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Simulation of Organic Chemical Movement in Hawaii Soils with PRZM:
1. Preliminary Results for Ethylene Dibromide!
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ABSTRACT: Leaching of agricultural chemicals to groundwater is an
environmental issue of major concern in Hawaii. Fumigants used by the
pineapple industry are a possible source of this contamination. In this paper we
report the results of an initial evaluation of the Pesticide Root Zone Model
(PRZM) for highly structured Hawaiian soils. We use PRZM to predict the
transport of the soil fumigant ethylene dibromide (EDB) for two pineapple fields
and compare the simulated concentration profiles with field measurements.
Although preliminary , our results suggest that PRZM may be useful in the future
for pesticide screening and risk assessment in Hawaii. The work reported here
is part of a larger ongoing study concerned with development and application
of methodology for assessing potential groundwater contamination by pesticides.

GROUNDWATER CONTAMINATION IS ONEof the
nati on's most important environment con­
cerns (Pye and Patrick 1983, Sun 1986). The
publ ic's awareness of groundwater contami­
nation has increased significan tly in recent
years because of well-publicized case histories
such as Love Canal (Epstein et al. 1983).

In general, groundwater contamin ation oc­
curs from either poin t or non point sources.
The failure of a waste management facility or
a chemical spill are both examples of point
sources . Applications of chemicals in agri­
culture and forestry (defoliants, herbicides ,
insecticides) constitute nonpoint sources .

The leaching of toxic chemicals , from either
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pointor nonpoint sources, to groundwater in
certain hydrogeologic environments may take
several years. This may lead to a false sense of
environmenta l security for resource users and
managers. However, the eventual detection of
a pollutant in a groundwater system can easily
result in staggering remedial action costs. The
"wait and see" approach for a potential
groundwater contamination problem is sel­
dom acceptable. For this reason, dynamic
simulation models that permit the user to ask
"what if" questions are timely tools .

In this stud y, we report an evaluation of the
Pesticide Root Zone Model (PRZM) for pre­
diction of pesticide transport in highly struc­
tured Hawaiian soils. To place the relatively
simple PRZM model in perspective , we pre­
sent, in Appendix A, the partial differential
equations that describe solute transport. Al­
though preliminary, our results suggest that a
modified version of PRZM may be useful in
the future for pesticide screening and risk
assessment in Hawaii. This investigation is
only part of an ongoing interdisciplinary ef­
fort to limit groundwater contamination by
toxic organic chemicals in Hawaii. The vari­
ous activities included in our conceptual
strategy are shown in Figure I. The diagram
indicates that regulatory activities such as
pesticide registrat ion and monitoring must be
undergirded by objective anal yses such as can
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FIGURE I. Strategy for reducing groundwater contamination by pesticides.

be provided by dynamic simulation and sim­
ple indices of pesticide movement and de­
gradation. These assessment methodologies,
in turn, depend upon a foundation of realistic
data bases for soil properties, chemical prop­
erties, and rainfall /evapotranspiration, as
well as measured environmental concentra­
tions of contaminants (which we term "field
truth") that can be used to evaluate modeling
approaches.

PESTICIDE ROOT ZONE MODEL (PRZM)

The contamination of groundwater systems
with agricultural pest control chemicals is an
issue of concern for many in the United States.
The U.S. Environmental Protection Agency
(EPA) has long recognized the importance of
this issue. EPA has aggressively attempted to
identify existing problems, establish guide­
lines, and develop tools for engineering/
management decisions related to nonpoint
agricultural pollution. PRZM was developed
by an interdisciplinary group of scientists in
the EPA Environmental Research Labora­
tory in Athens, Georgia, to simulate the one­
dimensional transport of a single pesticide
within and at shallow depths below the un­
saturated plant root zone.

Physically based solute-transport models
usually are not practical tools due to data
limitations. The creators of PRZM therefore
elected to adopt less restrictive empirical pro­
cedures describing water movement in the
interest of developing an operational pro­
cedure for leaching assessment. PRZM has
three components: (1) a water-balance algo­
rithm for the soil profile, (2) an erosion algo­
rithm for the soil surface, and (3) a chemical­
transport algorithm for the soil profile. Carsel
et al. (1984) provide a complete description of
PRZM. In the current study, the erosion com­
ponent of PRZM was not utilized . Several
components ofPRZM related to our applica­
tion are outlined below. A more comprehen­
sive review ofPRZM is given in Appendix B.

The water-balance algorithm is made up of
three simple equations that partition water
within and between the surface , the active root
zone, and the remainder of the unsaturated
zone. The elements of the water balance in­
clude precipitation, interception, evapotran­
spiration, runoff, and recharge. The water­
balance calculations are performed on a daily
time step .

Soil water recharge is the residual term in
the PRZM water balance. The runoff calcula­
tion is therefore crucial to estimating how
much water will infiltrate into the soil profile.
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Simulated Organic Chemical Movement in Soils- LOAGUE ET AL. 69

The empirical curve number scheme, popu­
larized by the U.S. Soil Conservation Service
(SCS), is used in PRZM to predict surface
runoff. Once recharge is estimated, PRZM
employs a set ofsimplistic " drainage rules" to
predict soil moisture redistribution by one of
two options.

In the first drainage option, water move­
ment in the soil profile is assumed to be unre­
stricted. Two soil moisture parameters are
needed: field capacity and wilting point. Field
capacity is the value of soil water content
when internal drainage has ceased . Under this
free-drainage rule, soil water in excess of field
capacity is routed to the next lower zone. The
entire soil profile is assumed to drain excess
water with every time step. Drainage under
this rule is most probable for loose sandy soils
of high conductivity. The wilting point is used
as the lower limit to which plants can extract
water from the soil matrix. The field capacity
and wilting point concepts are both very
subjective.

The second drainage option is designed to
simulate water movement in soil profiles that
contain layers of low conductivity. The inter­
ested reader is directed to Carse I et al. (1984)
for a description of the method. Briefly, soil
water redistribution is described for each layer
in the profile by

e!+1 _ o~eo!-or: =exp(-ALlt) (1)
I I

where et +1 is soil water content at the end of
the time step (dimensionless), et is soil water
content at the beginning of the time step (di­
mensionless), ere is soil water content at field
capacity (dimensionless), i is the soil layer, Ais
the drainage rate parameter (T-1

) , and Llt is
the time step (T). A disturbing property of this
scheme is the possibility of exceeding saturated
conditions for a low-conductivity layer when
a more conductive layer is above it. If over­
saturation occurs , PRZM redistributes water
back into overlying layers.

