
This is a repository copy of CFD modelling of a hospital ward: Assessing risk from bacteria
produced from respiratory and activity sources.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/7704/

Proceedings Paper:
Hathway, A., Noakes, C.J. and Sleigh, P.A. (2008) CFD modelling of a hospital ward: 
Assessing risk from bacteria produced from respiratory and activity sources. In: Indoor Air 
2008 : The 11th International Conference on Indoor Air Quality and Climate. Indoor Air 
2008, 17-22nd August 2008, Copenhagen, Denmark. , Copenhagen . 

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 
See Attached 

Takedown 
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/


CFD modelling of a hospital ward: Assessing risk from bacteria produced 
from respiratory and activity sources 
 

Abigail Hathway
*
, Catherine Noakes and Andrew Sleigh 

 

Pathogen Control Engineering Research Group, School of Civil Engineering, University of 

Leeds, UK 

 
*
Corresponding email: A.Hathway@Sheffield.ac.uk 

 

 

SUMMARY  
It has been identified that potentially pathogenic bacteria, such as MRSA can be released 

from the skin during routine activities within hospital wards, such as bed-making, washing 

patients, dressing and walking. CFD is often used to study airflow patterns and ventilation 

regimes within hospitals, however such models tend not to consider these types of dispersal 

mechanisms and concentrate on respiratory transmission, using a point source at the mouth 

position. A zonal source is demonstrated to represent this release from activity within CFD 

simulations using both passive scalar and Lagrangian particle tracking. Sensitivity studies are 

carried out for point and zonal sources. The point source was found to not adequately 

represent the release of bacteria from a zone and therefore the zonal source is recommended 

to be used in conjunction with this type of source in order to simulate both respiratory and 

activity sources of bacteria. 
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INTRODUCTION 
Health-care Associated Infection (HAI) is a world wide concern with 2 -3 million people in 

Europe infected annually (Pittet et al., 2005). Although the most significant route for the 

transfer of infection is via contact spread there is evidence that the airborne route may also 

have importance (Brachman, 1970). Infection resulting from airborne transfer of bacteria is 

not only caused by inhalation of infectious particles, but may also be due to contamination of 

surfaces by these particles. This contamination may then lead to further infection through 

transport on health care workers (HCWs) or patient�s hands.  

 

Computational Fluid Dynamics (CFD) is a useful tool to understand the dynamics of 

infectious particles through the air. It has been used successfully to study the effect of 

different ventilation regimes, and layouts of wards and isolation rooms (Zhao et al., 2004; 

Noakes et al., 2006; Chang et al., 2007). This can extend to modelling other engineering 

infection control interventions such as the effect of UV-C irradiation (Noakes et al., 2004). 

 

Modelling the transport of infectious particles in indoor environments tends to focus on 

respiratory diseases such as SARS and TB and for this reason the source of bio-aerosols is 

usually taken as being at the head of the patients bed. However this is not the only release 

mechanism of bacteria that is important for hospital acquired infection. Bacteria such as 

Staphylococcus aureus, including MRSA are known to colonise the skin and can become 

released into the air on skin flakes due to friction during activity. Noble (1962)  found that a 

patient colonised with Staphylococci could rapidly contaminate their environment, and more 

recently Shiormori et al. (2002)  concluded that the process of bed-making resulted in 
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airborne counts up to 26 times that in the resting period. Within a respiratory ward it has been 

shown that airborne bacteria sampled over the course of a day fluctuated with activity 

(Roberts et al., 2006). This type of release from activities such as bed-making will not occur 

at a single point, as can be assumed when a cough is the release mechanism. 

 

There is currently growing interest in simulating movement directly within CFD models (Shih 

et al., 2007; Mazumdar and Chen, 2007). Despite the complexity of these models they still 

only provide limited results for one particular occasion, where as in reality the activities will 

be enacted differently on every occasion, resulting in different dispersal mechanisms. By 

modelling the motion directly there is the risk of giving the user, or clients, an incorrect sense 

of certainty about the results. However it is possible to identify the spatial zones over which 

an activity occurs, and for this reason the concept of the zonal source was introduced. The 

zonal source aims to represent a time-averaged release from activity within a steady state 

model. This applies a time averaged concentration for the release which in reality varies in 

time and space over the entire zone the activity occurs in. A previous validation study 

(Hathway et al., 2007) showed the time-averaged concentration distribution from a moving 

source was well represented by a zonal source. However the results from the moving source 

could differ greatly from the point source depending on the ventilation regime.  

 

This paper aims to demonstrate the application of a zonal source bio-aerosol release model 

within a hospital side room and compare the risks to patients and staff from a zonal release 

with a point source. The zonal source will be tested for sensitivity to size and risks from this 

source compared to that with a point source. A sensitivity study on the location specification 

of the point source was also carried out to enable a comparison with the possible errors from 

the zonal source application.  

