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ABSTRACT

Seiches or long-wave oscillations in harbors are normally the result of nonlinear

interactions within groups of narrow-banded wind waves and swell. These oscillations

may cause excessive vessel motions and disrupt loading and unloading operations at port

facilities. Accurate prediction of harbor oscillation patterns is therefore an important

aspect in harbor design. Most previous studies have used linear models to predict these

nonlinear oscillation behaviors. This study uses an extended Boussinesq model that is

applicable from deep to shallow water and takes into account the generation mechanism

of these oscillations along with their interaction with the wind waves or swell. The finite­

difference model utilizes a predictor-corrector scheme to march the solution forward in

time. It has a moving boundary algorithm to account for wave swashing, thereby

allowing the correct boundary condition to be imposed at shorelines. The model is

applied to examine the natural oscillation modes at Barbers Point Harbor and Kahului

Harbor located on the West and North shores of Oahu and Maui respectively. The

computed responses at each harbor are compared with previous linear model results and

data gathered from pressure sensors. The analysis shows that harbor oscillation is

primarily excited by infragravity waves, which can be simulated by a Boussinesq model.
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1. INTRODUCTION

1.1 Harbor Oscillation

Wave climate plays an important role in harbor design and operations. Wu and Uu

(1990) showed groups of narrow-banded wind waves and swell can induce long-period

waves of 1 to 5 min through nonlinear interaction. If these long-period waves coincide

with the natural periods of the harbor, resonance oscillations or seiching may occur.

These oscillations are most damaging to moored vessels within the harbor basin, causing

excessive vessel motion and delays of loading and unloading operations at port facilities.

Excessive vessel motion may lead to the breaking of mooring lines and damage to fender

systems, and in some situations, vessel collisions.

A basin can exhibit different modes of oscillation. The lowest mode of oscillation is

commonly referred to as the Helmholtz or grave mode, in which the basin water surface

rises and falls in unison with the oscillation of the channel water in and out of the harbor

(Sorensen and Seelig, 1986). The higher modes are characterized by distinct nodes and

antinodes in the oscillation pattern and are more critical to harbor operation. Figure 1-1

illustrates the natural oscillation modes in a rectangular basin. The number of nodes and

antinodes is easily identifiable and characterizes the oscillation modes. For example, the

fundamental mode contains one node and two antinodes. The oscillation pattern becomes

more complicated for actual harbors with varying bathymetry.

1.2 Literature Review

Harbor oscillation has been studied extensively through field measurements, physical

models, and numerical models. Each of these approaches has assumptions and limitations

and does not necessarily produce the same results. These methods are usually used in

combination to examine harbor oscillation problems. Prototype measurements are needed



for calibration or verification of numerical and physical models, which in turn can be

used to evaluate different design layouts and produce a design that minimizes wave

disturbance within the harbor.

1.2.1 Field Measurements and Physical Models

Field measurements are necessary in harbor planning or expansion. Important

characteristics such as wave climate data, bottom friction, and current directions can be

used to define test conditions in numerical or physical models. Field measurements have

also been performed for existing harbors to provide better understanding of their

oscillation characteristics and suggest design improvements. Okihiro et al. (1993)

investigated the oscillations at two small harbors on the islands of Oahu and Maui. Data

from bottom mounted pressure sensors at strategic locations inside and outside the

harbors was analyzed and compared with the amplifications of the long-period waves

computed from a mild-slope model. These types of measurements also allows for

calibration ofnumerical and physical models.

Although numerical models are becoming well accepted in the planning of harbors,

physical modeling cannot be ignored, particularly in complex situations where the

validity of the mathematical approach may become questionable. Figure 1-2 shows the

physical model for Barbers Point Harbor. Physical models, by nature, handle the

refraction-diffraction and nonlinear interaction through scale modeling and generally

represent the shorter-period waves more accurately than numerical models. Special care

is required to properly generate long waves, because once generated, they tend to produce

undesirable reflections from basin walls (Lillycrop et aI., 1993 and Lee, 1985).

Furthermore, the harbor and surrounding coastal areas are sculpted in cement in a three­

dimensional model basin. Limitations to physical modeling include high cost, the lack of

direct simulation of frictional dissipation, and the difficulties in working with long waves

in an enclosed basin.
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1.2.2 Numerical Models

Numerical models have been used to supplement and prepare for physical model

tests. The results can be used to select wave gauge locations and identify promising

alternatives for physical model tests. Although numerical models require some theoretical

and computing skills from the operator, the implementation is far more convenient

compared to their experimental counterparts. For instance, the harbor layout in a

numerical model can be easily modified and tested compared to the time-consuming and

costly re-construction of the physical model. Numerical models are also more efficient

when unusually large areas or very long waves need to be simulated. In comparison to

physical model tests, numerical models provide more accurate solutions for resonant

modes with periods greater than 100 sec (Sand, 1982; and Lillycrop et aI., 1993).

Various numerical models have been developed to study harbor resonance problems.

The Helmholtz equation model was developed for harbor oscillations with constant

depth, while Chen and Mei (1974), Berkhoff (1976), Houston (1981), and Xu and

Panchang (1995) adopted the mild-slope models for wave agitation and harbor resonance

in water of varying depth. Linear models, such as HARBD and the most recent

cawAVE (Demirbilek and Panchang, 1998), which use the elliptic mild-slope

equations, remain the tool of choice by the Army Corps of Engineers. They are known as

steady-state models that provide the solution in the frequency domain. These linear

models are effective in providing harbor resonance frequencies and oscillation modes, but

do not reproduce the actual generation mechanism associated with nonlinear wave-wave

interactions.

Most harbors have dimensions much larger than the wavelength of the dominant

wave frequency and the first few modes of oscillations are primarily excited by the

subharmonics generated through nonlinear interactions. These subharmonics exist as

forced waves, which are phase-locked to the primary waves, or free waves as the energy
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of the primary waves dissipates through breaking or bottom friction. The primary waves

in the harbor also interact with the oscillation through nonlinear energy transfer.

Boussinesq models can provide a fairly comprehensive description of these nonlinear

interactions (e.g., Chen and Liu, 1995; Nwogu and Demirbilek, 2001; and Lynett et aI.,

2002). These models provide solutions in the time domain and allow the user to capture

the evolution of the waves over the entire time of simulation. In particular, Nwogu and

Demirbilek applied an improved version of Nwogu (1996) to study the oscillation

problems at Barbers Point Harbor.

1.3 Proposed Work

Barbers Point and Kahului are small harbors respectively on Oahu and Maui as

shown in Figure 1-3 and have experienced occasional long-period oscillation problems.