The chemical-transport algorithm is an im­
plict finite-difference approximation to the
one-dimensional advection-dispersion equa­
tion. Solution of the transport equation re­
quired values for soil water content and veloc-

ity throughout the soil profile at each time
step. This information is obtained from the
water-balance algorithm. However, because
the water-balance calculations are not of the
same rigor as the transport calculations, the
concentration profiles predicted by PRZM
are assumed to represent average field condi­
tions and not point values . The form of the
advection-dispersion equation employed by
PRZM includes the effects of sorption, degra­
dation, plant uptake, runoff, and erosion. In
the current study, only the sorption com­
ponent is utilized.

Pesticide soil interactions in the form of
sorption and desorption are commonly de­
scribed by the simple linear relationship
Cs = Kd • Cw , where Cs is the sorbed concen­
tration of pesticides (dimensionless), C; is the
dissolved concen tration of pesticides (ML - 3),
and «, is the sorption coefficient (L3M - 1).
The sorption coefficient is related to the soil
organic carbon content by Kd = Koe·foe(Green
and Karickhoff 1988) , where Koeis the distri ­
bution coefficient for the chemical expressed
on the basis of sorption per unit mass of or­
ganic carbon only, and foe is the fraction of
organic carbon in the soil on a dry mass basis.
The organic carbon-based distribution coeffi­
cient is taken as a constant.

Two of the major assumptions inherent to
the proper application of PRZM are that: (1)
drainage is free and (2) the dispersion coeffi­
cient is independent of soil water content,
velocity, and depth. Table 1 summarizes how
well PRZM stacks up against the physically
based solute-transport model outlined in Ap­
pendix A. Based on its structure and under­
lying assumptions, PRZM is best suited to
areas dominated by deep , well-drained sands
where the water table is near the surface .

A number of researchers have evaluated
PRZM under various environmental condi­
tions (Bush et al. 1985; Carsel et al. 1985,
1986 ; Dean et al. 1984; Jones 1983; Jones et al.
1983; Melancon et al. 1986; J . Wagenet, per­
sonal communication, 1986) . The objective of
the current study was to perform a prelimi­
nary evaluation of how suitable PRZM is for
fine-textured highly structured Hawaiian
soils. For the work reported here PRZM was
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the proper application of PRZM are that: (1)
drainage is free and (2) the dispersion coeffi­
cient is independent of soil water content,
velocity, and depth. Table 1 summarizes how
well PRZM stacks up against the physically
based solute-transport model outlined in Ap­
pendix A. Based on its structure and under­
lying assumptions, PRZM is best suited to
areas dominated by deep, well-drained sands
where the water table is near the surface.

A number of researchers have evaluated
PRZM under various environmental condi­
tions (Bush et al. 1985; Carsel et al. 1985,
1986; Dean et al. 1984; Jones 1983; Jones et al.
1983; Melancon et al. 1986; J. Wagenet, per­
sonal communication, 1986). The objective of
the current study was to perform a prelimi­
nary evaluation of how suitable PRZM is for
fine-textured highly structured Hawaiian
soils. For the work reported here PRZM was
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TABLE I
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Three-dimensional representation
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deployed without modification. Khan and
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cation ofPRZM in their report describing the
interactive data input program "Pre-PRZM."
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WA TER AND SOIL CONTAMI NATION ON OAHU

Groundwater contamination is of special
concern for oceanic islands where an alterna­
tive source of water is not readily available.
Saltwater encroachment caused by pumping
is by far the biggest source of contamination
for an island groundwater system. However,
the leaching of agricultural chemicals to
groundwater systems is increasingly becom­
ing a major concern. Recent groundwater
contamination discoveries in the State of
Hawaii are chronicled by Oki and Giambel­
luca (1985) and by Lau and Mink (1987).

Several municipal wells on the island of
Oahu were temporarily forced closed in the
last few years by the discovery of trace con­
centrations of three potentially toxic chemi­
cals: (1) dibromochloropropane (DBCP), (2)
ethylene dibromide (ED B), and (3) trichlo­
ropropane (TCP). The wells pumping con­
taminated water all exploit the Pearl Harbor
aquifer (Figure 2), which is the most important
source of fresh water on Oahu. Fumigants
used by the pineapple industry to control
nematode populations during the last three
decades are a possible source of the recent
pollution. Both DBCP and EDB are soil

21'20'

FIGURE 2. Locat ion of Pearl Ha rbor aquifer on Oahu
(indicated by stippled area).

fumigants, and TCP is an impurity of a third
soil fumigant known as DD (a mixture of 1,3­
dichloropropene and 1,2-dichloropropane).
Prior to the recent discoveries, pesticides were
not considered a threat to groundwater qua­
lity in Hawaii. The near-surface hydrogeo­
logic environment appeared to preclude deep
leaching of volatile nematicides.

In 1983, the Hawaii State Department of
Agriculture conducted an extensive drilling
and sampling program to identify which land­
use activities had caused groundwater in Cen­
tral Oahu to become contaminated with
DBCP, EDB , and TCP (Wong 1983,1987). In
1985, many of the 1983 sites were redrilled by
the Water Resources Research Center at the
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Simulated Organic Chemical Movement in Soils-LOAGUE ET AL.

TABLE 2

GENERAL CHARACTERISTICS OF FIELDS 4201 AND 4213

4201

71

4213

Location

Area (km")
Average elevation above sea level (m)
Average ra infall (m)

(Giambelluca et al. 1986)
Average pan evaporation (m)

(Ekern and Chang 1985)
Irrigation
Soil subgroup and series

21°29'5" N ,
157°59'8" W
0.8
310
1.9
(gauge 827)
1.3
(gauge 830.3)
None
Humoxic Tropohumults

(Leilehua series)

21°28'10" N,
157°59'58" W
0.6
240
1.4
(gauge 823)
1.7
(gauge 827)
None
Tropeptic Eutrustox

(Wahiawa series)

University of Hawaii. Holes were drilled to
greater depths, adjacent to the original holes,
to confirm the earlier findings and track fur­
thur pesticide movement (Peterson et al. 1985).

