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Abstract: Watershed inputs of anthropogenic nitrogen (N) are altering the
trophic status of estuaries worldwide. In this study we compared two chemical
approaches for assessing watershed N inputs to estuaries: (1) use of conventional
nutrient concentration measurements, and (2) use of nitrogen isotope O°N)
measurements in estuarine sediments and biota. Of special interest was testing
whether 6N assays were generally robust tracers of watershed N across differ-
ent estuarine systems. Four Pacific estuaries were chosen for study at widely
spaced intervals on the U.S. West Coast: Padilla Bay (northern Washington
State), South Slough (southern Oregon), Elkhorn Slough (central California),
and Tijuana River (southern California). These estuaries are part of the
National Estuarine Research Reserve (NERR) system. They are relatively small
and shallow, are well flushed by tides, and can receive substantial natural N-
loading from seasonally upwelled offshore waters. Results showed that none of
the estuaries was truly pristine, with high watershed DIN (dissolved inorganic
nitrogen) concentrations >500 pM especially in Elkhorn and Tijuana estuaries
that respectively received high agricultural and sewage inputs. Nitrogen isotope
assays failed to detect N-loading under conditions of very high ammonium
inputs from sewage, but were otherwise useful indicators of estuarine N status
in all four estuaries. Overall, using a combination of nutrient and isotope mea-
surements was the best strategy for detecting watershed N-loading in these
estuaries. The combination approach could be used to generate maps of low,
medium, and high inputs to each of the four study estuaries. The N isotope
measurements appear to be useful especially for tracing historical development
of N-based eutrophication and for showing entry of pollutant N into local food

webs.
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NrtrogeN (N) ENrRICHMENT of coastal
waters is increasing across the globe as a
result of anthropogenic activities and is ex-
pected to continue with further urbanization
of coastal areas. Nitrogen-loading contributes
to eutrophication of estuarine communities
because primary production is often N-
limited (Vitousek et al. 1997, Cloern 2001).
A variety of indices has been developed to
quantify the extent of eutrophication brought
about by N-loading (Schmitt and Osenberg
1995). Most of these indices make use of tax-
onomic shifts and changes in the abundance
of producers and consumers that occur dur-
ing eutrophication. Chemical measures are
also useful in estuarine eutrophication studies.
Water quality monitoring of ammonium, ni-
trate, nitrite, and dissolved organic nitrogen
concentrations can help coastal managers de-
tect early changes in N-loading. However,
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such monitoring can be costly and sample
intensive to obtain broad and representative
coverage across whole estuaries because the
distribution of nutrients can change strongly
in time and space (e.g., Vorosmarty and Loder
1994). A simpler, more integrated chemical
approach is needed and may be available via
analysis of stable nitrogen isotopes 6 N)
in estuarine sediments and biota. The 6"N
values for these pools integrate many of the
water quality fluctuations, making isotope
studies complementary to studies based on
nutrient concentrations alone (Hobbie et al.
1990).

It is important to understand why the
"N approach may be generally useful for
estuarine work, and those reasons involve a
landscape-level perspective of N cycling. For
estuaries receiving anthropogenic N-loading
from watersheds, the microbial reactions of
nitrification and demtnﬁcatlon are important
processes leading to high §"°N values in the
external N load (Mariott et al. 1981, 1984).
Faster processing of the lighter nitrogen iso-
tope (*N) than the heavy nitrogen isotope
(®N) results in products enriched in the
lighter isotope and leaves residues enriched
in the heavy isotope. Thus, nitrification that
converts ammonium to nitrite and nitrate
leaves residual ammonium enriched in PN,
and denitrification, the conversion of nitrate
to nitrogen gas and nitrous oxide, leaves re-
sidual nitrate enriched in "IN (Mariotti et al.
1981). Occurrence of these nitrification and
denitrification reactions in watershed soils
ultimately removes nitrogen as “N-depleted
N;, leaving residual 5011 ammonium and
nitrate with higher 6°N values. Watershed
processing of N from anthropogenic addi-
tions stimulates these soil reactions, with
higher system leakiness accompanying the
higher N inputs (Hoegberg 1997). Thus, if
pristine systems tightly recycle N and have
low overall export losses, anthropogenic N-
loading increases the amount of N cycling in
a system and also increases the fraction of
N leaking from the system. According to
current understanding, the higher fraction
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of N lost from watersheds that receive an-
thropogenic N inputs, and possibly larger
fractionations associated with higher N con-
centrations, is ultimately responsible for in-
creased ®N enrichment versus background
conditions (Hoegberg and Johannisson 1993).
Following watershed processing of ammo-
nium and nitrate, these '*N-enriched nu-
trients enter estuaries. Incorporation of IN-
enriched nutrients from watersheds into
estuarine algae and food webs leads to general
BN enrichment of organic matter pools in
estuaries (Kwak and Zedler 1997, Voss and
Struck 1997, McClelland and Valiela 1998,
Fry 1999, Costanzo et al. 2001). Similar re-
sults are also observed in freshwater systems
(Cabana and Rasmussen 1996, Hodell and
Schelske 1998, Hebert and Wassenaar 2001,
Ogawa et al. 2001). When evaluated with
care, the naturally occurring 6N distribu-
tions can provide valuable information on
qualitative and quantitative changes in the
nitrogen status of aquatic systems (Mc-
Clelland et al. 1997).

Complications may arise in this simple
model of N enrichment. For example, Mc-
Clelland et al. (1997) showed that ¥ N enrich-
ment accompanied wastewater inputs from
septic fields, but was not strongly associated
with Jower-level agricultural N inputs from
watersheds. Also, Jordan et al. (1997) showed
that cold winter temperatures can result in
low nitrification rates that limit microbial N
processmg in wastewater systems and lead to
low 6N values. Because of these and other
complications, and especially that within-
estuary mtrlﬁcauon and denitrification can
create high 6N signals in ammonium and
nitrate (Cifuentes et al. 1989, Horrigan et al.
1990), it is not clear that the 5N assay tech-
nique is a robust technique for detecting
watershed N-loading to estuaries (Waldron
etal. 2001) To examine the overall generality
of the §”N approach, we compared isotope
and nutrient-based approaches for estimating
N-loading across four U.S. West Coast es-
tuaries that are rich in nitrogen relatve to
previously studied estuaries.

i

Fieure 1. Location of the four National Estuarine Research Reserve (NERR) sites along the U.S. West Coast (top)
and station locations at Padilla Bay, Washington (A); South Slough, Oregon (B); Elkhorn Slough, California (C); and
Tijuana Estuary, California (D). North is toward the top in each panel.
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The four study estuaries (Figure 1; see
http://inlet.geol.sc.edu/nerrsite.html for gen-
eral descriptions of the estuaries) are all rela-
tively small and shallow (<10 m maximum
depth) and experience large daily tides >1
m amplitude. Consequently, water residence
time is short in these estuaries, usually <1-2
days, with longer flushing times during some
neap tides. With the strong marine flushing,
watershed N-loading is rapidly diluted, and
marine N can play a strong role, especially
where upwelling brings higher nutrient con-
centrations to coastal waters. Attached green
macroalgae often form a visible green “bath-
tub ring” in these estuaries, especially in
backwater areas where flushing is lower and
watershed N-loading high. We expected to

