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ABSTRACT

The classical linear Rossby wave theory suggests that the barotropic and baroclinic

modes of the mesoscale eddy field would disperse and become uncorrelated with

each other in space and time. In contrast, the correlation between the barotropic

and first baroclinic modes was noted from moored current meter records by Davis

(1976). The sparse vertical sampling and inadequate record length left room for

doubt and no dynamical explanation has been offered since then. In this study,

hundreds of full-depth Lowered Acoustic Doppler Current Profile (LADCP) velocity

profiles and the three years output from a General Circulation Model (GCM) are used.

Analyses of the observation and model output confirm that outside the equatorial

region the barotropic and first baroclinic modes are indeed correlated so that the

velocity decreases throughout the water column from its maximum at the surface.

We may call this the dominant vertical structure, which is quantified by the first

Empirical Orthogonal Function (EOF) from the LADCP profiles and model output.

The phase speed of the dominant vertical structure in the model is approximately

that of non-dispersive first mode long Rossby waves, even at frequencies above the

Rossby wave cutoff. The model also shows that, even though the dominant vertical

structure contains 50-80% of the variance, it alone provides an incomplete picture of

the vertical structure of mesoscale eddies. There is a phase shift of almost 900 from

top to bottom; in a zonal section, lines of constant phase slope down to the west. Or,

the lower layer leads the upper layer, given westward propagation.

We could not find a satisfactory theory which could fully explain the following

features: 1) correlation of the barotropic and first baroclinic mode; 2) enhanced

westward propagation; and 3) phase shift in the vertical. The non-linear model with
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finite interface perturbation succeeds partially. The linear Rossby waves with bottom

dissipation could explain the above features if dissipation is strong enough.
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CHAPTER 1

INTRODUCTION

Mesoscale eddies dominate the open ocean velocity in mid-latitudes. This can be

illustrated from the sea surface height (SSH) anomaly field either from a high resolu­

tion global circulation model (GCM) or from altimetric observation (figure 1.1). The

motion around SSH elevations and depressions in mid-latitudes can be estimated by

geostrophy: 10 cm SSH difference between two locations 100 km apart corresponds to

~10 cm S-l mean current across the section between the two locations. With more

than 10 years of altimetric SSH anomaly, we have extensive information about surface

mcsoscale currents in mid-latitudes, including their horizontal (x,y) and temporal (t)

variations (e.g., Stammer 1997), but our knowledge of their vertical structure is scat­

tered and partial. We deduce the vertical structures of mesoscale motion mostly from

moored current meter records, which have sparse space-time coverage and vertical

resolution.

Though energetic, the mesoscale motion is not well understood. For example,

there is still a controversy over the horizontal propagation of surface eddies inferred

from altimetric SSH anomaly (Chelton and Schlax 1998). A solid theory should

account for the horizontal propagation as well as the vertical structure, since they are

different aspects of the same problem.

Review: Theories and Observations

The simplest theory about the vertical structure of mesoscale currents involves

dynamical normal modes, which result from the linearized dynamics of a flat bottom
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ocean without mean flow and dissipation (Kundu 1990). These modes are orthonor­

mal and complete, so that normal mode decomposition has long been the framework

for describing the vertical structure of ocean currents, even though their dynami­

cal relevance to any specific phenomenon, for example the mesoscale motions in the

present study, is not clear. Similar modes occur in reduced gravity models such as

the 2.5-layer model used by Liu (1999), but they are not orthogonal. Some other

relevant theories are:

• Shear Modes and Baroclinic Instability This involves looking at the

interaction between the mean flow and Rossby waves. There are two conse­

quences due to the mean flow: one is the Doppler shift; another is to modify

the background potential vorticity gradient, which is simply the planetary vor­

ticity gradient (the fJ effect) without a mean flow, because of the isopycnal tilt

corresponding to the vertical shear in the mean geostrophic flow. The resulting

vertical structures-shear modes-will be different from the normal modes. If

the mean flow shear is strong enough, the effective fJ changes sign in different lay­

ers, and the Rossby waves can become baroclinically unstable (Pedlosky 1987).

The results from a two-layer model will be briefly discussed in the theoretical

part of this study.

• Equivalent Barotropic Mode Killworth (1992) found that the six-year

mean flow in the Fine Resolution Antarctic model is self-similar vertically (sig­

nificant positive spatial correlation between different depths) and the velocity

decays with depth. He called this structure the equivalent barotropic mode. He

suggested that the steering of the mean flow by topography is important in the

dynamics, but his argument seems incomplete (Chen 2000). In this study, we
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found the vertical structure of the mid-latitude mesoscale motion is similar to

that of the mean flow in the Antarctic Circumpolar Circulation (ACC) region,

except that the velocity decays more rapidly towards the bottom in the former.

Because the so-called equivalent barotropic mode is probably not a dynamical

mode (i.e., not an eigensolution of governing equations), we will avoid using the

terminology. We will instead call it the dominant vertical structure as inferred

from an Empirical Orthogonal Function (EOF) analysis.

• Barotropization in Turbulence Two-layer turbulence with weak dissipation

in idealized numerical models (e.g., Rhines 1977 and Arbic and Flier! 2002) dis­

plays barotropization: the turbulence tends to be dominated by the barotropic

mode with horizontal scales larger than the Rossby radius of deformation. With

strong bottom friction (so the growth rate of eddies due to baroclinic instability

and the decay rate due to bottom friction are of the same order), Arbic and Flier!

(2002) demonstrate that an equilibrium near the Rossby radius of deformation

is reached in which the barotropic and baroclinic modes are phase-locked with

comparable amplitudes so that the flow in the lower layer is much weaker.

• Isolated Structures (Modon) One may use an isolated Gaussian eddy in

either stationary or moving coordinates as "a building block" for the mesoscale

eddy field, and the "no net angular momentum" theorem is then relevant (e.g.,

Flier! 1987):

~1: dx1: dy1: dz1P = 0,

where 1P is the geo-potential and a rigid lid and flat bottom are assumed. Notice

that ~ plays a crucial role in the theorem. If we further assume 1P is separable
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so that 1/J == f(x, y; t)g(z), the theorem implies

~I: g(z)dz = 0,

i.e., the isolated eddy is baroclinic. The physics of the theorem is clearly stated

in Flier! (1987): Due to the increase in the Coriolis parameter northward, there

is a net north/south force on a recirculating flow. The net westward transport on

the northern side of a cyclonic eddy, for example, must balance the net eastward

transport on the southern side; yet the southward Coriolis force on the latter is

not as strong as the northward Coriolis force on the former, then there is a net

force, called "Rossby force" (Flier! 1987). In the case assuming a rigid lid and

flat bottom, there is no other overall force that can balance the "Rossby force";

isolated features therefore cannot exist and remain isolated unless they have no

net angular momentum then no "Rossby force". For an eddy in a one and half

layer reduced gravity model, the eddy could remain isolated and move steadily

westward at the speed approximately of the long Rossby wave (e.g., Nof 1982

and Cushman-Roisin et ai. 1990).

Most of our observational evidence about the vertical structures of mesoscale mo­

tion has come from vertical arrays of moored current meters. The first attempt of

this kind is by Davis (1976), using observations from the mid-ocean dynamics exper­

iment - MODE I. He performed an Empirical Orthogonal Function (EOF) analysis

(see chapter 2 for an introduction to the EOF analysis) and found considerable differ­

ence between the shapes of the empirical modes and the shapes of dynamical normal

modes. Namely, the first EOF is unidirectional and surface-intensified; alternatively,

in a decomposition into dynamical modes, the barotropic and first baroclinic modes

are dominant and temporally correlated. The dominance and correlation were also
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shown in the survey by Wunsch (1997), who used a large number of globally dis­

tributed long current meter records. However, Wunsch expressed reservations about

the EOF method due to its statistical uncertainty and did not intend to infer the

dominant vertical structure (the first EOF) as Davis (1976) did. Notice that the time

scale of the mesoscale motions is about 100 days, so that a few-year time series only

gives us a few degrees of freedom. Another potential problem is the sparse vertical

sampling.

We can also learn about the vertical structure of currents from hydrographic ob­

servations, but with a crucial limitation: only the baroclinic components can be

calculated.

In term of vertical resolution, velocity profiles are ideal for the study of the vertical

structures of currents. Such measurements date back to 1970s (Rossby 1974). With

eight profiles at a site 70 km south of Bermuda, Rossby demonstrated the dominance

of the barotropic and first baroclinic modes (48% and 39% of total variance respec­

tively, a rough equipartition). The major problem with velocity profiles is that they

contain energy from the entire frequency spectrum. Until recently, no long-term time

series of velocity profiles has existed that allows us to filter out the high frequency

internal waves and tides. Secondly, even though we have time series of a few years,

the statistical uncertainty for the mesoscale motions remain.

Overall, sampling has been inadequate to clarify the vertical structure of the

mesoscale motion.

Two Main Questions, Approaches and Results

Our main questions relate to the early speculation by Davis (1976):
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their correlation coefficient [between the barotropic and first baroclinic

modes] is .55 here. Why this is so is uncertain: either the coupling may

be brought about fortuitously or through systematic non-linear coupling be­

tween the modes (non-wave-like behavior).

1. What are the vertical structures of mesoscale motion in mid-latitudes

and what are their propagation characteristics?

To address the first part of this question, we use the full-depth Lowered Acoustic

Doppler Current Profiler (LADCP) profiles collected at all CTD rosette stations

during the Indian Ocean survey of the WOCE Hydrographic Program (see chap­

ter 2). Considering that the horizontal scale of the mesoscale motion is about

100 km and that the WOCE stations were typically separated by 55 km, we

expect to have independent samples every other profile. With more than 300

profiles in our analysis, we have more than 150 degrees of freedom. Therefore,

the space-time sampling of the present dataset is unprecedented for obtaining

large number of degrees of freedom and rendering statistical confidence.

Linear mode decomposition and EOF analysis are applied. We confirm that

outside the equatorial region of the Indian Ocean, the barotropic and first baro­

clinic modes are correlated so as to reinforce each other in the upper ocean. The

first EOF is labeled as the dominant vertical structure, and it has about 40% in

middle latitudes and 80% in high latitudes.

After finding a favorable comparison between the first EOFs from the LADCP

profiles and from a numerical oceanic General Circulation Model (GCM) with

high horizontal and vertical resolutions (the Japan Marine Science Technology

Center (JAMSTEC) model, see appendix B), we used the model output to study
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eddy propagation and energy sources. In mid-latitudes, the propagation speeds

of the dominant vertical structure in the model are close to those of the long

Rossby waves of the first baroclinic mode, even at frequencies above the Rossby

wave cutoff. In high latitudes (south of 30°8) the inferred speeds are faster than

those of the long Rossby waves, while in lower latitudes the inferred speeds are

slower. From the model output, we also learned that the lower layer is leading

the upper layer, given westward propagation. Therefore, the dominant vertical

structure, as quantified by the first EOF, is not a dynamical mode: '¢(x, y, z; t)

is not separable as '¢(x, y, z; t) "" f(x, y; t)g(z).

2. What are the dynamics?

The dynamics should explain

• The correlation of the barotropic and first baroclinic modes;

• Different dispersion relations from those of linear Rossby waves;

• The tile in lines of constant phase, down to the west.

If the LADep profiles and model output had shown that the dominant verti­

cal structure is one of normal modes, e.g., the first baroclinic mode with one

mid-depth zero-crossing, and that each mode propagates according to the dis­

persion relation of the linear Rossby wave of that mode, then we would claim

that we understand the dynamics - we could write down the linear potential

vorticity equation and solve it, and match the modal solution of that mode with

what was observed. The reality is that there is no linear mode matching the

dominant vertical structure in the observation and model output, and no lin­

ear mode dispersion relation matches the dispersion relation inferred from the
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model output.

The approach used in this study is to check factors not included in the linear

Rossby wave theory: mean flow, non-linearity and bottom dissipation (Chap­

ter 10). In other words, we add one of those terms to the potential vorticity

equations for the linear Rossby waves, and see whether there is a modal solu­

tion which could explain all or part of what was observed and modeled. To be

analytically tractable, a two-layer model or a constant N 2 model is used. We

found that:

• Shear modes could be important in high latitudes;

• The two-layer non-linear model with a finite interface perturbation can

marginally explain the phase shift and will work better if the flow is in

transition but has not reached quasi-steady state;

• Bottom dissipation could explain the behavior in mid-latitudes, but we do

not know if bottom friction in the ocean is strong enough to cause the

observed vertical structure.

Because of the simplicity of the model and the uncertainty about the parameters

in the models, the results are not decisive but could serve as hypotheses of further

studies.

Layout

We will present the results in three parts:

1. Observation: LADCP

2. Numerical modeling: JAMSTEC GCM
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3. Theories: two-layer models

Most of chapters will start with a brief summary of the chapter, and the conclusion

chapter will detail the results for each part. As seen, the first two parts address our

first question and the third part addresses our second question.
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Altimetry (T/P+ERS, AVISO) SSH anomaly 1994/05/25 cycle = 085
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Figure 1.1: Snapshots of sea surface height anomaly in the eastern Indian Ocean,
measured by altimetry (Archiving, Validation and Interpretation of Satellite Oceano­
graphic Data (AVISO) group in CNES, French, http://www.oceanobs.com) and mod­
eled by the JAMSTEC model (Ishida et a11998). The anomaly in the upper panel is
relative to the 7-year mean from 1993 to 1999) and the anomaly in the lower panel
is relative to the 3-year mean from model 20 to 22). The same color scale is used in
both panels. A brief description of the model is in appendix B.
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OBSERVATION: LADCP
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CHAPTER 2

DATA AND METHODS

2.1 Data

The Lowered Acoustic Doppler Current Profiler (LADCP) is a self-contained ADCP

that is usually operated with a Conductivity-Temperature-Depth (CTD) rosette (Fir­

ing and Gorden 1990). The full-depth LADCP velocity profiles are typically gridded

at 20 m intervals with ~40 m effective vertical resolution. A detailed description of

the LADCP instrumentation and data processing algorithms as used in the data set

presented here are given in Fischer and Visbeck (1993) and King et at. (2001).

As stated in King et al. (2001), the error analysis of LADCP profiles is compli­

cated. Error could be related to instrument performance (e.g. compass error), as

well as to environmental factors such as backscattering strength. Furthermore, error

characteristics differ among different vertical scales. It is therefore not sensible to give

a simple error estimate for a large dataset. Nonetheless, past experience suggests that

final LADCP velocities have rms errors of a few cm S-l (King et al. 2001).

The barotropic and first baroclinic mode projections of the velocity profiles are

the most relevant in this study. The barotropic component is usually least worri­

some, with an error 1-2 cm S-l or less (Hacker et al. 1996). Estimated barotropic

tides (Egbert et al. 1994) are removed from the LADCP profiles prior to analysis.

The error in the first baroclinic component is not clear. The favorable comparison,

however, between the first baroclinic mode of the LADCP velocity shear and that of

the geostrophic shear in section 3.3 suggests that the component is not overwhelmed

by noise.
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The CTD profiles, used to calculate normal modes and geostrophic shears, are

gridded at 2 decibar intervals, with an accuracy in temperature of ±O.OOl°C, salinity

of ±0.002 psu and pressure of ±1 decibar (the WOCE standard for CTD measure­

ments, King et al. 2001).

During the Indian Ocean survey of the WOCE Hydrographic Program, more than

one thousand LADCP profiles were collected (figure 2.1) from December 1994 to

December 1995. In order to analyze the dominant vertical structure of the mesoscale

ocean currents in the mid-latitudes, we use the subset consisting of 366 profiles that

are deeper than 4000 m and fall in the latitude range of 5° to 35°. There are two

advantages for doing so: the subset is more homogeneous in terms of vertical range

and latitudinal locations; the profiles within western boundary currents and over

shallow water are mostly excluded.

2.2 Normal Mode Decomposition and EOF Analysis

The normal modes are the eigenfunctions of the following equation, which assumes

linear ocean dynamics, with a flat bottom and without mean flows (e.g. Kundu 1990):

d 1 dPn 1
dz N2 dz + ~ Pn = 0, (n = 0,1,2,"-).

Top and bottom conditions are ~ + ~2 Pn = ° (z = 0), and ~Iz=-H = 0, respec-

tively. N is the Brunt-Vaisala frequency, depending solely on the density profile. If

N 2 is constant and the top condition is approximately ~ 1.=0 = °(rigid lid approx­

imation), the above equation has solutions Pn = cos(mfz/H) (n = 0,1,2,'" and

z E (-H, 0)). The eigenvalues are en = ~: (n = 0, 1,2",,), Pn(z) is called the nth

mode of pressure and horizontal velocity. The barotropic mode, denoted by n = 0,

is simply a constant. The first baroclinic mode is denoted by n = 1, the second by
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n = 2, and so on.

A realistic N 2 profile will lift the zero-crossings of the above baroclinic modes

upward but the overall vertical structures remain similar. Notice that the lower the

mode (starting from zero for the barotropic mode and one for the first baroclinic mode,

and so on) the larger the vertical scale. Conventionally, each mode is normalized so

that its depth-averaged variance is unity and it is positive at the surface. In this

study, the N2 profiles are calculated from the one-time CTD profiles with which the

LADCP profiles were collected together. The mode vertical structures, particularly of

the first few modes, will not differ significantly from using either synoptic or long-term

mean CTD profiles.

The nth mode amplitude (un) of the E-W component (u(z)) of an LADCP profile

is defined as

1 1°Un = -- u(z)JDn(z)dz.
H -H

Since the modes are orthonormal, the mode amplitudes are independent each other so

that the distribution of the squared mode amplitudes over mode number can be viewed

as one kind of variance-preserving energy spectrum of the LADCP profiles. As will

be shown in the following, the EOFs are also orthonormal so that their associated

variance Ai(i = 1,2, ... , M) can be viewed as another kind of variance-preserving

energy spectrum.

EOFs capture the inherent structures in the data. We view our LADCP dataset

as two-dimensional: water depths (0 m, 20 m, ... ) versus station numbers (1,2,... ,
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which are arbitrarily assigned as the labels). The data matrix is defined as

A=

where the itk column is the LADCP profile at the itk station with M vertical grids.

All LADCP profiles are truncated to a common depth of 4000 m, so M = 201. The

EOFs Fi(i = 1,2, ... , M) are the eigenvectors of AAT
, i.e., the covariance matrix,

satisfying:

AATFi = AiFi,

where Ai is the corresponding eigenvalue of F;. When Ai(i = 1,2, ... , M) are sorted

in descending order, F 1 is called the first EOF, F2 the second EOF and so on.

Following Fukumori and Wunsch (1991), F1 is the most "common" column vector,

in the sense that it has the largest projection on all of the columns in A:

IIF[AII = VFFAATF1 = VF[A1F1 = A.

Notice that Al is the maximum of all Ai. The above equation also points out that J);;­

is the rms of the projection amplitude of all of the columns in A on Fi . The total

variance of A is the sum of all Ai, i.e., IIAW = L~ Ai. The sorted Ai(i = 1,2, ... , M)

usually decrease very rapidly, so that the first few EOFs contain most of the variance

of A.

In this study, the velocity vectors are represented as u + iv, so bfA is complex.

Thus the covariance matrix is complex, as well as the EOFs, but the eigenvalues are

real since the covariance matrix remains symmetric. We conventionally formulate the

EOFs so that they are real at the surface.
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Strictly speaking, the EOF analysis applied here is a complex EOF analysis

(Preisendorfer 1988). However, as will be seen, the first complex EOF, which is

our main focus, is dominated by the real component. If we apply the EOF analysis

to east-west or north-south components separately, the resulting first EOFs are very

similar .

In EOF analysis, the primary concern is the so-called effective degeneracy (North

et al 1982), which stems from the degeneracy of the eigenvectors of a matrix. If

two eigenvalues of the matrix are identical, their corresponding eigenvectors are not

unique, i.e., any linear combination of these two eigenvectors will also be an eigenvec­

tor with the same eigenvalue. In EOF analysis, even if two eigenvalues are separate

from each other but only by a small amount, the separation could be due to noise.

In such a situation, the corresponding EOFs are not physically distinct and thus are

misleading. As could be expected, the greater the separation of the estimated Ai, the

greater the significance of the EOFs (the less chance of effective degeneracy).
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Figure 2.1: Indian Ocean topography and locations of about 1000 LADCP profiles (both

black and purple vectors) from the WOCE Indian Ocean Hydrographic Program. Green

dots are CTD stations. Labels are WOCE designations. One non-WOCE cruise by Doug

Wilson, mostly a repeat of 17 and 15W, is also used in this study, but not shown here. The

black vectors represent the mid-latitude subset, with 366 profiles deeper than 4000 m and in

the 5° to 35° latitude range. The plot is a modification of a similar plot by Kathy Donohue.
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CHAPTER 3

LADCP PROFILES AND LINKS TO MESOSCALE MOTION

The LADCP profiles are generally in the lowest modes (having large vertical scale).

This is demonstrated by looking at the depth-average vectors, the profiles themselves

and sectional contours of them, and formally by normal mode decomposition.

3.1 Glimpses of LADCP Profiles

Depth-average (barotropic component)

The depth-averages of the LADCP profiles, i.e., the barotropic components, are

shown in figure 2.1. The largest barotropic velocities (~30 em S-1) mostly fall within

the western boundary current: the Somali Current near the equator, the Agulhas

Current around the southern tip of the African continent, the East Madagascar Cur­

rent along the east coast of Madagascar and the Antarctic Circumpolar Current in

the Southern Ocean. Large barotropic velocities were also located over shallow wa­

ters, such as the mouth of the Persian Gulf and the west coast of Australia. These

large velocities are presumably dominated by tides or coastal currents.

In the mid-latitudes (black vectors in figure 2.1), the barotropic components are

mostly 5-10 em S-1. They are a substantial part of the total velocities. Another

feature, which will be tested by the lag-correlation along cruise tracks in the next

section, concerns the horizontal scale. In figure 2.1, it is easy to spot the two adjacent

vectors with similar magnitudes and directions. This is not true, however, for three

or more vectors. Considering that the LADCP stations are typically 55 km apart, we

can infer that the horizontal correlation scale in the LADCP barotropic velocities is
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~50 km.