DATA BASE AND PARAMETER ESTIMATES

In this study, data from three of the twice­
sampled sites are used to evaluate the per­
formance of PRZM; the sites are identified as
4201a, 4201b, and 4213. We report EDB con­
centration profiles simulated with PRZM.
EDB was selected for our initial study because
only a single application had been made per
field, and measured concentration profiles
were obtained in both 1983and 1985. In future
investigations, we will include simulations of
DBCP and TCP over many applications.

Pineapple fields 4201 and 4213 are located
within the Pearl Harbor watershed near Mili­
lani. General characteristics of the two fields
are given in Table 2. A typical hydrogeologic
cross section for the Mililani area is illustrated
in Figure 3. The observed EDB concentration
profiles for each of the three sites are shown in
Figure 4. The base case parameters used to
excite PRZM in this study are summarized in
Table 3.

Daily rainfall and pan evaporation inputs
for PRZM were estimated for this study from
monthly data. Two simple schemes were used
to convert the monthly information into daily

data: (I) monthly totals applied to the first
day ofthe month and (2) monthly totals disag­
gregated equally to each day of the month.
The daily time step, to which PRZM is re­
stricted, appears to be appropriate for water­
balance calculations in Hawaii (Giambelluca
1987, Giambelluca and Oki 1987).

The PRZM parameter A, required in the
second drainage option, was estimated for this
study from soil water redistribution data re­
ported by Green et al. (1982). Organic carbon

SOIL
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(PERCHEDWATERTABLESOCCURRINGPERIODICALLY)

UNSATURATED BASALT

195-265m

WATER TABLE

BASALTIC AQUIFER

FIGURE 3. Generalized hydrogeological cross section
for the Mililani area (after Or 1987).
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F IGURE 4. Observed ED B con cen trati on pro files for (a) 4201a, (b) 420lb , and (e) 4213. Th e + and 0 rep resent 1983
and 1985 measurement s, respectively.

TABLE 3

BASE CASE PARAMETERS (CASE A) FOR THE PRZM SIMULATIONS

PARAMETER/VARIABLE 420l a 420l b 4213 REFERENCE CONFIDENCE

0.2 0.2 0.2 3 M

0.30 0.30 0.30 4 M

0.45 0.45 0.45 5 H
95 95 95 5 H
J.3 J.3 J.3 6 M

9/8 1 9/8 1 3/83 14 H

I. Climatology
( I) Daily rainfall (mm) (based on Gau ge 827 Gauge 827

represent at ive areas; estimated
from monthly rainfall)

(2) Da ily pan evaporation (mm) Ga uge 830.3 Gauge 830.3
(based on represent at ive areas;
estima ted from monthly pan
evapo ration; monthly mean s
ar e not from the per iod of
simulation)

(3) Pan factor for evapotran­
spira tion for pineapple
(dimensionles s)

(4) Minimum depth for
evap oration (m)

II . Cro p (pinea pple)
(I) Maximum root dep th (m)
(2) M aximum area coverage (%)
(3) Maximum int erception

storage (mm)
(4) Plan ting dat a (mo nth /yea r)

Ga uge 823

Ga uge 826
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III. Hydrol ogy
(I) Runoff curve numbers
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TABLE 3 (continued)

IV. Ma nageme nt /pesticide
(I) ED B ap plication rate 24 1 241 254 8,9 H

(kg-ha")
(2) Application dat a (mon th/year) 9/8 1 9/8 1 3/83 14 H
(3) Incorporati on depth (m) 0.30 0.30 0.30 8 H
(4) Plant uptake Assumed to be 0 M
(5) Decay rat e Assumed to be 0 L
(6) Organic car bon distribution 5.7 x 10- 3 5.7 X 10- 3 5.7 X 10- 3 M

coefficient, Koc (m' kg")

V. Soil
(I) Organ ic car bon, oc(%) Figure Sa Figure 5b Figure 5c 9 H
(2) Hydrodynamic dispersion, 1.5 x 10- 8 1.5 X 10- 8 1.5 X 10- 8 10 M

D (m-sec")
(3) Bulk densit y (kg-m" ')

0.0-0.2m 900 900 900 11 M
0.21-0.5 m 1080 1080 1080 11 M
0.51- 20 + m 1270 1270 1270 11 L

(4) Soil water field capacity
(dimensionless) Assumed at 33 kPa

0.0-0.2m 0.31 0.31 0.31 II M
0.21-0.5 m 0.40 0.40 0.40 II M
0.51-20 + m 0.42 0.42 0.42 11 L

(5) Soil water wilting point
(Dimension less) Assumed at 1.5 MPa

0.0-0.2m 0.25 0.25 0.25 12 L
0.21- 0.5 m 0.25 0.25 0.25 12 L
0.5 1-20+ m 0.25 0.25 0.25 12 L

(6) In itial soil water content Estima ted as midp oint between field L
(dimensionless) capacity and wilting point

73

NOTE: H = high; M = moderate; L = low. References: ( I) Division of Wat er and Land Developme nt (1973); (2) Ekern and Chang
(1985);(3) Ekern (1965); (4) T. Giambelluca, personal communication (1986); (5) D. Bartholomew, persona l communication (1986); (6)
P. Ekern , personal communication (1986); (7) Coo ley and Lane (1982); (8) Wong (1983); (9) Peterson et al. (1985); (10) Khan and Gree n
(1988); ( I I) Gree n et al. (1982); (12) U.S. Soil Conservation Service (1976); (13) G iambelluca et al. (1986); (14) L. Wong, personal
communication (1986).

(2)

content profiles for the three sites are shown
on Figure 5. The sole difference between the
4201a and 4201b parameter estimates in this
study is the organic carbon information.

VOLATILIZATION-DEPENDENT INITIAL

CONDITIONS

A major limitation ofPRZM is the absence
of a volatilization component. Volatilization
is the process by which a compound evapo­
rates in the vapor phase to the atmosphere .
For some cases in this stud y we opt to simulate
the vapor phase with a separate model (Green
et al. 1986). Preprocessing short-term volatili­
zation effects allowed us to better estimate
realistic initial conditions. In the remainder of

this section we review the model used to simu­
late EDB volatilization .

