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14.1 Introduction 
Seabirds are highly visible, charismatic predators in marine ecosystems that are defined as feeding 

exclusively at sea, in either nearshore, offshore or pelagic waters. At a conservative estimate there 

are approximately 0.7 billion individuals of 309 species of seabirds globally15. Such high population 

abundance means that in all ecosystems where seabirds occur the levels of marine resources they 

consume are significant15. Such high consumption rates also mean that seabirds play a number of 

important functional roles in marine ecosystems, including the transfer of nutrients from offshore and 

pelagic areas to islands and reefs, seed dispersal and the distribution of organic matter into lower parts 

of the developing soil profile (eg burrow-nesting species such as shearwaters)57. 

A total dependence on marine food resources makes seabirds key upper trophic level predators in 

marine ecosystems… This means that seabird demographics and reproductive parameters are strongly 

impacted by, and closely reflect, changing oceanographic and trophic conditions. Prey abundance 

and seabird reproductive biology have been significantly correlated many times (eg Anderson et 

al.3, Burger and Piatt19). For this reason seabirds are widely considered important indicator species 

in marine ecosystems43. Therefore, understanding how changing oceanographic conditions impact 

seabird population dynamics and reproductive ecology leads directly to critical insights into the 

potential future impacts of climate change, not only on seabirds, but on other functionally important 

components of tropical marine ecosystems. 

There are two primary purposes to this chapter. The first is to present and synthesise available 

information on the sensitivity of seabirds to climate variability at global, regional and local scales, 

emphasising relationships previously observed in tropical marine ecosystems. This synthesis will then 

be used to identify the magnitude and scale of resultant impacts attributable to specific climatic/

environmental phenomena. When combined with climate change predictions (Lough chapter 2), 

these findings can be used to identify those climate change processes most likely to affect seabirds of 

the Great Barrier Reef (GBR) and the potential magnitude and direction of these effects.

Secondly, this chapter will examine evidence for the trophic or functional mechanisms underlying 

each of these relationships, while simultaneously summarising available information on the adaptive 

capacity of seabirds to respond to variability in these phenomena. Combined, the various components 

of this chapter will allow the overall vulnerability of seabirds on the GBR to be assessed under current 

climate change scenarios. 

This chapter also aims to increase general awareness and understanding of both the vulnerability of 

seabirds to climate change and the potential broader effects these same threatening processes have 

on trophic dynamics in tropical marine ecosystems. This increased understanding can then be used 

to guide informed management decisions that protect Australia’s marine biodiversity while allowing 

for long–term sustainable use of the GBR ecosystem.
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14.2 Seabirds on the Great Barrier Reef 
For tropical seabirds in Australia, research to date has been centred in the Houtman-Abrolhos Island 

group of Western Australia, or on the GBR and in adjacent Coral Sea locations. The Houtman-Abrolhos 

colonies support over one million pairs of tropical seabirds and are the largest seabird breeding 

rookery in the eastern Indian Ocean111. Australia’s Coral Sea Island territories also contain regionally 

significant populations of many of the 13 seabird species known to breed there. North East Herald 

Cay is the principle seabird rookery within this region24 (Baker et al. unpublished data).

The importance of the GBR as seabird breeding and feeding habitat on a national scale has previously 

been summarised in Hulsman et al.57. Seabirds breeding on the GBR constitute about 2.4 percent of 

the total population that breed in Australian continental waters. The enormous numbers of short-

tailed shearwaters (Puffinus tenuirostris) that breed in southern Australia are included in this figure. 

This masks the true significance of the GBR as seabird breeding habitat. If short-tailed shearwaters 

are not considered, the GBR contains over 10 percent of Australia’s breeding seabirds, ranking fifth in 

Australia in terms of the number of breeding pairs. The importance of the GBR increases when type 

and range of breeding species are considered. More than 25 percent of Australia’s tropical seabirds 

nest on the GBR, including greater than 50 percent of Australia’s roseate terns (Sterna dougallii), lesser-

crested terns (Sterna bengalensis), black-naped terns (Sterna sumatrana), and black noddies (Anous 

minutus); and about 25 percent of the wedge-tailed shearwater (Puffinus pacificus), brown booby (Sula 

leucogaster), masked booby (Sula dactylatra) and red-tailed tropicbirds (Phaeton rubricauda)57. 

Most major seabird colonies are located in either the far northern, northern or southern regions of 

the GBR57. Raine Island in the far northern region is one of the largest and most significant tropical 

seabird breeding sites in Australia66,117,67,86,113. Of the 24 seabirds recorded as breeding in Queensland, 

14 breed at Raine Island8. Recently Batianoff and Cornelius8 have undertaken a comprehensive review 

of the trends in seabird numbers at this site since the beginning of last century.

Michaelmas Cay in the northern region of the GBR is a tropical seabird colony rated as the second 

most important nesting site in the GBR46. The island constitutes a major nesting site for sooty  

terns (Sterna fuscata), common noddies (Anous stolidus), crested (Sterna bergii) and lesser-crested 

terns (S. bengalensis)65,68. At Michealmas Cay demographic parameters for these four principal species 

have been collected from 1984 to 2001 as part of the coastal bird atlas (Queensland Parks and Wildlife 

Service). These data are of critical importance as they represent one of the few large long-term seabird 

monitoring data sets in Australia22, and one of the few focused on a tropical region globally (Table 

14.1a,b). 
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The islands of the Swain reefs in the far southeast of the GBR constitute one of six core seabird 

breeding areas67,53. Bi-annual census of seabird populations in the Swains reefs have been collected 

over more than a ten year period from 1984 to 199553. 

Finally, the Capricorn-Bunker group of islands in the southern GBR also contains nationally and 

internationally significant seabird breeding populations. This island group supports the Pacific Ocean’s 

largest breeding colony of wedge-tailed shearwaters36. The Capricornia Cays also contain 73 to 75 

percent of the seabird biomass of the GBR110, and over 97 percent of the black noddy populations 

of the GBR36. There have been approximately 15 censuses of black noddies breeding at Heron Island 

between 1910 and 2000, including a series of annual comprehensive surveys of the population in the 

whole Capricorn-Bunker group from 1996 to 200057,36. 

Many seabird species that breed within the GBR and in adjacent areas are considered migratory 

species and/or threatened species and are listed under the Australian Environmental Protection and 

Biodiversity Conservation Act 1999a in a variety of categories. Many are also variously protected under 

international agreements such as the China-Australia Migratory Bird Agreement (CAMBA), Japan-

Australia Migratory Bird Agreement (JAMBA) and the Convention on the Conservation of Migratory 

Species of Wild Animals (Bonn Convention 1979). Additionally, the GBR region hosts migrating 

populations of some northern hemisphere breeding species such as common tern (Sterna hirundo) 

and much of the Asian population of roseate tern88.

14.3 Vulnerability of seabirds to climate variation 
Most previous studies (Table 14.1b) document the impact of climate on seabirds as seasonal or longer-

term correlations between reproductive demographics and large-scale oceanographic processes, such 

as the El Niño-Southern Oscillation (ENSO). Specifically, this work suggests that ENSO type phenomena 

impact important demographic parameters, such as the timing of breeding, year-to-year recruitment, 

number of breeding pairs and hatching success on an annual or longer-term basis116,49,94,95,62. Both 

beneficial and detrimental seasonal or longer-term impacts have been observed in a number of temperate 

ecosystems69,54,34,47, but to date only detrimental effects have been documented in tropical ecosystems. 

As well as these larger-scale longer-term impacts, there is also recent evidence that sea temperature 

variation at smaller within-season and day-to-day time scales significantly impacts seabird foraging 

success, growth patterns and reproductive output, regardless of prevailing ENSO type conditions. 