Over the last two decades, engineers and scientists from government agencies and

academic institutions have conducted numerical and physical model studies of the

oscillation in these two harbors (e.g., Palmer, 1970; Durham, 1978; Briggs et aI., 1992;

Okihiro et aI., 1993; Lillycrop et aI., 1993; and Nwogu and Demirbilek, 2001). All the

numerical tests, with the exception of Nwogu and Demirbilek, were generated using

linear mild-slope models, which do not account for the nonlinear wave-wave interaction.

Nwogu and Demirbilek examined Barbers Point Harbor with the Boussinesq-based

model BOUSS-2D and compared the identified natural periods with those obtained from

the linear model CGWAVE. Yet, they did not systematically look into the structure of the

oscillation patterns at resonance.

This study examine the resonance periods and the associated oscillation patterns at

Barbers Point and Kahului using the model COULWAVE, based on the extended

Boussinesq equation model (Lynett et aI., 2002). The use of a nonlinear model allows the

generation of the harbor oscillation from specified wind wave or swell spectra. The field
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measurements and linear model results of Okihiro and Guza (1996) and Lillycrop et al.

(1993) at Barbers Point and Thompson and Demirbilek (2002) at Kahului provide

comparison with the nonlinear model results and validation of CaULWAVE. Unlike

Barbers Point, which is bounded by near vertical walls, 50% of the coastline inside

Kahului Harbor consists of beaches where swashing of the waterline has to be properly

modeled. The impact of a moving waterline on the oscillation patterns has never been

examined before. The model of Lynett et al. has a provision for moving waterline and its

application to Kahului Harbor provides new results in harbor oscillation studies.
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2. BOUSSINESQ MODEL

2.1 Historical Development

Accurate prediction of nearshore wave conditions needs to incorporate both nonlinear

and dispersive effects. Important wave processes need to be considered include

diffraction, refraction, shoaling, and harmonic or wave-wave interaction. The Boussinesq

equations were first developed to explain experimental observations of solitary waves,

which could travel for relatively large distances without changes in their shape and speed.

The classical form of the weakly nonlinear and weakly dispersive Boussinesq equations

was derived by Peregrine (1967). Since both frequency dispersion and nonlinear effects

are weak, the Boussinesq equations are not applicable to very shallow water, where the

nonlinearity becomes more important than the frequency dispersion. Likewise, they are

not applicable in deep water, where the frequency dispersion is of the first order. Finally,

the equations could only resolve wave transformation for small amplitude waves, because

of the weakly nonlinear term.

Madsen et al. (1991) modified the dispersive terms of the Boussinesq equations to

extend the applications to shorter waves, or in deeper water. Nwogu (1993) extended the

applicable range to deeper water by re-deriving the equations in terms of the velocity at

an arbitrary vertical distance Za from the still water level, instead of the depth-average

velocity used by Peregrine (1967). The value of Za becomes a free parameter, which is

chosen to optimize the linear dispersion characteristics. Nwogu's alternative form of the

Boussinesq equations significantly improved the linear dispersion properties of the

original equations by making them applicable to a wider range of water depths. Despite

the improvement in the frequency dispersion characteristics, the equations are based on

the assumption that the wave heights are much smaller than the water depth, thus limits

the ability ofthe equations to describe highly nonlinear waves in shallow water.
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The modeling capability was greatly improved by the development of a fully

nonlinear form of the Boussinesq equations by Liu (1994) and Wei et ai. (1995). The new

equations are particularly useful for simulating highly asymmetric waves in shallow

water, wave-induced currents, wave setup close to the shoreline, and wave-current

interaction. Furthermore, the extended Boussinesq equations can model the evolution of

water waves from deep to shallow water. More recently, Lynett et ai. (2002) extended the

model of Wei et ai. to include wave swashing. The model is known as Cornell University

Long and Intermediate Wave model (CaULWAVE) and has a robust treatment of the

moving boundary and therefore is used in this study to model harbor oscillation.

2.2 COULWAVE

2.2.1 Governing Equations

A Boussinesq model provides a wave-by-wave simulation of the processes in the time

domain, thereby providing an accurate description of the wave conditions in the surf and

swash zone. The fully nonlinear and weakly dispersive model CaULWAVE was

developed at Cornell University. It is a Boussinesq-type equation model that allows for

the evolution of fully nonlinear and weakly dispersive long and intermediate waves over

variable bathymetry with a moving boundary for the changing waterline (Lynett et aI.,

2002).

The governing equations utilized by CaULWAVE are derived by Wei et ai. (1995)

and are commonly referred to as the WKGS equations. The depth-integrated equations, in

dimensionless form and Cartesian coordinates, are given as

TJI + V.[(h + 8TJ)Ual- ,u 2V.{(h + 8TJX[~(82TJ2 - 8TJh + h2)-~ z~ ]V(V .uJ

+ [~(8TJ - h)- Za ]V[V. (huJD} =O(,u4)
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Uat + BU a . VU a + V'7 +,u2 {~Z~V(V .UaJ+ Za V[V .(hu at )]}

+ C,u2 rrV. (hu a )]V[V. (hu a)]- V[,(V. (hu at ))]+ (u a .VZa)V[V. (hu a )])

+EI" {Z. V[U•. '1('1. (hu'))l+ du•.Vz. )v(v. u.)+ z; v[u•. '1('1. u. )l} (2.2)

+ E'I"V{- ~' v· u~ - T/U•. '1['1. (hu')l+ q[V. (hu.)]v. u. }

+E'I"V{~ [(V. u.)' - u•. V(vu.)l} +R f -R, ~ O(u')

where 11 denotes the free surface elevation and h the local water depth, and U a = (Ua , va)

is the reference velocity. The velocity is evaluated at the elevation Za = -0.531h, based on

the optimum agreement of the governing equations with the linear dispersion relation as

suggested by Nwogu (1993). The formulation is based on two dimensionless coefficients,

E = alh and Il = hI'A, where a is the wave amplitude and A is the wavelength. The

coefficient E is indicative of the importance of nonlinearity, while Il represents frequency

dispersion and is a second order quantity. The parameterizations Rfand Rb account for

the effects of bottom friction and wave breaking, respectively.

2.2.2 Wave Breaking and Bottom Friction

One of the most significant obstacles in developing a practical numerical model with

depth-integrated equations is wave breaking. The Boussinesq equations do not have the

necessary terms to account for wave breaking. Therefore, an eddy viscosity term Rb is

added to the momentum equations to account for the energy dissipation due to wave

breaking (e.g., ZeIt, 1991; and Kennedy et aI., 2000). This diffusive, second-order term is

dependent on the wave slope. Since a depth-integrated model can only have a single

surface elevation at a given horizontal coordinate, wave overturning cannot be simulated.