" see relatively weak N-loading indices in sam-
ple types such as dissolved nutrients or par-
ticulate organic material that are rapidly
flushed and replaced with marine materials,
but stronger N-loading indicators in samples
of attached filter feeders and macroalgae that
are sessile and can accumulate watershed N.
For these reasons, we used a variety of sample
types in studies of N-loading, including dis-
solved nutrients and estuarine sediments and
biota. We expected strongest N-loading in
the two southern estuaries, Elkhorn Slough
and Tijuana, where local agricultural and
municipal (sewage + urban runoff) inputs are
respectively known to be strong. Lesser N-
loading was expected for the two northern
estuaries (Padilla Bay and South Slough),
with Padilla Bay perhaps receiving more nu-
trients from the Frazer River and local agri-
culture, and South Slough representing the
most pristine site with a generally forested
watershed.

MATERIALS AND METHODS

Sampling and Sample Preparation

Water samples and organisms were collected
in each estuary at 9-13 stations during Octo-
ber 1998, January 1999, April 1999, and July-
August 1999. Estuarine sampling stations
were chosen along potential N-loading gra-
dients (Figure 1). Samples were collected
for nutrients and 6N of sediments, water
column particulates, attached macroalgae,
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and filter-feeding barnacles and clams. Sam-
ples were collected by National Estuarine
Research Reserve (NERR) personnel, frozen,
and then shipped to Louisiana State Univer-
sity (LSU) for analyses. Voucher specimens
were also collected and later identified (see
Appendix A).

Water samples for nutrient analysis were
collected in 4-ml vials and analyzed for
NH4+, N037+NOZ_, SiO;Z_, and PO43_
using a Technicon Autoanalyser at the
Coastal Ecology Institute, LSU. Results for
representative quality control samples with
nutrient concentrations of 13.9, 18.0, and 3.1
UM ammonium, nitrate + nitrite, and phos-
phate were measured, respectively, at 13.9,
18.6, and 3.4 pM. Precision (C.V.) for the
nutrient analyses was typically <5%.

Larger water samples were also collected
using 1-liter plastic bottes, transported to
NERR laboratories, and frozen. At LSU,
samples were thawed and salinity measured
with a conductivity meter (YSI 63). Sus-
pended particulate matter was collected
by vacuum filtration through precombusted
(450°, 4 hr) glass filters (Whatman GF/F).
Filtered water was saved for isotope nutrient
assays, and 6"N of ammonium (hereafter
NI, *) and 8“N of nitrate + nitrite (here-
after "NO;~) samples were prepared from
filtered samples using an adaptation of the
ammonium diffusion method (Sigman at al.
1997, Holmes et al. 1998).

Surface sediments were collected from
intertidal and channel locations, with three
replicate grabs composited for each sample.
Sediments were dried at 60°C in a convection
oven. After drying, sediment samples were
ground to a fine powder using an amalga-
mator (Crescent Wig-L-Bug). Powdered
sediments were analyzed whole for % N and
SPN.

Common macroalgae attached to shells
and pilings were collected at each site, with
3-10 individuals composited for the station
average sample. Samples were dried at 60°C
in a convection oven. After drying samples
were ground to a fine powder using an amal-
gamator (Crescent Wig-L-Bug).

Common filter feeders, usually barnacles,
but occasionally some mussels, were collected
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from pilings or channel markers, with 3-10
individuals composited per station. Organic
tissues were dissected from specimens, dried
at 60°C, and powdered for analysis.

Total organic carbon (TOC), total organic
nitrogen (TON), C:N ratio, and 5PN of the
samples were analyzed using an automated
analytical system combining an isotope ratio
mass spectrometer (ThermoQuest Finnigan
Delta Plus) and an elemental analyzer (Carlo
Erba NA-1500). All isotopic abundances are

given as:

55N = ((Rsswrue/Rsranmarn) — 1)*1000( |
1

where R is PN/¥N, and the standard for
nitrogen is air N, with a 6N value of 0.0%o.
Analysis of replicate samples usually showed
agreement of 0.3%o or better for particulate
6”N and 1%o or better agreement for nutri-
ent 6”N. All reported isotope values have
been corrected for blank contributions. Sam-
ples that are depleted in the heavy isotope
(PN) have lower ¢ values and are “lighter”;
samples enriched in heavy isotope have
higher & values and are the "N “heavier.”
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Evaluating Nitrogen Inputs

Values for measured water quality parameters
were averaged across the four seasons into
single values for each site, with data for the
individual analyses in each season listed in a
thesis (Gace 2001), a report (Fry et al. 2001),
and in electronic spreadsheets available from
B.F. The averaging brought the time scale
of measurements to the same temporal unit
(1 yr) and was done because nutrients inte-
grate N dynamics at short time intervals
whereas isotopes integrate N dynamics at
much longer intervals.

SALINITY-DIN MIXING DIAGRAMS. To
evaluate sources of dissolved inorganic nitro-
gen (DIN) in estuaries, we used conservative
mixing diagrams as conceptual guides (Figure
24) (Day et al. 1989). With no net removal
or addition of DIN, conservative mixing be-
tween marine and freshwater sources typically
results in a straight line with a negative slope
when DIN is plotted versus salinity. Three
hypothetical cases with low (2 uM), interme-
diate (6 pM), and high (48 pM) freshwater
DIN concentrations are considered in Figure
2. The value of the marine end member was
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Freure 2. Two mixing model approaches for evaluating N-loading in estuaries. 4. DIN concentrations are linear
functions of salinity for conservative mixing of freshwater and seawater end members. The seawater end member has a
concentration of 6 pM DIN, and three freshwater concentrations represent low (2 pM), intermediate (6 uM), and high
(48 M) watershed N-loading. B. Expected A”N versus salinity in conservative salinity-isotope mixing diagrams. Low,
intermediate, and high refer to freshwater DIN-loadings shown in panel 4, and A”N values are 5" N values of samples
normalized by subtracting the 5 N values of a reference sample, the marine end member.
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set at 6 pM DIN, a value extrapolated from
average values measured at the highest salin-
ity, mostly marine stations of this study.
These stations included Padilla 1, 2, 11, 12;
South Slough 1, 2; Elkhorn Slough 1; and
Tijuana 1 and 2. Average salinity and DIN
values for these stations were 22 psu and
21.7 uM. We further assumed a DIN ratio of
8:1 for freshwater end member/marine end
member values to finally arrive at the ex-
trapolated 6 pM marine DIN value at 35 psu.
Higher mixing ratios (e.g., 16:1 instead of
8:1) would result in lower estimates of ma-
rine DIN. The extrapolated marine value
6 pM DIN is in the intermediate range of
nitrate values (Rau et al. 1998, Pennington
and Chavez 2000) measured in Monterey Bay
located offshore of one of our sites, Elkhorn
Slough.

