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SUMMARY  
Although the Wells-Riley equation for airborne infection is used to estimate infection risk in a 
range of environments, researchers generally assume complete air mixing and don’t consider 
either the stochastic effects in a small population or the proximity of susceptible people to an 
infectious source. This study presents stochastic simulations using the Wells-Riley model to 
evaluate the infection risk and variability among small populations such as hospital patients. 
This is linked with a simple multi-zone ventilation model to demonstrate the influence of 
airflow patterns and proximity to an infectious source on the risk of infection for an 
individual. The results also highlight that risk assessments made using data derived using 
complete mixing assumptions may significantly underestimate the real risk for those close to 
the infectious source.  
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INTRODUCTION 
Airborne transmission of infectious diseases has been the subject of significant interest over 
recent years with increasing evidence that indoor air quality has a significant influence on the 
health of individuals and plays an important role in the transmission of infection. Pulmonary 
tuberculosis is an archetypal example of a disease that is transmitted by an airborne route and 
currently a particular concern as it is once again a world-wide health problem, compounded 
by the increased susceptibility to infection with M. tuberculosis in HIV/AIDS patients and the 
emergence of multi drug-resistant tuberculosis (MDR-TB) (Tancock 1998). The 2003-03 
SARS outbreak was initially thought to be spread through contaminated droplets however the 
infection of individuals without sufficiently close contact with a known case (Scales et al 
2003), and retrospective studies of the building airflow patterns suggested that airborne 
dispersal may play a significant role (Li et al 2005). Airborne dissemination of pathogens has 
also been implicated in many hospital-acquired infections including nosocomial outbreaks of 
Staphylococcus aureus (including MRSA) (Kumari et al. 1998), Acinetobacter spp (Allen and 
Green 1987) and viral outbreaks such as norovirus.  
 
Despite the global scale of the problem, relatively little research has been undertaken to 
quantify the risk of airborne transmission in enclosed spaces, and the majority of previous 
studies stem from the work of Wells (1955) and Riley et al. (1978), using an analytical 
expression known as the Wells-Riley equation. Although this has been applied to numerous 
risk analysis studies, including the evaluation of personal protective equipment (Gammiatoni 
and Nucci 1997), tuberculosis risk in buildings (Nardell et al. 1991) and the dispersion of 
Bacillus anthaicis from envelopes (Fennelly et al. 2004) the model has a number of 
limitations (Beggs et al 2003). In most cases the analysis assumes that the air is well mixed 
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leading to a uniform concentration of bioaerosols throughout the space so does not account 

for the influence of proximity between infective and susceptible people. The model also does 

not consider the stochastic effects inherent in a small population, resulting in the 

quantification of the average risk only rather than the expected range.  

 

This study aims to address some of the limitations with the Wells-Riley model by developing 

a stochastic formulation of the model and combining it with simple zonal-mixing ventilation 

equations. This enables evaluation of the stochastic effects among small populations such as 

hospital patients as well as the effect of airflow and proximity to the infectious source. The 

model is used to investigate the influence of air mixing on the risk of infection in a 

hypothetical hospital ward housing 18 patients in 6 bedded bays. Monte-Carlo simulations are 

used to model typical risk profiles for each scenario.  

 

METHODS  
 
Fully Mixed Model 
The Wells-Riley model for airborne infection is typically used to predict the number of new 

cases infected, NC, over a period of time t (s), in an indoor environment ventilated at a 

constant rate Q (m3
/s) 
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Here S represents the number of susceptible people in the space, I represents the number of 

infectious people and p (m
3
/s) is the pulmonary ventilation rate of susceptible individuals. q 

represents a unit of infection termed a ‘quantum’, introduced by Wells (1955) to express the 

response of susceptible individuals to inhaling infectious droplet nuclei. He postulated that 

not all inhaled droplet nuclei will result in infection and defined a quantum of infection as the 

number of infectious droplet nuclei required to infect 1-1/e susceptible people. Equation (1) is 

based on the Poisson law of small chances, which assumes that in a small enough time period 

only one new infection is likely. This is suitable for most airborne infections where it is easy 

to define a time period that approximates to this criterion. Although the Wells-Riley model is 

derived from this probabilistic approach, it is more commonly used in deterministic 

simulations, with equation (1) used to predict average infection risk in different scenarios. 