Velocity profiles

Figure 3.1 shows 40 individual LADCP profiles (E-W component only), which

are randomly drawn from 366 profiles (their depth-averages are the black vectors in

figure 2.1). The general impression is that small-scale wiggles and large-scale wobbles

exist simultaneously. Looking at them more closely, one finds that the wiggles are not

around the zero-velocity axis or any other fixed value, but around the wobbles, and

that the amplitudes of the wobbles are significantly larger than those of the wiggles.

We shall call the wobbles low-mode motion, and the wiggles high-mode motion.

The "low-mode" refers to the barotropic and first few baroclinic modes, while the

"high-mode" refers to higher baroclinic modes. We were unable to match any of

the wobble to any single low normal mode. Wobbles can be approximated by a

combination of a few low normal modes, with the combination varying from one

profile to another. When we put all combinations together, however, a certain pattern

exists, which will be shown in the context of kinetic energy partition within normal

modes.

Cross-basin sections

We present two sections, one along about 30 0 S (figure 3.2) and another along about

95°E (figure 3.3). As the contours show, the strong velocity cores usually extend more

than one kilometer vertically. This is consistent with the individual velocity profiles

(figure 3.1). Horizontally, the velocity cores extend about a degree along the cruise

tracks.
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Another observation, which is less straightforward but has important implication

dynamically, is that we do not see any zero-crossings near 1000 m; we would expect

to see them if the first baroclinic mode were dominating the synoptic velocity field.

We see many instances where the velocity is in the same direction from surface to

bottom, with surface intensification. The vertical structure will be quantified by EOF

analysis in Chapter 4.

3.2 Normal Mode Decomposition

Normal modes are derived from simplified dynamics, but whether the simplified dy­

namics are applicable here has not been established. Normal model decomposition is

therefore performed merely as a way of describing the observations statistically. For

each station, we first project each component of the LADCP profile (u or v) onto

normal modes (Pn(z), n = 0,1,2,···). The resulting Un and Vn then define the nth

mode amplitude as Ju~ + v~ (n = 0, 1,2,···).

cro88-basin sections

The mode amplitudes for six latitudinal sections are shown in Figure 3.4 in the

form of contours. Some features are as expected:

• The kinetic energy is mostly in the low modes;

• Near the equator, the kinetic energy usually spreads into modes higher than the

third mode;

• In high latitudes (Southern Ocean, the first two panels), the barotropic and first

baroclinic modes are dominant.
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Other features, which may not be obvious, but are worth mentioning;

• The contours are not smooth. The amplitudes, however, are not jumping from

one station to another, but rather are varying on a scale of about one degree

latitude. This was also suggested by the sectional contours (figures 3.2 and 3.3).

• In the Southern Ocean, the barotropic mode significantly exceeds other modes.

Away from the Southern Ocean, there are many instances where higher modes

exceed lower modes.

• In the last two panels, we see a feature near 100 S that seems directly related to

a major topographic feature, the Mascarene Plateau (see figure 2.1).

The mode amplitudes of one zonal section are shown in figure 3.5, along with the

Smith-Sandwell topography. High modes are enhanced near major topographic fea-

tures. Another noticeable feature is that the western basin is more energetic than the

eastern basin. we might expect this kind of asymmetry due to the boundary current

(the East Madagascar current) and complicated topography in the western basin.

Kinetic Energy Partition (KEP)

We focus on the barotropic mode and first ten baroclinic modes, since they account

for most of the kinetic energy. The kinetic energy partition is defined as the percentage

of total energy in each mode, Le.

(u~+v~)/2
KEPn = Loo (2 2)/2 x 100% (n = 0,1,2",,),

m=O urn +vm

From latitudinal sections (figure 3.4), we see that there is more energy in higher modes

near the equator and that the barotropic mode is only dominant at high latitudes.

To emphasize the latitudinal dependency, we binned the LADCP profiles for each 5
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degrees latitude. Figure 3.6 (top panel) shows the mean KEP of all 11 modes for

each 5-degree bin. The bottom panel shows the mean and standard deviation of the

barotropic and first baroclinic modes along with a listing of the number of LADCP

profiles per bin.

Figure 3.6 clearly demonstrates that

• The low modes are dominant. Even near the equator, the fifth mode has less

than 10% of the kinetic energy;

• The barotropic mode dominates in high latitudes, while the kinetic energy is

marginally dominated by the second baroclinic mode near the equator.

• In the mid-latitudes, we see the approximate equipartition between the barotropic

and first baroclinic modes; each contains about 25% of the total variance, and

the second baroclinic mode contains about 12%. This is similar to Wunsch

(1997).

3.3 Comparison with CTD Geostrophy

Sectional comparison

We start with sectional contours of the LADCP profiles and CTD geostrophy.

The geostrophy is referenced to the barotropic component of the LADCP profiles:

the depth-average of the geostrophic velocity is equal to the depth-average of the av­

erage of the two LADCP profiles at corresponding stations. Recall that the barotropic

component tends to be less noisy than the baroclinic components (King et al 2001).

In figures 3.7 and 3.8, the cross-track LADCP velocities are compared with the corre­

sponding geostrophy. The east-west and north-south LADCP velocities along these
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two sections were shown in figures 3.2 and 3.3. Since the cruise may not have gone

along the lines of latitude or longitude, the cross-track velocity could differ from u or

v in figures 3.2 and 3.3.

Generally speaking, the LADCP velocity and geostrophy are comparable. The

LADCP profiles, however, have more small-scale structures. The geostrophic calcu­

lation inherently averages between stations, so that the high mode motions, usually

with small horizontal scales, are filtered out. In figure 3.8, the geostrophy near the

equator (e.g. less than 7°) is too noisy to be meaningful.

In the east part of I5E (figure 3.7), near the bottom ~1000 m, the geostrophy and

LADCP velocity are different. This also seems to happen along 95°E (figure 3.8) in

several locations. The reason is not clear. The noise in the LADCP profiles down

there could have been enhanced because of weak scattering.

Comparison between LADC? velocity and CTD geostrophy

The criteria for choosing station pairs for comparison are as follows:

• stations must be located at least 10 degrees away from the equator. A small

Coriolis parameter (J) near the equator will greatly exaggerate the noise in

the dynamic height, so that the geostrophic calculation from one snapshot is

unreliable.

• Distance between station pairs is less than 80 km but larger than 40 km. If the

distance is too large, the LADCP profile pairs may miss peaks between stations

while the geostrophic velocity does not. If the distance too small, the noise in

the dynamic height will be exaggerated, similar to the situation with a small f.

• The common water depth of a station pair is larger than 2 km and the difference
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of the water depths between two stations is less than 1 km. This criterion

excludes station pairs in shallow water and near steep topographic slopes, where

internal waves, including internal tides, are usually significant.

The difference between the LADCP velocity and geostrophy could be due to: 1)

measurement errors in both; 2) high frequency components (e.g. internal waves) and

other non-geostrophic terms; and 3) a mismatch of the point-average of the LADCP

profiles and the integral-average in the CTD geostrophy.

Figure 3.9 shows the first mode amplitudes of the LADCP profiles and geostro­

phy, station-pair by station-pair. The two basically follow each other. The favorable

comparison indicates that the first baroclinic mode of the LADCP velocity is approx­

imately in geostrophic balance.

There are, however, differences. In quite a few instances, we see that the geostro­

phy is larger than the LADCP at one station-pair, but smaller at an adjacent station­

pair (e.g., see station pairs 123-124 and 147-148). This feature could be related to

noise in the dynamic height: the noise in the dynamic height will bias higher for one

station-pair and lower for the adjacent pair. The difference between the LADCP and

geostrophy is generally 1-2 cm s-1, but can be as large as ~5 cm S-I.

Figure 3.10 shows the correlation between the LADCP profiles and CTD geostro­

phy as a function of normal modes. We did not find a latitudinal dependence, but

we see that the correlation coefficient curves are noisy (e.g. the green line) when the

sample size is not large enough. The first and second modes have strong correlations,

while the next two modes show weak correlations. After the fourth mode, there are

no correlations. One explanation could be that the geostrophic estimates filter out

high modes. This is supported by the mode amplitude variance in figure 3.11.

24



Figure 3.11 shows that the variance in the high modes of the geostrophy is weak,

likely due to the integral-average inherent in the geostrophy. The drop-off in variance

at higher modes is consistent with the smoothness of contours in the lower panels of

figures 3.7 and 3.8. The first barociinic mode variances for the LADCP and geostrophy

profiles are 18.7 and 16.1 (cm S-l? respectively. Thus, though it is not significant

statistically, the variance in LADCP is ~16% greater than in geostrophy.

Breaking the data latitudinally (figure 3.12), we find a tendency that the higher

latitude the more difference between the variances in the lower modes of the LADCP

and geostrophy. Toward the equator, uncertainty in the geostrophic estimate due

to noise in the dynamical height is enhanced by a smaller Coriolis parameter. On

the other hand, the scale of the motion gets smaller toward high latitudes, thus the

integral-average in the geostrophy may reduce the variance there.

In summary, the low modes of the cross-track LADCP velocity and CTD geostro­

phy are comparable. It follows that the low modes of the LADCP velocity are domi­

nantly governed by geostrophic dynamics.

3.4 Spatial and Temporal Information in LADCP Profiles

We extract spatial and temporal information from the subset of 366 profiles, smce

most of the statistical analysis in the next section is performed on this subset.

Two types of lag correlation coefficients are calculated: one is from the profiles

of the same cruises (upper panel of figure 3.13) and another from those of different

cruises (lower panel of figure 3.13). The former should consist mainly of spatial

information, if the LADCP velocity is dominantly the mesoscale motion, while the

latter may consist of a mixture of spatial and temporal information. The detailed
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steps to calculate lag correlation coefficients are in Appendix A.

As shown in figure 2.1, the LADCP profiles were mainly sampled along longitu­

dinal/latitudinal lines across the Indian Ocean basin within tens of days and with

station intervals of ~55 km. If we presume that the LADCP profiles are dominated

by mesoscale motions with spatial scale 50 km, then the LADCP profiles just barely

resolve the horizontal structure of the velocity field. This is the case suggested by

figure 3.13a. The zero-crossing is at about 100 km, consistent with the scale of the

mesoscale motion. Therefore, since most of the stations were 5.5 km apart, we con­

clude that we likely have 183 degrees of freedom for the 366 LADCP profiles used in

the EOF analysis. This is critical. Existing moored current meter records have much

fewer degrees of freedom for mesoscale motions, given their time scales are about

100 days.

From figure 3.13a, we see that the barotropic and first baroclinic modes have

almost identical horizontal correlation scales. As will be discussed in the next section,

this characteristic directly relates to the fact that the barotropic and first baroclinic

modes are correlated.

Adj acent profiles from the same cruise should be viewed as a snapshot of the

mesoscale motion, since they were sampled within a day. There are, however, profiles

that are close to each other geographically, but from different cruises. The cruises

were separated by 4 months to 11 months. The autocorrelation function for these

profiles is shown in figure 3.13b. There is no significant correlation, even for the

shortest distance. Physically, it shows that the current's time scale is shorter than 11

months - the longest separation for all involved cruises.
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LADCP velocity profiles, during the WOCE Indian Ocean Expedition
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Figure 3.1: LADCP velocity profiles randomly chosen from the 366 subset indicated by the

black vectors in figure 2.1. Only the E-W component is plotted. The profiles are truncated

at 4000 m. In each panel, the thin straight line represents zero velocity. Each tick on the

x-axis is 10 cm s-1 and the total range is from -20 cm s-1 to 20 em S-1. The profiles are

truncated if the velocities are out of this range.
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Figure 3.2: East-west (u, upper panel) and north-south (v, lower panel) currents from the

LADCP profiles. This section is along 30°8 in the eastern Indian Ocean (see figure 2.1).

The two panels use the same color and contour schemes. As indicated in the color bar in

the middle, the black contour is zero velocity and the white ones are ±5cm s-l, ±lOcm S-l,

.. '. The red triangles indicate locations of the profiles. The topography is extracted from

8mith-8andwell topography. In the panel title, "I5E" is the WOCE designation of the

cruise, and "kn9503" is the dataset name, which means the profiles were collected during

march, 1995 on RjV Knorr.
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Figure 3.3: Same as figure 3.2, but this section is along 95°E in the eastern Indian Ocean

(see figure 2.1).
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Figure 3.4: Mode amplitude variations with latitude. One panel represents one
cruise. For the meaning of the labeling at the lower-left corner, refer to the caption
in figure 3.2. The data for the last panel is non-WaGE, thus there is no WaGE
designation; "mb" stands for R/V Malcolm Baldrige. The vertical coordinate is
unusual: the top grid is for the barotropic mode, the second grid is for the first
baroclinic mode, the third one is for the second baroclinic mode, and so on. The red
crosses in the panels indicate locations of the LADGP profiles. All contours use the
same color scale as shown at the right. The first contour is of 2 cm S-l, and increases
2 cm S-l for each contour until reaching 10 cm S-l (the highest contour). Amplitudes
above 10 cm S-l are highlighted in yellow.
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Figure 3.5: Same as figure 3.4, but for a zonal section. The cruise information is listed in

the title. Also shown is the Smith-Sandwell topography along the cruise track.
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Figure 3.6: Kinetic energy partition (top). The method used. to calculate the percentage is detailed

in the text. The vertical coordinate is the same as in figure 3.4. The white dots represent discrete

data points. With respect to the latitude, data is binned around the white dots ±2.5°. The kinetic

energy percentage for the barotropic and first baroclinic modes (bottom). The values are the same

as those in the top panel. The shaded area and error bars represent one standard deviation. The

numbers near the abscissa are the number of the LADCP profiles within the corresponding bin.
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Figure 3.7: The cross-track LADCP velocities along 30°8 (upper panel). The cruise is the

same as the one in figure 3.2. Positive cross-track velocity is approximately southward. The

LADCP profiles have been averaged between stations in accordance with the geostrophy.

The topography in both panels is 8mith-8andwell topography. Both panels use the same

color and contour scheme. The geostrophy calculated from simultaneous temperature

and salinity profiles (lower panel). It is referenced to the depth~averagedLADCP velocity

(see the text).
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Figure 3.8: Same as figure 3.7 but for cruise 19N. Positive cross-track velocity is approxi­

mately eastward, similar to the u component in figure 3.3.
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Figure 3.9: The amplitudes of the first baroclinic modes of the cross-track LADCP

velocity (purple shaded area) and geostrophy (cross lines). The sample numbers

(abscissa) are given arbitrarily, but the adjacent station-pairs are plotted adjacently.
The lower (upper) bound of the purple shaded area is the smaller (larger) one of

the first baroclinic mode amplitudes of the cross-track LADCP velocity at the two

relevant CTD stations. Grey shaded or unshaded areas indicates that the station

pairs are of the same cruise. The dotted lines indicate where the two adjacent station

pairs are more then 80 km apart, so that the two station pairs do not share a common
station. The criteria for choosing the station pairs are listed in the text.
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Figure 3.10: Correlation coefficients between the first ten baroclinic modes ofthe cross-track

LADCP velocity and geostrophy. The station pairs are the same as those in figure 3.9. The

thick red line is calculated from all available data. The gray straight line indicates no

correlation level at 99%, by assuming the degrees of freedom equals 1/2 of the samples

(187). We also break samples into five latitudinal sub-regions; the latitude range is shown

in the first column in the legend. The second column in the legend shows the sample

numbers within that particular latitude range.
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Figure 3.11: Mode amplitude variance of the first ten baroclinic modes of the cross-track

LADCP velocity and geostrophy. The station pairs are the same as those in figure 3.9. The

log scale is to mimic a variance-preserving wave number spectrum. The 95% confidence

interval is based on a X2 distribution with 187 degrees of freedom (half of the station pairs

in figure 3.9).
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Figure 3.12: The latitudinal dependence of the mode amplitude variance of the first three

baroclinic modes of the cross-track LADCP velocity and geostrophy. Four latitudinal groups

are indicated by the grid lines: 10-20, 20-30, 30-40, and south of 40. The numbers of the

station pairs of each group are listed in each panel. Part of the samples in the latitude range

(_20° to _10°) is actually from the north hemisphere (see figure 2.1). Notice that different

scales in the vertical axes are used in different panels. The vertical lines indicate the 95%

confidence intervals based on a X2 distribution, whose degrees of freedom are half of the

station pairs listed for each latitudinal group.
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Figure 3.13: LADCP modes auto-correlations. The method used to calculate the correlation

coefficients is detailed in Appendix A. The shading indicates the 99% no correlation level;

the degrees of freedom are one half of the LADCP profiles used in calculating the correlation

coefficients (usually more than 100).
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CHAPTER 4

DOMINANT VERTICAL STRUCTURE IN THE LADCP PROFILES

The vertical structures of the mesoscale currents are different near the equator

and in mid-latitudes and high latitudes. This is clear in figures 3.4 and 3.6. Figures

3.4 and 3.6 suggest that variations are gradual between 5 and 35 degrees latitude.

Thus to produce statistics that are significant, we group 366 profiles in this region

(the black vectors in figure 2.1) under "mid-latitude".

In previous sections, normal modes have been extensively employed to describe the

vertical structure of the profiles. This does not imply, however, that the corresponding

dynamics, i.e., the linear, flat-bottom and no mean flow dynamics, is applicable in this

study. The barotropic and first baroclinic modes are the two most energetic modes in

the LADCP profiles (figure 3.6). From contours in figures 3.2 and 3.3, however, we do

not see much of the barotropic mode (constant over depth) or the first baroclinic mode

(zero-crossing around 1000 m). Instead, there are many instances where the velocity

profiles are unidirectional and surface-intensified. This is quantified by studying the

relationship between the barotropic and first baroclinic modes and conducting the

EOF analysis.

4.1 Correlation between Barotropic and the First Baroclinic Modes

Looking at the amplitudes of the barotropic and first baroclinic modes, station by

station (component u in figure 4.1 and v in figure 4.2), the two curves do not match

as well as those, for example, in figure 3.9, but they do show some correspondence.

The correlation coefficients are 0.43 for u and 0.25 for v. We do not know why there
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is such a difference in u and v. For reference, the 99% no correlation level is 0.17,

assuming one half of the 366 LADCP profiles are independent.

Figure 4.3 shows the barotropic and first baroclinic modes of the LADCP profiles

as vectors. Notice the scales for the two panels are the same. First we see that the

two modes have similar magnitudes, then we see that vectors from different modes

are more or less parallel to one another. This relates to the fact that the two modes

are correlated and is further quantified by the simple statistics in figure 4.4.

Figure 4.4 shows the distribution of the angles between the barotropic and first

baroclinic modes. The lower panel shows that the two modes most likely align with

each other within ±45°. The upper panel shows an amplitude-dependency of such

alignment. When VaOal is large, the two modes more likely to align with each other.

Among the 205 profiles with VaOal > 3, 93 profiles (about ~ 45%) align within ±45°.

4.2 EOF Analysis

Since the harotropic and first baroclinic modes in the mid-latitudes are most energetic

and positively correlated, the actual vertical structure seen in the observation will

tend to be unidirectional and surface-intensified. The EOF analysis confirms this

speculation (figure 4.5b). Since we have enough degrees of freedom (more than 100) in

the mid-latitudes (figure 4.5b), the first EOF is believed to be the dominant inherent

vertical structure in the LADCP profiles, and the so-called effective degeneracy is

unlikely to occur (North et at. 1982).

To put the mid-latitude results in the context of a larger latitudinal range, fig­

ure 4.5 shows the results from the profiles near the equator and in the Southern Ocean.

Despite the concern about the statistical significance with fewer LADCP profiles, we
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see that the first EOF near the equator (figure 4.5a) has a lot of vertical structure that

varies both in amplitude and in direction. The first EOF in the Southern Ocean (fig­

ure 4.5c) is unidirectional, similar to that in the mid-latitudes, but more barotropic;

it does not tend to zero at the bottom.

The variation from the re-sampling is noticeably large for the Equator subset

(figure 4.5a). The 94 LADCP profiles have a wide variation geographically from one

cruise to another cruise (ref. figure 3.4). In figure 4.5c, we do not see much variation

from the re-sampling, although it has the least number of profiles.

We tried to break the mid-latitude 366 profiles into two sets: south and north of

15°S. Both first EOFs are similar to that in Figure 4.5b, while the south one (in the

higher latitude) is slightly more barotropic. The difference is mnch less dramatic than

those between (a,b,c) of Figure 4.5. Such latitudinal dependency has been similarly

seen in the kinetic energy partition (figure 3.6).

Figure 4.5d shows the variances of the EOFs. In the mid-latitudes, the first EOF

accounts for about 42% of the variance, and the variance of the first EOF is almost

double that of the second EOF mode. This is another indication that the effective

degeneracy is unlikely to occur. As already mentioned, in the Southern Ocean, the

LADCP profiles are overwhelmingly dominated by the first EOF.

Figure 4.6 shows how representative the first EOF is in each LADCP profile in

the mid-latitudes. Neither a topographic enhancement nor a regional feature could

be clearly identified.

Figure 4.7 shows that the stronger the currents the more the profiles could be

represented by the first EOF. The strength of a LADCP profiles is defined by its

depth-averaged velocity squared.
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Figure 4.1: The amplitudes of barotropic and first baroclinic modes from 366 LADCP U

profiles. The LADCP profiles are those indicated by the black vectors in figure 2.1. The

profiles are plotted together if they are physically adjacent. Cruises are indicated by the

shaded and unshaded areas. The title indicates the correlation coefficient between the two

curves.
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Figure 4.2: Same as figure 4.1, but for LADCP V component.
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Figure 4.3: The u's and v's of the LADCP profiles are separately projected to the

same barotropic and first baroclinic modes. Their mode amplitudes form the vectors

in the figure. For clarity, the profiles from the repeated cruise by Doug Wilson is not

included. The barotropic mode of the LADCP profiles (upper), which is just the

depth-average of the LADCP velocity. The vectors are equivalent to the black ones

in figure 2.1. The first baroclinic mode of the LADCP profiles (lower).
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and first baroclinic modes of the LADCP profile. Positive angle is anti-clockwise from
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by the dotted lines, except the box with two triangles. The triangles indicate two
outliers; the numerics are their JaOal' These statistics are estimated using all 366
profiles in the mid-latitudes. The histogram of the angles between the barotropic
and first baroclinic modes (lower). This is actually the summation of the upper panel
along the ordinate.
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Figure 4.5: (a,b,c) The first EOF from LADCP profiles in three regions. (a) is
5 degree latitude near the equator; (b) is the mid-latitudes from 5 to 35 degrees

latitude; (c) is south to 35 degree latitude (ref. figure 2.1). All profiles deeper
than 4000 m are truncated before the EOF analysis. The shaded area indicates
one standard deviation from 100 re-samplings of the LADCP profiles, assuming each
profile has equal probability. (d) The variance percentage explained by the first
ten EOF modes for each region. Its error bar is one standard deviation of the 100
re-samplings.
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U+iV explained LADCP variance percentage by the first EOF mode

Figure 4.6: The percentage of LADCP variance in the first EOF. The legend is at the

upper-left corner of the plot. For clarity, the data for the repeated cruise is not included.