While not totally independent these longer- and shorter-term processes may operate on different 

reproductive parameters and involved substantially different trophic interactions. Therefore, 

documented impacts at each of these scales will be examined separately, along with available 

evidence of the possible trophic mechanisms responsible for each.  

Other climate driven processes that may influence seabird distribution and abundance include sea 

level rise, changing rainfall patterns and changes to the frequency and intensity of tropical storms and 

cyclones. However, for these processes significantly fewer data are available from which to establish 

current impacts. Therefore, this group of phenomena can only be considered in less detail.

a For more information see: http://www.environment.gov.au/cgi-bin/sprat/public/publicthreatenedlist.pl?wanted=fauna
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Finally, predicted changes to ocean chemistry and light/ultraviolet (UV) radiation (Lough chapter 2) 

will impact seabirds via trophic interactions that destabilise overall reef trophic ecology and reduce 

food resource availability. The potential impacts of these phenomena at lower trophic levels and 

the possibility that these impacts may cause trophic collapse are discussed in earlier chapters in this 

volume. The predicted changes in ocean chemistry and UV are not considered significant for seabirds 

and until further information becomes available, the likely effect of changing ocean chemistry and 

light/UV radiation on seabirds remains extremely difficult to predict. For this reason these phenomena 

will not be considered further in this chapter.

14.3.1 Seasonal-scale and longer-term climate variability

14.3.1.1 Seasonal-scale and longer-term impacts

A number of natural circulation patterns, most importantly the North Atlantic Oscillation (NAO), 

Pacific Decadal Oscillation (PDO) and the El Niño-Southern Oscillation (ENSO), drive global climate 

variation61. The influence of these processes on seabirds varies with geographic location and each tends 

to operate at different temporal scales. The ENSO produces the strongest natural climatic fluctuations at 

inter-annual time-scales. The NAO displays irregular oscillations on inter-annual to multi-decadal time-

scales, while the PDO is associated with decadal to multi-decadal climate variability. Within each ocean 

basin, extreme variations in seabird reproductive performance have been related to both seasonal-

scale33,95,103,106 and longer-term104,2,102 fluctuations in these major oceanographic phenomena. 

North Atlantic Oscillation (NAO) – In the Atlantic Ocean, large-scale fluctuations in the NAO have 

been observed to impact a wide range of seabird demographic parameters35. For example, annual 

variability in the breeding performance of northern fulmar (Fulmarus glacialis) has been linked to 

variation in both the winter NAO and Northern Hemisphere summer temperatures with a time lag of 

up to five years114. Reduced adult survival and altered breeding phenology in North Atlantic alcid and 

kittiwake species has also been closely correlated with lagged effects from the NAO and associated 

sea temperature increases42,101.  

The NAO and changes in Arctic sea ice are thought to be closely coupled61 and the limited number 

of studies from the Arctic Ocean show changes in seabird breeding phenology, reproductive output 

and adult body mass related to sea ice changes1. Breeding phenology of thick-billed murre (Uria 

lomvia) at Arctic colonies in both the northern and southern limits of the species range is positively 

correlated with summer ice cover. Documented trends suggest that increased global temperatures 

during winter and spring benefit populations at the northern limit of this range but adversely affect 

populations on the species southern limit45. The recent positive temporal trend of the NAO has also 

been correlated to changes to both natal and breeding dispersal in Arctic terns (Sterna paradisaea)82. 

Southern Ocean examples of similar relationships include decadal scale population changes in adélie 

and emperor penguins (Pygoscelis adeliae and Aptenodytes forsteri) that have been closely related to 

winter sea ice extent28.

Pacific Decadal Oscillation (PDO) – In the eastern Pacific the ongoing 30-year warm phase of the PDO41 
has been associated with significant breeding population declines of Cassin’s auklets (Ptychoramphus 
aleuticus), and with the northward retraction of multiple Pacific Ocean subarctic species including 
albatrosses, shearwaters and murres1. In the same region numbers of migrating sooty shearwaters 
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(Puffinus griseus), the most abundant species in the California current system, have declined 90 
percent since the 1980s116. This decline is thought to be linked to decreasing zooplankton volume 
associated with reduced upwelling and increasing sea-surface temperatures over the same period1.

El Niño-Southern Oscillation (ENSO) – Tropical waters comprise half the total open water on earth74 and 
ENSO-associated variability and fluctuations in sea surface temperature are greatest in the tropics41. 
Increasingly, data correlating reproductive parameters with global climate phenomena for tropical 
seabirds (Table 14.1b) demonstrate the potential for ENSO-associated variability to have severe 
detrimental impacts in tropical ecosystems at a range of different temporal scales. Substantial data 
exist for the central and southeast Pacific where detailed results correlate ENSO frequency and/or 
intensity with lengthened fledging periods, slowed chick development, a reduced incidence of 
breeding, and significant decreases in nesting success2,13. 

A single severe ENSO event in 1982 to 1983 produced both reproductive failure and high adult 
mortality in multiple seabird species breeding at Christmas Island in the central Pacific104,2,102. These 
populations took more than a decade to regain their pre-ENSO levels103, with brown boobies (Sula 
leucogaster) being one of the slowest species to recover104. Christmas bird count data for another 
location in the central Pacific following this same ENSO event showed population declines of 
between 65 and 96 percent for red-footed boobies (Sula sula) and great frigatebirds (Fregata minor), 
respectively115. Similar population crashes were also recorded for cormorant and murre populations 
in the eastern Pacific Ocean in association with El Niño intensity115.

In the Indian Ocean seabird reproductive biology has been strongly tied to ENSO-driven processes. 
For example, in the Seychelles seasonal-scale variation in ENSO intensity and sea temperature have 
been correlated with changes in both food availability and timing of breeding for two noddy species 
(black noddy and common noddy) and roseate terns97. Common noddies bred later, less successfully 
and with significantly reduced body condition97. For roseate terns, larger-scale ENSO-associated 
fluctuations also affect the timing of breeding, while local variation in sea temperature impacts the 
size of breeding populations95.

Within tropical, subtropical and temperate Australasia, significant impacts on seabird biology have been 
linked primarily to fluctuations in the ENSO. In Western Australian colonies, sensitivity to oceanographic 
conditions during ENSO years has resulted in delayed breeding and poor breeding success in wedge-
tailed shearwaters and poor foraging returns for at least three of four tropical tern species (Table 
14.1). At these colonies the number of active wedge-tailed shearwater burrows excavated per season 
directly reflected fluctuations in ENSO and oceanographic conditions from previous years: there being 
a significant correlation between the three-year running mean in active burrow numbers and the 
annual Southern Oscillation Index over the same period33. In temperate eastern Australasia during the 
2002 ENSO event, sooty terns at Lord Howe Island experienced almost complete breeding failure, with 
virtually all chicks that hatched dying of starvation (L. O’Neill pers comm). This reproductive crash 
followed a non-ENSO year with approximately 99 percent fledging success. 

Large-scale ENSO processes have also been associated with negative impacts on tropical seabird 
breeding success in the Coral Sea and along the northeast Australian coastline, especially for colonies 
on or adjacent to the GBR (Figure 14.1). Such impacts have been particularly obvious during events 

like the 1997 and 1998 ENSO. Extremely high sea surface temperature increases during this event 

were also accompanied by severe reef-wide coral bleaching55,10.  
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Figure 14.1 Breeding success of seabirds has been impacted by environmental changes associated 
with ENSO events; for example, reduced primary productivity of plankton can lead to reductions in 
food availability for hatchlings

For Coral Sea populations, data over the 12-year period from 1992 to 2004 show significant declines 

equivalent to greater than 6 to 7 percent per annum for populations of great and least frigatebirds 

(Fregata minor, F. ariel) and possibly black noddies at this site50 (Figure 14.2; Baker et al. unpublished 

data). Significant change in numbers of these species appears to relate to population crashes at the 

time of the 1997 to 1998 El Niño event. Numbers of each species remained relatively stable both 

before and after this event. Importantly, despite a return to presumably more favourable conditions, 

both the frigatebird and noddy populations have still not returned to their pre-1998 levels. 