SALINITY—NITROGEN ISOTOPE MIXING
p1agraMs. Rather than simple linear mixing,
plots of salinity (x-variate) versus isotopes (y-
variate) typically give curvilinear plots for
conservative mixing (Figure 2B) (Spiker
1980, Fry 2002). Isotopic values of estuarine
samples, durx, can be predicted from mixing
of riverine and seawater end members by
weighting isotopic end member compositions
by their respective concentrations:

omxCux = (f)9rCr + (1 — f)90Co  (2)

where subscripts R and O respectively refer
to riverine and oceanic end members, and &
and C are isotopic composition and concen-
tration of these end members (Spiker 1980).
The fraction f of freshwater in each sample is
calculated from salinity,

f = (35 — measured salinity)/35  (3)
where 35 is taken as the salinity (psu) in the
oceanic end member.

We used this salinity-isotope mixing
model to investigate possible "N enrichment
that would indicate watershed N-loading.
Because PN enrichment can also occur natu-
rally with increases in trophic level (Fry 1991,
Hansson et al. 1997), we normalized data
for trophic level before testing for effects of
watershed N enrichment. We factored out
food web effects by normalizing station aver-
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age 6°N values through subtraction of ma-
rine end member values (A”N normalized =
0" N measured — 6N marine). Filter feeders,
green macroalgae, particulate organic nitro-
gen (PON), and sediments were normalized
against respective marine end member 6°N
values of 9.9 + 0.6%0 (average + 95% C.L.),
8.4 £+ 0.9%0, 5.8 + 1.3%0, 8.9 & 0.8%0, with
data from the following high-salinity stations
contributing to the marine end member
values: Padilla I, 2, 11, 12; South Slough 1,
2; Elkhorn Slough 1; and Tijuana 1 and 2.
When normalizing for sediments, low-N
beach sands from stations Padilla 2 and South
Slough 1 and 2 were excluded from the aver-
aging as nonrepresentative of marine values
(Peters et al. 1978). Using these A°N nor-
malized values, we could plot data for all
sample types on the same conservative mixing
diagram (Figure 2B) to assess overall estua-
rine N enrichment associated with water-
shed inputs.

Statistics

We used analysis of variance (ANOVA),
analysis of covariance (ANCOVA), and
Tukey-Kramer z-tests (Sokal and Rohlf 1995)
in evaluating "N differences among sites and
between bioindicators. T'o compare nutrient
and isotope information, principal compo-
nent (PC) analysis was performed using eight
variables and the correlation matrix approach
(Tabachnick and Fidell 2000). Variables were
DIN, NH,*, NO;~, NO,~ concentrations,
and 6”N of PON (PO¥N), green macro-
algae (GRVPN), filter feeders (FF¥N), and
sediments (SEDYN). Because the statistical
distribution of the nutrient concentration
variables (DIN, NH,*, NO;~, NO,”) was
severely skewed, In-transformations were ap-
plied. Isotope values were not In-transformed.
Following In-transformation (nutrients) or no
In-transformation (isotopes), variables were
then standardized by subtraction of the group
mean and division of the result by the group
standard deviation. Using these inputs, the
PCA solution was rotated using VARIMAX
(Tabachnick and Fidell 2000) to facilitate the
interpretation of the resulting principal com-
ponents.
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To separate more clearly N-loading pat-
terns of DIN versus patterns of 6N, we also
used cluster analysis (Everitt 1993) with DIN
variables only or 8" N variables only. Hierar-
chical cluster analysis was carried out using
the WARD algorithm with DIN variables
only (NH,*, NO;~, NO,") or §°N only
(GR¥N, FF¥N, POYN, SEDYN), with
DIN variables In-transformed and both
In(DIN) and 6N variables standardized as
described in the previous paragraph. Analysis
was carried out through SAS PRINCOMP
and CLUSTER procedures (Tabachnick and
Fidell 2000). In the resulting cluster dendro-
grams, a cutoff distance of 0.2 (semi partial
R?) was used to distinguish “robust” clusters
that grouped similar stations into low-impact
and high-impact groups (between-estuary
clustering results) or low-, intermediate-, and
high-impact groups (within-estuary clustering
results). (Note: in this study, “impacted”
means that high N inputs are occurring and
does not necessarily imply that strong bio-
logical impacts accompany these high inputs.)
In the latter case of clustering stations within
single estuaries, cluster groups were assigned
to low, intermediate, or high impact based on
their average standardized values.

Ranking Systemns for N Iimpact Maps

To generate summary maps of N impacts
in each of the four estuaries, we compared
our most complete overall evaluation, the
PC + cluster results, with a ranking scheme
based on a much smaller subset of the data
that included only DIN and 5N of only one
bioindicator, green macroalgae. The smaller
data set was of interest because in future
studies, measuring DIN and 6°N of only
one bioindicator may be the simplest and
most practical approach for evaluating N in-
uts.

The detailed procedure for the compari-
son of the two ranking schemes was as fol-
lows. To obtain rankings for the PC + cluster
results, we assigned scores of 1, 2, and 3
to clusters I, TT, and TII, respectively indicat-
ing low, intermediate, and heavy N-loading
impacts. For stations with high ammonium
concentrations but low to moderate §°N

83

values, we also assigned an overall 3 (highly
impacted) ranking.

For rankings based on the smaller data set
of just DIN and 6”N of green macroalgae,
we also used an overall 1, 2, 3 scoring system,
with 1 representing near-marine conditions, 2
representing enriched versus marine, and 3
representing heavily enriched versus marine.
This ranking system was based on average
nutrient and isotope values measured at our
most marine stations that included Padilla 1,
2, 11, 12; South Slough 1, 2; Elkhorn Slough
1; and Tijuana 1 and 2, with overall average
DIN and green macroalgae 6N values of
21.7 uM and 8.4%, respectively. These aver-
age values do not reflect strictly marine con-
ditions (average salinity for the stations was
22 psu, not 35 psu), so we refer to these av-
erage values as “background” in the follow-
ing. Stations with DIN values in the ranges
0-1.5:1 background, 1.5-4:1 background,
and >4:1 background were assigned respec-
tive rankings of 1, 2, and 3. Stations with
PN < +2%o versus background, 2—4%o ver-
sus background, and >4%. versus background
were assigned rankings of 1, 2, and 3, respec-
tively. After making the separate DIN and
0”N rankings, we averaged these values for
overall scores, with the caveat that we also
gave special consideration to stations where
ammonjum concentrations averaged >50 pM
and assigned those stations overall scores
based on DIN alone. This special assignment
was made because 6" N assays of N-loading
failed under high ammonium conditions (see
Discussion).