The implementation of the eddy viscosity term is equivalent to treating all breaking

waves as spilling breakers or bores.
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Bottom friction is important in shallow water and is accounted for empirically

through a friction coefficient!depending on the Reynolds number and seafloor condition.

The bottom friction parameter is described in the quadratic form by

(2.3)

where (h + 11) is the total water depth and Ub is the horizontal velocity at the seafloor. The

above equation has been utilized in similar models (e.g., Chen et aI., 2000). The bottom

friction coefficient has a direct relation to the Chezy coefficient C as

g
!= C2

(2.4)

where g is gravitational acceleration. The bottom friction coefficient typically is in the

range of 10-3 to 10-2.

2.2.3 Model Implementation

CaULWAVE simulates wave propagation over a 2-D Cartesian grid with variable

bathymetry. The numerical scheme utilizes a predictor-corrector time-stepping scheme,

accurate to the fourth order (M4
) in term of the time step M. The finite difference scheme

is accurate to the fourth order (~4) in space, where ~ is the grid size, thereby

minimizing numerical truncation errors in the spatial derivatives. The model simulates

the moving boundaries in the swash zone using a numerical technique similar to that

implemented by Kowalik and Bang (1987) for the nonlinear shallow-water equations.

The moving waterline is modeled by extrapolating the solution from the wet region onto

the beach. This linear extrapolation locates the position of the waterline between wet and

dry nodes, thereby allowing the real boundary to exist in between grid points and

improving the accuracy of the solution. The numerical results evaluated at the

extrapolated waterline are used to update the solution for the next time step. This

technique is numerically stable and does not require artificial dissipation.

9



The computational domain is analogous to a rectangular wave basin bounded by

dissipative sponge layers placed along the walls. The sponge layer is modeled by

dissipative terms in the governing equations that act to damp out the waves before they

reach the boundary of the domain. Along a user-defined line within the computational

domain, waves are generated using a source function approach. An algorithm converts

the input wave spectrum into a time series of source functions that vary along the line to

simulate the motion of a directional wavemaker. The free surface elevation along the line

source is given by

MroMe
TJ(x,y,t) = IIaij sin[k;(xcos8} + ysin8}) - oo;f + ~ij]

;=1 }=1

(2.5)

where aij is the discrete spectrum input, k; is the wave number, ~ij is a random phase shift,

and Mm and Me denote the number of frequency and direction bins respectively. Based on

the approach of Wei et al. (1999), the internal source generates incident waves through

addition and subtraction of mass along the line source. Individual mass fluxes for the

components are computed at each time step and are summed accordingly to produce the

prescribed surface elevation. Waves radiate out away from the line source in opposite

directions. Those propagating toward the harbor are considered in the study; the sponge

layers numerically absorb those propagating in the other direction.

2.3 Model Input

caULWAVE requires three input data sets. The first data set contains the

bathymetry and topography of the area of interest. The second data set contains run-time

and model parameters, which allow CaULWAVE to generate the computational grid

from the bathymetric and topographic input. The third data set contains the incident wave

information. The input data sets and the generation of the computational grid are

described in more detail in the following sections.
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2.3.1 Bathymetry and Topography

The bathymetric and topographic data of the studied area must be organized in a

rectangular grid with a user-defined origin. The data is contained in 4 files:

• x_topo.dat contains the locations of the grid points in meters along the x-coordinate

from the point of origin to Xmax. The increment between adjacent grid points should be

kept constant.

• y_topo.dat contains the locations of the grid points in meters in the y-coordinate from

the point of origin to Ymax. The grid resolution should be the same as in x_topo.dat.

• size_topo.dat contains the number of points in x_topo.dat and y_topo.dat.

• Ctopo.dat contains the water surface and land elevations in meters at the grid points.

Negative values represent water depth. The datais arranged by row in the x direction

starting at the origin.

The total number of grid points is equal to the product of the numbers of grid points in

the x and y directions.

Some factors need to be considered in the selection of the grid boundaries and

resolution. The size of the domain is selected so that the distance from the coastline to the

offshore boundary is on the order of a few kilometers to provide sufficient time and

distance for the waves to interact with each other. Additionally, the distance between the

lateral boundaries should not be restricted to the width of the harbor; it is common

practice to add a few hundred meters of additional bathymetry at each side of the harbor.

The location of the offshore boundary is determined such that the maximum water depth

is less than half the shortest wavelength of interest. In addition, the water depth must be

kept uniform along the wave generation boundary. For very detailed and intricate

bathymetric data containing numerous dips and rises, the resolution between the grid

points should be kept at about 8 to10m. This is due to the depth-averaged nature of the

Boussinesq equations that gets less stable for complicated underwater relief.
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2.3.2 Simulation Parameters

The model-setup and runup-time parameters for COULWAVE are stored in the

ASCII text file sim_set.dat. The parameters in the file define the computational grid and

simulation conditions. The key parameters include grid resolution, time step size, number

of iterations per time step, type of governing equations, sponge-layer arrangement,

wavemaker location, simulation time, and output interval as listed in Table 2-1.

The grid resolution is defined by the number of grid points per wavelength at the

wavemaker location based on the peak period of the incident wave spectrum. The value

should be in the range of 30 to 50 grid points per wavelength. The grid spacing should be

chosen to resolve the shortest wave period in the shallowest part of the domain. Once the

grid resolution is defined, the time-step size M is selected using the Courant number,

which is defined as:

(2.6)

where C is the phase speed calculated using the maximum water depth (hmax) and the

peak period of the incident waves. For stability, the Courant number must be less than 1

with a typical value of between 0.4 and 0.7. In addition, the user needs to specify the

maximum number of iterations per time step in the corrector loop.

The model can use the linear or nonlinear equations in the simulation. For the

nonlinear case, the user can either choose the weakly or fully nonlinear equations. The

weakly nonlinear equations of Nwogu (1993) are restricted for small amplitude waves,

with the amplitude to depth ratio of the order 0(0.1). The fully nonlinear model of Wei et

al. (1995) allows for the simulation of waves with larger amplitudes at the expense of

increasing CPU time due to the high-order terms in the governing equations. The weakly

nonlinear equations, however, produce more stable computations.
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The model automatically assigns a sponge layer along the boundary of the rectangular

domain. The width of the sponge layer is specified by the user and is selected to dissipate

the wave energy approaching the boundary and reduce reflection. Typical widths can be

anywhere between 3/4Lmax to 1Y4Lmax, where Lmax is the length of the longest waves

generated by the wavemaker. Large values of Lmax would reduce reflection, but at the

expense of increasing CPU time. The wavemaker location is measured as distance from

the offshore boundary. In addition, the user needs to specify the simulation time and

output interval in second.