However, treating the model as a deterministic process is only strictly suitable for large 

populations, and to understand the risks for small numbers such as hospital patients it is 

necessary to apply the model in a stochastic simulation.    

 

By considering a population of S(t) susceptible people at time t and assuming the number of 

infectors is constant (i.e. new cases do not become infectious themselves in the timescale of 

the model), equation (1) can be derived from classical deterministic infection theory [Noakes 

et al 2006, Renshaw 1991) where the infection rate, λ is equivalent to    

Q

Iqp
=λ                      (2) 

The equivalent stochastic process can be derived by considering the probability that there are 

S uninfected susceptibles at time t, =)(tpS Pr( S susceptibles at time t) 



In a small time interval, dt, such that the probability of more than one infection is negligible, 

two outcomes are possible; one new infection with probability dtSλ  or no new infection with 

probability dtSλ−1 . Therefore the process can be expressed as 

( ) ( )1)(1)()( 1 ++−=+ + SdttpdtStpdttp SSS λλ ,                   (3) 

which as dt tends to zero yields the differential equation 
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To develop a numerical model to simulate the process described by equations (3) and (4), the 

technique described by Renshaw (1991) is applied. In this approach the process is considered 

to consist of a series of infection events where the susceptible population decreases by one in 

each case. Rather than run the simulation based on a fixed time step considering the event 

probability at each time, the inter-event times are constructed using a random variable, 

yielding a more efficient numerical process with less simulation steps. As shown by Renshaw, 

for a population of S susceptibles, the time T to the next event is an exponentially distributed 

random variable with 

)exp()Pr( SttT λ−=≥                     (5) 

This can be used to simulate the time to the next event, t using a random number 10 ≤≤ Y  by 

the equation 

)/()ln( SYt λ−=                      (6) 

With λ defined by equation (2), the result in equation (6) can be easily applied to derive a 

series of inter-event times corresponding to the new cases of infection amongst the 

susceptible population in a ventilated indoor environment.  

 

Zonal Model 
The fully-mixed model is extended for application to a space divided into multiple zones. The 

air within each zone is treated as uniformly mixed; however the mixing between the zones is 

limited, leading to a concentration distribution throughout the space. The development of this 

model is carried out in two distinct stages; a zonal ventilation model to evaluate the 

distribution of infectious material followed by the extension of the infection risk model to 

evaluate the expected rate of new infections in the ward.  

 

Ventilation Model 
The influence of air mixing was simulated by treating the infectious quanta as a deterministic 

variable equivalent to a contaminant concentration in the environment. The model was 

developed to simulate a typical hospital ward layout as shown in Figure 1 comprising three 

identical 6-bedded bays that open onto a common corridor. Each bay is divided into two equal 

zones and the corridor split into three equal zones corresponding to the adjacent ward with 

ventilation air supplied and extracted from each zone and mixing between adjacent zones.  

The concentration of infectious material in the i
th

 zone, Ci,  can be approximated by 

considering the generation, ventilation removal and inter-zonal transfers to give  
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Here the term qiI i represents the generation rate in the zone, Qoi is the extract ventilation rate 

in zone i and βik and βki represent the volume flow rate of air to and from adjacent zones k 



respectively. In this study this is a constant value in both directions across all zonal 

boundaries, βo. Under steady state conditions equation (7) is equal to zero for each zone and 

yields the matrix system (8) that is solved numerically using Gaussian elimination technique. 
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Infection Risk Model 
The infection risk model is extended to evaluate the risk in each of the zones within the 

model. The infection rate described by equation (2) is now zone dependent with the term qI/Q 

replaced by the zone concentration Ci from the solution of equation (8), giving 

pCii =λ                     (9) 