RESULTS

All estuaries showed evidence of high N
concentrations associated with freshwater or
midestuarine inputs, and no estuary was truly
pristine (Figure 3). Watershed DIN con-
centrations were lowest (<5 pM) in streams
at the southern end of the forested South
Slough watershed and highest in agricultural
drainage from Elkhorn Slough and in sewage
effluents in Tijuana estuary (Figure 4).
Isotope values of ammonium and nitrate
ranged from —0.3 to 19.6%0 (Table 1) and
trended toward higher values at high con-
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Freure 3. Salinity-DIN mixing plots for the four estuaries. Dotted mixing lines from Figure 2 correspond to conser-
vative DIN mixing between marine and three representative freshwater end members.

centrations that would be associated with
higher watershed N-loading (Figure 4). On
average, ammonium isotope values were
3.4%o higher than nitrate isotope values, when
both ammonium and nitrate were measured
from the same station (Figure 5, Table 1).
Highest §°N values for ammonium and ni-
trate occurred in the two southern estuaries,
Elkhorn Slough and Tijuana (Figure 5).

We studied further uptake of NN labels in
the food web, focusing on four bioindicators.
When isotope values in bioindicators were
normalized to account for trophic level ef-
fects, a one-way ANOVA showed that green
macroalgae and filter feeders had very similar
normalized values (Table 2). Isotope values
for these two bioindicators were enriched in

PN versus PON by 1.3 to 1.4%0 and by 2.6 to
2.7%o versus sediment N (Table 2), indicating
that green macroalgae and filter feeders re-
corded watershed “N enrichment patterns
more strongly than did PON or sediments.
Highest APN values for bioindicators were
found in the two southern estuaries, Elkhorn
Slough and Tijuana (Figure 6).

To evaluate differences in N inputs across
estuaries in a simple way using the 6°N
approach, we focused on green macroalgae.
After accounting for DIN and salinity dif-
ferences across sites, ANCOVA indicated
significant (P < 0.001) differences among
estuaries for mean §”N values for green
macroalgae. For this analysis; DIN was loga-
rithmically transformed to improve nor-
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mality, whereas salinity was square root
transformed before the ANCOVA analyses.
Mean 0"N values for the green macroalgae
were 8.3, 8.1, 12.6, and 11.6%o, respectively,
for Padilla Bay, South Slough, Elkhorn
Slough, and Tijuana Estuary. Tukey-Kramer
t-tests for differences among mean values
showed that values in the two southern es-
tuaries were not significantly different (P >
0.05) and similarly that values in the two
northern estuaries were not significantly
different (P > 0.05), but that values in the
northern estuaries were significantly (P <
0.001) lower than values in the southern es-
tuaries.

We also took more complex approaches
in evaluating N enrichment patterns across
estuaries, considering both isotope and DIN
data. We found some parallels between "N
enrichment (Figure 6) and DIN enrichment
(Figure 3). Especially, the same overall rank-
ings emerged from the §"°N data as from the
DIN data. South Slough showed the least N
(DIN) enrichment, Padilla was intermediate,
and Elkhorn and Tijuana were highest (com-
pare Figures 3 and 6). However, we also
observed low 6"°N values at some high DIN
concentrations, especially at Padilla stations
5 and 6 and Tijuana stations 8 and 9 where

high ammonium (>50 pM) and low salinities
(<6 psu) prevailed (Figure 6, Table 1).

To better understand patterns of DIN and
0"N across the study sites, we conducted a
PC analysis, finding that 77% of the variance
in these values could be explained by two
principal components (Table 3). PC1 had
high loadings for the 5"°N bioindicators (Ta-
ble 3) and was designated “6"°N”’; PC2 was
highly correlated with nitrogen concentra-
tion indicators (Table 3) and was designated
“DIN.” A cluster analysis based on these two
principal components identified four major
station groupings, or four N impact groups
(Figure 7). The least imPacted stations {group
I) had low DIN and §°N scores, and most
stations from South Slough were in this
group. Group II also had low DIN scores, but
higher 6N values, characteristics expected
for stations experiencing the early stages of
anthropogenic N-loading (McClelland et al.
1997). Most Padilla Bay stations were in this
group, as well as several stations from Tijuana
and Elkhorn. Group III stations were high in
both 6N and DIN, characteristics expected
for estuaries with high anthropogenic N-
loading, and included stadons from Elkhorn
and Tijuana estuaries. The final group IV
stations had high DIN, but low 6°N and



TABLE 1
Site Average Values for 45 Stations in the Four Study Estuaries

Suation Salinity DIN NO;- NH,* NO,~ PO~ Si0, C/Ng 6°N-NO, SUN-NH, SED-"N PON-YN GR-“N FF-UN PCl PC2 Cluster

P-1 21 13 8 4 0.4 1.1 33 8 4.2 0.0 9.3 6.7 7.9 9.1 0.1 —09 2
p-2 16 25 i2 12 0.8 1.5 219 9 3.0 10.8 — 4.6 7.2 94 -04 —0.2 1
-3 21 13 6 6 03 1.2 28 9 4.5 — 9.8 8.0 9.7 11.2 07 —11 2
P-4 25 15 7 8 0.3 2 44 12 4.6 — 8.8 5.8 9.0 13.6 06 —09 2
P-5 ) 105 31 73 1.2 0.9 252 12 5.2 11.7 38 3.6 2.3 — ~-22 12 4
P-6 2 101 38 61 1.6 0.7 311 13 6.2 114 6.0 2.7 7.6 103 -11 1 4
P-7 16 42 18 23 0.9 1 113 12 5.0 10.2 9.8 6.3 8.9 12.6 85 0 1
P-8 15 38 26 11 0.6 5.1 47 13 8.5 9.0 6.3 3.9 10.2 — -03 0 1
P-9 17 23 10 12 0.5 1.9 45 11 5.9 — %.0 5.0 10.0 12.2 0.4 —0.5 2
P-10 20 26 12 14 04 1.3 51 9 4.2 9.0 0.6 4.9 7.8 0.7 —04 -02 i
P-11 26 16 11 5 04 1.9 38 9 4.7 — 7.7 4.9 9.8 10.4 6 -07 2
P-12 22 11 7 4 0.4 L3 29 9 5.0 — 8.8 6.8 7.5 10.5 0.2 —-I.1 2
S-1 27 22 13 9 0.4 2.1 24 9 38 3.4 6.7 8.0 102 -0.6 -03 1
S-2 27 28 i3 14 0.5 1.5 23 g 3.9 10.2 4.3 54 7.3 85 -1 -01 1
S-3 11 45 16 28 0.3 0.5 79 11 1.7 3.7 0.6 7.0 100 -16 03 1
S-4 15 19 5 4 0.3 1.1 33 9 1.6 54 43 6.9 100 —07 —0.6 1
S-5 24 36 26 9 0.4 2.3 39 10 2.6 2.9 6.8 4.3 9.5 9.7 04 -01 1
S5-6 21 42 11 3t 0.4 1.6 52 9 1.3 6.7 5.2 9.5 105 04 O 1
5-7 20 33 8 24 0.3 14 50 8 0.9 — 6.0 5.5 9.1 9.7 -0.6 -01 1
5-8 7 19 4 14 0.3 0.6 72 4 — — 7.0 5.1 9.6 111 -01 -06 2
S-9 7 22 16 6 0.3 0.4 61 14 03 — 5.2 3.9 10.2 i1.2  -03 -05 1
S-10 3 5 2 3 0.1 0.2 49 17 — — 3.8 24 3.6 — 1.6 —-14 1
S-11 13 18 5 12 0.2 .7 52 9 3.0 — 7.2 3.2 9.1 1.0 —04 -06 1
S-12 4 18 9 9 0.3 0.9 60 12 -0.3 — 6.0 5.0 7.6 113 04 -06 1
5-13 8 10 3 6 0.2 0.6 46 15 -0.1 — 44 4.2 L.8 — -1.7 08 1
E-1 30 44 38 6 0.9 1.1 23 9 5.0 6.7 8.4 2.1 9.3 109 03 0 1
E-2 29 68 57 9 21 1.6 24 10 6.3 — 9.0 5.8 9.3 11.4 03 03 3
E-3 9 982 . 947 18 17.4 8.5 149 12 12.7 17.8 9.3 9.7 16.0 14.7 1.8 22 4
E-4 14 745 723 12 10.9 5.5 149 10 12.5 15.1 10.0 9.0 13.8 13.6 L5 1.8 1
E-5 31 159 5 148 57 137 23 15 7.5 5.1 9.1 9.7 14.0 — .1 1 3
E-6 30 z5 14 10 0.8 2.3 23 12 5.1 — 8.9 6.5 11.6 12.4 07 —04 3
E-7 28 29 18 10 0.9 2 29 13 —0.2 — 8.7 6.6 12.7 13.5 1 03 3
E-8 29 24 16 7 i 2.8 22 15 4.3 — 9.8 8.7 12.0 13.3 14 -6 2
E-% 22 186 162 16 7.6 5.7 67 i2 10.9 17.2 11.2 11.5 15.6 15.3 24 09 2
E-10 8 51 21 26 4 144 102 15 11.8 14.9 7.4 9.2 14.2 — 1.t 04 2
E-11 32 273 88 174 115 152 33 12 9.1 14.4 7.9 6.5 10.3 — -0.1 22 3