Breeding populations of both red-footed boobies and red-tailed tropicbirds in the Coral Sea have also 

fluctuated substantially over the 1992 to 2004 period, but based on increased numbers of sightings 

during annual counts in 2003 to 2004, these species appear not to have declined below pre-1998 

levels. Adult breeding populations of masked boobies and wedge-tailed shearwaters have changed 

little during this 12-year period and no decreases were observed in association with the 1997 to 1998 

ENSO event, although fewer data are available to test trends for these species.

Current population data at Raine Island in the far northern GBR indicate a potential progressive 

decline in breeding populations of at least 10 of the 14 breeding species. This negative trend is 

consistent across all species with relatively large breeding populations. Declining species listed in 

descending order of reduction are: common noddy (95.5%), sooty tern (84.4%), bridled tern (Sterna 

anaethetus) (69.1%), red-footed booby (67.9%), least frigatebird (67.6%), brown booby (40.4%), 

red-tailed tropicbird (38.5%), masked booby (26.9%) and wedge-tailed shearwater (18.6%)8. 
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Figure 14.2 Declines in frigatebird and black noddy populations at Northeast Herald Cay in the 
Coral Sea Marine Protected Area between 1992 and 2004 (Baker et al. unpublished data)

The cause of the apparent declines at Raine Island is unknown. However, there is no evidence of 

significant human disturbance, and no deterioration of nesting habitat or habitat loss over the period 

of decline8. This lack of other mechanisms, and the fact that species which commonly form foraging 

associations at-sea have similar declining trends, highlights depletion of marine food stocks linked to 

changing climate and oceanographic regimes and/or human influences such as trawling as the most 

likely possible driving factors8. 

Eighteen years of data from Michaelmas Cay in the northern GBR also show significant relationships 

between population trends and ENSO climatic indices at multiple levels39 (Erwin et al. unpublished 

data). Of primary importance is that breeding populations of the two pelagic foraging species, the 

sooty tern and common noddy, showed significant negative correlations with ENSO intensity in the 

year following each breeding survey (Figure 14.3). Similar relationships were not found for the inshore 

foraging crested tern that is thought to supplement natural food sources with discards from trawlers12. 

Frigatebirds

Black noddies

1998 El Niño

Bl
ac

k 
no

dd
ie

s

1992 1994 1996 1998 2000 2002 2004

1992 1994 1996 1998 2000 2002 2004

3000

2000

1000

0

3000

2500

2000

1500

1000

Fr
ig

at
eb

ird
s



P
art II: Sp

ecies an
d

 
sp

ecies g
ro

u
p

s

439Climate Change and the Great Barrier Reef: A Vulnerability Assessment

C
h

ap
ter 1

4
:  V

u
ln

erab
ility o

f seab
ird

s o
n

 th
e G

reat B
arrier R

eef to
 clim

ate ch
an

g
e

Figure 14.3 Significant negative relationships between mean annual multivariate El Niño Index 
(MEI) in year n + 1 and mean annual numbers of breeding pairs of sooty terns ( ) and common 
noddies ( ) breeding at Michaelmas Cay in year n39

These findings imply that the number of pelagic foraging adult terns that return to Michaelmas Cay to 

breed in any given year can be significantly impacted by ENSO precursors long before ENSO indices 

register an impending event. Significant negative relationships between precursor changes in the 

depth of the 20°C thermocline and the number of breeding pairs of sooty terns and common noddies 

at Michaelmas Cay39 suggest a plausible mechanism for the observed ‘predictive’ ability of these 

pelagic tropical terns. Similar relationships between breeding numbers and the direction and intensity 

of ENSO and sea temperature anomalies over the following 12 months have also been observed 

in sooty shearwaters breeding in New Zealand76 and multiple seabird species breeding along the 

southern African coast70. Further analyses of sooty tern and common noddy data for Michaelmas 

Cay also suggest that levels of recruitment are impacted over longer periods, negative impacts being 

clearly manifested as poor recruitment to the breeding population approximately three years after 

ENSO conditions (Erwin et al. unpublished data).

Long-term data on seabird abundance and demography from the Swains Reefs in the southern 

region of the GBR show negative population trends for brown boobies in both the number of active 

nests and total adults on all but one of seven islands studied. Figure 14.4 illustrates the cumulative 

declines that occurred on individual cays as well as the overall tends. This figure clearly shows that 

the declining trend was consistent throughout the region and was not simply a consequence of 

inter-seasonal migration between islands53. The causes of these significant declines are unclear, but 

the authors believe that they are unlikely to be human disturbance induced. Aerial surveillance data 

obtained over the same period suggest no increase in the level of human visitation to the area53. 
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Figure 14.4 Number of brown booby nests recorded between 1980 and 1995 on seven cays in the 
Swains Reefs (source Heatwole et al.53)
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Similarly, there are no data to suggest that changes in charter or fishing boat operations have 

caused higher levels of seabird disturbance. Instead, the most likely explanation for the declines is 

purported to be decreases in food availability associated with three significant ENSO events that 

occurred between 1984 and 199553. The presence of high numbers of emaciated brown booby 

chicks following these events further suggests that food availability linked to ENSO variation played a 

major role in the observed declines53. Masked booby did not exhibit similar declines, possibly because 

of differences in its feeding ecology53, although the exact reasons for species-specific differences in 

response are unknown. More recent data for Gannet Cay within the Swains group indicates the 

impacts of the larger 1997 to 1998 and 2002 events are barely discernible because breeding numbers 

have not recovered from declines that occurred during the 1980s (Figure 14.5).

Wedge-tailed shearwaters and black noddies numerically dominate breeding seabird species of the 

Capricorn Island group in the southern GBR67,58,36. The black noddy population on Heron Island 

has increased exponentially since early last century7,85, however, recent censuses on Heron Island 

demonstrated a substantial decrease in active nests from approximately 70,000 to 30,000 between 

1996 and 200036. Mass mortality of both adults and chicks was observed in January 1998 coinciding 

with the 1998 ENSO event and extensive coral bleaching in the region9. 

Similarly, in 2002, a second year of abnormally high sea surface temperature, reduced provisioning, 

decreased growth rates and almost complete reproductive failure of wedge-tailed shearwaters 

occurred at Heron Island106. Compared with data from the previous year, adult shearwaters were 

unable to compensate for changes in either the availability or accessibility of forage-fish by increasing 

food loads or foraging rates. 
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Figure 14.5 Decline in numbers of active brown booby nests (summer) at Gannet Cay in the Swain 
Reefs GBR during the period 1976 to 2004 (Heatwole et al.53, O’Neill et al. unpublished data)
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14.3.1.2 Seasonal-scale and longer-term trophic mechanisms

In general, the observed large-scale upper trophic level impacts of climate variability described 

above have been attributed to interrelated seasonal-scale decreases in productivity or prey species 
abundance at lower trophic levels108,34,60. These studies propose that, during intense ENSO events, 
unfavourable sea temperatures disrupt or block nutrient rich upwelling zones, thereby disrupting 
phytoplankton distribution and abundance77,64,122. This in turn produces seasonal-scale declines in 
productivity at lower trophic levels100,108  that impact recruitment of seabird prey species104,30,108,109,34. 