The inset at the upper-right is a histogram of the percentage of the explained variance over

all 366 LADCP profiles.
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Figure 4.7: The percentage of variance in the first EOF. The 366 profiles are evenly divided

into weak, intermediate and strong groups. The strength of a LADCP profiles is defined by

its depth-averaged velocity squared.
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Part II

NUMERICAL MODELING: JAMSTEC GCM
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CHAPTER 5

MODEL CURRENTS AND COMPARISON WITH LADCP PROFILES

One snapshot (figure 1.1) already indicates that surface mesoscale motions are

energetic and ubiquitous. Much more can be learned from three years of model

output (219 5-day snapshots). We will present three-year means and their standard

deviations (STDs) at different depths, which indicate the mesoscale motions' deep

penetration and regional differences.

We do not compare the model output and LADCP velocity profiles at a given

space and time. Instead, we will compare the EOFs from model output and LADCP

profiles, with attention to the vertical structures and energy partition in EOFs. A

favorable comparison, though in a statistical sense only, gives us the confidence to

analyze model output in detail. The comprehensive picture from such a three year

model output can not be obtained by observations alone.

5.1 Mean Currents and Variability

The study region (figure 5.1) mainly consists of two basins (Wharton Basin in the

east and Indian Basin in the west) and three ridges (Ninety East Ridge in the middle

and Central Indian Ridge and Chagos-Laccadive Ridge in the west). The basins

are mostly deeper than 4000 m. Another major topographic feature is the Broken

Plateau, west of Australia.

Three strong surface currents exist (upper-left, figure 5.2). Near the southern

boundary of the study region, the strong eastward currents are part of the ACC

system. The westward flow around 10-200 S is the South Equatorial Current. The
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eastward current near the Equator results from 1) the Equatorial Counter Current

from January to March, 2) the Southwest Monsoon Current from July to September

and 3) the eastward Equatorial Jets in between. Those features match the known

general circulation in this region quite well (Tomczak'and Godfrey 1994)

At both 5 m and 99 m (upper-left and upper right, figure 5.2), one can identify the

strong southward Leeuwin Current along the west coast of Australia. Strong currents

flow through the model Lambok Strait at about 115°E and 90 S. The model strait is

1 degree longitude wide and about 400 m deep.

The features in STDs closely relate to those in the mean currents (figures 5.3-5.6).

The ACC and equatorial regions have high STD. From the maps at 5 m and 99 m,

two bands of high STDs in the mid-latitudes originate in the Leeuwin Current and

Lambok Strait. A few degrees away from the west coast of Australia and from the

Lambok Strait, STDs decrease. This indicates that eddy energy is generated at those

locations. The Broken Plateau, west of Australia, seems to steer eddies to the north.

The maps at 1007 m and 2943 m show enhanced STDs near the Chagos-Laccadive

Ridge.

The orientation of the ellipses generally follows the nearby topography, particularly

in deeper layers. However, the orientation near the equator does not follow this rule.

5.2 Comparison with the LADCP Profiles

The locations of the model and LADCP velocity profiles, used to calculate the cor­

responding EOFs, are shown in figure 5.7. All the model and LADCP profiles are

deeper than 4000 m and fall between 5° and 35°. Only one snapshot of model profiles

is used.
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As seen in the upper panel of figure 5.8, the vertical structures of the first EOFs

from the LADCP and model profiles are unidirectional and surface-intensified. The

lower panel of the figure shows EOF spectra or the variance in each EOF. The variance

in the model first EOF is about half of that of the LADCP. For higher EOFs, the

discrepancy is larger.

The lack of mesoscale energy in numerical models is common. The comparison be­

tween a one-degree resolution GCM and current meter record (Wunsch 1997) showed

a factor of 10 or more difference over all periods. As suggested for the Parallel Ocean

Climate Model (POCM) (quarter degree horizontal resolution and 20 vertical levels,

Stammer et al. (1996)), possible reasons include:

• Deficiency in the simulated hydrographic structures, which prevent baroclinic

instability processes from serving as an adequate energy source.

• The dissipation coefficients have to be large enough to keep the numerical inte­

gration stable. To decrease the dissipation coefficients, one has to increase the

model resolution.

• Due to near thermal wind balance, any erosion of temperature and salinity

structures, through the surface boundary conditions (relaxation of temperature

and salinity with time scale 30 days) or by their own diffusion or the relaxation

of temperature and salinity to the climatology below 2000 m, will in fact act as

a friction term for the velocity field.

• The wind-stress forcing may be accurate only to a factor of 2.

Despite the limitations of numerical models listed above, the JAMSTEC model repro­

duced reasonably well the observed dominant vertical structure, i.e., the first EOF.
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JAMSTEC model years 20/21/22 mean velocity in eastern Indian Ocean
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Figure 5.2: The three year mean currents at four different depths: 5 m, 99 m, 1007 m

and 2943 m. Note that the velocity scale is different at each depth. Eastward (westward)

currents are plots as red (black) arrows. Every sixth vector is plotted (i.e. the distance

between vectors are 1~ degrees along either latitude or longitude). The green contour

indicates land and the thin gray contour is at 1000 m.
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depth 5 m JAMSTEC model years 20/21/22 velocity SID in eastern Indian ocean
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Figure 5.3: The standard deviation of the velocity at depth 5 m, sampled at the same

locations as in figure 5.2. The variance ellipse is first calculated from the model output.

The STD ellipse is defined as such that its major and minor axes are square root of those

of the variance ellipse, and the orientation is same as that of the variance ellipse. The scale

corresponds that for the vectors in figure 5.2. For clarity, lout of 4 ellipses is plotted in

red.
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depth 99 m JAMSTEC model years 20/21/22 velocity STD in eastern Indian Ocean
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Figure 5.4: Same as figure 5.3 but for depth 99 m.
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depth 1007 m JAMSTEC model years 20/21/22 velocity STD in eastern Indian OCean
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Figure 5.5: Same as figure 5.3 but for depth 1007 m.
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depth 2943 m

Figure 5.6: Same as figure 5.3 but for depth 2943 m.

59

e
2 cmls (± STD)



LADCP location and JAMSTEC grids in Indian OCean
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Figure 5.7: The red dots are the locations of the LADCP profiles used to calculate the

EOFs in figure 5.8. The blue dots are the 2x2-degree grids at which the model velocities

are used to calculate the EOFs in figure 5.8. All LADCP and model velocity profiles are

deeper than 4000 m.
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Figure 5.8: (upper) The first EOFs from 366 LADCP profiles and 328 model
profiles. The locations of these profiles are shown in figure 5.7. All profiles are

truncated to 4000 m before EOF analysis. (lower) The variance (the eigenvalue
in EOF analysis) of the first ten EOFs from LADCP and model.
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CHAPTER 6

THE FIRST EOF OF THE MODEL

The first EOF of model velocities is unidirectional and surface intensified (upper

panel, figure 5.8). In this chapter, we will demonstrate how typical of the first EOF

is in the snapshots of velocity components along longitudinal sections and time series

of horizontal velocity profiles at given locations.

For comparison to the LADCP observation, the model EOFs (figure 5.8) are cal­

culated using simultaneous velocity profiles from a large area. Hereafter, we will

calculate the EOFs from the so-called geostrophic profiles over three years at each

single location. This allows us to see how the vertical structure varies with position.

The geostrophic profile is the velocity profile obtained from the geostrophic calcula­

tion referenced to the average of the model velocities at the deepest five depths. The

main difference between the original model velocity profile and geostrophic profile is

the near-surface wind-driven Ekman flow.

At each horizontal point, we obtain one first EOF. The sectional contours of the

first EOFs will demonstrate the vertical structure in the upper panel of figure 5.8 is

quite similar in the mid-latitudes.

6.1 Unidirectional Currents

Three snapshots in time of the model velocities along 30°8 (figure 6.1) and the time

series of the model velocities at given locations (figure 6.2) show the upper layer veloci­

ties extend to the bottom without switching direction and with decreasing magnitude,

as in the first EOF in figure 5.8.
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The percentages of unidirectional velocity profiles (figure 6.3) display three ex­

pected features: 1) one has little chance of finding a unidirectional profile near the

equator, where the currents change directions (eastward or westward) over depth, 2)

high percentages are found within the ACC region - both the ACC itself and asso­

ciated eddies have significant barotropic components (Donohue et al. 2001), and 3)

hot spots are associated with major topographic features (e.g. the Ninety East Ridge

and the Chagos-Laccadive Ridge).

The obvious patchiness in figure 6.3 can not be explained fully in such a simple

way. A close look in the small region, denoted by the white rectangle in figure 6.3,

shows the possible role of topography. In figure 6.4, we see a connection between

the topographic steps and local minima, but the topography does not affect much

either downstream or upstream. Looking back at figure 6.1, we can see such local

effects, especially at the step near 105°E, where a propagating current feature passes

the topographic step without significant distortion. From the conservation of mass,

we expect adjustments to the flow structure, as it runs across the topographic steps.

The vertical resolution in the deep ocean is about 400 m (see appendix B) and it

is possible that the connection between the topographic steps and local minima is a

numerical artifact.

Topography can not account for all the patchiness. Over the flat topography,

variability is still apparent. This is probably because three years is not long enough

to yield stable statistics. Assuming a time scale of about 100 days, we have about

ten degrees of freedom. As seen in figure 6.5, in which the percentages for each single

year are shown, the large variations over flat bottom from one year to another could

possibly result in the patchiness.
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6.2 Spatial Distribution of the First EOF

Figure 6.6 shows the percentage of variance in the first EOF. Except for the equatorial

region, the percentages are mostly above 50% and often as high as 80%. Patchiness

exists as in figure 6.3. We identify three regions with high percentages: one in the

south associated with the ACC system, one west of Australia (20-300 S), and another

near the model Lambok Strait (10-15°S). The percentages are relatively low between

those bands.

Figures 6.7, 6.8 and 6.9 show the vertical structures of the EOF along three lat­

itudes: two of them cross the strong bands (27.5°S and 12.5°S) and the third falls

between (17.5°S). In the strong bands, the vertical structure at neighboring grids

varies gradually. At few locations along the weak band (17.5°S) the vertical structure

varies abruptly. Notice that at those locations the variances are relatively low in the

first EOF and relatively high in the second EOF. Therefore, the variances in the two

EOFs are close (see the lower panel of figure 6.8), then so-called effective degeneracy

could occur (North et ai. 1982) and extra cautions are needed for interpreting those

EOFs.

Surface geostrophic streamfunctions of the first EOF

Hereafter, the analyses will be carried out in boxes of 10 degrees longitude and 5

degrees latitude (figure 6.10).

Since the EOFs are calculated from the geostrophic profiles, their surface currents

should be largely geostrophic. The streamfunction associated with these surface cur­

rents will be called the surface geostrophic streamfunction. The surface geostrophic

streamfunction is directly comparable to the SSH, whose propagation characteris-
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tics have been extensively studied using altimetric observations (e.g., Chelton and

Schlax 1996 and Zang and Wunsch 1999). In the next chapter, the surface geo-

strophic streamfunction of the first EOF will be used to infer propagation speeds of

the mesoscale features.

The algorithm for calculating this streamfunction is outlined below (see figure 6.11):

for the box with 25 velocity points (red circles), we apply one of the following equa-

tions 24 times in either north-south or east-west directions,:

{

{lh'-fov = -gax

f, u = _g{lh
l

o ay'

where fo is chosen as the Coriolis parameter averaged over the box and 9 is the

gravitational acceleration. h' has the same units as SSH and the above equations are

just the geostrophic relation on a f-plane. Therefore, we call h' the surface geostrophic

streamfunction and denote it as 1/JEOF. We will obtain 24 equations for 16 unknown

geostrophic streamfunctions for the situation in figure 6.11. The velocity used in the

geostrophic relation is the average of the two adjacent velocities. The rule of the least

squares is applied. The integral constant is constrained by assuming a zero-average

spatially. The calculation is made for each snapshot; a matrix of 861 x 861 for each

box in figure 6.10 is inverted. One example is in figure 6.12. The matching between

the vectors and streamfunctions confirms that the surface currents of the first EOF

are largely non-divergent and presumably geostrophic.
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Figure 6.1: The north-south component of the model velocities along latitude 27.5°8.
Panels are three snapshots one month apart. The section is west of Australia where
instabilities of the Leeuwin Current generate eddies. The white contours are zero
velocities. The black contours are ±5 cm S-l.
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Figure 6.2: The north-south component of the model velocities at three grids, close to the

west coast of Australia. The latitude is the same as in figure 6.1. The grids are a half degree

longitude apart. Note the time axis runs from the right to the left, to show the westward

propagation. The white contours are zero velocities. The black contours are ±5 cm s-l.
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Figure 6.3: The percentage of unidirectional U and V profiles (below 100 m) over
three years: in how many of the 219 snapshots do the U or V from 100 m to the

bottom have the same sign at the given point? The white rectangle in the upper

panel is examined further in figure 6.4 with topographic contours.
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Figure 6.4: The percentage of unidirectional U and V profiles (below 100 m) over
three years with topographic contours. The topographic contours were chosen so that
the topography is exactly flat between the contours. The depths of contours are those
(red lines) in figure B.lo Specifically, the four white contours, from thin to thick, are
3082 m, 3709 m, 4421 m and 5200 m; the black contours, from thin to thick, are
3383 m, 4055 m and 4801 m. The coast at the right is the west coast of Australia.
The shallow part near 300 S is the Broken Plateau.
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Figure 6.5: The percentage of unidirectional U and V profiles (below 100 m) over three

years (thick black) or over one of three years along 27.5°8 ('y20' refers to model year 20).

The upper (lower) panel is for the east-west (north-south) velocity component. The shading

shows the model topography, with a scale on the right.
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Figure 6.6: The percentage of variance in the first EOF. Upper panel is for east-west

component and the lower panel for north-south one.
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Figure 6.7: The first EOF along latitude 27.5°8. The first EOF is normalized such that its

depth-average squared is unity and its surface value is positive. The white contours in the

upper and middle panels are zeros. The lower panel is the variance percentages in the first

and second modes.
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Figure 6.8: As figure 6.7 but along latitude 17.5°8.
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Figure 6.10: The 10 degrees longitude by 5 degrees latitude boxes. (ij) are the grid cell

indices. The black crosses indicate where the water depth is 215 m or the land boundaries

of the model.
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1

Figure 6.11: The scheme to calculate the geostrophic streamfunction. Red circles are loea-

tions of the surface currents of the first EOF. Blue squares are locations of the geostrophic

streamfunctions. The geostrophic relation in east-west direction is applied at green arrows

(e.g. between A and B) and the goostrophic relationship in north-south direction is applied

at yellow arrows (e.g. between A and C).
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surface current and stream function snapshot 001, Year 20 Month 01

2t'S

Figure 6.12: One snapshot ofthe surface currents and associated geostrophic streamfunction

ofthe first EOF in box 16 (see figure 6.10). Zero is given by the green contours. The contour

interval is 3 em. Red (blue) contours are positive (negative). All the data are plotted.
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CHAPTER 7

WESTWARD PROPAGATION OF THE FIRST EOF

Generally, the first EOF in the eastern Indian Ocean is neither the barotropic nor

the first baroclinic mode but some combination. The propagation characteristics of

the first EOF also fall between the barotropic and baroclinic modes at mid-latitudes

and high latitudes, but not at low latitudes. These kinds of behavior have been

identified in SSH anomaly from altimetry (e.g. Chelton and Schlax 1996) and Zang

and Wunsch 1999) but the dynamics are still the subject of debate. The present

model has good horizontal resolution, and we are not confined to long Rossby waves

when interpreting model results.

We will also try to see whether 1) there is north-south propagation of the mesoscale

motions and 2) the east-west propagation speed is amplitude-dependent. Both of

them, however, are not obvious from the JAMSTEC model output.

The lag-correlation, counting and the coherence methods are used. The first two

methods are in physical space and the third is in wavenumber space. Since mesoscale

motion is broadband in nature, the description in physical space is more appealing.

The extreme situation is a J function field. The best description of such a field is

the movement of the single peak, although we could certainly describe the field in

wavenumber space.

The lag-correlation and counting methods estimate one "bulk" propagation speed

for one box (the boxes are shown in figure 6.10), without any frequency or wavenumber

information. However, they are also different. The lag-correlation method is variance-­

weighted at each length scale. For a red spectrum, the lag-correlation method em-
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phasizes long length scales. The counting method counts the peaks (local extrema)

in the time series without regard for their magnitudes and so trends will not directly

affect the results. When we view a 2-D animation of SSH, our eyes usually catch

the peaks; the counting method is designed to do the same thing. For a slightly red

spectrum with a sudden cutoff near the mesoscale, this method emphasizes the cutoff

frequency.

Before going into details, we may look back again at figures 6.1 and 6.2 where

westward propagation was visible. In figure 6.1, we easily see the perturbations move

westward as time advances. In figure 6.2, the perturbations in the easternmost grid

(lower panel) are found in grids to the west (middle and upper panels) at later times.

Both figures show the vertical structure does not change substantially over two months

(figure 6.1) or over one degree longitude (figure 6.2).

7.1 Lag Correlation Method

'l/JEOF is a functions of latitude, longitude, and time. The correlation is lagged in

latitude and longitude but not in time (e.g. upper panel of figure 7.1) and then in

time as well (e.g. lower panel of figure 7.1). The westward offset of the maximum in

the lower panel indicates westward propagation and is seen in plots for other boxes.

The maximum is also offset in north-south direction, and thus we infer the north­

south propagation of the perturbation. The propagation speeds for all snapshots are

used to get a mean and its STD for that time-lag and box.

There is usually a secondary maximum east of the origin in the lag-correlation

maps like the lower panel of figure 7.1. If the field consists of only one westward

propagating Fourier component, then the lag-correlation is periodic and there is an­

other maximum one wavelength to the east. On the other hand, if the field consists
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of only one westward propagating solitary-type perturbation, there would be no sec­

ondary maximum. The actual mesoscale field is not periodic, so we find a maximum

in the west and a secondary maximum in the east, just like the lower panel of fig­

ure 7.1. Therefore, a maximum in the east and a western secondary maximum is an

indication of enhanced noise. Under such logic, the propagation speeds in which all

the maxima over three years are found in the west are highlighted as closed circles

and thick lines in figures 7.2 and 7.3.

Though messy, the results for several time-lags are presented together. The

methodologically limiting factors are different for different time-lags and depend on

the perturbations' propagation speed. Note that propagation speeds of Rossby waves

vary substantially from high to low latitudes. If propagation is slow, the perturbation

may not be able to pass through a single grid cell in a short lag times. For each time

lag, the minimum detectable speed is one eighth degree longitude divided by the lag

time, which is about 3 cm S-1 if the lag time is five days. The minimum detectable

speed squared is added to the variance which affects STD in figures 7.2 and 7.3. When

the lag time is larger than 5 days, this limiting factor is minor. If propagation is fast,

the perturbation may have moved out of the box at large lag times. The shaded areas

in figures 7.2 indicate the speeds at which the perturbations at the center of the box

will move out of the box within the lag time. The estimated propagation speeds will

be biased to smaller values, if the propagation speeds are close to the shading. The

shading is not exactly same for each panel, since an east-west grid cell (one quarter

degree longitude) has different length (e.g. in kilometers) at different latitudes.

There are quite large variations in the westward propagation speeds, as indication

by the STDs (figure 7.2). Nonetheless, the maxima in lag correlation maps are usually
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obvious. Figure 7.2 shows that south of 15°8, the propagation speeds are close to those

of long Rossby waves. At lower latitudes, the speeds are less than those of long Rossby

waves. From 5-10°8, the speeds are only about one quarter of the long Rossby wave

speed.

Figure 7.3 shows the north-south propagation speeds. There is no significant

north-south propagation, but its variability is large. Using the next two methods, we

will only look at the east-west propagation. Figure 7.4 shows the magnitude of the

surface geostrophic streamfunctions within binned propagation speeds, in attempt

to identify any amplitude-dependency of the propagations. Most boxes show a weak

tendency that strong eddy fields seem to propagate faster. However, some boxes show

an opposite tendency.

7.2 Counting Method

The counting method is illustrated in figure 7.5. In the upper panel, the peaks (local

extremes) of two time series, one degree longitude apart, are evolving, but there is

no ambiguity in matching most of them. The peaks propagate westward at various

speeds, but a statistically stable mean exists as seen in the middle panel. The red line

in the middle panel is the lag-correlation for the two time series. The histogram is

appealingly narrow so the results from the histogram are preferred, while the results

from the lag correlation methods are shown as a reference.

The lower panel is an attempt to see whether the propagation speed is amplitude­

dependent. The variation is so large that we will not draw conclusions, similar to the

situation in figure 7.4. As in figure 7.4, there is a weak indication the stronger peaks

propagate faster: the maximum of the amplitude curve has a larger W-shift than that
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of the histogram.

The statistics in the middle panel are based on the peak differences and not on

the peaks themselves. Therefore, pre-filtering the time series with a 35-day running

mean may not directly limit the statistics here. In other words, the peak differences

can be less than 35 days.

Figure 7.6 shows all the estimates for different boxes and different space-lags,

which are almost the same for some boxes, such as 16, 15, 21 and 30. However, there

are large discrepancies for others. The speeds inferred from medians are most robust

with respect to space lags. The speeds from the maxima are usually faster than those

from the medians. For Gaussian distributions, the estimates from the medians should

be same as those from the maxima.

The overall results are basically similar to those from the lag correlation method.

Looking more closely, however, the propagation speeds from the counting method are

generally larger than those of the lag-coefficient method, especially south of 30°8.