 

METHODS  
Numerical simulations of the air flow pattern and bio-aerosol transport are carried out using 

the commercial package Fluent 6.2. The simulated side room is mechanically ventilated in 

accordance with the NHS estates recommendations (2005) with a pressure difference at the 

extract of �10Pa and a ventilation rate through the room corresponding to 10 ac/h. The air 

enters the room from a four-way ceiling diffuser as shown in Figure 1, at an angle of 10 

degrees to the ceiling. The injected air has a temperature of 20ûC. This is then extracted 

through a ceiling mounted grille as shown in the Figure. Within the room is a patient, bed, 

table and sink. The patient is given a heat flux of 60W.m
-2 

and the lights 50W.m
-2

. Turbulence 

is modelled using the standard k-İ model with enhanced wall functions. All the walls are 

adiabatic and set to the no slip condition.   

 

The computational grid is comprised of approximately 600,000 cells using a tet/hybrid 

automatic meshing scheme. A boundary layer was applied to all walls, resulting in a 

maximum node distance of 0.01m from the wall. The grid was refined at the inlet and outlet. 

The airflow was assumed converged when the residuals had dropped by three orders of 

magnitude and the mass flux within the space was less than 0.1%. The solution for the bio-

aerosol sources were run using the converged airflow solutions in order to save time, with the 

same criteria applied.  

 

Bio-aerosol source 
The bio-aerosols were initially assumed to be small enough to stay airborne for long periods 

of time, and were therefore modelled using a passive scalar. This was extended to a study 



using Lagrangian particle tracking to more realistically simulate larger particles that are 

released from skin.  

In the passive scalar study the transport of bio-aerosols (φ ) was solved using Equation 1.  
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Here u is the velocity vector (u,v,w) of the air (m.s
-1

); and Γ  is the diffusivity (m
2
.s

-1
). In 

order to study the sensitivity of a point source location nine injections are defined across the 

bed as shown in Figure 1. Each of these is represented by a cube of volume 10cm
3
 with a 

source concentration of 500 cfu. The sensitivity of the zonal source to size and location is 

studied by considering six sources with a plan geometry that ranges between the area of the 

whole bed to an area just covering the patient. The location and geometry of these sources are 

given in Table 1. For all the bio-aerosol sources a momentum source of 1N.m
3
 is applied in 

the positive y direction to simulate an upward release.  
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Figure 1. Schematic of the side room (left) Position of sampling points (x) and point source 

locations (ǻ) (right). 

 

Lagrangian particle tracking was used to model particulate release across the same six zonal 

sources, and point injections were carried out at the centre of the scalar point sources. The 

velocity of the particles (up) was solved using Equation 2.  
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Here FD(u-up) is the drag force per unit of particle, ȡ density and g the gravitational 

acceleration. The subscript p refers to particles, whereas the unsubscripted terms refer to the 

bulk air. Turbulent dispersion was modelled using the stochastic discrete random walk 



(DRW) approach. Three diameters of particles were considered; 5, 14 and 20 microns each 

with a density of 1000 kg.m
-3

. Ten thousand particles of each diameter were injected and 

tracked for 50,000 steps. A particle was considered trapped when it hit a surface and escaped 

when it hit the extract.  

 

Table 1.Geometry of the Zonal Sources showing x,y,z coordinates at max and min positions. 

 x y z 
 min max min max min max 
z(u)1 1.4 

z(u)2 1.7 

z(u)3 

2.46 4.23 1.3 

2.0 

1.425 1.925 

z(l)4 1.4 

z(l)5 1.7 

z(l)6 

2.26 4.26 1.0 

2.0 

1.175 2.275 

 
RESULTS  
Figure 2 shows the velocity vectors for the airflow across the central x and z planes in the 

room. The air speed across the patient is less than 0.25m.s
-1

 as required by ASHRAE to 

provide adequate comfort, and avoid drafts. Figure 2b shows clearly two areas of recirculation 

down each side of the room.  

 

Contours of bio-aerosol concentration from the passive scalar simulations are shown for three 

representative point sources and the six zonal sources in Figure 3. These are all plotted on a 

plane at y= 1.35m, just above the top surface of the patient. In order to compare the results the 

volume of the room with a concentration greater than 5 cfu.m
-3

 is found for each case and 

shown in Figure 4. To compare the risk posed by each source to health care workers standing 

in specific locations the average concentration at three points around the bed (S1, S2, S3 in 

Figure 1) are given in Figure 5. The error bars indicate the range of values depending on the 

source position or size.  

 

In the particle tracking results a distinction is made between the lower zonal sources that 

surround the patient (l), and the upper sources that are immediately above the patient (u) (see 

Table 1). Figure 6 shows the number of particles extracted as a percentage of those injected 

for each source. The average value is given for each type of source and the error bars indicate 

the range of results for the different individual source locations or sizes. The same process is 

carried out for the results in Figure 7 showing the deposition on different surfaces within the 

room. 