EDB applied by shank injection is taken as
a point source for two-dimensional simula­
tion of residual concentrations. The govern­
ing equation for the initial phase simulations
is

I p(iPCw iPCw ) _ ec;
R

L
D ox2 + OZ2 - KCw - -----at

where

RL = PbKd + () + naKH (dimensionless),

DP

D' = R
L

(UT - 1
) ,

and D P is effective diffusion coefficient
(L2T-1

) , C; is solute concentration in soil
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TABLE 3 (continued)
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(6) Organic carbon distribution 5.7 x 10- 3 5.7 X 10- 3 5.7 X 10- 3 M
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(2) Hydrodynamic dispersion, 1.5 x 10- 6 1.5 X 10-6 1.5 X 10-6 10 M

D (m2sec- l )

(3) Bulk density (kg'm- 3
)

0.0-0.2m 900 900 900 11 M
0.21-0.5 m 1080 1080 1080 11 M
0.51-20+ m 1270 1270 1270 II L

(4) Soil water field capacity
(dimensionless) Assumed at 33 kPa

0.0-0.2m 0.31 0.31 0.31 11 M
0.21-0.5 m 0.40 0.40 0.40 II M
0.51-20+ m 0.42 0.42 0.42 11 L

(5) Soil water wilting point
(Dimensionless) Assumed at 1.5 MPa

0.0-0.2m 0.25 0.25 0.25 12 L
0.21-0.5 m 0.25 0.25 0.25 12 L
0.51-20+ m 0.25 0.25 0.25 12 L

(6) Initial soil water content Estimated as midpoint between field L
(dimensionless) capacity and wilting point
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NOTE: H = high; M = moderate; L = low. References: (1) Division of Water and Land Development (1973); (2) Ekern and Chang
(1985); (3) Ekern (1965); (4)T. GiambelJuca, personal communication (1986); (5) D. Bartholomew, personal communication (1986); (6)
P. Ekern, personal communication (1986); (7) Cooley and Lane (1982); (8) Wong (1983); (9) Peterson et al. (1985); (10) Khan and Green
(1988); (II) Green et al. (1982); (12) U.S. Soil Conservation Service (1976); (13) Giambelluca et al. (1986); (14) L. Wong, personal
communication (1986).

(2)

content profiles for the three sites are shown
on Figure 5. The sole difference between the
420la and 4201b parameter estimates in this
study is the organic carbon information.

VOLATILIZATION-DEPENDENT INITIAL

CONDITIONS

A major limitation of PRZM is the absence
of a volatilization component. Volatilization
is the process by which a compound evapo­
rates in the vapor phase to the atmosphere.
For some cases in this study we opt to simulate
the vapor phase with a separate model (Green
et al. 1986). Preprocessing short-term volatili­
zation effects allowed us to better estimate
realistic initial conditions. In the remainder of

this section we review the model used to simu­
late EDB volatilization.

EDB applied by shank injection is taken as
a point source for two-dimensional simula­
tion of residual concentrations. The govern­
ing equation for the initial phase simulations
is

1 p(iPCw iPCw ) _ JCw

R
L

D Jx2 + J
Z

2 - KCw ------at
where

RL = PbKd + () + naKH (dimensionless),

DP

D' = R
L

(UT-1
),

and D P is effective diffusion coefficient
(L2T-1 ), Cw is solute concentration in soil
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TABLE 3 (continued)
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FIGURE 5. Observed organic carbon profiles for (a) 4201a, (b) 420lb, and (c) 4213. (Note the change in the concentra­
tion scale for 4213.)

'1
1

I-IOOcm-l
a I 0

: ~INJECTED
: FUMIGANT
I
I
I
I
I'i:

aa

z

I" 120cm -I
r-54cm+-66cm--l

FIGURE 6. Cross-sectional geometry for two pineapple beds used for two-dimensional simulations of initial fumigan t
residual mixing. The area of simulation is between the bed centerlines A and B. The source zone for EDB is assumed
to have the dimensions of the small rectangle. The bo ttom boundary is taken to be at 0.4 m.
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Simulated Organic Chemical Movement in Soils-LoAGUE ET AL. 75

solution (ML- 3), K is decay coefficient (T-I) ,
Pb is bulk density (ML-3), eis soil water con­
tent (dimensionless), na is air-filled porosity
(dimensionless), KH is Henry's law con stant
(dimensionless), x , z are spatial coordinates,
and t is time (T).

The initial conditions are C; = Co for all
points where the fumigant is applied and
C; = 0 for all other points. The boundary
conditions are

PbKd e
RG = - - + - + n (dimensionless) 1isK

H
K

H
a

distance between two consecutive
application points (L), d is thickness of
stagnant air layer above soil surface (L),
and Dt}r is the vapor-air diffusion
coefficient (UT-1

) .

An explicit finite-difference scheme was
used to solve equation (2). Processes other
than volatilization, such as biodegradation
and hydrolysis, which also reduce fumigant
residuals, are lumped into the decay term.
Figure 6 illustrates the cross-sectional geome-

acw = 0
ax
acw = 0
ax
acw = 0
az

Here,

where x = 0 for all t

where x = 1 for all t

where z = d for all t

where z = 0 for the
uncovered surface
for all t

try for the systems simulated in this study. We
found that after 15 days a reasonably uniform
fumigant residual distribution was achieved.
Therefore, we used the average concentra­
tions at the end of a given 15-day simulation
with the two-dimensional initial-phase model
as the initial concentrations for subsequent
one-dimensional PRZM simulations. The
parameters used for our volatilization simu­
lations are given in Table 4.

NEAR-SURFACE SIMULATIONS

In this section, PRZM is used to predict
EDB transport within the near-surface profile
based on the 420la data set. Only the top
meter of the soil profile is used for the simula­
tions discussed here. The results are intended
to demonstrate how PRZM functions and to
draw attention to a few nuances inherent
to solute-transport modeling. Detailed field
measurements of EDB concentrations were
not available; therefore, comparison of ob­
served and predicted profiles is not possible
in this section.