2.3.3 Wave spectrum data

The program can generate regular or bichromatic incident waves. For irregular waves,

the user needs to supply a directional spectrum as part of the input. Measured spectral

wave data can be obtained on-line from the National Ocean Administration Agency

(NOAA) National Data Buoy Center (NDBC). Since the number of offshore buoys is

limited due to their high cost of operation, measured data is usually unavailable at the

location of interest.

Most practical applications use numerically generated spectral data or a parametric

spectrum based on given significant wave height and peak period. There are a number of

global and regional wave models in operation. These operational models are mostly

based on WAM (WAMDI, 1988) or WAVEWATCH (Tolman, 1989), which provide

directional wave spectra in deep water. The deep-water data can in turn be used as input

for a near-shore wave model such as SWAN (Booij et aI., 1996). If site-specific wave

conditions such as the significant wave height and peak period are known, it is possible to

generate the incident wave conditions for the model using parametric spectra (e.g.,

Bretschneider, 1959; Hasselmann et aI., 1973).

The Bretschneider spectrum is one of the most commonly used in engineering

applications. It has the same shape as the Pierson-Moskowitz spectrum (Pierson and
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Moskowitz, 1964), but is more conveniently defined in terms of the significant wave

height, H s, and peak frequency, Ip, as

[ ( J
-4]S - 5H; 1 ex _ ~ L

(I) - 16 (I /I
p

) 5 P 4 I
p

(2.7)

Figure 2-1 shows an example of the Bretschneider wave spectrum with Hs = 0.5m and Tp

= 15 sec. Most parametric wave spectra do not contain information on direction

spreading, which can be accounted for by a directional spreading function (e.g., St. Denis

and Pierson, 1953). In the numerical simulation, the input wave spectrum is truncated at

5% of the peak energy.

2.3.4 Computational Considerations

Once the program starts, it interpolates the bathymetric and topographic grid to

generate a computational grid based on the user-specified number of grid points per

wavelength. As mentioned in the previous section, the grid resolution gets finer as the

number of grid points per wavelength increases. The coverage of the computational

domain is slightly larger than that of the bathymetric and topographic grid, because of

additional damping regions along the sides. The computational grid still follows the x-y

coordinate system of the bathymetric grid, but with a shifted origin and has uniform grid

spacing~ and ~y.

The maximum size and resolution of the computational domain should be based on

the available computational resources. For a Pentium 4 PC with a 3.06-GHz processor

and a 1-GB physical memory, the grid size should not exceed 1000x1000. With the Intel

FORTRAN Compiler, the computational speed is about 0.1 minute per time step using

the fully nonlinear set of equations. A typical 30-minute simulation requires 10,000 time

steps and generates approximately 4 GB of data. Smaller grids can be used and results in

much less CPU time and storage requirements.
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2.4 Data Output and Analysis

2.4.1 Data Files

CaULWAVE calculates the time-dependent evolution of the water-surface elevation

and horizontal velocity over the domain and outputs the results over the computational

grid. The output data is written in ASCII text files, which are described as follow:

• xl.dat contains the x computational grid locations.

• yl.dat contains the y computational grid locations.

• time.dat contains the times when the output is written to the file.

• depthl.dat contains the computational grid including the sponge-layer regions. The

water depth or land elevation over the entire grid is written in one column. The data is

arranged by row in the x direction (alongshore) starting at the origin.

• zetal.dat contains the time-history of the free surface elevation over the domain at the

requested output interval. The format is the same as depthl.dat.

• bl_viscl.dat contains time histories of the grid status (wet/dry) as well as the

dissipation by wave breaking at the output interval.

• uvl.dat contains the time history of the flow velocity vector (u,v) at the output time

interval. The first and second columns contain respectively the u and v vector fields.

2.4.2 Data Analysis

CaULWAVE outputs a large volume of data that must be processed to extract the

relevant information. Following the model simulation, a few additional steps are

necessary to generate the harbor response spectrum and to identify the natural oscillation

modes. Figure 2-2 illustrates the steps involved in the data analysis. The five output data

files (bl_visc1.dat, depth1.dat, x1.dat y1.dat, and zeta1.dat) are post-processed with

Matlab to extract the frequency spectrum in the harbors and to re-format the data for the

visualization software Tecplot.
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At the end of the simulation, the time history of the water surface elevation over the

entire simulation is available. The discrete Fast Fourier Transform (FFT) generates the

frequency spectra for all selected grid points. The space-averaged response spectrum of

the harbor is given by

S(/) =J.- ISi(/)
N i=1

(2.8)

where I is frequency, N is the number of grid points inside the harbor, and SiC I) is the

discrete spectrum at grid point i. As compared to previous studies, which examine the

response at discrete locations, this space-averaged spectrum provides a more complete

description of the harbor oscillation characteristics. The harbor natural periods, in

principle, can be identified from the peaks of the normalized spectrum. The contour plot

of the oscillation amplitude at a specific period can be obtained from the discrete spectra

at the grid points.

The resolution of a spectrum is determined by a number of factors. Numerically, the

length of the time series controls the resolution of the spectrum generated from the Fast

Fourier Transform. Due to the relatively short simulation time, the FFT algorithm

automatically zero-pads the input time series to increase the resolution of the output

spectrum. This allows the user to determine more precisely the frequencies at which the

major peaks of energy appear.
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3. RESULTS AND DISCUSSION

3.1 Harbor Descriptions

3.1.1 Barbers Point Harbor

Located between 19° and 22° North latitude, Hawai'i is the southernmost state in the

United States. Figure 3-1 illustrates the wave climate of Hawaii. Waves from the

northeast are generated by the trade winds. During the summer months, waves originating

from the Southern Hemisphere approach Hawaii from the southwest. The largest waves

occur during the winter and are caused by storms in the Northwest Pacific Ocean.

Barbers Point is located on the southwest side of the island of Oahu approximately 24 kIn

west of Honolulu Harbor. It is the newest of nine commercial cargo-handling facilities in

the Statewide Commercial Harbor System. The aerial picture in Figure 3-2 shows that the

harbor is artificial and can be classified as the "Inland Basin" type. Except for the

entrance channel, the harbor complex is situated completely inland from the shoreline.

This minimizes the impact on coastal resources and eliminates the need for protective

structures.

The planning of the harbor started in 1958 when Congress ordered a study to

determine the feasibility of a second harbor on the island of Oahu. In 1961, developers of

the adjacent industrial park constructed a small L-shaped barge harbor to enable transport

of products directly to other islands. Because of its limited size and seiche problems, the

harbor had limited commercial use and was more popular for recreational fishing.