 

a) b)  

 1.5 m.s
-1

0.2 x 10
-4

 m.s
-1

Figure 2. Vectors of velocity on the planes z=1.65 (a) and x=2.13 (b).  
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Figure 3. Contours of bio-aerosol concentration on the plane y=1.35m for point sources (P) as 

shown in Figure 1, and zonal sources (z) described in Table 1. The colours are equivalent for 

each plot with light areas showing the highest contamination. Orientation as in Figure 1b. 

 
Figure 4. The percentage by volume of the room air with a scalar concentration > 5cfu.m

-3
.  



 
Figure 5. Average concentration at three HCW locations (shown in Figure 1) based on mean 

of all 9 point source results and all 6 zonal source simulations. The error bars indicate the 

range of values for each type of source.  

 
Figure 6. The average number of particles extracted from the space as a percentage of those 

injected, based on mean of 9 point source, 3 (u) zonal source and 3 (l) zonal source 

simulations. The error bars show the range of values found for the different types of source.  

 

 
 

Figure 7. The average percentage injected of 5ȝm particles impacting on surfaces within the 

room, based on mean of 9 point source, 3 (u) zonal source and 3 (l) zonal source simulations. 

The range of values for each type of source is shown by the error bars.  



 
DISCUSSION 
Figure 2 shows quite clearly that the dispersal pattern changes as the point source location 

moves away from the wall, with the resulting contour plot very dependant on the original 

source location. These patterns are quite different to those that occur due to release from a 

zonal source. In the latter case there is very little difference between the dispersal patterns 

when the source dimensions change, with greatest difference in concentration, when the 

source is thin resulting in a much higher concentration at the source.  

 

Comparing these concentration patterns quantitatively, Figure 4 shows the percentage of the 

room with concentrations above 5 cfu.m
3
. For the point source simulations this volume varies 

greatly depending on location with the largest differences between points B and E despite 

them being only 64 cm apart. The zonal source simulations result in percentage values 

between the extremes of the point source simulations, with only a small variation with size of 

the source. The results shown in Figure 5 aim to quantify the potential risk to a HCW located 

at three positions around the bed. The results show immediately how the risk at a particular 

location depends very much on the nature and location of the source. In particular the 

variation at position B for point sources is very large, as depending on the position of the 

point source the bio-aerosols are immediately extracted, or recirculate around the room. These 

results show how important it is to locate a point bio-aerosol source correctly as incorrect 

positioning can give very false results when calculating the risk to HCWs.  

 

These findings are also reflected in the Lagrangian particle tracking results (Figures 5 and 6). 

Although particle tracking is more susceptible to the size of a zone, particularly for the upper 

zone (u) results which have a smaller plan area. The depth of the zone for these models 

greatly influences the level of deposition on the patient and the bed. Lai and Chen (2006) 

showed how the incorrect assumption of isotropic turbulence in the k-İ model can result in 

over deposition and when a large number of particles are injected close to a surface, as with 

the thin sources, this effect may have a greater effect. They also showed that Lagrangian 

particle tracking is more sensitive to the grid size than the simulation of the bulk air flow. For 

this reason over deposition with thin sources may be reduced by a finer grid. However since 

the zone thickness does not otherwise have a great effect on the dispersal pattern it may be 

more appropriate to consider a thicker zone so less particles are injected in the area close to 

the surface.  

 

As discussed in the introduction, the release of bacteria from activity can significantly affect 

the concentration of bio-aerosols and these may be pathogenic. It is therefore important to 

consider the type and location of activity when simulating hospital wards. To model the 

release of bacteria from an activity such as bed-making, dispersion will occur in varying 

amounts over the length of the bed. From the results shown here it is clear that a point source 

at the head of the bed could give misleading results, but equally a point source located at 

another position on the bed would also be incorrect. When using CFD to research the effect of 

airflows on the risk of transmission of infection, incorrectly assuming a point source release 

could lead to erroneous results. Therefore when using CFD simulations to study bio-aerosol 

transport it is important to understand the types of sources that may exist in the space and the 

purpose of any interventions. It may then be necessary to consider both respiratory and 

activity based bio-aerosol sources, and to achieve this by using a combination of point and 

zonal sources to build a realistic simulation of the risks in a space.  

 



CONCLUSIONS 
When using CFD simulations for research or design of hospital isolation or side rooms it is 

important to consider the type of infection that a bio-aerosol transport model is intending to 

represent. Pathogens that contaminate the skin, and can therefore be released from the skin 

due to friction during activity will have different dispersion characteristics to respiratory 

aerosols. It is therefore important to consider the pathogen source when researching the 

design of ventilation and engineering infection control interventions in side rooms, isolation 

rooms and hospital wards. The dispersion patterns from point and zonal sources are different 

and it may be necessary to use both to represent the release from respiratory and activity 

based sources of infection. The results of this study also highlight the importance of 

specifying a realistic location for the source of a pathogen and understanding the limitations 

in the model created by making this choice.  
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