T-1 28 12

2 9 0.2 0.8 5 17 2.5 9.9 93 7.9 9.3 10.7 05 —I.1 2
T-2 30 16 1 15 0.2 0.9 13 14 — 6.2 10.0 7.1 10.2 10.1 04 —I1.1 2
T-3 22 79 47 28 3.8 9.1 119 13 12.5 13.9 9.1 9.3 14.1 13.8 14 0.6 3
T-4 26 12 4 6 1.2 4.8 64 14 — 3.7 9.1 79 13.3 12.2 1.1 —09 2
T-3 23 20 2 18 0.3 39 32 14 — 5.1 8.1 6.2 12.9 10.2 03 07 2
T-6 26 13 1 12 0.2 L6 12 15 — 11.5 7.8 5.6 11.9 10.5 02 -1 2
T-7 22 83 b 76 1.9 9.8 50 18 5.6 13.4 7.5 4.5 11.8 107 -03 06 1
T-8 2 340 14 323 2.7 386 177 — 19.6 11.9 7.6 3.5 - — -6 19 4
T-9 1 649 93 546 10 33.6 182 6 11.5 12.3 9.5 34 6.0 — -12 28 4

Note: Units: salinity, psu; nutrients, pM; isotopes, %s; C/N, molar ratio for green macroalgae. I'T%, filter feeder; GR, green macroalgae; PON, particulate organic nitrogen; SED, sediment.
PC1 and PC2 and clusters as in Figure 7.
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Ficue S. Salinity 5N mixing plots for ammonium (w) and nitrate (A). Mixing lines are based on those of Figure 2B.

TABLE 2

Tukey’s Studentzed Range (HSD) Test for Normalized
APN between Four Different Bioindicators for All
NERR Sites Pooled Together

Difference

Indicator between Simultaneous 95%
Comparison Means Confidence Limits
FF-GR 0.1 —1.22 145
FF-PON 1.4 0.08 2.74%**
FF-SED 2.7 1.35 4,03**
GR-PON 1.3 0.04 2.58%*
GR-SED 2.6 1.31 3.85%*
PON-SED 1.3 0.02 254+

Note: ***, significant differences. FF, filter feeder; GR, green
macroalgae; PON, particulate organic nitrogen; SED, sediments.

were sites with high ammonium concentra-
tions (>50 pM; Figure 7, Table 1).

In parallel with the overall, combined iso-
tope-DIN analysis shown in Figure 7, we also
kept the DIN and isotope variables separate
and then performed cluster analyses to di-
rectly compare results of DIN versus isotope-

based assessments of N-loading. These anal-
yses were performed considering all 45
stations in the four estuaries (Figure 8, left
panels) and considering only one estuary at
a time (Figure 8, right panels). Results of
the cross-estuary comparisons showed 60%
agreement between results from DIN clusters
versus results from isotope-based clusters
(Figure 8, left panels). Results for the indi-
vidual estuaries showed more prevalent in-
termediate and high N-loading impacts
(higher DIN concentrations and 6" N), espe-
cially in South Slough (Figure 8).

Because the statistical results of Figures 7
and 8 indicated that isotopes and nutrients
were fairly independent measures of N status,
we also considered several schemes for com-
bining nutrient and isotope information to
assess overall N status within and across es-
tuaries. Our objective was to produce a sum-
mary assessment of N inputs for each of the
45 stations in the four study estuaries. For
example, we assigned different weightings to
the DIN and "N impact groups of Figure 9,
averaged the scores, and plotted the values on
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F1euRE 6. Salinity-A”N mixing plots for filter feeders (w), green macroalgae (A ), PON (o), and sediments (+) in the
four West Coast estuaries. Mixing lines correspond to conservative mixing for low, intermediate, and high watershed

N-loading (see Figure 2).

site maps (Fry et al. 2001, Gace 2001). Dif-
ferent ways of weighting the DIN and isotope
information produced similar results for these
mapping exercises. Comparisons of ranking
schemes based on larger versus smaller data
sets (Figure 7 results versus DIN + 6N of
green macroalgae, respectively, as detailed
in Materials and Methods) showed little dif-
ference, with an average difference (+95%
C.L.) in pairs of overall scores for the 45 sta-
tions of 0.13 & 0.17, a result indicating that
the two ranking schemes were statistically
equivalent. The simpler ranking system,
based on averaged rankings for DIN and
O”N of green macroalgae, produced maps
that showed substantal differences in N in-

puts within and between estuaries (Figure 9).
Note that this map actually has four classes
of impact stations, the three discussed in
Materials and Methods, plus a low-impact
“marine” category (see Figure 9 caption for
definition of the four categories).