Work in temperate ecosystems has expanded this model by showing that sea surface temperature 
variation can induce changes in the timing of peak productivity during spawning or juvenile life-
history stages of prey species. Such changes can impact seabird breeding success via phenological 
‘mismatches’ between prey recruitment and seabird breeding requirements11,54,34,42. By definition, 
these models predict that foraging success during ENSO events should be lower at the beginning, 
and possibly for the duration of the breeding season, and that these impacts will be general across all 
seabird species using the impacted resources. 

A third seasonal-scale hypotheses is that particular food types may be associated with individual 
water masses that move out of reach of breeding birds during ENSO events59,69. This hypothesis 
has even greater merit if the vertical, as well as horizontal distribution of potentially favourable 
water masses is considered. For example, the reason that pelagic foraging sooty tern and common 
noddy are sensitive to ENSO precursors up to twelve months in advance of an ENSO event is closely 
associated with changes in the depth/gradient of the Pacific Ocean thermocline39. Many seabird taxa 
are known to forage in association with specific thermocline depths. In particular, eastern tropical 
Pacific piscivorous seabirds have been shown to forage preferentially in areas where the thermocline 
is deepest and most stratified107. This suggests that any change in thermocline depth will significantly 
influence prey accessibility to these taxa. In the Pacific, substantial changes in thermocline depth and 
stratification are important precursors that can occur up to one year preceding ENSO anomalies81,99.

While evidence exists in support of each of these seasonal-scale productivity or distributional 
models, most studies to date have not attempted to identify any direct mechanism linking ENSO 
and sea surface temperature variation with adult or fledgling survival. Therefore, the exact trophic 
mechanisms involved remain relatively unclear32,77,51,109.

14.3.1.3 Seasonal-scale and longer-term vulnerability and thresholds

In general, the accumulated evidence of impacts presented in the preceding sections clearly highlights 
the sensitivity of seabirds to variation in large-scale oceanographic phenomena. Unfortunately, there is 
little consistency in research methodology among these studies. Detailed comparisons between data 
sets are hampered by the wide variety of demographic, phenological and environmental parameters 
measured at different temporal and spatial scales. This makes it difficult to formulate and parameterise 
general models of impacts for specific climate change scenarios across different ecosystems or species. 
However, some generalities are apparent.

Significant impacts have been observed in all ocean basins as well as in all regions of the GBR and 
adjacent areas of Australasia. Impacts occur at inter-annual, decadal and even longer time scales and 
across taxonomic and functional groups. Virtually all taxa examined show some degree of impact at 

one or more locations, with these taxa being from different families, genera, and/or species. 
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Impacts have been observed to occur across all foraging guilds (ie inshore, offshore and pelagic species) 

with offshore and pelagic species appearing to be significantly more sensitive than inshore foragers. 
Negative impacts have also been observed on nearly all components of seabird reproductive biology, 
such as timing of breeding, year-to-year recruitment, number of breeding pairs, annual hatching and 
fledging success, chick growth and adult survival, etc. Combined, these finding imply that recent 
climate fluctuations linked to these large-scale oceanographic phenomena are already having significant 
detrimental impacts on seabird populations both globally and within the Australasian region. Available 
evidence also suggests that predicted changes in the frequency and intensity of phenomena associated 
with climate change trends are likely to further compound these impacts. 

14.3.1.4 Seasonal-scale and longer-term adaptive capacity

As evidence of the influence of climate variation on seabird reproductive dynamics increases, it 
is becoming obvious that individual species and even individual birds with distinct phenotypic 
characteristics respond differently to climatic anomalies. Different responses are manifested depending 
upon diet69,94,60, dispersal characteristics42, sex48,63, age114,94,18 and the demographic parameters being 
measured63. Major differences in foraging ecology between species are presumed to be one of the 
main reasons for variable responses to ENSO conditions39.

Different seabird species also show different sensitivity and rates of recovery to both ENSO events104,96 
and associated sea surface temperature anomalies dependant upon breeding location69,60. In the 
clearest example, varying rates of recovery over a two-year period were documented in seabirds 
nesting on Christmas Island in the central Pacific during the severe 1982 to 1983 ENSO event104. 

Why species-specific sensitivity differs between specific ENSO events and locations is unknown, but 
data suggest much of this variation may relate to interactions between a species’ population size, 
foraging ecology, and the pattern and intensity of previous location-specific impacts. Such location 
and species-specific variations in response make generalising about adaptive capacity difficult and 
suggest that assessments of resilience or adaptive capacity will need to be undertaken on a colony by 
colony, or regional basis with data obtained specifically for that purpose.

14.3.2 Short-term and within-season climate variability

14.3.2.1 Short-term and within-season impacts 

As discussed, most evidence of potential climate change impacts on seabirds comes from large 
seasonal-scale correlations between reproductive biology and ENSO type activity. The three seasonal-
scale mechanistic hypotheses described above all involve within-season time lags between shifting sea 
surface temperature and the availability of prey species to seabirds108,34. Moreover, they predict that 
food availability should be lower and/or delayed over entire breeding seasons.

However, recent research in both the northern and southern regions of the GBR has highlighted 
previously undescribed spatial and temporal links between within-season variation in sea surface 
temperature and seabird reproductive success. Considerable evidence now exists that the foraging 
success of multiple seabird species fluctuates daily in direct association with small-scale variation in sea 
surface temperature. These relationships are consistent both within and among breeding seasons and 

have been observed in multiple study years regardless of prevailing El Niño conditions92,37. 
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For example, at Michaelmas Cay during the latter two-thirds of two consecutive breeding seasons 

in 2004 and 2005, significant negative relationships were observed between day-to-day variation 

in sea surface temperature and both feeding frequency and the amount of food fed to sooty terns 

chicks (Figure 14.6). Both provisioning variables responded to changes in sea surface temperature in 

a similar manner among seasons. However, during 2004, both were consistently lower for equivalent 

sea surface temperature values, suggesting that food was generally less abundant37. Consistency in the 
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Figure 14.6 Sterna fuscata: effect of daily sea surface temperature (SST) at Michaelmas Cay on  
(a) age-adjusted Meal Index ( ), 15 September to 3 October) of 2004 and ( ), 20 May to 22 June) 
of 2005 and on (b) age-adjusted feeding frequency during the same periods in 2004 ( ) and  
2005 ( )37
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rate at which food availability changed between years implies that short-term variation in sea surface 

temperature impacted sooty tern provisioning similarly across breeding seasons for temperature 

ranges of 23 to 26ºC as measured at Michaelmas Cay. Neither season was significantly influenced by 

ENSO driven anomalies in sea surface temperature or ocean circulation.

During the beginning of each breeding cycle in both 2004 and 2005, rapid changes in foraging 

success and food availability also occurred at Michaelmas Cay that were independent of, and an order 

of magnitude greater than, those attributable to day-to-day variation in sea surface temperature. This 

highlights that sea surface temperature variation in the vicinity of Michaelmas Cay may only impact 

foraging success during periods of low food availability and that other within-season mechanisms also 

have a significant influence on sooty tern reproductive potential. Limited evidence from the same data 

set suggests the distribution of subsurface predators as one possibility37. That other processes may 

also operate is significant, as the potential for these as yet unidentified trophic links to be impacted 

by climate change is unknown. 

Day-to-day fluctuations in prey availability and reproductive success have also been correlated with 

small-scale day-to-day variation in sea surface temperature for wedge-tailed shearwaters and black 

noddies at Heron Island92,38. For wedge-tailed shearwaters daily increases in sea surface temperature 

negatively impacted average meal sizes, feed frequencies and chick growth rates, both within and 

among seasons92 (Figure 14.7a-c). During 2003, a 1°C increase in sea surface temperature reduced 
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feeding frequency from approximately one night in two, to one night in five and daily chick mass 

gains were reduced by approximately six to seven percent of body weight per day. 