The counting method emphasizes local extrema and is not directly affected by the

long-term trends. As seen in the upper panel of figure 7.5, the trend with time scale

200-300 days does not affect the results directly. As pointed out earlier, the lag

correlation method may emphasize larger spatial scales and longer time scales, while

the counting methods may emphasize mesoscale motions. The coherence method in

the next section could shed some light on the faster propagation of mesoscale motions

(near the first Rossby radius of deformation) compared to longer time scales.
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7.3 Coherence Method

The previous methods estimate propagation speeds more in the bulk sense: one speed

for one box and one time. Such methods work best if the fields are coherent. The

motions at different frequencies and wavenumbers propagate at same speed. In other

words, the dispersion curve is a straight line or

1/J(x, y, t) == 1/J(x - ct, y)

which certainly oversimplifies reality. The coherence method is designed to look at

the propagation at different frequencies and wavenumbers.

From two three-year time series, one degree longitude apart, we could estimate

co-spectra (lower-left panel of Figure 7.7) and phase spectra (lower-right panel of

Figure 7.7) in the frequency domain. We assume the phase difference at each fre-

quency between two time series is solely due to the westward propagation. Then

we infer negative east-west wavelengths from the phase difference at that frequency.

For example, if the phase difference is 900 at 0.01 cpd, the wavelength would be

396~ = 4 x 10 = 40 longitude at that frequency. Thus, each frequency is paired by

wavelength or wavenumber. Finally, we plot the wavenumber-frequency pairs together

with the linear Rossby wave dispersion relationship (the upper panel of Figure 7.7).

The lower-left panel shows that the waves at frequencies less than 0.02 cpd are en-

ergetic; this is generally true for other boxes. For this reason, we concentrate on the

waves with frequencies lower than 0.02 cpd in figure 7.8.

The dispersion relationship of the first mode linear baroclinic Rossby wave is

W=
13k

k2 +12 + (1/211"R)2'

where R is the first mode Rossby radius of deformation and wand (k, I) are in units
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of cpd and cpkm, respectively, as in Figure 7.7. The curve in the figure is that of

I = 0, and is the upper bound for all I. If waves from the model output fall above

the curve of I = 0, there is a discrepancy between the model output and linear first

baroclinic Rossby wave theory. From figure 7.8, such discrepancy exists for all boxes

excepts those from 5-10°8.

At lower frequencies, waves tend to propagate at the long Rossby wave speed. The

tendency is clear except in the boxes closest to the equator. At high (lower) latitudes,

the waves at frequencies other than the lowest frequencies propagate faster (slower)

than long Rossby waves. This pattern in figure 7.8 is consistent with the estimates

from the previous two methods. In figure 7.8, within 15-35°8 the phase speed of the

first EOF is approximately that of non-dispersive Rossby waves of the first mode even

at frequencies above the Rossby wave cutoff. The dispersion relations within 15-35°8

in figure 7.8 are astonishingly similar to those from the altimetric analyses by Zhang

and Wunsch (1999, their figures 4 and 5).
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Figure 7.1: Upper panel: auto lag-correlation of "pEOF in box 16. Lower panel: lag-

correlation between two "pEOF snapshots 30 days apart.
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Figure 7.2: Each panel shows the east-west propagation speeds for two neighboring
boxes in the east-west direction (see figure 6.10). The abscissa indicates the time-lags
used to calculated the lag-correlation. The red/blue circles with red error bars or
blue shading are mean and STD of propagating speeds over three years for the first

box. The red/blue lines are the means for the second box. The means associated
with blue circles or blue lines are calculated from the westward propagation speeds
only. Therefore, coincidence of two means for the same box is a strong indication of
the robustness of the calculation. Those means are highlighted by the closed circle
and thick lines. Note there is no such coincidence for box 4. The close squares near
the ordinate indicate the speed of the long Rossby waves. In the last panel, the speed
of the long Rossby wave is out of the axis range, so we show the speeds in the plot.
The gray shading in each panel is explained in the text.
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Figure 7.3: Same as figure 7.3 but for the north-south propagation speed. The close circles

and thick lines are based on figure 7.2.
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Figure 7.5: The counting method for '¢EOF' For two three-year series (blue and
gray lines in upper panel, one degree longitude apart): 1) perform 35 days running­
mean; 2) pair each peak in blue (west) time series with the peak in gray (east) line
at the nearest earlier time; 3) record the time difference of those two peaks, and the
amplitude of the blue peak. For each box there are 10x21 such three-year series
pairs. The statistics for all pairs are shown in the middle and lower panels. In the
middle panel, the maximum samples in one bin of the histogram is required to be
less or equal to 1500. The red line is the mean and STD of the lag-correlations of all
available pairs. In the lower panel, the peak amplitudes are averaged over the same
bins as in the middle panel; the error bars are STDs.
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CHAPTER 8

BEYOND THE FIRST EOF

The analysis of the LADCP profiles convinced us that the first EOF could rep-

resent the vertical structure better than either the barotropic or the first baroclinic

modes alone. In the JAMSTEC model, the first EOF contains 50-80% of the variance

The unidirectional and surface-intensified vertical structure of the first EOF is similar

across most of the eastern Indian Ocean.

Then, are the second and higher EOFs are totally negligible? The four dimensional

field 1/;(x, y, z; t) is exactly expressed as

M

1/;(1:, y, z; t) = L Fj(z)aAx, y; t),
j~j

where F j represents the vertical structure of the jth EOF, and M is the total num­

ber of EOFs which is 55 for 55 levels of the model output. The questions are how

important the EOFs greater than 2? Is it satisfactory to simply use the first EOF to

represent the original field? For example,

(8.1)

Dynamically, can we seek a solution, which is separable with respect to z as in equa-

tion 8.1 or is Fj(z) a dynamical mode (i.e. is it an eigensolution of governing equa-

tions)? We do not discuss dynamics here. That is the subject of the theoretical part

of this study. Here we will test whether equation 8.1 is consistent with model output.

Equation 8.1, as all other separable expressions, implies the currents at different

depths are either in phase or 1800 out of phase, depending on the sign of Fj(z).

Since the first EOF is almost unidirectional, e.g., it has same sign over depth, we may
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expect model in phase over the entire water column if equation 8.1 holds. Clearly this

is not true; the time series of geostrophic profiles (figure 6.2) or the sectional contours

(figure 6.1) show the lower layer phase leads the upper layer for west propagation.

To quantify this statement, the wavenumber cross-spectra between different depths

are calculated (figure 8.1). Figure 8.1 shows the lower layer (3882 m) leads the upper

layer (190 m) by 90°, given westward propagation. After computing spectra over

more depths, we find the phase lead is gradual (figure 8.2).

Figure 8.3 shows the vertical correlations of all boxes. One general characteristic

is that there are higher correlations at wavenumbers less than the first Rossby ra­

dius of deformation. We see three different regions. One is near the equator, which

exhibits almost no vertical correlation. One is in the ACC, where high vertical corre­

lations extend towards the bottom. In most regions, the correlation decays towards

the bottom, but is significant for wavenumbers less than the first Rossby radius of

deformation.

Figure 8.4 shows the phase differences between different levels. It is a robust

feature that the lower layer leads the upper layer. In the ACC region, the phases

leads are small, but in most regions the phase leads are approximately 90°.
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box 16 zonal wavenumber cross-spectra between 200m and deeper levels
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Part III

THEORY: TWO-LAYER MODELS
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CHAPTER 9

LINEAR ROSSBY WAVES: DISPERSION OF A GAUSSIAN EDDY

Starting with a Gaussian perturbation (eddy) in the upper layer and a resting

lower layer, the two layer model evolves according to the linear Rossby wave dynam-

ics without any forcing and dissipation. The dynamics of the model are obvious; our

exercise will focus on one aspect of the kinematics: dispersion. One usually thinks

about the dispersion of waves of one particular vertical mode with a spectrum of

horizontal wavelengths: its different Fourier components will propagate at different

speeds. Here we will emphasize the dispersion among different vertical modes, namely

the barotropic and first baroclinic modes in a two-layer model. To quantify the dis-

persion, the correlations between the two modes in horizontal space are calculated as

functions of time. This correlation has been used an important index to demonstrate

that the mesoscale motion measured by LADCP profiles deviates from the linear

Rossby wave theory.

9.1 The Two-layer Model

Besides f and 13, the Coriolis parameter and its latitudinal derivative, the parameters

in a two-layer model are layer mean depths HI (upper) and H 2 (lower), and the

reduced gravity g'. Based on these parameters, one can define length and time scales

for the Rossby waves:

and a depth ratio <5:

R= .../9'H;
f '

1
T = f3R'
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When we nondimensionalize by these length and time scales, the resulting linear,

quasi-geostrophic and inviscid two-layer model is:

{
g, ['V21/!1 + (1/!2 - 1/!1)] +~

g,['V21/!2 + i(1/!1 -1/!2)] + W
o

0,
(9.1)

where 1/!1 and 1/!2 are the geo-potentials of the upper and lower layers respectively.

Notice that a rigid-lid and flat bottom are assumed in the above equations, so that

the stretching effect relates only to the interface perturbation, which is proportional

to 1/!1 -1/!2' The initial condition is

{

1/!1 = exp(- x~i:¥')

1/!2 = 0

when t = 0

This axisymmetric eddy has been used previously (e.g., Chassignet and Cushman-

Roisin 1991). The azimuthal velocity Vo for the axisymmetric eddy is:

d1/!l r _,2

V{J = - = --e 2Ll
dr £2

and its radial gradient is

so that Vo reaches its maximum at r=L, where r = Jx2+ y2. The factor 2 in the

exponential is usually included so that the azimuthal velocity has its maximum at

r = L. As we will see, some results depend sensitively on the magnitude of L. For

Gulf Stream Rings, as the examples of large eddies, the measurements suggest that L

is about 3 (Dewar and Gailliard 1994). We will often choose L=I, 2 or 3. Also notice

that the length scale is the first Rossby radius of deformation, which varies with the

latitude, so that for the same size eddies, L will be larger in high latitudes where R

is smaller.
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As seen in equation 9.1, the upper and lower layers are coupled. However, the

barotropic and baroclinic modes of the motion are not. The dynamical normal modes

for the two layer model are

(
11) .,barotropic

whose amplitudes (WT and We) are governed by

o

o

The relationships between the mode amplitudes and layer amplitudes are

The initial condition becomes

{

1f;T =

We =

1 (X
2+y2

)H' exp - 2£'

,j6 ("+.')1H exp - 2£'

when t = 0

The solutions are obtained in appendix C:

1f;T 1~' ~' fooo dZe-z~' Jo (.,(ZJ(-~ + X)2 + y2)

,j6 £' 00 _ ZL' ( / t 2 2 )We 1H2 fo dZe 2 Jo .,(ZY(Z+H1/' +x) +y

where Jo is the zero-order Bessel function of the first kind.

9.2 Dispersion

The linear Rossby waves are dispersive. We will show that the dispersion between

barotropic and baroclinic modes is different from that between different horizontal

wavenumbers of the same mode.
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We first show the x-t Hovmiiller diagram, in terms of baroclinic and barotropic

modes and in terms of the upper and lower layer streamfunctions, for one depth ratio,

J = 5 but three different values of L (figures 9.1-9.3). Initially, the amplitude of the

baroclinic mode is VJ = V5 times as large as that of the barotropic mode. Thus the

upper layer is mostly dominated by the baroclinic mode, while in the lower layer the

two modes cancel each other. After the barotropic mode has dispersed, both layers

are dominated by the baroclinic mode.

The barotropic waves usually disperse faster than the baroclinic waves. The de­

pendency of the dispersion on the size of the initial Gaussian eddy is different for the

barotropic and baroclinic waves. The larger the initial eddy (L increases from 1 to

3), the slower the dispersion of the baroclinic waves but the faster the dispersion of

the barotropic waves (see figures 9.1-9.3).

Next, we show the evolution in a 2-dimensional view for L=1 and J = 5 (figures 9.4

and 9.5). The salient features are

• Long waves propagate to the west, so that there is no sign change west of the

original location (x=O). Shorter waves propagate to the east. This is true for

both barotropic and baroclinic modes;

• Symmetry with respect to the north-south coordinate (y);

• As shown in x-t Hovmiiller diagram, the barotropic mode disperses faster than

the baroclinic mode. The main core of the barotropic mode is hardly identifiable

after t=5, while that of the baroclinic mode can be identified in the last panel;

• For the barotropic mode, we see that there are local extrema away from the

x-axis for t ::; 4.8.
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The correlation between 1/Jr and 1/Jc at any given time (figure 9.6) is defined

R(t) = Coo Coo 1/Jr1/Jcdxdy

VJoo JOO .1,2 d d JOO JOO .1,2d d
-00 -00 'f'T X Y -00 -00 'Pc X Y

Obviously R(O) = 1, since at t=O 1/Jc is proportional to 1/Jr: 1/Jc = VS1/Jr. Figure 9.6

shows that the larger the initial eddy, the faster the loss of correlation between the

barotropic and baroclinic modes.
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Figure 9.1: Dispersion of the Gaussian eddy in the two-layer model (L=1 and d =5). The

left two panels are the baroclinic (a) and barotropic (b) modes, and the right two panels

for the upper (c) and lower (d) layers. Notice the color scales change from one panel to

another, but the thin black lines always represent the zero contour. The dashed black
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waves, which is actually - 1+hs' and the dashed pink lines (same for all panels) indicate the

maximum of the baroclinic mode at each time in panel (a). The ''x" is non-dimensionalized

by R =VU'Hl/f and the time by T = 1/{3R.
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CHAPTER 10

WESTWARD PROPAGATION

The LADCP profiles in the Indian Ocean show that the vertical structure of the

mesoscale ocean currents in mid-latitudes is dominantly unidirectional and surface­

intensified. The JAMSTEC model reveals the same feature. The JAMSTEC model

further shows that the mesoscale motions associated with the vertical structures are

mainly generated near the eastern boundary and then maintain this structure while

propagating westward across the basin with a speed approximately equal to that of

the long Rossby wave. The model also demonstrates a phase shift in the vertical:

the lower layer leads the upper layer for westward-propagating eddies. The question

here is why the vertical structure is sustained during its westward propagation. The

propagation speed and phase shift in the vertical are two other aspects of the same

problem to be addressed at same time. The generation mechanism near the eastern

boundary will not be discussed here.

Another manifestation of the dominant vertical structure is the correlation of

the barotropic and first baroclinic modes; such correlation could not be explained

by the linear Rossby wave theory. Therefore, we need to have a close look at the

factors which are not included in the linear theory: 1) non-linearity, 2) mean flow, 3)

dissipation and 4) bottom topography. The model shows that the vertical structures

propagate westward over the basin without much distortion by local topography. Also

the dominant vertical structure tails off toward the bottom. These two features may

indicate that the topography does not playa first-order role in the dynamics of the

vertical structure. Therefore we will not explore the role of bottom topography in

111



this study. We will investigate factors 1) through 3) in the sections 10.1 through 10.3,

after briefly previewing the main issues involved in each.

Vertically sheared mean flow will modify the normal modes into so-called shear

modes, although not in the long wave limit (K ---+ 0). The vertical structures of

the shear modes could be similar to the dominant vertical structures, provided that

the mean flow shear (defined as the mean flow difference between upper and lower

layers) is large enough, compared to the speed of the long Rossby waves. Given

the latitudinal dependence of the speeds of long Rossby waves, we conclude that the

shear modes would not be significant in middle and low latitudes. Also notice that

the mean of the flow is ill-defined if the flow is dominantly mesoscale. The shear

modes could be significant in the ACC region, where the mean flow shear is strong

and well defined and the long Rossby waves are relatively slow.

We next turn to non-linearity: to seek a solution such as 1/J(x - ct, y, z) in the

non-linear model. To be analytically tractable, we assume that 1) non-linearity is

important in the upper layer of the two-layer model but not in the lower layer; 2) the

flow in the upper layer is radially symmetric so that the Jacobian non-linear terms do

not appear; 3) the depth ratio is large so that the flow in the lower layer is weak. The

non-linearity of the model comes from the interface perturbation whose amplitude is

finite with respect to the upper layer thickness. The upper layer solution is a soliton

which translates steadily westward, and the lower layer solution is a quasi-steady

wave field forced by the upper layer soliton. The quasi-steady wave field is obtained

by solving an initial value problem. The vertical structure of the solution is quite

sensitive to the size of the upper layer eddy. When the upper layer eddy is small, the

vertical structure is somewhat comparable to the dominant vertical structure seen
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in the observation and model with a phase shift. Before the lower layer reaches a

quasi-steady state (we will call it an intermediate solution), the comparison becomes

more favorable for all sizes of upper layer eddies. The intermediate solution solution,

not sought originally, does not invalidate the assumptions in the non-linear model.

Motivated by two facts: one is the vertical phase shift in the model and another

is the existence of bottom Ekman layer in the model, we next investigate the effect of

bottom friction on the propagation of Rossby waves. The phase shift in the model,

i.e., the lower layer leads the upper layer, implies an upward phase propagation,

which in turn implies a downward energy flow in the vertical. The energy consumed

by bottom friction could be its sink. The existence of a bottom Ekman layer in the

model is demonstrated by the correlation between the vertical velocity and relative

vorticity near the bottom, as suggested by the bottom Ekman layer theory.

The bottom friction simply sets up a constant exponential decay rate for all

wavenumbers of the barotropic motion. For the baroclinic motion, it is far more

complicated. There is always potential energy accompanying the kinetic energy, so

the bottom friction is less efficient in decaying the baroclinic mode. The exponential

decay rate is wavenumber-dependent: the larger the horizontal scale of the baroclinic

motion, the slower the decay rate. Another important perspective is the vertical

structures of the modal solutions for Rossby waves with bottom friction. We find

that the vertical structure evolving from the baroclinic mode is surface-intensified

and tails off towards the bottom, and that the one evolving from the barotropic mode

is bottom-intensified. The later is dissipated much faster than the former, so that the

bottom friction performs a natural selection of the vertical structure evolving from the

baroclinic mode: surface-intensified and unidirectional. The above results certainly
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depend on the strength of the bottom friction. The question about the importance

of bottom friction in the real oceans remains.

10.1 Shear Modes: Interaction with Mean Flows

Interaction with mean flows will modify the hehavior of Rossby waves. The effect

of the mean flow could be so drastic that the Rossby waves are unstable, which

barotropic instability resulting from the horizontal shear of the mean flow, and baro­

clinic instability resulting from the vertical shear. However, our attention is directed

to the vertical structure of stable Rossby waves with a mean flow. The calculation by

Killworth et al. (1997) demonstrates that, based on a global hydrographic dataset,

Rossby waves interacting with the east-west geostrophic shears are mostly stable in

the world oceans, with only a few exception.

Mainly motivated by altimetric observations, the effect of a mean flow on Rossby

waves has been investigated extensively in continuous models (e.g., Killworth et al.

1997) and in layered models (e.g., Dewar 1998). However, all of these studies have

used the long wave approximation. As will be shown, under the long wave approxi­

mation the mean flow will has no effect on the vertical structure of Rossby waves in

a two-layer model.

The vertical structures of stable Rossby waves with a mean ,flow are called shear

modes. The shear modes could certainly be traced baek to the normal modes when

the mean flow gets small, and are generally not orthogonal. The present formalism

is the same as that in Pedlosky (1987), but his emphasis is on baroclinic instability.

The main conclusions from the simplest model, a two-layer quasi-geostrophic model,

are:
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• In the long wave limit (wavenumber K == y'k2 + [2 --+ 0), a mean flow has no

effect on the vertical structure, that is, the vertical structures remain those of

the normal modes. The effect of the mean flow is a Doppler shift only, which

is equal to the barotropic component of the mean flow-There is no Doppler

shift due to the baroclinic component (so-called non-Doppler effect). Away from

the long wave limit, there will be a Doppler shift even though the mean flow is

baroclinic (provided the two layers differs in thickness).

• The following parameter naturally emerges in the expression of the vertical

structure:

U' == 2K2 R 2 Us
s IcLI'

where Us is the mean flow shear (it is actually the difference between the upper

layer and lower layer velocities, U1 - U2 , but we refer it as the mean flow shear

in the present two-layer model), R the Rossby radius of deformation and CL the

speed of the long Rossby wave. Therefore the significance of the mean flow shear

depends on its magnitude relative to the speed of the long Rossby waves.

10.1.1 The Two-layer Model

Assuming the mean flow has east-west components only: U1 (upper layer) and U2

(lower layer), then the Rossby waves with a rigid lid are governed by the following

potential vorticity equations:

{
(fft + U1;"HV'21/!1 + F1(1/!2 -1/!dJ + [13 + F1(U1 - U2)]~ - 0,

(;t + U2%x)[V'21/!2 + F2(1/!1 -1/!2)] + [/3 + F2(U2 - U1)] a:,,' 0
(10.1)

where 1/!1, 1/!2 are the geostrophic stream functions in layer 1 (upper) and layer 2 (lower)

respectively, and Fi == /2/g' Hi(i == 1,2). The model is similar to the two layer model
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in Pedlosky (1987), where one can find a thorough discussion of baroclinic instability.

Here we will concentrate on neutral Rossby waves and their vertical structures.

Substituting the modal wave solution

a

0,

into the governing equations 10.1, we have the following eigenvalue equations:

{

(UI - c)[-K2AI + FI (A2 - AI)] + [,8 + FI(UI - U2)]AI

(U2 - c)[-K2A2 + F2(AI - A2)] + [,8 + F2 (U2 - Utl]A2

where c = w/k, and K 2 = k2 + 12

Dispersion relation

For non-trivial Al and A2 , we have

where

(10.2)

(10.3)

In general, Urn is a function of wavenumber (K) and of the ratios: Fl~F2 and F,~F,.

There are two situations in which Urn is simply the depth average of the mean flow:

• In the long-wave limit (K = 0): U = F,U,+F,U, = H,UdH,U,.
m FI +F2 HI +H2

• If the two layers have the same water depth (i.e., FI = F2 ), then for any

wavenumber Urn is simply the arithmetic average (also the depth average) of

the mean flow of the two layers: Urn = U,!U'.
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In equation 10.3, it is U;, instead of U" that appears in the dispersion relation.