Predicted EDB concentration profiles are
shown in Figure 7 for various simulation sce­
narios. Each case is summarized in Table 5.
The space increment (or element size) is set at
2 em for all the near-surface simulations. The
predicted 30-day concentration profiles for
cases A-D are overlayed in Figure 8. The
smearing effect of the dispersion coefficient is
illustrated by comparing cases A and B. The
consequence offree versus restricted drainage
is shown by comparing cases A and C. The
outcome of considering volatilization is dem-

TABLE 4

PARAMETER VALUES USED FOR THE C ASE D VOLATILIZATION SIM ULATIO NS

PARA METER

Decay coefficient, K (sec" )
Henr y's law constant, KH (dimensionless)
Thickness of stagnant air layer above

soil surface, d (m)
Effective diffusion coefficient, DP (m2sec- l )

Vapor- air diffusion coefficient, D~' (rrr'sec'")

VALUE

4.4 X 10- 8

0.0148
0.01

8.3 X 10- 8

6.9 X 10- 6
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lations are given in Table 4.

NEAR-SURFACE SIMULATIONS

In this section, PRZM is used to predict
EDB transport within the near-surface profile
based on the 420la data set. Only the top
meter of the soil profile is used for the simula­
tions discussed here. The results are intended
to demonstrate how PRZM functions and to
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F IGURE 7. Predicted 1981 EDBconcentration profiles for 4201a for (a) monthly rainfall (above) and (b) daily rainfall
(facing page).
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FIGURE 7. Predicted 1981 EDBconcentration profiles for420la for (a) montWy rainfall (above) and (b) daily rainfall
(facing page).
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TABLE 5

A LTERNATIVE SIMULATION SCENARIOS FOR 4201a , 420lb, AND 4213

CASE

0.2 0.2

r----

E 0.4 0.4'-../

I
f-
CL 0.6w 0.6
0

0.8 0.8

1.0 1.0

PARAMETER VALUES AND OPTIONS A B C D

D (m'sec'") 1.5 x 10- 8 0 1.5 X 10- 8 1.5 X 10- 8

EDB application (kg -ha" )
4201 241 241 241 241
4213 254 254 254 254

Drainage option* a a b a
Volatilization No No No Yes

NOTE: Case A corresponds to the base case summarized in Table 3.
*a = free; b = restricted.

(a) (b)
EDB (mg /kg) EDB (mg/kg)

a 20 40 60 80 100 a 20 40 60 80 100

0.0 0.0

FIGURE 8. Composite overl ays of predicted (1981) 30-day EDB con cent ration profiles for 420l a for (0) mon thl y
rainfall and (b) dail y rainfall.

onstrated by comparing cases A and D. The
effect of different rainfall disaggregation
schemes is seen by comparing par ts a and b
in both Figures 7 and 8. The cumulative pesti­
cide flux past the maximum root depth for
cases A - D is traced in Figure 9 for both dis­
aggregation schemes.

Inspection of Figures 7- 9 leads to the fol-

lowing observations :
(1) The near-surface simulatio ns for cases

A - D (Figures 7, 8) show that the daily rainfall
disaggregation scheme results in smoother
concentration profiles. The breaks in the
traces are related to the changes in soil layer
parameters.

(2) The cumulative EDB flux for the vari-

78 PACIFIC SCIENCE, Volume 43, January 1989

TABLE 5

ALTERNATIVE SIMULATION SCENARIOS FOR 4201a, 4201b, AND 4213

CASE

0.2 0.2

,,--.-..,

E 0.4 0.4'-.../

I
f-
0- 0.6w 0.6
0

0.8 0.8

1.0 1.0

PARAMETER VALUES AND OPTIONS A B C D

D (m2sec-1) 1.5 x 10-8 0 1.5 X 10-8 1.5 X 10-8

EDB application (kg'ha-1)
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Volatilization No No No Yes

NOTE: Case A corresponds to the base case summarized in Table 3.
• a = free; b = restricted.
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onstrated by comparing cases A and D. The
effect of different rainfall disaggregation
schemes is seen by comparing parts a and b
in both Figures 7 and 8. The cumulative pesti­
cide flux past the maximum root depth for
cases A- D is traced in Figure 9 for both dis­
aggregation schemes.

Inspection of Figures 7-9 leads to the fol-

lowing observations:
(1) The near-surface simulations for cases

A- D (Figures 7, 8) show that the daily rainfall
disaggregation scheme results in smoother
concentration profiles. The breaks in the
traces are related to the changes in soil layer
parameters.

(2) The cumulative EDB flux for the vari-
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ous simulation cases (Figure 9) illustrates that
the pesticide is leached past the maximum
root depth within months of app lication for
daily rainfall disaggregation and that under
monthlydisaggregation transport is at a slower
rate .

The effects of space increment (~z) selec­
tion are well illustrated in Figure 10. For the
small simulation depth, smoother concentra­
tion profiles result from smaller space incre­
ments . Carse l et al. (1984) suggest a 5-cm in­
crement and a minimum of 30 elements . The
results in Figures 7 and 8 are based on a 2-cm
increment and 50 elements .

Numerical dispersion is usually of concern
when a finite-difference approximation is
made for the advection-dispersion equation
(Anderson 1979). Numerical dispersion asso­
ciated with changes in space increment are
shown in Figure lOa. Physical dispersion, with

(a)
EDB (mg/kg)
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numerical dispersion included , represented by
a suite of dispersion coefficients, is illustrated
in Figure lOb. Carse1 et al. (1984) provide
guidelines to reduce the impact of numerical
dispersion. One of their suggestions , setting
the dispersion coefficient to 0, is conceptually
disturbing. In effect, this amounts to assum­
ing that physical dispersion is effectively ap­
proximated by numerical dispersion. There is
no physical basis for this supposition.

PREDICTED EDB CONCENTRATION PROFILES

In this section, PRZM is used to predict
observed EDB profiles for 4201a, 4201b, and
4213. The measured ED B concentrations for
deep profiles described in the previous section
present an opportunity to evaluate PRZM. We
recognize that PRZM was not developed to
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FI GURE 10. Numerical dispersion experiment s for 420la for Octob er 1981 using the daily rainfall disaggregation
scheme. (a) Changes in space increment (~z, ern) with D = O. (b) Changes in dispersion coefficient (D, cm2day-l ) with
~z = 5 em.
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simulate pesticide movement over the extended
depths included in this study . However, with
the model limitations in mind, we have app lied
PR ZM beyond its intended range to deter­
mine whether it can provide reasonable esti­
mates of the depth of the EDB peak concen­
tration over a multip le-year period following
application. We do not consider this exercise
to constitute a rigorous test of PRZM.