Similarly, detailed studies of black noddy reproductive success during an extreme warm water event  

(1 to 1.5ºC above long-term averages) in December 2005 to February 2006 showed significant negative 

relationships between day-to-day variation in sea surface temperature and adult provisioning rates, daily 

meal mass and relative chick growth38 (Figure 14.8a-c). For each 1ºC increase in sea surface temperature 

over the study period, feeding frequency declined on average by one-half a meal per day for each chick 

(from an average of approximately 3 meals per chick per day) and daily chick mass gains were reduced 

significantly. These findings were consistent with results for the northern GBR on the relationship 

between sooty tern foraging success and day-to-day variation in sea surface temperature37.

In each of the three studies described above, significant decreases in prey availability tracked 

changes in sea surface temperature over short time scales and did not remain depressed over 

entire breeding seasons. These findings provide the first evidence that declines in seabird breeding 

success previously coupled exclusively to seasonal, yearly or decadal scale El Niño variation may not 

exclusively involve large-scale, inter-annual processes. Instead, these impacts may also result from 

the cumulative effects of day-to-day trophic interactions that operate within all breeding seasons. 

Figure 14.7 Puffinus pacificus: the relationship between: (a) sea surface temperature at Half-tide 
rocks (SSTHALF) and meal mass per gram of chick (MMASS); (b) SSTHALF and feeding frequency 
(FFREQ) during the 28 day study period in 2003; (c) change in chick mass per gram of chick 
(CMASS) and SSTHALF.during the 2003 study period92
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Figure 14.8 Anous minutus: significant negative relationships between (a) sea surface temperature 
(SST) at Heron Island and log10 transformed feeding frequency during December 2005; (b) SST and 
meal mass per gram of chick and; (c) 24-hour chick mass change per gram of chick and daily SST38
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This is a mechanism that operates on much shorter temporal-scales than previously thought29,116,49,95. 

An assessment of data available for Southern Ocean species89 also suggests that short-term variations 

in prey abundance are strongly associated with day-to-day fluctuations in sea surface temperatures, 

regardless of prevailing ENSO conditions, although these data have not been specifically analysed to 

test for such relationships.

14.3.2.2 Short-term and within-season trophic mechanisms 

Peck et al.92 identify two trophic mechanisms previously described in the literature that may influence 

food availability to seabirds on a day-to-day basis. Firstly, fluctuations in sea surface temperature 

may affect the short-term vertical and/or horizontal distribution of prey. Such rapid shifts in prey 

distribution could be driven by numerous physiological123,20,118, ecological64,78,79 and behavioural107 

factors. For example, the generally low productivity of most tropical waters means that foraging 

seabird may be required to track shifting zones of prey availability located in small areas of enhanced 

primary productivity121. The number and spatial and temporal distribution of these favourable sites 

will be related to changing patterns of oceanography and may be significantly depleted by increases 

in sea surface temperature.
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Previously this mechanism has been assumed to effect seabird breeding success only at seasonal 

scales80,49,69,83,107,112. However, if prey species prefer specific temperature regimes it is reasonable to 

assume that rapid movement in vertical or horizontal space to preferred temperatures could decrease 

their accessibility to aerial predators on a day-to-day basis. 

A second possible day-to-day mechanism is that sea surface temperature directly influences the 

abundance of sub-surface predators72,95. These predators drive prey to the surface making them 

available to seabirds16,105,5. The most important predators associated with this behaviour in the 

tropical Pacific Ocean are tuna (Thunnus spp.)4,52. Extensive work has documented a close relationship 

between foraging seabirds and tuna52,6, and it is generally accepted that specific oceanographic 

parameters linked to sea surface temperature, particularly thermocline depth107, are important to 

the foraging ecology of both these groups73,75,14. However, the complex relationships among tuna 

and oceanographic variation remain poorly understood4,52,73,75. Consequently, the validity of this 

mechanism requires further investigation.

14.3.2.3 Short-term and within-season vulnerability and thresholds

To date there have only been a small number of studies examining the effects of day-to-day variation 

in sea surface temperature, but already this body of work suggests these effects are important. 

Significant negative impacts have been observed across multiple species and throughout the entire 

GBR. At present there are no equivalent studies from other regions. 

Data available for the GBR also indicate that there are sea surface temperature limits above which 

provisioning rates are so poor that sooty tern, black noddy, wedge-tailed shearwater and possibly 

other species’ chicks show zero or negative growth. Currently the exact species-specific sea surface 

temperatures at which zero growth occurs are not known. This is because data on existing day-to-day 

temperature effects use average sea surface temperature indices generated from multiple stationary 

data loggers positioned throughout the regions of interest. Determining this relationship more 

precisely for each species and location requires sea surface temperature data obtained from foraging 

dive profiles of individual birds so that provisioning rates can be directly linked to oceanography 

at each foraging site. However, from existing data it is possible identify the magnitude of change 

in sea surface temperature that is important. Regression models show that the chicks of all species 

so far examined receive no food or begin to show zero growth at between 2 and 4ºC increases in 

background sea surface temperature. 

Of course, the period of time over which sea surface temperature remains high is also important for 

determining the overall level of impact. The length of time that chicks can cope with food stress will 

be species-specific and will depend on chick energy requirements, which vary with chick age98. Chicks 

of Procellariiform seabirds in general and wedge-tailed shearwaters in particular, have physiological 

adaptations that allow them to cope with relatively long periods of food deprivation90. Chicks of 

smaller pelagic tern species maintain significantly lower body reserves and consequently adults 

need to provision more frequently. This suggests that terns will be more sensitive to shorter periods 

of higher sea surface temperatures than shearwaters. It also implies that wedge-tailed shearwaters 

maybe useful indicators of the maximum period that chicks of tropical pelagic species are able to cope 

with sea surface temperature increases of between 2 and 4ºC. Young shearwater chicks (3 to 4 weeks 

post-hatching) commonly survive six to seven days without food and even periods of 12 days with 
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only a single meal, but mortality consistently occurs after 8 to 10 days of no provisioning (Congdon 

unpublished data). Older chicks (4 to 8 weeks post-hatching) show similar levels of sensitivity. Chicks 

are able to survive for up to 20 days when provided only with a single meal, but mortality regularly 

occurs after 8 to 10 days of no provisioning (Congdon unpublished data). 

Combined, these findings suggest that in any single breeding season a 4ºC rise in sea surface 

temperature maintained for periods of two weeks or longer will cause catastrophic reproductive 

failure of pelagic foraging species. The significance of similar sea surface temperature increases to 

more inshore and offshore foraging guilds is currently unknown. However, observed declines in less 

pelagic species such as brown boobies and frigatebirds at some locations suggest such impacts may 

be substantial and require further detailed examination. 

Despite the current lack of data for non-pelagic species, it is likely that relatively small increases in 

average sea surface temperature or in the number and duration of large hot water incursions into the 

GBR will cause repeated and catastrophic reproductive failure of many seabird species.

14.3.2.4 Short-term and within-season adaptive capacity

In the short-term, the adaptive capacity of seabirds within the GBR rests on the ability of either 

adult foraging behaviour or chick growth patterns to respond to sea surface temperature-associated 

decreases in food availability. 

When local food resources surrounding a breeding colony are unable to simultaneously support both 

chick development and adult self-maintenance, Procellariiform seabirds often adopt a unique dual 

foraging strategy119,120. Adults alternate multiple short foraging trips in resource-poor, near-colony 

waters with longer trips to highly productive areas ‘at-distance’ from breeding colonies. During 

near-colony trips, adults assimilate little food and sacrifice body condition to satisfy chick energy 

requirements. 

