2, (42)

d n=0

9The derivation of this expression is based on the integral formula

< -1 —vzx . r
/ " e sin(ax)dr = % sin (/l, arctan g) ., Reu > —1, Rev > |Ima]
0 (12 +a?)2 v

and a similar result for the cosine, provided that Rep > 0, Rev > |Imal.



For the symmetric 5 = 0 case we recover expressions (16) and (19). When « is rational we can also
express (41) and (42) in terms of hypergeometric functions as follows

-1 1 im ! -1
e = ‘ﬁ?m%“pz(q”@ ) 7=, T(ar)
=0

p ) IZiT(bs)
. inp(1+%) 4 .p
X ezi(lail)qu_l 17a17'"7aq_1;b17'.‘7bp_1;&
P
a inp(1—%) q.p
_ i B (1,@1,---,aq_1;b1,---,bp_1;equz)] (43)

with ap = % + g and by = % + %. Similarly for the large z expansion we obtain

3 q—1 iTq é p—
H(z) = <Z)2(27r)“2”—1 <pp€ ) [Ty I(ar)

=\l ) 1T ()

4 im(q+5)
iT(les_ e 2
X € 2(55 1)p—‘y-l—F’q 17a07'”7ap—1;b07”'7bq—1;q7ppp
q9|z|
. im(q—5)
izl e 2
_ ial 55+1)p+1Fq (17a07 e 13bos bt M)] (44)
where ay, bs are given by (24).
5 THE LAW S,_,(8,¢c=K,T)
The operator we consider in this case is
d
Ala=1,6)f(z,t) = —— (Ki(s + h) * f(t))(2)) (45)
where
s(z) = —— h(z) = — (1 +20 5(37)) (46)
- 2m2y’ o o2m2 \ |z K ‘
The first convolution is the Hilbert transform of the function f defined by
1 > 1 o f(y,t)
Hf(z,t) = (s f(t))(z) = 5.2 /_Oo f(y,t)s(z —y)dt = ﬁP,V, ( . w_ydy) (47)
with P.V. representing the Cauchy principal value of the integral. The Fourier transform ! of (47) is
i A
FlH fl(z) = Flsl(@) Ff](2) = 5_sign(q) f(q.?). (48)

The second convolution term in (45) has Fourier transform (see Appendix B for the proof)

Flhx fl(x) = Flh](x) F[f](x) = —%ln(\(JI)f(q, ). (49)

11\We have absorbed the coefficients of the Fourier transform into the exponential thus defining

oo

f[f]=f(p)=/ P f (2)de, fﬁl[f]=f(w)=/ e f(p) dp.

— 00

10



Hence, the initial value problem is equivalent to the Fourier transformed

LD~ [-kial (1 +i62sien(a) n(a) ) + 2imar] fia.)
flg,0) = 1 )
with solution
f(q,t) — o~ Klalt(1+ip2sign(q) In(|q))+2imqrt (51)

The propagator is then given by the absolutely convergent integral
f(%, t) — / 672z7rq(:1:77t)e—Klq\t(l-‘,—z,@%Slgn(q) ln(l‘”))dq. (52)
—00

If we set § =0 in (52) we recover the shifted Cauchy p.f.d.

2Kt

flat) = (K1t)2 + 4n2(z — 1t)2°

(53)

6 AN ALTERNATIVE WAY OF CLASSIFYING STABLE LAWS
The symbol of the operator (33) is given by

n(q) = —Kalq|* (1 —isign(q)y) + iTq. (54)
From (54) the real part Re(n(q)) <0, Vq € R, thus we define hy : R — C, A > 0 by

(o ¢] 1
B (a) = LI @1(\) — / Pt @y — 1
Ma) = LTI = | Py

which is positive definite. The mapping ¢ — hy(g) is continuous and applying Bochner’s theorem
there exists a finite measure on B(R) such that

(55)

mla) =ml0) = 5= [ e (o) (56)
Hence,
i) = [ e haa)da (57)

It can be shown that the operator /l(a, 0, 7) is the infinitesimal generator of a strongly continuous
semigroup of operators and its resolvent R (.A) satisfies [11]

RA(A)Y = i * 1, (58)
or equivalently
1 . —1
(I _ AA) b= iy 1 (59)
By applying on the righthand side of (59) m-times the operator (I — %ft)_ , setting A = %t and
taking the limit m — oo we have
i (1-LA4) "o = o= i () s | 0
m—00 m m—0o0 t
m—times
= [x9 (60)
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where f is the p.d.f. of the stable law S, (3, K4, 7). Thus, a stable law can be determined by
instead of f, using relations (55) and (57). As an example we consider the law S2(0, K3,0). A simple
calculation gives the p.d.f.