We also examined C/N ratios of bio-
indicators as possible chemical indicators of
N inputs, but generally found that C/N ratios
in green macroalgae, PON, and sediments
were poorlsy correlated with DIN concentra-
tions or 8N patterns. Only in the least im-
pacted estuary, South Slough, did we observe
a consistent relationship, with C/N values
of green macroalgae decreasing from values
of 15-17 at the low-DIN freshwater end of



90

TABLE 3

Variance Explained by PC and Loading of Variables on
Rotated PC for Eight Variables of Four West Coast
Estuaries

PC Eigenvalue Difference Proportion Cumulative

1 4.13 2.03 0.51 0.51
2 2.09 1.34 0.26 0.77
3 0.74 0.32 0.09 0.87
4 0.41 0.07 0.05 0.92
5 0.34 0.18 0.04 0.96
6 0.15 0.08 0.02 0.98
7 0.07 0.05 0.00 0.99
8 0.02 — 0.00 1.00
Rotated PCA Pattern
Variable PC1 PC2
DIN 0.17 0.97
NO,;* 0.28 0.76
NH,* —0.18 0.79
NO,~ 0.40 0.87
FE-UN 0.89 0.10
GR-PN 0.86 0.19
PON-YN 0.86 0.08
SED-¥N 0.77 0.11
T T T T T
3 B -
oL
1
=
©
© o]
-
QO
& R
2k
3k
L 1 1. 1 1
2 - 0 1 2 3
PC 2 (DIN)

Freure 7. PC1 (DIN) versus PC2 (6"°N) scores for 45
individual stations from the four West Coast NERR sites,
with the four indicated groups determined from cluster
analysis of the PC scores. Padilla Bay, ¢; South Slough,
A; Elkhorn Slough, m; Tijuana Estuary, e.
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the estuary toward C/N values of 8-9 at the
marine end of the estuary where DIN levels
were higher (Table 1) (Fry et al. 2001).

DISCUSSION

Nutrient Concentvations and Bioindicator S° N

DIN concentrations in the four study estu-
aries were almost uniformly high, >10 uM
(Table 1), and elevated versus marine end
member values. These DIN concentrations
indicate substantial N-loading inputs from
local watersheds. However, N limitation of
estuarine primary production and eutrophi-
cation dynamics seemed unlikely because es-
tuarine DIN levels could potentially support
substantial levels of phytoplankton biomass.
For example, using a Redfield C/N ratio of
6.6 for algal biomass, and a C/chlorophyll-z
ratio of 42:1 (Valiela 1995), a 10-uM DIN
concentration could support algal standing
stocks of 23 ug chl-a/liter, a value in the usual
range for eutrophic estuaries. Very high DIN
concentrations (>1000 uM) were observed
in some of the study estuaries, especially Elk-
horn and Tijuana, and it is probably vigorous
tidal flushing with offshore waters that pre-
vents development of persistent algal blooms
(not observed except in stagnant portions of
these estuaries) and other water quality prob-
lems. Valiela et al. (19975) found that strong
N-loading in conjunction with strong tidal
flushing can result in attached sea grasses and
macroalgae dominating primary production
in estuaries, because waterborne phyto-
plankton are flushed by tides from these sys-
tems. Occurrence of large visible macroalgal
beds and sea grass beds in the study estuaries
was observed and is consistent with this type
of production regime. N diffusing up from
sediments may also contribute to observed
abundant macroalgae.

We did not quantify watershed N-loading
directly in this study, but high DIN levels
were usually associated with higher "N
values for dissolved nutrients (Figure 4),
consistent with watershed sources delivering
a high 6N signal to estuaries. The water-
shed “N signal was most evident in two
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Freure 9. Composite index for N-loading at sites in the four study estuaries. Values in site circles range from 1 to 4,
with 1 representing low N-loading, 2 representing intermediate loading, and 3 and 4 representing high and very high
N-loading, respectively. The index is based on the normalized values versus background values, with background val-
ues of 20.7 uM for DIN and 8.4%. 5”N for green macroalgae used for normalization. DIN concentrations <0.5: 1
background, 0.5-2:1 background, 2—-4:1 background, and >4:1 background were given scores of 1, 2, 3, and 4, re-
spectively. Normalized §°N values (A" N versus background) that were <—2, —2 to 2, 2 to 4, and >4 were given scores
of 1,2, 3, and 4, respectively. The final score was calculated as the average of the DIN and A”N scores. For stations
with >50 pM average ammonium (circles with underlined numbers), only DIN scores were used in averages. We did
not use §°N data for these stations because the §°N assays were not sensitive indicators of N-loading under high
ammonium conditions (see Discussion). Note that normal marine sites have values of 2 in this classification scheme.

bioindicators, green macroalgae and filter
feeders, but PON and sediments showed rel-
atively little 6N enrichment (Table 2, Fig-
ure 6) and more strongly recorded marine
influences.

Sediments are perhaps the easiest samples
to collect for 6”N analysis. However, the

8.9%0 average value for background marine
3N used in this study was relatively high, so
that only very strong N-loading in estuaries
would be sufficient to produce a noticeable
BN enrichment signal. Thus, although we
observed relatively high 9-11%0 §°N values
for surface sediments, especially in several
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Elkhorn Slough stations, these values were
only marginally higher than our marine end
member value and therefore were not useful
for indicating strong N-loading. Investiga-
tions of Baltic Sea sediments collected near
large rivers showed similar high 8-11%.
values, but those values could be ascribed
to riverine N-loading of estuaries, because
background, reference sediments from the
open Baltic had much lower 6° N values of 2—
4%o (Voss and Struck 1997, Voss et al. 2000).
Other reasons may also contribute to the lack
of BN enrichment in sediments. Smaller river
inputs and strong tidal flushing may partially
account for the lack of strong 6N enrich-
ment in sediments at the NERR study sites.
Inputs of terrestrial materials and sewage
particulates with low 6" N values (Peters et al.
1978, Tucker et al. 1999) could also contrib-
ute to lack of “N enrichment in sediments at
some of the study sites. Finally, sediments
may have a large background of old, low §"°N
nitrogen (Peters et al. 1978) that dilutes new,
high 6"°N anthropogenic nitrogen, and sedi-
ments may thus represent an organic matter
pool that is only slowly labeled in estuaries.
Macroalgae have been shown previously to
be good §¥N bioindicators for tracking entry
of watershed N into estuaries (McClelland
et al. 1997, McClelland and Valiela 1998,
Costanzo et al. 2001). Those studies exam-
ined estuarine situations with much lower
overall DIN concentrations that are on a par
with our cleanest sites (<5 pM, JJW.M. and
S. Costanzo, pers. comm.). The higher DIN
concentrations at some of our study sampling
site locations can bring into play an important
confounding factor in relating 6”N in es-
tuarine biota to watershed N-loading, namely
isotope fractionation during DIN uptake
by algae at the base of estuarine food webs.
Laboratory and field studies have shown that
the potential for isotope fractionation during
algal DIN uptake increases at higher DIN
concentrations (Fogel and Cifuentes 1993,
Waser et al. 1998, Altabet 2001), with large
fractionations of >20%. possible, especially
when high levels of ammonium (>50 uM) are
present (Cifuentes et al. 1989). Large fraction-
ations result in low §"°N values and thus off-
set the effect of adding high §"°N nutrients
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from watersheds. In such cases, 6"°N assays of
estuarine biota are poor indicators of water-
shed N-loading.