PRZM-simulated water-balance summaries
for pineapple fields 4201 and 4213 are shown
on Figure 11 . Predicted EDB concentration
profiles for the base case (case A) for each of
the three fields are shown on Figure 12. Pre­
dicted ED B concentration profiles for 4201a
(case A) with ± 5% rainfall are shown on
Figure 13. Predicted EDB concentration pro ­
files for the alternative simulation scenarios
summarized in Table 5 are shown on Figure

14. Observed and predicted EDB concentra­
tion profiles for cases A-D for field 4201b
are shown on Figure 15. The space increment
is set at 10 em for each of the deep profile
simulations.

Inspection of Figures 11 -1 5 leads to the
following observation s:

(1) The obvious difference between the two
rainfall disaggregation schemes (Figure 11)
for both the wet (4201) and dry (4213) fields is
that the daily scheme results in more recharge
and therefore faster and greater EDB trans­
port (Figure 12). Khan and Green (1988) re­
port that the movement ofDBCP as predicted
by PRZM for two Maui locations was deeper
with the monthly disaggregation scheme.
Those results are traceable to a reduction
in recharge caused by higher evapotranspi­
ration rates under the daily disaggregation
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FIGURE 11. Water-balance summaries for 4201a, 4201b, and 4213 for (a) monthly rainfall and (b) daily ra infall.
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FIGURE 12. Predicted EDB concentration profiles for case A for 420la and 420lb (above) and 4213 (facing page) for
(0) monthly rainfall and (b) daily rainfall .
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FI GURE 13. Sensitivity of predicted EDB concentration profiles for case A for 420l a for 5% changes in rainfall for
(a) monthly rainfall and (b) daily rainfall.

Simulated Organic Chemical Movement in Soils-LOAGUE ET AL. 83

(a) (b)
4213

EDB (mg/kg) EDB (mg/kg)

4 8 12 16 20 4 8 12 16 20 24

198.3
1984

4 4

..--.. ..--..
E 8 E 8

I Ir-- r--
0... 12 0... 12w w
0 0

16 16

20 20

FIGURE 12 continued.

(a) (b)
EDB (mg/kg) EDB (mg/kg)

0 2 3 4 5 0 2 4 6
0 0

4 1982 4

1982
r---.. 1983
E 8 8

'--"'

I
f-
0- 12 1985

12
w
0

16 -

20
20

FIGURE 13. Sensitivity of predicted EDB concentration profiles for case A for 420la for 5% changes in rainfall for
(a) monthly rainfall and (b) daily rainfall.

Simulated Organic Chemical Movement in Soils-LOAGUE ET AL. 83

(a) (b)
4213

EDB (mg/kg) EDB (mg/kg)

4 8 12 16 20 4 8 12 16 20 24

198.3
1984

4 4

..--.. ..--..
E 8 E 8

I Ir-- r--
0... 12 0... 12w w
0 0

16 16

20 20

FIGURE 12 continued.

(a) (b)
EDB (mg/kg) EDB (mg/kg)

0 2 3 4 5 0 2 4 6
0 0

4 1982 4

1982
r---.. 1983
E 8 8

'--"'

I
f-
0- 12 1985

12
w
0

16 -

20
20

FIGURE 13. Sensitivity of predicted EDB concentration profiles for case A for 420la for 5% changes in rainfall for
(a) monthly rainfall and (b) daily rainfall.



scheme. Khan and Green used temperature to need to be critically evaluated. Although the
estimate evapotranspiration, while in this two disaggregation techniques are equally un-

_____=-st:...:u=dy we used pan evaporation data. The realistic in terms of daily rainfall character­
rainfall rates and parameter values used-in thi-s-istics for the region (T.-Giambelluca, personal ~
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sitive parameters and mod el components. We
believe this exercise will produce a rationale
for modifications to PRZM structure.

(3) The effect of restricted drainage (case C
compared to case A, Figure 14) is a delaying
shift in concentration profiles and an increase
in the peak concentrations.

(4) The observed versus predicted EOB
traces (Figure 15) illustrate that the uncali­
brated PRZM was fairly successful in simu­
lating the depth and time for peak concentra­
tions but failed to represent the shape of the
concentration profiles. In general , the model
overpredicted concentrations by many orders
of magnitude for cases A-C. The simula­
tions that incorporated volatilization (case 0)
matched reality more closely as the simulation
error was reduced. The reader is reminded
that degradation of EOB was not considered
in this study.

(5) The effect of in-field variability upon
predicted EOB concentration profiles is illus­
trated by comparing simulations for 420la
and 420lb (Figure 12). The spatial and tem­
poral variations for observed EOB concentra­
tion profiles are shown in Figure 4 for in-field
variability (420la and 420lb) and between­
field variability (4201 and 4213).

Researchers at EPA are currently modify­
ing PRZM to improve the range of applica­
tion (L. Mulkey, personal communication,
1986). EPA is also attempting to bridge
PRZM to a groundwater model capable of
simulating solute transport in the vadose and
saturated zones (R . Swank, personal com­
munication, 1986). There are several obvious
extensions to the work reported in this paper:

(1) The disaggregation of rainfall from
monthly to daily values in this study is sim­
plistic. In future work, we plan to incorporate
a more realistic disaggregation scheme.

(2) The drainage rules employed by the cur­
rent version of PRZM are inappropriate for
soils in Hawaii. Hawaiian soils are highly
structured. We are hopeful that EPA will ad­
dress the problem of preferential flow paths
in future versions of PRZM.

(3) In this study, we were fortunate to have
data from deep cores for three sites on two
dates . In future work, we plan to use the 1983
OBCP, EOB, and TCP concentration profiles
to help calibrate PRZM. It may then be pos­
sible to evaluate the predictive capabilities of
the model using the 1985 observations.