pa(x) = sr—e V7,
2K\

Although (57) seems to be elegant it is unattractive for calculations since the corresponding convergent
integral only exceptionally gives a closed expression.

x > 0. (61)

7 KNOWN AND UNKNOWN RESULTS

Expressions (25), (27), (43) and (44) can be used to calculate p.d.f.’s for arbitrary rational values
of @ € (0,2] in terms of generalized hypergeometric functions. In particular, a sample of stable
symmetric p.d.f.’s is given in Table 1 for the subdiffusion regime with a € (0,1) and in Table 2 for the
superdiffusion regime with a € (1,2]. Previous known results are reproduced and new ones are also
presented.

(a) The law 51/2(0, K1/2, 0)

Let us first consider the particular case (p,q) = (1,2) that gives the index value o = 1/2. From
equation (25) one can easily show that

o e\ (&sin(E i+ b)) 1
m”“‘%ﬁ?%@¢)(Z%Nn+”%<@w>

2

- i () PG ) ) PG )
+ 8\\/{2?2 Lllz 0 1(2; —@) +0 1(%; _64122)}
= _2\/;?‘4 [008(412)0(217”:) —i—sin(jz)S(\/;Tz)}
+ 4\/12% {cos(jz) —&—sin(L)] ) (62)
Where C(z), S(x) are the cosine and sine Fresnel integrals given by
Cx) = /027 cos(th)dt =z 1F2(i; %, Z, —71r2x4)
= x;((f))Q /0175—4(1 — )73 oFl(i,—;r(ia:4t)dt
S(z) — /095 sin(52)dt = £ 11«3(%; g g —7;;3;4)
- xrrg))z /01 - oFl(Z, —T{Z:L“lt)dt (63)
which are odd functions of z. The function f(z) = -L H(z) is indeed a p.d.f. since it is positive

definite Vz € (—o00,00), integrable and satisfies

/O:O f(z)dz = 1. (64)

12



The more general one-sided law S /5(1, K /9, 7) is found to correspond to the p.d.f.

1 1
f(z) = e 1z, z>0. (65)
Qz%ﬁ
The case § = —1 gives a vanishing p.d.f. since § = 0. This result holds independently of the
value of «.
(8) The Cauchy law S1(0, K1, 0)
Setting in (27), p = ¢, yields
z !
H(z) = =1Fp(1;0;(=2%)7) > (-1’2
™
1=0
z (1 —(—22)1 9
= — | ————=> | 1Fu(1;0; (—=2°)9). 66
W<1+22 )10(707(2)) (66)
When ¢ = 1 this corresponds to the Cauchy p.d.f.
1 1 1
f6) = 2HG) = o 2€ (—0,0) (67)

with applications , e.g. in spectroscopy. For the general law S1(0, K7, 7) the p.d.f. is given by
(53).

(v) The Holtsmark law S3/3(0, K3/2,0)
In this case we set (p,q) = (3,2) in (27) and arrive at

5
Hn — 228§ 23 T T+ +5)
(2) - Z Z 5 (l(2l+1) §)
6 6
1 1
x  4Fs 17(2l+1) S (U D) + S22+ 1) + (20+1)
476 46
4t
: 6663z7rz6'>
z .2 5 11115 4 4 22 355247 4 4
. - - . _ = 1.=-. === - .
l(s)Q iy e ) 2 ey e
4v3 © 19 13375 4 4
—rc Fy S oo —=——29]. 68
T oase T(2)” 2 12263 207 ) (68)

The corresponding p.d.f. was discovered in physics by the Danish astronomer Holtsmark in 1919
[24, 25]. It was the outcome of his efforts to study the stationary distribution of the force acting
on a star, per unit mass, due to the gravitational attraction of the neighboring stars.