We observed several cases in which high
ammonium values were associated with low
0N values of bioindicator green macroalgae
and filter feeders (stations 5 and 6 in Padilla
Bay, station 11 in Elkhorn Slough, and sta-
dons 8 and 9 in Tijuana; group IV in Figure
7). Relatively low bioindicator 6"°N values
characterized this group of stations, even
though the §” N values of nutrients were rel-
atively high (Table 1). This situation of high
0N values for nutrients, high concentrations
of nutrients, and low 6" N values of estuarine
biota is the expected result when isotope
fractionation occurs during N uptake by
algae. The problem of isotope fractionation
by algae partially offsetting watershed §"°N
enrichment signals may be prevalent at our
sites that were relatively rich in DIN.

DIN and A°N Mixing Models

Some of our methods for assessing N-loading
were based on simple salinity mixing models
(Figures 3, 5, and 6). Salinity-based mixing
models are sensitive to the selection of end
member values at both marine and freshwater
ends of estuaries. For example, in DIN salin-
ity mixing models, DIN values lower than
6 pM may be appropriate for marine end
members. The choice of 6 pM for marine
DIN was an extrapolated value that may need
revising in the future using measurements
made farther offshore. The isotope mixing
models (Figures 5, 6) were also built using
several assumptions about end members (for
example, that one offshore marine end mem-
ber is appropriate for all four West Coast
sites, and that samples collected at beach sites
are representative of open-ocean conditions).
Open-coastline beach stations used in this
study as marine reference sites may have had
some watershed N influence, leading to ele-
vated nutrient and §°N values. In that case,
estimates of watershed N-loading made in
reference to those beach values probably
underestimate the true magnitude of the N-
loading. Future nutrient and isotope refer-
ence samples should be taken at some dis-
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tance offshore to ensure no significant terres-
trial or watershed influence.

With regard to freshwater end members,
there are probably diverse freshwater inputs
with differing N contents and isotope values
in each of the four study estuaries. For fresh-
water DIN concentrations, we chose three
different end member values for illustrative
purposes (Figure 2). FOL freshwater N
(Figure 6), we used A”N values of +7 and
—7%o versus a central marine value of 7%o.
The range from +7 and —7%o versus the
central marine value was taken from actual
low-impact and high-impact sites in the four
estuaries (Flgure 6, Table 1). Also, Fry (1991)
reported 5N values consistently close to 0%o
(i.e., —7%o versus our marine reference point)
for macroalgae from relatively pristine fresh-
water sites sampled over a wide area of the
continental United States.

The 6N value of watershed N is gener-
ally very important for these isotope mixing
models. Unfortunately, watersheds do not
process mtrogen uniformly to a high and
constant 6" N value. McClelland et al. (1997)
found that for subwatersheds of Waquoit
Bay, most "N enrichment was associated
with wastewater rather than agricultural in-
puts, with wastewater N inputs dominating
high-load situations. In the study reported
here, the highest "N enrichments were
found in Elkhorn Slough, which receives the
highest agricultural inputs (Figures 5, 6).
Page (1995) also found high 6N values in
plants and nutrients in a California coastal
watershed with extensive agriculture. More
recently, Voss et al. (2000) observed "N
enrichment in estuarine systems receiving N
inputs from heavily agricultural watersheds,
although there was considerable diversity in
the degree of ¥IN enrichment in the different
Baltic watersheds they studied. The reasons
for these differing results are likely to be
found in the details of soil nitrification and
denitrification reactions. Temperature, car-
bon inputs, water residence times, redox
status of porewaters, and diffusion rates of
nutrients to soil microsites can all affect the
rates and extent of these soil microbial pro-
cesses (Mariotti et al. 1988). Temperature
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may be the most dominant overall control of
microbial activities. Higher temperatures in
southern watersheds of this study may have
promoted higher microbial activities in soils,
and ANCOVA analyses suggested that a fac-
tor other than DIN or salinity, a factor such
as temperature, was important in explaining
higher 6N values in southern estuaries.

These studies suggest that watershed N
can change from low to high S”N with
increasing anthropogenic inputs, but the tra-
jectory of this change may vary from site to
site, depending on temperature as well as
on other controls of microbial nitrification
and denitrification in watershed soils. This
changing 6"’ N trajectory results in some un-
certainty in the watershed end member value
needed for the mixing models, making it dif-
ficult to use these models precisely to esti-
mate watershed N-loading. For this reason,
we also used the multivariate analyses of Fig-
ures 7 and 8 to assess N-loading because the
multivariate approach is free of assumptions
about DIN or 6N end members. Our sim-
plified evaluation of N-loading (Figure 9)
does rely on adopting a marine end member
for normalizing purposes, but is free of as-
sumptions about watershed end members. In
this simplified evaluation (Figure 9), our use
of nearshore, beach stations to estimate the
marine end member probably gives a strongly
conservative estimate of estuarine N-loading
patterns (i.e., a bias toward underestimating
watershed N-loading).

Overall Evaluation of N-Loading Patterns

Both nutrient and isotope assays have weak
points as indicators of watershed N-loading
that depends on both N concentrations and
discharge. For example, nutrients are very
short-term assays of N status at particular
points, and sampling can easily miss nutrient
pulses important for primary production.
Also, strong nutrient uptake by primary pro-
ducers at estuarine sites can keep nutrients
low when in fact high loading is occurring.
For isotopes, artificially low 6N values can
occur under conditions of high N-loading
when ammonium is involved (see previous
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paragraphs) or when strong nitrogen fixa-
tion is occurring in upper parts of estuaries
(A.G. and B.F., unpubl. data). These con-
ditions lead to an underestimate or conserva-
tive estimate of watershed N-loading from
SN values.

But overestimates of watershed N-loading
are also possible if within-estuary processes
are creating high 6°N conditions. Such
conditions are well known in some estuaries
(Mariotti et al. 1984, Cifuentes et al. 1989,
Horrigan et al. 1990, Brandes and Devol
1997) and may have occurred at some of our
sites. In particular, strong microbial process-
ing of N in sea grass detritus may have been
responsible for elevated 5" N values at some
shoreline sites in Padilla Bay, especially at site
4 in Padilla Bay (Figure 1). There was no ev-
idence of watershed N-loading at that site,
which was elevated and near the top of a dike
versus adjacent low-lying farmlands. Sub-
stantial organic matter cycling probably oc-
curs at that site where sea grass wrack forms
heavy seasonal deposits that then decompose.
Intense decomposition of sea grasses could
represent a natural microbial analogue of
sewage treatment processes that generate
nutrients with high 6”N. More generally,
however, when within-estuary “N maxima
occur in the absence of watershed loading,
the maxima tend to occur down-estuary in
mesohaline zones, rather than in up-estuary
areas expected for watershed N-loading (Ci-
fuentes et al. 1989). In this case, sampling
along estuarine gradients should allow iden-
tification of within-estuary processing versus
watershed sources of elevated 6”N. There
are also special cases in which watershed N is
strongly processed in the upper (freshwater)
end of estuaries (e.g., Brion et al. 2000), and
high "N values are sometimes found in
these upper estuarine areas (Owens 1985,
1987).