Wedge-tailed shearwaters breeding at Heron Island use this dual foraging strategy27. Foraging adults 

repeatedly performed short-trip cycles of multiple one to four day trips, followed by a single long-trip 

of eight to ten days during which they build body reserves that are passed onto chicks by not self-

provisioning adequately during the early stages of the next short-trip cycle27. 

The use of this foraging strategy in the southern GBR implies that only resource-poor waters are 

readily available adjacent to breeding colonies and that there is extremely limited potential for adult 

shearwaters to increase either food loads or provisioning rates if they are to compensate for sea 

surface temperature-associated decreases in food availability. The inability of black noddies to increase 

provisioning rates during a period of increased sea surface temperature during 2005 suggests they 

may be similarly constrained. No data are available to make comparable predictions for other species 

or locations.

Less is known about the adaptive capacity of chick developmental patterns. Manipulative experiments 

on black noddy chicks suggest that pelagic foraging terns have a hieratical pattern of nutrient 

allocation during growth, where body reserves needed for maintenance are preferentially maintained 

at the expense of feather development25. This implies that chicks of these species can compensate, 

to some degree, for reduced food availability or greater variation in delivery rates by lengthening 
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fledging periods, as long as starvation does not become pathological or predation pressure increase. 

Inshore foraging species do not appear to have similar levels of flexibility in the way incoming 

nutrients can be allocated to different components of growth56.

In addition, data for shearwaters suggest that different adult foraging environments cause 

coordinated divergence in chick developmental characteristics91. Shearwater growth patterns differ 

significantly between temperate and tropical locations. Relative to more temperate locations, chicks 

at Heron Island in a resource-poor foraging environment preferentially store and maintain body 

mass at the expense of skeletal development91. It is currently not known if this is a plastic response 

to seasonal variation in food availability, or a colony-specific physiological adaptation to long-term 

average provisioning rates. Based on existing evidence the latter seems more likely91. If correct this 

implies shearwater growth responses to increasing sea surface temperature can only occur via natural 

selection over generations and will not be effective in mediating any negative impacts in the short-

term. Unfortunately, more data are required to clearly establish the level of developmental flexibility 

and potential response in this species. 

14.3.3 Physical disturbance – tropical storms and cyclones

14.3.3.1 Tropical storms and cyclones – impacts

Climate change and associated ENSO variation have been predicted to increase the intensity and 

possibly the frequency of tropical storms and cyclones in the Australasian region (Lough chapter 2). 

Therefore, the exposure of seabirds to these phenomena can also be expected to increase accordingly.

Potential impacts on seabirds include the immediate effects of cyclones tracking over breeding sites, 

such as the destruction of eggs and increased mortality of chicks and adults, as well as the indirect 

impacts of wave inundation and erosion under the influence of gale force winds, storm tides and 

intensified currents65. Cyclones form over warm water. Therefore, there may also be a correlation 

between conditions under which cyclones form and lowered feeding success due to higher sea 

surface temperatures, as described in the previous section of this chapter. Delayed effects of cyclones 

may also be manifest through decreased recruitment associated with years of high chick loss, or years 

when cyclones reduce foraging success and so produce fledglings that are smaller than average and 

have lower survivorship71,109. At present populations of two relatively isolated and critically endangered 

species that breed on Christmas Island in the Indian Ocean, the Abbott’s booby (Papasula abbotti) and 

the Christmas Island frigatebird (Fregata andrewsi), have been identified as vulnerable to increases in 

major storm or cyclone activity due to there restricted distributions and small population sizes44, 23.

Only limited site-specific evidence of the potential impact of tropical storms on seabird reproductive 

biology is available (Table 14.1a,b). For the GBR region the majority of data come from the most 

intensely monitored population at Michaelmas Cay. Sooty terns at this site show individual instances 

of altered periodicity of breeding, declines in breeding numbers and reduced breeding success in 

association with cyclone activity68. This suggests that individual cyclones can significantly impact 

and limit the ability of Michaelmas Cay seabirds to reproduce in the short-term. However, longer-

term trends do not demonstrate significant impacts of major tropical storms in the region. Both the 

incidence and intensity of cyclones are poor predictors of subsequent changes in the number of 

breeding pairs31,40 (Figure 14.9). 
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Food availability at Michaelmas Cay is such that tropical pelagic terns are able to breed during most 

months of the year68,40. Therefore, cyclonic impacts at this site may be ameliorated should cyclone-

affected breeders return to re-nest in subsequent months, or in the next cycle, with minimum overall 

impact to reproductive output. Such resilience to cyclone losses may not be possible at locations 

where food availability is more seasonal. At such sites the production from an entire year may lost 

after a severe cyclone.

14.3.3.2 Tropical storms and cyclones – vulnerability and thresholds

A lack of other comprehensive data sets means that the longer-term effects of changes in cyclone 

frequency or intensity on seabird population stability remain largely unknown and unpredictable. 

However, the impacts of tropical storms and cyclones are specific to their level of overlap with 

sensitive breeding phases and the size of the breeding colony affected. Any increase in the frequency 

or intensity of these phenomena could be expected to increase both the spatial and temporal 

Figure 14.9 The total populations of sooty terns, common noddies and crested terns at Michaelmas 
Cay from 1996 to 2001. Cyclone occurrences are shown as green vertical lines; none showed an 
effect on populations for any of the three species (adapted from De’ath31)
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potential for them to coincide with important reproductive periods and so cause significant negative 

impacts. Ultimately, increasing cyclone frequency and intensity is an additional stressor that, when 

combined with other ENSO and sea surface temperature related impacts previously described, is likely 

to further reduce foraging efficiency and suppress reproductive potential.

14.3.3.3 Tropical storms and cyclones – adaptive capacity 

The potential for seabirds to adapt to, or compensate for, changes in the frequency and intensity of 

tropical storms is dependent on their ability to either adjust breeding phenology so as to better avoid 

peak periods of storm activity, or relocate to less impacted breeding sites. The capacity for seabirds 

breeding on the GBR to do either of these two things is largely unknown (also see section 14.4.3). 

Most suitable habitat appears to already support breeding populations. However, it is not known if 

these populations are at, or near, carrying capacity with regard to either food resource or breeding 

habitat availability. 

14.3.4 Sea level rise and rainfall patterns

14.3.4.1 Sea level rise and rainfall patterns – impacts

Both rising sea level and altered rainfall patterns will influence seabird reproductive output through the 

effect they have on the availability of breeding habitat. Sea level rise will alter erosion and deposition 

patterns that effect island size, while changing rainfall regimes will cause significant changes in the 

distribution and abundance of specific vegetation types (Turner and Batianoff chapter 20). Based on 

this, sea level rise and changing rainfall patterns are likely to impact the majority of seabird breeding 

colonies within the GBR and Coral Sea region in some way. However, these are longer-term processes 

that are unlikely to have consistently negative impacts.

Changes in sea level and rainfall are also expected to alter flow regimes and discharge patterns for 

major coastal river systems adjacent to the GBR. Any potential impact of these changes on seabird 

reproductive biology will be via effects on primary productivity and trophic stability at lower trophic 

levels. The potential impacts of altered discharge regimes on trophic ecology within the GBR are 

discussed in chapter 19. Changes in sea level or variation in rainfall patterns have not previously been 

quantitatively linked to changes in the distribution and abundance of nesting seabirds.