Congress authorized the construction of Barbers Point Harbor under the River and Harbor

Act in 1965 and appropriated construction funds in 1979. The University of Hawaii,

under a contract from the USACE Pacific Ocean Division (POD), conducted a hydraulic

model study (Lee, 1985). All design plans incorporated a small boat harbor extending off

the deep-draft harbor basin. The U.S. Army Engineer Waterways Experiment Station
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(WES) evaluated the effects of the small boat harbor and examined the proposed deep­

draft harbor.

The construction of the deep draft harbor was finally completed in 1985 and the small

boat harbor in 1989. Figure 3-3 shows the layout of the complex, which consists of an

entrance channel, a barge basin, a deep-draft harbor, and a small boat harbor. To reduce

the wave energy entering and becoming trapped in the harbor, 1400 km of rubble-mound

wave absorbers were placed on either side of the entrance channel and along the divider

between the deep-basin and the small boat harbor. The rock size varies from 0.5 ton to 1

ton at the innermost section of the harbor basin and increases to 2 ton to 4 ton towards the

seaward sector of the harbor. The deep-harbor accommodates containerships, tankers,

bulk carriers, and barges. The small boat harbor is located northwest of the deep-draft

basin and was designed to accommodate 350 to 500 small crafts.

Figure 3-4 shows the input bathymetric and topographic grid for Barbers Point. The

land topography is not shown in the figure so that the coastline and bathymetry can be

clearly seen. The entrance channel is 1300 m long, 140 m wide, and 12.8 m deep and the

alignment is approximately 74° from the shoreline. The bottom contours outside the

harbor are relatively parallel. The channel was excavated from the bedrock with a 1:1

side slope from the seaward end to the shoreline and with a 1:1.5 slope from the shoreline

to the basin. The water depth offshore of the 25-m contour is treated as uniform for the

operation of the wavemaker. Figure 3-5 provides a close-up view inside the harbors. The

deep-draft basin is approximately 700 m by 640 m and 12.8 m deep. A shallow, small

boat marina 4 to 5 m deep connects to the deep-draft harbor through a channel near the

main harbor entrance. Water surface measurements at the locations indicated in the figure

are available for extended periods. Although the deep-draft basin was recently extended,

this case study uses the 1989 configuration of the harbor so that comparison can be made

with previous field measurements and numerical results.
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3.1.2 Kahului Harbor

Kahului Harbor is situated on the north shore of Maui at the apex of a large V-shaped

bay, two miles from Wailuku, Maui's largest town and the county seat. It is the busiest

Neighbor Island port in the State and is the only commercial port that serves ocean cargo

vessels for the Island of Maui. The Kahului Railroad Company began construction of a

protective breakwater in an exposed inlet at Kahului in the early 1900's. In 1910, the

Corps of Engineers received authorization to improve the breakwater and dredge the

harbor. Additional improvements and modifications were made over the years, with the

completion of the deep-draft harbor in December 1931.

Figure 3-6 shows an aerial picture of Kahului Harbor, which is separated from the

open ocean by two breakwaters and belongs to the classification of "Protected harbors".

The breakwaters are armored with concrete units of up to 35 tons on the trunk and 50

tons on the head for protection against severe winter swells. A total of 920 m of

commercial piers is located in the eastern part of the harbor as shown in Figure 3-7. The

Piers are used by a variety of vessels including barges, container ships, passenger cruise

ships, and tugboats. The 405-m long Pier 1 accommodates up two ocean-going vessels.

Piers 2 and 3 accommodate barge activities. Two canoe clubs are located along the shore

immediately southwest of Pier 2. The southern shore of the harbor, between the boat

ramp and canoe clubs, includes a revetment along Kahului Beach Road and several rock

groins further East. A large coral stockpile has been placed inside the harbor, adjacent to

the West breakwater. This area, under the jurisdiction of the County of Maui, is being

considered for park development.

Figure 3-8 shows the bathymetric and topographic grid. The ship basin, which is

defined by the II-m contour, is approximately 730 m long and 600 m wide alongside Pier

1 on the east side of the harbor. Okihiro et al. (1993) deployed a pressure sensor near Pier

1 and another one off the east breakwater, as indicated in the figure, to investigate harbor
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oscillation. The southwest part of the harbor is shallow with beaches lined along the

coastline. The 200 m wide entrance faces northward and is bounded by the two

breakwaters. Directly offshore of the harbor entrance the depth is 10 to 12 m. The

offshore bathymetry is complicated; east of the harbor entrance, shallow areas of less

than 3 m deep extend 1 to 2 km offshore, whereas to the west the bottom slope is steeper

and relatively constant. The water depth offshore of the 25-m contour is treated as

uniform for the operation of the wavemaker.

Zeki Demirbilek from the U.S. Army, Engineer Research and Development Center,

Coastal and Hydraulics Laboratory (ERDC-CHL) provided the bathymetric data for

Barbers Point and Kahului harbors and their surroundings. The data was initially obtained

from the Scanning Hydrographic Operational Airborne Lidar Survey (SHOALS)

surveying system, which was carried out as part of a joint study by the U.S. Army Corps

of Engineers and the Scripps Institution of Oceanography, University of California, San

Diego. The SHOALS data appears to give accurate and detailed coverage inside and

outside the harbor, when compared with the hydrographic charts of the National Oceanic

and Atmospheric (NOAA) and the National Ocean Service (NOS) hydrographic charts.

The data from ERDC-CHL contains the measurements of the water depth inside and

outside the harbors. Since COULWAVE can model wave swash and requires the

topography as well, land elevations adjacent to the harbor are obtained from topographic

maps.

3.2 Sensitivity Tests

The computed results depend on a number of assumptions and parameters, which

need to be examined to assure the quality of the results. These include the use of a

parametric wave spectrum, the resolution of the wave spectrum, and the duration of
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simulation. These are examined in the following sections using Barbers Point Harbor as

an example.

3.2.1 Bichromatic Wave Input

This sensitivity test examines the model's ability to generate subharmonic and

superharmonic waves due to nonlinear wave-wave interaction. The wavemaker is

programmed to generate a bichromatic wave train with periods of 14 and 14.9 sec. Figure

3-10 shows the time series of the surface elevation at a node near the wavemaker. The

time series shows significant modulation of the wave amplitude with a period of about

210 sec. This is due to the constructive and destructive interference between the two

wave components. The spectrum of the time series clearly shows the high energy at these

two frequency components.