As previously the Poisson assumption is made, such that only one new infection occurs in a 

small time-step dt and the model is formulated to simulate the inter-event times. However 

now the new infection may occur in any one of the occupied zones within the model, so it is 

necessary to examine the relative probability of infection in each zone to determine which 

zone each infection event occurs in. At each time step the probability that the next infection 

event will be in zone i is given by 

Pr(infection in zone i)
)(kR

Siiλ
=  where ∑

=
=

9

1

)(
k

kkSkR λ                          (10) 

with the inter-event time now given by 

)(/)ln( kRYt −=                     (11) 

Numerical simulation of this process again follows the methodology described by Renshaw:  

(i) calculation of  
)(kR

Siiλ
 for each zone at the current time-step 

(ii) generation of a first random number,  10 ≤≤ Y to find the inter-event time 

(iii) generation of a second random number 10 ≤≤ X  to establish which zone is 

infected based on infection in zone 1 if )(/0 11 kRSX λ≤≤ , zone 2 if 

)(/)(/ 2211 kRSXkRS λλ ≤≤  etc.  

(iv) change Si to Si-1 in infected zone i 
 

Numerical Procedures 
Excel and VBA (Microsoft Corporation, USA) were used to determine numerical solutions to 

both the fully mixed and zonal infection models. In both cases Monte-Carlo techniques were 

used to run each model up to 1000 times to calculate average behaviour as well as variation 

due to the stochastic effects through calculating the standard deviation. As the models are 

defined in terms of inter-event times, which are different in every simulation due to the 

random number in the event time definition, it was necessary to map each simulation onto a 

regular time scale in order to be able to find average data across more than one simulation. 

The simulations were mapped onto a 170 hour time period divided into hourly steps, then 

plotted every 3 hours to enable the data to be clearly seen.  



RESULTS  
The models described above were used to investigate the influence of stochastic and 

proximity effects through the application of the mixing model to a simple ward layout shown 

in Figure 1. The simulations assumed a full ward occupancy of 18 patients (6 per bay) of 

which one located in zone 1a was assumed to be infectious and producing quanta at a rate of 

30 quanta/hour (Riley et al. 1978, Beggs et al. 2003). All patients were equally susceptible 

and breathed the ward air at a constant rate of 0.01 m
3
/min (10 l/min). Ventilation air was 

assumed to be supplied and extracted to each zone at a constant rate of 3 m
3
/min, with the 

total ventilation rate of  27 m
3
/min used in the fully mixed model. The inter-zone mixing 

parameter βo was constant across all zone boundaries with a value of 9 or 27 m
3
/min 

depending on the simulation. This value was estimated by considering the inter-zone volume 

flow rate to be given by the expression ½vA where v is the average air velocity at the interface 

and A is the interface area (Beggs and Sleigh 2002). For an open area of 6 m
2
 and an average 

air velocity of 0.05 m/s, this yields a mixing flow rate of 9 m
3
/min. 

 

  

Figure 1. Schematic of the hypothetical ward layout used in the study showing the nine 

computational zones and the possible air transfers through ventilation and inter-zonal mixing.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a) Comparison of a single simulation run to 

show a possible progression predicted by both 

models. 

(b) Average results from a Monte-Carlo 

simulation with 100 runs. Error bars show 

1 standard deviation from average value. 

Figure 2. Comparison of disease progression predicted by the fully mixed stochastic model 

with the average behaviour predicted by equation (1). 
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The two models are initially used to examine the importance of the stochastic nature of 

infections and the proximity of the susceptibles to the index case. Figure 2 shows results from 

the fully mixed stochastic model, compared to the deterministic behaviour described by 

equation (1). It can be seen from Figure 2 (a) that both models show the same trend, however 

the progression of an infection predicted by the stochastic model varies considerably about 

the average line provided by the deterministic model. Figure 2 (b) presents the average results 

from 100 simulations, with the error bars representing one standard deviation in the data. This 

highlights the extent of the variability that could be expected in the progression of an 

infection amongst a small population. Although the fully mixed stochastic average is 

equivalent to equation (1), using this equation alone to evaluate risk yields only a single value 

without the likely variability that occurs in reality.  

 

 

Figure 3. Effect of air mixing on the total rate of infection. 