14.3.4.2 Sea level rise and rainfall patterns – vulnerability and thresholds 

Most seabirds have different species-specific breeding habitat requirements. Functional groups 

include: burrow nesters that need either a tree, hummock grass,  or open beach rock over-story to 

stabilise soil structure and allow tunnelling (eg wedge-tailed shearwaters), tree nesters that require 

mature woodland and forest vegetation (eg black noddies), and open ground nesters that prefer 

ground vegetation ranging from bare sand or soil (eg brown boobies), through light grass cover (eg 

sooty tern, common noddy), to a dense grassy over story (eg bridled terns). Therefore, the long-

term impacts of rising sea levels and changes to rainfall patterns will depend on exactly how these 

phenomena change the distribution and abundance of species-specific breeding habitat on the GBR 

(Turner and Batianoff chapter 20). 
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In general, breeding islands are unlikely to decrease in size in the short to medium term (Turner 

and Batianoff chapter 20) and so little detrimental impact is expected to result from a decrease in 

absolute breeding area within the GBR. Decreasing annual rainfall and potential increases in sand 

and rubble deposition rates at windward edges of islands are likely to favour colonising ground cover 

and woody shrub vegetation types. If so, tree and burrow nesting species that rely predominantly on 

mature Pisonia (Pisonia grandis) forest may be disproportionately negatively impacted by reductions 

in breeding habitat and so more vulnerable to these particular phenomena. 

Ultimately the magnitude and significance of these impacts will be determined by whether breeding 

numbers at specific colonies are currently limited by habitat availability. For ground-nesting species 

at Michaelmas Cay there is no evidence to suggest that population numbers are currently habitat 

limited. For example, no significant relationships have been observed between the mean area of 

available nesting habitat each year and the mean number of breeding pairs of any species of seabird 

breeding at this cay40.

Rising sea level or changes in vegetation patterns may also have specific negative impacts at some 

important breeding sites depending on the current distribution of available habitat. For example, at 

Raine Island in the far northern GBR rising sea level has the potential to flood the only cavernous 

beach rock areas available to burrow nesting seabirds such as red-tailed tropicbirds and to redistribute 

marine turtle nesting habitat such that levels of inter-specific disturbance of seabirds by turtles could 

increase by orders of magnitude. 

14.3.4.3 Sea level rise and rainfall patterns – adaptive capacity

As with the ability to adapt to changes in tropical storm frequency, the potential for seabirds to adapt 

to, or compensate for, changes in the abundance and distribution of species-specific breeding habitat 

depends on their ability to relocate to suitable breeding sites elsewhere. As previously discussed, the 

potential for birds to move to alternative breeding locations is unknown within the GBR system. 

14.4 Linkages and interactions 

14.4.1 Interactions between climate change stressors

Although data for the GBR suggest that the within-season impacts of sea surface temperature 

variation operate regardless of prevailing larger-scale ENSO conditions, these two processes are not 

mutually exclusive. Nor are their impacts independent of the influence of tropical storm and cyclone 

activity or other threatening processes. 

For example, during an El Niño event in the southern GBR in 2002 seasonal-scale decreases in overall 

prey availability were observed as predicted by the large-scale models based on upwelling suppression, 

even after the daily effect of sea surface temperature variations were accounted for (Figure 14.10). 

During this ENSO event chick feeding frequencies were approximately one third those predicted to 

result from within-season sea surface temperature impacts alone92. This indicates that both inter-

seasonal and within-season scale process were operating synergistically to depress foraging success 

and growth rates during this event. Consequently, the combined impact of both these phenomena 
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on the long-term stability of seabird populations is likely to be considerably greater than the effects of 

each independently. Both processes need to be incorporated into any mechanistic models examining 

climate change related impacts on seabird breeding success at specific tropical locales. 

Both inter-seasonal ENSO and within-season sea surface temperature impacts affect seabirds via the 

control they have on prey distribution and abundance. Therefore, there is potential for any other taxa 

that use similar prey to also be impacted. In particular, this could include many of the large predatory 

pelagic fish species known to forage in association with seabirds (Kingsford and Welch chapter 18). 

14.4.2 Linkages between colonies and foraging resources

Wedge-tailed shearwaters from Heron Island use a dual foraging strategy. Adults forage locally in 

resource-poor waters to provision chicks, but also perform regular self-provisioning trips to specific 

sectors of ocean ‘at-distance’ from breeding colonies where localised oceanographic features such 

as seamounts or oceanographic fronts promote consistent high productivity and prey abundance27. 
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Figure 14.10 Puffinus pacificus: the effect of sea surface temperature at Heron Island (SSTHI) on: 
feeding frequency (FFREQ) in 2001 ( ), 2002 ( ) and 2003( ).There was a significant effect of SSTHI on 
FFREQ across years (FFREQ = 2.856 – 0.092 SSTHI). The effect of year on FFREQ was also significant. There 
was no effect of year on SSTHI. The dashed line represents the 2001–2003 regressions while the 2002 
regression is represented by the solid line92
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Satellite tracking of individual shearwaters indicates that these sites are small in number and located 

adjacent to Coral Sea mounts and along the eastern edge of the Australian continental shelf in areas 
where there is likely to be significant localised upwelling (Congdon unpublished data, Figure 14.11). 

Such observed linkages between the Coral Sea and southern GBR are significant. These links mean 
that shearwaters from the Capricorn Bunker island group are reliant on two independent resource 
bases simultaneously. One of these ‘at distance’ foraging areas is up to 1000 km from GBR breeding 
colonies and also appear also to have been impacted by increasing ENSO/sea surface temperature 
variations over the last decade92 (Figure 14.2). The breeding success of shearwaters, as well as other 
seabird species on a regional scale may be totally dependent on the continued stability of a small 
number of these highly productive areas. 

It is possible that these locations also form a major component of the over-winter or non-breeding 
foraging grounds of wedge-tailed shearwaters and many other seabird taxa. At present little is known 
about the potential effect of ENSO/sea surface temperature variation on upwelling or productivity at these 
important foraging refuges, or the effects that any loss in productivity at these locations will have on the 
wider GBR ecosystem. The conservation significance of such key foraging sites cannot be overstated. 

14.4.3 Inter-colony movement and breeding

Ultimately, the influence that repeated localised reproductive failures have on seabird populations 
of the GBR will be determined by the potential for individuals to move elsewhere, or for impacted 
colonies to be buffered by input from unaffected sites. 

Any ameliorating effects of inter-colony movement will decrease as levels of inter-colony gene flow 
decrease. To date, studies of gene flow and levels of interbreeding among seabirds of the GBR have 
been equivocal in their results. All detailed molecular analyses have found a lack of observed genetic 
structuring that suggests high levels of inter-breeding and movement between colonies over broad 
geographic scales91,50. 

However, these same studies have also demonstrated that a rapid population expansion and 
colonisation of the GBR by at least some seabirds has occurred in the recent geological past, most 
likely in association with the appearance of new breeding habitat following the final Pleistocene glacial 
retreat90. Evidence of a recent expansion-colonisation wave implies that measures of contemporary 
gene flow are confounded by historic associations among populations established during colonisation 
and are therefore inaccurate26,90. 

In contrast to data indicating high levels of inter-colony gene flow, significant morphological 
differences have been observed among shearwaters from different colonies that are unrelated to 
inter-colony distances93. These findings suggest some restriction on levels of interbreeding between 
colonies and the possibility of local adaptation. A lack of inter-colony gene flow is further supported 
by limited data on the movement of banded birds87. For both masked and brown boobies strong 
breeding colony fidelity has been observed at a regional scale within the broader GBR Coral Sea area, 
while breeding site fidelity is significantly weaker within smaller localised areas such as the closely 

spaced colonies of the Swain Reefs87. Most extra-limital recaptures of both species were young birds 

suggesting that only young birds disperse large distances, most likely during their extensive pre-

breeding period87. Whether they preferentially return to natal colonies to breed is unknown.
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Any restriction on gene flow at a regional scale implies that displacement of regional population 

clusters, such as those in the Swains Reef or Capricorn Bunker Island group, due to climate change 

impacts will result in permanent loss of those colonies with little chance of re-colonisation from other 

regional populations improve. 