U; is a wavenumber-modified shear, which equals Us only when IKI = ~R'

In the long-wave limit (K -+ 0), Um is the depth average of the mean flows and U;

is zero. Thus the only effect of the mean flows is a constant Doppler shift; the shear

of the mean flow has no effect-the waves are always stable. As will shown later, the

vertical structures do not change either, i.e, the vertical structures are those of the

normal modes without mean flow.

The Rossby waves will be unstable when the radicand in equation 10.3 becomes

negative. A necessary condition for instability is ((3 + F IU;)((3 - F2U;) < O. From

equations 10.1, we see that (3 + FlU, and (3 - F2Us are the background potential

vorticity gradients in the upper and lower layers. When IKI = ~R' then the necessary

condition is a change in the sign of the background potential vorticity gradients from

upper to lower layer.

10.1.2 Vertical Structure: Shear Modes

With mean flow shears, the vertical structure of a Rossby wave varies not only with

shear (Us) but also with wavenumber (K); with Us = 0, the vertical structure is

independent of wavenumber. From 10.2, we have the vertical structure

A2 ~(3 + ¥U; 'f J((3 + FlU;) ((3 - F2U;) + ¥U?

Al F:~\c2(3 + FlU;
(10.4)

First we will show that, in the long wave limit, the vertical structures are those of

the normal modes without mean flow. As shown in last section, U; = 0 in the long

wave limit, so we have

and
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They are the vertical structures of the normal modes without mean flows (baroclinic

and barotropic modes respectively).

Defining

then the vertical structures become

Az FI - H + ¥U; =f (FI + F2 ) (1 + ~U;)(l - ~U;) + 4(Fl:~2)2 U;2

~ 2~+~~

where CL = fJ/(FI + Fz). Notice that the f3 effect has been absorbed in U;. As U; is

the natural parameter for c, U; is the natural parameter for the vertical structure.

In a two-layer model without mean flows, the two dynamical modes are orthogonal.

If we denote them as (CI, AI, Az) and (cz, A;, A;), we have

(10.5)

With mean flows, they are not orthogonal any more. It is possible to get a relationship

similar to equation 10.5 with scaling coefficients before the terms AlA; and AzA;.

The scaling coefficients may give us some insights into why the vertical structures

differ from those of normal modes. In order to get the coefficients, we have four

equations from equations 10.2:

{ _KZ - F + @+HU'}A
1 U1-Cl 1

{ _KZ _ P. + @-F'U'}A
2 U2- Cl 2

{ _KZ _ F + iJ+FIU'}A'
1 UI-C2 1

{ _KZ _ P. + @-F'U'}A'
2 U2- C2 2

+FIA; - 0

+F2A~ o.

Multiplying the equations with F2A~, FIA;, - FzAI and - FIAz respectively and adding

them together yield:
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which can be rewritten as

(10.6)

When the mean flow has no shear (Us = 0, i.e., Uj = U2 ), the above equation reduces

to equation 10.5. From the above equation, we can identify the physical factors which

change the vertical structures from those of normal modes:

• The background potential vorticity gradients ((3 + FjU, and (3 - F2U,) are dif-

ferent in the two layers;

• The wave speeds seen by a person following the mean flows (Ci - Uj , i = 1,2, j =

1,2) are different in the upper and lower layers.

These are actually the two familiar consequences of a mean flow: modification of the

background potential vorticity gradient and advection.

Latitudinal dependence

The mean flow shear naturally combines with the (3 effect as follows

where CL = -(3/(F1 + F2 ) and R-2 = F j + F2. CL can be expressed as follows

j3cr
CL = - f2 '

where f is the Coriolis parameter and Cj is the phase speed of the first mode gravity

wave without a mean flow. As calculated from a global climatological dataset, Cj

ranges approximately from 2 m S-1 to 3 m S-1 (Chelton et al. 1998). Thus we have

a good estimate of CL' (3 and f are latitudinally dependent, and so is CL (figure 10.1).
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As seen in the figure, CL varies from ~2 cm S-1 at 50 degrees latitude to ~20 cm S-l

at 10 degrees latitude. The variation within 10-20 degrees latitude is the greatest:

from 7 cm S-1 at 20 degrees to triple that value at 10 degrees.

Assuming U, is a few cm S-1 and the horizontal scale is close to the Rossby radius

of deformation, then the only region where the shear modes will be significant is in

the high latitudes. In the Antarctic Circumpolar Current region, the Us could be

~50 cm S-I, and the shear modes would be significant even for the horizontal scales

somewhat larger than the first Rossby radius of deformation. In middle and low

latitudes, the shear modes are not likely to be significant.

There are some caveats here:

• We considered zonal mean flow only. As we know, all meridional mean flows

with vertical shears are baroclinically unstable. It sounds dramatic. Then one

may wonder what kind of effect a meridional mean flow will have on the vertical

structure. For the case with meridional mean flow VI and V2 only, after we

define (see Pedlosky (1987))

c= ~K'

we will get the same equations as equations 10.2 except for the tilde terms.

Therefore, the situation will certainly be more complicated with more depen­

dence on wavenumbers. However, if k and 1< are ~ 0(1), the tilde terms are

close to the untilded and the present results would be indicative.

• In the present model, the mean flow is assumed to be steady with large horizontal

scales. To define such flow will be problematic.

120



10.2 Non-linearity

Nof (1982), Cushman-Roisin and Tang (1990) and others derived an integral con-

straint for one and one half layer models, which states that an isolated eddy will

propagate approximately at the speed of long Rossby waves. This seems like the

right direction since the JAMSTEC model output does show that the eddies are

basically propagating at such a speed. However, when the same idea is applied to a

model with a rigid lid and a flat bottom, the integral constraint becomes the so-called

"no net angular momentum" theorem (Flierl 1987) which states that the translating

isolated structure must be baroclinic. This constraint applies to primitive equation,

as well as quasi-geostrophic models. Because of the theorem, we will restrict the

non-linearity to the upper layer where a translating isolated structure is possible, and

allow linear Rossby waves in the lower layer to radiate away so as not to be isolated.

In the real ocean the upper layer is usually energetic and the lower layer flow is weak,

so that it is reasonable to assume that non-linearity is important in the upper layer

but not in the lower layer.

In quasi-geostrophic dynamics, either the continuous stratification model:

a 2 aFa?/J 2 aFa?/J a?/J
a/V ?/J + az N2 az) + J(?/J, \l ?/J + az N2 az) +;3 ax = 0,

with a rigid lid and a flat bottom

a a?/J a?/J
ataz+J(?/J'az)=O' at z=-H and 0

or the two-layer model

%t[\72?/JI + FI(?/J2 - ?/JIll + J(?/JI, \72?/JI + +FI(?/J2 - ?/JI)) +;3~

%t[\72?/J2 + F2(?/JI - ?/J2)l + J(?/J2, \72?/J2 + +F2(?/JI - ?/J2)) +;3o/!;-

121

o
}

o



also with a rigid lid and a flat bottom, the non-linearity comes from the Jacobian

terms. The enigma is that the Jacobian terms will disappear if we use the radially

symmetric eddy as the prototype (0/00 = 0), because

BAoE BABE
J(A, E) = -----

ox oy oy Bx
BA oE oA oE- -----
or roO roO or

(Cartesian coordinates)

(polar coordinates).

Therefore, we will focus on the non-linearity associated with the finite interface per-

turbation with respect to the upper layer depth. This non-linearity arises from the

continuity equation and has been studied in the context of so-called intermediate

geostrophy (Charney and Flier11982) and frontal geostrophy (Cushman-Roisin 1986).

To keep the problem analytically tractable, we further assume that the depth

ratio is large so that the flow in the lower layer is weak. The upper layer non-linear

equation is solved without any influence from the lower layer, and an upper layer

positive soliton which translates steadily westward is obtained. A quasi-steady wave

field in the lower layer forced by the upper layer soliton is obtained by solving an

initial-value problem. Overall, we find an approximate translating solution of the

non-linear model, i.e., 1/J = 1/J(x - ct, y, z).

With respect to an upper layer positive soliton, the vertical structure refers to

the relative locations of the lower layer negative maximum (east of the soliton and

always well defined) and the positive extreme (west of the soliton but sometimes

poorly defined). We would consider the non-linear theory successful in modeling

the dominant vertical structure if 1) the westward positive extreme is well defined

and 2) the upper layer positive soliton is centered approximately between the lower

layer positive extreme and negative maximum, so that one could identify a barotropic

component (connection of positive extremes in the two layers) with a slope downward
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and to the west. For smaller upper layer solitons (e.g., L = 1), the model works

fairly well, but for larger solitons the westward positive extreme is poorly defined

and the upper layer soliton is too close to the lower layer negative maximum so that

the vertical structure is more baroclinic. Overall, the non-linear model has a limited

performance. However, at intermediate time steps (t=3 instead of t=10), the positive

extreme west of the negative maximum is better defined, so that we could identifY

a barotropic structure with almost 90 degree phase shift-the upper layer eddy is

located between the positive extreme and negative maximum in the lower layer. In a

realistic situation, the eddy field is intermittent, so that the quasi-steady solution is

rarely reached and the intermediate solution could be more relevant to reality. Notice

that the intermediate solution does not invalidate the assumptions of the non-linear

model.

The non-linear theory does not satisfactorily model the vertical structure in the

observation and in the JAMSTEC model. Restricted by the needs of analytical

tractability, the two-layer model without interaction between layers could be too

simple. Furthermore, we used a single soliton as the prototype of the eddy field;

this could be another limitation of the model. The altimetric observations and JAM­

STEC model output show much horizontal interaction among eddies; an individual

eddy sometimes does not persist very long.

It is emphasized that our study does not imply that the non-linear Jacobian terms

are unimportant; the limited performance of our model may instead indicate that the

neglected Jacobian terms are important. Restricted by the analytical tractability,

we simply do not address those terms. How to analytically address the effect of

the Jacobian terms on the vertical structure remains a challenge, while numerical
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modeling studies, pioneered by Rhines (1977), suggested so-called barotropization at

certain stages of geostrophic turbulence.

10.2.1 The Two-layer Model

Our model configuration (figure 10.2b) is similar to that used by Flier! (1984) to

study Rossby wave radiation from a lens-like Gulf Stream warm ring (figure 10.2a).

However, we consider finite interface perturbations without interface out-cropping.

We will assume a geostrophic balance at the leading order, so the upper layer govern-

ing equation is the potential vorticity equation, while Flierl (1984) used the primitive

equations in the upper pool. For the lower layer we will use the same dynamics as

Flier! (1984).

The potential vorticity equations for each layer (figure 1O.2b) are:

(i = 1,2), (10.7)

where 1/Ji (i=1,2) are the geo-potentials for the upper and lower layers respectively.

The vertical velocities at the surface and bottom are zero. At the interface

in which 1ft is tt + J(1/Jl, ), or tt + J(1/J2, ) depending on where (either the upper

layer or the lower layer) it is evaluated.

1/Ji are constant with z within each layer. Vertically integrating the potential

vorticity equations 10.7 from (-H 1 + () to zero (upper layer) and from (-H l - H2 )

to (-H l + () (lower layer) yields

(10.8)
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and

After a few rearrangements,

0, (10.10)

and

= 0 (10.11)

where Fi (i=1,2) are defined as Fi = /~, (i = 1,2). Since ( = f,(7/;2 - "1/)1), equa­

tions 10.10 and 10.11 are for two unknowns 7/;1 and 7/;2. If 1(1 « H, and 1(1 « H 2 ,

the parts associated with the curly brackets can be neglected, and equations 10.10

and 10.11 reduce to the familiar equations of a two-layer QG model (e.g. Pedlosky

1987). The extra non-linear terms are part of the potential vorticity as demonstrated

as follows for the upper layer

ft(J~!() - fteo+tt<(1 + f, - ... )}
= J, ftUof, + f:1y + ~ + (f:1y + ~)f, - ... }

"" J,[1tifof, + f:1y +0 + f,ft{(f:1y +m- ... ]
( is finite comparing with HI but will be much less than H 2 • As a result, we will

neglect the curly bracket term in equation 10.11. Furthermore, the flow in the lower

layer is assumed weak, so we will also neglect the advection term (the second term) in

equation 10.11. Therefore, the lower layer is governed by the following linear equation

(10.12)
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We will not neglect the advection terms for the upper layer (equation 10.10), since

the currents there are strong. However, since we assume that the isolated structure

in the upper layer is radially symmetric (alae = 0) , the Jacobian term is identically

zero. In the real world, the circular characteristic of most eddies, though not perfectly

radially symmetric, will greatly reduce the non-linear effect of the advection terms.

We will also neglect the influence of ,¢2, i.e., we will not consider the feedback from

the lower layer to the upper layer. This is justified by equation 10.15, the non-

dimensionalized form of equation 10.12. Since the lower layer is assumed forced

by the upper layer, equation 10.15 suggests that '¢2 in the same order of t'¢I' In

equation 10.12 the influence of '¢2 is in the form of '¢1 - '¢2, so that we could neglect

the feedback from the lower layer as long as t = ~: « l.

Finally, the upper layer is governed by

(10.13)

The following characteristic scales and parameters:

length R - yg'HI ~ 30 km- f

time T = 13~ ~ 20 days

velocity U ~ 20 cm S-1

Rossby number Ro f~ = Y9~HI ~ 0.1

depth ratio 8 fu. ~ 5
HI

f3 ~ 2 X 10-11 m- l s- l

RH; ~ 3 m S-1

f ~ 1 X 10-4 S-1

HI ~800 m

H 2 ~ 4000 m,
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are used to non-dimensionalize equations 10.12 and 10.13. U is the characteristic

velocity in the upper layer. Since the lower layer is linear, we can use the same char-

acteristic scales. Also notice that the scale of 'l/Ji is uR (i=1,2). The non-dimensioned

governing equations for the upper and lower layers of our model are

(upper layer), (10.14)

(lower layer). (10.15)

For clarity, the same notations as their dimensional counterparts are used in above

equations. The appearance of 1/15 in equation 10.15 is because we utilized the same

time and horizontal scales for the upper and lower layers. It will disappear, if we

choose different scales for the lower layer as follows

If we neglect the 'l/Jl related term in equation 10.15, which is actually a forcing term,

then the homogeneous solution of equation 10.15 will be a function of the new inde-

pendent variables non-dimensionalized by R2 and T2 . In such a sense, the lower layer

will have a larger horizontal scale and a shorter time scale than the upper layer when

15 > 1.

comments

The assumptions leading to equations 10.14 and 10.15 are

1. Geostrophy allows us to use streamfunctions, express the advective non-linear

terms in Jacobian form, and relate the Rossby number Ro to the interface per­

turbation scale (15H) as follows: assuming the lower layer flow is small, U ~ g~'l:.

d R - u - 9'OH - hL
an 0 - fR - f'R' - Hi'
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2. The depth ratio is large, so that we can assume that the motion in the lower

layer is weak, and that the interface perturbation is infinitesimal with respect

to the lower layer depth.

3. The non-linearity due to the interface perturbation is important in the upper

layer but not in the lower layer.

4. The flow in the upper layer is radially symmetric so that the Jacobian non­

linear terms are not considered. The flow in the lower layer is weak so that the

Jacobian terms are also not considered.

It is clear that our model is very simplified in order to illustrate the effect of the

non-linearity analytically. The model is intended to represent mid-latitude mesoscale

motion. At high latitudes, to assume a weak flow in the lower layer may not be

suitable; near the equator, equatorial dynamics should be applied.

In our model, we retain two horizontal scales: Rand R-IJ, or equivalently,

yl9t1 and bt,. In this respect, it is different from the modal solution which has only

one horizontal scale:7 t~~Z:. It is further emphasized that the horizontal structure

of the lower layer will be different from that in the upper layer: one is an isolated

structure and another is a wave field extending far away. That means, in such situa­

tion, that the solutions in the two layers are not similar, i.e., 1/J2(X, y; t) # C '1/J, (x, y; t)

(C is a constant) and not separable 1/J(x, y, z; t) # j(z)g(x, y; t) for continuous strati­

fication. This is totally different from the dynamics of the linear normal modes. For

the linear baroclinic mode of the two-layer model, 1/J2 = C . 1/J, where C = - ~.
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10.2.2 Upper Layer: Solitons

The upper layer governing equation (equation 10.14) is

where we have linear wave terms - i!ift +~, a dispersion term iJV;,'h, and non-linear

terms multiplied by Ro . A soliton requires that 1) the first order of the equation is a

linear wave equation and 2) the dispersion and non-linear terms appear together in

the second order term. To satisfy these requirements, we stretch the coordinates as

follows

(x', y') = vS(x, y) and t' = vS(t)

Assume B~ Ro , then the equation becomes

(10.16)

Notice we have neglected the term in order of RoB and dropped the primes. Assuming

;y = 0, we could obtain one-dimensional solitons analytically (appendix D). Here

we present the two-dimensional solitons or radial solitons, which propagate westward

steadily. However, no analytical solution could be obtained, and numerical techniques

are needed.

Using the coordinate transformation s

becomes

x - ct, the governing equation 10.16

8 [( Ro 2 ' 8
2 1/11 8

21/11]
8s 1 + C)1/11 + 21/11 - Sc( 8s2 + 8y2) = o.

For a soliton, 1/11 = 0 and iJ;$l + iJ;$l = 0 whenlsl -+ 00, so that
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with a zero integration constant. For a radial soliton, aa2~1 + aa2~1 = ! dd r <!!b.
d

1 = dd2~1 +
S Y rr r r

~ ~, where r=V8 2 + y2. Finally, the governing equation for the radial stationary

soliton is

(10.17)

The boundary conditions are

at r = 0

{

non singular

1Pl = ~ = 0 at r = 00

'h = 0 is its trivial solution. Our purpose is to find a particular c and its corresponding

non-zero 1Pl decaying towards zero as r ---+ 00, given Ro and S. The numerical scheme

is the Runge-Kutta integration of the following first-order differential equations:

{ <!!b.ddOr' _ G1 [( ) R 01,2] 1G
dr Se 1 + C 1Pl + "if'l'1 - r

with conditions

1Pl = A, G = 0 when r = O.

where A is the peak value of the 2-D soliton at the center. The integration is from

r = 0 to r = 00.

When Ro = 0, I.e, no non-linear term, equation 10.17 becomes a zeroth-order

Bessel equation:

d21Pl + ~ d1Pl + (_ 1 ;- C)1Pl = O.
dr2 r dr Sc

When -1 < c < 0, its two independent solutions are Bessel functions of the zeroth-

order:

fiJ+c
and lO( -,-r).

Slcl
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When c < -lor c > 0, they are modified Bessel function of the zeroth-order:

11 + clr )_ and K o(
Slcl

To be non-singular at r=O , only are Jo and 10 permissible.

Figure 10.3 shows the numerical solution of equation 10.17 when A=l. For most

values of c, the numerical solution behaves indeed like Jo or 10. Near c = 0-, the

solution decreases from 1/J, = 1 very fast but keeps an oscillation, so that the contours

are indiscernible. Near c = 0+, the solution increases dramatically. When c = 0,

1/J, = 0 or - 11Ro (see equation 10.17), so that 1/J, = 1 at r = 0 is a bad value.

Since these situations are not of interest to us, we grayed out the solution near c = O.

Recall that we are interested in the solution which is finite near the center and decays

towards zero as r -+ 00. Figure 10.3 suggests that the only possible c for such a

solution is slightly less than -1.

A close look at 1/J, near c = -1.02 (figure 10.4) does show such a soliton-type

solution between -1.021 and -1.020. We tracked down the value c to a high precision

as shown in figure 10.5. In figure 10.5, we also plotted the 1-D soliton discussed in

appendix D with the same parameters (A = 1, Ro = 0.1 and S = 0.1), and the

Gaussian curve as in figure D.l. All three curves are visually similar to each other.

Figure 10.6 shows similar results for a stronger soliton, A = 10. From these two cases,

we can conclude that the Gaussian curves are good representations of both 1-D and

2-D solitons.

10.2.3 Lower Layer: Forced Barotropic Waves

The governing equation of the lower layer (equation 10.15) is:

a 2 1 a1/J2all 1/J2 + J(1/J, -1/J2)] + ax = 0

131



which becomes in the moving coordinates (s=x-ct,y;t)

i!:h.
ils

I II

£0b.o ils

RT
(10.18)

The forcing term at the right side (RT) is the upper layer soliton discussed in the

previous section. c is chosen as the translating speed of the soliton, so that the forcing

term is stationary in the moving coordinates, i.e., 1/;1 _ 1/;1(8, V). We will use the

Gaussian eddy 1/;1 = exp(- S~1¥') to approximate the upper layer soliton, because of

. . IF' c L2 (L2(k'+12») Th .Its SImp e ouner tranSlorm exp 2 . e amphtude of 1/;1 does not matter,

because equation 10.18 is linear, but the size of the Gaussian eddy, characterized by

L, matters, since it determines the wavenumber content of the forcing.

Equation 10.18 is solved with following conditions:

1/;2 = 0, when t = 0

1/;2 --+ 0 in the far field, i.e., r = J S2 + y2 --+ 00

The solution is obtained in appendix E:

where Jo is the zero-order of Bessel function of the first kind.

Our goal here is to obtain a quasi-steady solution of equations 10.14 and10.15 in

the form 1/;1 (x- ct, y) and 1/;2(X- ct, V), where c is the translation speed. This is shown

in figure 10.7 (the intermediate solutions of the lower layer between an initial resting

state and those in figure 10.7 are shown in appendix E). The lower layer is filled with

barotropic Rossby waves. Short Rossby waves are east of the forcing (marked by the

white vertical lines in figure 10.7) and long Rossby waves are west of the forcing. The

sausage shapes are also typical of the barotropic Rossby waves. These features were
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seen in the laboratory (Firing and Beardsley 1976) and in theoretical and numerical

models (e.g. Longuet Higgins 1965, McWilliams et al. 1986 and Chassignet and

Cushman-Roisin 1991).