Figure 3-11 illustrates the time series of the water elevation and the frequency

spectrum at a selected point on the east side of Barbers Point Harbor. This time series

does not appear to be as structured as the time series near the wave maker. Furthermore,

the water surface elevation is lower inside the harbor because only a portion of the

incident wave energy gets into the harbor. The computed spectrum clearly shows

additional frequency peaks on the lower and higher ends of the spectrum with even more

energy than the primary waves at 14 and 14.9 sec. These waves correspond to the

subharmonics and superharmonics generated from the primary input waves. This shows

the model capability of generating the higher and lower harmonic waves from nonlinear

wave-wave interaction.

3.2.2 Simulation Time

In principle, the longer the simulation time, the better the resulting spectrum is to

capture the long-period oscillations. A test was performed to determine the minimum

simulation time to capture the natural modes inside Barbers Point Harbor. A wave train
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with a significant wave height of 0.5 m and a peak period of 16 sec is simulated for 15,

30, and 45 min and the respective wave spectra are compared.

Figures 3-12a to 3-12c show the space-averaged spectra inside the harbor for the 15­

min, 3D-min, and 45-min runs. The results are computed using a resolution of 0.0005 Hz

in the input wave spectrum. The most energetic peak for the IS-min run appears at 540

sec, while the peaks for the 3D-min and 45-min runs appear at 990 and 1010 respectively.

The difference between the IS-min and other runs is attributed to the short simulation

time, which is barely sufficient to capture one cycle of the oscillation. In addition, it takes

a few minutes for the basin to reach steady-state oscillation from the start of the

simulation. As the simulation time increases, the individual peaks appear to be narrower

and more resolved due to a reduction of noise. The lowest mode of oscillation for the 30

and 45 min simulations appears at a period of about 1000 sec. It is therefore unnecessary

to run the model for a simulation time longer than 30 min.

3.2.3 Wave Spectrum Resolution

Harbor oscillation is excited by long-period waves generated by nonlinear interaction

among wave frequency components. The incident wave spectrum is discretized into a

finite number of frequency components before being input to the wavemaker. The

resolution of the input spectrum affects the generation of nonlinear long waves and the

resulting oscillation in the harbor, and needs to be investigated before the model is

applied more generally to determine the natural modes. Figures 3-13a to 3-13c show the

space-averaged spectra obtained from an incident wave spectrum with 0.005, 0.001, and

0.0005 Hz resolutions. The results are computed for a 3D-min simulation with an incident

wave spectrum for Hs = 0.5m and Tp = 18sec.

Figure 3-13a shows an interesting pattern with the high-energy peaks at constant

intervals corresponding to the input spectrum resolution of 0.005 Hz. The long waves or

subharmonics are primarily generated through second-order interactions between the
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frequency components in the input wave spectrum. These long-wave components have

frequencies equal to the frequency differences of the components or literally at multiples

of the input spectrum resolution. These dominant peaks, therefore, may not represent

natural oscillations. The smaller peaks surrounding the dominant peaks likely represent

true natural oscillations, which are excited by the weaker, higher-order components.

Despite the coarse resolution of the input spectrum, the model is capable of identifying

resonance at a higher resolution.

The oscillation spectrum in Figure 3-13b is based on a finer resolution of /).f= 0.001

Hz in the input wave spectrum. The dominant peaks increase in number, but are still

evenly distributed following approximately the input resolution. However, most of the

peaks are shifted slightly from the frequencies of the incident long-wave components and

some of the high-energy peaks in Figure 3-13a become almost non-existent at this

resolution. At an even finer resolution of /).1= 0.0005Hz, the results are greatly improved

as shown in Figure 3-13c. The peaks no longer evenly distributed following the input

resolution and more likely to represent natural oscillations of the harbor. However, the

true resonance still needs to be confirmed by an evaluation of the oscillation pattern. The

spectral resolution can, in theory, be further refined infinitesimally, but this leads to

instability of the Boussinesq model. Therefore, the resolution of 0.0005 Hz is used to

model the incident wave spectrum.

3.3 Oscillation and Resonance

3.3.1 Incident Wave Conditions

The natural frequencies and the respective oscillation patterns at Barbers Point

Harbor are examined for two sets of incident wave conditions corresponding to

• Hs = 0.5 m, Tp = 16 sec

• Hs = 0.5 m, Tp = 18 sec

23



The response of the harbor is simulated for 30 min with unidirectional incident waves.

Thompson and Demirbilek (2002) studied Barbers Point and Kahului harbors with the

steady-state linear model cawAVE (Demirbilek and Panchang, 1998) and concluded

that the long-period oscillation in the harbors is independent of the direction of the

approaching waves. Therefore, the simulation for the harbor was conducted with an

incident wave angle of 90 degrees with respect to the shoreline.

The sensitivity tests have shown that the propagation of the incident waves toward the

shore results in the generation of a set of sub-harmonic waves through nonlinear wave­

wave interaction. These second-order components have frequencies equal to the sum and

difference between the input wave frequencies. Higher-order terms are also generated,

but with smaller amplitudes. Therefore, the primary input wave characteristics play a

significant role in the generation of the sub-harmonics, which in turn affect the response

of the harbor analogous to a damped oscillator. In addition, the primary waves might

interact with the harbor oscillation, modifying its response characteristics. Two input

wave spectra with different peak periods are therefore used in the simulation to determine

the effects of the primary waves on the long-period oscillation characteristics.

3.3.2 Barbers Point Harbor

Okihiro et al. (1993) deployed four near-bottom pressure sensors inside the harbor

and one outside the harbor as indicated in Figures 3-4 and 3-5. The sensors are indicated

with a letter that corresponds to their geographical location in the harbor (i.e. E for East).

The instruments recorded the water elevation 4 times per day for about 4 hours at a 0.5

Hz sampling rate. They gathered 5 months of data and presented the time-average power

spectra of water elevation inside the harbor with a frequency resolution of 2Ax1 0-4 Hz.

The presented spectra are normalized with the wave spectrum outside the harbor and

correspond to the transfer functions of the long-period wave components. The measured

data was compared with linear model results generated with a fine resolution of 3.8x10-6
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Hz and averaged over possible incident wave directions and over frequency to match the

frequency resolution of the field data.

Figures 3-14a to 3-14d compare the normalized wave spectra obtained from

COULWAVE at the four locations with the results presented by Okihiro et ai. (1993).

Both the normalized spectra from COULWAVE and the field data produce the highest

peak around 1000 sec, which represents the lowest mode of oscillation known as the

grave or pumping mode. The computed spectra at the 16 and 18-sec excitation periods

follow the general trends with some shift in the response frequency and amplitude. The

spectral peak period affects the energy of the sub-harmonics, giving rise to different

response amplitudes. The frequency shift indicates the effects of the excitation period on

the long-period oscillation modes. The frequencies of the dominant peaks, except for the

grave mode, vary with locations in the harbor and are associated with the pattern of nodes

and antinodes. The comparison between the computed and measured spectra is

reasonable with corresponding dominant peaks and troughs. The discrepancies are

expected because the measured spectra correspond to seasonal averages and are

normalized with the subharmonics outside the harbor that are generated naturally and

might have different characteristics as those generated numerically in a confined domain.