14.5 Summary and recommendations

14.5.1 Major vulnerabilities to climate change

For seabirds, the key vulnerabilities to climate change are clearly identified as the predicted increases 

in sea surface temperature and changes to the major seasonal-scale weather patterns that influence 

circulation and upwelling, such as the ENSO. There are also implications from predicted sea level 

rise and changes in the frequency and intensity of tropical storms and cyclones, but these potential 

impacts are not as well understood.

Sea temperature variation is closely linked to ENSO and other types of large-scale oceanographic 

phenomena, with more frequent and more intense El Niño events producing significantly more variable 

sea temperatures61. Significant detrimental impacts of ENSO related increases in sea surface temperature 

are already likely to have occurred at all major breeding rookeries throughout the GBR. Principal species 

known to be effected include three pelagic foraging terns (black noddy, common noddy, sooty tern), 

and wedge-tailed shearwaters. Other species also likely to have been effected include two booby species 

(red booby, brown booby) and both frigatebird species (great frigatebird, least frigatebird). 

This same group of seabirds have also been impacted elsewhere in the tropical Indo-Pacific, along 

with other species that breed on the GBR for which no local data are available. Species impacted 

elsewhere that are known to breed on the GBR include the crested tern, bridled tern, and roseate 

tern, while other impacted species that breed elsewhere in tropical Australian waters include the lesser 

noddy, white tailed (Phaethon lepturus)96 and Red tailed tropicbird and Abbott’s booby. This list of 

species constitutes virtually all of the major tropical seabirds breeding on the GBR56 and encompasses 

most seabird foraging guilds within the ecosystem. Therefore, it is likely that impacts affecting these 

species are also affecting GBR species for which limited or no data are available.  

Previously, impacts have been observed over long-term (decadal), inter-annual and within-season 

time scales. The intensity of response to a particular ENSO event is often location specific, with species 

affected at one location showing different levels of response at other sites. This is likely due to the 

location specific interactions between changing oceanography and seabird prey availability. 

Both in Western Australia and on the GBR, the more pelagic offshore foraging tern and shearwater 

species were influenced most strongly by oceanographic change, while inshore foraging terns showed 

a lesser response111,39. The more strongly affected species share a number of life-history characteristics. 

They have larger breeding populations, they are generally synchronous breeders and they feed 

regurgitated food to young at relatively long intervals, rather than provision young with whole fish 

more frequently. Consequently, their chicks have longer pre-fledging periods and slower overall 

growth rates, life-history characteristics that may make them particularly sensitive to ENSO associated 

fluctuations in food availability. 
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Based on these findings predicted increases in both sea surface temperature and the intensity or frequency 

of ENSO events are likely to have serious detrimental impacts on some component of the breeding 

biology of virtually all tropical seabird species breeding throughout the GBR and in adjacent areas. 

Importantly, it is likely that breeding populations of at least some species at most significant breeding 

colonies in the GBR or Coral Sea have already declined due to climate change related phenomena.

14.5.2 Potential management responses

With the current level of available information, options for local or regional scale management of 

climate impacts on seabirds remain very limited. This is because most impacts are directly linked to 

large-scale global climate phenomena rather than more local threatening processes. In addition, there 

is a lack of long-term monitoring and associated research studies on seabird population dynamics in 

tropical and subtropical regions in general, and particularly on the GBR. At present, correlative analysis 

aimed at detecting potential threatening processes in the GBR rely on general physiochemical data 

generated independent of any seabird research program and fragmentary population demographic 

data from just a few principal breeding locations and species.   

Managing potential climate change impacts on seabird populations requires identifying general 

and population-specific causes of observed declines, their associated threatening processes and 

the functional relationships between these factors. At present only limited data exist about the key 

foraging locations or foraging modes used by any seabird population of the GBR, or about the direct 

relationships between oceanographic characteristics and seabird productivity. Without detailed 

information on foraging areas, resource use and the direct links between seabird reproductive 

parameters and associated oceanographic variation it is not possible to further identify, predict or 

adaptively manage climate change or other anthropogenic threats appropriately. Therefore, the 

principal management response required is to establish comprehensive research and monitoring 

programs that will fulfil these management needs.

Pelagic seabirds have limited capacity to increase foraging rates. The majority of these species have 

single egg clutches. This means that in any given season they are either able to rear a chick or not. 

Therefore, for these species, reproductive viability changes over a small change in productivity 

or prey accessibility. Thus, climate change stressors are unlikely to produce a slow linear decline 

in reproductive output. Once productivity is reduced below critical levels breeding colonies fail 

catastrophically and remain unviable as long as productivity remains low. 

Monitoring for slow population declines will not identify potential impending colony failures of this 

type. Therefore, a management priority needs to identify the rates of change in critical resource levels, 

the driving processes behind these changes and the species- or colony-specific tipping points at 

which reproduction is no longer viable. Without these data a broad range of short-term management 

options are not available prior to colony collapse.

Importantly it must be recognised that impacts to food resources in specific locations, such as in 

and around known areas of localised upwelling, may have important cascading negative effects 

over large areas of the GBR. Similarly, based on the current limited information available on inter-

colony movement, it must also be assumed that the potential for localised impacts to be buffered by 

immigration of new breeding recruits from other regions is limited.
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Without appropriate data, potential management responses are restricted to attempting to minimise 

the impacts of other potential or perceived stressors in the system. Whether such measures would be 

effective is equivocal, since little quantitative data are available linking seabird reproductive output to 

these phenomena. However, areas for consideration could include the protection of known important 

forage-fish resources, especially where they overlap with commercial or recreational use, and particularly 

during ENSO warm years. This may also include increased protection of pelagic predatory fish species 

such as tuna and mackerel, taxa that seabirds rely on to drive prey species into the surface waters. 

Management aimed at minimising general threats could also involve increased protection of breeding 

sites and/or local foraging resources. This could include limited or no visitation during peak breeding 

periods, along with recognition that breeding seasons may shift or become extended. These options 

may be particularly useful to minimise secondary risk at small or threatened colonies.

14.5.3 Further research

Seabirds are sensitive indicators to changes in forage fish availability and accessibility associated with 

ENSO and sea surface temperature variation. Therefore, seabird reproductive responses can be used 

to develop models of, and monitor for, these potential climate change impacts within the GBR. 

Platform terminal transmitter type satellite tags (PTT), global position system data loggers and 

temperature, depth and activity recorders are now routinely and successfully deployed on seabirds 

of various sizes to link patterns of resource use and foraging behaviour with physical oceanography 

(Figure 14.11). When combined with information on prey acquisition, provisioning success and 

satellite imagery on large-scale variation in physiochemical oceanography, these data can be used 

to identify critical foraging locations, habitat associations and establish trophic relationships that 

underpin the perceived negative impacts of increases in sea surface temperature. 

Ultimately, such data would enable the development of colony-specific predictive models of forage 

fish distribution and abundance from physiochemical data and permit long-term seabird population 

viability to be established under alternative climate change scenarios. These are the baseline data 

needed to determine the types of management options available and how to implement these 

options in a timely fashion. 
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Figure 14.11 Example of satellite transmitter tracking of wedge-tailed shearwaters. Photos display 
a wedge-tailed shearwater fitted with a PTT satellite transmitter. Centre map displays PTT foraging 
track for a single adult during February to March 2006. Map on lower right displays wedge-tailed 
shearwater foraging positions (l) along the edge of an oceanographic frontal system off the 
northern NSW coast (Photo credit: B Congdon, S Weeks) 
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