The main response of the lower layer is the negative maximum, which is always

east of the forcing. This is clearer for a smaller upper layer eddy (the left column

of figure 10.7), and can be understood by looking at the balances of equation 10.18,

where c is close to -1 (c = -1 is used here). In the quasi-steady state, the left

side of the equation consists of terms I, II and III. For a large depth ratio (<5 = 4

is used here), term III is always smaller than term I. For a larger upper layer eddy,

the horizontal scale is large so that term II is small. The dominant balance is then

between term RT and term I. i.e., forcing and (3 effect. The outcome of this balance

is 'l/J2 ex -'l/Jd<5, i.e., a pure baroclinic vertical structure and 'l/J2 and 'l/Jl will align with

each other vertically. The physics is the following: when the upper layer warm eddy

moves west, it will shrink the lower layer west of the upper layer eddy and stretch

the lower layer east of it. Since the response is dominated by the (3 effect, the water

parcels west of the upper layer eddy have to move southward to conserve potential

vorticity and the water parcels east of it have to move northward. Thus the motion

of the lower layer is cyclonic, opposite to that of the upper layer. In this balance, the

rate of change of the water depth of the lower layer is important. Under the center

of the upper layer eddy, the lower layer is depressed the most but the change rate is

zero so that the north-south velocity is zero. In other words, the lower layer cyclonic

motion is centered under the upper layer eddy.

The dominant balance is used to explain the existing of the negative maximum.

To understand why it is east of the forcing, we need to consider the time-independent
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homogeneous equation including terms I, II and III, which is

8[2 11]- \7 1/;2+ (-- - -)1/;2 = O.
8s c <5

Its general solution 1/;29 in polar coordinate (r = V82 + y2,(1) is a combination of

Bessel functions:
00

1/;29 = LAnJn(V-1/c-1/<5r)cos(nO).
n=O

(10.19)

Notice that c is about -1. An are dependent on what happened before reaching the

quasi-steady state.

In the general solution 10.19, the n = 0 component is radially symmetric so that

it does not change the picture from the dominant balance between the forcing and

f3 terms. The' n = 1 component would be the most relevant; it is anti-symmetric in

east-west direction. The origin of the anti-symmetric motion can be seen by checking

the temporal and forcing terms: west of the upper layer eddy, negative (anticyclonic)

relative vorticity is generated and east of it positive relative (cyclonic) vorticity is

generated. Recall that the dominant balance results in a cyclonic motion centered

under the upper layer eddy. Therefore, the n = 1 component will offset the center

of the cyclonic motion (the negative maximum) eastward. Notice that this offset will

be more significant if the horizontal scale is smaller so that the relative vorticity (the

Laplacian term) gets larger.

Because the negative maximum is east of the forcing, we should connect the upper

layer positive to the lower layer positive west of the forcing when illustrating the

vertical structure. The existence of such a positive extreme is illustrated in figures E.1

to E.3 in appendix E. For a small upper layer eddy, the westward positive extreme

is stronger relative to the negative maximum than in the case of a large eddy. At

intermediate time steps when the lower layer is less steady (t=3 instead of t=lO), the
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westward positive extrema are also stronger. In those two scenarios we can identify

the vertical structure with an almost 90 degrees phase shift-the upper layer eddy is

located between the positive and negative extrema in the lower layer. The phase shifts

are consistent with what we found based on the JAMSTEC model output (figure 8.4).

Notice that the intermediate solution does not invalidate the assumptions in the non­

linear model. If the upper layer eddy evolves in time, probably the intermediate

solutions (figure 10.8) are more applicable than the quasi-steady solution (figure 10.7),

but this is just a speculation.

Although we can identify a phase shift consistent with the JAMSTEC model out­

put, the positive extreme west of the upper layer eddy is weak and the main response

of the lower layer is instead the baroclinic flow; we conclude that the non-linear model

does not fully explain the dominant vertical structures seen in the observations and

JAMSTEC model. However, we may be able to do a better job by having more

layers and emphasizing the transitional nature of the flows. These issues are very

challenging, especially if one wishes to tackle them analytically.

It is interesting to compare our theoretical results with two numerical model­

ing studies: one is a QG model (figure 10.9, from McWilliams et al. 1986) and

another uses the primitive equations (figure 10.10, from Chassignet and Cushman­

Roisin 1991). The parameters in McWilliams et al (1986) are L = 1 and J = 4.

Figure 10.9 was averaged over time approximately from t=2 to t=5, so that the fig­

ure should be comparable with the left column of figure 10.8. The parameters in

Chassignet and Cushman-Roisin (1991) are L = 1.3 and J = 4. The times for those

rows are approximately t=l, 4 and 7. The similarity suggests that the forced linear

Roosby wave theory captured the dynamics of the lower layer quite well.
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10.3 Bottom Dissipation

Dissipation (or friction) is not considered in the linear Rossby wave theory. Since the

empirical forms for dissipation are usually linear, it is not mathematically difficult

to show its effect on Rossby waves. The effect of Rayleigh friction on free internal

waves in the equatorial waveguide was studied by Mofjeld (1981). Since the Rayleigh

friction was introduced after the vertical mode decomposition, the focus of Mofjeld

(1981) was on the horizontal structures of the equatorial waves. In this study, we will

introduce bottom friction on the total flow. The effect of the bottom dissipation on

the vertical structure of the Rossby waves is one of our concerns.

Not much attention has been paid to the effect of bottom friction on Rossby waves

so far. One possible reason is that observational evidence on the dissipation of the

Rossby waves is rare. Luther (1982) estimated that the decay scale of the 4-6 day

barotropic Rossby wave in the Pacific Ocean is about equal to its period, based on

the widening of the peak of the sea-level frequency spectrum at 4-6 days. Fu (2003)

inferred that the damping timescale for intraseasonal (30 days to one year) barotropic

variability is generally longer than 20 days by fitting the altimetric observations into

the barotropic vorticity equation with Rayleigh friction. Other knowledge about the

dissipation of barotropic and baroclinic motion (not particularly of the barotropic

and baroclinic Rossby waves though) in the ocean comes indirectly from the energy

budget and from the spin-down of individual eddies such as the Gulf Stream rings.

A survey by Wunsch (1998) indicated that, on a global scale, barotropic motion has

a decay scale of ~100 days and baroclinic motion has a decay scale of ~10 years.

Because of the limited observational evidence about the dissipation of Rossby

waves, we have little knowledge of the appropriate dissipation coefficients, and the
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theoretical results are therefore merely suggestive.

The dissipation under consideration is bottom dissipation. The horizontal dissi­

pation in the biharmonic form does not affect the vertical structure of Rossby waves

in a two-layer model (append G), i.e., the vertical structures of barotropic and baro­

clinic modes remain the same in the decaying (in time) or localized (in space) Rossby

waves. As shown in appendix F, the bottom dissipation seems much more important

than interior dissipation. In the real oceans, the bottom Ekman spirals and log­

layers, obviously due to the bottom friction, were observed, for example, within the

dense overflow from the Nordic Seas into the North Atlantic by Johnson and Sand­

ford (1992) using an expendable current pro/Her (XCP) with ~1 m resolution-see

Saunders (2001) for a recent review. We also know that the bottom drag is one of two

dominant along-stream forces in the so-called streamtube models for dense outflow:

the potential energy released from the descent of the outflow down the continental

slope was dissipated mainly by bottom stress~the outflow was not accelerated due

to the release of the potential energy. This was tested by the intensive measurements

within the Mediterranean outflow (Baringer and Price 1997). Baringer and Price

(1997) further showed that the inferred bottom stress can be parameterized by the

familiar quadratic drag law with the coefficient CD between 2-12x10-3. Recall that

the quadratic drag law with CD = 1.2 X 10-3 was used in the JAMSTEC model as

well as most other GCMs.

To compare with the situation of Rossby waves in stratified oceans, which will

be discussed in the following sections, we first show how the bottom friction affects

the barotropic waves in a homogeneous ocean. The Rossby waves will certainly be

always depth-independent~the vertical structure is not an issue here. The potential

137



vorticity equation is

8(2 ) 87jJ 2- V' 7jJ - F7jJ + (3- = -'YV' 7jJ
8t 8x

(10.20)

where 7jJ is the geostrophic streamfunction, and 'Y is the bottom friction coefficient

with the dimension of inverse time. Other notations are conventional. Substituting

the wave solution 7jJ = Aei(kx+ly-wt) into equation 10.20, one obtains the dispersion

relation w = k2!t~+F - icy. Therefore, the propagation (real part of the dispersion

relation) of the barotropic Rossby waves in a homogeneous ocean is not affected, but

they all decay as 7jJ ~ e-,t, regardless of wavenumber. Here we see that 'Y acts exactly

and simply as an exponential decay scale. As shown in the following sections, this is

not the case for the Rossby waves in a stratified ocean; the waves will decay much

slower than c,t and their propagation will also be altered.

Two forms of bottom friction are used in the layered and continuously stratified

models respectively. One is the Rayleigh form which can be traced back to the

Rayleigh friction in the momentum equations and will give rise to an extra term

identical to ,,!V'27jJ in equation 10.20. Another form relates to the bottom Ekman

layer theory, which states

W = signU)V21;1~ = signU)Il~,
where W and ~ are the vertical velocity and relative vorticity at the top of the bottom

Ekman layer, and the parameter 11 has the dimension of length. For a continuously

stratified QG model, the bottom Ekman boundary layer theory presents a new bound-

ary condition

at z =-H

to replace the usual boundary condition w = O. The two forms are equivalent under

some circumstances. If we integrate the continuously stratified QG model into a

138



layered model and include the bottom Ekman layer, the equation of the deepest layer

will have an extra term - J.1.~, which is equivalent to the Rayleigh friction.

Our focuses are on the propagation (dispersion relationship) and vertical structure.

Two simple models are used: a two-layer model and a constant N 2 model. The main

conclusions are:

1. The bottom dissipation, if strong enough, is a dynamically possible cause for

the discrepancy between the observation and linear classical theory.

2. In the two-layer model, the barotropic branch, which reverts to the usual dy­

namical barotropic mode when the bottom dissipation gets small, is bottom­

intensified and decays quickly, while the baroclinic branch is surface-intensified

and decays slowly. The decay scale for the baroclinic branch in the two-layer

model is more than 10 times longer than the Rossby wave time scale (f3~). The

situation for the constant N 2 model is similar but more complicated.

3. The first baroclinic Rossby wave without dissipation will be 180 degrees out of

phase between the upper and lower layers. In the baroclinic branch of the present

two-layer model, the phase shifts are reduced towards 90 degrees, depending

on the· wavenumber and strength of bottom dissipation. In the continuously

stratified model, the phase shift can be anywhere between 0 and 180 degrees.

4. The westward propagation of the baroclinic branch is accelerated, as seen in the

JAMSTEC model. The 'i"lz=-H = 0 model is the limiting case of the dissipative

Rossby wave. For long Rossby waves, the westward speed of Rossby waves can

be enhanced no more than 4 times.
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10.3.1 The Two-layer Model

The two-layer model is same as that in chapter 9 with addition of the bottom dissi­

pation -'f'\72'f2:

{
:,[\72WI + (W2 - WI)] + W
:,[\72W2 + HWI - W2)] +~

o
(10.21)

The length and time scales are still R = .,jgtJ
, T = ~~, and the bottom friction

coefficient 'f with the dimension of inverse time is non-dimensionalized by the time

scale as 'f' = 'fT.

The wave solution is assumed:

Notice that if both W~ and W& are real, then the phase relationship between W~ or W&

is either in phase (W; and W& have same sign) or 1800 out of phase (W~ and W& have

opposite signs). However, if either W~ or W& has an imaginary part, then the phase

difference will be between 0 and 1800
• This is the situation for dissipative Rossby

waves. Substituting the wave solution into equation 10.21, we have

(10.22)

where we have dropped the primes for W;, W& and 'f'. To have non-trivial solutions,

the determinant of the coefficients matrix has to be zero. After some algebraic ma-

nipulations, we have

(10.23)
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where

1= [k(1 + ~) + (k2 + 12 )(k2 + 12+ Ihi]2 - 4k(k2 + 12)2Ji.

When r = 0, then I = [k(1 + ~lF and

k
WI = -P+12'

k
W2 = - -P::-+-I"'2-+-1-+----;-1 .,

These are the dispersion relationships for the barotropic and baroclinic Rossby waves

without bottom dissipation.

Small r and k, 1~ 0(1)

Neglecting 0([2) terms, we have

and

Then

k k 2 +l 2 1 •
k2+l2+1+i - k2+l2+1+t 1+8')'1

(10.24)

Obviously, WI relates to the barotropic Rossby wave and W2 to the baroclinic Rossby

waves, so that we call the former the barotropic branch and the latter the baroclinic

branch. The imaginary parts are the decay rates of the waves. The decay rate of the

barotropic branch is wavenumber-independent for small r and k, 1~ 0(1). For other

situations as will be seen, the dependency of the decay rate on wavenumbers is weak.

The decay rate converges to r when (j » 1. The factor Ii, is the ratio of the lower

layer depth to the total depth.
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The decay rate for the baroclinic branch is very different from that of the barotropic

branch. There are two factors involved. One is '~J' which is the ratio of the upper

layer depth to the total depth. The other is k';l"';:+t' which is actually the ratio

of the kinetic energy to the total energy (kinetic and potential energy) for the (k,l)

Fourier components of the baroclinic mode. Because of the bottom dissipation, the

baroclinic mode is not a modal solution anymore, but we assume the baroclinic mode

is still a good approximation for illustrative purposes due to the smallness of -y. The

baroclinic mode is

The kinetic energy per unit mass is then

The dimensional potential energy per unit mass is PE = -2'g'(2 with ( = f(",-,,')
g'

This is

Where R is the length scale of the model: R = Vg'H, ; f. For a single (k, I) Fourier

component of 'ljJc, ('V'ljJc)2 = (k2+ 12)'IjJ~, and we have

KE P+12

KE+PE- k2 +l2+1+ 1 '•
where the wavenumber (k, I) has been non-dimensionalized by R. For small wavenum-

bers, this factor is small, and so is the decay rate; this is understandable because of the

large potential energy reservoir. For the barotropic mode, there is no such potential

energy reservoir, so the decay rate remains the same for all wavenumbers.
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The vertical structure from the first row of the matrix in equation 10.22 is

where Wr and Wi are the real and imaginary parts of W (equation 10.24), and W r is

actually the frequency without bottom dissipation. With the same assumption: a

small 'Y and k, 1~ 0(1), we have Wi «we, so

2 2 k ( Wi 0) 2 12 k kWi 0r '" k + 1 + 1 + - 1 - -I = k + + 1 + - - -2I,
Wr Wr Wr Wr

whose residual is 0("(2). For the barotropic and baroclinic branches respectively, r

becomes,

r kWi.
1 = 1--1

w2
r

and
1 kWi 0r 2 = --;: - -2I.
U wr

If there is no dissipation ("( = 0), we have

and

which correspond to the usual dynamical modes. Notice that angle(rtl = 0° and

angle(r2 ) = 180°, i,e., in phase for the barotropic mode and 180° out of phase for

the baroclinic mode. For decaying (Wi < 0) and westward (k < 0) Rossby waves, the

imaginary parts of r 1,2 are negative. This implies that the phase for the baroclinic

branch is in the third quadrant [-180°, -90°), and that for the barotropic branch it

is in the fourth quadrant (-900,0°] (figure 10.11). It is emphasized that, in order

to get the pattern in figure 10.11, one needs to satisfy two conditions: one is Wi < 0

(decaying) and another is k < 0 (westward propagation). If k > 0 (then W r < 0 and

Wi < 0), the phase will be in the second and first quadrants for the baroclinic and

barotropic branches respectively.
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General cases

It is difficult to pin down the magnitude of 'Y. The smallness imposed in the

previous section was mainly for a convenient discussion. Notice that 'Y is non­

dimensionalized by ~~, which is about 100 days. Assuming an eddy decays in 100 days

or so~this seems not far from our present knowledge-'Y would be about 1. Assuming

an eddy decays in 1000 days or so·-this seems not far from our present knowledge

either-'Y would be 0.1. Here we are assuming the eddy is barotropic, so 'Y directly

relates to the eddy decay rate. As emphasized in the previous section, this is not the

case for baroclinic eddies. For the same decay rate, 'Y for the baroclinic eddy needs

to be much larger, although we do not know how large it should be. We will allow 'Y

to vary from 0.1 to 5 or so. For the continuously stratified case we may have a better

situation, for the JAMSTEC model output may shed some light on this issue.

As seen in the top row of figure 10.12, the propagation characteristics of the

barotropic branch do not change much, while there are significant changes in the dis­

persion relations of the baroclinic branches for 1=0 and 0.5. As a general trend, the

waves of the baroclinic branch propagate faster than the baroclinic Rossby waves with­

out dissipation (same wavenumber k but larger wr ), and the waves of the barotropic

branch are slower than the barotropic Rossby waves without dissipation (same wavenum­

ber k but smaller wr ). As in the case of small 'Y (equation 10.24), the decay rate (-Wi)

of the barotropic branch converges to 'Y, and the decay rate of the baroclinic branch

is generally much less than 'Y (the top row of figure 10.12).

We also notice that the decay rate of the baroclinic branch decreases towards

zero in the limit of large or small wavenumber k. The decay rate decreases when k

is small, because there is more and more accompanying potential energy; the decay
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rate decreases when k is large, because the lower layer velocity goes to zero-see the

second row in figure 10.12. We could interpret the latter case in an alternative way.

For large wavenumbers, the stretching terms are negligible, so that 'l/Jt and 'l/J2 have

their own QG potential vorticity equations. 'l/J2 decays as in the barotropic situation

with a decay rate of approximately "(, and 'l/Jt does not decay at all because there is

no dissipation in the upper layer at all. The two modes are approximately

All of the above inferences are consistent with figure 10.12.

In figure 10.13, when "( gets large the decreasing of the decay rate can be attributed

to the surface intensification. In the lower layer potential vorticity equation (see

equation 10.21), the main balance of the baroclinic branch would be between Zt Y'f

and -f'V2'l/J2. In such a balance, the larger the "(', the smaller the 'l/J2 relative to

'l/Jt, thus more surface-intensified. The most interesting feature in the figure is the

maximum decay rate for the baroclinic branch. The maximum (-0.0451) is obtained

when k=-0.65, 1=0 and "(=1.4. Therefore, the decay scale of any wave in the baroclinic

branch (i.e., surface-intensified ones) is 20 times more than the time scale, which is

defined here as 1/f3R.

Surface intensification is the reason for the small decay rates in the case of large

"(. Because of the strong bottom friction (defined by a large "( but not by a fast

decay, though we have no solid foundation for the range of "() and no dissipation in

the interior, the surviving waves should have minimum velocities near the bottom.

Then the strong bottom friction does not dissipate much energy anymore, and a small

decay rate will be seen. It is emphasized that a weak bottom flow and small decay

rate do not mean there is no strong bottom friction. As argued, the strong bottom
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friction mandates a weak flow near the bottom, not the other way around.

10.3.2 Constant N 2 Model

In the two-layer model the bottom dissipation was in the Rayleigh form. In a con-

tinuously stratified model, we will represent the bottom dissipation by the bottom

Ekman boundary layer theory. To keep the problem simple and tractable, we will

study a constant N 2 model.

The model

The dimensional linear QG potential vorticity equation with bottom dissipation

IS

Z = 0,

Z= -H,

!!'t = 0
8z

_ ill 8'''' = 1<'172"1,
N2 vzot 0/

(10.25)

where we have used the bottom Ekman vertical velocity

Av , the vertical eddy viscosity, is assumed constant in the bottom Ekman boundary

layer. J1 is positive, with the dimension of length.

Choosing the following vertical, horizontal and time scales

H, R=NH
7ff '

1
and T = {JR'

to non-dimensionalize the potential vorticity equation and boundary conditions, and
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assuming 7/J = 7/J'(z)ei(kX+ty-wt) we have

z =0, ~-o{)z -
(10.26)

z = -1, ~ = i"'~ol.,8z t"" w 'fI

where

, HN2 1 2/1111
/1 = /1 111 £2 fiR = 7r H fiR"

/1' is the sole explicit parameter of the model. Its possible range is estimated as

follows. The analysis from the JAMSTEC model (appendix F) shows that J1 is about

10 m in the mid-latitude Indian Ocean, thus for a 4000 m depth ocean 17 ~ 0.003.

The gravity wave speeds for the constant N 2 model are en = ~:: (n = 1,2, ... ), then

we have R = cd1 and -k.
Cl ~ 2.5m S-I. Therefore

L 10-8
- PCI "" 2x1O l1 x 2.5 = 200, where we have assumed

This is certainly a rough estimate; we will consider any value between 0.1 and 100 is

possible. We also notice that N 2 in the bottom boundary condition should take the

value near the bottom (Nn, which is much smaller than the depth-average N 2
used to

define the horizontal scale. Therefore there may be a factor !jJ. in J1' at first glance.
N

According to the WKB scaling, however, the vertical scale in tz is large near the

bottom and proportional to ~. Thus the overall factor should be 1f in /1'. Assuming

that the buoyancy frequency squared can be approximated by an exponential profile

with a decay scale 1000 m: N 2 = N6ez(IOOO, then the factor 1f "" 0.3 for a 4000 m

depth ocean. If the decay scale is 3000 m (likely in the Southern Ocean), then the

factor is approximately 0.7.
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Dispersion relation

To solve equation 10.26, we define

If Ii = 0, then the solution of equation 10.26 will be a function of A~ only, with

no additional dependence on (k, I, w). In this sense, the vertical structure (of the

usual dynamical modes without bottom dissipation) is independent of wavenumber

and frequency. This is not the case for the dissipative Rossby waves.

The possible solutions of equation 10.26, satisfying the upper boundary condition

EJ1j/jiJzl z=o = 0, are 1// = cos(An1J".z). Substituting this into the lower boundary

condition ~IZ=-l = iJ1,'k2~121/J', we have

(10.27)

For An is a function of (k, I, w), equation 10.27 is the dispersion relation between k,

I and w with parameter Ii.

Due to the periodicity of tan(An1J"), we have multiple modes as with the usual

dynamical modes. For given p,' and I, the dispersion curves (relationship between

k and real component of w, i.e., wr ) for the first two modes are displayed along

with the imaginary component (Wi) and vertical structures (amplitude and phase)

in figures 10.14 to 10.17. The two dispersion curves cross in some plots, such as

figure 10.16 for p,' = 10 and 1=0. This does not mean that there are multiple roots

in equation 10.27, since the corresponding Wi are different.