(0) The Gaussian law S3(1, K3, T)
Substituting p = 2¢ in (27) we get

27T)q 1 2q— 1 52 lni‘lz—llr(ﬂlz’;)ﬂ)
H(z) q H4q—1 F( 2l+s+1)
= 0 s=1 4q
2q)24 .
X 9gFiq1 1,a1,"‘7a2q—1;bla“',bzp—1;24354(1621”(124(])
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z(2m)11 iy [ 22 : 1
=Y <8q> 125, ()

= s=0 Qq

I 4
X 2qF4q1(1,a1,"',a2q15517"'352;;1;@:))(12)(12 q)

where aj, = 21421 + Z—kq and by = %};1 + 5, Setting ¢ =1 in (69) we have

oz 1 24 22 3 z4 oz 22 . 22
H(z) = N 0F1(§;6*4)—20F1(§;a) =/ cosh(z)—smh(z)

22

= —e 4.

NG

The associated p.d.f. is

22

4

1) = g
z—Tt|

and changing variable to z = | TRt We recover the traditional one

= —— 2 .
“ \/47TK2t€

14
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8 CONCLUSIONS

In this article we presented analytic expressions for the a-stable p.d.f.’s for rational values of the
index « € (0,2]. These p.d.f.’s can be viewed as solutions of the spatial anomalous diffusion equation
subjected to a Dirac delta initial condition. We established their connection to the Fox’s H-function
for the most general law S, (8, Ko, 7). The characteristic function of the @ = 1 stable law was
also reproduced by solving a suitably chosen fractional diffusion equation. An alternative way of
classification which captures the infinite divisible character of stable laws was proposed. The rationality
of the index allows us to write closed expressions for the p.d.f.’s in terms of generalized hypergeometric
functions. This method recovers known results, such as the Cauchy p.d.f. for o = 1, the Holtsmark
p.d.f. for a = % and the normal p.d.f. for « = 2. When « takes an arbitrary rational value in (0, 2]
new p.d.f.’s are derived generalizing and unifying previous results.

Appendix A
The proof of (31) is straightforward provided that we first show that

(i) If f and g belong to the space AC!®(R) '? with boundary conditions lim| ;oo fE)(z) =0 =
Lm0 g®(x), k=0,---,[a] — 1 then

| CxD2p@) gz = [ f@) (Dgla)) do (A1)
I I

where I = (—o0, 00).

Proof of (A.1)

1 dled+1 o u
[Capsrensaan = ot /(ma Sy FCEY ) o
B ( a]+1 f (2 — ) Jol+1
~ I([a] + 1—a) / (/ ) dx[a}—i-lg(x)dx
_ _(nkm dlelt e g(a)
- ([a]+1—a>/ff (5) <ds[a]+1/5 (w—s)a—[a]dx> -

= [ 1@) (Pg(@)) da. (A2)
(i7) The two identities hold
_oongeipx _ (Zp)a ipT ‘p’aemT"sign(p) ipx
x:Dgoeipz — ( ’Lp)a pr __ ’p‘a _zaTrSlgn(p) ,pr (AS)
Proof of (A.3)
Using (30) we have
Do 1pT 1 d[a] 1pT oo e d
oot - T[] +1-a) dgle+1° /0 yo—ta] ™Y
= (ip)*e?", p>0. (A.4)

12This space consists of all functions f which have continuous derivatives up to order [a] — 1 on R with f ([“]_1)(1') €
AC(R). We also recall that AC(R) C S(R).
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In the derivation of (A.4) we have used the integral formulas [23]

oo
/ " eosprdr = T(u)cos (ﬂ'zﬂ)
0

/ " Vsinprdr = T(p)sin (?) , forp>0and0<p<1. (A.5)
0

Appendix B

We first prove the identities

(1)

2 1

li c— =0 = —. B.1

et (m € (m)) || B
Proof of (B.1)
Differentiating with respect to x the expression

) ) |z|c =1\ .

In(|z|)sign(x) = lim | ——— | sign(z) (B.2)
e—0t €

and taking into account that %ﬁm = 2§(x) we easily derive (B.1).

(2)

2

Fllz|*] = WF( + a) cos <2( + oz)) a>—1. (B.3)

Proof of (B.3)
This is a direct consequence of (A.5).

The Fourier transform of In(|z|) is

A = i 7 (L E)— i (M2 - o ra -0 2209

e—0t e—0t 27r]p|) € €
1
= g dim (=222 )
11
= +Cy9 B.4
5 C0) (B.4)

where C is the Euler-Mascheroni constant. In the derivation of (B.4) we made use of the I'(1+2), |z| <
1 [25] expansion

1+ z) Z anz" (B.5)
where the coefficients are given by
n
ap =1, nap=—yap-1+ Z(_l)kan—kC(k)' (B'6)
k=2

16



References

[1] Lévy, P. (1925). Calcul des Probabilités, Gauthier-Villars.