(4) A number of assumptions concerning
data were made in this study to excite PRZM.
However, the performance of any determin­
istic near-surface solute-transport model such

SUMMARY AND FUTURE WORK as PRZM is probably hampered most by data
uncertainties. We will be in the position to

In this paper we have reported an initial improve upon many of our parameter esti­
evaluation of the suitability of PRZM for use mates in the near future based on supplemen­
in Hawaii. We chose to examine PRZM in an tal data we are obtaining from ongoing field
uncalibrated mode to highlight its limitations measurements and laboratory analyses.
rather than perform a curve-fitting analysis. Many institutional models have been de­
Our results suggest that PRZM can , upon veloped to simulate solute transport. How­
modification and extension by skilled indi- ever, there has been virtually no comparative
viduals, be used effectively in Hawaii. How- evaluation of modeling techniques. As already
ever, we feel that PRZM as it is currently noted, the lack ofdata often prevents rigorous
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in Hawaii. Table 6 summarizes the confidence test the limits of PRZM with synthetically
we have in individual model components. generated data. The proposed data base would

We have addressed only deterministic as- be created using a physically based model of
pects in this study. Of course, the spatial and the same spirit as presented in Appendix A.
temporal variability of rainfall, near-surface The input parameters for the physically based
soil hydraulic properties, and chemical char- model would be described stochastically to
acteristic are knotty problems that need to be represent various near-surface and hydroge­
considered in the application of a model such ologic environments. The type ofcomparative
as PRZM. evaluation suggested here should help to char-
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TABL E 6

SUMMARY OF PRZM COMPONENT SUITABILITIES FOR ApPLICATION IN HAWAII

COMPONENT

I. Water-balance algorithm
Interception/evapotranspiration
Run off
Drainage

II. Chemical-transport algorithm
Advection and dispersion
Sorption

acterize the liabilities of using PRZM. By
identifying the model components that are
most vunerable under specific conditions, it
should be possible to establish guidelines for
efficient use ofPRZM. Such a model will help
resource managers, confronted with potential
groundwater contamination problems, un­
ravel the Gordian knot associated with man­
agement decisions.

LEVEL OF CONFIDENCE

Moderate
Low
Low

Moderate
Moderate

:x[KX<F,h) :~J + :y[Ky(F,h) :;J

+ :z [Kz(F,h) G~ + I)J (A. 1)

{
C(F,h)} Oh= pg [w(F) + n(F)f3] + pg iii

APPENDIX A

where K is hydraulic conductivity (LT-1 ) ,

F is geologic formation or soil type, h is pres­
sure head (L), p is the density ofwater (ML- 3),
g is the acceleration due to gravity (LT- 2 ) ,

Solute-Transport Equation co is the coefficient of compressibility of the
solid (ML-IT-2 ) , n is porosity (dimension-

The various mechanisms that control con- less), f3 is the coefficient of compressibility of
taminant transport and attenuation in the un- the fluid (ML- IT - 2

) , C is specific water ca­
saturated and saturated zones are reviewed by pacity (L-I), X , y , Z are spat ial coordinates,
Nielsen et al. (1986), Yaron et al. (1984), and and t is time (T).
Freeze and Cherry (1979). In general, the The flow equation describes a heteroge­
movement of a solute in porous media is neous ani sotropic geologic environment. The
described by the coupled groundwate r flow pressure head solution h(x, y , z, t) for the
and advection-dispersion equations. Solute coupled unsaturated- saturated flow system
transport is a three-dimensional transient can be easily converted to a hydraulic head
phenomenon. Most often, as in this study, solution H(x, y , z, t) through the relationship
pesticide transport is simulated solely in the H = h + z, where z is the elevation head. So­
unsaturated zone . Ho wever , groundwater lution of equation (A. 1) requires knowledge
contamination by~ agricul turaL chemicals~does_ _oLthe.characteristiccufvesK(h).andO(h).The
not end at the water table. In fact , the fate of specific water capacity C(h) is the slope of the
these pollutants, once they reach an aquifer, is O(h) relationship , where 0 is the soil water
of the utmost concern . For this reason, the content. The hypothetical characteristic curves
equations reviewed here describe unsaturated- in Figure A. l illustrate that even at a small
saturated solute transport. negative pressure head (ha) the soil remains

The three-dimensional transient unsatu- satura ted. Here, h, is known as the air entry
rated-saturated groundwater flow equation pressure head, K S is the saturated hydraulic
is conductivity, and n is the porosity. On the
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equations reviewed here describe unsaturated- in Figure A.I illustrate that even at a small
saturated solute transport. negative pressure head (ha) the soil remains

The three-dimensional transient unsatu- saturated. Here, ha is known as the air entry
rated-saturated groundwater flow equation pressure head, K S is the saturated hydraulic
is conductivity, and n is the porosity. On the
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continuous and is at atmospheric pressure.
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and does not consider the velocity of water
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FIGURE A.I. Hypothetical characteristic curves. The
K(h) and O(h) curves are further complicated by hysteretic
effects; n is porosity , 0 is soil water content, K' is the
saturated hydraulic conductivity, h. is the air entry pres­
sure head .
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based on several assumptions:
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porous medium is valid .
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relation p = pgh; therefore, h = 0 on the water
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O(x, y, Z, t) are a function of h and therefore
can be easily evaluated from the solution of
equation (A.1). The transport equation is also
tied to the flow equation by the velocity terms.

The dispersion tensor is defined as

where D'" is the coefficient of mechanical dis­
persion and DP is the effective liquid diffusion
coefficient. The average fluid velocity v is re­
lated to the Darcy velocity by the relationship
v = q/O. The coefficient of mechanical disper ­
sion is given by

effects of chemical and biological reactions
within the unsaturated-saturated flow sys­
tem. These reactions include volatilization,
sorption-desorption, biological degradation,
plant uptake, chemical decay, oxidation­
reduction, and precipitation-dissolution. The
mathematical relationships that describe these
processes enjoy different levels of rigor . Each
new component added to the advection­
dispersion equation requires additional pa­
rameters and increases the number of under­
lying assumptions upon which the model is
based.

The coupled numerical solution of equations
(A.1) and (A.2) comprise what we shall refer
to as a "physically based model." The model
is a deterministic conceptual representation of
solute-transport processes.

Davis and Segol (1985) and Voss (1984)
each describe models that simulate fluid flow
and solute transport in unsaturated-saturated
porous media . The utility of physically based
models for field problems is often restricted by
staggering data requirements and computer
capacity limitations. The physically based
model described here, although certainly not
the end of the theoretical rainbow, is probably
most useful for the development of concepts
and testing of simpler models. Our objective
in presenting the physically based model here
has been to set a standard to which the reader
can compare the less rigorous PRZM de­
scribed in the main body of the paper and in
Appendix B.

(A.2a)

(A.2b)

Dij = D{j(v, t) + DP(O, t)

where (f.ijmn is the dispersivity (L) , Vm and Vn are
the components of the flow velocity in the m
and n directions, respectively, and Ivi is the
magnitude of the velocity vector.