At first, let's look at the results for 1=0. When p,' =10 and 30, the results are

comparable to those of the two-layer model with bottom dissipation. We see that
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the barotropic branch is bottom-intensified and has a large decay rate; and the baro­

clinic branches are surface-intensified and have small decay rates. For the baroclinic

branches, the decay rate decrease for both high and low wavenumbers. We also notice

the decay rate is smaller for fJ' = 30 than for fJ' = 10. This indicates that there is a

maximum decay rate, similar to the two-layer model, although the parameter there

is "I instead of fJ'· The behavior for Ii =1 and 3 is strange. The baroclinic branch

looks like the usual dynamical baroclinic mode at the low wavenumber end, but it

becomes bottom-intensified at the high wavenumber end. The decay rate does de­

crease towards the low wavenumber end but not towards the high wavenumber end.

These results would be more comparable to the two-layer model and to the results

for larger fJ', if we combined the low wavenumber part of the baroclinic branch with

the high wavenumber part of the barotropic branch.

Results for 1=0.5 and 1 are similar to those for 1=0. Only the dispersion curves

are shown in figure 10.19. For 1=1, the frequency of the baroclinic branch is higher

than that of the barotropic branch; this is contrary to the usual dynamical modes.

In the two-layer model, the phase shift of the baroclinic branch lies in the third

quadrant (-180, -90). Here the phase of the baroclinic branch could be in the third

and fourth quadrants (-180, 0). Similar to the two-layer model, the stronger the

dissipation, the smaller the phase shift. Comparing the panels at the lower-left corner

of figures 10.14 to 10.17 (1=0), the contours are more squeezed towards the bottom

(z=-l) as fJ' is increased.

Dissipative Rossby wave with 1/'lz~-H = 0

The two-layer model in the previous section clearly shows that bottom dissipation
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modifies the usual dynamical modes into two non-orthogonal modes: one surface-

intensified and decaying slowly and another bottom-intensified and decaying quickly.

The continuously stratified model in this section is more complicated but the general

trend is the same. The stronger the bottom dissipation (in terms of j.L, not of the

decay rate) the clearer this trend. Since the barotropic branch decays quickly, we

concentrate on the baroclinic branch. When the bottom dissipation is 10 time larger

than the estimate from the JAMSTEC model, the baroclinic branch becomes unidi-

rectional and surface-intensified and 1/J approaches zero near the bottom (left column,

figure 10.18) except at the smallest wavenumbers. This prompts us to look at the

Rossby waves with 1/Jlz~-H = 0:

2- ('\720/, + .!L £.. 0E.) + j3!i21'. = 0at If' 8z N2 8z ax

Z = 0, (10.28)

z = -H, 1/J =0

Compared with the usual Rossby wave equation, equation 10.28 abandons the bottom

condition on vertical velocity w = O. 1/J = 0 at the flat bottom is equivalent to

u = v = 0 under geostrophy.

It is interesting to compare the results from equation 10.28 with those of equa-

tion 10.25. Using the same scales and notations as in equation 10.25, we have following

dispersion relationship

That is

l.e.
2n -1

An1f = 1f
2

(n=1,2,"')

k
w = - k2 + [2 +en

2
1)2 (n = 1,2",,), (10.29)

The vertical structure is cos(An1fz) = 0 with z E [-l,OJ, which has a zero vertical

phase shift for n = 1. In terms of the dispersion relation (figure 10.19), vertical
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phase shift (lower-left of the figure 10.18) and vertical structure (figure 1O.20),we

would conclude the 1blz=-H = 0 Rossby waves are the limiting cases of the dissipative

Rossby waves. For small (k,l) waves, i.e., the long Rossby waves, the 1blz=-H = 0

model shows that the westward phase speed (equation 10.29, n=l and ignoring k2 +[2

in the denominator) and group speed are four times faster than those of the usual

Rossby wave of the first mode. Recall, with present characteristic scales, the speed

of the long Rossby waves of the usual first baroclinic mode is -1.

The 1blz=-H = 0 model does not have any decay mechanism. For strong bottom

dissipation, the dissipation happens within a thin layer near the bottom in which

phases change rapidly (see figures 10.18, for example). Outside the thin layer, the

two models (the 1blz=-H = 0 model and the !jjflz=-l = ifJ!k2~12 1b' model with a large

Il') are similar. The 1blz~-H = 0 model excludes the barotropic bottom-intensified

branch, which will decay quickly anyway. In a word, the 1blz=-H = 0 model is

physically meaningful, and represents the main aspects of the Rossby waves with

strong bottom dissipation. Mathematically, the boundary condition:

z = -1,

in equation 10.26 requires that 1b --+ 0 if Il' --+ 00.

As a serious drawback of present work, evidence is lacking regarding the rate of

the bottom dissipation of the Rossby waves in particular. In the ocean, but not in

the model, the dissipation near the bottom could be enhanced by small-scale bottom

topography (Vanneste 2000).
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Figure 10.1: Latitudinal dependence of the long Rossby wave speed (CL).
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Figure 10.2: (a) The two-layer model for Gulf Stream rings (Flierl1984). The warm

upper layer has a finite volume, thus the interface outcrops. When the warm water

moves westward, the lower layer is compressed, thus it will have a negative relative

vorticity to conserve potential vorticity. Therefore, the upper and lower layers will

rotate in the same direction. (b) The perturbation is isolated, but there is

no interface outcropping as in the upper panel. The interface perturbation is not

infinitesimal but of the order of the Rossby number, compared to the thickness of the

upper layer.
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R = 0.1, 8=0.1, Runge-Kutta numerical integrationo
0.5
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Figure 10.3: The numerical solution of equation 10.17 with 'ljJl = 1 at r = O. The
numerical integration is from r = 0 outward. The gray region is where the integration

overflows. Ro = 0.1 and S= 0.1. The color is the color of the lowest value within the

contour range. For example, for the range [0 1]' the color is that of the color at 0 in

the color bar.
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Figure 10.4: A close look at the solution of equation 10.17 near c = -1.02.
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Figure 10.5: The shape of the 2-D soliton for A = 1 with parameters Ro = 0.1 and S = O.l.

Also shown is the 1-D soliton with the same values for A, Ro and S (see appendix D). The

Gaussian curve has the same decay scale as the 1-D soliton-refer to figure D.l.
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Figure 10.6: The shape of the 2-D soliton for A = 10 with parameters Ro = 0.1 and S = 0.1.

Also shown is the 1-D soliton with same values for A, Ro and S. The Gaussian curve has

same decay scale as the 1-D soliton. The lower panel is just a zoom-in of the upper panel
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Figure 10.7: Lower layer streamfunction '1/12 (lower row) at t=lO. The lower layer, initially

in the resting state, is forced by the Gaussian eddy in the upper layer (upper row). Left

column for L=I, middle column for L=2 and the right column for L=3. All panels use the

same color scale. The depth ratio is 0 = 4 for all columns.
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Figure 10.8: Same as figure 10.7 but for t=3; these are intermediate states before the

quasi-steady states shown in figure 10.7.
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Figure 10.9: Relative vorticities of the upper (left) and lower (right) layers in the QG model

of McWilliams et al. (1986). The contour interval is three times larger in the upper layer

than in the lower layer. Using the notation of the present study, L = 1 and {) = 4. The

relative vorticities shown are the averages over time from t=2 to t=5 in our scaling.
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Figure 10.10: Interface elevation (left column) and transport streamfunction of the lower

layer (right column) from Chassignet and Cushman-Roisin (1991). Using the notation of

the present study, L = 1.3 and fJ = 4. The times for the rows are approximately t=l, 4 and

7 in the present scaling.
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dynamical baroclinic mode

lower layer leading 180 0

-180°

baroclinic branch

dynamical barotropic mode

two layers in phase
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barotropic branch

Figure 10.11: In the case of small 'Y and k, l '" 0(1), the phase relation between the upper

and lower layers. The blue lines are angle('1h/'l/Jd. If the blue line is -150°, then the

lower layer is leading the upper layer 150°, given westward propagation. According to this

definition, the lower layer of the usual dynamical baroclinic mode is leading the upper layer

180°, and the lower layer of the dynamical barotropic mode is leading the upper layer 0°,

i.e, the two layers are in phase.
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Figure 10.12: The dispersion relation and vertical structure of the dissipative Rossby
waves in the two-layer model. Left column is the baroclinic branch and right column
is the barotropic one. Four different lines are for different north-south wavenumbers:
the thicker the line, the larger the wavenumber I. The "amp ratio (LID)" of the
middle row is 1'l/J2/'l/Jll; the "phase diff (deg)" in the last row is angle('l/J2/'I/Jd, as in
figure 10.11
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Figure 10.13: Both panels are for the baroclinic branch and north-south wavenumber
1=0. Upper panel: the decay rates Wi as 'Y changes. Lower panel: the vertical structure
(ratio of the lower layer to the upper layer (11/J2/1/JlI). The red contours are between
the black labelled contours. The maximum in the upper panel is Wi = -0.00451.
And the maximum in the lower panel is } = 0.33 without any dissipation (see middle
row of figure 10.12). The green lines indicate where Wi reaches its local extreme for a
given 'Y.
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for Ii = 1 and 1=0.

Figure 10.16: Dispersion relationship

for tt' = 10 and 1=0.
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Figure 10.17: Dispersion relationship

for tt' = 30 and 1=0.
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CHAPTER 11

CONCLUSIONS

The LADCP profiles show that the dominant vertical structures of mesoscale

motions in mid-latitudes are unidirectional and surface-intensified. The JAMSTEC

model output further shows that these structures propagate westward at approxi­

mately the speed of first baroclinic mode long Rossby waves, even at frequencies

above the Rossby wave cutoff.

The study of the dynamics is not conclusive, because of the simplicity of the

analytically tractable models and the uncertainty about the parameters therein. The

following results, however, would serve as hypotheses in future studies:

• Shear modes could be important in high latitudes;

• The two-layer non-linear model with finite interface perturbation could marginally

explain the vertical phase shift, particularly if considering the transitional nature

of the flow;

• Bottom dissipation could explain the feature in mid-latitudes, but we do not

know much about it.

11.1 Observation: LADCP

In order to understand the vertical structure of mesoscale ocean currents, a large

number of LADCP profiles in the Indian Ocean, with extensive horizontal coverage,

is used in this study. We presume that mesoscale motion dominates our LADCP

profiles; this is supported by the favorable comparison between the LADCP velocity

and CTD geostrophy.
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The LADCP velocity is dominated by the low modes. The barotropic mode abso­

lutely dominates in high latitudes. In mid-latitudes, we see the approximate equipar­

tition between the barotropic and first baroclinic modes; each contains about 25%

of the total variance, and the second baroclinic mode contains about 12%. Near the

equator, the kinetic energy spreads over a few low modes but the fifth mode has less

than 10% of the total kinetic energy.

The dominant vertical structure in middle and high latitudes, as quantified by

the first EOFs with a variance of ~40% and ~80% of the total respectively, is that

the velocity tends to be unidirectional and surface intensified. This is also suggested

by the positive correlation between the barotropic and first baroclinic modes of the

LADCP profiles, and by the vector alignment of the barotropic and first baroclinic

modes of the LADCP profiles.

The correlation between the barotropic and first baroclinic modes conflicts with

the classical linear Rossby wave theory. If the theory holds, the barotropic and

baroclinic modes will disperse, so they should be uncorrelated in an ensemble of

profiles such as ours.

An LADCP dataset in the Indian Ocean is used in this study, because it is the

most complete, but preliminary calculations indicate that results are similar in other

oceans.

11.2 Numericial Modeling: JAMSTEC Model

After finding a favorable comparison between the first EOFs from the LADCP profiles

and from the JAMSTEC model, we used the latter to explore the horizontal and

temporal characteristics of the dominant vertical structure. The major contributions
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are

• At each latitude, the first EOF propagates westward at the same speed as has

been found from altimetric SSH anomalies.

• The westward propagating vertical structure has a phase shift in the vertical,

with the lower layer leading the upper layer. Therefore, the first EOF alone

is not a dynamical mode: 'IjJ(x, y, z; t) is not separable such as 'IjJ(x, y, z; t) ""

j(x, y; t)g(z).

In more detail, the conclusions from the analysis of the model output are:

1. We surveyed the eddy energy distribution horizontally and vertically. Beside the

ACC region and the region near the major topography Chagos-Laccadive, the

strong eddy bands correspond to two generating sites: the throughflow near the

model Lambok Strait and the Leeuwin Current along the west coast of Australia.

The rms is above 20cm S-1 near the surface and ~3cm S-1 at 3000 m depth.

2. We calculated the first EOF at each location. The variance in the first EOF

ranges from 50% of the total in weak eddy energy regions and up to 80% in strong

eddy energy regions. The vertical structure of the first EOFs is quite similar

throughout the study region: unidirectional and surface intensified. Because of

the high percentage of variance and similarity of the shape of the first EOF, it

is a good descriptor of the vertical structure of mesoscale currents.

3. Based on lag-coefficient and counting methods, the characteristics of the west­

ward propagation of the first EOF is similar to those inferred from the alti­

metric observations, although the latter is mainly for longer length scales. In

mid-latitudes, the speeds are close to those of the long Rossby waves. In high
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latitudes (south of 30°8) the inferred speeds are faster than those of the long

Rossby waves of the first baroclinic mode, while in the lower latitudes the in­

ferred speeds are slower. The coherence method shows that, in mid-latitudes,

the propagation characteristics remain the same even at frequencies above the

Rossby wave cutoff.

4. Although the first EOF is a good descriptor, other EOFs are dynamically im­

portant. If the original fields could be approximated by the first EOF itself,

we would expect no change in phase over the depth. However, we identified a

lower layer phase advance of about 90° in mid-latitudes. This important feature

will be used as one of the facts, against which the theories will be tested in the

theoretical part of this study.

The following features are contrary to the linear Rossby wave theory:

• The correlation of the barotropic and first baroclinic modes;

• Different dispersion relations from those of linear Rossby waves;

• The phase leading of the lower layer relative to the upper layer, given westward

propagation.

11.3 Theory: Two-layer Models

A few simple models (all but one are two-layer models) are utilized to explore the dy­

namics relevant to the dominant vertical structures in the observation and JAM8TEC

model output. Two aspects of the dynamics, dispersion and westward propagation,

are studied; the major portion of the study is focused on the westward propagation:
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1. Using Gaussian eddies as the simple prototype of the eddy field, we show that,

under the classic linear dynamics, the barotropic and baroclinic modes of the

Gaussian eddy will soon be uncorrelated even though they initially are totally

correlated.

2. The vertical structures of shear modes could be similar to the dominant vertical

structure, provided that the mean flow shear is large compared to the speeds of

the long Rossby waves (CL)' However, this is unlikely to be true in the mid to

low latitudes. Also notice that ICL I varies by a factor of three from 20° to 10°.

However, the situation in the high latitudes may be different: the mean flow is

well defined on the order of tens cm S-1 and CL is 1-2 cm S-1, so that the shear

modes could be significant.

3. The non-linear model considers a finite interface perturbation. The model does

not satisfactorily explain the dominant vertical structure. However, there are

two features worthing noting. One is that in the quasi-steady solution the

negative maximum of the lower layer is always east of the positive maximum

of the upper layer. The positive extreme (but weak) being west of the positive

maximum of the upper layer suggests that the lower layer is leading the upper

layer by less than 180°. This is not inconsistent with the phase shift from the

GCM output. No other known dynamics so far provides such a vertical structure.

Another feature is that, during the intermediate steps, the positive extreme is

better defined and the phase advance of the lower layer approaches 90°: the

upper layer positive maximum is located approximately between the lower layer

positive and negative extremes. This is more consistent with the vertical phase

shift inferred from the GCM output.
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4. Bottom dissipation is a dynamically possible cause for the discrepancy between

the observation and classical theory if it is strong enough-but we do not know

much about bottom dissipation. In the two-layer model, the barotropic branch

is bottom-intensified and decays quickly. So the more interesting mode is the

baroclinic branch, which is surface-intensified and decays slowly. The decay

scale for the baroclinic branch in the two-layer model is more than 20 times

larger than the Rossby wave time scale (/3'rt). The inefficiency of its decay is

because of the potential energy accompanying the kinetic energy and surface

intensification (or weak flow near the bottom). Much different decay rates for

the barotropic and baroclinic branches may suggest a natural selection - the

baroclinic branch would be more observable.

We usually argue that the bottom dissipation will not be important because

of the surface intensification. Here we show that a strong bottom dissipation

(in terms of 'Y or Il-the coefficients) without interior dissipation mandates the

surface intensification. The phase shifts in the baroclinic branch of the present

two layer model are close to 90°. This is consistent with the vertical phase

shift in the GCM output. It is demonstrated that the ¢Iz=-H = 0 model is the

limiting case of dissipative Rossby waves. For long Rossby waves, the westward

speed of the waves could be enhanced no more than 4 times.

11.4 The Future

A global description of the vertical structures from observations and from model

output is necessary. The mid-latitudes of the Indian Ocean are eddy energetic, as

is the northern Atlantic, where the vertical structure seen in LADCP profiles seems
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similar. How about other parts of world oceans, which have less eddy energetic regions

such as Southeast Pacific? Another development could be to analyze the model output

forced by the ECMWF winds from 1982 till 2000 (ECMWF run), other than by the

climatological winds (climatological run, used in this study). Both differences and

agreements from these two runs would be interesting.

This study proceeded from observation to model output and then to theory. We

would go though the procedure more than once, in order to test the results from

simple models, specifically:

• Shear Modes We concluded the shear modes could playa role in the high­

latitudes. Could we identify it using the JAMSTEC model output, considering

the difficulty in defining mean flow? Is the non-dimensionalized mean flow shear

U; = 2K2R2Us /lcLI actually very useful for understanding the role of the mean

flow shear on the vertical structures?

• Non-linear Model The model is highly simplified for one special type of

non-linearity-finite interface perturbation. The single Gaussian eddy config­

uration is also very idealized. Meanwhile, the model output shows that the

Jacobian could be important and that adjacent eddies could interact. Therefore

the challenge is to identify the dynamics in such a complicated evolving field.

• Bottom Dissipation The preliminary diagnoses showed the bottom dissi­

pation could be important in the model (appendix F). The first question is

whether the framework of the Ekman bottom layer is good for our purpose,

since the Ekman bottom layer is not resolved by the model and the inferred

vertical eddy viscosity is as large as that near the surface. Could we diagnose

the energetics to see similar bottom dissipation? With respect to the spatial
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distribution of the correlation coefficients (figure F.2), if we assume that the

significant correlation indicates an Ekman bottom layer, then there are some

regions without clear Ekman bottom layers. Why should this be?

We did not address how the eddies are generated in the Indian Ocean. The

JAMSTEC model clearly shows that the mesoscale features are mainly generated

near the eastern boundary and then overwhelmingly propagate westward. Two eddy

generation sites can be identified from the model output in the Eastern Indian Ocean:

1. the west coast of Australia, along which the Leeuwin Current flows. The current

is seen in the model mean velocity. The baroclinic instability of the Leeuwin

Current is assumed to be the generation mechanism. The model shows bursts

of eddies during certain times of the year, presumably when the current is more

unstable.

2. near the model Lambok Strait. The nearby eddies directly connect to the

throughflow in the model Lambok Strait. The intrusion of shallow external

water into a deep ocean will initiate the motion over whole water column by the

geostrophic adjustment.

The model output would enable us to diagnose these hypothesized mechanism.

The following two topics are important and yet to be understood:

1. Bottom Dissipation and Rossby waves Because the bottom dissipation

could be empirically expressed as a linear term, we have a quite good under­

standing about its role on the Rossby waves. It suggests that we need a strong

bottom dissipation as in the JAMSTEC model to have significant impact on

the Rossby waves. Converting the model bottom dissipation to vertical eddy
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viscosity, it is as large as that near the surface. Is it realistic? In real oceans the

small-scale topography could enhance the bottom dissipation (Vanneste 2000).

Thus it is possible that the bottom dissipation in the JAMSTEC model actually

reflects both bottom friction and form drag due to rough topography. Thus the

first question is whether form drag could be as large as that in the JAMSTEC

model.

The second question would be what the bottom dissipation does to the Rossby

waves. In this study, the comparison between the theory and the model output

is rather qualitative-could we simulate the results numerically?

To address these two equations, we could run a box Rossby wave model similar

to that used in Qiu et al. (1997) but not reduced gravity, which is forced near the

eastern boundary by the Kelvin waves originating from the equatorial region.

We could test whether the Rossby waves would be modified by increasing bottom

dissipation in the way predicted in this study, and whether it is true that the

more dissipative the wave the faster the propagation.

2. Non-linearity - the Jacobian Terms As seen, we keep the theoretical

study within the Rossby waves framework. We do not look at the geostrophic

turbulence resulting from the advective non-linear terms (the Jacobian terms).

The model output shows that the advective non-linear terms could be important,

especially at time scales shorter than 100 days (figure 11.1).

Another viewpoint considers nonlinear interactions between Rossby waves of

different vertical modes. Its motivation is that the square of the first baroclinic

mode is similar to that of the vertical structure seen in the observation and

model output. Since the coupling of the different modes is in the first order,
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this interaction (Jacobian terms) has to be one of the dominant terms. This is

the combination of the Rossby waves and geostrophic turbulence.

We would certainly like to learn more about the Jacobian terms using the JAM­

STEC model. Then we could use the same Rossby wave model as a starting

point but force it more vigorously.
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Figure 11.1: The spectra of each terms of the vorticity equation: time - temporal
variation of the relative vorticity; non - 3-D advection of the relative vorticity; beta
- {3 term; div - the stretching term, and the residual is the residual of the time after
subtracting all others. The 3-year original time series at a 1/4 degree by 1/4 degree
grid at 190m is separately used to calculated the Fourier coefficient, then the squared
coefficients within 95-100E and 25-308 (upper panel) or 15-208 (lower panel) are
averaged to produce the spectra shown. Totally, 441 time series' are used to calculate
one spectrum, but the degree of freedom is unknown due to the correlation among
the time series at adjacent grids.
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ApPENDIX A

CALCULATION OF THE LAG CORRELATION COEFFICIENTS

The steps used to calculate the lag correlation coefficients for one velocity compo­
nent (either u or v) and one normal mode (either barotropic or baroclinic mode) are
as follows:

1. For each of the 366 profiles, we define a element which includes the mode am­
plitude, geographic location (latitude and longitude) and cruise identification.
We then arbitrarily order those 366 elements into one single series P.