 

The results in Figures 3 and 4 compare the zonal model with fully mixed results for two 

different mixing rates, βo. Figure 3 considers the effect of air mixing on the total number of 

new cases across the whole ward. With a value of βo = 9 m
3
/s the overall infection rate is 

much slower than fully mixed model, with less than 2/3 of the predicted total number of cases 

after the 170 hr time period. Increasing the mixing to βo = 27 m
3
/s increases the rate at which 

the infection spreads with now around 85% of the fully mixed model. 

 

Figure 4 presents the infections in each ward, again with the interzonal mixing factor βo = 9 

m
3
/s and βo = 27 m

3
/s. It is clear from these results how significant the proximity to an index 

case is in the risk of a disease spreading. In both cases the patients in the same ward as the 

index case are rapidly infected, however those in other wards have a much lower risk. With βo 

= 9 m
3
/s the total number of infections in ward 3 are less than 1/3 of ward 1 after 170 hours, 

with the infection rate becoming more uniform as the mixing increases. This also gives an 

initial indication how the ventilation can either protect or expose other patients depending on 

the degree of mixing between zones.  

 

 

 

 



 

 

 
 
 
 
 
 
 
 
 
 
 

(a) βo = 9 m
3
/s (b) βo =27 m

3
/s 

Figure 4. Effect of air mixing on infection rate in individual wards. Average data obtained 

from 100 simulation runs. 

 

DISCUSSION 
The model presented in this paper gives some initial insight into the role of the ventilation 

system in the transmission of airborne infection, as well as the importance of stochastic and 

proximity effects. A stochastic formulation run as a Monte-Carlo simulation, even for a fully-

mixed environment gives a more realistic assessment of the actual level of risk in a space and 

the range of expected new cases that may be seen. This value is potentially significant for 

those using Well-Riley models for risk assessment purposes as it enables a confidence level to 

be assigned to a prediction as well as designing any controls with the knowledge of the likely 

bounds of an outbreak. The influence of proximity, while intuitive is rarely considered in 

airborne infection models. Although the ventilation model presented here is too simple to 

model a real environment, translating this model into a more sophisticated ventilation network 

model, as used by industry to design indoor airflows, is straightforward and the subject of on 

going work. Linking the Wells-Riley simulation with such a model will enable the relative 

risks, in terms of people infected, to be quantified for different airflow regimes or infector 

locations. 

 

As well as giving some insight into the role of the ventilation system design the model 

presented in this paper raises some important issues relating to the use of quanta values in 

evaluating infection risk in indoor environments. The results show a clear dependence of risk 

on the proximity to the infector however most quanta values quoted in the literature are 

calculated from outbreak data and do not consider the influence of proximity. In this study a 

value of 30 quanta/hr was assumed which in the zonal stochastic model resulted in an average 

number of infections across the whole ward of 10.2 in the 170 hour period. Quanta values 

calculated in the literature take the total number of infections over a period of time, assume 

complete mixing and manipulate equation (1) to find a value for quanta production. In this 

case, using 10.2 new cases among 17 susceptibles in a fully mixed space with a total 

ventilation rate of 27 m
3
/min over 170 hours, equation (1) yields a quanta production rate of 

14.5 quanta per hour, less than half the actual value. This suggests that using a fully mixed 

model to determine quanta production rates from outbreak data may significantly 

underestimate the quanta values in environments such as multi-zoned hospital wards or office 

buildings where the air will be far from fully mixed. In addition the subsequent use of such 



values derived from outbreaks to estimate risk and design control procedures may 

significantly underestimate the actual risk, particularly for susceptible people in closer 

proximity to the index case.  

 
CONCLUSIONS 
The models presented in this study give some valuable insight into the variability in the risk 

of infection in a small population as well as the influence of the ventilation system on the 

cross-transmission of infection. Although the study focuses on theoretical models, the 

concepts are a potentially powerful addition to a ventilation system design tool by enabling 

airborne concentrations to be related to actual risk to occupants. The results also demonstrate 

the importance of proximity to an infectious source in the risk of transmission and highlight 

how risk assessments and control strategies based on assuming fully mixed conditions could 

significantly underestimate the infection risk for some individuals. 
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