The dispersivity tensor for an anisotropic
porous medium is of the fourth order, with 81
components. Scheidegger (1961) shows that
for an isotropic porous medium the dispersivity
can be defined by longitudinal and transverse
dispersivity constants. The three-dimensional
second-order dispersion tensor for an isotropic
porous medium has nine components:

APPENDIX B

Inspection of equations (A.2a) and (A.2b)
suggests that at higher velocities dispersion
willbe controlled by D m

, while at lower veloci­
ties DP will dominate.

The advection-dispersion equation de- Pesticide Root Zone Model (PRZM)
scribed here is based on many assumptions,
including the following: PRZM uses a compartmentalized design to

1. Dispersionin porous material is Fickian, simulate_pne:djmensiQnllL\,eIticat_ch~mical

2. The dispersivity tensor is symmetrical movement in unsaturated soil systems near
(the medium is isotropic) and has its principal the soil surface. The structure of PRZM, as
direction aligned with the velocity vector. utilized in this study, is based upon the soil

3. Dispersion in partially saturated media profile representation shown in Figure B.l.
follows the theory developed for saturated The discussion in this section is a summary of
flow. the second chapter of Carsel et al. (1984).

The advection-dispersion equation as pre- The mass balance equations for the surface
sented here can be expanded to include the zone in Figure B.l are
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Below root zone (i = n + 1, m; m is the bottom
of the soil profile):

e[+l = e[ + P - Q - t, - e, (B.2a)

Root zone (i = 2, n; n is the bottom of the root
zone):

if ew p < el < 0.6 ef e

.. (B.5b)

(B.5c)

ETp = SMFAC . ETp

ET = 0 if e < ewp
p -

where efe is soil water content at field capacity
(dimensionless) and SMFAC is a soil water
factor (dimensionless). The SMFAC param­
eter is internally set in the code to reduce ETp

linearly according to the limits imposed in the
above equations. Finally, ETp is estimated
from pan evaporation as ETp = Cp • PE, where

where R is a retention parameter (dimension­
less). The retention parameter is estimated by
the expression R = 1000/CN - 10, where CN
(dimensionless) is the curve number that is a
function of soil type , drainage properties, crop
type , and management practice. In PRZM,
curve numbers are determined each day as a
function of soil water status in the upper soil
layers.

The daily evapotranspiration (ET) is divided
among evaporation from canopy, soil evapo­
ration, and crop transpiration. Total demand
is first estimated and then extracted sequen­
tially from crop canopy storage and from each
layer until wilting point is reached in each
layer or until total demand is met. Evapora­
tion occurs down to a user-specified depth.
The remaining demand, crop transpiration, is
met from the layers between this depth and
active rooting depth. The actual evapotrans­
piration demand is estimated as

ET; = Min [ (e: - etp)hi ;ETp- it ET; ]

(B.4)

where ET; is actual evapotranspiration from
layer i (L) , hi is the depth factor for layer i
(dimensionless), er'p is wilting point soil water
content in layer i (L), and ETp is potential
evapotranspiration (L). The depth factor
linearly weights the extraction of ET from the
root zone with depth in a triangular fashion.

Evapotranspiration is also limited by soil
water availability. The potential rate may not
be met if sufficient soil water is not available
to meet the demand; PRZM modifies the
potential by the following equations:

ETp = ETp if el ~ 0.6 efe

(B.5a)(B.2c)

(B.la)

(B.2b)

(B.l b)

where e[ is soil water content in layer i of the
noted zoneondayt (L) , Pis ra infall minus ..
interception (LT-1 ) , Q is runoff (LT-1

) , s,
is evaporation (LT-1

) , U; is -transportation
(LT-1 ) , and I, is percolation out of zone i
(LT-1 ).

Runoff estimates with PRZM are based
upon a curve number approach,

(P - 0.2R)2 (B.3)
Q = P+ 0.8R

AilXo(cwe)
at

AilXo( CsPs)
JA DS - JDES - JDS = at

where A is cross-sectional area of soil column
(L2), ilX is depth dimension of compartment
(L), Cw is dissolved concentration of pesticide
(ML- 3), Cs is sorbed concentration of pes­
ticide (dimensionless), e is volumetric water
content of soil (dimensionless), Ps is soil bulk
density (ML-3), t is time (T), JD is mass rate of
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Mass balance relations for the subsurface are
identical to the surface except for the runoff
term.

The PRZM water-balance algorithm for this
study is given by

Surface (i = 1):
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Below root zone (i = n + 1, m; m is the bottom
of the soil profile):

where R is a retention parameter (dimension­
less). The retention parameter is estimated by
the expression R = 1000/CN - 10, where CN
(dimensionless) is the curve number that is a
function of soil type, drainage properties, crop
type, and management practice. In PRZM,
curve numbers are determined each day as a
function of soil water status in the upper soil
layers.

The daily evapotranspiration (ET) is divided
among evaporation from canopy, soil evapo­
ration, and crop transpiration. Total demand
is first estimated and then extracted sequen­
tially from crop canopy storage and from each
layer until wilting point is reached in each
layer or until total demand is met. Evapora­
tion occurs down to a user-specified depth.
The remaining demand, crop transpiration, is
met from the layers between this depth and
active rooting depth. The actual evapotrans­
piration demand is estimated as

ET; = Min [ (e: - etp)J',u; ETp- it ET; ]

(BA)

where ET; is actual evapotranspiration from
layer i (L), J',ji is the depth factor for layer i
(dimensionless), erp is wilting point soil water
content in layer i (L), and ETp is potential
evapotranspiration (L). The depth factor
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root zone with depth in a triangular fashion.

Evapotranspiration is also limited by soil
water availability. The potential rate may not
be met if sufficient soil water is not available
to meet the demand; PRZM modifies the
potential by the following equations:
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(R5a)
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ETp = 0 if et
.::;; ewp (R5c)
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linearly according to the limits imposed in the
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where e: is soil water content in layer i of the
noted zone ondayt(L),Pis rainfall minus­
interception (LT-1 ), Q is runoff (LT-1

), E i
is evaporation (LT-1

), U; is. transportation
(LT-1 ), and Ii is percolation out of zone i
(LT-1 ).

Runoff estimates with PRZM are based
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