2. For any distance range, e.g., from 0 km to 60 km, start two new series A and
D. For each element (denoted as a) of the series P , test all elements behind it
(denoted as b). Whenever the distance between the two stations of a and b is
within that distance range (i.e. from 0 km to 60 km), we add a to series A and
b to series D. Notice that series A and D have the same length and could be
longer than 366.

3. Between series A and D, the station pair (one from A and another from D, and
they have the same index in their corresponding series) could be from the same
cruise or from different cruises-recall we have cruise identifications for each
element. Two correlation coefficients are calculated: one for the same cruise
(upper panel of figure 3.13) and another for different cruises (lower panel of
figure 3.13).

4. repeat steps 2 and 3 for another distance range.
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ApPENDIX B

THE JAMSTEC MODEL

The model, a MOM2 ocean global circulation model (GCM), was implemented in
the Japan Marine Science Technology Center (JAMSTEC) by Ishida et ai. (1998).
We will call the model as JAMSTEC model. The model has horizontal resolution
0.25° latitudinally and longitudinally and vertical resolution 55 levels. The 55 ver­
tical levels are listed below, where 'mid-depth' is where temperature, salinity and
horizontal velocities locate, and 'thickness' is the thickness of the z-coordinate layer,
in the middle of which the temperature, salinity and horizontal velocities locate. The
velocities (means and their variability over model years 20-22) at the highlighted
depths in the Indian Ocean are shown in chapter 5.

level 1 2 3 4 5 6 7 8 9 10 11
mid-depth -5 -15 -25 -35 -45 -55 -65 -76 -87 -100 -114
thickness 10 10 10 10 10 10 10 11 12 13 15

level 12 13 14 15 16 17 18 19 20 21 22
mid-depth -130 -147 -167 -190 -215 -242 -273 -307 -344 -384 -427
thickness 17 19 21 24 26 29 32 35 38 42 45

level 23 24 25 26 27 28 29 30 31 32 33
mid-depth -473 -522 -575 -630 -687 -747 -810 -874 -940 -1007 -1076
thickness 48 51 54 56 59 61 64 65 67 68 69

level 34 35 36 37 38 39 40 41 42 43 44
mid-depth -1145 -1215 -1285 -1357 -1435 -1524 -1626 -1745 -1884 -2045 -2231
thickness 70 70 70 74 82 94 110 128 150 173 198

level 45 46 47 48 49 50 51 52 53 54 55
mid-depth -2442 -2680 -2943 -3233 -3546 -3882 -4238 -4611 -4998 -5395 -5798
thickness 224 251 277 302 325 347 365 381 393 401 405

The model starts from a rest state with annually averaged temperature and salinity
of the 1982 Levitus climatology. No heat and freshwater exchanges are considered but
a linear restoring of the temperature and salinity in the first model level toward the
1982 Levitus climatology. The restoring time scale is such that the water properties
near the surface within 50 m is restored within 30 days. It is impossible to integrate
the model for a long time enough to spin up the deep ocean because a short time
step is required by the fine horizontal grids. Restoring terms with a 2 years time
scale toward the 1982 Levitus climatology are therefore included in the temperature
and salinity equations below 2000 m. The Hellerman and Rosenstein wind stress is
used to force the model. The temperature and salinity of the climatology are linearly
interpolated into to the model grids. Meanwhile the wind stress is interpolated using
hyperbolic cubic patches, in order to obtain smoothly varying derivatives,specially
the the curl of the wind stress.
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The model uses staged B grids.
The first 2 model years is the initial spin-up stage when the annually averaged

climatologies (temperature, salinity and wind stress) and the harmonic horizontal
dissipation are used. After that, monthly climatologies and the highly scale selective
biharmonic horizontal dissipation, with coefficients -1 x 10'9 cm4s-1 for momentum,
temperature and salinity, are used. The vertical dissipation scheme is the Pacanowski
and Philander formulation.

The model topography is derived from the NOAA National Geophysical Data
Center dataset (ETOP05) with 5' resolution latitudinally and longitudinally. The
original topography from ETOP05 is too steep for our purpose, a Gaussian spatial
smoother with the radius varying continuously from 0.5 0 above 1000 m to 10 at
6000 m is applied. Additionally, single grid holes and spikes and small islands are
objectively removed. In the MOM2 code, the topography is stepwise: the water
depths are exactly those gray dots in figure B.1 and can not be between. Because
the model topography is constructed in such a way, perfect flat bottom is resulted in
some locations.

The output of the model years 20-22 are used in this study.
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Figure B.1: Vertical grids and model topography in the Indian Ocean along 30°8. The red
lines are where temperature, salinity and horizontal velocities locate. The gray dotted line is
the model bottom where w = 0 and the bottom drag law are applied. The 8mith-8andwell
topography (thin blue line) is shown for comparison.
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ApPENDIX C

DISPERSION OF A GAUSSIAN EDDY

We first solve for baroclinic mode 1/Ie. The equation and initial condition are:

= 0
(C.I)

with boundary condition

1/Ie -t 0, when Vx 2 + y2 -t (Xl

Following 2-D Fourier transforms' are introduced:

l Joo Joo .1. (x y' t)e-i(kx+IY)dxdy2n -00 -00 If/c , ,

l Joo Joo W (k H)ei(kx+1yJdkdl
2n -00 ~OO C " ,

and applied to equation C.1:

{

aWe ik W - 0at - k2+l2+1+! c-
, .;g (k2+

2
12)£2)

Welt~o = WeD = 1+5£2 exp(

Its solution is

Then 1/Ie(x, y; t) is

Defining
(k, I) = ,,(cos 1:1, sin 1:1), and Z = ,,2 = k2 + 12

we have

Using the relation

'The similar I-D transforms were used in page 131, Pedlosky (1987)
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where Jo is the zero-order Bessel of the first kind, we have

"I. ,j6 £2 foo d _.2L' 1 ( I( t )2 2 )
'Pc 1+J Jo '" ",e 2 Jo "'y ~2+1+1/J + X + Y

,j6 £' fOO - ZL
2 (I'i I( t . )2 2)

1+02 Jo dZe 2 Jo vZy Z+1+1/J +x +y

The solution for 'lj;T could be obtained by substituting l~J for 1~ and omitting
1 + 1/0 inside Jo:
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ApPENDIX D

ONE-DIMENSIONAL SOLITARY WAVES

If the lower layer is quiet (as in a 1~ layer model) or the influence of the lower
layer is neglected (as in this study), then the downward interface 17* (a sign difference
from the usual upward interface perturbation, * means dimensional quantities)

* f 'ljJi d * g' 817*17 = -- an u ~--
g' f 8y

geostrophically. Choosing 6H as the scale of 17* and R as the length scale, the velocity
scale U = g'SH/fR and the scale of 'ljJi is UR = g'SH/f. Therefore in the non­
dimensional form

17 = 'ljJI.

In this appendix, we substitute 17 for 'ljJI. When the lower layer cropping, i.e., 17* =
-HI,

fR
U

if we chose the horizontal scale

R=#H1
f

and

(D.l)
817 817 817 - 8 8217
- - --Ro17- -S-- =0.at ax ax at ax2

For solitary waves, we define

as we have done in Section 10.2.1. R is the Rossby radius of deformation and Ro is
the Rossby number. Notice all the characteristic scales are consistent with what in
Section 10.2.1.

Considering one-dimensional solutions, we assume ~ = o. Equation 10.16 be­
comes:

s = x - ct,

and a d 8 d
- and -=-c-
8x ds at ds'

where c is the constant east-west propagation speed. Then equation D.l becomes

d17 d17 - d317
(1 + e) ds + R o17 ds - Se ds3 = O.

which is, after integrated,

)
Ro 2 - d217

(1 + e 17 + -17 - Sed 2 = c.
2 s
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Multiplying above equation dT)/ds and integrating once more yield

2 '

( ) T) Ro 3 SC(dT))2 01 + c - + -T) - - - = T) + D,
2 6 2 ds

which is
(dT))2 = R;o [r)3 + 3(1 + c) T)2 _ 60 T) _ 6D

J
- R;o F(1)),

ds 3Sc Ro Ro Ro 3Sc

where F(T)) is

(0.2)

F(1)) = 1)3 + 3(1 + c) 1)2 _ 6C 1) _ 6D
Ro Ro Ro

o and D are two integration constants, relating to the initial states of perturbation,
and constrain the solution through the roots of the three-order polynomial F(1)).

Solitons have one single peak and decay to zero toward the infinity. Therefore, we
have

T) = 0, d1) = 0, d
2

1) 0
ds ds2 = ,

Making use of above relations, we have

(s --+ ±oo)

0=0

in equation 0.2, which becomes

and D=O

(0.3)(d1))2 = R;o T)2(1) + 3(1 + c)).
ds 3Sc Ro

The peak (local extrema) of the soliton happens where ;l; = O. When letting ;l; = 0
in equation 0.3, we obtains the peak itself-the non-zero root of the right side-which
is

A = 3(1 + c) (0.4)
Ro

We may call A as the amplitude of the soliton. Since Ro could be expressed as !5H/ HI,
where 15H is the scale of the interface perturbation and Hi is the upper layer depth,
then ARo is the amplitude of the soliton relative to the upper layer depth. Being not
outcropping requires ARo > -1; recall 1) is defined positive downward. Equation 0.4
suggests that the propagation speed is

ARoc=-I--­
3

(0.5)

Since ARo has a minimum -1, c has a maximum -~. This means the solitons always
propagate westward. We also notice that the propagation speed is linearly propor­
tional to its amplitude.
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Equation D.3 further constrains c so that c < -1, i.e., fast than all linear Rossby
waves. If -1 < c < - %' t] < - 3(;;:C) < 0 in order to make the right side of equa­
tion D.3 positive. This is contrary to t] = 0 when 8 ---t 00. Moreover, equation D.5
indicate that A has to be positive since c < -1. This implies that the soliton has to
have the interface downward and anti-cyclonic.

The soliton expression is

~Ro 8) = Asech2
(

12S(-c)
ARo ( ))x - ct

128(1 + ARo /3)

The width of the soliton is defined as

L = V68(-C) =
ARo

where the soliton falls off to about e-1/
2 ~ 0.61 of its peak (figure D.1). In figure D.1,

we also plotted the Gaussian function with the same width. They are similar overall,
but the soliton decays slightly slower than the Gaussian function.

As seen in figure D.2, the width L deceases when the soliton gets stronger. After
the amplitude A beyond 3, however, the decrement gets less dramatically.
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ApPENDIX E

FORCED ROSSBY WAVES

Applying the 2-D Fourier transform (from (s, y) to (k, I)), which has been used in
appendix C, to following equation (which is in fact equation 10.18)

a 2 1 a,p2 a 2 1 c a,pI
at [V' ,p2 - J,p2] + as - cas [V' ,p2 - J,p2] = J as

yields
a\[12 ik . c -ik
at -:: (k2 + 12 + 1 + Ikc)\[12 = 0 k2 + 12 + 1F(,pI)

J J

with the initial condition \[12It=0 = O. Its homogeneous solution is

( ik +ikc)t
.T, _ A k2+,2+§
'J!2h - e

where A is an integral constant to be determined, and the particular solution is

where the initial condition \[12It=0 = 0 has been applied and

F(,pt} = L2e-(k'+12)L2/2,

since ,pI = e-(x'+y2)/2L'. The inverse Fourier transform of \[12(k, I; t) results

L2 j"" j"" e-(k'+I')L2 /2 (ik +ikc)t
,p (s y' t) = - (1 - e "+"+} )ei(ks+IY)dkdl

2 " 211'0 k2 + 12 + 1 + 1-00 -00 6 c

Denoting
(k,l) = t;;(cos 0, sin 0)

then
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Making use of

r"1
0

ei(AcDsO+BsinO)dll = 21fJo (JA2 + B2),

where Jo is the zero-oder of Bessel function of the first kind, we have

and

2 i~C08e(~+c)t. .Io 11" e ,,2+;r . eIK(S cos6+ysm (})dB f 2"., i~([s+( ---,l--r+c)tl CDS O+y sin 0)
- Jo e • +, dll

- 21fJo(t;,J[s + (K2~t + C)t]2 + y2)

Therefore

1/J2 ~ fo
oo :~:2;;i (Jo(t;,v82+ y2) - JO("'J[8 + (~+ c)t]2 + y2)) t;,dt;,

~~ fo
oo ;~;:\ (JohIZVS2 + y2) - Joh1zJ[s + (z~t + c)t]2 + y2)) dZ

(E.l)
where Z == ",2 = k2 + j2. When Z + ~ + ~ ---+ 0 (this apparent singularity will happen
because c is about -1),

1 c 1 1
-- + c = --(Z + - + -) ---+ 0
Z+l Z+! /j c

/j /j

so that
1

[8+(-Z1 +C)t]2+y2)---+O
+;1

This means that the singularity at Z + t + ~ = 0 could be eliminated. When
numerically integrating equation E.l, we may simply skip its small neighbor.

We first show 1/J2, as well as 1/JJ, along x-axis in figure E.l, E.2 and E.3. We keep
/j = 4 but vary L from 1 to 2 and 3. From these figures we see 1/J2 under the upper
layer soliton, which is moving westward at the speed -1, reaches the quasi-steady state
in a short time. Most of the variation of 1/J2 associates the wake waves behind the
upper layer soliton. Figures figure EA, E.5 and E.6 show the two-dimensional views
of 1/J2 at sequential times. Pay attention to the relative locations of the upper layer
soliton center (the white crosses), and the 1/J2 minima and local positive extrema west
of them.

191



L= 1 8=4

3ltime=15 : : V"ZP:: J
3ltime=14 : \\J\?S? : J
3ltime=13 : :~ : J
3ltime=12 : : -~ : J
3ltime=11 : :

- ; : J
3ltime=10 , : ~

I

J

3ltime=9 : : VY= : J
3ltime=8 : : :'\£:=' : J

3ltime=7 : : :~ : J

3ltime=6 : : :~ : J

3ltime=5 : : : : J
3ltime=4 : : :

:

J
~3ltime=3 : : : : J
i 3ltime=2 : , : : J
,;-3ltime=1 : : :

-
: J

x

Figure E.1: The upper layer ('l/Jt, gray shadings) and lower layer ('l/J2b, red lines) stream­
functions along x-axis (y=O) at different times. The upper layer Gaussian eddy propagates
westward at speed c=-l. L = 1 and 8 = 4. Notice '1/;2 is scaled by 8.
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Figure E.2: Same as in figure E.1 but L=2
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Figure E.3: Same as in figure E.1 but L=3
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Figure E.4: Two-dimensional lower layer streamfunctions at sequential times. The time

is indicated in the right corner of each panel. Location of the upper layer Gaussian eddy,
which is assumed propagating westward at speed c=-l, is marked by the white cross. L = 1
and 0 = 4. Notice 'l/J2 is scaled by o. All panels use the same color scale.
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Figure E.5: Same as in figure E.4 but L=2
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ApPENDIX F

BOTTOM DISSIPATION IN THE JAMSTEC MODEL

The JAMSTEC model has 55 levels vertically, but its resolution near the bottom
of a 4000-5000 m water column is 300-400 m (see appendix B). As a reference,
thickness of surface Ekman layers is usually about 50 m, thus the bottom Ekman
layer is unlikely resolved in the model. Meanwhile, the bottom friction is presented
in the momentum equation of the deepest layer, in the same manner as the wind
stress in the momentum equation of the most upper layer. The bottom friction is
parameterized in the model as:

(F. 1)

where CD is the drag coefficient (0.0012) and u is the velocity 150-200 m above the
bottom boundary (specifically in the middle of the last layer). There is not much
attention to the bottom friction in GCMs so far. On may argue that the bottom
friction can not be be important because the velocity near the bottom is usually
small. However, the situation may be in the opposite way: because of the bottom
friction, the velocity near the bottom is small.

We will not diagnose the role of the bottom friction in the momentum balance.
The bottom Ekman layer is unlikely resolved, so the spiral-type velocity vertical
shear will not appear in the model output. Instead, we will diagnose its role in
the vorticity balance by analyzing the correlation between the vertical velocity and
relative vorticity in the deepest layer.

If
• the lower layer of the ocean is homogeneous and the deepest layer is in or inside

of the homogeneous layer;

• the total flow in the deepest layer is the supposition of depth-independent flow
and a bottom Ekman flow;

• the vertical velocity in the middle of the deepest layer is the Ekman pumping of
the bottom Ekman layer and the relative vorticity in the middle of the deepest
layer represents the interior of the homogeneous layer,

then vertical velocity (WE) and relative vorticity (~N) in the middle of the deepest
layer are possibly be correlated by the bottom Ekman layer theory (see Pedlosky
1987) as follows:

(F.2)
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where Av is the constant vertical eddy viscosity and f the Coriolis parameter. sign(j)j.L
is the regression coefficient if WE and ~N are two random variables.

Equation F.2 can also be interpreted as the following. The linear vorticity equation
with vertical stress is

a~ _lw _ok . (\1 x i)
at az - az '

where the temporal term is included for the completeness. Assuming

(F.3)

W = 0, k· (\1 x i) = rk· (\1 x uN) = r~N

W = WE, k· (\1 x i) = 0

at the bottom
outside the boundary layer

The Rayleigh bottom friction, instead of the quadratic drag law (equation F.I), is
assumed. Integrating equation F.3 from the bottom until outside of the boundary
layer, and neglecting the temporal term, we have

which is equivalent to equation F.2.
The Ekman layer theory with a constant eddy viscosity is used as a framework

(equation F.2). Doing so has two advantages: 1) the estimate of j.L can be readily
applied to the QG dynamics (section 10.3); 2) after estimating j.L, we could further
estimate Av using equation F.2, whose magnitude will indicate the strength of the
bottom friction in the JAMSTEC model.

For each grid point with flat model topography (figure F.l), we will first estimate
WE and ~N for each time, then calculate correlation and regression coefficients between
the three model years serieses of WE and ~N·

Above flat model topography, the vertical velocities will be less affected by the
horizontal velocities crossing the topographic slope. The vertical velocity is the depth
change of a particular neutral surface (Jackett and McDougall 1997) at the TIS grid
point. The detailed steps are: first to find out the densest neutral surface which
always appears over the three model years; second to estimate the depth of that
particular neutral surface at each time; then to estimate the vertical velocity using
the local time variation-no advection effect is included. The relative vorticity is
calculated from surrounding 4 ulv grid of the deepest layer.

The correlation coefficient between WE and ~N is shown in figure F.2. We find
a negative tendency. This is consistent with the bottom Ekman layer theory (equa­
tion F.2); notice f is negative in the south hemisphere. Meanwhile, we see non­
negligible part of the region has positive correlation. Given that the positive correla­
tion is generally small (see the histogram in figure F.2), we should conclude that the
correlation in the region is insignificant. However, we do not have any explanation
for this insignificance.

199



We then estimate JL for the grid with flat bottom topography, using equation F .2.
They varies significantly from one grid point to another, but we have a stable dis­
tribution if they are averaged longitudinally (figure F.3, upper panel). It is quite
interesting to see the magnitude of JL tends to follow b, as suggested by the Ekman

vl!1

layer theory. Notice f.t = Iii and the thickness of the Ekman boundary layer is

liE = v'2A"/lfl, so that
liE = 2f.t.

Therefore, figure F.3 (upper panel) suggests that the thickness ofthe Ekman boundary
layer is about 20 m. This is comparable to the upper wind-driven Ekman layer.
Whether this is realistic needs further investigation. Further more, we infer Av from
the longitudinally averaged JL. The magnitude of A" is 100 cm2s-1 (figure F.3, lower
panel). This is the upper limit of the Philander and Pacanowski mixing scheme used
in the JAMSTEC model. In the interior away from the surface and bottom layers,
Av is usually only a few cm2s-1 .

As seen, we interpret the correlation between WE and t,N under the framework of
the bottom Ekman layer. This may not be the best, but the results strong suggest
that the bottom friction is playing a role in the vorticity balance of presumably
mesoscale motions. This prompts us to understand how the bottom friction affects
Rossby waves-this has never been studied before.
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Figure F.1: The JAMSTEC model topography in the Indian Ocean. The flat bottom
(dotted) is the TIS grid point where its 4 surrounding ulv grids have the same depths.
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Figure F.2: Upper panel: correlation coefficient between vertical velocity and relative vor­
ticity over three years at flat model topography. Lower panel: histogram of the correlation
coefficients in the upper panel. The black contours are zeros. The blank in the upper panel
indicates sloping topography.
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Figure F.3: Upper panel: J-L is the regression coefficient between w and~. At each dot
between 30°8 and 10°8 (figure F.l), there is one estimate of J-L. This panel shows the
longitudinally averaged J-L. The red line is the best fit by ),. Lower panel: assuming the
bottom Ekman layer thW with constant Av applicable, we inverted Av from J-L in the

upper panel using J-L = ViTir·
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ApPENDIX G

HORIZONTAL DISSIPATION

The non-dimensional two-layer model is (see equation 9.1 in chapter 9)

A H V'2 C~72WI)

= A HV'2(V'2 W2 ) (G.1)

with addition of the non-dimensional biharmonic terms:

A A* T Ail
H = H R2 = fJR3

Substituting following wave solutions

( ~~ ) = ( ~1 )ei(kx+ly-wt)

into equation G.1, we have

(G.2)

where A = AH(k2 + 12J2.
To have nontrivial solutions, the determination of the coefficient matrix in equa­

tion G.2 is zero. This lead to

k+iA
WI - - k2+t2

k+iA (G.3)

WI,2 certainly reduce to the dispersion relationships of the barotropic and baroclinic
modes respectively if A = O.

The vertical structure (wUW~) can be obtained by the first equation equation G.2

(k2 + 12 + 1 + k + iA)W; - '1/J~ = O.
Wl,2

As seen in equation G.3, k+iA is _(k2 + 12) or _(k2 + 12 + 1 + 1/0), thus
Wl,2

W' W'
_I = 1 and _I = -0
W~ W~

which are in fact the vertical structure of the barotropic and baroclinic modes without

the horizontal dissipation. In other words, the horizontal dissipation will not modify
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the vertical structure of normal modes. On the other hand, we will expect that the

waves decay because Wl.2 have imaginary parts, or that the waves are localized near

source regions because the wavenumbers have imaginary parts. One example of the

latter was given numerically and analytically by Qiu et al. (1997), who showed the

Rossby waves decay away from the eastern boundary where the Rossby waves are

initiated by the Kelvin waves from the equatorial region.
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