[2] Gnedenko, B. V., and Kolmogorov, A. N. (1968). Limit Distributions for Sums of Independent
Random Variables, Addison-Wesley.

[3] Bardou, F., Bouchaud, J. P., Aspect, A., and Cohen-Tannoudji, C. (2002). Lévy Statistics and
Laser Cooling, Cambridge University Press, London.

[4] Shlesinger, M.F., West, B.J., and Klafter, J. (1987). Lévy dynamics of enhanced diffusion: Appli-
cation to turbulence. Phys. Rev. Lett. 58, 1100.

[5] Shlesinger, M.F., Zaslavsky, and G.M., Frisch, U. (eds.) (1995). Lévy Flights and Related Topics
in Physics, Springer-Verlag.

[6] Nikias, C.L., and Shao, M. (1995). Signal Processing with Alpha-Stable Distributions and Appli-
cations, John Wiley and Sons, New York.

[7] Levandowsky, M., White, B.S., and Schuster, F.L. (1997). Random movements of soil amebas.
Acta Protozool. 36, 237.

[8] Mantegna, R.N., Stanley, and H.E. (1997. Econophysics: scaling and its breakdown, J. Stat. Phys.
89, 469.

[9] Feller, W. (1971). An Introduction to Probability Theory and Its Application, Vol. II, 2nd ed.,
John Wiley and Sons, New York.

[10] Sato, Ken-Iti (2004). Lévy Processes and Infinitely Divisible Distributions, Cambridge Studies in
Advanced Mathematics 68, Cambridge Univeristy Press, United Kingdom.

[11] Applebaum, D. (2005). Lévy Processes and Stochastic Calculus, Cambridge Studies in Advanced
Mathematics 93, Cambridge Univeristy Press, United Kingdom.

[12] Ma, X., Nikias, C.L.: On Blind Channel Identification for Impulsive Signal Enviroments, in Proc.
ICASSP’95 (Detroit, MI), May.

[13] Zolotarev, V.M. (1986). One-Dimensional Stable Distributions. Amer. Math. Soc., Providence,
RI.

[14] Fox, C. (1961). The G and H functions as symmetrical Fourier kernels. Trans. Amer. Math. Soc.
A98, 395.

[15] Mathai, and A.M., Saxena, R.K. (1970). Lecture Notes in Mathematics 348, Generalized Hyper-
geometric Functions with Applications in Statistics and Physical Sciences, Springer-Verlag.

[16] Schneider, W.R. (1985). Lecture Notes in Mathematics 1250, Stochastic Processes-Mathematics
and Physics II, Springer-Verlag.

[17] Schneider, W.R., and Wyss, W. (1989). Fractional diffusion and wave equations. J. Math. Phys.
30, 134.

[18] West, B.J., Grigolini, P., Metzler, R., and Nonnenmacher, T.F. (1997). Fractional diffusion and
Lévy stable processes. Phys. Rev. E55, 99.

[19] Jespersen, S., Metzler, R., and Fogedby, H.C. (1999). Lévy flights in external force fields: Langevin
and fractional Fokker-Planck equations and their solutions. Phys. Rev. E59, 2736.

17



[20] Metzler, R., and Klafter, J. (2000). The random walk’s guide to anomalous diffusion: A fractional
dynamics approach. Phys. Rep. 339, 1.

[21] Samko, S.G., Kilbas, A.A., and Marichev, O.I. (1993). Fractional Integrals and Derivatives -
Theory and Applications, Gordon and Breach, New York.

[22] Miller, K.S., and Ross, B. (1993). An Introduction to the Fractional Calculus and Fractional
Differential Equations, John Wiley and Sons, New York.

[23] Gradshteyn, I.S. and Ryzhik, I.M. (1994). Table of Integrals, Series, and Products, Academic
Press.

[24] Holtsmark, J. (1919): Uber die Verbreiterung von Spektrallinien. Ann. Physik 363, 577.

[25] Chandrasekhar, S. (1943). Stochastic Problems in Physics and Astronomy. Rev. Mod. Phys. A15,
1.

[26] Luke, (1969). The special functions and their approximations Vol. 1, Academic Press.

18



Table 1: The Fox’s H-function for the Farey series F,, of order n = 5 excluding the first % and the
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Table 2: The Fox’s H-function for 1 < o < 2.
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