In spite of the various uncertainties, the
0N indicators offered a fairly independent
way to assess watershed N-loading that com-
plemented assessments based on DIN alone.
Multivariate analyses showed that DIN-based
estimates of N status were often different
than the 6" N estimates (Figure 8). Compar-
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isons between the clustering results showed
that there was more than 50% agreement
(better than random agreement) between
clustering based on nitrogen nutrient con-
centrations and clusters based on 6N values.
South Slough and Elkhorn Slough, repre-
senting two opposite cases of low and very
high DIN-loading, respectively, showed the
highest degree of agreement between differ-
ent clustering techniques. This may be the
result of the homogeneity of these systems in
terms of low DIN-loading for South Slough
and very high DIN-loading for Elkhorn
Slough. More diverse systems such as Padilla
Bay had a higher disagreement rate (Figure
8), perhaps due to the fact that DIN concen-
trations were not high enough throughout
the system to be able to “blanket” smaller
spatial variability.

Figure 10 shows a possible strategy for
evaluating N-loading impacts using a combi-
nation of nutrient and isotope information.
Samples are collected along estuarine salinity
gradients for both nutrients and isotope, then
nutrient samples are analyzed first. If DIN is
high (>10 pM, or any other limit the investi-
gator may choose), then the site is classified
as highly impacted by N-loading. If nutrient
concentrations are lower, or if the investiga-
tor also generally wishes to rely on isotope
assays in addition to nutrients, the isotope
samples may then be analyzed for 6°N. In
this study, green macroalgae were the sam-
ples most widely distributed across salinity
gradients, prevalent, easiest to collect, and
showed strongest isotope response to water-
shed N-loading. For these reasons, inves-
tigators may wish to analyze and rely on
macroalgae 6°N for further isotope inter-
pretations outlined in Figure 10, although
sediments may also provide strong 6" N sig-
nals in some cases (Voss and Struck 1997,
Voss et al. 2000). Occurrence of ¥ N enrich-
ment versus background marine values is
used as the next decision point, with low 6N
values indicative of low impact conditions.
If 6N values are higher than marine values,
then the geographic pattern of the isotope
values becomes important, with decreases in
0" N along salinity gradients pointing toward
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watershed sources of hlgh 0°N, and mid-
estuarine maxima in 8N pointing to within-
estuary processing of N as a source of *N-
enriched N.

This discussion and flow chart should
make clear that there is no “magic bullet” for
detecting and assessing strengths of water-
shed N inputs into estuaries. Nonetheless,
combined approach of measuring DIN con-
centrations and "N values along estuarine
salinity gradients appears useful and relatively
cost-effective at this time. A particular strong
point of the advocated combined approach is
the spatial information obtained, showing
which sites and areas within estuaries have
high (or low) N-loading impact (e.g., Figure
9). This spatial information may be particu-
larly useful in attempts to localize problem
areas within estuaries and to help monitor
any cleanup efforts. Finally, these empirical
assessments can also provide calibration and
validation data for future models of water-
shed N-loading and estuarine impact, models
that combine assessments of watershed land
use (Valiela et al. 19974), estuarine hydro-
dynamics (e.g., Dyer and Taylor 1973, Wood
1979), and estuarine food web dynamics
(Holmes et al. 2000, Hughes et al. 2000) to
predict the observed spatial pattern of N
concentrations, isotopes, and loading impacts.

This study also had some regional lessons
for Pacific estuaries of the U.S. West Coast.
Strong tidal flushing decreased impacts of
watershed N-loading and likely resulted in
relatively strong N-loading from oceanic
sources where coastal upwelling seasonally
increased marine nutrient concentrations.
This situation is a departure from usual ideas
about N-limited eutrophication dynamics in
estuaries. The isotope approach to assessing
watershed inputs was also relatively i 1nsensmve
in this area, because background marine §"°N
values were relatively high (Peters et al. 1978,
Liu and Kaplan 1989, Altabet et al. 1999; this
study) and near those expected for polluted
waters. With high background N concen-
trations and isotope values, moderate rather
than low-level watershed N-loading observed
in other studies (McClelland et al. 1997, Cos-
tanzo et al. 2001) is probably necessary before
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isotope metrics begin to show increases in
pollutant N levels. Nonetheless, careful mea-
surement showed that watershed N could be
detected even above these high backgrounds
in green algae and filter feeders, indicating
food web incorporation of watershed N. This
information about food web uptake cannot be
obtained from DIN concentration measure-
ments, but may be important for fisheries
concerns (Wainright et al. 1996, Fry 2002).
Also, careful isotope measurement done in
sediments and cores can show historical de-
velopment of watershed N-loading (Voss and
Struck 1997, Hodell and Schelske 1998,
Ogawa et al. 2001), a historical baseline that
can be important in restoration efforts.
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Appendix A
Taxonomic Identifications (made by Chris Kitting, University of California, Hayward, Using Frozen Voucher
Specimens)
D Estuary Month Station Sample Description Scientific Name
1 Padilla 11 Barnacle Balanus
2 Padilla Fucus Fucus, young (or Family
Dictyotales?)
3 Padilla 7 Green macroalgae Enteromorpha
4 Padilla 8 Filamentous algae Cladophora
5 Padilla Green macroalgae Ulva
6 Elkhorn April 1 Barnacle Pollicipes polymerus
7 Elkhorn July 2 Barnacle Tetraclita
8 Elkhorn July 2 Fucus (some red algae Mostly Rbodoglossum (some
[Rhodophyta]) Polysiphonia, 1 Enteromorpha)
9 Elkhorn April 4 Filamentous algae Cladophora (fine sp.)
10 Elkhorn July 7 Green macroalgae Ulva
11 Elkhorn July 7 Filamentous algae Cladophora (coarse sp.)
12 Elkhorn July 7 Barnacle Balanus glandula
13 Elkhorn October 9 Green macroalgae Enteromorpha
14 South Slough ~ July 1 Barnacle Balanus glandula
15 South Slough ~ January 3 Green macroalgae Enteromorpha
16 South Slough October 2 Barnacle Pollicipes polymerus
17 South Slough  July 3 Barnacle Balanus (glandula? smooth,
crushed)
18 South Slough October 2 Green macroalgae Ulva
19 South Slough October 11 “Filamentous” (tubular) algae Enteromorpha
20 South Slough  July 8 Fucus Fucus
21 Tijuana Barnacle Balanus glandula
22 Tijuana Filamentous algae Cladophora? (longer cells)
23 Tijuana Green macroalgae Ulva