Similar shifting between the measured and linear model results is also observed and was

believed to be the result of bathymetry change due to the accretion of sediments (Okihiro

et aI., 1993).

Figure 3-15 compares the space-averaged spectra inside the harbor with the spectra at

the outside gauge location for the 16 and 18-sec wave excitations. The results are

presented for the frequency range from 0.0008 to 0.025 Hz, which covers all possible

periods of oscillation from 40 to 1200 sec including the grave mode. The harbor response

spectra for the 16 and 18-sec peak period are quite similar in shape and exhibit similar

periods of the natural modes. Both show the grave mode at around 0.001 Hz (1000 sec)
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and dominant peaks at about the same frequencies. The long-period oscillation inside the

harbor seems to be correlated to the subharmonics outside the harbor. The difference of

energy levels inside and outside the harbor is greater at low frequencies, because of the

natural oscillations that amplify the low-frequency energy level inside the harbor. The

energy-level difference diminishes with increasing frequency and the two curves are

expected to cross at higher frequencies, where the harbor is designed to reduce the energy

of the primary waves.

The natural modes are defined by the location and the number of nodes and antinodes

in the harbor. They are selected based on the sharpness and extent of the nodes and

antinodes as well as the peaks in the space-averaged spectra. Some of the modes exhibit

several variances of oscillation patterns that belong to the same general category. Since

the spectral resolution is defined by frequency, the resolution in terms of oscillation

period is distorted in favor of shorter periods. The results for periods longer than 300 sec

might not precisely capture the natural oscillation modes. This, however, is not a major

limitation of the analysis, since most of the oscillation periods are shorter than 200 sec.

About 150 amplitude plots were generated from over the frequency range. About 10

natural oscillation modes were identified based on their distinct patterns and locations of

nodes and antinodes. The results are shown in Figures 3-16 through 3-27 with decreasing

resonance periods.

Figure 3-16 shows the grave mode, which is characterized by an almost uniform rise

and fall of the water elevation in the harbor. The fundamental or first mode of oscillation,

as shown in Figure 3-17, has a node at the entrance and an antinode at the east corner of

the harbor. As the oscillation period decreases, the node migrates inward and a new

antinode develops at the entrance forming the 2nd mode of oscillation as shown in Figure

3-18. This oscillation mode transforms into a new pattern as shown in Figure 3-19 with

antinodes at the two sides of the entrance. Figures 3-18 and 3-19 show an interesting
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coupling pattern, in which the nodes extend from the deep draft basin to the West Beach

Marina despite the presence of the solid barrier. The higher oscillation modes are

characterized by increasing number of nodes and antinodes. Most of the oscillation

modes generated by the two wave spectra follow the same pattern and occur at similar

periods. The difference between the two sets of results increases with decreasing

oscillation period and may be attributed to the nonlinear interaction with the primary

wave energy.

Lillycrop et al. (1993) analyzed the linear results obtained from an elliptic mild-slope

model and identified seven oscillation modes. Their results are presented in Figure 3-28.

Color patterns are added to the original plots in which the nodes and antinodes are shown

in blue and red respectively. Both the linear and nonlinear models give the period of the

grave mode around 1000 sec. The linear model predicts the fundamental mode at 585.1

sec, while the nonlinear model predicts the period at best around 480 sec. The next mode

at 205 sec computed by the linear model has a node across the deep draft basin and the

marina and two antinodes across the entrance to the harbor. The nonlinear model gives a

similar pattern of oscillation at about 170 sec. This oscillation at 132 sec is often referred

as the rocking mode, where the node extends from the east end of the harbor to the west

and the antinodes fluctuate up and down on the north and south corners of the harbor.

The nonlinear model captures a similar pattern at 129 sec. The next two modes at 107.8

sec and 85.3 sec were accurately reproduced by the nonlinear model at around the same

period, but not the mode at 57.3 sec, where the nonlinear model does not produce the

same results for the two incident wave spectra.

3.3.2 Kahului Harbor

Kahului Harbor has a different geometry compared to Barbers Point and offers a

different perspective of the harbor oscillation problem. Okihiro and Guza (1996)

conducted a field study to obtain the surface elevation spectra at the location of Pier 3 (.)
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and outside the harbor (.) as indicated in Figure 3-8 and Figure 3-9. Figure 3-29

compares the computed spectra and the measurement, which have been normalized by

the spectrum recorded outside the harbor. caULWAVE produces similar response

spectra for the 16 and 18-sec excitations. The computed spectra also show similar general

behavior as the measured data, which was averaged over a period of five months. Figure

3-30 compares the space-averaged spectra inside the harbor with the spectra at the

outside gauge location for the 16 and 18-sec wave excitations. The grave mode occurs at

about 900 and 1000 sec and has the highest amount of energy. The long-period

oscillation inside the harbor seems to be correlated to the subharmonics outside the

harbor.

Eight oscillation modes are identified from 140 response amplitude plots from 40 sec

to 1200-sec periods. Figures 3-31 to 3-40 show the oscillation patterns arranged in

decreasing resonance period. Since the South shore of the harbor consists of natural

beaches where wave swashing may occur, the still water line provides a convenient

definition of harbor boundary there. Similar to Barbers Point, the grave mode of Kahului

as shown in Figure 3-31 corresponds to a near-uniform rise and fall of the water level.

The fundamental or first mode in Figure 3-32 has a node at the entrance and increasing

amplitude toward the south shore of the harbor. The high amplitude region near the south

shore does not correspond to an antinode, because the water can move freely across the

boundary. The rocking mode occurs around 160 sec and is characterized by a node

arching from the east and west breakwaters. A second rocking mode occurs around 145

sec with the node perpendicular to the east breakwater. These two modes may

significantly affect the operation at Pier 1, which is located along the east breakwater. A

third rocking mode is observed around 115 sec with the node perpendicular to the west

breakwater. The oscillation pattern becomes more complicated with additional nodes and

anti-nodes.
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Thompson and Demirbilek (2002) analyzed Kahului Harbor and identified 3 natural

modes that have the most impact on harbor activities at the piers. Their results are

presented in Figure 3-41. The oscillation modes simulated with the linear model at 181.8

sec and 58.5 sec do not have comparable matches with the caULWAVE results. The

121.1 sec mode has a node that extends from the east to the west breakwaters while

crossing through Pier 2. An additional node is located close to the tip of the west

breakwater. The nonlinear model was able to simulate a similar pattern of oscillation at

91 sec. The disagreement regarding the patterns of oscillation and their respective period

between the two models is certainly attributed to the presence of the natural shoreline on

the south shore of the harbor. As mentioned earlier, the nonlinear model is able to

simulate the waves in the swashing zone, whereas CGWAVE considers the boundary as a

impermeable vertical wall. The treatment of the boundary affects the overall flow pattern

leading to different oscillation modes. The increasing importance of the nonlinear effects

near the natural coastline further modifies the results in comparison to the linear model.
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4. CONCLUSIONS

The present study applies a recently developed Boussinesq model to analyze the long­

period oscillation of Barbers Point and Kahului Harbors. Two Bretschneider spectra with

different peak periods provide the incident wave conditions. The long-period waves,

which are generated through nonlinear wave-wave interaction, provide excitation to the

harbor. Using the Fast Fourier Transform, the response spectra are computed from the

surface elevation time series and averaged over the harbor to provide a general indication

of the response.

A sensitivity analysis shows that a simulation time of 30 min is sufficient to capture

all the oscillation modes, including the grave mode or the lowest mode of oscillation. A

frequency resolution of 0.0005 Hz or less in the incident wave spectrum is necessary to

produce better resolution of the response spectral peaks. The comparisons of the response

spectra inside Barbers Point Harbor and Kahului Harbor with field measurements and

linear model results indicate reasonable agreement. Furthermore, the energy at resonance

inside the harbor shows good correlation with that of the offshore long waves. The data

indicates that the spectral peaks might not exactly correspond to the natural oscillation

modes with well-defined nodes and antinodes. Aided by the space-averaged response

spectrum, the oscillation modes are identified from the response amplitude plots.

The data produces 12 and 10 natural oscillation modes respectively for Barbers point

and Kahului harbors over the frequency range of 40 to 1200 sec. The longer period

oscillation modes at Barbers Point show very good agreement with published linear

model results, except for the rocking mode around 132 sec. The present study also

identifies additional modes that were not identified in previous studies. The computed

oscillation modes at Kahului, however, do not agree with published linear model results.

This could be due to the swashing mechanism in CaULWAVE that allows water to move
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freely onto dry land, providing an accurate description of the boundary condition. Linear

models, on the other hand, treat the boundary surrounding the harbor as a vertical wall. In

addition, the diminishing water depth toward the shoreline gives rise to important

nonlinear effects, which cannot be accounted for with the linear model.

This study shows that the fully nonlinear and weakly dispersive Boussinesq model

can accurately and efficiently generate the natural oscillation modes of harbors. The

model can be used in conjunction with physical model tests to provide a complete and

realistic description of harbor oscillation problems.
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Table 2-1: Barbers Point and Kahului Harbors Simulation Parameters.

Parameter Value

Number of grid points per wavelength 40

Time Step Size (sec) 3

Simulation Time (sec) 1800

Fully Nonlinear Simulation on

Wave breaking model on

Width of Sponge Layer in Wavelength 1

Maximum iterations 200

Minimum iteration(s) 1

Corrector stage convergence error 5.00000024E-04

Bottom friction coefficient 0.03
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Fig. 1-1: Basin Oscillation Definition.

Fig. 1-2: Barbers Point Physical Model (http://chl.wes.army.mil).
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Fig. 1-3: Hawaiian Islands Map.
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Fig. 3-1: Oahu and Maui Wave Climate.

Fig. 3-2: Barbers Point Harbor Aerial View (http://www.state.hLus).
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Fig. 3-5: Barbers Point Harbor Bathymetry (e, locations of bottom-mounted pressure
sensors).

Fig. 3-6: Kahului Harbor Aerial View (http://www.state.hi.us).
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Fig. 3-7: Kahului Harbor Pier Locations (http://www.state.hi.us).
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Fig. 3-15: Comparison of Amplitude Spectra Inside and Outside of Barbers Point Harbor.
(a) Tp = 16 sec. (b). Tp = 18 sec.

47



(a)

Z
0.60
01i0
OBI
~

DAO
0.35
Il3J
~

ll2ll
0-15
0.10
nos

Fig. 3-16: Barbers Point Harbor Grave mode Contour Plot. (a) Tp =16s. (b) Tp =18s.
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Fig. 3-19: Barbers point Harbor: Variance of
(b) Tp = 18s.
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Fig. 3-21: Barbers point Harbor: 4th Mode of Oscillation. (a) Tp = 16s. (b) Tp = 18s.
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Fig. 3-24: Barbers point Harbor: 6th Mode of Oscillation. (a) Tp = I6s. (b) Tp = I8s.
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Fig. 3-25: Barbers point Harbor: 7th Mode of Oscillation. (a) Tp =16s. (b) Tp =ISs.
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Fig. 3-27: Barbers point Harbor: fjt Mode of Oscillation. (a) Tp = 16s. (b) Tp = ISs.
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Figure 3-28: Barbers Point Harbor computed Oscillation Mode with Linear Model
(Lillycrop et aI., 1993).
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Fig. 3-30: Comparison of Amplitude Spectra Inside and Outside of Kahului Harbor.
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Fig. 3-31: Kahului Harbor: Grave mode Contour Plot. (a) Tp =16s. (b) Tp =18s.
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Fig. 3-32: Kahului Harbor: 1st Mode of Oscillation. (a) Tp =16s. (b) Tp =18s.
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Fig. 3-33: Kahului Harbor: 2nd Mode of Oscillation. (a) Tp =16s. (b) Tp =18s.
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Fig. 3-34: Kahului Harbor: Variance of 2nd Mode of oscillation. (a) Tp = 16s.
(b) Tp = 18s.
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Fig. 3-35: Kahului Harbor: 3rd Mode of Oscillation. (a) Tp =16s. (b) Tp =18s.
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Fig. 3-36: Kahului Harbor: 4th Mode of Oscillation. (a) Tp =16s. (b) Tp =18s.
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Fig. 3-37: Kahului Harbor: 5th Mode of Oscillation. (a) Tp =16s. (b) Tp =18s.
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Fig. 3-38: Kahului Harbor: 6th Mode of Oscillation. (a) Tp =16s. (b) Tp =18s.
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Fig. 3-39: Kahului Harbor:
(b) Tp = 18s.
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Fig. 3-40: Kahului Harbor: 7th Mode of Oscillation (a) Tp =16s. (b) Tp =18s.
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Tr=121.1 sec

Figure 3-41: Kahului Harbor computed Oscillation Modes with the Linear Model
(Thompson and Demirbilek, 2(02).
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